[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007010806A1 - Progressive refractive power lens - Google Patents

Progressive refractive power lens Download PDF

Info

Publication number
WO2007010806A1
WO2007010806A1 PCT/JP2006/313922 JP2006313922W WO2007010806A1 WO 2007010806 A1 WO2007010806 A1 WO 2007010806A1 JP 2006313922 W JP2006313922 W JP 2006313922W WO 2007010806 A1 WO2007010806 A1 WO 2007010806A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
power
progressive
prescription
reference point
Prior art date
Application number
PCT/JP2006/313922
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuhiro Yanari
Original Assignee
Nikon-Essilor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37668688&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007010806(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon-Essilor Co., Ltd. filed Critical Nikon-Essilor Co., Ltd.
Priority to JP2007525964A priority Critical patent/JP5000505B2/en
Publication of WO2007010806A1 publication Critical patent/WO2007010806A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/065Properties on the principal line

Definitions

  • the present invention relates to a progressive-power lens, and more particularly, to a progressive-power lens that is used as an aid to eye accommodation.
  • a progressive-power lens is located at the upper part of the lens when worn and is suitable for far-distance viewing (hereinafter also referred to as “distance part”).
  • distance part suitable for vision
  • progressive area that is located between the distance vision area and the near vision area and continuously connects both surface refractive powers
  • the measurement reference point for measuring the lens power at the distance portion is referred to as “distance reference point”, and the measurement reference point for measuring the lens power at the near portion is referred to as “near reference point”.
  • the straight line or curve that passes through the distance reference point and the near reference point and divides the refracting surface of the progressive surface into a nose region and an ear region is called a “main gaze line”.
  • the main line of sight is used as a reference line that represents specifications such as the addition power of a progressive-power lens, and is used as an important reference line when designing a progressive surface (progressive refractive surface).
  • the spectacle lens is created by processing the prescription surface of the semi-finished lens into a spherical shape or a toric surface shape according to the spherical power or astigmatic power of the spectacle wearer.
  • the surface shape of the progressive refractive surface in a semi-finished lens is The surface shape is set so as to obtain the most preferable optical performance at a specific prescription power within the range. Therefore, if this specific power is used as the reference power of the semi-finished lens, the optical performance of the lens at the prescription power near the reference power is good, but the decrease in the optical performance is avoided as the prescription power deviates from the reference power. There was a drawback of not. However, in recent years, with the development of aspherical processing technology, it has become possible to freely process a lens surface into an aspherical shape, particularly into a complex aspherical shape such as a free-form surface within a short time.
  • the aspherical surface used for the prescription surface is generally a free-form surface having no symmetry, such as a polynomial aspherical surface, or a spline surface shape such as a bicubic spline or B-spline.
  • a double-sided aspherical progressive refraction calendar in which not only the progressive refraction surface but also the prescription surface is aspherical is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-034 1986.
  • a progressive-power lens the power of a lens at at least one of a distance reference point and a near reference point is measured by a measuring instrument called a lens meter.
  • the prescription surface is entirely spherical or toric, so the prescription power of the wearer and the spherical power and astigmatism power measured at the measurement reference point by the lens holder There was a substantial agreement.
  • a progressive bending lens with an aspheric prescription surface that places importance on optical performance in the wearing state causes an astigmatism difference at the measurement reference point because the prescription surface is aspherical.
  • spherical power and astigmatism power different from the prescription power are displayed in the measurement with the lens meter.
  • the difference between the spherical power and astigmatism power measured by the lens unit and the prescription power of the wearer tends to increase.
  • manufacturers have introduced special lens meters that measure the frequency in the wearing state, or the frequency obtained by measuring with a general lens meter as the measurement theoretical frequency separately from the original prescription frequency. It is also written together.
  • the combination of the prescription frequency and the measurement theory frequency is called “double notation”. Actually, it is difficult to introduce a special lens meter that can measure the frequency in the wearing state in general eyeglass stores, so the measurement method using double notation is the mainstream.
  • the measurement position by the lens meter compared to a conventional progressive-power lens with a spherical or toric surface treatment surface.
  • the measurement error due to the alignment accuracy is large.
  • the difference between the prescription power displayed in double notation and the measurement theoretical power is not necessarily constant, and varies depending on various prescription conditions such as spherical power, diopter power, astigmatic axis, and addition power. Therefore, when measuring the power of a progressive power lens with double notation, it is necessary to check all the measurement theoretical powers displayed by the manufacturer for each lens. ⁇
  • the main gaze on the prescription surface is not visible in some areas of the distance portion including the main gaze that is discarded as an unnecessary part when the lens is actually processed into a frame shape. It is configured so that the same measurement power as the prescription power can be obtained by measuring the power of the lens in the area where the point difference does not occur.
  • the evaluation based on the shape of the main gazing line was important. For a double-sided aspherical progressive-power lens that focuses on optical performance and aspherics on both sides, it is found that it is not sufficient to specify the surface shape of some linear parts of the main line of sight. It was.
  • the prescription surface in order to improve the optical performance over the entire lens, also has symmetry such as a high-order polynomial or spline. No aspheric shape is required. However, since the aspherical shape without such symmetry has a high degree of surface freedom, it is not possible to specify the surface shape of the adjacent region simply by defining the surface shape on the main line of sight. In other words, even if the prescription surface on the main line of sight is set to a spherical shape, the amount of aspherical surface at a position slightly away from the main line of sight increases and the contribution to optical performance is unavoidably fluctuated. There is also.
  • the power measurement of the original lens is performed to check whether the lens has been created correctly as prescribed by the wearer. Therefore, in general spectacle lenses as well as progressive-power lenses, measurement reference points are arranged in the vicinity of the geometric center of the lens or at the most important position for wearing the lens. In other words, as described in Japanese Patent Laid-Open No.
  • the present invention has been made in view of the above-mentioned problems, and it is possible to easily perform lens power measurement by a spectacle store or a user even though the optical performance in the wearing state is improved satisfactorily.
  • An object of the present invention is to provide a progressive power lens that can be used.
  • a far-field region that is relatively suitable for far-distance viewing along a main gaze line that divides the refractive surface of the lens into a nose-side region and an ear-side region in the wearing state
  • a near vision area relatively suitable for near vision with respect to the distance vision area, and a surface refractive power of the distance vision area and the near distance between the distance vision area and the near vision area.
  • a progressive refraction calendar having a progressive area that continuously connects the surface power of the application area
  • the prescription surface formed to correct the optical performance of the transmitted light of the lens has an aspheric shape, and is generated by the surface astigmatism component generated by the prescription surface and the spherical surface or toric surface necessary for correcting the prescription power Progressive refraction characterized in that the average value of the absolute value of the difference from the surface astigmatic difference component is less than or equal to a predetermined value over a predetermined area in the vicinity including the measurement reference point for measuring the lens power Provide a power lens.
  • amend the optical performance in the transmitted light of a lens has aspherical shape.
  • the average of the absolute values of the difference between the surface astigmatism component generated by the aspherical shape of the prescription surface and the surface astigmatism component generated by the spherical or curly surface required for correcting the prescription power "The average value of the surface astigmatism component that is substantially generated by the aspherical prescription surface” or "the average value of the surface astigmatism component" includes the measurement reference point for measuring the lens power. The value is kept below a predetermined value over a predetermined area in the vicinity.
  • the measurement reference point is set using, for example, a lens meter, even though the optical performance in the wearing state is corrected by making the prescription surface aspherical.
  • the measurement frequency By measuring as a reference, it is possible to obtain a measurement frequency almost the same as the prescription frequency. That is, in the progressive-power lens of the present invention, although the optical performance in the wearing state is satisfactorily improved in consideration of the prescription and use conditions of the wearer, the lens power by the spectacle store or the user is one. Measurement can be performed easily.
  • FIG. 1 is a diagram schematically showing a configuration of a progressive-power lens according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the astigmatism distribution in the transmitted light of the conventional progressive-power lens according to the comparative example of the first example.
  • FIG. 3 is a diagram showing the astigmatism distribution in the transmitted light of the progressive addition lens according to the first example.
  • FIG. 4 is a diagram showing a distribution of surface astigmatism components substantially generated by making the prescription surface aspherical of the progressive-power lens according to the first example.
  • FIG. 5 is a diagram showing the astigmatism distribution in the transmitted light of the conventional progressive-power lens according to the comparative example of the second example.
  • FIG. 6 is a diagram showing the astigmatism distribution in the transmitted light of the progressive addition lens according to the second example.
  • FIG. 7 is a diagram showing a distribution of surface astigmatism components substantially generated by making the prescription surface of the progressive-power lens according to the second example aspherical.
  • Frequency measurement with a lens meter is performed with reference to a measurement reference point on the lens surface. Actually, measurement is performed in a measurement area with a certain area, not a point. In addition, this measurement area includes the type of lens meter and the lens to be measured. T / JP2006 / 313922
  • a predetermined area in the vicinity including a measurement reference point where the average value of the surface astigmatism component generated substantially by the aspherical surface of the prescription surface should be kept below a predetermined value is used for the measurement of the lens meter. It is necessary to decide in consideration of the necessary area (hereinafter referred to as “measurement area”). In other words, if only frequency measurement is considered, it is more effective that the predetermined area where the average value of the above-mentioned astigmatic difference component is not more than a predetermined value is as wide as possible. Optical performance is degraded.
  • the predetermined region in the vicinity including the measurement reference point should be determined in consideration of these various conditions.
