[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007013216A1 - Azimuth calculation device, azimuth calculation method, azimuth calculation program, and recording medium - Google Patents

Azimuth calculation device, azimuth calculation method, azimuth calculation program, and recording medium Download PDF

Info

Publication number
WO2007013216A1
WO2007013216A1 PCT/JP2006/310669 JP2006310669W WO2007013216A1 WO 2007013216 A1 WO2007013216 A1 WO 2007013216A1 JP 2006310669 W JP2006310669 W JP 2006310669W WO 2007013216 A1 WO2007013216 A1 WO 2007013216A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
azimuth
vehicle
correction coefficient
calculated
Prior art date
Application number
PCT/JP2006/310669
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiharu Baba
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007528358A priority Critical patent/JP4734329B2/en
Publication of WO2007013216A1 publication Critical patent/WO2007013216A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Definitions

  • Direction calculation apparatus direction calculation method, direction calculation program, and recording medium
  • the present invention relates to a direction calculation device, a direction calculation method, a direction calculation program, and a recording medium that can be applied to a navigation device mounted on a moving body such as a vehicle.
  • a navigation device mounted on a moving body such as a vehicle.
  • the use of the present invention is not limited to the navigation device described above.
  • a navigation device mounted on a vehicle or the like that calculates an angular velocity and a bending direction of the vehicle based on an output value from an angular velocity sensor mounted on the vehicle. Since the sensitivity characteristics of the angular velocity sensor may differ depending on the bending direction of the vehicle, the influence of the bending direction of the vehicle on the sensitivity characteristic of the angular velocity sensor is eliminated by changing the correction coefficient according to the bending direction. (For example, see Patent Document 1 below.) O
  • Patent Document 1 JP-A-8-304090
  • the azimuth calculating apparatus includes a sensor value acquiring unit that acquires an output value of the angular velocity sensor force, and a bending direction of the moving body based on the output value acquired by the sensor value acquiring unit. Based on the determination result determined by the determination unit and the output value! /, According to the angular velocity in each bending direction of the moving body.
  • Coefficient acquisition means for acquiring the correction coefficient according to the output value from a plurality of set correction coefficients, and the angular velocity of the mobile object according to the bending direction of the mobile object based on the output value
  • An angular velocity calculating means for calculating using the correction coefficient acquired by the coefficient acquiring means, and an azimuth calculating means for calculating the azimuth of the moving body based on the angular velocity calculated by the angular velocity calculating means. It is characterized by that.
  • the azimuth calculation method includes a sensor value acquisition step of acquiring an output value of the angular velocity sensor force, and a moving object based on the output value acquired by the sensor value acquisition step.
  • a determination step for determining the bending direction, and a plurality of values set according to the angular velocity for each bending direction of the moving body based on the determination result and the output value determined by the determination step.
  • a coefficient acquisition step of acquiring the correction coefficient according to the output value from the correction coefficient, and an angular velocity of the mobile body according to the bending direction of the mobile body based on the output value by the coefficient acquisition step.
  • An angular velocity calculating step for calculating using the obtained correction coefficient, and an azimuth calculating step for calculating the azimuth of the moving body based on the angular velocity calculated by the angular velocity calculating step.
  • An orientation calculation program according to the invention of claim 5 causes a computer to execute the orientation calculation method according to claim 4.
  • a recording medium is characterized in that the azimuth calculation program according to the fifth aspect is recorded so as to be readable by a computer.
  • FIG. 1 is a block diagram showing a functional configuration of an azimuth calculation apparatus according to the present embodiment of the present invention.
  • FIG. 2 is a flowchart showing the processing contents of the azimuth calculating apparatus according to the present embodiment of the present invention.
  • FIG. 3 is a block diagram showing a hardware configuration of the navigation device in the present embodiment of the present invention.
  • FIG. 4 is a functional block diagram showing a specific configuration of an azimuth calculation unit and a correction processing unit in the present embodiment of the present invention.
  • FIG. 5 explains the sensitivity change caused by the sensitivity characteristic of the angular velocity sensor.
  • FIG. 6 is an explanatory diagram for explaining the sensitivity change caused by the sensitivity characteristic of the angular velocity sensor.
  • FIG. 7 is an explanatory diagram for explaining a sensitivity change caused by sensitivity characteristics of the angular velocity sensor.
  • FIG. 8 is an explanatory diagram for explaining the sensitivity change caused by the sensitivity characteristics of the angular velocity sensor.
  • FIG. 9 is a flowchart for explaining the contents of the processing of the navigation apparatus according to the embodiment of the present invention.
  • FIG. 10 is an explanatory diagram showing a correction coefficient table.
  • FIG. 11 is an explanatory diagram showing a specific example of a correction coefficient table.
  • the azimuth calculation device of the present invention can be applied to, for example, a navigation device mounted on a moving body such as a vehicle.
  • a navigation device mounted on a moving body such as a vehicle.
  • the moving body is a vehicle.
  • FIG. 1 is a block diagram showing a functional configuration of the bearing calculation apparatus according to the embodiment of the present invention.
  • the azimuth calculation apparatus includes a sensor value acquisition unit 101, a determination unit 102, a coefficient acquisition unit 103, an angular velocity calculation unit 104, an azimuth calculation unit 105, an azimuth acquisition unit 106, and a correction unit 107. Yes.
  • the sensor value acquisition unit 101 acquires an output value of the angular velocity sensor force provided in the navigation device mounted on the vehicle.
  • the angular velocity sensor is a sensor whose output changes according to the angular velocity at the time of turning of the vehicle, and can be realized by a vibration gyro sensor, for example.
  • the output value of the angular velocity sensor force is a value obtained by subtracting the zero point (offset) voltage value from the voltage value output from the angular velocity sensor.
  • the zero point (offset) voltage value is a value obtained by correcting the amount of temperature drift with respect to the output value of the angular velocity sensor force when the vehicle is stationary or the output value of the angular velocity sensor force when the vehicle goes straight. is there.
  • a value obtained by subtracting a zero point (offset) voltage value from the voltage value force output from the angular velocity sensor will be described as an output value of the angular velocity sensor force.
  • the sensor value acquisition unit 101 acquires an output value from the angular velocity sensor, for example, at a constant sampling period T interval.
  • the zero (offset) voltage value is gy
  • the output value from the angular velocity sensor is (gy—gy
  • the determination unit 102 outputs the angular velocity sensor force output value (gy -gy) acquired by the sensor value acquisition unit 101.
  • the turning direction of the vehicle is determined. Specifically, determination unit 1
  • n 0 is, for example, a right turn when the angular velocity G ′ (gy—gy) force before correction, which is obtained by multiplying the output value from the angular velocity sensor by a gain value, and when it is a negative value, Turn left, etc. n 0
  • the turning direction of the vehicle is determined.
  • the coefficient acquisition unit 103 responds to the angular velocity G '(gy-gy) before correction based on the determination result determined by the determination unit 102 and the angular velocity G' (gy-gy) before correction.
  • a plurality of correction coefficients Gk to be acquired by the coefficient acquisition unit 103 are set for each bending direction and angular velocity of the vehicle. More specifically, a plurality of correction coefficients Gk to be acquired by the coefficient acquisition unit 103 are set according to the angular velocity when the vehicle turns right. Is set.
  • the correction coefficient Gk to be acquired by the coefficient acquisition unit 103 is set stepwise for each predetermined angular velocity range.
  • This angular velocity range is set so that the interval decreases as the angular velocity before correction increases.
  • the predetermined angular velocity range may be set at regular intervals, for example, l [degZ s]!
  • the angular velocity calculation unit 104 calculates the angular velocity of the vehicle according to the bending direction of the vehicle using the correction coefficient G k acquired by the coefficient acquisition unit 103 based on the output value from the angular velocity sensor. To do. Specifically, the angular velocity calculation unit 104 obtains the angular velocity G ′ (gy ⁇ gy) before correction at the sampling time nT, for example, by the coefficient acquisition unit 103 and n 0.
  • the azimuth calculation unit 105 calculates the azimuth of the vehicle based on the current angular velocity ⁇ ⁇ calculated by the angular velocity calculation unit 104. Specifically, for example, when the output value from the angular velocity sensor is acquired at a certain sampling period ⁇ interval, the azimuth calculation unit 105 first calculates the current angular velocity ⁇ at the sampling time nT as the sampling period. Accumulate with firewood. As a result, the amount of angular displacement (hereinafter referred to as “relative orientation”) ⁇ g from the sampling time ( ⁇ 1) ⁇ to the sampling time nT is calculated. Then, the calculated relative orientation ⁇ 0 g is added to the vehicle orientation ⁇ g at the sampling time (n ⁇ 1) T. N n-1
  • the direction acquisition unit 106 acquires a direction indicating the traveling direction of the vehicle (hereinafter referred to as “acquired vehicle direction”).
  • the direction acquisition unit 106 acquires the vehicle direction acquired by a method different from the vehicle direction calculated by the direction calculation unit 105. Specifically, the direction based on the east, west, north, and south is acquired. More specifically, for example, the azimuth acquisition unit 106 acquires the azimuth 0, of the acquired vehicle using GPS (Global Positioning System).
  • GPS Global Positioning System
  • the direction acquisition unit 106 acquires the acquired vehicle direction ⁇ ′ using the road shape direction data included in the map information. Also good.
  • the map information is integrated with the bearing calculation device.
  • the external force of the azimuth calculating device may also be read by communication or the like.
  • the correction unit 107 corrects the correction coefficient Gk acquired by the coefficient acquisition unit 103 based on the calculated vehicle orientation ⁇ R and the acquired vehicle orientation ⁇ .
  • the correction unit 107 compares the calculated vehicle orientation ⁇ g and the acquired vehicle orientation ⁇ , so that the calculated vehicle orientation ⁇ g is asymptotic to the acquired vehicle orientation ⁇ . In addition, the correction coefficient Gk is corrected. By correcting the correction coefficient Gk by the correction unit 107
  • the corrected correction coefficient Gk obtained together with the other left and right correction coefficients is used for the next calculation of the vehicle direction.
  • FIG. 2 is a flowchart showing the contents of processing of the azimuth calculating apparatus according to the embodiment of the present invention.
  • the sensor value acquisition unit 101 acquires the output value (gy—gy) of the angular velocity sensor force (step S201), and gains the obtained output value (gy—gy) of the angular velocity sensor force. Multiply by the value G to calculate the uncorrected angular velocity G '(gy—gy)
  • the determination unit 102 determines the turning direction of the vehicle (step S203), and based on the determination result and the angular velocity G ′ (gy -gy) before correction, either the right turn or the left turn is used.
  • One correction coefficient Gk is acquired from the correction coefficient by the coefficient acquisition unit 103 (step S).
  • the angular velocity calculation unit 104 multiplies the correction coefficient Gk acquired in step S204.
  • the current angular velocity ⁇ of the vehicle according to the turning direction of the vehicle is calculated (step S205), and the calculated vehicle orientation ⁇ g is calculated based on the calculated current angular velocity ⁇ . Calculated by 105 (step S 206).
  • the obtained vehicle orientation ⁇ ′ is obtained by the orientation obtaining unit 106 (step S2 07), and the obtained vehicle orientation 0 ′ and the vehicle direction calculated in step S206 are obtained. Based on the position ⁇ g! /, The correction coefficient Gk obtained in step S204 is converted to the correction unit 10 n n-1
  • step S208 After correcting by 7 (step S208), the series of processing is terminated.
  • the correction coefficient Gk acquired in step S204 is corrected in step S208 to be corrected n-1.
  • the bending determination in step S 203 is performed based on the uncorrected angular velocity G ′ (gy ⁇ gy) calculated in step S 202.
  • the bending determination may be performed based on the sign of the output value gy -gy n 0 from the angular velocity sensor acquired in step S201.
  • the calculation of the angular velocity in step S202 and the order of the bending determination in step S203 may be interchanged so that the bending determination is performed first.
  • the correction coefficient corresponding to the bending direction and the angular velocity of the vehicle is acquired, and the angular velocity of the vehicle calculated using this correction coefficient is obtained. Based on the calculated direction of the vehicle.
  • the correction coefficient is set for each angular velocity range in which the interval becomes narrower as the angular velocity increases, the accuracy of the calculated angular velocity is prevented from varying due to the difference in the angular velocity. it can. As a result, the accuracy of calculating the angular velocity can be further improved.
  • the calculated azimuth and direction of the vehicle are calculated. Since a plurality of correction coefficients are corrected on the left and right sides based on the obtained vehicle orientation, the calculation accuracy of the angular velocity of the vehicle can be improved. Thereby, it is possible to further improve the accuracy of the azimuth of the vehicle calculated using the angular velocity.
  • FIG. 3 is a block diagram showing a hardware configuration of the navigation apparatus in this embodiment of the present invention.
  • the navigation device in this embodiment of the present invention includes a navigation control unit 301, a user operation unit 302, a display unit 303, a recording medium 304, a recording medium decoding unit 305, a guidance sound output unit 306,
  • the communication unit 307, the route search unit 308, the route guidance unit 309, the guidance sound generation unit 310, the speaker 311, the position acquisition unit 312, the direction calculation unit 313, and the correction processing unit 314 are configured.
  • the communication unit 307, the route search unit 308, the route guidance unit 309, the guidance sound generation unit 310, the speaker 311, the position acquisition unit 312, the direction calculation unit 313, and the correction processing unit 314 are configured.
  • the navigation control unit 301 controls the entire navigation device.
  • the navigation control unit 301 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) that stores various control programs, and a RAM (Random) that functions as a work area for the CPU. It can be realized by a microcomputer constituted by an Access Memory).
  • the RAM for example, correction coefficients used for calculating the angular velocity are stored.
  • the RAM stores a plurality of correction coefficients set in accordance with the angular velocities for each vehicle turning direction.
  • correction factors for left turn La ⁇ Lb ⁇ Lc, ..., Li, ⁇ and correction factors Ra, Rb, Rc, ⁇ , Ri, ⁇ for right turn are stored.
  • Fig. 4, Fig. 10 and Fig. 11. o
  • Each correction factor La, Lb, Lc, ⁇ , Li, ⁇ and Ra, Rb, Rc, ⁇ , Ri, ⁇ It is memorized so that it can be updated!
  • the navigation control unit 301 performs a route search unit 308, a route guide unit 30 when performing route guidance. 9. Input / output information regarding route guidance to / from the guidance sound generation unit 310, and output the resulting information to the display unit 303 and the guidance sound output unit 306.
  • the user operation unit 302 outputs information input by the user such as characters, numerical values, and various instructions to the navigation control unit 301.
  • information input by the user such as characters, numerical values, and various instructions to the navigation control unit 301.
  • various known forms such as a push button switch, a touch panel, a keyboard, and a joystick that detect physical pressing Z non-pressing can be employed.
  • the user operation unit 302 may be configured to perform an input operation by voice using a microphone that inputs voice from the outside.
  • the user operation unit 302 may be provided integrally with the navigation device, or may be configured such that the navigation device force can be separated and operated like a remote controller. Of the various forms described above, the user operation unit 302 may be configured in a single or different form, or may be configured in a plurality of forms.
  • the user inputs information by appropriately performing an input operation according to the form of the user operation unit 302.
  • the information input by the operation of the user operation unit 302 includes, for example, a destination (point information of the destination) or a departure place (point information of the departure place) of the route to be searched.
  • the destination or departure point can be entered by specifying the telephone number, genre, keyword, etc. of the destination or departure point facility. Good.
  • the destination or departure point By entering the destination or departure point by designating the phone number, keyword, keyword, etc. of the destination or departure point facility, the corresponding facility is searched and the position is set as the destination or departure point. Can be identified. More specifically, these pieces of information are specified as one point on the map based on background type data included in map information recorded on the recording medium 304 described later.
  • map information may be displayed on the display unit 303, which will be described later in detail, so that one point on the displayed map is specified.
  • the display unit 303 includes, for example, a CRT (Cathode Ray Tube), a TFT liquid crystal display, an organic EL (Electroluminescence) display, a plasma display, and the like.
  • the display unit 303 can be configured by, for example, a video IZF or a video display device connected to the video IZF.
  • the video IZF is, for example, a graphic controller that controls the entire display device, and a VRAM (Video
  • Display section 303 displays icons, cursors, menus, windows, or various information such as characters and images.
  • the display unit 303 displays map information and route guidance information stored in an HD (Hard Disk).
  • the recording medium 304 records map information, various control programs, various information, and the like in a readable state by a computer.
  • the recording medium 304 accepts writing of information by the recording medium decoding unit 305 and records the written information in a nonvolatile manner.
  • the recording medium 304 can be realized by HD, for example.
  • the direction calculation program is recorded on the recording medium 304 in the present embodiment.
  • the azimuth calculation program is not limited to the one recorded in the recording medium 304.
  • the recording medium 304 is not limited to HD. Instead of HD or in addition to HD, DVD (Digital Versatile Disk), CD (Compact Disk), etc. can be attached to and detached from the recording medium decoding unit 305. Therefore, a medium having portability may be used as the recording medium 304.
  • the recording medium 304 is not limited to DVD and CD, and is removable from the recording medium decoding unit 305 such as CD-ROM (CD-R, CD-RW), MO (Magneto-Optical disk), and memory card. A portable media can also be used.
  • the map information recorded in the recording medium 304 includes background data representing features such as buildings, rivers, and the ground surface, and road shape direction data representing the shape and direction of the road. On the display screen of the display unit 303, it is drawn two-dimensionally or three-dimensionally. Road shape direction data is also used for map matching, for example.
  • the map information recorded on the recording medium 304 is displayed so as to overlap with the vehicle position acquired by the position acquisition unit 312 when the navigation device is guiding a route, for example.
  • the map information is recorded on the recording medium 304.
  • the map information is provided outside the navigation device, not the one recorded with the navigation device hardware. It may be.
  • the navigation apparatus acquires map information via the network through the communication unit 307, for example.
  • the acquired map information is stored in RAM.
  • the recording medium decoding unit 305 controls reading / writing of information on the recording medium 304.
  • the recording medium decoding unit 305 is an HDD (Hard Disk Drive).
  • the recording medium decoding unit 305 is a DVD drive or a CD drive.
  • a CD-ROM (CD-R, CD-RW), MO, memory card, etc. is used as the writable and removable recording medium 304, information is written to various recording media and stored in various recording media.
  • a dedicated drive device capable of reading the recorded information is appropriately used as the recording medium decoding unit 305.
  • the guide sound output unit 306 reproduces the guide sound by controlling the output to the connected speaker 311.
  • the guidance sound output unit 306 can be realized by a sound IZF connected to a speaker 311 for sound output.
  • the audio IZF performs, for example, a DZA conversion circuit that performs DZA conversion of audio digital information, an amplifier that amplifies an audio analog signal that is output from the DZA conversion circuit, and AZD conversion of audio analog information. It can be configured with AZD conversion circuit and force.
  • the communication unit 307 receives traffic information such as traffic congestion and traffic regulations regularly (or even irregularly).
  • the traffic information may be received by the communication unit 307 at the timing when the traffic information is distributed from the VICS (Vehicle Information and Communication System) center, or by periodically requesting the traffic information from the VICS center. May be.
  • VICS Vehicle Information and Communication System
  • the communication unit 307 can be realized as, for example, an FM tuner, a VICSZ beacon receiver, and other communication devices.
  • the received traffic information is used when searching for a route (including re-searching), for example, for searching for a route that avoids a traffic jam location or a time regulation location.
  • VICS means that traffic information such as traffic jams and traffic regulations that have been edited and processed at the VICS center is sent in real-time and written to navigation devices, etc.
  • 'It is an information communication system that displays graphics.
  • As a method of transmitting traffic information (VICS information) edited and processed at the VICS Center to the navigation device there is a method of using “beacon” and “FM multiplex broadcasting” installed on each road.
  • Beacons include "radio wave beacons” mainly used on expressways and “optical beacons” used on major general roads. When “FM multiplex broadcasting” is used, traffic information in a wide area can be received. When using “Beacon”, it is possible to receive necessary traffic information at the place where the vehicle is located, such as detailed information on the most recent road based on the vehicle location.
  • the route search unit 308 uses the map information recorded in the recording medium 304, the VICS information acquired through the communication unit 307, and the like from the departure place (point information of the departure place). Search for the optimal route to the destination (point information of the destination).
  • the optimal route is the route that best meets the conditions specified by the user. In general, there are numerous routes from the starting point to the destination. For this reason, items that are considered in the route search are set to search for a route that meets the conditions.
  • the route guidance unit 309 uses the guidance route information searched by the route search unit 308, the vehicle position information acquired by the position acquisition unit 312, and the recording medium 304 via the recording medium decoding unit 305. Based on the map information obtained, real-time route guidance information is generated. The route guidance information generated at this time may take into account the traffic information received by the communication unit 307! The route guidance information generated by the route guidance unit 309 is output to the display unit 303 via the navigation control unit 301.
  • guide sound generation section 310 generates tone and voice information corresponding to the pattern.
  • the virtual sound source corresponding to the guidance point is set and the voice guidance information is generated.
  • the guidance sound output unit is provided via the navigation control unit 301. Output to 306.
  • the position acquisition unit 312 is also configured with a GPS receiver and various sensor forces, and acquires information on the current position of the vehicle and direction information indicating the direction (absolute direction) ⁇ ′ of the vehicle.
  • GP The S receiver receives the radio wave from the GPS satellite and obtains the geometric position with the GPS satellite.
  • GPS is a system that accurately obtains the position on the ground by receiving radio waves from four or more satellites.
  • the GPS receiver specifically includes, for example, an antenna for receiving radio waves from a GPS satellite, a tuner for demodulating the received radio waves, and an arithmetic circuit for calculating the current position based on the demodulated information. (Or program).