  • the predetermined area in the vicinity including the measurement reference point where the average value of the surface astigmatic difference component is equal to or less than the predetermined value extends from the measurement reference point in the horizontal direction of the lens.
  • X (mm) is the distance from the measurement reference point in the vertical direction of the lens
  • y (mm) I (x 2 + y 2 ) l / 2 l ⁇ 2.5 0 (mm) It must be an area that satisfies the conditions
  • the predetermined region where the average value of the surface astigmatic difference component should be kept below a predetermined value is I (x 2 + y 2 ) 1/2 I ⁇ 4.0 0 (mm) is desirable.
  • the surface astigmatism necessary for correcting astigmatism is considered separately from the surface astigmatism generated by making the prescription surface aspherical. That is, as described above, in the present invention, the surface astigmatism component generated substantially by the aspherical surface of the prescription surface is reduced. It is expressed as the absolute value of the difference between the surface astigmatism at any coordinate of the spheroidized prescription surface and the surface astigmatism at the coordinate of the spherical or toric surface necessary for correcting the prescription power.
  • AS (X, y) is the surface astigmatism difference at an arbitrary coordinate (X, y) on the prescription surface, and the corresponding spherical surface or toric surface is necessary to correct the prescription power before being aspherical.
  • the plane astigmatism at the coordinates (X, y) is C (x, y)
  • the surface astigmatism component that is substantially generated at the coordinates (X, y) due to the aspherical surface of the prescription surface is AAS (x , y)
  • AAS (x, y) is expressed by the following equation (1).
  • the average value of the surface astigmatism component that is substantially generated by making the prescription surface aspherical is ⁇ AS av, and the average value AASav is suppressed to a predetermined value or less to achieve the object of the present invention.
  • Table 1 below is a table established in IS Standard 8980-2: 2004 (E), which is an ISO standard for progressive-power spectacle lenses for correcting bending, with astigmatism bending at the measurement reference point. It is a table
  • the object of the present invention can be achieved if the average value AASav is suppressed to be equal to or smaller than the tolerance set in the ISO standard shown in Table 1.
  • the average value AASav is preferably 75% or less of the allowable value in Table 1.
  • ⁇ ASav is more preferably 50% or less of the allowable value in Table 1.
  • the tolerance value for frequency measurement varies depending on the prescription frequency and the astigmatism frequency, but because of the simplification of design and manufacturing practices, the tolerance value of the average value ⁇ AS av It is also possible to make this constant without depending on the wearer's prescription.
  • the tolerance value of the average value AASav can be selected and determined from the tolerance values listed in Table 1, but according to the study of the present inventor, the optical performance in the wearing state is emphasized. In some cases, it is desirable to satisfy AASav ⁇ 0.15 (diop evening), and when the optical performance in the wearing state is more important, it is desirable to satisfy AASav ⁇ 0.12 (diopter).
  • the predetermined region in the vicinity including the measurement reference point where the average value ⁇ AS av of the surface astigmatism component should be kept below a predetermined value is substantially spherical or toric. Is preferred. If an optician or user places more emphasis on measuring power with a lens meter than improving optical performance in transmitted light, i.e., the prescription power and the measured power are substantially matched without taking into account the tolerances of the standard. It is effective to make the prescription surface substantially spherical or toric in the predetermined area.
  • the constant area of the central portion in the measurement area is substantially spherical. It has also been found that the object of the present invention can be achieved by forming a toric surface shape. Therefore, in the area near the measurement reference point that is substantially spherical or toric, the distance from the measurement reference point in the horizontal direction of the lens is X (mm), and the vertical direction of the lens from the measurement reference point I (x 2 + y 2 ) 1/2 I ⁇ 1. 75 (mm)
  • the region satisfies this condition.
  • the neighboring region including the measurement reference point which is substantially spherical or toric surface shape is I (x 2 + y 2 )
  • At least one of the size and shape of the predetermined area in the vicinity including the measurement reference point where the average value ⁇ AS av of the surface astigmatism component should be kept below a predetermined value is Can be determined based on at least one of the following: preferable.
  • the prespherical shape of the prescription surface is spherical, astigmatic, astigmatic, It varies greatly depending on the wearer's prescription and usage conditions such as addition, inset angle and prism prescription. .
  • the measurement conditions of the lens meter which is a measuring instrument, can be measured even if the measuring beam is a circular beam with a diameter of 5 mm.
  • Some manufacturers manufacture lens meters that have a rectangular light beam. Even with the same manufacturer, the conditions vary depending on the manufacturer and measurement method, such as the size and shape of the measurement light beam differing between the manual lens meter and the automatic lens meter. Therefore, the technology according to the present invention is not applied to all lenses under the same conditions, but at least one of the prescription and usage conditions of the wearer, the product specifications, the frequency measurement method, and the measurement instrument specifications.
  • the average value AAS av By taking into account the average value AAS av and determining the size and shape of the predetermined area including the measurement reference point that should be kept below the predetermined value, both superior optical performance and ease of frequency measurement can be achieved. It can be obtained.
  • At least a second derivative of a function representing the surface shape of the prescription surface (for example, a function representing the surface shape in the design of the prescription surface, a function obtained by fitting the actual surface shape of the prescription surface). It is preferable that the process is continuous over almost the entire prescription surface. With this configuration, it is possible to obtain good continuity in appearance and good optical performance in transmitted light, and at the same time always measure as a lens meter. 6313922
  • FIG. 1 is a diagram schematically showing the configuration of a progressive-power lens according to an embodiment of the present invention.
  • the progressive-power lens of this embodiment is suitable for relatively far vision along the main sight line MM 'that divides the refractive surface of the lens into a nose side region and an ear side region in the wearing state.
  • the distance power of the distance F and the surface refraction of the near area N between the distance area F and the near area N And a progressive part P that continuously connects the force.
  • the main line of sight MM ' is the distance reference point (distance center) 0F, the distance eye point E, the geometric center OG of the lens surface, and the near area N measurement standard. This is a reference line that passes through ON.
  • a progressive surface is disposed on the outer surface (the outer surface opposite to the eye), and a prescription surface is disposed on the inner surface (the inner surface on the eye side).
  • the distance reference point OF which is the measurement reference point of the distance portion F, is located 8 mm above the geometric center OG along the main line of sight MM '.
  • the outer diameter (diameter) of each example lens is 70 mm.
  • FIG. 2 is a diagram showing the astigmatism distribution in the transmitted light of the conventional progressive-power lens according to the comparative example of the first example.
  • the astigmatism is 0.5D (diop evening) or less, that is, clear vision. The area is getting narrower.
  • FIG. 3 is a diagram showing the astigmatism distribution in the transmitted light of the progressive addition lens according to the first example.
  • the progressive-power lens according to the first example is the same as the comparative example in FIG. (Spherical power, astigmatism power, addition power, prescription base curve, refractive index), but the inner surface, which is the prescription surface, is aspherical in order to improve the optical performance of transmitted light.
  • the inner surface which is the prescription surface, is aspherical in order to improve the optical performance of transmitted light.
  • the clear vision area of the distance portion F and the near portion N are both good improvement It has been done.
  • FIG. 4 is a diagram showing a distribution of surface astigmatism components substantially generated by making the prescription surface aspherical of the progressive-power lens according to the first example.
  • an optical surface improvement as shown in FIG. 3 is achieved by applying an aspheric surface having a surface astigmatism component distribution as shown in FIG. 4 to the prescription surface.
  • Table 2 shows the distribution of the surface astigmatism component that is substantially generated by asphericalization of the neighboring area including the measurement reference point ⁇ F on the prescription surface of the progressive-power lens according to the first example. It is a table shown. Table 2
  • the horizontal axis described in the uppermost row indicates the distance X (mm) in the horizontal direction of the lens with the measurement reference point OF as the origin
  • the vertical axis described in the leftmost column indicates the measurement
  • the distance y (mm) in the vertical direction of the lens is shown with the reference point OF as the origin.
  • the surface astigmatism component that is substantially generated by asphericalization of the neighboring area including the measurement reference point ⁇ F is a relatively small value (diop constant). It is suppressed.
  • the measurement reference point OF is set by using a lens unit that measures with a light beam having a diameter of 5 mm.
  • the simulation result of the measurement frequency obtained when measured as a reference is shown below.
  • the spherical power and the astigmatic power as the measurement power are less than the comparative example of FIG. 2 due to the influence of the aspherical prescription surface, which is the inner surface.
  • the value is slightly deviated from.
  • Table 1 it can be seen that the deviation of the measured power from the prescription power of the wearer in the first embodiment is sufficiently within the allowable value, and there is no problem in practical use. That is, the objective of the present invention is achieved in the progressive-power lens of the first embodiment.
  • FIG. 5 is a diagram showing the astigmatism distribution in the transmitted light of the conventional progressive-power lens according to the comparative example of the second example.
  • the clear vision areas of the distance portion F and the near portion N are very large. 3922
  • FIG. 7 is a diagram showing a distribution of surface astigmatism components substantially generated by making the prescription surface of the progressive addition lens according to the second example aspherical.
  • the optical performance improvement as shown in FIG. 6 is achieved by providing the prescription surface with an aspheric surface having the distribution of the surface astigmatism component as shown in FIG. Yes.
  • Table 3 below shows the numerical distribution of the surface astigmatism component generated substantially by the asphericalization of the nearby area including the measurement reference point OF on the prescription surface of the progressive addition lens according to the second example. It is a table shown in.
  • the horizontal axis in the uppermost row indicates the distance X (mm) in the horizontal direction of the lens with the measurement reference point OF as the origin, and 5 in the leftmost column.
  • the vertical axis represents the distance y (mm) in the vertical direction of the lens with the measurement reference point OF as the origin.
  • the surface astigmatism component that is substantially generated by asphericalization of the neighboring area including the measurement reference point OF is suppressed to almost 0 (diop evening)
  • the surface shape is substantially equal to the toric surface.
  • a measurement reference point 0 F is set using a lens meter that measures light with a diameter of 5 mm.
  • the simulation results of the measurement frequency obtained when measuring as a reference are shown below.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

A progressive refractive power lens easily capable of measuring the power of the lens by an optician store or a user despite satisfactory improvement in optical performance while the user wears. The lens comprises, along a main fixation line (MM') that divides a lens refractive plane into a nose side area and an ear side area, a distant unit (F) comparatively suitable for distant viewing, a reading unit (N) comparatively suitable for near viewing, and a progressive unit (P) for continuously connecting the plane refractive power of the distant unit and the plane refractive power of the reading unit, when the lens is worn. An average value of absolute values of differences between a surface astigmatic difference component generated by the prescribed aspherical surface formed to correct optical performance at a lens-transmitting light beam and a surface astigmatic difference component generated by a spherical or toric surface required for prescribed power correction is up to a specified value over a specified area in the vicinity of and including a measurement reference point (OF).

Description

明 細 書 累進屈折力レンズ 技術分野  Meiji book Progressive power lens Technical field
本発明は、 累進屈折力レンズに関し、 特に眼の調節力の補助として使用する累 進屈折力レンズに関する。 背景技術  The present invention relates to a progressive-power lens, and more particularly, to a progressive-power lens that is used as an aid to eye accommodation. Background art
老視の矯正には、 単焦点レンズやバイフオーカルレンズ、 累進屈折力レンズな どが用いられている。 累進屈折力レンズは、 装用時においてレンズの上方に位置 する比較的遠方視に適した遠用部領域 (以下、 「遠用部」 ともいう) と、 レンズ の下方に位置して比較的近方視に適した近用部領域 (以下、 「近用部」 ともいう) と、 遠用部と近用部との間に位置して双方の面屈折力を連続的に接続する累進部 領域 (以下、 「累進部」 ともいう) とを備えている。  Single vision lenses, bifocal lenses, progressive power lenses, etc. are used to correct presbyopia. A progressive-power lens is located at the upper part of the lens when worn and is suitable for far-distance viewing (hereinafter also referred to as “distance part”). Near vision area suitable for vision (hereinafter also referred to as “near vision area”) and progressive area that is located between the distance vision area and the near vision area and continuously connects both surface refractive powers ( (Hereinafter also referred to as “progressive part”).
なお、 本発明では、 遠用部においてレンズの度数を測定する測定基準点を 「遠 用基準点」 と呼び、 近用部においてレンズの度数を測定する測定基準点を 「近用 基準点」 と呼ぶ。 また、 遠用基準点及び近用基準点を通り且つ累進面の屈折面上 を鼻側領域と耳側領域とに分割する直線または曲線を 「主注視線」 と呼ぶ。 主注 視線は、 累進屈折力レンズの加入度等の仕様を表す基準線として用いられ、 累進 面 (累進屈折面) の設計を行う上で重要な基準線として用いられる。  In the present invention, the measurement reference point for measuring the lens power at the distance portion is referred to as “distance reference point”, and the measurement reference point for measuring the lens power at the near portion is referred to as “near reference point”. Call. The straight line or curve that passes through the distance reference point and the near reference point and divides the refracting surface of the progressive surface into a nose region and an ear region is called a “main gaze line”. The main line of sight is used as a reference line that represents specifications such as the addition power of a progressive-power lens, and is used as an important reference line when designing a progressive surface (progressive refractive surface).
従来の累進屈折力レンズでは、 予め累進屈折面が加工された半製品レンズ (以 下、 「セミフィニッシュレンズ」 と呼ぶ) が使用されている。 即ち、 眼鏡装用者 の球面度数や乱視度数に合わせて、 セミフィニッシュレンズの処方面を球面形状 またはトーリック面形状に加工して眼鏡レンズを作成する。  Conventional progressive-power lenses use semi-finished lenses (hereinafter referred to as “semi-finished lenses”) whose progressive-refractive surfaces have been processed in advance. That is, the spectacle lens is created by processing the prescription surface of the semi-finished lens into a spherical shape or a toric surface shape according to the spherical power or astigmatic power of the spectacle wearer.
通常、 セミフィニッシュレンズにおける累進屈折面の面形状は、 共用する度数 範囲の中のある特定の処方度数において最も好ましい光学性能が得られるよう な面形状として設定される。 従って、 この特定の度数をセミフィニッシュレンズ の基準度数とすると、 基準度数付近の処方度数におけるレンズの光学性能は良好 であるが、 処方度数が基準度数から外れるに従つて光学性能の低下が避けらない という欠点があった。 ところが、 近年、 非球面加工技術の発達により、 レンズ面 を非球面形状に、 特に自由曲面のような複雑な非球面形状に短時間の内に自由に 加工することが可能になった。 Usually, the surface shape of the progressive refractive surface in a semi-finished lens is The surface shape is set so as to obtain the most preferable optical performance at a specific prescription power within the range. Therefore, if this specific power is used as the reference power of the semi-finished lens, the optical performance of the lens at the prescription power near the reference power is good, but the decrease in the optical performance is avoided as the prescription power deviates from the reference power. There was a drawback of not. However, in recent years, with the development of aspherical processing technology, it has become possible to freely process a lens surface into an aspherical shape, particularly into a complex aspherical shape such as a free-form surface within a short time.
その結果、 装用者の処方や使用条件等を考慮して、 従来は球面形状あるいはト ーリック面形状であった処方面を個別に非球面化した累進屈折力レンズが製品 化され、 累進屈折力レンズの光学性能は処方度数に依存することなく広い度数範 囲に亘つて大幅に改善されるようになった。 なお、 このような場合に処方面に用 いられる非球面は、 対称性を持たない自由曲面、 例えば多項式非球面、 双三次ス プラインゃ B—スプライン等のスプライン面形状などが一般的である。  As a result, taking into account the prescription and usage conditions of the wearer, a progressive power lens with aspherical prescription surfaces, which were previously spherical or toric, has been commercialized. The optical performance of this product has been greatly improved over a wide frequency range without depending on the prescription power. In this case, the aspherical surface used for the prescription surface is generally a free-form surface having no symmetry, such as a polynomial aspherical surface, or a spline surface shape such as a bicubic spline or B-spline.
累進屈折面だけでなく処方面も非球面化した両面非球面型の累進屈折カレン ズは、 たとえば特開 2 0 0 4—3 4 1 0 8 6号公報などに開示されている。 一般に、 累進屈折力レンズでは、 遠用基準点及び近用基準点のうちの少なくと も一方の測定基準点におけるレンズの度数を、 レンズメーターと呼ばれる測定器 によって測定している。 従来の累進屈折力レンズでは、 処方面の全体が球面形状 あるいはトーリック面形状であるため、 装用者の処方度数と、 レンズメ一夕一に よつて測定基準点で測定した球面度数及び乱視度数とは実質的に一致していた。 ところが、 装用状態における光学性能を重視して処方面を非球面化した累進屈 折力レンズでは、 処方面が非球面化されているために測定基準点において面非点 隔差が発生する。 その結果、 レンズメ一ターでの測定に際して、 処方度数とは異 なる球面度数及び乱視度数が表示される。 しかも、 処方面に付与される非球面量 が大きくなるに従って、 レンズメ一夕一によつて測定した球面度数及び乱視度数 と装用者の処方度数との差が大きくなる傾向がある。 そのため、 メーカーでは、 装用状態での度数を測定する特殊なレンズメーター を導入したり、 本来の処方度数とは別に、 一般的なレンズメータ一で測定した場 合に得られる度数を測定理論度数として併記したりしている。 処方度数と測定理 論度数とを併記することは、 「二重表記」 と呼ばれている。 実際に、 一般の眼鏡 店では、 装用状態での度数が測定可能な特殊なレンズメーターを導入することは 困難であるため、 二重表記による測定方法が主流となっている。 A double-sided aspherical progressive refraction calendar in which not only the progressive refraction surface but also the prescription surface is aspherical is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-034 1986. Generally, in a progressive-power lens, the power of a lens at at least one of a distance reference point and a near reference point is measured by a measuring instrument called a lens meter. In conventional progressive-power lenses, the prescription surface is entirely spherical or toric, so the prescription power of the wearer and the spherical power and astigmatism power measured at the measurement reference point by the lens holder There was a substantial agreement. However, a progressive bending lens with an aspheric prescription surface that places importance on optical performance in the wearing state causes an astigmatism difference at the measurement reference point because the prescription surface is aspherical. As a result, spherical power and astigmatism power different from the prescription power are displayed in the measurement with the lens meter. Moreover, as the amount of aspherical surface given to the prescription surface increases, the difference between the spherical power and astigmatism power measured by the lens unit and the prescription power of the wearer tends to increase. For this reason, manufacturers have introduced special lens meters that measure the frequency in the wearing state, or the frequency obtained by measuring with a general lens meter as the measurement theoretical frequency separately from the original prescription frequency. It is also written together. The combination of the prescription frequency and the measurement theory frequency is called “double notation”. Actually, it is difficult to introduce a special lens meter that can measure the frequency in the wearing state in general eyeglass stores, so the measurement method using double notation is the mainstream.
ちなみに、 処方面を非球面化した両面非球面型の累進屈折力レンズの場合、 処 方面が球面形状またはト一リック面形状である従来の累進屈折力レンズと比較 して、 レンズメーターによる測定位置合わせの精度に起因する測定誤差が大きい。 さらに、 二重表記で表示される処方度数と測定理論度数との差は必ずしも一定で はなく、 球面度数や 視度数、 乱視軸や加入度等の処方の様々な条件によって異 なる値になる。 そのため、 二重表記の累進屈折力レンズの度数を測定する場合に は、 メーカーにより表示された測定理論度数をレンズ毎に全て確認する必要が生 じる。 ·  By the way, in the case of a double-sided aspherical progressive-power lens with an aspheric prescription surface, the measurement position by the lens meter compared to a conventional progressive-power lens with a spherical or toric surface treatment surface. The measurement error due to the alignment accuracy is large. Furthermore, the difference between the prescription power displayed in double notation and the measurement theoretical power is not necessarily constant, and varies depending on various prescription conditions such as spherical power, diopter power, astigmatic axis, and addition power. Therefore, when measuring the power of a progressive power lens with double notation, it is necessary to check all the measurement theoretical powers displayed by the manufacturer for each lens. ·
つまり、 二重表記の累進屈折力レンズの度数測定では、 従来の累進屈折カレン ズとは異なる複雑な手順が必要となるうえ、 測定に不慣れな人間が測定する場合 や大量のレンズを測定する場合には、 正確な測定結果を得るために従来の累進屈 折力レンズよりも時間および労力が必要になる。 そのため、 一部の眼鏡店やユー ザ一からは、 光学性能だけを重視せずに、 レンズの度数測定をより容易に行うこ とのできる両面非球面型の累進屈折力レンズに対する要望が出ている。  In other words, power measurement of a progressive power lens with double notation requires a complicated procedure that is different from the conventional progressive power lens, and when a person unfamiliar with measurement or a large number of lenses is measured. Requires more time and effort than conventional progressive-power lenses to obtain accurate measurement results. Therefore, some spectacle stores and users have requested a double-sided aspherical progressive-power lens that makes it easier to measure the power of lenses without focusing on optical performance alone. Yes.
そこで、 特開 2 0 0 4— 3 4 1 0 8 6号公報に開示された従来の両面非球面型 の累進屈折力レンズでは、 処方度数と測定度数とが異なるという問題を解決する ために、 処方面上の主注視線に沿った線状部分の一部に面非点隔差の発生しない 領域を設けている。  Therefore, in order to solve the problem that the prescription power and the measurement power are different in the conventional double-sided aspherical progressive-power lens disclosed in Japanese Patent Laid-Open No. 2 0 4-3 4 4 0 8 6 An area where no surface astigmatism occurs is provided in a part of the linear portion along the main line of sight on the prescription surface.
具体的には、 実際にレンズをフレーム形状に加工する際に不要部分として廃棄 される主注視線を含む遠用部の一部の領域において、 処方面の主注視線上を面非 点隔差の生じない形状とし、 その領域でレンズの度数を測定することによって、 処方度数と同じ測定度数が得られるように構成している。 ところが、 本願発明者 の研究によると、 従来のように面屈折力分布で評価されていた累進屈折力レンズ では、 主注視線の形状による評価は重要であつたが、 透過光線におけるレンズ全 体の光学性能を重視して両面を非球面化した両面非球面型の累進屈折力レンズ においては、 主注視線の一部の線状部分の面形状を規定するだけでは不十分であ ることがわかった。 Specifically, the main gaze on the prescription surface is not visible in some areas of the distance portion including the main gaze that is discarded as an unnecessary part when the lens is actually processed into a frame shape. It is configured so that the same measurement power as the prescription power can be obtained by measuring the power of the lens in the area where the point difference does not occur. However, according to the study by the present inventor, in the progressive power lens that was evaluated by the surface power distribution as in the past, the evaluation based on the shape of the main gazing line was important. For a double-sided aspherical progressive-power lens that focuses on optical performance and aspherics on both sides, it is found that it is not sufficient to specify the surface shape of some linear parts of the main line of sight. It was.