  • the azimuth information is not limited to that obtained using the GPS, but may be obtained using road shape azimuth data included in the map information recorded on the recording medium 304.
  • the absolute orientation ⁇ ′ is referred to as “acquired absolute orientation ⁇ ′”.
  • the various sensors are various sensors mounted on the vehicle such as a vehicle speed sensor, a travel distance sensor, a tilt sensor, and an angular velocity sensor.
  • the information output by various sensors mounted on the vehicle is used together with the information obtained by the GPS receiver to obtain the vehicle position with higher accuracy. can do.
  • the vehicle speed sensor detects the number of vehicle speed pulses per rotation of the output side drive shaft of the transmission of the vehicle equipped with the navigation.
  • the mileage sensor calculates the number of pulses per one rotation of the wheel by counting the number of pulses of a pulse signal with a predetermined period output along with the rotation of the wheel, and the mileage information based on the number of pulses per one rotation. Information is output.
  • the inclination sensor detects the inclination angle of the road surface.
  • the angular velocity sensor detects the angular velocity when the vehicle is bent.
  • the angular velocity sensor can be realized by a vibration gyro sensor using a piezoelectric element or the like as a detection element, for example.
  • the angular velocity sensor outputs a voltage value having a magnitude corresponding to the angular velocity at the time of turning of the vehicle.
  • the output value of the angular velocity sensor force is 2.5 V (specified zero voltage)
  • the angular velocity is zero when the vehicle is stationary or when the vehicle is traveling straight.
  • the zero voltage measured in such a situation has an effect such as temperature change.
  • the value is drifting.
  • the vehicle The value corrected for the effect of temperature drift on the output value of the angular velocity sensor when both are stationary or the output value of the angular velocity sensor force when the vehicle is traveling straight is used as the zero point (offset) voltage value.
  • the angular velocity sensor outputs the detected angular velocity as an analog signal of OV to 5V.
  • the sensitivity of the angular velocity sensor is expressed by the degree of deviation of the angular velocity from the zero (offset) voltage (the specified zero voltage of 2.5 V), and its unit is [mVZdegZsec].
  • the sensitivity of the angular velocity sensor conforms to the standard specified in the horizontal state, and is adjusted so as to be within a predetermined error.
  • a value obtained by subtracting the zero point (offset) voltage value from the voltage value force output from the angular velocity sensor is referred to as an “output value of the angular velocity sensor force”.
  • the output value of the angular velocity sensor force is acquired, for example, every sampling period T interval.
  • the sampling period T can be set to an arbitrary value, specifically, for example, 100 msec.
  • the angular velocity sensor outputs a positive angular velocity corresponding to a clockwise azimuth change, that is, a right turn, as a deviation voltage from 2.5V to the 5V side.
  • this angular velocity sensor outputs a negative angular velocity corresponding to a counterclockwise direction change, that is, a left turn, as a deviation voltage from 2.5V to the OV side.
  • an AZD conversion circuit 420 (see FIG. 4) that performs AZD conversion on an analog voltage value detected by the vibration gyro is further provided.
  • the bearing calculation unit 313 calculates the angular velocity and the bearing based on the output value from the angular velocity sensor.
  • the method for calculating the angular velocity and the direction based on the output value of the angular velocity sensor force will be described later in detail, but since it is a known technique, detailed description thereof is omitted in this embodiment.
  • the direction calculation unit 313 can be realized by, for example, a dedicated arithmetic circuit or a program.
  • the angular velocity calculated by the azimuth calculation unit 313 is Sa
  • the azimuth (absolute azimuth) calculated using this angular velocity Sa is ⁇ g
  • the absolute azimuth ⁇ g is called “calculated absolute azimuth ⁇ g”.
  • the absolute azimuth ⁇ g calculated by the azimuth calculation unit 313 is used for display on the display unit 303, notification in the guidance sound output unit 306, and the like.
  • the direction calculation unit 313 calculates, for example, the angular velocity Sa and the calculated absolute direction ⁇ g Calculation is performed every sampling period T interval. Specifically, for example, when calculating the absolute orientation ⁇ g at the sampling time ⁇ , the value obtained by integrating the angular velocity Sa at the sampling time nT with the sampling period T is used as the absolute value at the sampling time (n ⁇ l) T. Add to bearing 0 g.
  • the calculated absolute azimuth ⁇ g is not limited to one calculated every time the angular velocity Sa is calculated (that is, every 100 msec interval). For example, it may be calculated every sampling cycle T interval such as lsec. Specifically, for example, when calculating the absolute bearing ⁇ gn at the sampling time nT, the ten angular velocities Sa to Sa calculated every 100 msec intervals are used.
  • n n-9 Integrate the added value in lsec.
  • a ring buffer for storing 10 or more angular velocities Sa is provided.
  • the correction processing unit 314 performs predetermined correction calculation processing on the correction coefficient based on the absolute azimuth ⁇ g calculated by the azimuth calculation unit 313.
  • the predetermined adjustment (correction) to the correction factor is performed when the absolute bearing 0 'can be obtained.
  • the absolute orientation ⁇ is acquired by the position acquisition unit 312 using GPS or using the road shape orientation data, the GPS signal cannot be received at a place!
  • the correction coefficient can be adjusted (corrected).
  • the correction processing unit 314 compares the absolute azimuth ⁇ g calculated by the azimuth calculation unit 313 with the absolute azimuth ⁇ acquired by the position acquisition unit 312, and uses this comparison result. Based on this, the correction coefficient is adjusted (corrected) by increasing or decreasing the correction coefficient in such a direction that the calculated absolute azimuth ⁇ g asymptotically approaches the acquired absolute azimuth ⁇ ′.
  • the correction factor may be increased or decreased by 0.2%, or 0.1% or 0.00% depending on the previous or previous adjustment amount. Try adjusting it up or down by about 05%.
  • FIG. 4 is a functional block diagram showing a specific configuration of the azimuth calculation unit 313 and the correction processing unit 314 in the present embodiment of the present invention.
  • the direction calculation unit 313 in this embodiment of the present invention includes a subtraction processing unit 401, a multiplication processing unit 402, a product-sum processing unit 403, a straight-ahead determination processing unit 404, a zero adjustment processing unit 405, and a direction calibration.
  • reference numeral 420 denotes an AZD conversion circuit that performs AZD conversion of analog output values of the angular velocity sensor force.
  • the subtraction processing unit 401 calculates the above-mentioned “output value of angular velocity sensor force” by subtracting the voltage value force zero point (offset) voltage value output from the angular velocity sensor.
  • the digital value that has been AZD converted by the AZD conversion circuit 420 is input to the subtraction processing unit 401.
  • the multiplication processing unit 402 calculates the angular velocity before correction by multiplying the output value from the angular velocity sensor by the gain value, and multiplies the angular velocity before correction by the correction coefficient corresponding to the angular velocity before correction and the bending direction.
  • the current angular velocity (hereinafter simply referred to as “angular velocity”) Sa is calculated.
  • the gain value is a value set based on the correspondence between the output value from the angular velocity sensor and the angular velocity.
  • the product-sum processing unit 403 accumulates (accumulates) the relative azimuth ⁇ g calculated based on the angular velocity Sa calculated by the multiplication processing unit 402, thereby calculating the absolute value calculated for the vehicle. Calculate the bearing ⁇ g.
  • the straight traveling determination processing unit 404 determines whether or not the vehicle is in a straight traveling state based on the angular velocity Sa calculated by the multiplication processing unit 402. Specifically, the straight-ahead determination processing unit 404 has a displacement amount of the angular velocity Sa calculated by the multiplication processing unit 402 for a predetermined period (for example, 10) when traveling at a certain speed (for example, 30. OkmZh) or more. It is determined that the vehicle is traveling straight ahead for less than a predetermined threshold for a second).
  • the zero adjustment processing unit 405 is configured so that the vehicle is in a straight traveling state by the straight traveling determination processing unit 404. If it is determined, the zero (offset) voltage value is adjusted so as to approach the average value of the output values from the angular velocity sensor in the predetermined period.
  • the azimuth calibration processing unit 406 removes the influence of the dynamic zero-point drift of the angular velocity sensor, and calculates the calculated absolute azimuth ⁇ g to the acquired absolute azimuth ⁇ 'according to the output value of the angular velocity sensor force. Replace.
  • the calculated absolute azimuth ⁇ g is changed to the absolute azimuth ⁇ acquired by the position acquisition unit 312. Replace. More specifically, for example, when the absolute azimuth ⁇ ′ cannot be replaced, the calculated absolute azimuth ⁇ g is replaced with the absolute azimuth ⁇ ′ obtained using the road shape azimuth data.
  • the comparison processing unit 407 compares the calculated absolute azimuth ⁇ g with the obtained absolute azimuth ⁇ .
  • the left turn determination processing unit 408 determines that the vehicle has made a left turn.
  • the right turn determination processing unit 409 determines that the vehicle has turned to the right if the angular velocity force before correction calculated by the multiplication processing unit 402 is a positive value.
  • the left turn correction coefficient adjustment processing unit 410 when the left turn determination processing unit 408 determines that the vehicle has made a left turn, the left turn correction coefficients La, Lb, Lc, ..., Li, ⁇ Among them, perform a predetermined adjustment (correction) for any one of the correction coefficients used for calculating the angular velocity Sa in the multiplication processing unit 402.
  • the right-turn correction coefficient adjustment processing unit 411 performs a right-turn determination process. Any of the correction factors Ra, Rb, Rc,...,! 3 ⁇ 4,... For right turn used for calculating the angular velocity Sa in the multiplication processing unit 402 when the unit 409 determines that the vehicle has made a right turn.
  • Adjustment (correction) of the correction coefficient by the left-turn correction coefficient adjustment processing unit 410 and the right-turn correction coefficient adjustment processing unit 411 is performed to the currently set correction coefficient. In contrast, for example, 0.2% or This is done by increasing or decreasing by 0.1% or 0.05% according to the amount of adjustment, etc. Adjustment (correction) of the correction coefficient by the left turn correction coefficient adjustment processing unit 410 and the right turn correction coefficient adjustment processing unit 411 is, for example, This is done each time the calculated absolute orientation ⁇ g is calculated.
  • the correction coefficient selection / acquisition processing unit 412 selects the left turn correction coefficient La, Lb, Lc, ⁇ , Li, ⁇ before correction. Depending on the angular velocity of One correction factor is selected. Further, the correction coefficient selection acquisition processing unit 412 corrects the right turn correction coefficients Ra, Rb, Rc, ... when the angular velocity before correction is positive! The correction coefficient selected by the correction coefficient selection acquisition processing unit 412 is used for calculation of the angular velocity Sa in the multiplication processing unit 402. Is done.
  • FIG. 5 shows a general correspondence between the sensitivity change due to the sensitivity characteristic of the angular velocity sensor and the correction coefficient.
  • FIG. 5 to FIG. 8 are explanatory diagrams for explaining the sensitivity change caused by the sensitivity characteristics of the angular velocity sensor.
  • Fig. 5 shows a state where the angular velocity sensor is mounted horizontally
  • Fig. 6 shows a state where the angular velocity sensor is mounted at an inclination.
  • the sensitivity characteristics of an angular velocity sensor are affected by the angle with respect to the horizontal direction during installation, in addition to general characteristics such as aging.
  • the sensitivity of the angular velocity sensor differs depending on the turning direction when the vehicle inclination ⁇ during a right turn differs from the vehicle inclination ⁇ ′ during a left turn.
  • the sensitivity change of the angle sensor when the vehicle inclination a during a right turn and the vehicle inclination OC 'during a left turn are different due to, for example, a difference in curvature radius or driver's habit.
  • the correction coefficient selected by the correction coefficient selection acquisition processing unit 412 is G
  • the left-turn correction coefficients La and Lb acquired by the left-turn correction coefficient adjustment processing unit 410 , Lc, ⁇ , Li, ⁇ is Gr
  • right turn correction factor adjustment processing unit 411 acquires right turn correction factors Ra, Rb, Rc, ...! 3 ⁇ 4, ... is described as Gr.
  • one correction coefficient Gr, G1 is used for each bending direction.
  • the correction coefficient in this embodiment is the vehicle bending direction.
  • a plurality (La, Lb ⁇ Lc, ⁇ , Li, ⁇ and Ra, Rb, Rc, ⁇ ,! 3 ⁇ 4,...;) are set for each angular velocity.
  • FIG. 7 shows an output state from the angular velocity sensor when the angular velocity sensor is mounted in a state parallel to a horizontal vehicle.
  • ⁇ 2 ′ indicates the angular velocity calculated based on the output value from the angular velocity sensor when the vehicle turns left. Therefore, the angular velocity ⁇ 2 in FIG. 7 indicates the angular velocity calculated based on the output value of the angular velocity sensor force when the vehicle turns right.
  • the slopes a and ⁇ ′ are exaggerated. As can be seen from Fig. 7, the sensitivity drops to approximately COS a times when turning right with a slope a. For this reason, the right-turn correction coefficient Gr that offsets this decrease in sensitivity rises to approximately (1 + a).
  • the vehicle itself may be temporarily depending on the state of boarding / mounting of a vehicle occupant or baggage, road conditions, etc. It may have a certain slope continuously for a period of time. In this case, it corresponds to the inclination of the vehicle As a result, the angular velocity sensor may also be inclined. If this is the case, as described above, the force that should be offset by the dynamic adjustment of the correction coefficient G, the change of the correction coefficient will change when the rolling of the vehicle is further taken into account in such a tilted state. It becomes obvious.
  • FIG. 8 shows an output state from the angular velocity sensor when the angular velocity sensor is mounted in an inclined state with respect to the horizontal direction of the vehicle and the vehicle is bent.
  • both the inclinations ⁇ and ⁇ ′ are exaggerated.
  • the sensitivity falls to COS (+) times when turning right with inclination a.
  • the right-turn correction coefficient Gr that offsets this decrease in sensitivity rises to approximately (1 + j8 + ⁇ ).
  • the navigation device of this embodiment performs zero adjustment when it is determined that the vehicle goes straight! /, And removes the influence of the dynamic zero drift of the angular velocity sensor. If it is determined that the vehicle is bent, the correction coefficient is adjusted (corrected) so that the calculated absolute azimuth ⁇ is asymptotic to the acquired absolute azimuth ⁇ ', and the sensitivity of the angular velocity sensor during bending is reduced. Offset Adjustment (correction) of the correction coefficient during turning is performed independently for each turning direction of the vehicle. The contents of the processing of the navigation device will be described below.
  • FIG. 9 is a flow chart for explaining the contents of the processing of the navigation apparatus that is useful in this embodiment of the present invention.
  • the processing at the sampling time nT will be described.
  • the output value of the angular velocity sensor force is acquired (step S901).
  • the output value from the angular velocity sensor acquired in step S901 is obtained by using the AZD conversion circuit 420 after removing noise from the analog voltage value output from the angular velocity sensor using a single pass filter.
  • the zero voltage (offset) voltage value gy is subtracted from the value obtained by averaging the digital voltage value gy converted.
  • n 0 is multiplied by the gain value G to calculate the uncorrected angular velocity G '(gy—gy) (step
  • Step S903 based on the judgment result and the angular velocity G '(gy -gy) before correction.
  • One correction coefficient Gk is acquired (step S904).
  • n-l n k -G- (gy- gy) is calculated (step S905), and the calculated angular velocity Sa is used to calculate the sample n-l n 0 n
  • step S906 The relative orientation ⁇ g at the ring time nT is calculated (step S906).
  • step S906 the bent angle of the sampling time (n ⁇ l) T time point force is calculated.
  • step S907 specifically, for example, when calculating the absolute orientation ⁇ g calculated at the sampling time nT, the absolute orientation ⁇ g calculated at the sampling time (n-1) T is Calculated relative Add the direction ⁇ 0 g n .
  • step S910 adjustment (correction) is performed on the correction coefficient Gk acquired in step S904 by n-1.
  • the adjusted (corrected) correction coefficient Gk, together with the other correction coefficients, is used for the next calculation of the angular velocity Sa.
  • step S910 n + 1
  • the bending determination in step S903 is the force that performs the bending determination based on the angular velocity G ′ (gy -gy) before correction calculated in step S902! 0
  • the bending determination may be performed based on the positive / negative n 0 of the output value gy -gy of the angular velocity sensor force acquired in step 901.
  • the calculation of the angular velocity in step S902 and the order of the step S903 bending determination may be interchanged, and the bending determination may be performed first.
  • FIG. 10 is an explanatory diagram showing a correction coefficient table.
  • the correction coefficient table 1000 is recorded in the ROM or RAM or the recording medium 304 in the navigation control unit 301 shown in FIG.
  • the correction coefficient table 1000 includes an angular velocity range area 1001 that defines the range of the angular velocity Sa, an interval area 1002 that defines the interval of the angular velocity Sa, and correction coefficients La, Lb,
  • a correction coefficient area 1003 for storing Lc, ⁇ , Li, ⁇ and Ra, Rb, Rc, ⁇ , Ri, ⁇ and a force are also formed.
  • the correction coefficient area 1003 includes a left turn correction area 1004 for storing left turn correction coefficients La, Lb, Lc,..., Li,..., And a right turn correction coefficient Ra, R b, Rc,. 3 ⁇ 4,
  • the right turn area 1005 that memorizes ... and the force are also configured.
  • FIG. 11 is an explanatory diagram showing a specific example of the correction coefficient table.
  • the correction coefficient table 1100 shown in FIG. 11 includes an angular velocity range area 1101, an interval area 1102 that defines an interval of the angular velocity Sa, and correction factors La ⁇ Lb ⁇ Lc, ..., Li, ..., Ra, Rb , Rc,..., Ri,...
  • the interval between the lower limit value of the angular velocity range and the range of the angular velocity Sa is stored in the angular velocity range area 1101 in a state where the numerical values are preliminarily calculated.
  • the interval of the range of the angular velocity Sa is set so as to decrease as the angular velocity increases, so that the value force defined in the interval area 1102 is a component force.
  • the angular velocity range area 1101 Specific numerical values in the range of each angular velocity Sa can be defined.
  • the lower limit value of the angular velocity range for example, an angular velocity Sa that can be regarded as straight traveling at an angular velocity Sa less than the lower limit value is set.
  • a value corresponding to the sensitivity of the angular velocity sensor is set as the correction coefficient related to the angular velocity Sa greater than or equal to a predetermined value.
  • the vehicle except when the vehicle is traveling straight ahead, it is always based on the angular velocity calculated using the correction coefficient corresponding to the bending direction of the vehicle and the angular velocity before correction.
  • the calculated absolute azimuth is calculated. Conventionally, a force that is not corrected unless the angular velocity exceeds a certain value.
  • the angular velocity is not affected by the magnitude of the angular velocity, and even when the angular velocity is not straight, Correction is performed.
  • the cumulative error increases as the bending frequency increases, and there is a concern that the accuracy of the calculated absolute azimuth decreases.
  • the higher the bending frequency the more the sensitivity is corrected. More will be done.
  • the larger the calculated angular velocity the greater the influence of an error due to the inclination with respect to the horizontal plane.
  • the correction coefficient in this embodiment is set for each angular velocity range set so that the interval becomes narrower as the angular velocity is larger, the calculated absolute azimuth can be calculated more accurately.
  • the correction coefficient is corrected based on the calculated absolute azimuth and the acquired absolute azimuth. As described above, by correcting the correction coefficient by using the calculated absolute direction and the acquired absolute direction in combination, the calculation accuracy of the calculated absolute direction can be further improved.
  • the vehicle equipped with the angular velocity sensor when it is determined that the vehicle is traveling straight, zero adjustment is performed, and the influence of the dynamic zero drift of the angular velocity sensor is removed.
  • the vehicle equipped with the angular velocity sensor when the vehicle equipped with the angular velocity sensor is traveling in a horizontal state (see FIG. 6), such a vehicle is mounted on a passenger / luggage etc. Even when the vehicle is traveling at an incline (see Fig. 7), it is possible to cancel out the effects caused by the reduced sensitivity of the angular velocity sensor.
  • the right turn correction coefficient 1 ⁇ , 13 ⁇ 4, 1 ⁇ , ...! 3 ⁇ 4, ⁇ is corrected to lZCOS a times or 1ZCOS (J8 + ⁇ ) times. This makes it possible to accurately offset the decrease in sensitivity of the angular velocity sensor when turning right.
  • the accuracy of the angular velocity calculated thereafter can be further improved.
  • the bending direction and the angular velocity are not affected by the magnitude of the angular velocity. It is possible to calculate a high-accuracy angular velocity even when a vehicle that is temporarily tilted is bent by calculating an angular velocity using this correction factor. it can.
  • the angular velocity is calculated by using a correction coefficient set in accordance with the angular velocity for each turning direction of the vehicle, so that a single angle can be rotated without using a plurality of angular velocity sensors. It is possible to calculate the angular velocity in consideration of the inclination of the shaft, and to calculate the absolute direction in which this angular velocity force is calculated.
  • the angular velocity sensor for detecting the angular velocity relating to the angle has been described, but the angular velocity sensor applicable in the embodiment of the present invention is not limited to this.
  • the present invention may be applied to sensitivity (gain) correction of an angular velocity sensor that detects an angular velocity related to a roll angle or a pitch angle of a vehicle.
  • the vertical turning angle in the front-rear direction of the vehicle can be acquired.
  • the vertical rotation angle before and after the vehicle is regarded as the inclination in the traveling direction of the vehicle, and by calculating the angular velocity related to the pitch angle of the vehicle, the degree of inclination regarding the traveling direction of the vehicle is accurately grasped. can do.
  • the vertical turning angles of the left and right sides of the vehicle can be acquired.
  • the angular velocity related to the roll angle of the vehicle it is possible to accurately grasp the degree of inclination in the left and right direction of the vehicle. Can do.
  • the angular velocity sensor applicable in the embodiment of the present invention is not limited to this. It is not limited to. For example, there are vehicle corners and roll angles Alternatively, a two-axis angular velocity sensor that detects a single angle and a pitch angle may be used to calculate an angular velocity related to the vehicle's single angle and roll angle, or the single angle and pitch angle. Also
  • the angular velocity related to the vehicle angle, roll angle, and pitch angle may be calculated using a three-axis angular velocity sensor that detects the vehicle angle, roll angle, and pitch angle.
  • the azimuth calculation method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed when the recording medium force is also read by the computer.
  • the program may be a transmission medium that can be distributed through a network such as the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

There is provided an azimuth calculation device for correcting an output of an angular velocity sensor by a correction coefficient and calculating an azimuth of a moving body according to the obtained value. An output value from the angular velocity sensor is acquired by a sensor value acquisition unit (101). The output value acquired is inputted to a judgment unit (102) and it is judged whether the moving body turns leftward or rightward. According to the result of the judgment and the output value, one of the correction coefficients is acquired by a coefficient acquisition unit (103). By using the acquired correction coefficient, an angular velocity calculation unit (104) calculates the angular velocity of the moving body according to the rightward or leftward turn of the moving body. According to the angular velocity obtained by the calculation, an azimuth calculation unit (105) calculates the azimuth of the moving body.