即ち、 自由曲面を用いた累進面を有する累進屈折力レンズにおいて、 レンズ全 体に亘つて光学性能の改善を行うためには、 処方面に対しても高次多項式ゃスプ ラインといった対称性を持たない非球面形状が必要である。 ところが、 このよう な対称性を持たない非球面形状では面の自由度が高いため、 主注視線上の面形状 を規定するだけでは隣接する領域の面形状を特定することはできない。 つまり、 たとえ処方面の主注視線上を球面形状に設定しても、 主注視線から少し離れた位 置の非球面量が大きくなり、 光学性能への寄与が大きく変動することが避けられ ない場合もある。 従って、 少なくともレンズの度数を測定する領域においては、 面としての形状の制御が必須となるが、 特開 2 0 0 4— 3 4 1 0 8 6号公報の従 来技術では主注視線上以外の領域における面形状に関して明確に開示されてい ない。  In other words, in a progressive-power lens having a progressive surface using a free-form surface, in order to improve the optical performance over the entire lens, the prescription surface also has symmetry such as a high-order polynomial or spline. No aspheric shape is required. However, since the aspherical shape without such symmetry has a high degree of surface freedom, it is not possible to specify the surface shape of the adjacent region simply by defining the surface shape on the main line of sight. In other words, even if the prescription surface on the main line of sight is set to a spherical shape, the amount of aspherical surface at a position slightly away from the main line of sight increases and the contribution to optical performance is unavoidably fluctuated. There is also. Therefore, at least in the region where the power of the lens is measured, it is essential to control the shape of the surface. However, in the conventional technique disclosed in Japanese Patent Laid-Open No. 2 0 4-3 4 10 8 86 There is no clear disclosure regarding the surface shape in the region.
また、 本来のレンズの度数測定は、 装用者の処方通りにレンズが正しく作成さ れているか否かを確認するために行うものである。 従って、 累進屈折力レンズに 限らず一般の眼鏡レンズでは、 レンズの幾何学中心の近傍、 あるいはレンズを装 用する上で最も重要な位置に、 測定基準点が配置されている。 つまり、 特開 2 0 0 4— 3 4 1 0 8 6号公報に記載されているようにフレーム形状外の主子午線 (主注視線) 上を面非点隔差の生じない形状にすれば、 装用時での光学性能への 影響を小さく抑えつつ処方度数と同じ測定度数を得ることはできるが、 特開 2 0 0 4 - 3 4 1 0 8 6号公報の従来技術で得られる測定度数は、 本来求められてい るレンズの度数測定の目的とは異なり適切であるとはいえない。 発明の開示 In addition, the power measurement of the original lens is performed to check whether the lens has been created correctly as prescribed by the wearer. Therefore, in general spectacle lenses as well as progressive-power lenses, measurement reference points are arranged in the vicinity of the geometric center of the lens or at the most important position for wearing the lens. In other words, as described in Japanese Patent Laid-Open No. 2 0 4-3 4 1 0 8 6, if the shape on the main meridian (main gaze line) outside the frame shape does not cause a plane astigmatism, Although it is possible to obtain the same measurement power as the prescription power while keeping the influence on the optical performance at the time small, the measurement power obtained by the conventional technology of JP-A 2 0 0 4-3 4 1 0 8 6 is Originally required Unlike the purpose of lens power measurement, it is not appropriate. Disclosure of the invention
本発明は、 前述の課題に鑑みてなされたものであり、 装用状態における光学性 能を良好に改善しているにもかかわらず、 眼鏡店やユーザ一によるレンズの度数 測定を容易に行うことのできる累進屈折力レンズを提供することを目的とする。 前記課題を解決するために、 本発明では、 装用状態においてレンズの屈折面を 鼻側領域と耳側領域とに分割する主注視線に沿つて、 比較的遠方視に適した遠用 部領域と、 該遠用部領域に対して比較的近方視に適した近用部領域と、 前記遠用 部領域と前記近用部領域との間において前記遠用部領域の面屈折力と前記近用 部領域の面屈折力とを連続的に接続する累進部領域とを備えた累進屈折カレン ズにおいて、  The present invention has been made in view of the above-mentioned problems, and it is possible to easily perform lens power measurement by a spectacle store or a user even though the optical performance in the wearing state is improved satisfactorily. An object of the present invention is to provide a progressive power lens that can be used. In order to solve the above problems, in the present invention, a far-field region that is relatively suitable for far-distance viewing along a main gaze line that divides the refractive surface of the lens into a nose-side region and an ear-side region in the wearing state A near vision area relatively suitable for near vision with respect to the distance vision area, and a surface refractive power of the distance vision area and the near distance between the distance vision area and the near vision area. In a progressive refraction calendar having a progressive area that continuously connects the surface power of the application area,
レンズの透過光線における光学性能を補正するために形成された処方面は非 球面形状を有し、 前記処方面により発生する面非点隔差成分と処方度数の矯正に 必要な球面またはトーリック面により発生する面非点隔差成分との差の絶対値 の平均値が、 レンズの度数を測定するための測定基準点を含む近傍の所定領域に 亘つて所定の値以下であることを特徴とする累進屈折力レンズを提供する。  The prescription surface formed to correct the optical performance of the transmitted light of the lens has an aspheric shape, and is generated by the surface astigmatism component generated by the prescription surface and the spherical surface or toric surface necessary for correcting the prescription power Progressive refraction characterized in that the average value of the absolute value of the difference from the surface astigmatic difference component is less than or equal to a predetermined value over a predetermined area in the vicinity including the measurement reference point for measuring the lens power Provide a power lens.
本発明では、 レンズの透過光線における光学性能を補正するために形成された 処方面が非球面形状を有する。 そして、 処方面の非球面形状により発生する面非 点隔差成分と処方度数の矯正に必要な球面または卜ーリック面により発生する 面非点隔差成分との差の絶対値の平均値 (以下、 単に 「処方面の非球面化により 実質的に発生する面非点隔差成分の平均値」あるいは「面非点隔差成分の平均値」 という) が、 レンズの度数を測定するための測定基準点を含む近傍の所定領域に 亘つて所定の値以下に抑えられている。  In this invention, the prescription surface formed in order to correct | amend the optical performance in the transmitted light of a lens has aspherical shape. And the average of the absolute values of the difference between the surface astigmatism component generated by the aspherical shape of the prescription surface and the surface astigmatism component generated by the spherical or curly surface required for correcting the prescription power "The average value of the surface astigmatism component that is substantially generated by the aspherical prescription surface" or "the average value of the surface astigmatism component") includes the measurement reference point for measuring the lens power. The value is kept below a predetermined value over a predetermined area in the vicinity.
したがって、 処方面の非球面化により装用状態における光学性能を補正する構 成を採用しているにもかかわらず、 例えばレンズメーターを用いて測定基準点を 基準として測定することにより処方度数とほぼ同じ測定度数を得ることができ る。 すなわち、 本発明の累進屈折力レンズでは、 装用者の処方や使用条件等を考 慮して装用状態における光学性能を良好に改善しているにもかかわらず、 眼鏡店 やユーザ一によるレンズの度数測定を容易に行うことができる。 図面の簡単な説明 Therefore, the measurement reference point is set using, for example, a lens meter, even though the optical performance in the wearing state is corrected by making the prescription surface aspherical. By measuring as a reference, it is possible to obtain a measurement frequency almost the same as the prescription frequency. That is, in the progressive-power lens of the present invention, although the optical performance in the wearing state is satisfactorily improved in consideration of the prescription and use conditions of the wearer, the lens power by the spectacle store or the user is one. Measurement can be performed easily. Brief Description of Drawings
図 1は、 本発明の実施形態にかかる累進屈折力レンズの構成を概略的に示す図 である。  FIG. 1 is a diagram schematically showing a configuration of a progressive-power lens according to an embodiment of the present invention.
図 2は、 第 1実施例の比較例にかかる従来の累進屈折力レンズの透過光線での 非点収差分布を示す図である。  FIG. 2 is a diagram showing the astigmatism distribution in the transmitted light of the conventional progressive-power lens according to the comparative example of the first example.
図 3は、 第 1実施例にかかる累進屈折力レンズの透過光線での非点収差分布を 示す図である。  FIG. 3 is a diagram showing the astigmatism distribution in the transmitted light of the progressive addition lens according to the first example.
図 4は、 第 1実施例にかかる累進屈折力レンズの処方面の非球面化により実質 的に発生する面非点隔差成分の分布を示す図である。  FIG. 4 is a diagram showing a distribution of surface astigmatism components substantially generated by making the prescription surface aspherical of the progressive-power lens according to the first example.
図 5は、 第 2実施例の比較例にかかる従来の累進屈折力レンズの透過光線での 非点収差分布を示す図である。  FIG. 5 is a diagram showing the astigmatism distribution in the transmitted light of the conventional progressive-power lens according to the comparative example of the second example.
図 6は、 第 2実施例にかかる累進屈折力レンズの透過光線での非点収差分布を 示す図である。  FIG. 6 is a diagram showing the astigmatism distribution in the transmitted light of the progressive addition lens according to the second example.
図.7は、 第 2実施例にかかる累進屈折力レンズの処方面の非球面化により実質 的に発生する面非点隔差成分の分布を示す図である。 発明の実施の形態  FIG. 7 is a diagram showing a distribution of surface astigmatism components substantially generated by making the prescription surface of the progressive-power lens according to the second example aspherical. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態の具体的な説明に先立って、 本発明の基本的な構成および作 用を説明する。 レンズメーターによる度数測定はレンズ面上の測定基準点を基準 として行われるが、 実際には点ではなくある一定の面積を持った測定領域内で測 定が行われる。 さらに、 この測定領域はレンズメーターの種類や測定するレンズ T/JP2006/313922 Prior to specific description of the embodiments of the present invention, the basic configuration and operation of the present invention will be described. Frequency measurement with a lens meter is performed with reference to a measurement reference point on the lens surface. Actually, measurement is performed in a measurement area with a certain area, not a point. In addition, this measurement area includes the type of lens meter and the lens to be measured. T / JP2006 / 313922
7 の仕様等によって異なる広さ (面積) を有する。 このため、 本発明において処方 面の非球面化により実質的に発生する面非点隔差成分の平均値を所定の値以下 に抑えるべき測定基準点を含む近傍の所定領域は、 レンズメーターの測定に必要 な領域 (以下、 「測定領域」 という) を考慮して決定することが必要である。 つまり、 度数測定のみを考慮するのであれば、 上記面非点隔差成分の平均値が 所定の値以下の所定領域はできるだけ広い方が効果的であるが、 この所定領域を 広くするほど装用状態における光学性能は低下する。 このため、 本発明の目的を 達成できるように、 上記測定基準点を含む近傍の所定領域はこれらの様々な条件 を考慮して決定されるべきである。 本発明において、 装用状態における光学性能 を重視する場合、 上記面非点隔差成分の平均値が所定の値以下の測定基準点を含 む近傍の所定領域は、 測定基準点からレンズの水平方向への距離を X (mm) と し、 測定基準点からレンズの鉛直方向への距離を y (mm) とするとき、 I ( x 2 + y 2) l/2 l≤ 2 . 5 0 (mm) の条件を満足する領域であることが It varies in size (area) depending on the specifications of 7. For this reason, in the present invention, a predetermined area in the vicinity including a measurement reference point where the average value of the surface astigmatism component generated substantially by the aspherical surface of the prescription surface should be kept below a predetermined value is used for the measurement of the lens meter. It is necessary to decide in consideration of the necessary area (hereinafter referred to as “measurement area”). In other words, if only frequency measurement is considered, it is more effective that the predetermined area where the average value of the above-mentioned astigmatic difference component is not more than a predetermined value is as wide as possible. Optical performance is degraded. For this reason, in order to achieve the object of the present invention, the predetermined region in the vicinity including the measurement reference point should be determined in consideration of these various conditions. In the present invention, when importance is attached to the optical performance in the wearing state, the predetermined area in the vicinity including the measurement reference point where the average value of the surface astigmatic difference component is equal to or less than the predetermined value extends from the measurement reference point in the horizontal direction of the lens. Where X (mm) is the distance from the measurement reference point in the vertical direction of the lens, y (mm), I (x 2 + y 2 ) l / 2 l≤ 2.5 0 (mm) It must be an area that satisfies the conditions
望ましい。 desirable.
また、 本発明では、 装用状態における光学性能の改善と度数測定の容易さとの バランスを考慮する場合、 上記面非点隔差成分の平均値を所定の値以下に抑える べき所定領域は、 I ( x 2+ y 2) 1/2 I≤ 4 . 0 0 (mm) の条件を満足する領域 であることが望ましい。 Further, in the present invention, when considering the balance between the improvement of optical performance in the wearing state and the ease of frequency measurement, the predetermined region where the average value of the surface astigmatic difference component should be kept below a predetermined value is I (x 2 + y 2 ) 1/2 I ≤ 4.0 0 (mm) is desirable.
更に、 本発明では、 レンズメーターの測定位置合わせの精度の影響を考慮して度 数測定の容易さを重視する場合、 I ( x 2+ y 2) 1/2 I≤ 5 . 0 0 (mm) の条件 を満足する領域であることが望ましい。 Furthermore, in the present invention, I (x 2 + y 2 ) 1/2 I≤ 5.0 0 (mm) when importance is attached to the ease of frequency measurement in consideration of the effect of the accuracy of lens meter measurement alignment. It is desirable that the region satisfies the condition (1).
ところで、 トーリック面では必ず面非点隔差が存在するが、 これはもともと乱 視矯正に必要な面非点隔差であり、 光学性能の向上のために付与されているもの ではない。 従って、 本発明では、 この乱視矯正に必要な面非点隔差を、 処方面の 非球面化により発生する面非点隔差から分離して考える。即ち、上述したように、 本発明において処方面の非球面化により実質的に発生する面非点隔差成分を、 非 球面化された処方面の任意の座標における面非点隔差と、 処方度数の矯正に必要 な球面またはトーリック面の当該座標における面非点隔差との差分の絶対値と して表す。 By the way, there is always a surface astigmatism on the toric surface, but this is originally a surface astigmatism necessary for astigmatism correction, and is not given to improve optical performance. Therefore, in the present invention, the surface astigmatism necessary for correcting astigmatism is considered separately from the surface astigmatism generated by making the prescription surface aspherical. That is, as described above, in the present invention, the surface astigmatism component generated substantially by the aspherical surface of the prescription surface is reduced. It is expressed as the absolute value of the difference between the surface astigmatism at any coordinate of the spheroidized prescription surface and the surface astigmatism at the coordinate of the spherical or toric surface necessary for correcting the prescription power.
すなわち、 処方面の任意の座標 (X, y) における面非点隔差を AS (X, y) とし、 非球面化される前の処方度数の矯正に必要な球面またはト—リック面の当 該座標 (X, y) における面非点隔差を C (x, y) とし、 処方面の非球面化に より当該座標(X, y)において実質的に発生する面非点隔差成分を AAS (x, y) とするとき、 AAS (x, y) は下記の式 (1) で表される。  That is, AS (X, y) is the surface astigmatism difference at an arbitrary coordinate (X, y) on the prescription surface, and the corresponding spherical surface or toric surface is necessary to correct the prescription power before being aspherical. The plane astigmatism at the coordinates (X, y) is C (x, y), and the surface astigmatism component that is substantially generated at the coordinates (X, y) due to the aspherical surface of the prescription surface is AAS (x , y), AAS (x, y) is expressed by the following equation (1).
△ AS ( , y) = I AS (x, y) 一 C (x, y) I (1) △ AS (, y) = I AS (x, y) One C (x, y) I (1)
レンズメーターによる度数の測定は、 処方面に対してほぼ垂直に入射する光線 に基づいて行われるため、 測定領域内での面非点隔差成分の分布が、 ほぼそのま ま測定度数に影響する。 従って、 本発明では、 処方面の非球面化により実質的に 発生する面非点隔差成分の平均値を Δ AS avとし、 この平均値 AASavを所定 の値以下に抑えることによって本発明の目的を達成している。 以下の表 1は、 屈 折補正用累進屈折力眼鏡レンズに関する I SO規格である 「I S〇 8980 - 2 : 2004 (E)」 で制定されている表であって、 測定基準点における乱視屈 折力の表示値に対する許容差を示す表である。  Since the power is measured with a lens meter based on light rays that are incident almost perpendicular to the prescription surface, the distribution of the surface astigmatism component within the measurement area almost directly affects the measurement power. Therefore, in the present invention, the average value of the surface astigmatism component that is substantially generated by making the prescription surface aspherical is Δ AS av, and the average value AASav is suppressed to a predetermined value or less to achieve the object of the present invention. Have achieved. Table 1 below is a table established in IS Standard 8980-2: 2004 (E), which is an ISO standard for progressive-power spectacle lenses for correcting bending, with astigmatism bending at the measurement reference point. It is a table | surface which shows the tolerance with respect to the display value of force.
表 1 table 1
乱視屈折力の表示値に対する許容差 絶対値で大きい方の 両主経線の屈折力の  Tolerance of astigmatic power to the displayed value Absolute power of both major meridians
主経線屈折力 許容差 0.00以上 0.75を超え 4.00を超え 6.00を超え  Main meridian refractive power Tolerance 0.00 or more Over 0.75 Over 4.00 Over 6.00
0.75以下 4.00以下 6.00以下 るもの 0.75 or less 4.00 or less 6.00 or less
0.00以上 6.00以下 ±0.12 ±0.12 ±0.18 ±0.18 ±0.250.00 or more 6.00 or less ± 0.12 ± 0.12 ± 0.18 ± 0.18 ± 0.25
6.00を超え 9.00以下 ±0.18 ±0.18 ±0.18 ±0.18 ±0.25Over 6.00 and under 9.00 ± 0.18 ± 0.18 ± 0.18 ± 0.18 ± 0.25
9.00を超え 12.00以下 ±0.18 ±0.18 ±0.18 ±0.25 ±0.25Over 9.00 and under 12.00 ± 0.18 ± 0.18 ± 0.18 ± 0.25 ± 0.25
12.00を超え 20.00以下 ±0.25 ±0.18 ±0.25 ±0.25 ±0.25Over 12.00 and under 20.00 ± 0.25 ± 0.18 ± 0.25 ± 0.25 ± 0.25
20.00を超えるもの ±0.37 ±0.25 ±0.25 ±0.37 ±0.37 なお、 表 1中に記載された数値の単位は全てディオプターである。 また、 表 1 中に記載された 「絶対値で大きい方の主経線屈折力」 とは、 球面屈折力の表示値 を Sとし、 乱視屈折力の表示値を Cとしたとき、 両主経線の屈折力の絶対値 I S 1と 1 S+C Iとのうちの大きい方の値を意味している。 レンズメータ一による 度数測定時には、 I so規格に代表される公的な規格を用いることが一般的であ る。 Over 20.00 ± 0.37 ± 0.25 ± 0.25 ± 0.37 ± 0.37 All the numerical values listed in Table 1 are diopters. Also, the “larger principal meridian power in absolute value” described in Table 1 means that when the spherical power is indicated by S and the astigmatic power is indicated by C, both principal meridians It means the larger value of the absolute value of refractive power IS 1 and 1 S + CI. When measuring frequency with a lens meter, it is common to use official standards such as the ISO standard.
つまり、 レンズメ一夕一による測定度数の処方度数に対するずれ量が、 I SO 規格で設定された許容値 (許容差) 以下であれば、 処方度数と測定度数とが実用 上は等しいと判断することができる。 従って、 本発明において、 平均値 AASav を表 1の I SO規格で設定された許容差以下に抑えれば、 本発明の目的を達成す ることができる。 ただし、 累進面による測定度数への影響を考慮した場合、 平均 値 AASav は表 1における許容値の 75 %以下であることが好ましく、 平均値 In other words, if the amount of deviation of the measured power from the lens lens relative to the prescription power is less than the tolerance value (tolerance) set in the ISO standard, it is judged that the prescription power and the measured power are practically equal. Can do. Therefore, in the present invention, the object of the present invention can be achieved if the average value AASav is suppressed to be equal to or smaller than the tolerance set in the ISO standard shown in Table 1. However, when considering the influence of the progressive surface on the measurement frequency, the average value AASav is preferably 75% or less of the allowable value in Table 1.
△ ASavは表 1における許容値の 50 %以下であることがさらに好ましい。 表 1を参照してわかるように、 度数測定における許容値は処方度数や乱視度数 によって異なる値をとることが望ましいが、 設計や製造における実務の簡略化か ら、平均値 Δ A S avの許容値を装用者の処方に依存することなく一定にすること も可能である。 その場合、 平均値 AASavの許容値を表 1に記載されている許 容値の中から選択して決定することもできるが、 本願発明者の検討によると、 装 用状態における光学性能を重視する場合には AASav≤0. 15 (ディオプ夕一) を満足することが望ましく、 装用状態における光学性能をさらに重視する場合に は AASav≤0. 12 (ディオプター) を満足することが望ましい。 ΔASav is more preferably 50% or less of the allowable value in Table 1. As can be seen with reference to Table 1, it is desirable that the tolerance value for frequency measurement varies depending on the prescription frequency and the astigmatism frequency, but because of the simplification of design and manufacturing practices, the tolerance value of the average value Δ AS av It is also possible to make this constant without depending on the wearer's prescription. In that case, the tolerance value of the average value AASav can be selected and determined from the tolerance values listed in Table 1, but according to the study of the present inventor, the optical performance in the wearing state is emphasized. In some cases, it is desirable to satisfy AASav ≤ 0.15 (diop evening), and when the optical performance in the wearing state is more important, it is desirable to satisfy AASav ≤ 0.12 (diopter).
また、 本発明において、 装用状態における光学性能の改善と度数測定の容易さ とのバランスを考慮する場合には、 AASav≤0. 10 (ディオプ夕一) を満足 することが望ましく、 AASav≤0. 09 (ディオプ夕一) を満足することがさ らに望ましい。 更に、 本発明において、 度数測定の容易さを重視する場合には、 In the present invention, it is desirable to satisfy AASav≤0.10 (diop evening) when considering the balance between the improvement of optical performance in the wearing state and the ease of frequency measurement, and AASav≤0. It is even more desirable to satisfy 09 (Diop Yuichi). Furthermore, in the present invention, when emphasizing ease of frequency measurement,
△ ASav≤0. 06 (ディオプ夕一) を満足することが望ましい。 また、 本発明において、上記面非点隔差成分の平均値 Δ AS avを所定の値以下 に抑えるべき測定基準点を含む近傍の所定領域は、 実質的に球面形状またはトー リック面形状であることが好ましい。 眼鏡店やユーザーが、 透過光線における光 学性能の改善よりもレンズメーターによる度数測定を重視する場合、 即ち、 規格 による許容値を考慮することなく処方度数と測定度数とが実質的に一致するこ とを望む場合、 上記所定領域において、 処方面を実質的に球面形状またはト一リ ック面形状にすることが有効である。 本願発明者の検討によると、 レンズメ一夕 一の測定領域の全体を実質的に球面形状またはト一リック面形状にしなくても、 測定領域内における中心部分の一定の領域を実質的に球面形状またはト一リッ ク面形状にすることによって、 本発明の目的が達成可能であることがわかった。 従って、 実質的に球面形状またはトーリック面形状である測定基準点を含む近 傍の領域は、 測定基準点からレンズの水平方向への距離を X (mm) とし、 測定 基準点からレンズの鉛直方向への距離を y (mm) とするとき、 I (x2+y2) 1/2 I≤ 1. 75 (mm) △ It is desirable to satisfy ASav ≤ 0.06 (diop evening). In the present invention, the predetermined region in the vicinity including the measurement reference point where the average value ΔAS av of the surface astigmatism component should be kept below a predetermined value is substantially spherical or toric. Is preferred. If an optician or user places more emphasis on measuring power with a lens meter than improving optical performance in transmitted light, i.e., the prescription power and the measured power are substantially matched without taking into account the tolerances of the standard. It is effective to make the prescription surface substantially spherical or toric in the predetermined area. According to the study of the present inventor, even if the entire measurement area of the lens base is not substantially spherical or toric, the constant area of the central portion in the measurement area is substantially spherical. It has also been found that the object of the present invention can be achieved by forming a toric surface shape. Therefore, in the area near the measurement reference point that is substantially spherical or toric, the distance from the measurement reference point in the horizontal direction of the lens is X (mm), and the vertical direction of the lens from the measurement reference point I (x 2 + y 2 ) 1/2 I≤ 1. 75 (mm)
の条件を満足する領域であることが望ましい。 また、 処方度数と測定度数とをさ らに良好に一致させるには、 実質的に球面形状またはト一リック面形状である測 定基準点を含む近傍の領域は、 I (x2+y2) |/21≤ 2. 50 (mm) の条件を 満足する領域であること It is desirable that the region satisfies this condition. In addition, in order to make the prescription power and the measurement power better match, the neighboring region including the measurement reference point which is substantially spherical or toric surface shape is I (x 2 + y 2 ) | / 2 1≤ 2. 50 (mm)
が望ましく、 I (x2 + y2) Ι7Ί≤ 4. 00 (mm) の条件を満足する領域であ ることがさらに望ましい。 It is desirable that the region satisfies the condition of I (x 2 + y 2 ) Ι7 Ί≤ 4.00 (mm).