Description

明 細 書  Specification
方位算出装置、方位算出方法、方位算出プログラム、および記録媒体 技術分野  Direction calculation apparatus, direction calculation method, direction calculation program, and recording medium
[0001] この発明は、車両などの移動体に搭載されるナビゲーシヨン装置に適用可能な方 位算出装置、方位算出方法、方位算出プログラム、および記録媒体に関する。ただ し、この発明の利用は、前述のナビゲーシヨン装置に限るものではない。  [0001] The present invention relates to a direction calculation device, a direction calculation method, a direction calculation program, and a recording medium that can be applied to a navigation device mounted on a moving body such as a vehicle. However, the use of the present invention is not limited to the navigation device described above.
背景技術  Background art
[0002] たとえば、車両などに搭載されるナビゲーシヨン装置においては、当該車両に搭載 された角速度センサからの出力値に基づいて、この車両の角速度および曲折方向を 算出するようにしたものがある。角速度センサの感度特性は、車両の曲折方向によつ て異なる場合があるため、曲折方向に応じて補正係数を異ならせることで、車両の曲 折方向による角速度センサの感度特性への影響を除去するようにした技術がある (た とえば、下記特許文献 1参照。 ) o  [0002] For example, there is a navigation device mounted on a vehicle or the like that calculates an angular velocity and a bending direction of the vehicle based on an output value from an angular velocity sensor mounted on the vehicle. Since the sensitivity characteristics of the angular velocity sensor may differ depending on the bending direction of the vehicle, the influence of the bending direction of the vehicle on the sensitivity characteristic of the angular velocity sensor is eliminated by changing the correction coefficient according to the bending direction. (For example, see Patent Document 1 below.) O
[0003] 特許文献 1 :特開平 8— 304090号公報  [0003] Patent Document 1: JP-A-8-304090
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、上述した特許文献 1に記載された技術では、所定の閾値以上の角速度が 算出された場合を、角速度センサの感度特性に影響が生じる状態と判定して角速度 の補正をおこなう。しかしながら、曲折方向の違いによる角速度センサの感度特性の 違いは、角速度が所定の閾値未満であっても生じることがあり、特許文献 1に記載さ れた技術を用いても、曲折に際しての車両の速度によっては、算出される角速度の 誤差を補正しきれな 、場合があると 、う問題が一例として挙げられる。 [0004] By the way, in the technique described in Patent Document 1 described above, when an angular velocity equal to or greater than a predetermined threshold is calculated, it is determined that the sensitivity characteristic of the angular velocity sensor is affected, and the angular velocity is corrected. However, the difference in the sensitivity characteristics of the angular velocity sensor due to the difference in the bending direction may occur even if the angular velocity is less than a predetermined threshold value. Even if the technique described in Patent Document 1 is used, the vehicle at the time of bending is different. Depending on the speed, if the error in the calculated angular speed cannot be corrected, there is an example of the problem.
課題を解決するための手段  Means for solving the problem
[0005] 請求項 1の発明にかかる方位算出装置は、角速度センサ力もの出力値を取得する センサ値取得手段と、前記センサ値取得手段によって取得された出力値に基づいて 、移動体の曲折方向を判定する判定手段と、前記判定手段によって判定された判定 結果および前記出力値に基づ!/、て、前記移動体の曲折方向毎の角速度に応じてそ れぞれ設定された複数の補正係数から前記出力値に応じた前記補正係数を取得す る係数取得手段と、前記出力値に基づいて、前記移動体の曲折方向に応じた当該 移動体の角速度を、前記係数取得手段によって取得された補正係数を用いて算出 する角速度算出手段と、前記角速度算出手段によって算出された角速度に基づい て、前記移動体の方位を算出する方位算出手段と、を備えることを特徴とする。 [0005] The azimuth calculating apparatus according to the invention of claim 1 includes a sensor value acquiring unit that acquires an output value of the angular velocity sensor force, and a bending direction of the moving body based on the output value acquired by the sensor value acquiring unit. Based on the determination result determined by the determination unit and the output value! /, According to the angular velocity in each bending direction of the moving body. Coefficient acquisition means for acquiring the correction coefficient according to the output value from a plurality of set correction coefficients, and the angular velocity of the mobile object according to the bending direction of the mobile object based on the output value An angular velocity calculating means for calculating using the correction coefficient acquired by the coefficient acquiring means, and an azimuth calculating means for calculating the azimuth of the moving body based on the angular velocity calculated by the angular velocity calculating means. It is characterized by that.
[0006] 請求項 4の発明にかかる方位算出方法は、角速度センサ力もの出力値を取得する センサ値取得工程と、前記センサ値取得工程によって取得された出力値に基づ 、て 、移動体の曲折方向を判定する判定工程と、前記判定工程によって判定された判定 結果および前記出力値に基づ!/、て、前記移動体の曲折方向毎の角速度に応じてそ れぞれ設定された複数の補正係数から前記出力値に応じた前記補正係数を取得す る係数取得工程と、前記出力値に基づいて、前記移動体の曲折方向に応じた当該 移動体の角速度を、前記係数取得工程によって取得された補正係数を用いて算出 する角速度算出工程と、前記角速度算出工程によって算出された角速度に基づい て、前記移動体の方位を算出する方位算出工程と、を含んだことを特徴とする。  [0006] The azimuth calculation method according to the invention of claim 4 includes a sensor value acquisition step of acquiring an output value of the angular velocity sensor force, and a moving object based on the output value acquired by the sensor value acquisition step. A determination step for determining the bending direction, and a plurality of values set according to the angular velocity for each bending direction of the moving body based on the determination result and the output value determined by the determination step. A coefficient acquisition step of acquiring the correction coefficient according to the output value from the correction coefficient, and an angular velocity of the mobile body according to the bending direction of the mobile body based on the output value by the coefficient acquisition step. An angular velocity calculating step for calculating using the obtained correction coefficient, and an azimuth calculating step for calculating the azimuth of the moving body based on the angular velocity calculated by the angular velocity calculating step.
[0007] 請求項 5の発明にかかる方位算出プログラムは、請求項 4に記載の方位算出方法 をコンピュータに実行させることを特徴とする。 [0007] An orientation calculation program according to the invention of claim 5 causes a computer to execute the orientation calculation method according to claim 4.
[0008] 請求項 6の発明にかかる記録媒体は、請求項 5に記載の方位算出プログラムをコン ピュータによる読み取り可能に記録したことを特徴とする。 [0008] A recording medium according to a sixth aspect of the invention is characterized in that the azimuth calculation program according to the fifth aspect is recorded so as to be readable by a computer.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、この発明の本実施の形態の方位算出装置の機能的構成を示すブロッ ク図である。  FIG. 1 is a block diagram showing a functional configuration of an azimuth calculation apparatus according to the present embodiment of the present invention.
[図 2]図 2は、この発明の本実施の形態の方位算出装置の処理の内容を示すフロー チャートである。  [FIG. 2] FIG. 2 is a flowchart showing the processing contents of the azimuth calculating apparatus according to the present embodiment of the present invention.
[図 3]図 3は、この発明の本実施例におけるナビゲーシヨン装置のハードウェア構成を 示すブロック図である。  FIG. 3 is a block diagram showing a hardware configuration of the navigation device in the present embodiment of the present invention.
[図 4]図 4は、この発明の本実施例における方位算出部および補正処理部の具体的 構成を示す機能ブロック図である。  FIG. 4 is a functional block diagram showing a specific configuration of an azimuth calculation unit and a correction processing unit in the present embodiment of the present invention.
[図 5]図 5は、角速度センサの感度特性に起因する感度変化について説明する説明 図である。 [FIG. 5] FIG. 5 explains the sensitivity change caused by the sensitivity characteristic of the angular velocity sensor. FIG.
[図 6]図 6は、角速度センサの感度特性に起因する感度変化について説明する説明 図である。  [FIG. 6] FIG. 6 is an explanatory diagram for explaining the sensitivity change caused by the sensitivity characteristic of the angular velocity sensor.
[図 7]図 7は、角速度センサの感度特性に起因する感度変化について説明する説明 図である。  [FIG. 7] FIG. 7 is an explanatory diagram for explaining a sensitivity change caused by sensitivity characteristics of the angular velocity sensor.
[図 8]図 8は、角速度センサの感度特性に起因する感度変化について説明する説明 図である。  [FIG. 8] FIG. 8 is an explanatory diagram for explaining the sensitivity change caused by the sensitivity characteristics of the angular velocity sensor.
[図 9]図 9は、この発明の本実施例に力かるナビゲーシヨン装置の処理の内容につい て説明するフローチャートである。  [FIG. 9] FIG. 9 is a flowchart for explaining the contents of the processing of the navigation apparatus according to the embodiment of the present invention.
[図 10]図 10は、補正係数テーブルを示す説明図である。  FIG. 10 is an explanatory diagram showing a correction coefficient table.
[図 11]図 11は、補正係数テーブルの具体例を示す説明図である。  FIG. 11 is an explanatory diagram showing a specific example of a correction coefficient table.
符号の説明  Explanation of symbols
[0010] 101 センサ値取得部 [0010] 101 sensor value acquisition unit
102 判定部  102 Judgment part
103 係数取得部  103 Coefficient acquisition unit
104 角速度算出部  104 Angular velocity calculator
105 方位算出部  105 Direction calculator
106 方位取得部  106 Azimuth acquisition unit
107 補正部  107 Correction section
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下に添付図面を参照して、この発明にかかる方位算出装置、方位算出方法、方 位算出プログラム、および記録媒体の好適な実施の形態を詳細に説明する。この発 明の方位算出装置は、たとえば、車両などの移動体に搭載されるナビゲーシヨン装 置などへ適用することが可能である。以下、本実施の形態においては、移動体が車 両である場合にっ 、て説明する。  Hereinafter, preferred embodiments of an azimuth calculation device, an azimuth calculation method, a direction calculation program, and a recording medium according to the present invention will be described in detail with reference to the accompanying drawings. The azimuth calculation device of the present invention can be applied to, for example, a navigation device mounted on a moving body such as a vehicle. Hereinafter, in the present embodiment, the case where the moving body is a vehicle will be described.
[0012] (方位算出装置の機能的構成)  [0012] (Functional configuration of bearing calculation device)
はじめに、この発明の本実施の形態の方位算出装置の機能的構成について説明 する。図 1は、この発明の本実施の形態の方位算出装置の機能的構成を示すブロッ ク図である。方位算出装置は、センサ値取得部 101と、判定部 102と、係数取得部 1 03と、角速度算出部 104と、方位算出部 105と、方位取得部 106と、補正部 107と、 を備えている。 First, a functional configuration of the azimuth calculation apparatus according to the present embodiment of the present invention will be described. FIG. 1 is a block diagram showing a functional configuration of the bearing calculation apparatus according to the embodiment of the present invention. FIG. The azimuth calculation apparatus includes a sensor value acquisition unit 101, a determination unit 102, a coefficient acquisition unit 103, an angular velocity calculation unit 104, an azimuth calculation unit 105, an azimuth acquisition unit 106, and a correction unit 107. Yes.
[0013] まず、センサ値取得部 101は、車両に搭載されたナビゲーシヨン装置が備える角速 度センサ力もの出力値を取得する。角速度センサは、車両の曲折時における角速度 に応じて出力が変化するセンサであり、たとえば、振動ジャイロセンサなどによって実 現することが可能である。角速度センサ力もの出力値とは、角速度センサから出力さ れた電圧値から、零点 (オフセット)電圧値を差し引いた値である。  [0013] First, the sensor value acquisition unit 101 acquires an output value of the angular velocity sensor force provided in the navigation device mounted on the vehicle. The angular velocity sensor is a sensor whose output changes according to the angular velocity at the time of turning of the vehicle, and can be realized by a vibration gyro sensor, for example. The output value of the angular velocity sensor force is a value obtained by subtracting the zero point (offset) voltage value from the voltage value output from the angular velocity sensor.
[0014] ここで、零点 (オフセット)電圧値とは、車両の静止時における角速度センサ力もの 出力値あるいは車両の直進時における角速度センサ力もの出力値に対して温度ドリ フト分を補正した値である。以降、本実施の形態では、角速度センサから出力された 電圧値力も零点 (オフセット)電圧値を差し引いた値を角速度センサ力もの出力値と して説明する。  [0014] Here, the zero point (offset) voltage value is a value obtained by correcting the amount of temperature drift with respect to the output value of the angular velocity sensor force when the vehicle is stationary or the output value of the angular velocity sensor force when the vehicle goes straight. is there. Hereinafter, in the present embodiment, a value obtained by subtracting a zero point (offset) voltage value from the voltage value force output from the angular velocity sensor will be described as an output value of the angular velocity sensor force.
[0015] センサ値取得部 101は、たとえば、一定のサンプリング周期 T間隔毎に角速度セン サからの出力値を取得する。具体的には、たとえば、零点 (オフセット)電圧値が gy  [0015] The sensor value acquisition unit 101 acquires an output value from the angular velocity sensor, for example, at a constant sampling period T interval. Specifically, for example, the zero (offset) voltage value is gy
0 であり、サンプリング時刻 nTにおける角速度センサから出力された電圧値が gyであ る場合、角速度センサからの出力値は (gy—gy  If the voltage value output from the angular velocity sensor at sampling time nT is gy, the output value from the angular velocity sensor is (gy—gy
n 0 )で表される。  n 0).
[0016] また、判定部 102は、センサ値取得部 101によって取得された角速度センサ力もの 出力値 (gy -gy )  Further, the determination unit 102 outputs the angular velocity sensor force output value (gy -gy) acquired by the sensor value acquisition unit 101.
n 0 に基づいて、車両の曲折方向を判定する。具体的には、判定部 1 Based on n 0, the turning direction of the vehicle is determined. Specifically, determination unit 1
02は、たとえば、角速度センサからの出力値にゲイン値を乗算した、補正前の角速 度 G' (gy— gy )力 正の値である場合には右折、負の値である場合には左折、など n 0 02 is, for example, a right turn when the angular velocity G ′ (gy—gy) force before correction, which is obtained by multiplying the output value from the angular velocity sensor by a gain value, and when it is a negative value, Turn left, etc. n 0
のようにして車両の曲折方向を判定する。  Thus, the turning direction of the vehicle is determined.
[0017] また、係数取得部 103は、判定部 102によって判定された判定結果および補正前 の角速度 G' (gy -gy )に基づいて、補正前の角速度 G' (gy— gy )に応じた補正 n 0 n 0 [0017] Also, the coefficient acquisition unit 103 responds to the angular velocity G '(gy-gy) before correction based on the determination result determined by the determination unit 102 and the angular velocity G' (gy-gy) before correction. Correction n 0 n 0
係数 Gkを一つ取得する。係数取得部 103が取得対象とする補正係数 Gkは、車両の 曲折方向毎および角速度に応じて、それぞれ複数設定されている。より具体的には 、係数取得部 103が取得対象とする補正係数 Gkは、車両の右折時における角速度 に応じて複数設定され、これとは別に、車両の左折時における角速度に応じて複数 設定されている。 Get one coefficient Gk. A plurality of correction coefficients Gk to be acquired by the coefficient acquisition unit 103 are set for each bending direction and angular velocity of the vehicle. More specifically, a plurality of correction coefficients Gk to be acquired by the coefficient acquisition unit 103 are set according to the angular velocity when the vehicle turns right. Is set.
[0018] さらに、係数取得部 103が取得対象とする補正係数 Gkは、所定の角速度範囲毎 に、段階的に設定されている。この角速度範囲は、補正前の角速度が大きいほど間 隔が狭くなるように設定されている。なお、所定の角速度範囲は、たとえば、 l [degZ s]などのように一定間隔に設定されて 、てもよ!、。  [0018] Further, the correction coefficient Gk to be acquired by the coefficient acquisition unit 103 is set stepwise for each predetermined angular velocity range. This angular velocity range is set so that the interval decreases as the angular velocity before correction increases. The predetermined angular velocity range may be set at regular intervals, for example, l [degZ s]!
[0019] また、角速度算出部 104は、角速度センサからの出力値に基づいて、車両の曲折 方向に応じた当該車両の角速度を、係数取得部 103によって取得された補正係数 G kを用いて算出する。具体的には、角速度算出部 104は、たとえば、サンプリング時 刻 nTにおける補正前の角速度 G' (gy -gy )に、係数取得部 103によって取得され n 0  In addition, the angular velocity calculation unit 104 calculates the angular velocity of the vehicle according to the bending direction of the vehicle using the correction coefficient G k acquired by the coefficient acquisition unit 103 based on the output value from the angular velocity sensor. To do. Specifically, the angular velocity calculation unit 104 obtains the angular velocity G ′ (gy−gy) before correction at the sampling time nT, for example, by the coefficient acquisition unit 103 and n 0.
た、サンプリング時刻 (n- 1)Tにおける補正係数 Gk を乗算することによって、サン n-1  In addition, by multiplying the correction coefficient Gk at the sampling time (n-1) T,
プリング時刻 nTにおける現在の角速度 ω =Gk 'G' (gy— gy )を算出する。  Calculate the current angular velocity ω = Gk 'G' (gy—gy) at the pulling time nT.
n n-1 n 0  n n-1 n 0
[0020] また、方位算出部 105は、角速度算出部 104によって算出された現在の角速度 ωη に基づいて、車両の方位を算出する。具体的には、たとえば、或る一定のサンプリン グ周期 Τ間隔毎に角速度センサからの出力値を取得している場合、方位算出部 105 は、まず、サンプリング時刻 nTにおける現在の角速度 ωをサンプリング周期 Τで積 分する。これにより、サンプリング時刻(η—1)Τからサンプリング時刻 nTまでの角度 変位量 (以下、「相対方位」という) Δ Θ gが算出される。そして、算出された相対方位 Δ 0 gを、サンプリング時刻 (n- 1)Tにおける車両の方位 Θ g に加算する。これに n n-1 In addition, the azimuth calculation unit 105 calculates the azimuth of the vehicle based on the current angular velocity ω η calculated by the angular velocity calculation unit 104. Specifically, for example, when the output value from the angular velocity sensor is acquired at a certain sampling period Τ interval, the azimuth calculation unit 105 first calculates the current angular velocity ω at the sampling time nT as the sampling period. Accumulate with firewood. As a result, the amount of angular displacement (hereinafter referred to as “relative orientation”) ΔΘg from the sampling time (η−1) Τ to the sampling time nT is calculated. Then, the calculated relative orientation Δ 0 g is added to the vehicle orientation Θ g at the sampling time (n−1) T. N n-1
より、サンプリング時刻 nTにおける車両の方位 (以下、「算出された車両の方位」とい 5) 0 g = 0 g + A 0 g  Thus, the vehicle direction at sampling time nT (hereinafter referred to as “calculated vehicle direction” 5) 0 g = 0 g + A 0 g
n n-1 nが算出される。  n n-1 n is calculated.
[0021] 方位取得部 106は、車両の進行方向を示す方位 (以下、「取得された車両の方位」 という)を取得する。ここで、方位取得部 106は、方位算出部 105によって算出された 車両の方位とは異なる方法によって取得された車両の方位を取得する。具体的には 、東西南北を基準とした方位を取得する。より具体的には、たとえば、方位取得部 10 6は、 GPS (Global Positioning System)を用いて、取得された車両の方位 0, を取得する。なお、方位算出装置が、地図情報を読み出すことが可能な場合には、 方位取得部 106は、この地図情報が有する道路形状方位データを用いて、取得され た車両の方位 Θ 'を取得してもよい。この場合、地図情報は、方位算出装置に一体 的に設けられている記憶部力 読み出されたものに限らず、たとえば、通信などによ つて方位算出装置の外部力も読み出したものであってもよい。 The direction acquisition unit 106 acquires a direction indicating the traveling direction of the vehicle (hereinafter referred to as “acquired vehicle direction”). Here, the direction acquisition unit 106 acquires the vehicle direction acquired by a method different from the vehicle direction calculated by the direction calculation unit 105. Specifically, the direction based on the east, west, north, and south is acquired. More specifically, for example, the azimuth acquisition unit 106 acquires the azimuth 0, of the acquired vehicle using GPS (Global Positioning System). When the direction calculation device can read out the map information, the direction acquisition unit 106 acquires the acquired vehicle direction Θ ′ using the road shape direction data included in the map information. Also good. In this case, the map information is integrated with the bearing calculation device. For example, the external force of the azimuth calculating device may also be read by communication or the like.
[0022] また、補正部 107は、算出された車両の方位 Θ Rおよび取得された車両の方位 Θ, に基づいて、係数取得部 103によって取得された補正係数 Gk を補正する。具体  The correction unit 107 corrects the correction coefficient Gk acquired by the coefficient acquisition unit 103 based on the calculated vehicle orientation Θ R and the acquired vehicle orientation Θ. Concrete
n-1  n-1
的に、補正部 107は、算出された車両の方位 Θ gおよび取得された車両の方位 Θ, を比較し、算出された車両の方位 Θ gが取得された車両の方位 Θ,に漸近するように 、補正係数 Gk を補正する。補正部 107によって補正係数 Gk を補正することによ  Specifically, the correction unit 107 compares the calculated vehicle orientation Θ g and the acquired vehicle orientation Θ, so that the calculated vehicle orientation Θ g is asymptotic to the acquired vehicle orientation Θ. In addition, the correction coefficient Gk is corrected. By correcting the correction coefficient Gk by the correction unit 107
n-i n— 1  n-i n— 1
つて得られる補正後の補正係数 Gkは、その他の左右複数の補正係数とともに、次 回の車両の方位の算出に供される。  The corrected correction coefficient Gk obtained together with the other left and right correction coefficients is used for the next calculation of the vehicle direction.
[0023] (方位算出装置の処理の内容) [0023] (Contents of processing of bearing calculation device)
つぎに、方位算出装置の処理の内容について説明する。図 2は、この発明の本実 施の形態の方位算出装置の処理の内容を示すフローチャートである。図 2のフロー チャートにおいて、まず、センサ値取得部 101によって角速度センサ力もの出力値 (g y— gy )を取得し (ステップ S201)、取得された角速度センサ力もの出力値 (gy— g y )にゲイン値 Gを乗算することによって、補正前の角速度 G' (gy— gy )を算出する Next, the processing contents of the azimuth calculation device will be described. FIG. 2 is a flowchart showing the contents of processing of the azimuth calculating apparatus according to the embodiment of the present invention. In the flow chart of FIG. 2, first, the sensor value acquisition unit 101 acquires the output value (gy—gy) of the angular velocity sensor force (step S201), and gains the obtained output value (gy—gy) of the angular velocity sensor force. Multiply by the value G to calculate the uncorrected angular velocity G '(gy—gy)
0 n 0 0 n 0
(ステップ S202)。  (Step S202).
[0024] つぎに、ステップ S202において算出された補正前の角速度 G' (gy— gy )に基づ  [0024] Next, based on the angular velocity G ′ (gy—gy) before correction calculated in step S202.
n 0  n 0
いて、判定部 102によって車両の曲折方向を判定し (ステップ S203)、判定結果およ び補正前の角速度 G' (gy -gy )に基づいて、右折用あるいは左折用のいずれかの  The determination unit 102 determines the turning direction of the vehicle (step S203), and based on the determination result and the angular velocity G ′ (gy -gy) before correction, either the right turn or the left turn is used.
n 0  n 0
補正係数から一つの補正係数 Gk を係数取得部 103によって取得する(ステップ S  One correction coefficient Gk is acquired from the correction coefficient by the coefficient acquisition unit 103 (step S).
n-l  n-l
204)。  204).
[0025] そして、ステップ S202において算出された補正前の角速度 G ' (gy— gy )に、ステ  [0025] Then, the angular velocity G '(gy—gy) before correction calculated in step S202 is
n 0  n 0
ップ S 204において取得された補正係数 Gk を、角速度算出部 104によって乗算す  The angular velocity calculation unit 104 multiplies the correction coefficient Gk acquired in step S204.
n-l  n-l
ることによって、車両の曲折方向に応じた当該車両の現在の角速度 ωを算出し (ス テツプ S205)、算出された現在の角速度 ωに基づいて、算出された車両の方位 Θ g を方位算出部 105によって算出する (ステップ S 206)。  Thus, the current angular velocity ω of the vehicle according to the turning direction of the vehicle is calculated (step S205), and the calculated vehicle orientation Θ g is calculated based on the calculated current angular velocity ω. Calculated by 105 (step S 206).
[0026] 一方で、取得された車両の方位 Θ 'を方位取得部 106によって取得し (ステップ S2 07)、取得された車両の方位 0 'およびステップ S206において算出された車両の方 位 Θ gに基づ!/、て、ステップ S 204にお 、て取得された補正係数 Gk を、補正部 10 n n-1On the other hand, the obtained vehicle orientation Θ ′ is obtained by the orientation obtaining unit 106 (step S2 07), and the obtained vehicle orientation 0 ′ and the vehicle direction calculated in step S206 are obtained. Based on the position Θg! /, The correction coefficient Gk obtained in step S204 is converted to the correction unit 10 n n-1
7によって補正して (ステップ S208)、一連の処理を終了する。ステップ S204におい て取得された補正係数 Gk は、ステップ S208において補正されることにより、補正 n-1 After correcting by 7 (step S208), the series of processing is terminated. The correction coefficient Gk acquired in step S204 is corrected in step S208 to be corrected n-1.
後の補正係数 Gkに更新される。  Updated to later correction factor Gk.
[0027] なお、上記実施の形態では、ステップ S 203の曲折判定はステップ S202において 算出した補正前の角速度 G' (gy -gy )に基づいて曲折判定をおこなっているが、こ n 0 In the above embodiment, the bending determination in step S 203 is performed based on the uncorrected angular velocity G ′ (gy −gy) calculated in step S 202.
れに限らず、ステップ S201において取得した角速度センサからの出力値 gy -gy n 0 の正負に基づいて曲折判定をおこなうようにしてもよい。またこの場合、ステップ S20 2の角速度算出とステップ S203の曲折判定の順序を入れ替え、曲折判定を先にお こなうようにしても良い。  However, the bending determination may be performed based on the sign of the output value gy -gy n 0 from the angular velocity sensor acquired in step S201. In this case, the calculation of the angular velocity in step S202 and the order of the bending determination in step S203 may be interchanged so that the bending determination is performed first.
[0028] 以上説明したように、本実施の形態の方位算出装置によれば、車両の曲折方向お よび角速度に応じた補正係数が取得され、この補正係数を用いて算出された車両の 角速度に基づいて、算出された車両の方位が算出される。  [0028] As described above, according to the azimuth calculating apparatus of the present embodiment, the correction coefficient corresponding to the bending direction and the angular velocity of the vehicle is acquired, and the angular velocity of the vehicle calculated using this correction coefficient is obtained. Based on the calculated direction of the vehicle.
[0029] ここで、補正係数は、車両の曲折方向毎の角速度に応じてそれぞれ複数設定され ているため、車両の曲折方向および車両の角速度の大きさに左右されることなく常に 補正された角速度が算出される。これにより、算出された車両の方位の累積誤差を小 さくし、算出された車両の方位の算出精度の向上を図ることができる。  [0029] Here, since a plurality of correction coefficients are set in accordance with the angular velocities for each vehicle bending direction, the angular velocity is always corrected regardless of the vehicle bending direction and the vehicle angular velocity. Is calculated. As a result, the accumulated error of the calculated vehicle direction can be reduced, and the calculation accuracy of the calculated vehicle direction can be improved.
[0030] また、算出された車両の方位の累積誤差を小さくすることで、累積誤差の蓄積が大 きくなるまでに時間が力かるようになるため、 GPSや道路形状方位データを用いて取 得された車両の方位による算出された車両の方位較正の頻度が減少する。これによ り、算出された車両の方位の算出精度の向上を図ることができる。  [0030] In addition, by reducing the cumulative error of the calculated vehicle direction, it takes time until the cumulative error accumulation increases, so it can be obtained using GPS or road shape direction data. The frequency of the calculated vehicle azimuth calibration based on the calculated vehicle azimuth is reduced. As a result, the calculation accuracy of the calculated vehicle orientation can be improved.
[0031] ところで、算出された角速度は、その値が大きいほど、かつ算出された車両の方位 への累積回数が多いほど、誤差などの影響が大きくなるが、本実施の形態の方位算 出装置によれば、角速度が大きいほど間隔が狭くなるような角速度範囲毎に補正係 数が設定されているため、角速度の大きさの違いによって、算出された角速度の精 度にばらつきが生じることが防止できる。これにより、角速度の算出精度の一層の向 上を図ることができる。  [0031] By the way, the larger the calculated angular velocity is, and the larger the cumulative number of times the calculated vehicle azimuth is is, the greater the influence of errors and the like. According to the above, since the correction coefficient is set for each angular velocity range in which the interval becomes narrower as the angular velocity increases, the accuracy of the calculated angular velocity is prevented from varying due to the difference in the angular velocity. it can. As a result, the accuracy of calculating the angular velocity can be further improved.
[0032] さらに、本実施の形態の方位算出装置によれば、算出された車両の方位および取 得された車両の方位に基づいて、補正係数が左右複数補正されるため、当該車両 の角速度の算出精度を向上させることができる。これにより、角速度を用いて算出さ れた車両の方位のより一層の精度向上を図ることができる。 [0032] Furthermore, according to the azimuth calculation apparatus of the present embodiment, the calculated azimuth and direction of the vehicle are calculated. Since a plurality of correction coefficients are corrected on the left and right sides based on the obtained vehicle orientation, the calculation accuracy of the angular velocity of the vehicle can be improved. Thereby, it is possible to further improve the accuracy of the azimuth of the vehicle calculated using the angular velocity.
実施例  Example
[0033] 以下に、この発明の実施例について説明する。本実施例では、たとえば、車両(四 輪車、二輪車を含む)などの移動体に搭載されるナビゲーシヨン装置によって、この 発明の方位算出装置および方位算出方法を実施した場合の一例について説明する  [0033] Examples of the present invention will be described below. In this embodiment, for example, an example in which the azimuth calculation device and the azimuth calculation method of the present invention are implemented by a navigation device mounted on a moving body such as a vehicle (including a four-wheeled vehicle and a two-wheeled vehicle) will be described.
[0034] (ナビゲーシヨン装置のハードウェア構成) [0034] (Hardware configuration of navigation device)
はじめに、この発明の本実施例におけるナビゲーシヨン装置のハードウェア構成に ついて説明する。図 3は、この発明の本実施例におけるナビゲーシヨン装置のハード ウェア構成を示すブロック図である。この発明の本実施例におけるナビゲーシヨン装 置は、ナビゲーシヨン制御部 301と、ユーザ操作部 302と、表示部 303と、記録媒体 304と、記録媒体デコード部 305と、案内音出力部 306と、通信部 307と、経路探索 部 308と、経路誘導部 309と、案内音生成部 310と、スピーカ 311と、位置取得部 31 2と、方位算出部 313と、補正処理部 314と、によって構成される。  First, the hardware configuration of the navigation device in this embodiment of the present invention will be described. FIG. 3 is a block diagram showing a hardware configuration of the navigation apparatus in this embodiment of the present invention. The navigation device in this embodiment of the present invention includes a navigation control unit 301, a user operation unit 302, a display unit 303, a recording medium 304, a recording medium decoding unit 305, a guidance sound output unit 306, The communication unit 307, the route search unit 308, the route guidance unit 309, the guidance sound generation unit 310, the speaker 311, the position acquisition unit 312, the direction calculation unit 313, and the correction processing unit 314 are configured. The
[0035] まず、ナビゲーシヨン制御部 301は、ナビゲーシヨン装置全体を制御する。ナビゲー シヨン制御部 301は、たとえば所定の演算処理を実行する CPU (Central Process ing Unit)や、各種制御プログラムを格納する ROM (Read Only Memory)、お よび、 CPUのワークエリアとして機能する RAM (Random Access Memory)など によって構成されるマイクロコンピュータなどによって実現することができる。 RAMに は、たとえば、角速度の算出に際して用いられる補正係数が記憶されている。詳細は 後述するが、 RAMにおいては、車両の曲折方向毎の角速度に応じてそれぞれ設定 された複数の補正係数が記憶されている。本実施例においては、左折用の補正係 数 Laゝ Lbゝ Lc、…、 Li、 · · ·および右折用の補正係数 Ra、 Rb、 Rc、 · · ·、 Ri、 · · ·が 記憶されている(図 4、図 10、図 11参照。 ) o各補正係数 La、 Lb、 Lc、 · · ·、 Li、 · · · および Ra、 Rb、 Rc、 · · ·、 Ri、 · · ·は、更新自在に記憶されて!、る。  [0035] First, the navigation control unit 301 controls the entire navigation device. The navigation control unit 301 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) that stores various control programs, and a RAM (Random) that functions as a work area for the CPU. It can be realized by a microcomputer constituted by an Access Memory). In the RAM, for example, correction coefficients used for calculating the angular velocity are stored. As will be described in detail later, the RAM stores a plurality of correction coefficients set in accordance with the angular velocities for each vehicle turning direction. In the present embodiment, correction factors for left turn La ゝ Lb ゝ Lc, ..., Li, ··· and correction factors Ra, Rb, Rc, ···, Ri, ··· for right turn are stored. (Refer to Fig. 4, Fig. 10 and Fig. 11.) o Each correction factor La, Lb, Lc, ···, Li, ··· and Ra, Rb, Rc, ···, Ri, ··· It is memorized so that it can be updated!
[0036] ナビゲーシヨン制御部 301は、経路誘導に際し、経路探索部 308、経路誘導部 30 9、案内音生成部 310との間で経路誘導に関する情報の入出力をおこない、その結 果得られる情報を表示部 303および案内音出力部 306へ出力する。 [0036] The navigation control unit 301 performs a route search unit 308, a route guide unit 30 when performing route guidance. 9. Input / output information regarding route guidance to / from the guidance sound generation unit 310, and output the resulting information to the display unit 303 and the guidance sound output unit 306.
[0037] また、ユーザ操作部 302は、文字、数値、各種指示など、ユーザによって入力操作 された情報をナビゲーシヨン制御部 301に対して出力する。ユーザ操作部 302の構 成としては、物理的な押下 Z非押下を検出する押ボタンスィッチ、タツチパネル、キ 一ボード、ジョイスティックなど公知の各種形態を採用することが可能である。ユーザ 操作部 302は、外部からの音声を入力するマイクを用いて、音声によって入力操作 をおこなう形態としてもょ 、。  [0037] Also, the user operation unit 302 outputs information input by the user such as characters, numerical values, and various instructions to the navigation control unit 301. As the configuration of the user operation unit 302, various known forms such as a push button switch, a touch panel, a keyboard, and a joystick that detect physical pressing Z non-pressing can be employed. The user operation unit 302 may be configured to perform an input operation by voice using a microphone that inputs voice from the outside.
[0038] ユーザ操作部 302は、ナビゲーシヨン装置に対して一体に設けられていてもよいし 、リモコンのようにナビゲーシヨン装置力も分離して操作可能な形態であってもよ 、。 ユーザ操作部 302は、上述した各種形態のうち!、ずれか単一の形態で構成されて ヽ てもよいし、複数の形態で構成されていてもよい。ユーザは、ユーザ操作部 302の形 態に応じて、適宜入力操作をおこなうことによって情報を入力する。ユーザ操作部 30 2の操作によって入力される情報としては、たとえば、探索する経路の目的地(目的 地の地点情報)または出発地(出発地の地点情報)が挙げられる。  [0038] The user operation unit 302 may be provided integrally with the navigation device, or may be configured such that the navigation device force can be separated and operated like a remote controller. Of the various forms described above, the user operation unit 302 may be configured in a single or different form, or may be configured in a plurality of forms. The user inputs information by appropriately performing an input operation according to the form of the user operation unit 302. The information input by the operation of the user operation unit 302 includes, for example, a destination (point information of the destination) or a departure place (point information of the departure place) of the route to be searched.
[0039] 目的地または出発地の入力は、それぞれの地点の緯度'経度や住所を入力する他 、目的地または出発地となる施設の電話番号やジャンル、キーワードなどを指定する ことによっておこなってもよい。 目的地または出発地となる施設の電話番号ゃジヤン ル、キーワードなどを指定することによって目的地または出発地の入力をおこなうこと により、該当する施設が探索され、その位置を目的地または出発地として特定するこ とができる。より詳細には、これらの情報は、後述する記録媒体 304に記録された地 図情報に含まれる背景種別データに基づいて、地図上の一点として特定される。ま た、詳細を後述する表示部 303に地図情報を表示させ、表示された地図上の一点を 旨定するようにしてもよ ヽ。  [0039] In addition to entering the latitude and longitude of each point and the address, the destination or departure point can be entered by specifying the telephone number, genre, keyword, etc. of the destination or departure point facility. Good. By entering the destination or departure point by designating the phone number, keyword, keyword, etc. of the destination or departure point facility, the corresponding facility is searched and the position is set as the destination or departure point. Can be identified. More specifically, these pieces of information are specified as one point on the map based on background type data included in map information recorded on the recording medium 304 described later. In addition, map information may be displayed on the display unit 303, which will be described later in detail, so that one point on the displayed map is specified.
[0040] また、表示部 303は、たとえば、 CRT(Cathode Ray Tube)、 TFT液晶ディスプ レイ、有機 EL (Electroluminescence)ディスプレイ、プラズマディスプレイなどを含 む。表示部 303は、具体的には、たとえば、映像 IZFや映像 IZFに接続された映像 表示用のディスプレイ装置によって構成することができる。 [0041] 映像 IZFは、具体的には、たとえば、ディスプレイ装置全体の制御をおこなうグラフ イツタコントローラと、即時表示可能な画像情報を一時的に記憶する VRAM (Video[0040] The display unit 303 includes, for example, a CRT (Cathode Ray Tube), a TFT liquid crystal display, an organic EL (Electroluminescence) display, a plasma display, and the like. Specifically, the display unit 303 can be configured by, for example, a video IZF or a video display device connected to the video IZF. [0041] Specifically, the video IZF is, for example, a graphic controller that controls the entire display device, and a VRAM (Video
RAM)などのバッファメモリと、グラフィックコントローラから出力される画像情報に基 づいて、ディスプレイ装置を表示制御する制御 ICなどによって構成される。表示部 3 03には、アイコン、カーソル、メニュー、ウィンドウ、あるいは文字や画像などの各種情 報が表示される。また、表示部 303には、 HD (Hard Disk)に記憶された地図情報 や経路誘導に関する情報が表示される。 RAM) and a control IC that controls the display device display based on image information output from the graphic controller. Display section 303 displays icons, cursors, menus, windows, or various information such as characters and images. The display unit 303 displays map information and route guidance information stored in an HD (Hard Disk).
[0042] また、記録媒体 304は、地図情報、各種制御プログラム、各種情報などをコンビュ ータに読み取り可能な状態で記録する。記録媒体 304は、記録媒体デコード部 305 による情報の書き込みを受け付けるとともに、書き込まれた情報を不揮発に記録する 。記録媒体 304は、たとえば、 HDによって実現することができる。本実施例における 記録媒体 304には、方位算出プログラムが記録されている。なお、方位算出プロダラ ムは、記録媒体 304に記録されて 、るものに限らな 、。  [0042] The recording medium 304 records map information, various control programs, various information, and the like in a readable state by a computer. The recording medium 304 accepts writing of information by the recording medium decoding unit 305 and records the written information in a nonvolatile manner. The recording medium 304 can be realized by HD, for example. The direction calculation program is recorded on the recording medium 304 in the present embodiment. The azimuth calculation program is not limited to the one recorded in the recording medium 304.
[0043] 記録媒体 304は、 HDに限るものではなぐ HDに代えて、あるいは、 HDに加えて、 DVD (Digital Versatile Disk)や CD (Compact Disk)など、記録媒体デコード 部 305に対して着脱可能であり可搬性を有するメディアを記録媒体 304として用いて もよい。記録媒体 304は、 DVDおよび CDに限るものではなぐ CD-ROM (CD-R 、 CD-RW)、 MO (Magneto -Optical disk)、メモリカードなど、記録媒体デコー ド部 305に対して着脱可能であり可搬性を有するメディアを利用することもできる。  [0043] The recording medium 304 is not limited to HD. Instead of HD or in addition to HD, DVD (Digital Versatile Disk), CD (Compact Disk), etc. can be attached to and detached from the recording medium decoding unit 305. Therefore, a medium having portability may be used as the recording medium 304. The recording medium 304 is not limited to DVD and CD, and is removable from the recording medium decoding unit 305 such as CD-ROM (CD-R, CD-RW), MO (Magneto-Optical disk), and memory card. A portable media can also be used.
[0044] 記録媒体 304に記録された地図情報は、建物、河川、地表面などの地物(フィーチ ャ)をあらわす背景データと、道路の形状や方位をあらわす道路形状方位データとを 有しており、表示部 303の表示画面において 2次元または 3次元に描画される。道路 形状方位データは、たとえば、マップマッチングにも用いられる。記録媒体 304に記 録された地図情報は、たとえば、ナビゲーシヨン装置が経路誘導中の場合に、位置 取得部 312によって取得された自車位置と重ねて表示される。  [0044] The map information recorded in the recording medium 304 includes background data representing features such as buildings, rivers, and the ground surface, and road shape direction data representing the shape and direction of the road. On the display screen of the display unit 303, it is drawn two-dimensionally or three-dimensionally. Road shape direction data is also used for map matching, for example. The map information recorded on the recording medium 304 is displayed so as to overlap with the vehicle position acquired by the position acquisition unit 312 when the navigation device is guiding a route, for example.
[0045] なお、本実施例では地図情報を記録媒体 304に記録するようにしたが、これに限る ものではない。地図情報は、ナビゲーシヨン装置のハードウェアと一体に設けられて いるものに限って記録されているものではなぐナビゲーシヨン装置外部に設けられ ていてもよい。その場合、ナビゲーシヨン装置は、たとえば、通信部 307を通じて、ネ ットワークを介して地図情報を取得する。取得された地図情報は RAMなどに記憶さ れる。 In this embodiment, the map information is recorded on the recording medium 304. However, the present invention is not limited to this. The map information is provided outside the navigation device, not the one recorded with the navigation device hardware. It may be. In this case, the navigation apparatus acquires map information via the network through the communication unit 307, for example. The acquired map information is stored in RAM.
[0046] また、記録媒体デコード部 305は、記録媒体 304に対する情報の読み取り Z書き 込みの制御をおこなう。たとえば、記録媒体 304として HDを用いた場合には、記録 媒体デコード部 305は、 HDD (Hard Disk Drive)となる。同様に、記録媒体 304 として DVDあるいは CD (CD— R、 CD— RWを含む)を用いた場合には、記録媒体 デコード部 305は、 DVDドライブあるいは CDドライブとなる。書き込み可能かつ着脱 可能な記録媒体 304として、 CD— ROM (CD— R、 CD— RW)、 MO、メモリカード などを利用する場合には、各種記録媒体への情報の書き込みおよび各種記録媒体 に記憶された情報の読み取りが可能な専用のドライブ装置を、記録媒体デコード部 3 05として適宜用いる。  In addition, the recording medium decoding unit 305 controls reading / writing of information on the recording medium 304. For example, when HD is used as the recording medium 304, the recording medium decoding unit 305 is an HDD (Hard Disk Drive). Similarly, when a DVD or CD (including CD-R and CD-RW) is used as the recording medium 304, the recording medium decoding unit 305 is a DVD drive or a CD drive. When a CD-ROM (CD-R, CD-RW), MO, memory card, etc. is used as the writable and removable recording medium 304, information is written to various recording media and stored in various recording media. A dedicated drive device capable of reading the recorded information is appropriately used as the recording medium decoding unit 305.
[0047] また、案内音出力部 306は、接続されたスピーカ 311への出力を制御することによ つて、案内音を再生する。スピーカ 311は、一つであってもよいし、複数であってもよ い。具体的には、案内音出力部 306は、音声出力用のスピーカ 311に接続される音 声 IZFによって実現することができる。より具体的には、音声 IZFは、たとえば、音声 デジタル情報の DZA変換をおこなう DZA変換回路と、 DZA変換回路力 出力さ れる音声アナログ信号を増幅する増幅器と、音声アナログ情報の AZD変換をおこな う AZD変換回路と、力ら構成することができる。  [0047] The guide sound output unit 306 reproduces the guide sound by controlling the output to the connected speaker 311. There may be one speaker 311 or a plurality of speakers 311. Specifically, the guidance sound output unit 306 can be realized by a sound IZF connected to a speaker 311 for sound output. More specifically, the audio IZF performs, for example, a DZA conversion circuit that performs DZA conversion of audio digital information, an amplifier that amplifies an audio analog signal that is output from the DZA conversion circuit, and AZD conversion of audio analog information. It can be configured with AZD conversion circuit and force.