一般的なレンズメータ一では、 0. 06D (ディオプ夕一) よりも小さい面非 点隔差成分を正確に測定することは非常に難しく、 さらに 0. 03D以下の面非 点隔差成分の測定は実用上不可能であるといわれている。 従って、 レンズメ一夕 一における実用上の屈折力の測定分解能は、 0. 03D以上であると考えられる。 このため、 測定基準点を含む近傍の領域における面非点隔差成分がレンズメータ 一の測定分解能である 0. 03 D以下であれば、 実測定上は球面またはトーリッ ク面と同等であると見なすことができる。 With a typical lens meter, it is very difficult to accurately measure a surface astigmatism component smaller than 0.06D (Diop Yuichi), and it is also practical to measure a surface astigmatism component below 0.03D. It is said that it is impossible. Therefore, it is considered that the practical refractive power measurement resolution in the lens unit is 0.03D or more. For this reason, if the surface astigmatism component in the adjacent region including the measurement reference point is 0.03 D or less, which is the same as the measurement resolution of the lens meter, the actual measurement will be spherical or torsional. It can be regarded as equivalent to the mask surface.
また、 本発明において、 上記面非点隔差成分の平均値 Δ A S avを所定の値以下 に抑えるべき測定基準点を含む近傍の所定領域の大きさ及び形状のうちの少な くとも一方は、 装用者の処方、 装用者の使用条件、 製品としてのレンズの仕様、 レンズの度数を測定する方法、 およびレンズの度数を測定する測定器の仕様のう ちの少なくとも 1つの条件に基づいて決められることが好ましい。 本発明のよう に処方面を非球面化した両面非球面型の累進屈折力レンズでは、 たとえ同じ製品 群であっても、処方面の非球面形状は、球面度数や乱視度数、乱視軸度、加入度、 インセット角、 プリズム処方等といった装用者の処方や使用条件によって大きく 異なる。 .  Further, in the present invention, at least one of the size and shape of the predetermined area in the vicinity including the measurement reference point where the average value ΔAS av of the surface astigmatism component should be kept below a predetermined value is Can be determined based on at least one of the following: preferable. In a double-sided aspherical progressive power lens with an aspheric prescription surface as in the present invention, the prespherical shape of the prescription surface is spherical, astigmatic, astigmatic, It varies greatly depending on the wearer's prescription and usage conditions such as addition, inset angle and prism prescription. .
さらに、 測定器であるレンズメ一ターの測定条件についても、 例えば測定光線 が直径 5 mmの円形光束であるレンズメ一夕一を製造するメ一力一も有れば、 同 じく 5 mmでも測定光線が矩形光束であるレンズメータ一を製造するメーカ一 も有る。 また、 同じメーカーでも、 手動レンズメータ一と自動レンズメ一ターと で測定光束の大きさや形状が異なる等、 メーカーや測定方法の違いによって条件 も様々である。 従って、 本発明による技術を全てのレンズに対して同じ条件で適 用するのではなく、 装用者の処方や使用条件、 製品の仕様、 度数測定方法、 測定 器の仕様のうち、 少なくとも一つの条件を考慮して、平均値 A A S avを所定の値 以下に抑えるべき測定基準点を含む近傍の所定領域の大きさや形状を決定する ことによって、 より優れた光学性能と度数測定の容易さとの両方を得ることが可 能となる。  In addition, the measurement conditions of the lens meter, which is a measuring instrument, can be measured even if the measuring beam is a circular beam with a diameter of 5 mm. Some manufacturers manufacture lens meters that have a rectangular light beam. Even with the same manufacturer, the conditions vary depending on the manufacturer and measurement method, such as the size and shape of the measurement light beam differing between the manual lens meter and the automatic lens meter. Therefore, the technology according to the present invention is not applied to all lenses under the same conditions, but at least one of the prescription and usage conditions of the wearer, the product specifications, the frequency measurement method, and the measurement instrument specifications. By taking into account the average value AAS av and determining the size and shape of the predetermined area including the measurement reference point that should be kept below the predetermined value, both superior optical performance and ease of frequency measurement can be achieved. It can be obtained.
また、 本発明において、 処方面の面形状を表わす関数 (例えば処方面の設計上 の面形状を表わす関数、 処方面の実際の面形状をフィッティングして得られる関 数) の少なくとも二次導関数までが処方面のほぼ全体に亘つて連続であることが 好ましい。 この構成により、 外観上の良好な連続性や透過光線における良好な光 学性能を得ることができるとともに、 レンズメーターによる測定度数として常に 6313922 In the present invention, at least a second derivative of a function representing the surface shape of the prescription surface (for example, a function representing the surface shape in the design of the prescription surface, a function obtained by fitting the actual surface shape of the prescription surface). It is preferable that the process is continuous over almost the entire prescription surface. With this configuration, it is possible to obtain good continuity in appearance and good optical performance in transmitted light, and at the same time always measure as a lens meter. 6313922
12 安定した値を得ることができる。 12 Stable values can be obtained.
本発明の実施形態を、 添付図面に基づいて説明する。 図 1は、 本発明の実施形 態にかかる累進屈折力レンズの構成を概略的に示す図である。 図 1を参照すると、 本実施形態の累進屈折力レンズは、 装用状態においてレンズの屈折面を鼻側領域 と耳側領域とに分割する主注視線 MM' に沿って、 比較的遠方視に適した遠用部 Fと、 比較的近方視に適した近用部 Nと、 遠用部 Fと近用部 Nとの間において遠 用部 Fの面屈折力と近用部 Nの面屈折力とを連続的に接続する累進部 Pとを備 えている。  Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram schematically showing the configuration of a progressive-power lens according to an embodiment of the present invention. Referring to FIG. 1, the progressive-power lens of this embodiment is suitable for relatively far vision along the main sight line MM 'that divides the refractive surface of the lens into a nose side region and an ear side region in the wearing state. The distance power of the distance F and the surface refraction of the near area N between the distance area F and the near area N And a progressive part P that continuously connects the force.
主注視線 MM'は、遠用部 Fの測定基準点である遠用基準点(遠用中心)〇F、 遠用アイポイント E、 レンズ面の幾何中心 OG、 および近用部 Nの測定基準点で ある近用基準点 (近用中心) ONを通る基準線である。 本実施形態の各実施例で は、 外面 (眼とは反対側の外側面) に累進面を配置し、 内面 (眼側の内側面) に 処方面を配置している。 また、 遠用部 Fの測定基準点である遠用基準点 OFは、 幾何中心 OGから主注視線 MM' に沿って 8 mm上方に位置している。 また、 各 実施例のレンズの外径 (直径) は 70mmである。  The main line of sight MM 'is the distance reference point (distance center) 0F, the distance eye point E, the geometric center OG of the lens surface, and the near area N measurement standard. This is a reference line that passes through ON. In each example of the present embodiment, a progressive surface is disposed on the outer surface (the outer surface opposite to the eye), and a prescription surface is disposed on the inner surface (the inner surface on the eye side). The distance reference point OF, which is the measurement reference point of the distance portion F, is located 8 mm above the geometric center OG along the main line of sight MM '. The outer diameter (diameter) of each example lens is 70 mm.
[第 1実施例]  [First Example]
図 2は、 第 1実施例の比較例にかかる従来の累進屈折力レンズの透過光線での 非点収差分布を示す図である。 図 2の比較例にかかる従来の累進屈折力レンズで は、 球面度数 S=l. 00 (ディオプ夕一) であり、 乱視度数 C=0. 00 (デ ィォプ夕一) であり、 加入度 ADD=2. 00 (ディオプター) であり、 処方べ —スカーブ BC=3. 70 (ディオプター) であり、 レンズの屈折率 n e = l. 60である。 図 2を参照すると、 従来技術にしたがう比較例の累進屈折力レンズ では、 遠用部 F及び近用部 Nにおいて、 非点収差が 0. 5D (ディオプ夕一) 以 下である領域すなわち明視域が狭くなつている。  FIG. 2 is a diagram showing the astigmatism distribution in the transmitted light of the conventional progressive-power lens according to the comparative example of the first example. In the conventional progressive-power lens according to the comparative example in FIG. 2, the spherical power S = l. 00 (diop evening), the astigmatic degree C = 0.00 (diop evening), and the addition ADD = 2. 00 (diopter), prescription curve BC = 3.70 (diopter), and lens refractive index ne = l. 60. Referring to FIG. 2, in the comparative progressive-power lens according to the prior art, in the distance portion F and the near portion N, the astigmatism is 0.5D (diop evening) or less, that is, clear vision. The area is getting narrower.
図 3は、 第 1実施例にかかる累進屈折力レンズの透過光線での非点収差分布を 示す図である。 第 1実施例にかかる累進屈折力レンズは、 図 2の比較例と同じ処 方 (球面度数、 乱視度数、 加入度、 処方ベースカーブ、 屈折率) であるが、 透過 光線における光学性能を改善するために処方面である内面を非球面化している。 図 3を参照すると、 本発明にしたがう第 1実施例の累進屈折力レンズでは、 図2 の比較例に比して、 遠用部 F及び近用部 Nの明視域は、 共に良好に改善されてい る。 FIG. 3 is a diagram showing the astigmatism distribution in the transmitted light of the progressive addition lens according to the first example. The progressive-power lens according to the first example is the same as the comparative example in FIG. (Spherical power, astigmatism power, addition power, prescription base curve, refractive index), but the inner surface, which is the prescription surface, is aspherical in order to improve the optical performance of transmitted light. Referring to FIG. 3, in the progressive-power lens of the first embodiment according to the present invention, as compared with the comparative example of FIG. 2, the clear vision area of the distance portion F and the near portion N are both good improvement It has been done.
図 4は、 第 1実施例にかかる累進屈折力レンズの処方面の非球面化により実質 的に発生する面非点隔差成分の分布を示す図である。 第 1実施例では、 図 4に示 すような面非点隔差成分の分布を有する非球面を処方面に付与することによつ て、 図 3で示すような光学性能の改善を達成している。 以下の表 2は、 第 1実施 例にかかる累進屈折力レンズの処方面における測定基準点〇 Fを含む近傍の領 域の非球面化により実質的に発生する面非点隔差成分の分布を数値的に示す表 である。 表 2  FIG. 4 is a diagram showing a distribution of surface astigmatism components substantially generated by making the prescription surface aspherical of the progressive-power lens according to the first example. In the first embodiment, an optical surface improvement as shown in FIG. 3 is achieved by applying an aspheric surface having a surface astigmatism component distribution as shown in FIG. 4 to the prescription surface. Yes. Table 2 below shows the distribution of the surface astigmatism component that is substantially generated by asphericalization of the neighboring area including the measurement reference point 〇 F on the prescription surface of the progressive-power lens according to the first example. It is a table shown. Table 2
-10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3,0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 3.0 9.0 10.0 -10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3,0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 3.0 9.0 10.0
10.0 0.18 0.16 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.1 1 0.12 0.13 0.14 0.1510.0 0.18 0.16 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.1 1 0.12 0.13 0.14 0.15
9.0 0.18 0.16 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.159.0 0.18 0.16 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15
8.0 0.17 0.16 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.13 0.14 0.148.0 0.17 0.16 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.13 0.14 0.14
7.0 0.17 0.16 0.14 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.05 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.147.0 0.17 0.16 0.14 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.05 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
6.0 0.17 0.16 0.14 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.146.0 0.17 0.16 0.14 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
5.0 0.17 0.15 0.14 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.1 1 0,12 0.135.0 0.17 0.15 0.14 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.1 1 0,12 0.13
4.0 0.16 0.15 0.14 0.13 0.12 0.11 0.09 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.11 0.12 0.134.0 0.16 0.15 0.14 0.13 0.12 0.11 0.09 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.11 0.12 0.13
3.0 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.08 0.08 0.07 0.06 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.11 0.11 0.123.0 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.08 0.08 0.07 0.06 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.11 0.11 0.12
2.0 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.07 0.06 0.07 0.07 0.07 0.08 0.09 0.10 0.10 0.11 0.122.0 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.07 0.06 0.07 0.07 0.07 0.08 0.09 0.10 0.10 0.11 0.12
1.0 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.11 0.111.0 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.11 0.11
0.0 0.15 0.15 0.14 0.13 0.12 0.11 0.11 0.10 0.09 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.09 0.09 0.1O 0.11 0.110.0 0.15 0.15 0.14 0.13 0.12 0.11 0.11 0.10 0.09 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.09 0.09 0.1O 0.11 0.11
-1.0 0.15 0.15 0.14 0.13 0.13 0.12 0.1 1 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.11-1.0 0.15 0.15 0.14 0.13 0.13 0.12 0.1 1 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.11