[0048] また、通信部 307は、渋滞や交通規制などの交通情報を、定期的 (不定期でも可) に受信する。通信部 307による交通情報の受信は、 VICS (Vehicle Information and Communication System)センターから交通情報が配信されたタイミング でおこなってもよいし、 VICSセンターに対し定期的に交通情報を要求することでおこ なってもよい。  [0048] In addition, the communication unit 307 receives traffic information such as traffic congestion and traffic regulations regularly (or even irregularly). The traffic information may be received by the communication unit 307 at the timing when the traffic information is distributed from the VICS (Vehicle Information and Communication System) center, or by periodically requesting the traffic information from the VICS center. May be.
[0049] 通信部 307は、たとえば、 FMチューナー、 VICSZビーコンレシーバおよびその他 の通信機器として実現することが可能である。受信された交通情報は、経路の探索( 再探索を含む)に際して用いられ、たとえば、渋滞箇所や時間規制箇所を回避する 経路の探索に供される。 [0050] 公知の技術であるため詳細な説明を省略する力 「VICS」とは、 VICSセンターで 編集、処理された渋滞や交通規制などの交通情報をリアルタイムに送信し、ナビゲー シヨン装置などに文字'図形で表示する情報通信システムである。 VICSセンターで 編集、処理された交通情報 (VICS情報)をナビゲーシヨン装置に伝達する方法とし ては、各道路上に設置された「ビーコン」と「FM多重放送」を利用する方法がある。 [0049] The communication unit 307 can be realized as, for example, an FM tuner, a VICSZ beacon receiver, and other communication devices. The received traffic information is used when searching for a route (including re-searching), for example, for searching for a route that avoids a traffic jam location or a time regulation location. [0050] The ability to omit detailed explanations because it is a well-known technology "VICS" means that traffic information such as traffic jams and traffic regulations that have been edited and processed at the VICS center is sent in real-time and written to navigation devices, etc. 'It is an information communication system that displays graphics. As a method of transmitting traffic information (VICS information) edited and processed at the VICS Center to the navigation device, there is a method of using “beacon” and “FM multiplex broadcasting” installed on each road.
[0051] 「ビーコン」には、主に高速道路で使用される「電波ビーコン」と、主要な一般道路で 使用される「光ビーコン」がある。「FM多重放送」を利用する場合には、広域エリアの 交通情報を受信することが可能となる。「ビーコン」を利用する場合には、自車位置を 元にした直近の道路の詳細な情報など、自車が位置する場所にお!、て必要な交通 情報を受信することが可能となる。  [0051] "Beacons" include "radio wave beacons" mainly used on expressways and "optical beacons" used on major general roads. When “FM multiplex broadcasting” is used, traffic information in a wide area can be received. When using "Beacon", it is possible to receive necessary traffic information at the place where the vehicle is located, such as detailed information on the most recent road based on the vehicle location.
[0052] また、経路探索部 308は、記録媒体 304に記録されている地図情報や、通信部 30 7を介して取得する VICS情報などを利用して、出発地(出発地の地点情報)から目 的地(目的地の地点情報)までの最適な経路を探索する。ここで、最適な経路とは、 ユーザが指定した条件にもっとも合致する経路である。一般に、出発地から目的地ま での経路は無数存在する。このため、経路探索に当たって考慮される事項を設定し 、条件に合致する経路を探索するようにしている。  [0052] Further, the route search unit 308 uses the map information recorded in the recording medium 304, the VICS information acquired through the communication unit 307, and the like from the departure place (point information of the departure place). Search for the optimal route to the destination (point information of the destination). Here, the optimal route is the route that best meets the conditions specified by the user. In general, there are numerous routes from the starting point to the destination. For this reason, items that are considered in the route search are set to search for a route that meets the conditions.
[0053] また、経路誘導部 309は、経路探索部 308によって探索された誘導経路情報、位 置取得部 312によって取得された自車位置情報、記録媒体 304から記録媒体デコ ード部 305を経由して得られた地図情報に基づいて、リアルタイムな経路誘導情報 の生成をおこなう。このとき生成される経路誘導情報は、通信部 307によって受信し た渋滞情報を考慮したものであってもよ!、。経路誘導部 309で生成された経路誘導 情報は、ナビゲーシヨン制御部 301を介して表示部 303へ出力される。  [0053] Further, the route guidance unit 309 uses the guidance route information searched by the route search unit 308, the vehicle position information acquired by the position acquisition unit 312, and the recording medium 304 via the recording medium decoding unit 305. Based on the map information obtained, real-time route guidance information is generated. The route guidance information generated at this time may take into account the traffic information received by the communication unit 307! The route guidance information generated by the route guidance unit 309 is output to the display unit 303 via the navigation control unit 301.
[0054] また、案内音生成部 310は、パターンに対応したトーンと音声の情報を生成する。  [0054] In addition, guide sound generation section 310 generates tone and voice information corresponding to the pattern.
すなわち、経路誘導部 309で生成された経路誘導情報に基づいて、案内ポイントに 対応した仮想音源の設定と音声ガイダンス情報の生成をおこな ヽ、ナビゲーシヨン制 御部 301を介して案内音出力部 306へ出力する。  That is, based on the route guidance information generated by the route guidance unit 309, the virtual sound source corresponding to the guidance point is set and the voice guidance information is generated. The guidance sound output unit is provided via the navigation control unit 301. Output to 306.
[0055] また、位置取得部 312は、 GPSレシーバおよび各種センサ力も構成され、車両の 現在位置の情報および車両の方位 (絶対方位) Θ 'を示す方位情報を取得する。 GP Sレシーバは、 GPS衛星からの電波を受信し、 GPS衛星との幾何学的位置を求める 。なお、 GPSとは、 4つ以上の衛星からの電波を受信することによって地上での位置 を正確に求めるシステムである。 The position acquisition unit 312 is also configured with a GPS receiver and various sensor forces, and acquires information on the current position of the vehicle and direction information indicating the direction (absolute direction) Θ ′ of the vehicle. GP The S receiver receives the radio wave from the GPS satellite and obtains the geometric position with the GPS satellite. GPS is a system that accurately obtains the position on the ground by receiving radio waves from four or more satellites.
[0056] GPSレシーバは、具体的に、たとえば、 GPS衛星からの電波を受信するためのァ ンテナ、受信した電波を復調するチューナーおよび復調した情報に基づ 、て現在位 置を算出する演算回路 (またはプログラム)などによって構成される。方位情報は、 G PSを用いて取得されるものに限らず、記録媒体 304に記録された地図情報が有する 道路形状方位データを用いて取得されるものであってもよい。以下、絶対方位 Θ 'を「 取得された絶対方位 Θ '」という。  [0056] The GPS receiver specifically includes, for example, an antenna for receiving radio waves from a GPS satellite, a tuner for demodulating the received radio waves, and an arithmetic circuit for calculating the current position based on the demodulated information. (Or program). The azimuth information is not limited to that obtained using the GPS, but may be obtained using road shape azimuth data included in the map information recorded on the recording medium 304. Hereinafter, the absolute orientation Θ ′ is referred to as “acquired absolute orientation Θ ′”.
[0057] なお、各種センサとしては、他に、車速センサ、走行距離センサ、傾斜センサ、およ び角速度センサなど自車に搭載された各種センサである。自車位置および方位情報 の取得に際し、 GPSレシーバによって外部力 得られた情報と合わせて、自車に搭 載された各種センサの出力する情報を用いることにより、より高い精度で自車位置を 取得することができる。  It should be noted that the various sensors are various sensors mounted on the vehicle such as a vehicle speed sensor, a travel distance sensor, a tilt sensor, and an angular velocity sensor. When acquiring the vehicle position and direction information, the information output by various sensors mounted on the vehicle is used together with the information obtained by the GPS receiver to obtain the vehicle position with higher accuracy. can do.
[0058] 車速センサは、ナビゲーシヨンを搭載する車両のトランスミッションの出力側ドライブ シャフト 1回転当たりの車速パルス数を検出する。走行距離センサは、車輪の回転に 伴って出力される所定周期のパルス信号のパルス数をカウントすることによって車輪 1回転当たりのパルス数を算出し、その 1回転当たりのパルス数に基づく走行距離情 報を出力する。傾斜センサは、路面の傾斜角度を検出する。角速度センサは、車両 の曲折時の角速度を検出する。  [0058] The vehicle speed sensor detects the number of vehicle speed pulses per rotation of the output side drive shaft of the transmission of the vehicle equipped with the navigation. The mileage sensor calculates the number of pulses per one rotation of the wheel by counting the number of pulses of a pulse signal with a predetermined period output along with the rotation of the wheel, and the mileage information based on the number of pulses per one rotation. Information is output. The inclination sensor detects the inclination angle of the road surface. The angular velocity sensor detects the angular velocity when the vehicle is bent.
[0059] 角速度センサは、具体的には、たとえば、圧電素子などを検出素子とする振動ジャ イロセンサによって実現することが可能である。この場合、角速度センサは、車両の 曲折時における角速度に応じた大きさの電圧値を出力する。ここで、たとえば、角速 度センサ力もの出力値が 2. 5V (規定零点電圧)である場合は、角速度がゼロ(0[de g/s] )状態であることを示す。  [0059] Specifically, the angular velocity sensor can be realized by a vibration gyro sensor using a piezoelectric element or the like as a detection element, for example. In this case, the angular velocity sensor outputs a voltage value having a magnitude corresponding to the angular velocity at the time of turning of the vehicle. Here, for example, when the output value of the angular velocity sensor force is 2.5 V (specified zero voltage), it indicates that the angular velocity is zero (0 [deg / s]).
[0060] ところで、角速度がゼロ状態となるのは、車両の静止時あるいは車両の直進時であ る力 一般的に、このような状況において実測される零点電圧は、温度変化などの影 響を受けてドリフトしている値であることが多い。このため、本実施例においては、車 両の静止時における角速度センサからの出力値あるいは車両の直進時における角 速度センサ力もの出力値に対して温度ドリフトの影響を補正した値を零点 (オフセット )電圧値として用いる。 [0060] By the way, the angular velocity is zero when the vehicle is stationary or when the vehicle is traveling straight. Generally, the zero voltage measured in such a situation has an effect such as temperature change. In many cases, the value is drifting. For this reason, in this embodiment, the vehicle The value corrected for the effect of temperature drift on the output value of the angular velocity sensor when both are stationary or the output value of the angular velocity sensor force when the vehicle is traveling straight is used as the zero point (offset) voltage value.
[0061] 角速度センサは、検出した角速度を、 OV〜5Vのアナログ信号で出力する。角速度 センサの感度は、零点 (オフセット)電圧(2. 5Vの規定零点電圧)値からの角速度の 偏差の程度であらわされ、その単位は [mVZdegZsec]である。角速度センサの感 度は、水平状態で規定された規格に則っており、所定の誤差内に収まるよう調整され ているものとする。以降、本実施例においては、角速度センサから出力された電圧値 力も零点 (オフセット)電圧値を差し引いた値を、「角速度センサ力もの出力値」とする 。角速度センサ力もの出力値は、たとえば、サンプリング周期 T間隔毎に取得される。 このサンプリング周期 Tは、任意の値を設定することが可能であり、具体的に、たとえ ば、 100msecなどに設定される。  [0061] The angular velocity sensor outputs the detected angular velocity as an analog signal of OV to 5V. The sensitivity of the angular velocity sensor is expressed by the degree of deviation of the angular velocity from the zero (offset) voltage (the specified zero voltage of 2.5 V), and its unit is [mVZdegZsec]. The sensitivity of the angular velocity sensor conforms to the standard specified in the horizontal state, and is adjusted so as to be within a predetermined error. Hereinafter, in this embodiment, a value obtained by subtracting the zero point (offset) voltage value from the voltage value force output from the angular velocity sensor is referred to as an “output value of the angular velocity sensor force”. The output value of the angular velocity sensor force is acquired, for example, every sampling period T interval. The sampling period T can be set to an arbitrary value, specifically, for example, 100 msec.
[0062] 角速度センサは、時計廻りの方位変化すなわち右折に対応した正の角速度を、 5V 側への 2. 5Vからの偏差電圧として出力する。一方、この角速度センサは、反時計廻 りの方位変化すなわち左折に対応した負の角速度を、 OV側への 2. 5Vからの偏差 電圧として出力する。なお、角速度センサとして振動ジャイロを用いる場合、この振動 ジャイロによって検出したアナログの電圧値を AZD変換する AZD変換回路 420 ( 図 4参照)をさらに設ける。  [0062] The angular velocity sensor outputs a positive angular velocity corresponding to a clockwise azimuth change, that is, a right turn, as a deviation voltage from 2.5V to the 5V side. On the other hand, this angular velocity sensor outputs a negative angular velocity corresponding to a counterclockwise direction change, that is, a left turn, as a deviation voltage from 2.5V to the OV side. When a vibration gyro is used as the angular velocity sensor, an AZD conversion circuit 420 (see FIG. 4) that performs AZD conversion on an analog voltage value detected by the vibration gyro is further provided.
[0063] また、方位算出部 313は、角速度センサからの出力値に基づいて、角速度および 方位を算出する。なお、角速度センサ力もの出力値に基づく角速度および方位の算 出の方法については、概略を後述するが、公知の技術であるため本実施例において は詳細な説明は省略する。方位算出部 313は、たとえば、専用の演算回路またはプ ログラムなどによって実現することができる。以下、方位算出部 313によって算出され た角速度を Saとし、この角速度 Saを用いて算出された方位 (絶対方位)を Θ gとし、絶 対方位 Θ gを「算出された絶対方位 Θ g」という。方位算出部 313によって算出された 絶対方位 Θ gは、表示部 303における表示や案内音出力部 306における報知などに 供される。  [0063] Further, the bearing calculation unit 313 calculates the angular velocity and the bearing based on the output value from the angular velocity sensor. The method for calculating the angular velocity and the direction based on the output value of the angular velocity sensor force will be described later in detail, but since it is a known technique, detailed description thereof is omitted in this embodiment. The direction calculation unit 313 can be realized by, for example, a dedicated arithmetic circuit or a program. Hereinafter, the angular velocity calculated by the azimuth calculation unit 313 is Sa, the azimuth (absolute azimuth) calculated using this angular velocity Sa is Θ g, and the absolute azimuth Θ g is called “calculated absolute azimuth Θ g”. . The absolute azimuth Θg calculated by the azimuth calculation unit 313 is used for display on the display unit 303, notification in the guidance sound output unit 306, and the like.
[0064] 方位算出部 313は、たとえば、角速度 Saの算出および算出された絶対方位 Θ gの 算出をサンプリング周期 T間隔毎におこなう。具体的には、たとえば、サンプリング時 刻 ηΤにおける絶対方位 Θ gの算出に際しては、サンプリング時刻 nTにおける角速 度 Saをサンプリング周期 Tで積分した値を、サンプリング時刻(n—l)Tにおける絶 対方位 0 g に加算する。 [0064] The direction calculation unit 313 calculates, for example, the angular velocity Sa and the calculated absolute direction Θ g Calculation is performed every sampling period T interval. Specifically, for example, when calculating the absolute orientation Θg at the sampling time ηΤ, the value obtained by integrating the angular velocity Sa at the sampling time nT with the sampling period T is used as the absolute value at the sampling time (n−l) T. Add to bearing 0 g.
n-1  n-1
[0065] なお、算出された絶対方位 Θ gは、角速度 Saを算出する毎 (すなわち、 100msec 間隔毎)に算出するものに限らない。たとえば、 lsecなどのサンプリング周期 T間隔 毎に算出してもよい。具体的には、たとえば、サンプリング時刻 nTにおける絶対方位 Θ gnの算出に際しては、 100msec間隔毎に算出された 10個の角速度 Sa〜Sa を  Note that the calculated absolute azimuth Θ g is not limited to one calculated every time the angular velocity Sa is calculated (that is, every 100 msec interval). For example, it may be calculated every sampling cycle T interval such as lsec. Specifically, for example, when calculating the absolute bearing Θ gn at the sampling time nT, the ten angular velocities Sa to Sa calculated every 100 msec intervals are used.
n n-9 加算した値を lsecで積分する。この場合、 10個以上の角速度 Saを記憶するリングバ ッファを設ける。  n n-9 Integrate the added value in lsec. In this case, a ring buffer for storing 10 or more angular velocities Sa is provided.
[0066] また、補正処理部 314は、方位算出部 313によって算出された絶対方位 Θ gに基 づいて、補正係数に対する所定の補正演算処理をおこなう。補正係数に対する所定 の調整 (補正)は、絶対方位 0 'を取得することが可能な場合におこなう。本実施例に おいては、絶対方位 Θ,を、位置取得部 312によって GPSを利用してあるいは道路 形状方位データを用いて取得するため、 GPS信号の受信ができな 、場所にお!、て も、補正係数の調整 (補正)をおこなうことができる。  In addition, the correction processing unit 314 performs predetermined correction calculation processing on the correction coefficient based on the absolute azimuth Θ g calculated by the azimuth calculation unit 313. The predetermined adjustment (correction) to the correction factor is performed when the absolute bearing 0 'can be obtained. In this embodiment, since the absolute orientation Θ, is acquired by the position acquisition unit 312 using GPS or using the road shape orientation data, the GPS signal cannot be received at a place! In addition, the correction coefficient can be adjusted (corrected).
[0067] 具体的に、補正処理部 314は、たとえば、方位算出部 313によって算出された絶対 方位 Θ gと、位置取得部 312によって取得された絶対方位 Θ,とを比較し、この比較 結果に基づいて、算出された絶対方位 Θ gが取得された絶対方位 Θ 'に漸近するよう な向きに補正係数を増減することによって、補正係数を調整 (補正)する。補正係数 の増減は、たとえば、 0. 2%のようにあら力じめ設定された値を増減させるようにして もよいし、前回若しくは前々回の調整量などに応じて 0. 1%若しくは 0. 05%ほど増 減して調整するようにしてもょ 、。  Specifically, for example, the correction processing unit 314 compares the absolute azimuth Θ g calculated by the azimuth calculation unit 313 with the absolute azimuth Θ acquired by the position acquisition unit 312, and uses this comparison result. Based on this, the correction coefficient is adjusted (corrected) by increasing or decreasing the correction coefficient in such a direction that the calculated absolute azimuth Θg asymptotically approaches the acquired absolute azimuth Θ ′. For example, the correction factor may be increased or decreased by 0.2%, or 0.1% or 0.00% depending on the previous or previous adjustment amount. Try adjusting it up or down by about 05%.
[0068] なお、図 1に示したセンサ値取得部 101、判定部 102、係数取得部 103、角速度算 出部 104、方位算出部 105、方位取得部 106、補正部 107は、具体的には、たとえ ば、図 3に示したナビゲーシヨン制御部 301における ROMや RAMある!/、は記録媒 体 304に記録されたプログラムを、ナビゲーシヨン制御部 301における CPUなどが実 行することによって、または各種センサなどによって、その機能を実現する。 [0069] つぎに、この発明の本実施例における方位算出部 313および補正処理部 314の具 体的構成について説明する。図 4は、この発明の本実施例における方位算出部 313 および補正処理部 314の具体的構成を示す機能ブロック図である。方位算出部 313 および補正処理部 314における上述した各種機能は、具体的には、たとえば、図 4に 示す各部によって実現される。この発明の本実施例における方位算出部 313は、減 算処理部 401と、乗算処理部 402と、積和処理部 403と、直進判定処理部 404と、零 点調整処理部 405と、方位較正処理部 406と、比較処理部 407と、左折判定処理部 408と、右折判定処理部 409と、左折用補正係数調整処理部 410と、右折用補正係 数調整処理部 411と、補正係数選択取得処理部 412と、を備えている。なお、図 4中 符号 420は、角速度センサ力ものアナログの出力値を AZD変換する AZD変換回 路である。 Note that the sensor value acquisition unit 101, determination unit 102, coefficient acquisition unit 103, angular velocity calculation unit 104, azimuth calculation unit 105, azimuth acquisition unit 106, and correction unit 107 shown in FIG. For example, the ROM or RAM in the navigation control unit 301 shown in FIG. 3 is! /, When the program recorded in the recording medium 304 is executed by the CPU in the navigation control unit 301, or The function is realized by various sensors. Next, specific configurations of the orientation calculation unit 313 and the correction processing unit 314 in this embodiment of the present invention will be described. FIG. 4 is a functional block diagram showing a specific configuration of the azimuth calculation unit 313 and the correction processing unit 314 in the present embodiment of the present invention. Specifically, the various functions described above in the azimuth calculation unit 313 and the correction processing unit 314 are realized by, for example, each unit illustrated in FIG. The direction calculation unit 313 in this embodiment of the present invention includes a subtraction processing unit 401, a multiplication processing unit 402, a product-sum processing unit 403, a straight-ahead determination processing unit 404, a zero adjustment processing unit 405, and a direction calibration. Processing unit 406, comparison processing unit 407, left turn determination processing unit 408, right turn determination processing unit 409, left turn correction coefficient adjustment processing unit 410, right turn correction coefficient adjustment processing unit 411, and correction coefficient selection acquisition And a processing unit 412. In FIG. 4, reference numeral 420 denotes an AZD conversion circuit that performs AZD conversion of analog output values of the angular velocity sensor force.
[0070] まず、減算処理部 401は、角速度センサから出力された電圧値力 零点 (オフセッ ト)電圧値を減算することで、上述した「角速度センサ力もの出力値」を算出する。減 算処理部 401には、 AZD変換回路 420によって AZD変換されたデジタル値が入 力される。乗算処理部 402は、角速度センサからの出力値にゲイン値を乗算すること で補正前の角速度を算出し、この補正前の角速度に当該補正前の角速度および曲 折方向に応じた補正係数を乗算して、現在の角速度 (以下、単に「角速度」という) Sa を算出する。なお、ゲイン値は、角速度センサからの出力値と角速度との対応関係に 基づ 、て設定された値である。  First, the subtraction processing unit 401 calculates the above-mentioned “output value of angular velocity sensor force” by subtracting the voltage value force zero point (offset) voltage value output from the angular velocity sensor. The digital value that has been AZD converted by the AZD conversion circuit 420 is input to the subtraction processing unit 401. The multiplication processing unit 402 calculates the angular velocity before correction by multiplying the output value from the angular velocity sensor by the gain value, and multiplies the angular velocity before correction by the correction coefficient corresponding to the angular velocity before correction and the bending direction. The current angular velocity (hereinafter simply referred to as “angular velocity”) Sa is calculated. The gain value is a value set based on the correspondence between the output value from the angular velocity sensor and the angular velocity.