-2.0 0.15 0.15 0.14 0.14 0.13 0.12 0.12 0.11 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.11 一 3.0 0.15 0.15 0.15 0.14 0.13 0.13 0.12 0.12 0.11 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.10 0.10-2.0 0.15 0.15 0.14 0.14 0.13 0.12 0.12 0.11 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.11 One 3.0 0.15 0.15 0.15 0.14 0.13 0.13 0.12 0.12 0.11 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.10 0.10
-4.0 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10-4.0 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
-5.0 0.16 0.16 0.15 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0. 0 0.11-5.0 0.16 0.16 0.15 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0. 0 0.11
-6.0 0.16 0.16 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11-6.0 0.16 0.16 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11
-7.0 0.17 0.17 0.16 0.16 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11-7.0 0.17 0.17 0.16 0.16 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11
-8.0 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.15 0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11-8.0 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.15 0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11
-9.0 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12-9.0 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12
-10.0 0.19 0.19 0.19 0.19 0.18 0.18 0.18 0.18 0.17 0.17 0.16 0.16 0.15 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 JP2006/313922 -10.0 0.19 0.19 0.19 0.19 0.18 0.18 0.18 0.18 0.17 0.17 0.16 0.16 0.15 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 JP2006 / 313922
14 表 2において、 最も上側の行に記載された横軸は測定基準点 OFを原点として レンズの水平方向への距離 X (mm)を示し、最も左側の列に記載された縦軸は、 測定基準点 OFを原点としてレンズの鉛直方向への距離 y (mm)を示している。 図 4および表 2を参照して分かるように、 測定基準点〇 Fを含む近傍の領域の非 球面化により実質的に発生する面非点隔差成分は、 比較的小さい値 (ディオプ夕 一) に抑えられている。 14 In Table 2, the horizontal axis described in the uppermost row indicates the distance X (mm) in the horizontal direction of the lens with the measurement reference point OF as the origin, and the vertical axis described in the leftmost column indicates the measurement The distance y (mm) in the vertical direction of the lens is shown with the reference point OF as the origin. As can be seen with reference to Fig. 4 and Table 2, the surface astigmatism component that is substantially generated by asphericalization of the neighboring area including the measurement reference point 〇 F is a relatively small value (diop constant). It is suppressed.
また、 図 2の比較例にかかる従来の累進屈折力レンズおよび第 1実施例にかか る累進屈折力レンズについて、 直径 5 mmの光束により測定するレンズメ一夕一 を用いて測定基準点 O Fを基準として測定したときに得られる測定度数のシミ ユレ一シヨン結果を以下に示す。  In addition, for the conventional progressive-power lens according to the comparative example of FIG. 2 and the progressive-power lens according to the first example, the measurement reference point OF is set by using a lens unit that measures with a light beam having a diameter of 5 mm. The simulation result of the measurement frequency obtained when measured as a reference is shown below.
比較例:球面度数 S = 1. 00 D, 乱視度数 C = 0. 03D  Comparative example: Spherical power S = 1. 00 D, Astigmatic power C = 0.03D
実施例:球面度数 S = 1. 02D, 乱視度数 C = 0. 07D  Example: Spherical power S = 1.02D, Astigmatic power C = 0.07D
本発明にしたがう第 1実施例では、 内面である処方面の非球面化の影響により、 測定度数としての球面度数及び乱視度数は、 '図 2の比較例と比較して、 装用者の 処方度数から若干ずれた値になっている。 しかしながら、 表 1に示す I SO規格 を参照すると、 第 1実施例における装用者の処方度数からの測定度数のずれ量は 十分に許容値内であり、 実用上は問題ないことがわかる。 すなわち、 第 1実施例 の累進屈折力レンズでは、 本発明の目的が達成されている。  In the first embodiment according to the present invention, the spherical power and the astigmatic power as the measurement power are less than the comparative example of FIG. 2 due to the influence of the aspherical prescription surface, which is the inner surface. The value is slightly deviated from. However, referring to the ISO standard shown in Table 1, it can be seen that the deviation of the measured power from the prescription power of the wearer in the first embodiment is sufficiently within the allowable value, and there is no problem in practical use. That is, the objective of the present invention is achieved in the progressive-power lens of the first embodiment.
[第 2実施例]  [Second Example]
図 5は、 第 2実施例の比較例にかかる従来の累進屈折力レンズの透過光線での 非点収差分布を示す図である。 図 5の比較例にかかる従来の累進屈折力レンズで は、 球面度数 S = l. 00 (ディオプ夕一) であり、乱視度数 C =— 2. 00 (デ ィォプ夕一) であり、 乱視軸 AX=90 (度) であり、 加入度 ADD=2. 00 (ディオプター) であり、 処方ベースカーブ BC=3. 70 (ディオプ夕一) で あり、 レンズの屈折率 n e = l. 60である。 図 5を参照すると、 従来技術にし たがう比較例の累進屈折力レンズでは、 遠用部 F及び近用部 Nの明視域が非常に 3922 FIG. 5 is a diagram showing the astigmatism distribution in the transmitted light of the conventional progressive-power lens according to the comparative example of the second example. In the conventional progressive-power lens according to the comparative example of FIG. 5, the spherical power S = l. 00 (diop evening), the astigmatism degree C = —2.00 (diop evening), and the astigmatic axis AX = 90 (degrees), addition ADD = 2.00 (diopter), prescription base curve BC = 3.70 (diop evening), and lens refractive index ne = l.60. Referring to FIG. 5, in the comparative progressive-power lens according to the conventional technique, the clear vision areas of the distance portion F and the near portion N are very large. 3922
15 狭くなつているだけでなく、 非点収差の最大値も大きくなつている。 15 Not only is it narrowing, but the maximum value of astigmatism is also increasing.
図 6は、 第 2実施例にかかる累進屈折力レンズの透過光線での非点収差分布を 示す図である。 第 2実施例にかかる累進屈折力レンズは、 図 5の比較例と同じ処 方 (球面度数、 乱視度数、 加入度、 処方ベースカーブ、 屈折率) であるが、 透過 光線における光学性能を改善するために処方面である内面を非球面化している。 図 6を参照すると、 本発明にしたがう第 2実施例の累進屈折力レンズでは、 図 5 の比較例に比して、 遠用部 F及び近用部 Nの明視域は、 共に非常に良好に改善さ れ、 非点収差の最大値も小さくなつている。  FIG. 6 is a diagram showing the astigmatism distribution in the transmitted light of the progressive addition lens according to the second example. The progressive power lens according to the second example has the same treatment as the comparative example in FIG. 5 (spherical power, astigmatism power, addition power, prescription base curve, refractive index), but improves optical performance in transmitted light. Therefore, the inner surface which is the prescription surface is aspherical. Referring to FIG. 6, in the progressive-power lens according to the second embodiment according to the present invention, the clear vision areas of the distance portion F and the near portion N are both very good as compared with the comparative example of FIG. As a result, the maximum value of astigmatism is getting smaller.
図 7は、 第 2実施例にかかる累進屈折力レンズの処方面の非球面化により実質 的に発生する面非点隔差成分の分布を示す図である。 第 2実施例では、 図 7に示 すような面非点隔差成分の分布を有する非球面を処方面に付与することによつ て、 図 6で示すような光学性能の改善を達成している。 以下の表 3は、 第 2実施 例にかかる累進屈折力レンズの処方面における測定基準点 O Fを含む近傍の領 域の非球面化により実質的に発生する面非点隔差成分の分布を数値的に示す表 である。 FIG. 7 is a diagram showing a distribution of surface astigmatism components substantially generated by making the prescription surface of the progressive addition lens according to the second example aspherical. In the second embodiment, the optical performance improvement as shown in FIG. 6 is achieved by providing the prescription surface with an aspheric surface having the distribution of the surface astigmatism component as shown in FIG. Yes. Table 3 below shows the numerical distribution of the surface astigmatism component generated substantially by the asphericalization of the nearby area including the measurement reference point OF on the prescription surface of the progressive addition lens according to the second example. It is a table shown in.
表 3 Table 3
Figure imgf000018_0001
Figure imgf000018_0001
表 3においても表 2と同様に、 最も上側の行に記載された横軸は、 測定基準点 OFを原点としてレンズの水平方向への距離 X (mm) を示し、 最も左側の列に 5 記載された縦軸は、 測定基準点 OFを原点としてレンズの鉛直方向への距離 y (mm) を示している。 図 7および表 3を参照して分かるように、 測定基準点 O Fを含む近傍の領域の非球面化により実質的に発生する面非点隔差成分は、 ほぼ 0 (ディオプ夕一) に抑えられ、 実質的にト一リック面と等しい面形状になって いる。 In Table 3, as in Table 2, the horizontal axis in the uppermost row indicates the distance X (mm) in the horizontal direction of the lens with the measurement reference point OF as the origin, and 5 in the leftmost column. The vertical axis represents the distance y (mm) in the vertical direction of the lens with the measurement reference point OF as the origin. As can be seen with reference to Fig. 7 and Table 3, the surface astigmatism component that is substantially generated by asphericalization of the neighboring area including the measurement reference point OF is suppressed to almost 0 (diop evening) The surface shape is substantially equal to the toric surface.
10 また、 図 5の比較例にかかる従来の累進屈折力レンズおよび第 2実施例にかか る累進屈折力レンズについて、 直径 5mmの光束により測定するレンズメータ一 を用いて測定基準点 0 Fを基準として測定したときに得られる測定度数のシミ ユレーション結果を以下に示す。  10 For the conventional progressive-power lens according to the comparative example of FIG. 5 and the progressive-power lens according to the second example, a measurement reference point 0 F is set using a lens meter that measures light with a diameter of 5 mm. The simulation results of the measurement frequency obtained when measuring as a reference are shown below.
比較例:球面度数 S=l. 00D, 乱視度数 C =—2. 03D, 乱視軸 AX = Comparison example: Spherical power S = l. 00D, Astigmatic power C = —2. 03D, Astigmatic axis AX =
15 90 (度) 実施例:球面度数 S = l . 0 0 D , 乱視度数 C =—2 . 0 3 D , 乱視軸 A X = 9 0 (度) 15 90 (degrees) Example: Spherical power S = l. 0 0 D, Astigmatism power C = —2.0 3 D, Astigmatic axis AX = 9 0 (degrees)
本発明に係る第 2実施例では、 内面である処方面において測定基準点 O Fを含 む近傍の領域を実質的にト一リック面と等しい形状としている。 その結果、 測定 度数としての球面度数及び乱視度数は、 図 5の比較例と同様に、 装用者の処方度 数とほぼ同じ値になっている。 すなわち、 第 2実施例の累進屈折力レンズにおい ても第 1実施例と同様に、 本発明の目的が達成されている。  In the second embodiment according to the present invention, the region in the vicinity including the measurement reference point OF on the prescription surface which is the inner surface has a shape substantially equal to the toric surface. As a result, the spherical power and the astigmatic power as the measurement power are almost the same as the prescription power of the wearer as in the comparative example of FIG. That is, the objective of the present invention is achieved in the progressive-power lens of the second embodiment as in the first embodiment.
以上のように、 本実施形態の累進屈折力レンズでは、 装用状態における光学性 能が良好である上に、 レンズメータ一により処方度数とほぼ等しい測定度数が得 られるため、 眼鏡店やユーザーによるレンズの度数測定を容易に行うことができ る。 尚、 遠用基準点及び近用基準点のうち、 いずれの測定基準点を用いて度数測 定を行うかは、 そのレンズが遠用処方による累進屈折力レンズであるか、 近用処 方による累進屈折力レンズであるかに依存することが多い。 主に遠方視を重視し た遠近累進屈折力レンズの場合には遠用基準点で、 近方視を重視した近々累進屈 折力レンズの場合は近用基準点で測定を行うことが多いが、 どちらの測定基準点 を用いたとしても、 本発明の技術は本質的には変わらない。 従って、 上述の実施 形態に限定されることなく、 様々な仕様の累進屈折力レンズに対して本発明を適 用することが可能であることは明らかである。  As described above, in the progressive-power lens of this embodiment, the optical performance in the wearing state is good, and a lens power can be obtained by a lens meter so that the measurement power is almost equal to the prescription power. The frequency measurement can be easily performed. Of the reference point for distance and the reference point for near distance, which measurement reference point is used for power measurement depends on whether the lens is a progressive power lens with distance prescription or near-field treatment. It often depends on whether it is a progressive power lens. In the case of a progressive power lens focusing on distance vision, the distance is used as a reference point for the distance, and in the case of a near progressive refractive lens focusing on near vision, measurement is often performed at the near reference point. Whichever measurement reference point is used, the technique of the present invention is essentially the same. Therefore, it is apparent that the present invention can be applied to progressive-power lenses having various specifications without being limited to the above-described embodiments.

Claims

請 求 の 範 囲 The scope of the claims
1 . 装用状態においてレンズの屈折面を鼻側領域と耳側領域とに分割する主注 視線に沿って、 比較的遠方視に適した遠用部領域と、 該遠用部領域に対して比較 的近方視に適した近用部領域と、 前記遠用部領域と前記近用部領域との間におい て前記遠用部領域の面屈折力と前記近用部領域の面屈折力とを連続的に接続す る累進部領域とを備えた累進屈折力レンズにおいて、 1. Compared with the distance area, which is relatively suitable for far vision, along the main line of sight that divides the refractive surface of the lens into a nose area and an ear area in the wearing state. A near area suitable for general near vision, and a surface refractive power of the distance area and a surface refractive power of the near area between the distance area and the near area. In a progressive-power lens with progressive regions that are connected continuously,
レンズの透過光線における光学性能を補正するために形成された処方面は非 球面形状を有し、 前記処方面により発生する面非点隔差成分と処方度数の矯正に 必要な球面またはトーリック面により発生する面非点隔差成分との差の絶対値 の平均値が、 レンズの度数を測定するための測定基準点を含む近傍の所定領域に 亘って所定の値以下であることを特徴とする累進屈折力レンズ。  The prescription surface formed to correct the optical performance of the transmitted light of the lens has an aspheric shape, and is generated by the surface astigmatism component generated by the prescription surface and the spherical surface or toric surface necessary for correcting the prescription power Progressive refraction characterized in that the average value of the absolute value of the difference from the surface astigmatic difference component is less than or equal to a predetermined value over a predetermined area in the vicinity including the measurement reference point for measuring the lens power Power lens.
2 . 前記所定領域の大きさ及び形状のうちの少なくとも一方は、装用者の処方、 装用者の使用条件、 製品としてのレンズの仕様、 レンズの度数を測定する方法、 およびレンズの度数を測定する測定器の仕様のうちの少なくとも 1つの条件に 基づいて決められていることを特徴とする請求項 1に記載の累進屈折力レンズ。 2. At least one of the size and shape of the predetermined area is measured by the wearer's prescription, the wearer's use conditions, the specification of the lens as a product, the method of measuring the lens power, and the lens power. 2. The progressive-power lens according to claim 1, wherein the progressive-power lens is determined based on at least one of the specifications of the measuring instrument.
3 . 前記所定領域は、 前記測定基準点からレンズの水平方向への距離を X (m m) とし、 前記測定基準点からレンズの鉛直方向への距離を y (mm) とすると さ、 3. The predetermined region is defined as a distance from the measurement reference point in the horizontal direction of the lens to X (mm) and a distance from the measurement reference point in the vertical direction of the lens to y (mm).
I ( x2+ y2) 1/2 I≤ 2 . 5 0 I (x 2 + y 2 ) 1/2 I≤ 2.5 0
の条件を満足する領域であることを特徴とする請求項 2に記載の累進屈折力レ ンズ。 The progressive-power lens according to claim 2, which is a region that satisfies the above condition.
4. 前記処方面の面形状を表わす関数の少なくとも二次導関数までが前記処方 面のほぼ全体に亘つて連続であることを特徴とする請求項 3に記載の累進屈折 力レンズ。 4. At least the second derivative of the function representing the surface shape of the prescription surface is the prescription. The progressive-power lens according to claim 3, wherein the progressive-power lens is continuous over substantially the entire surface.
5 . 前記所定領域は、 前記測定基準点からレンズの水平方向への距離を X (m m) とし、 前記測定基準点からレンズの鉛直方向への距離を y (mm) とすると さ、 5. The predetermined area is defined such that the distance from the measurement reference point in the horizontal direction of the lens is X (mm), and the distance from the measurement reference point in the vertical direction of the lens is y (mm).
I ( x2+ y ' 1/2 I≤ 2 . 5 0 I (x 2 + y ' 1/2 I≤ 2.5 0
の条件を満足する領域であることを特徴とする請求項 1に記載の累進屈折カレ ンズ。 The progressive refraction calendar according to claim 1, wherein the progressive refraction calendar is a region that satisfies the following condition.
6 . 前記処方面の面形状を表わす関数の少なくとも二次導関数までが前記処方 面のほぼ全体に亘つて連続であることを特徴とする請求項 5に記載の累進屈折 力レンズ。 6. The progressive power lens according to claim 5, wherein at least the second derivative of the function representing the surface shape of the prescription surface is continuous over substantially the entire prescription surface.
7 . 前記所定の値は 0 . 1 5ディオプターであることを特徴とする請求項 1に 記載の累進屈折力レンズ。 7. The progressive-power lens according to claim 1, wherein the predetermined value is 0.15 diopter.
8 . 前記所定領域の大きさ及び形状のうちの少なくとも一方は、装用者の処方、 装用者の使用条件、 製品としてのレンズの仕様、 レンズの度数を測定する方法、 およびレンズの度数を測定する測定器の仕様のうちの少なくとも 1つの条件に 基づいて決められていることを特徴とする請求項 7に記載の累進屈折力レンズ。 8. At least one of the size and shape of the predetermined area is measured by the wearer's prescription, the wearer's use conditions, the specifications of the lens as a product, the method of measuring the lens power, and the lens power. The progressive-power lens according to claim 7, wherein the progressive-power lens is determined based on at least one of the specifications of the measuring instrument.
9 . 前記所定領域は、 前記測定基準点からレンズの水平方向への距離を X (m m) とし、 前記測定基準点からレンズの鉛直方向への距離を y (mm) とすると き、 9. The predetermined area is defined such that a distance from the measurement reference point in the horizontal direction of the lens is X (mm), and a distance from the measurement reference point in the vertical direction of the lens is y (mm),
I ( x2+ y 2) 1/2 I≤ 2 . 5 0 の条件を満足する領域であることを特徴とする請求項 8に記載の累進屈折力レ ンズ。 I (x 2 + y 2 ) 1/2 I≤ 2.5 0 The progressive-power lens according to claim 8, which is a region that satisfies the following condition.
1 0 . 前記処方面の面形状を表わす関数の少なくとも二次導関数までが前記処 方面のほぼ全体に亘つて連続であることを特徴とする請求項 9に記載の累進屈 折力レンズ。 10. The progressive bending lens according to claim 9, wherein at least the second derivative of the function representing the surface shape of the prescription surface is continuous over substantially the entire processing surface.
1 1 . 前記所定領域は、前記測定基準点からレンズの水平方向への距離を X (m m) とし、 前記測定基準点からレンズの鉛直方向への距離を y (mm) とすると き、 1 1. The predetermined area has a distance from the measurement reference point in the horizontal direction of the lens as X (mm) and a distance from the measurement reference point in the vertical direction of the lens as y (mm).
] ( x 2+ y 2) ≤ 2 . 5 0 ] (x 2 + y 2 ) ≤ 2.5 0
の条件を満足する領域であることを特徴とする請求項 7に記載の累進屈折カレ ンズ。 8. The progressive refraction calendar according to claim 7, wherein the progressive refraction calendar is a region that satisfies the following condition.
1 2 . 前記処方面の面形状を表わす関数の少なくとも二次導関数までが前記処 方面のほぼ全体に亘つて連続であることを特徴とする請求項 1 1に記載の累進 屈折力レンズ。 12. The progressive power lens according to claim 11, wherein at least the second derivative of the function representing the surface shape of the prescription surface is continuous over substantially the entire processing surface.
1 3 . 前記所定領域は、 実質的に球面形状またはトーリック面形状であること を特徴とする請求項 1に記載の累進屈折力レンズ。 1. The progressive power lens according to claim 1, wherein the predetermined region has a substantially spherical shape or a toric surface shape.
1 4 . 前記所定領域の大きさ及び形状のうちの少なくとも一方は、 装用者の処 方、 装用者の使用条件、 製品としてのレンズの仕様、 レンズの度数を測定する方 法、 およびレンズの度数を測定する測定器の仕様のうちの少なくとも 1つの条件 に基づいて決められていることを特徴とする請求項 1 3に記載の累進屈折カレ ンズ。 14 4. At least one of the size and shape of the predetermined area is determined by the wearer's treatment, the wearer's usage conditions, the specifications of the lens as a product, the method of measuring the lens power, and the lens power. 14. The progressive refraction calendar according to claim 13, wherein the progressive refraction calendar is determined on the basis of at least one of the specifications of a measuring instrument for measuring the temperature.
15. 前記所定領域は、前記測定基準点からレンズの水平方向への距離を X (m m) とし、 前記測定基準点からレンズの鉛直方向への距離を y (mm) とすると さ、 15. The predetermined area is defined such that a distance from the measurement reference point in the horizontal direction of the lens is X (mm) and a distance from the measurement reference point in the vertical direction of the lens is y (mm).
I (x2+y2) 1/2 I≤ 2. 50 I (x 2 + y 2 ) 1/2 I≤ 2. 50
の条件を満足する領域であることを特徴とする請求項 14に記載の累進屈折力 レンズ。 The progressive-power lens according to claim 14, wherein the progressive-power lens is a region that satisfies the following condition.
16. 前記処方面の面形状を表わす関数の少なくとも二次導関数までが前記処 方面のほぼ全体に亘つて連続であることを特徴とする請求項 1 5に記載の累進 屈折力レンズ。 16. The progressive power lens according to claim 15, wherein at least the second derivative of the function representing the surface shape of the prescription surface is continuous over substantially the entire processing surface.
17. 前記所定領域は、前記測定基準点からレンズの水平方向への距離を X (m m) とし、 前記測定基準点からレンズの鉛直方向への距離を y (mm) とすると き、 17. In the predetermined area, the distance from the measurement reference point in the horizontal direction of the lens is X (mm), and the distance from the measurement reference point in the vertical direction of the lens is y (mm).
I (x2+y2) \≤2. 50 I (x 2 + y 2 ) \ ≤2. 50
の条件を満足する領域であることを特徴とする請求項 13に記載の累進屈折力 レンズ。 The progressive-power lens according to claim 13, wherein the lens satisfies the following condition.
18. 前記処方面の面形状を表わす関数の少なくとも二次導関数までが前記処 方面のほぼ全体に亘つて連続であることを特徴とする請求項 1 Ίに記載の累進 屈折力レンズ。 18. The progressive power lens according to claim 1, wherein at least the second derivative of the function representing the surface shape of the prescription surface is continuous over substantially the entire processing surface.
PCT/JP2006/313922 2005-07-21 2006-07-06 Progressive refractive power lens WO2007010806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007525964A JP5000505B2 (en) 2005-07-21 2006-07-06 Progressive power lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005210705 2005-07-21
JP2005-210705 2005-07-21

Publications (1)

Publication Number Publication Date
WO2007010806A1 true WO2007010806A1 (en) 2007-01-25

Family

ID=37668688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313922 WO2007010806A1 (en) 2005-07-21 2006-07-06 Progressive refractive power lens

Country Status (2)

Country Link
JP (1) JP5000505B2 (en)
WO (1) WO2007010806A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515933A (en) * 2009-01-20 2012-07-12 ローデンストック.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Automatic change of progressive lens design
JP5000505B2 (en) 2005-07-21 2012-08-15 株式会社ニコン・エシロール Progressive power lens
JP2012220655A (en) * 2011-04-07 2012-11-12 Seiko Epson Corp Designing method of progressive refractive power lens
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US10386652B2 (en) 2014-06-18 2019-08-20 Nikon-Essilor Co., Ltd. Lens design method, lens manufacturing method, storage medium, and lens design system
CN113906332A (en) * 2019-09-25 2022-01-07 豪雅镜片泰国有限公司 Progressive-power lens design method, progressive-power lens design system, and progressive-power lens group
CN114930227A (en) * 2019-12-20 2022-08-19 株式会社尼康依视路 Method for designing spectacle lens, method for manufacturing spectacle lens, spectacle lens designing device, spectacle lens ordering and order receiving system, and designing program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458262B2 (en) * 2015-04-07 2019-01-30 東海光学株式会社 Design method and manufacturing method for eyeglass lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066148A (en) * 1998-06-12 2000-03-03 Seiko Epson Corp Progressive refracting power lens
JP2004341086A (en) * 2003-05-14 2004-12-02 Tokai Kogaku Kk Progressive refractive power lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487243A (en) 1977-12-22 1979-07-11 Seiko Epson Corp Eyeglass lens
WO2007010806A1 (en) 2005-07-21 2007-01-25 Nikon-Essilor Co., Ltd. Progressive refractive power lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066148A (en) * 1998-06-12 2000-03-03 Seiko Epson Corp Progressive refracting power lens
JP2004341086A (en) * 2003-05-14 2004-12-02 Tokai Kogaku Kk Progressive refractive power lens

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000505B2 (en) 2005-07-21 2012-08-15 株式会社ニコン・エシロール Progressive power lens
JP2012515933A (en) * 2009-01-20 2012-07-12 ローデンストック.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Automatic change of progressive lens design
US8888280B2 (en) 2009-01-20 2014-11-18 Rodenstock Gmbh Automatic modification of a progressive lens design
JP2012220655A (en) * 2011-04-07 2012-11-12 Seiko Epson Corp Designing method of progressive refractive power lens
US9535263B2 (en) 2012-04-05 2017-01-03 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US11644688B2 (en) 2012-04-05 2023-05-09 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10838235B2 (en) 2012-04-05 2020-11-17 Brien Holden Vision Institute Limited Lenses, devices, and methods for ocular refractive error
US9575334B2 (en) 2012-04-05 2017-02-21 Brien Holden Vision Institute Lenses, devices and methods of ocular refractive error
US11809024B2 (en) 2012-04-05 2023-11-07 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10203522B2 (en) 2012-04-05 2019-02-12 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US10209535B2 (en) 2012-04-05 2019-02-19 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US10466507B2 (en) 2012-04-05 2019-11-05 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10948743B2 (en) 2012-04-05 2021-03-16 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US11320672B2 (en) 2012-10-07 2022-05-03 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US10534198B2 (en) 2012-10-17 2020-01-14 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10520754B2 (en) 2012-10-17 2019-12-31 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US9759930B2 (en) 2012-10-17 2017-09-12 Brien Holden Vision Institute Lenses, devices, systems and methods for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US11333903B2 (en) 2012-10-17 2022-05-17 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10386652B2 (en) 2014-06-18 2019-08-20 Nikon-Essilor Co., Ltd. Lens design method, lens manufacturing method, storage medium, and lens design system
CN113906332A (en) * 2019-09-25 2022-01-07 豪雅镜片泰国有限公司 Progressive-power lens design method, progressive-power lens design system, and progressive-power lens group
CN113906332B (en) * 2019-09-25 2024-04-16 豪雅镜片泰国有限公司 Progressive-power lens design method and progressive-power lens design system
CN114930227A (en) * 2019-12-20 2022-08-19 株式会社尼康依视路 Method for designing spectacle lens, method for manufacturing spectacle lens, spectacle lens designing device, spectacle lens ordering and order receiving system, and designing program

Also Published As

Publication number Publication date
JPWO2007010806A1 (en) 2009-01-29
JP5000505B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5000505B2 (en) Progressive power lens
JP5283584B2 (en) Progressive power lens
JP5388579B2 (en) Eyeglass lenses
KR101301566B1 (en) Ophthalmic lens
CN101331421B (en) Method for determination of an ophthalmic lens
US9557578B2 (en) Methods for determining a progressive ophthalmic lens
WO2005066696A1 (en) Both-sided aspherical varifocal refractive lens and method of designing it
JP2007241276A (en) Method for the determination of progressive focus ophthalmic lens
JPH0990291A (en) Progressive multifocus lens
BRPI1007210B1 (en) computer-implemented method for designing eyeglass lens, method for manufacturing eyeglass lens, and system for manufacturing eyeglass lens
KR101877880B1 (en) A method for determining a progressive ophthalmic lens
US20140293216A1 (en) Method For Determining An Ophthalmic Lens
CN106444073B (en) Ophthalmic lens customized for wearer and preparation method thereof
US9618771B2 (en) Method for determining a progressive opthalmic lens and a set of semi finished lens blanks
US20140253874A1 (en) Low distortion eyewear lens with low optical power
EP2920640B1 (en) Method for determining the feasibility of an ophthalmic lens
CN114270247B (en) Computer-implemented method for adapting an eyeglass lens to an eyeglass frame
JP4708344B2 (en) Progressive glass design with error protection
JP2007504485A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007525964

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781042

Country of ref document: EP

Kind code of ref document: A1