[0071] また、積和処理部 403は、乗算処理部 402によって算出された角速度 Saに基づい て算出される相対方位 Δ Θ gを積算 (累積)し、これによつて車両の算出された絶対 方位 Θ gを算出する。直進判定処理部 404は、乗算処理部 402によって算出された 角速度 Saに基づいて、車両が直進状態にある力否かを判定する。具体的に、直進 判定処理部 404は、ある一定速度(たとえば、 30. OkmZh)以上での走行時におい て、乗算処理部 402によって算出された角速度 Saの変位量が、所定期間 (たとえば 、 10秒間)に亘つて所定の閾値未満である場合に、車両が直進状態にあると判定す る。  [0071] Also, the product-sum processing unit 403 accumulates (accumulates) the relative azimuth ΔΘg calculated based on the angular velocity Sa calculated by the multiplication processing unit 402, thereby calculating the absolute value calculated for the vehicle. Calculate the bearing Θg. The straight traveling determination processing unit 404 determines whether or not the vehicle is in a straight traveling state based on the angular velocity Sa calculated by the multiplication processing unit 402. Specifically, the straight-ahead determination processing unit 404 has a displacement amount of the angular velocity Sa calculated by the multiplication processing unit 402 for a predetermined period (for example, 10) when traveling at a certain speed (for example, 30. OkmZh) or more. It is determined that the vehicle is traveling straight ahead for less than a predetermined threshold for a second).
[0072] また、零点調整処理部 405は、直進判定処理部 404によって車両が直進状態にあ ると判定された場合に、上記所定期間における角速度センサからの出力値の平均値 に近づくように、零点 (オフセット)電圧値を調整する。方位較正処理部 406は、角速 度センサの動的な零点ドリフトの影響を除去するとともに、角速度センサ力もの出力 値に応じて、算出された絶対方位 Θ gを取得された絶対方位 Θ 'に置換する。 [0072] Further, the zero adjustment processing unit 405 is configured so that the vehicle is in a straight traveling state by the straight traveling determination processing unit 404. If it is determined, the zero (offset) voltage value is adjusted so as to approach the average value of the output values from the angular velocity sensor in the predetermined period. The azimuth calibration processing unit 406 removes the influence of the dynamic zero-point drift of the angular velocity sensor, and calculates the calculated absolute azimuth Θ g to the acquired absolute azimuth Θ 'according to the output value of the angular velocity sensor force. Replace.
[0073] 具体的には、たとえば、所定値以上の車速 Vで車両が直進している場合には、算 出された絶対方位 Θ gを、位置取得部 312によって取得された絶対方位 Θ,に置換 する。また、具体的には、たとえば、上記絶対方位 Θ 'の置換が不可能な場合、算出 された絶対方位 Θ gを、道路形状方位データを用いて取得される絶対方位 Θ 'に置 換する。比較処理部 407は、算出された絶対方位 Θ gと取得された絶対方位 Θ,との 大小を比較する。 Specifically, for example, when the vehicle is traveling straight at a vehicle speed V equal to or higher than a predetermined value, the calculated absolute azimuth Θ g is changed to the absolute azimuth Θ acquired by the position acquisition unit 312. Replace. More specifically, for example, when the absolute azimuth Θ ′ cannot be replaced, the calculated absolute azimuth Θg is replaced with the absolute azimuth Θ ′ obtained using the road shape azimuth data. The comparison processing unit 407 compares the calculated absolute azimuth Θg with the obtained absolute azimuth Θ.
[0074] また、左折判定処理部 408は、乗算処理部 402によって算出された補正前の角速 度力 負の値であれば車両が左折したと判定する。右折判定処理部 409は、乗算処 理部 402によって算出された補正前の角速度力 正の値であれば車両が右折したと 判定する。  [0074] Further, if the left turn determination processing unit 408 is a negative value of the angular velocity force before correction calculated by the multiplication processing unit 402, the left turn determination processing unit 408 determines that the vehicle has made a left turn. The right turn determination processing unit 409 determines that the vehicle has turned to the right if the angular velocity force before correction calculated by the multiplication processing unit 402 is a positive value.
[0075] また、左折用補正係数調整処理部 410は、左折判定処理部 408によって車両が左 折したと判定された場合に、左折用の補正係数 La、 Lb、 Lc、 · · ·、 Li、 · "のうち、乗 算処理部 402における角速度 Saの算出に用いたいずれか一つの補正係数に対す る所定の調整 (補正)をおこなう。右折用補正係数調整処理部 411は、右折判定処 理部 409によって車両が右折したと判定された場合に、右折用の補正係数 Ra、 Rb、 Rc、 · · ·、!¾、…のうち、乗算処理部 402における角速度 Saの算出に用いたいずれ か一つの補正係数に対する所定の調整 (補正)をおこなう。左折用補正係数調整処 理部 410および右折用補正係数調整処理部 411による補正係数の調整 (補正)は、 現在設定されている補正係数に対して、たとえば、 0. 2%または前回若しくは前々回 の調整量等に応じて 0. 1%若しくは 0. 05%ほど増減することによりおこなう。左折用 補正係数調整処理部 410および右折用補正係数調整処理部 411による補正係数 の調整 (補正)は、たとえば、算出された絶対方位 Θ gを算出する毎におこなう。  [0075] Further, the left turn correction coefficient adjustment processing unit 410, when the left turn determination processing unit 408 determines that the vehicle has made a left turn, the left turn correction coefficients La, Lb, Lc, ..., Li, · Among them, perform a predetermined adjustment (correction) for any one of the correction coefficients used for calculating the angular velocity Sa in the multiplication processing unit 402. The right-turn correction coefficient adjustment processing unit 411 performs a right-turn determination process. Any of the correction factors Ra, Rb, Rc,...,! ¾,... For right turn used for calculating the angular velocity Sa in the multiplication processing unit 402 when the unit 409 determines that the vehicle has made a right turn. Performs a predetermined adjustment (correction) for one correction coefficient.Adjustment (correction) of the correction coefficient by the left-turn correction coefficient adjustment processing unit 410 and the right-turn correction coefficient adjustment processing unit 411 is performed to the currently set correction coefficient. In contrast, for example, 0.2% or This is done by increasing or decreasing by 0.1% or 0.05% according to the amount of adjustment, etc. Adjustment (correction) of the correction coefficient by the left turn correction coefficient adjustment processing unit 410 and the right turn correction coefficient adjustment processing unit 411 is, for example, This is done each time the calculated absolute orientation Θg is calculated.
[0076] そして、補正係数選択取得処理部 412は、補正前の角速度が負である場合には、 左折用の補正係数 La、 Lb、 Lc、 · · ·、 Li、 · "のうち、補正前の角速度に応じたいず れか一つの補正係数を選択する。また、補正係数選択取得処理部 412は、補正前 の角速度が正である場合には右折用の補正係数 Ra、 Rb、 Rc、 · · ·、!¾、 · "のうち、 補正前の角速度に応じたいずれか一つの補正係数を選択する。補正係数選択取得 処理部 412によって選択された補正係数は、乗算処理部 402における角速度 Saの 算出に供される。 [0076] Then, when the angular velocity before correction is negative, the correction coefficient selection / acquisition processing unit 412 selects the left turn correction coefficient La, Lb, Lc, ···, Li, ··· before correction. Depending on the angular velocity of One correction factor is selected. Further, the correction coefficient selection acquisition processing unit 412 corrects the right turn correction coefficients Ra, Rb, Rc, ... when the angular velocity before correction is positive! The correction coefficient selected by the correction coefficient selection acquisition processing unit 412 is used for calculation of the angular velocity Sa in the multiplication processing unit 402. Is done.
[0077] ここで、本実施例のナビゲーシヨン装置の処理の内容について説明する前に、角速 度センサの感度特性に起因するその感度変化と補正係数との一般的な対応関係に ついて図 5〜図 8を参照して説明する。図 5〜図 8は、角速度センサの感度特性に起 因する感度変化について説明する説明図である。図 5は角速度センサが水平に取り 付けられた状態を示しており、図 6は角速度センサが傾斜して取り付けられた状態を 示している。一般的に、角速度センサの感度特性は、経年変化などの一般的な特性 の他に、取り付けに際しての水平方向に対する角度に影響される。  [0077] Here, before explaining the contents of the processing of the navigation device of the present embodiment, FIG. 5 shows a general correspondence between the sensitivity change due to the sensitivity characteristic of the angular velocity sensor and the correction coefficient. Description will be given with reference to FIG. FIG. 5 to FIG. 8 are explanatory diagrams for explaining the sensitivity change caused by the sensitivity characteristics of the angular velocity sensor. Fig. 5 shows a state where the angular velocity sensor is mounted horizontally, and Fig. 6 shows a state where the angular velocity sensor is mounted at an inclination. In general, the sensitivity characteristics of an angular velocity sensor are affected by the angle with respect to the horizontal direction during installation, in addition to general characteristics such as aging.
[0078] 図 5および図 6から分力るように、直進状態における理想的な角速度が ω、角速度 センサ力 の出力値に基づいて算出される角速度が ω 2である場合、水平方向に対 して角度 j8傾斜して取り付けられた角速度センサは、水平に取り付けられた角速度 センサに比べて、感度が COS ( |8 )倍に落ちてしまう。このような角速度センサの感度 低下による影響を相殺するためには、角速度センサが車両に対して水平から βだけ 傾斜して取り付けられている場合には、補正係数 Gを、 COS ( |8 )倍に低下した角速 度センサの感度の影響を(1ZCOS ( |8 ) )倍に増加させるような値に設定する。なお 、図 6における傾斜 |8は、誇張して表示されている。また、図 5〜図 8中、 ω θは、零点 電圧における角速度である。  [0078] As shown in FIG. 5 and FIG. 6, when the ideal angular velocity in the straight traveling state is ω and the angular velocity calculated based on the output value of the angular velocity sensor force is ω 2, the horizontal direction is The angular velocity sensor mounted at an angle of j8 is lower in sensitivity by COS (| 8) times compared to the angular velocity sensor mounted horizontally. In order to offset the effect of such a decrease in the sensitivity of the angular velocity sensor, when the angular velocity sensor is attached to the vehicle at an angle of β from the horizontal, the correction factor G is multiplied by COS (| 8). Is set to a value that increases the sensitivity of the angular velocity sensor that has decreased to (1ZCOS (| 8)) times. Note that the slope | 8 in FIG. 6 is exaggerated. In FIGS. 5 to 8, ω θ is the angular velocity at the zero voltage.
[0079] 具体的に、角速度センサが車両に対して水平に取り付けられた場合の補正係数 G  [0079] Specifically, the correction coefficient G when the angular velocity sensor is mounted horizontally with respect to the vehicle.
= 1に対して(図 5参照)、角速度センサが車両に対して水平から |8だけ傾斜して取り 付けられている場合の角速度センサの感度に対応した補正係数 Gを略" 1 + β "とす ることで (図 6参照)、角速度センサの感度低下による影響を相殺することができる。こ のことは、角速度センサが傾いて取り付けられているというだけでは、曲折方向の違 Vヽによる角速度センサの感度の違!、はあらわれな 、ことを意味する。  = 1 (see Fig. 5), the correction factor G corresponding to the sensitivity of the angular velocity sensor when the angular velocity sensor is mounted with a tilt of | 8 from the horizontal to the vehicle is approximately "1 + β" By doing so (see Fig. 6), it is possible to cancel out the effects of the reduced sensitivity of the angular velocity sensor. This means that the difference in the sensitivity of the angular velocity sensor due to the difference in bending direction does not appear just because the angular velocity sensor is mounted at an angle.
[0080] 以下、曲折方向によって角速度センサの感度に違いが発生する場合について説明 する。角速度センサの感度は、右折時における車両の傾き αと左折時における車両 の傾き α 'とが相違する場合に、曲折方向に応じて異なる。具体的に、たとえば、曲 率半径の相違や運転者の癖などに起因して、右折時における車両の傾き aと左折 時における車両の傾き OC 'とが相違する場合における角度センサの感度変化を考え る。 [0080] Hereinafter, the case where the sensitivity of the angular velocity sensor varies depending on the bending direction will be described. To do. The sensitivity of the angular velocity sensor differs depending on the turning direction when the vehicle inclination α during a right turn differs from the vehicle inclination α ′ during a left turn. Specifically, the sensitivity change of the angle sensor when the vehicle inclination a during a right turn and the vehicle inclination OC 'during a left turn are different due to, for example, a difference in curvature radius or driver's habit. Think.
[0081] ここでは、説明のため、便宜上、補正係数選択取得処理部 412によって選択される 補正係数を Gとし、左折用補正係数調整処理部 410によって取得される左折用の補 正係数 La、 Lb、 Lc、 · · ·、 Li、 · · ·を Grとし、右折用補正係数調整処理部 411によつ て取得される右折用の補正係数 Ra、 Rb、 Rc、 · · ·、!¾、 · · ·を Grとして説明する。な お、ここでは、説明の簡略化のため、曲折方向毎に一つずつの補正係数 Gr、 G1を用 いて説明するが、本実施例における補正係数は、上述したように、車両の曲折方向 毎に角速度に応じて複数(La、 Lbゝ Lc、 · · ·、 Li、 · · ·および Ra、 Rb、 Rc、 · · ·、!¾、 …;)設定されている。  Here, for the sake of explanation, for the sake of convenience, the correction coefficient selected by the correction coefficient selection acquisition processing unit 412 is G, and the left-turn correction coefficients La and Lb acquired by the left-turn correction coefficient adjustment processing unit 410 , Lc, ···, Li, ··· is Gr, right turn correction factor adjustment processing unit 411 acquires right turn correction factors Ra, Rb, Rc, ...! ¾, ... is described as Gr. Here, for simplification of description, one correction coefficient Gr, G1 is used for each bending direction. However, as described above, the correction coefficient in this embodiment is the vehicle bending direction. A plurality (La, Lb ゝ Lc, ···, Li, ··· and Ra, Rb, Rc, ···,! ¾,…;) are set for each angular velocity.
[0082] 図 7は、角速度センサが水平の車両に平行な状態で搭載された場合の角速度セン サからの出力状態を示している。図 7中、 ω 2'は、車両の左折に際しての角速度セン サからの出力値に基づいて算出される角速度を示す。このため、図 7における角速 度 ω 2は、車両の右折に際しての角速度センサ力もの出力値に基づいて算出される 角速度を示す。なお、図 7中、傾斜 a , α 'は、ともに誇張して表示されている。図 7か ら分かるように、傾き aを伴った右折時には感度が略 COS a倍に落ちてしまう。この ため、この感度低下を相殺すベぐ右折用の補正係数 Grは略(1 + a )に上がる。傾 き a 'を伴った左折時には感度が略 COS a '倍に落ちてしまう。このため、この感度 低下を相殺すベぐ左折用の補正係数 G1は略(1 + a ' )に上がる。その結果、補正 係数 Grと補正係数 G1との差 Δ Gは、 — となる。もっとも、傾斜 a , a,が相 違するとは言っても、よほど癖の強い運転者による場合を除いて、通常は、その差は 僅かなものである。  FIG. 7 shows an output state from the angular velocity sensor when the angular velocity sensor is mounted in a state parallel to a horizontal vehicle. In FIG. 7, ω 2 ′ indicates the angular velocity calculated based on the output value from the angular velocity sensor when the vehicle turns left. Therefore, the angular velocity ω 2 in FIG. 7 indicates the angular velocity calculated based on the output value of the angular velocity sensor force when the vehicle turns right. In FIG. 7, the slopes a and α ′ are exaggerated. As can be seen from Fig. 7, the sensitivity drops to approximately COS a times when turning right with a slope a. For this reason, the right-turn correction coefficient Gr that offsets this decrease in sensitivity rises to approximately (1 + a). When turning left with a tilt of a ', the sensitivity drops to approximately COS a' times. Therefore, the left-turn correction coefficient G1 that offsets this decrease in sensitivity rises to approximately (1 + a '). As a result, the difference Δ G between the correction coefficient Gr and the correction coefficient G1 becomes —. However, although the slopes a and a are different, the difference is usually slight, except when the driver is very strong.
[0083] し力しながら、角速度センサが車両に水平状態で搭載されていても、車両の乗員ま たは荷物などの搭乗 ·搭載状態や、道路状況などによって、車両自体が一時的に或 る期間だけ継続して或る程度の傾きをもつことがある。この場合、車両の傾きに対応 して角速度センサも傾いた状態となることがあり得る。これだけであれば、上述したよ うに、補正係数 Gの動的な調整によってその影響は相殺されるはずである力 このよ うな傾いた状態において、さらに車両のローリングを考慮すると、補正係数の変化が 顕在化してくる。 [0083] However, even if the angular velocity sensor is mounted horizontally on the vehicle, the vehicle itself may be temporarily depending on the state of boarding / mounting of a vehicle occupant or baggage, road conditions, etc. It may have a certain slope continuously for a period of time. In this case, it corresponds to the inclination of the vehicle As a result, the angular velocity sensor may also be inclined. If this is the case, as described above, the force that should be offset by the dynamic adjustment of the correction coefficient G, the change of the correction coefficient will change when the rolling of the vehicle is further taken into account in such a tilted state. It becomes obvious.
[0084] 図 8は、角速度センサが車両の水平方向に対して傾斜した状態で搭載されており、 この車両が曲折する場合の角速度センサからの出力状態を示している。図 8におい ては、図 7と同様に、傾斜 α , α 'はともに誇張して表示されている。図 8から分かるよ うに、車両ひいては角速度センサが継続的な傾き βをもっている場合、傾き aを伴つ た右折時には感度が COS ( +ひ)倍にまで落ちてしまう。この感度低下を相殺す ベぐ右折用の補正係数 Grは、略(1 + j8 + α )に上がる。  FIG. 8 shows an output state from the angular velocity sensor when the angular velocity sensor is mounted in an inclined state with respect to the horizontal direction of the vehicle and the vehicle is bent. In FIG. 8, as in FIG. 7, both the inclinations α and α ′ are exaggerated. As can be seen from Fig. 8, if the vehicle and therefore the angular velocity sensor has a continuous inclination β, the sensitivity falls to COS (+) times when turning right with inclination a. The right-turn correction coefficient Gr that offsets this decrease in sensitivity rises to approximately (1 + j8 + α).
[0085] 一方、傾き α 'を伴った左折時には感度が COS ( α ' )倍にしか落ちない。この ため、この感度低下を相殺すベぐ左折用の補正係数 G1は、(1 + j8— α ' )に上がる こととなる。その結果、傾き βが存在する場合には、右折時のローリング( )と左折時 のローリング ,)との補正係数 Gr, G1に対する影響が逆向きになることから、補正 係数 Grと補正係数 G1との差 A Gは、略 + α ' )と大きなものになる。  [0085] On the other hand, the sensitivity falls only COS (α ') times when turning left with a slope α'. For this reason, the left-turn correction coefficient G1 that offsets this decrease in sensitivity increases to (1 + j8-α '). As a result, when there is a slope β, the effect of the rolling on the right turn () and the rolling on the left turn on the correction coefficient Gr, G1 is reversed, so the correction coefficient Gr and the correction coefficient G1 The difference AG is about + α ').
[0086] すなわち、搭載状況などに起因して車両が一時的に継続して傾斜した場合、この 傾斜状態に加えて車両の曲折に際してのローリングを考慮すると、これらが連立しあ つて、右折時と左折時とで角速度センサの感度特性の影響が異なる。なお、角速度 センサの感度特性の影響は、角速度によっても異なることが分力つている。より具体 的には、角速度が大きくなるほど、影響は大きくなる。  [0086] That is, when the vehicle is tilted continuously due to the mounting situation or the like, considering the rolling when the vehicle bends in addition to the tilted state, these are combined and The influence of the sensitivity characteristics of the angular velocity sensor is different when turning left. Note that the influence of the sensitivity characteristics of angular velocity sensors also varies depending on the angular velocity. More specifically, the greater the angular velocity, the greater the impact.
[0087] 本実施例のナビゲーシヨン装置は、車両が直進して!/、ると判定された場合には、零 点調整をおこない、角速度センサの動的な零点ドリフトの影響を除去する。車両が曲 折したと判定された場合には、算出された絶対方位 Θが取得された絶対方位 Θ 'に 漸近するように補正係数を調整 (補正)し、曲折時における角速度センサの感度の落 込みを相殺する。曲折時における補正係数の調整 (補正)は、車両の曲折方向毎に それぞれ独立しておこなわれる。以下に、ナビゲーシヨン装置の処理の内容につい て説明する。  The navigation device of this embodiment performs zero adjustment when it is determined that the vehicle goes straight! /, And removes the influence of the dynamic zero drift of the angular velocity sensor. If it is determined that the vehicle is bent, the correction coefficient is adjusted (corrected) so that the calculated absolute azimuth Θ is asymptotic to the acquired absolute azimuth Θ ', and the sensitivity of the angular velocity sensor during bending is reduced. Offset Adjustment (correction) of the correction coefficient during turning is performed independently for each turning direction of the vehicle. The contents of the processing of the navigation device will be described below.
[0088] (ナビゲーシヨン装置の処理の内容) 図 9は、この発明の本実施例に力かるナビゲーシヨン装置の処理の内容について 説明するフローチャートである。図 9においては、サンプリング時刻 nTにおける処理 について説明する。図 9のフローチャートにおいて、まず、角速度センサ力もの出力 値を取得する(ステップ S901)。ステップ S901において取得される角速度センサか らの出力値は、具体的には、角速度センサから出力されたアナログの電圧値から口 一パスフィルタを用いてノイズを除去した後、 AZD変換回路 420を用いて変換した デジタルの電圧値 gyを平均化処理した値から、零点 (オフセット)電圧値 gyを差し [0088] (Contents of processing of navigation device) FIG. 9 is a flow chart for explaining the contents of the processing of the navigation apparatus that is useful in this embodiment of the present invention. In FIG. 9, the processing at the sampling time nT will be described. In the flowchart of FIG. 9, first, the output value of the angular velocity sensor force is acquired (step S901). Specifically, the output value from the angular velocity sensor acquired in step S901 is obtained by using the AZD conversion circuit 420 after removing noise from the analog voltage value output from the angular velocity sensor using a single pass filter. The zero voltage (offset) voltage value gy is subtracted from the value obtained by averaging the digital voltage value gy converted.
n 0 引いた値 (gy— gy )である。  n 0 minus the value (gy—gy).
n 0  n 0
[0089] つぎに、ステップ S901において取得された角速度センサからの出力値 (gy— gy )  [0089] Next, the output value (gy—gy) from the angular velocity sensor acquired in step S901.
n 0 にゲイン値 Gを乗算することによって補正前の角速度 G' (gy— gy )を算出し (ステツ  n 0 is multiplied by the gain value G to calculate the uncorrected angular velocity G '(gy—gy) (step
n 0  n 0
プ S902)、算出された補正前の角速度 G' (gy -gy )に基づいて、車両の曲折方向  S902), based on the calculated angular velocity G '(gy -gy)
n 0  n 0
を判定し (ステップ S903)、判定結果および補正前の角速度 G' (gy -gy )に基づ  (Step S903), and based on the judgment result and the angular velocity G '(gy -gy) before correction.
n 0  n 0
いて、補正係数 Gk を一つ取得する(ステップ S904)。  One correction coefficient Gk is acquired (step S904).
n-l  n-l
[0090] つづいて、ステップ S902において算出された補正前の角速度 G' (gy— gy )に、  [0090] Subsequently, the angular velocity G ′ (gy—gy) before correction calculated in step S902 is
n 0 ステップ S904において取得された補正係数 Gk を乗算することで、角速度 Sa =G  n 0 By multiplying the correction coefficient Gk obtained in step S904, the angular velocity Sa = G
n-l n k -G- (gy— gy )を算出し (ステップ S905)、算出された角速度 Saを用いてサンプ n-l n 0 n  n-l n k -G- (gy- gy) is calculated (step S905), and the calculated angular velocity Sa is used to calculate the sample n-l n 0 n
リング時刻 nTにおける相対方位 Δ Θ gを算出する (ステップ S906)。ステップ S906 においては、サンプリング時刻(n—l)T時点力 の曲折した角度が算出される。  The relative orientation ΔΘ g at the ring time nT is calculated (step S906). In step S906, the bent angle of the sampling time (n−l) T time point force is calculated.
[0091] ステップ S906における相対方位 Δ Θ Rの算出は、算出された絶対方位 Θ gを算 出するサンプリング周期 T間隔毎におこなう。具体的には、たとえば、算出された絶対 方位 Θ gをサンプリング周期 T= 100msec間隔毎に算出する場合、ステップ S906 においては、ステップ S905において算出された角速度 Saを、サンプリング周期丁で 積分することで相対方位 Δ Θ gを算出する。  [0091] The calculation of the relative orientation ΔΘR in step S906 is performed at every sampling period T interval for calculating the calculated absolute orientation Θg. Specifically, for example, when the calculated absolute azimuth Θg is calculated every sampling period T = 100 msec, in step S906, the angular velocity Sa calculated in step S905 is integrated by the sampling period. Relative orientation Δ Θ g is calculated.
[0092] そして、ステップ S906において算出された相対方位 Δ Θ gを用いて、算出された 絶対方位 Θ gを算出する (ステップ S907)とともに、取得された絶対方位 Θ 'を取得 する(ステップ S908)。ステップ S907においては、具体的には、たとえば、サンプリン グ時刻 nTにおける算出された絶対方位 Θ gを算出する場合、サンプリング時刻 (n- 1)Tにおける算出された絶対方位 Θ g に、ステップ S906において算出された相対 方位 Δ 0 gnを加算する。 [0092] Then, using the relative azimuth ΔΘg calculated in step S906, the calculated absolute azimuth Θg is calculated (step S907), and the acquired absolute azimuth Θ 'is acquired (step S908). . In step S907, specifically, for example, when calculating the absolute orientation Θg calculated at the sampling time nT, the absolute orientation Θg calculated at the sampling time (n-1) T is Calculated relative Add the direction Δ 0 g n .
[0093] その後、ステップ S907において算出された絶対方位 0 gと、ステップ S908におい て取得された絶対方位 0 'とを比較し (ステップ S909)、比較結果に応じて、算出され た絶対方位 0 g = 0 g + Δ 0 gが取得された絶対方位 Θ 'に漸近するように補正 n n-1 n [0093] After that, the absolute azimuth 0 g calculated in step S907 is compared with the absolute azimuth 0 'obtained in step S908 (step S909), and the calculated absolute azimuth 0 g according to the comparison result. = 0 g + Δ 0 g is corrected to be asymptotic to the obtained absolute orientation Θ 'n n-1 n
係数 Gk を調整 (補正)する (ステップ S910)。  Adjust (correct) the coefficient Gk (step S910).
n-1  n-1
[0094] ステップ S910においては、ステップ S904において取得された補正係数 Gk に対 n-1 する調整 (補正)がおこなわれる。調整 (補正)された補正係数 Gkは、それ以外の補 正係数とともに、次回の角速度 Sa の算出に供される。なお、ステップ S910におけ n+1  [0094] In step S910, adjustment (correction) is performed on the correction coefficient Gk acquired in step S904 by n-1. The adjusted (corrected) correction coefficient Gk, together with the other correction coefficients, is used for the next calculation of the angular velocity Sa. In step S910, n + 1
る補正係数 Gk の調整 (補正)に際しての具体的な処理につ!、ては、公知の技術で n-1  For specific processing when adjusting (correcting) the correction coefficient Gk!
あるため(たとえば、特開平 10— 307032号公報、特開 2005— 49355号公報参照 。;)、ここでは説明を省略する。なお、図示を省略する力 ステップ S903において車 両が直進していると判定された場合には、ステップ S904における補正係数 Gk の n-1 決定はおこなわず、補正係数として初期値 Gk = 1を用いる。  For this reason (for example, see JP-A-10-307032 and JP-A-2005-49355;), the description is omitted here. In addition, if it is determined in step S903 that the vehicle is moving straight in step S903, the correction coefficient Gk in step S904 is not determined n-1, and the initial value Gk = 1 is used as the correction coefficient. .
0  0
[0095] なお、上記実施例では、ステップ S903の曲折判定はステップ S902にお!/、て算出 した補正前の角速度 G' (gy -gy )に基づいて曲折判定をおこなっている力 これに n 0  [0095] In the above embodiment, the bending determination in step S903 is the force that performs the bending determination based on the angular velocity G ′ (gy -gy) before correction calculated in step S902! 0
限らず、ステップ 901において取得した角速度センサ力もの出力値 gy -gyの正負 n 0 に基づいて曲折判定をおこなうようにしてもよい。またこの場合、ステップ S902の角 速度算出とステップ S903曲折判定の順序を入れ替え、曲折判定を先におこなうよう にしても良い。  However, the bending determination may be performed based on the positive / negative n 0 of the output value gy -gy of the angular velocity sensor force acquired in step 901. In this case, the calculation of the angular velocity in step S902 and the order of the step S903 bending determination may be interchanged, and the bending determination may be performed first.
[0096] つぎに、補正係数テーブルについて説明する。図 10は、補正係数テーブルを示す 説明図である。補正係数テーブル 1000は、図 3に示したナビゲーシヨン制御部 301 における ROMや RAMあるいは記録媒体 304に記録されている。図 10において、補 正係数テーブル 1000は、角速度 Saの範囲を規定する角速度範囲エリア 1001と、 角速度 Saの範囲の間隔を規定する間隔エリア 1002と、各角速度 Saの範囲における 補正係数 La、 Lb、 Lc、 · · ·、 Li、 · · ·および Ra、 Rb、 Rc、 · · ·、 Ri、 · · ·を記憶する補 正係数エリア 1003と、力も構成されている。補正係数エリア 1003は、左折用補正係 数 La、 Lb、 Lc、 · · ·、 Li、 · · ·を記憶する左折エリア 1004と、右折用補正係数 Ra、 R b、 Rc、 · · ·、!¾、 · · ·を記憶する右折エリア 1005と、力も構成されている。 [0097] つぎに、補正係数テーブルの具体例について説明する。図 11は、補正係数テープ ルの具体例を示す説明図である。図 11に示す補正係数テーブル 1100は、角速度 範囲エリア 1101と、角速度 Saの範囲の間隔を規定する間隔エリア 1102と、補正係 数 Laゝ Lbゝ Lc、…、 Li、 · · ·および Ra、 Rb、 Rc、…、 Ri、 · · ·を記憶する補正係数 エリア 1003と、力 構成されている。図 11に示す補正係数テーブル 1100において は、角速度範囲の下限値および角速度 Saの範囲の間隔があら力じめ数値ィ匕した状 態で、角速度範囲エリア 1101に記憶されている。 Next, the correction coefficient table will be described. FIG. 10 is an explanatory diagram showing a correction coefficient table. The correction coefficient table 1000 is recorded in the ROM or RAM or the recording medium 304 in the navigation control unit 301 shown in FIG. In FIG. 10, the correction coefficient table 1000 includes an angular velocity range area 1001 that defines the range of the angular velocity Sa, an interval area 1002 that defines the interval of the angular velocity Sa, and correction coefficients La, Lb, A correction coefficient area 1003 for storing Lc, ···, Li, ··· and Ra, Rb, Rc, ···, Ri, ··· and a force are also formed. The correction coefficient area 1003 includes a left turn correction area 1004 for storing left turn correction coefficients La, Lb, Lc,..., Li,..., And a right turn correction coefficient Ra, R b, Rc,. ¾, The right turn area 1005 that memorizes ... and the force are also configured. Next, a specific example of the correction coefficient table will be described. FIG. 11 is an explanatory diagram showing a specific example of the correction coefficient table. The correction coefficient table 1100 shown in FIG. 11 includes an angular velocity range area 1101, an interval area 1102 that defines an interval of the angular velocity Sa, and correction factors La 補正 Lb ゝ Lc, ..., Li, ..., Ra, Rb , Rc,..., Ri,... In the correction coefficient table 1100 shown in FIG. 11, the interval between the lower limit value of the angular velocity range and the range of the angular velocity Sa is stored in the angular velocity range area 1101 in a state where the numerical values are preliminarily calculated.
[0098] 図 11において、間隔エリア 1102に規定された値力 分力るように、角速度 Saの範 囲の間隔は、角速度が大きくなるほど狭くなるように設定されている。図 11に示す補 正係数テーブル 1100によれば、間隔エリア 1102に示すように角速度 Saの範囲の 間隔が規定されているため、角速度範囲の下限値を設定することで、角速度範囲ェ リア 1101における各角速度 Saの範囲の具体的な数値を規定することができる。ここ で、角速度範囲の下限値は、たとえば、下限値未満の角速度 Saでは直進走行と見 なせるような角速度 Saが設定される。補正係数テーブル 1100において、所定以上 の角速度 Saに関する補正係数は、角速度センサの感度に応じた値が設定される。  In FIG. 11, the interval of the range of the angular velocity Sa is set so as to decrease as the angular velocity increases, so that the value force defined in the interval area 1102 is a component force. According to the correction coefficient table 1100 shown in FIG. 11, since the interval of the angular velocity Sa range is defined as shown in the interval area 1102, by setting the lower limit value of the angular velocity range, the angular velocity range area 1101 Specific numerical values in the range of each angular velocity Sa can be defined. Here, as the lower limit value of the angular velocity range, for example, an angular velocity Sa that can be regarded as straight traveling at an angular velocity Sa less than the lower limit value is set. In the correction coefficient table 1100, a value corresponding to the sensitivity of the angular velocity sensor is set as the correction coefficient related to the angular velocity Sa greater than or equal to a predetermined value.
[0099] 以上説明したように、本実施例によれば、車両の直進時以外は、常に、車両の曲折 方向および補正前の角速度に応じた補正係数を用いて算出された角速度に基づい て、算出された絶対方位が算出される。従来では、角速度が一定値以上にならない と補正がおこなわれな力つた力 本実施例によれば、角速度の大きさに左右されるこ となく、直進時以外は 、ずれの角速度であっても補正がおこなわれる。  [0099] As described above, according to the present embodiment, except when the vehicle is traveling straight ahead, it is always based on the angular velocity calculated using the correction coefficient corresponding to the bending direction of the vehicle and the angular velocity before correction. The calculated absolute azimuth is calculated. Conventionally, a force that is not corrected unless the angular velocity exceeds a certain value. According to the present embodiment, the angular velocity is not affected by the magnitude of the angular velocity, and even when the angular velocity is not straight, Correction is performed.
[0100] これにより、算出された絶対方位の累積誤差が小さくなり、累積誤差の蓄積量が大 きくなるまでに時間が力かるようになるため、算出された絶対方位を取得された絶対 方位によって較正する頻度が減少し、算出された車両の方位の算出精度の向上を 図ることができる。  [0100] As a result, the accumulated error of the calculated absolute azimuth decreases, and it takes time until the accumulated amount of accumulated error increases, so the calculated absolute azimuth depends on the acquired absolute azimuth. The frequency of calibration is reduced, and the calculation accuracy of the calculated vehicle direction can be improved.
[0101] また、従来では、曲折頻度が高いほど累積誤差が増加し、算出された絶対方位の 精度低下が懸念されたが、本実施例によれば、曲折頻度が高いほど、感度に対する 補正がより多くおこなわれることとなる。これにより、角速度を用いて算出された絶対 方位の算出精度の向上を図ることができる。 [0102] ところで、算出された絶対方位に関しては、算出される角速度が大きいほど、水平 面に対する傾きによる誤差などの影響が大きくなる。これに対し、本実施例における 補正係数は、角速度が大きいほど間隔が狭くなるように設定された角速度範囲毎に 設定されているため、算出された絶対方位をより精度良く算出することができる。 [0101] Conventionally, the cumulative error increases as the bending frequency increases, and there is a concern that the accuracy of the calculated absolute azimuth decreases. However, according to the present example, the higher the bending frequency, the more the sensitivity is corrected. More will be done. Thereby, it is possible to improve the calculation accuracy of the absolute direction calculated using the angular velocity. By the way, with respect to the calculated absolute azimuth, the larger the calculated angular velocity, the greater the influence of an error due to the inclination with respect to the horizontal plane. On the other hand, since the correction coefficient in this embodiment is set for each angular velocity range set so that the interval becomes narrower as the angular velocity is larger, the calculated absolute azimuth can be calculated more accurately.
[0103] また、本実施例によれば、算出された絶対方位および取得された絶対方位に基づ いて、補正係数が補正される。このように、算出された絶対方位と取得された絶対方 位とを併用して補正係数を補正することにより、算出された絶対方位の算出精度のよ り一層の向上を図ることができる。  [0103] Further, according to the present embodiment, the correction coefficient is corrected based on the calculated absolute azimuth and the acquired absolute azimuth. As described above, by correcting the correction coefficient by using the calculated absolute direction and the acquired absolute direction in combination, the calculation accuracy of the calculated absolute direction can be further improved.
[0104] カロえて、本実施例によれば、車両が直進していると判定された場合には、零点調整 がおこなわれて、角速度センサの動的な零点ドリフトの影響が除去される。これにより 、本実施例においては、角速度センサを搭載した車両が水平な状態で走行している 場合 (図 6参照)や、このような車両が乗員 ·荷物などの搭乗'搭載状態あるいは道路 状況などによって傾いて走行している場合(図 7参照)においても、角速度センサの 感度低下に起因する影響を的確に相殺することができる。  According to the present embodiment, when it is determined that the vehicle is traveling straight, zero adjustment is performed, and the influence of the dynamic zero drift of the angular velocity sensor is removed. As a result, in this embodiment, when the vehicle equipped with the angular velocity sensor is traveling in a horizontal state (see FIG. 6), such a vehicle is mounted on a passenger / luggage etc. Even when the vehicle is traveling at an incline (see Fig. 7), it is possible to cancel out the effects caused by the reduced sensitivity of the angular velocity sensor.
[0105] ここで、本実施例によれば、たとえば、右折時における角速度センサの感度が COS α倍または COS ( +ひ)倍低下した場合、この感度低下に対応して右折用の補正 係数1^、 1¾、 1^、 · · ·、!¾、 · · ·は lZCOS a倍または 1ZCOS ( J8 + α )倍に補正 される。これによつて、右折時における角速度センサの感度低下を的確に相殺するこ とがでさる。  Here, according to the present embodiment, for example, when the sensitivity of the angular velocity sensor at the time of right turn decreases by COS α times or COS (+ H) times, the right turn correction coefficient 1 ^, 1¾, 1 ^, ...! ¾, ··· is corrected to lZCOS a times or 1ZCOS (J8 + α) times. This makes it possible to accurately offset the decrease in sensitivity of the angular velocity sensor when turning right.
[0106] また、本実施例によれば、たとえば、左折時における角速度センサの感度力 COS a,倍または COS ( |8 - α ' )倍低下した場合、この感度低下に対応して左折用の補 正係数 Laゝ Lbゝ Lcゝ · · ·、 Li、 · · ·は lZCOS α,倍または lZCOS ( j8— α,)倍に 補正される。これによつて、左折時における角速度センサの感度低下を的確に相殺 することができる。  Further, according to the present embodiment, for example, when the sensitivity power COS a, double or COS (| 8−α ′) times of the angular velocity sensor at the time of the left turn decreases, Correction coefficients La ゝ Lb ゝ Lc ゝ ···, Li, ··· are corrected to lZCOS α, times or lZCOS (j8 — α,) times. As a result, it is possible to accurately offset the decrease in sensitivity of the angular velocity sensor when turning left.
[0107] このように、算出される角速度に応じて適宜該当する補正係数を補正することにより 、以降算出される角速度のより一層の確度向上を図ることができる。これに伴い、角 速度に基づいて算出された絶対方位の精度の向上も図ることができる。すなわち、本 実施例によれば、角速度の大小に左右されることなぐ曲折方向および角速度に応 じて適切な一つの補正係数を取得し、この補正係数を用いて角速度を算出すること により、一時的に継続して傾いている車両が曲折した場合にも精度の高い角速度を 算出することができる。 As described above, by correcting the appropriate correction coefficient according to the calculated angular velocity, the accuracy of the angular velocity calculated thereafter can be further improved. Along with this, it is possible to improve the accuracy of the absolute bearing calculated based on the angular velocity. In other words, according to this embodiment, the bending direction and the angular velocity are not affected by the magnitude of the angular velocity. It is possible to calculate a high-accuracy angular velocity even when a vehicle that is temporarily tilted is bent by calculating an angular velocity using this correction factor. it can.
[0108] ところで、一時的に継続して傾いている車両が曲折した際の角速度の算出を、回旋 軸が傾斜した状態におけるョ一角の算出と捉えた場合、角速度センサからの出力値 にのみ基づいて算出された絶対方位を算出するためには、車両のロール角やピッチ 角に関する角速度を検出するための複数の角速度センサが必要となる。これに対し 、本実施例によれば、車両の曲折方向毎に角速度に応じて設定された補正係数を 用 、て角速度を算出することで、角速度センサを複数用 、ることなくョ一角の回旋軸 の傾斜を考慮した角速度を算出し、この角速度力 算出された絶対方位を算出する ことができる。  [0108] By the way, if the calculation of the angular velocity when a vehicle that is tilting continuously temporarily bends is calculated as the calculation of the angular angle when the turning axis is inclined, it is based only on the output value from the angular velocity sensor. In order to calculate the absolute azimuth calculated in this way, a plurality of angular velocity sensors for detecting the angular velocity relating to the roll angle and pitch angle of the vehicle are required. On the other hand, according to the present embodiment, the angular velocity is calculated by using a correction coefficient set in accordance with the angular velocity for each turning direction of the vehicle, so that a single angle can be rotated without using a plurality of angular velocity sensors. It is possible to calculate the angular velocity in consideration of the inclination of the shaft, and to calculate the absolute direction in which this angular velocity force is calculated.
[0109] なお、本実施例においては、ョ一角に関する角速度を検出する角速度センサを用 いた場合について説明したが、この発明の実施例において適用可能な角速度セン サはこれに限るものではない。たとえば、車両のロール角やピッチ角に関する角速度 を検出する角速度センサの感度 (ゲイン)補正にも適用してもよい。  In the present embodiment, the case where the angular velocity sensor for detecting the angular velocity relating to the angle is used has been described, but the angular velocity sensor applicable in the embodiment of the present invention is not limited to this. For example, the present invention may be applied to sensitivity (gain) correction of an angular velocity sensor that detects an angular velocity related to a roll angle or a pitch angle of a vehicle.
[0110] 本実施例で説明した方位算出方法を用いて車両のピッチ角に関する角速度を算 出することにより、車両前後の上下方向の回旋角を取得することができる。ここで、車 両前後の上下方向の回旋角を車両の進行方向における傾きとして捉えることで、車 両のピッチ角に関する角速度を算出することによって、車両の進行方向に関する傾 斜度合 、を正確に把握することができる。  [0110] By calculating the angular velocity related to the pitch angle of the vehicle using the azimuth calculation method described in the present embodiment, the vertical turning angle in the front-rear direction of the vehicle can be acquired. Here, the vertical rotation angle before and after the vehicle is regarded as the inclination in the traveling direction of the vehicle, and by calculating the angular velocity related to the pitch angle of the vehicle, the degree of inclination regarding the traveling direction of the vehicle is accurately grasped. can do.
[0111] 同様に、本実施例で説明した方位算出方法を用いて車両のロール角に関する角 速度を算出することにより、車両左右の上下方向の回旋角を取得することができる。 ここで、車両左右の上下方向の回旋角を路面に対する車両の傾きとして捉えることで 、車両のロール角に関する角速度を算出することによって、車両の左右方向に関す る傾斜度合 、を正確に把握することができる。  Similarly, by calculating the angular velocity related to the roll angle of the vehicle using the azimuth calculating method described in the present embodiment, the vertical turning angles of the left and right sides of the vehicle can be acquired. Here, by grasping the turning angle in the vertical direction on the left and right sides of the vehicle as the inclination of the vehicle with respect to the road surface, by calculating the angular velocity related to the roll angle of the vehicle, it is possible to accurately grasp the degree of inclination in the left and right direction of the vehicle. Can do.
[0112] 力!]えて、本実施例においては、ョ一角に関する角速度を検出する 1軸の角速度セ ンサを用いた場合について説明したが、この発明の実施例において適用可能な角 速度センサはこれに限るものではない。たとえば、車両のョ一角およびロール角ある いはョ一角およびピッチ角を検出する 2軸の角速度センサを用いて、車両のョ一角お よびロール角あるいはョ一角およびピッチ角に関する角速度を算出してもよい。また[0112] In this embodiment, the case of using a single-axis angular velocity sensor that detects the angular velocity related to a single angle has been described. However, the angular velocity sensor applicable in the embodiment of the present invention is not limited to this. It is not limited to. For example, there are vehicle corners and roll angles Alternatively, a two-axis angular velocity sensor that detects a single angle and a pitch angle may be used to calculate an angular velocity related to the vehicle's single angle and roll angle, or the single angle and pitch angle. Also
、車両のョ一角、ロール角およびピッチ角を検出する 3軸の角速度センサを用いて、 車両のョ一角、ロール角およびピッチ角に関する角速度を算出してもよい。 Alternatively, the angular velocity related to the vehicle angle, roll angle, and pitch angle may be calculated using a three-axis angular velocity sensor that detects the vehicle angle, roll angle, and pitch angle.
なお、本実施の形態で説明した方位算出方法は、あらかじめ用意されたプログラム をパーソナル 'コンピュータやワークステーションなどのコンピュータで実行することに より実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、 CD-ROM, MO、 DVDなどのコンピュータで読み取り可能な記録媒体に記録され 、コンピュータによって記録媒体力も読み出されることによって実行される。またこの プログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒 体であってもよい。  The azimuth calculation method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed when the recording medium force is also read by the computer. The program may be a transmission medium that can be distributed through a network such as the Internet.

Claims

請求の範囲 The scope of the claims
[1] 角速度センサ力 の出力値を取得するセンサ値取得手段と、  [1] Sensor value acquisition means for acquiring the output value of the angular velocity sensor force,
前記センサ値取得手段によって取得された出力値に基づいて、移動体の曲折方向 を判定する判定手段と、  Determination means for determining the bending direction of the moving body based on the output value acquired by the sensor value acquisition means;
前記判定手段によって判定された判定結果および前記出力値に基づ 、て、前記 移動体の曲折方向毎の角速度に応じてそれぞれ設定された複数の補正係数力 前 記出力値に応じた前記補正係数を取得する係数取得手段と、  Based on the determination result determined by the determination means and the output value, a plurality of correction coefficient forces respectively set according to the angular velocity for each bending direction of the moving body The correction coefficient according to the output value Coefficient acquisition means for acquiring
前記出力値に基づ 、て、前記移動体の曲折方向に応じた当該移動体の角速度を 、前記係数取得手段によって取得された補正係数を用いて算出する角速度算出手 段と、  Based on the output value, an angular velocity calculating means for calculating the angular velocity of the moving body according to the bending direction of the moving body using the correction coefficient acquired by the coefficient acquiring means;
前記角速度算出手段によって算出された角速度に基づいて、前記移動体の方位 を算出する方位算出手段と、  Azimuth calculating means for calculating the azimuth of the moving body based on the angular velocity calculated by the angular velocity calculating means;
を備えることを特徴とする方位算出装置。  An azimuth calculating apparatus comprising:
[2] 前記係数取得手段は、  [2] The coefficient acquisition means includes
前記角速度が大きいほど間隔が狭くなるように設定された角速度範囲ごとに設定さ れた補正係数を取得することを特徴とする請求項 1に記載の方位算出装置。  2. The azimuth calculation apparatus according to claim 1, wherein a correction coefficient set for each angular velocity range set so that the interval becomes narrower as the angular velocity is larger is acquired.
[3] 前記移動体の進行方向を示す方位を取得する方位取得手段と、 [3] Orientation acquisition means for acquiring an orientation indicating a traveling direction of the moving body;
前記方位算出手段によって算出された方位および前記方位取得手段によって取 得された方位に基づ!ヽて、前記係数取得手段によって取得された補正係数を補正 する補正手段と、  Correction means for correcting the correction coefficient acquired by the coefficient acquisition means based on the azimuth calculated by the azimuth calculation means and the azimuth acquired by the azimuth acquisition means;
を備えることを特徴とする請求項 1または 2に記載の方位算出装置。  The azimuth calculating apparatus according to claim 1, further comprising:
[4] 角速度センサ力 の出力値を取得するセンサ値取得工程と、 [4] A sensor value acquisition process for acquiring the output value of the angular velocity sensor force,
前記センサ値取得工程によって取得された出力値に基づいて、移動体の曲折方向 を判定する判定工程と、  A determination step of determining the bending direction of the moving body based on the output value acquired by the sensor value acquisition step;
前記判定工程によって判定された判定結果および前記出力値に基づ 、て、前記 移動体の曲折方向毎の角速度に応じてそれぞれ設定された複数の補正係数力 前 記出力値に応じた前記補正係数を取得する係数取得工程と、  Based on the determination result determined by the determination step and the output value, a plurality of correction coefficient forces respectively set according to the angular velocity for each bending direction of the moving body The correction coefficient according to the output value A coefficient acquisition step of acquiring
前記出力値に基づ 、て、前記移動体の曲折方向に応じた当該移動体の角速度を 、前記係数取得工程によって取得された補正係数を用いて算出する角速度算出ェ 程と、 Based on the output value, the angular velocity of the moving body corresponding to the bending direction of the moving body is calculated. An angular velocity calculation step of calculating using the correction coefficient acquired by the coefficient acquisition step;
前記角速度算出工程によって算出された角速度に基づいて、前記移動体の方位 を算出する方位算出工程と、  An azimuth calculating step for calculating an azimuth of the mobile body based on the angular velocity calculated by the angular velocity calculating step;
を含んだことを特徴とする方位算出方法。  The direction calculation method characterized by including.
[5] 請求項 4に記載の方位算出方法をコンピュータに実行させることを特徴とする方位 算出プログラム。 [5] An azimuth calculation program that causes a computer to execute the azimuth calculation method according to claim 4.
[6] 請求項 5に記載の方位算出プログラムをコンピュータによる読み取り可能に記録し たことを特徴とする記録媒体。  [6] A recording medium in which the azimuth calculation program according to claim 5 is recorded so as to be readable by a computer.
PCT/JP2006/310669 2005-07-28 2006-05-29 Azimuth calculation device, azimuth calculation method, azimuth calculation program, and recording medium WO2007013216A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528358A JP4734329B2 (en) 2005-07-28 2006-05-29 Direction calculation apparatus, direction calculation method, direction calculation program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-219358 2005-07-28
JP2005219358 2005-07-28

Publications (1)

Publication Number Publication Date
WO2007013216A1 true WO2007013216A1 (en) 2007-02-01

Family

ID=37683122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310669 WO2007013216A1 (en) 2005-07-28 2006-05-29 Azimuth calculation device, azimuth calculation method, azimuth calculation program, and recording medium

Country Status (2)

Country Link
JP (1) JP4734329B2 (en)
WO (1) WO2007013216A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919197B2 (en) 2010-09-22 2014-12-30 Kawasaki Jukogyo Kabushiki Kaisha Bank angle detecting device for vehicle
WO2017085756A1 (en) * 2015-11-16 2017-05-26 富士通株式会社 Information processing device, method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400450B2 (en) 2014-12-03 2018-10-03 古野電気株式会社 Vehicle speed calculation device and vehicle speed calculation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304090A (en) * 1995-05-08 1996-11-22 Pioneer Electron Corp Car navigation system
JPH09145382A (en) * 1995-11-29 1997-06-06 Sony Corp Speed detecting method, navigation apparatus and automobile
JPH10307032A (en) * 1997-05-02 1998-11-17 Pioneer Electron Corp Navigator
JP2005049355A (en) * 2004-09-13 2005-02-24 Pioneer Electronic Corp Navigation device and velocity calculation method
JP2005114478A (en) * 2003-10-06 2005-04-28 Yokogawa Denshikiki Co Ltd Electromagnetic log

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304090A (en) * 1995-05-08 1996-11-22 Pioneer Electron Corp Car navigation system
JPH09145382A (en) * 1995-11-29 1997-06-06 Sony Corp Speed detecting method, navigation apparatus and automobile
JPH10307032A (en) * 1997-05-02 1998-11-17 Pioneer Electron Corp Navigator
JP2005114478A (en) * 2003-10-06 2005-04-28 Yokogawa Denshikiki Co Ltd Electromagnetic log
JP2005049355A (en) * 2004-09-13 2005-02-24 Pioneer Electronic Corp Navigation device and velocity calculation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919197B2 (en) 2010-09-22 2014-12-30 Kawasaki Jukogyo Kabushiki Kaisha Bank angle detecting device for vehicle
WO2017085756A1 (en) * 2015-11-16 2017-05-26 富士通株式会社 Information processing device, method, and program

Also Published As

Publication number Publication date
JPWO2007013216A1 (en) 2009-02-05
JP4734329B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP2009139227A (en) Angular velocity correcting device and method, and navigation device
JP4126239B2 (en) Angular velocity detector
JP5670840B2 (en) Map creation apparatus, method, and in-vehicle navigation apparatus
US20020022924A1 (en) Propagation of position with multiaxis accelerometer
JPH06129868A (en) Distance error correction method in navigation device
JP2007033368A (en) Navigation apparatus
WO2010040386A1 (en) Navigation apparatus and method of determining a route therefor
JP5292316B2 (en) Position recognition apparatus, correction method, and correction program
JP4063149B2 (en) Vehicle angular velocity detection device
JP2647342B2 (en) Vehicle mileage detection device
WO2006106694A1 (en) Route guidance system, route guidance method, route guidance program, and recording medium
WO2007013216A1 (en) Azimuth calculation device, azimuth calculation method, azimuth calculation program, and recording medium
US9417072B2 (en) Navigation device having dead reckoning navigation functionality and method thereof
JP4987761B2 (en) Navigation device, navigation method and program
JP2006153714A (en) Map matching method of car navigation device and car navigation system
JP3967178B2 (en) GUIDANCE GUIDANCE DEVICE, GUIDANCE GUIDANCE SYSTEM, METHOD THEREOF, PROGRAM THEREOF, AND RECORDING MEDIUM CONTAINING THE PROGRAM
JP5335261B2 (en) Distance coefficient approximate expression generation apparatus, distance coefficient approximate expression generation method, and distance coefficient approximate expression generation program
WO2011121789A1 (en) Information processing device, information processing method, program, and recording medium
JP5666017B2 (en) Bank determination device, control method, program, and storage medium
WO2013080319A1 (en) Position recognition device, control method, program, and recording medium
WO2007040069A1 (en) Error calculation device and navigation device
JPH11148832A (en) Speed measuring device, navigation device, speed measuring method, and speed measuring system and car
JP5129654B2 (en) Mobile body information display control device, mobile body information display method, etc.
JP5275685B2 (en) Mobile object information display device, mobile object information display method, etc.
JP2017161556A (en) Position recognition device, control method, program, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007528358

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06746947

Country of ref document: EP

Kind code of ref document: A1