WO2007010840A1 - MULTIPLE shRNA EXPRESSION VECTOR - Google Patents
MULTIPLE shRNA EXPRESSION VECTOR Download PDFInfo
- Publication number
- WO2007010840A1 WO2007010840A1 PCT/JP2006/314028 JP2006314028W WO2007010840A1 WO 2007010840 A1 WO2007010840 A1 WO 2007010840A1 JP 2006314028 W JP2006314028 W JP 2006314028W WO 2007010840 A1 WO2007010840 A1 WO 2007010840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shrna
- vector
- expression vector
- dna
- site
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
- C12N2310/111—Antisense spanning the whole gene, or a large part of it
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/51—Physical structure in polymeric form, e.g. multimers, concatemers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
Definitions
- the present invention relates to a vector that produces shRNA capable of suppressing the expression of a target gene, and more particularly to a vector that produces a single vector force that produces a plurality of shRNAs targeting a plurality of genes.
- RNA interference (hereinafter referred to as "RNAi") is one of the great discoveries of life science in recent years (Non-Patent Documents 1, 2, and 3).
- siRNA effective short interfering RNA
- Non-Patent Documents 4 and 5 still low transfer It is difficult to induce efficient RNAi using the efficiency and method (Non-patent Document 6).
- the development of siRNA systems expressed from vectors is an innovative advance (Patent Document 1, Non-Patent Documents 7 and 8), and the following (1) to (3) when using conventional oligo siRNAs:
- Patent Document 1 Non-Patent Documents 7 and 8
- the knockdown efficiency of oligo siRNA duplexes depends greatly on the transfection efficiency of the host cell line. In order to obtain a sufficient knockdown effect, it is necessary to carry out transfection under a large amount and under optimum conditions. Therefore, the time for optimization and the cost of mass synthesis of oligo RNA are also high.
- the problem is that using a siRNA expression vector, which is DNA, and establishing a stable knockdown cell line by expressing the siRNA, these problems Katsutsuki can be ⁇ .
- sh short hairpin type RNA dicer substrates are effective for inducing RNAi ( Non-patent document 11). From this result, it is expected that sh-type RNA expression vectors will become the mainstream tool for RNAi analysis in the future.
- Patent Literature l WO 03/046186 Nonfret
- Non-patent literature 1 Fire, A. et ai. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806—811 (1998).
- Non-Patent Document 2 Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA in terference in cultured mammalian cells.Nature 411, 494-498 (2001).
- Non-Patent Document 3 Hannon, G.J. & Rossi, J.J.Unlocking the potential of the human geno me with RNA interference.Nature 431, 371-378 (2004).
- Patent Document 4 Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex.Cell 115, 199-208 (2003).
- Patent Literature 5 Reynolds, A. et al. Rational siRNA design for RNA interference. Nat Biotechnol 22, 326-330 (2004).
- Non-Patent Document 6 Dykxhoorn, DM, Novina, CD. & Sharp, PA Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-467 (2003).
- Non-Patent Document 7 Miyagishi, M & Taira, K. U6 promoter-driven siRNAs with four uridi ne 3 overhangs efficiently suppress targeted gene expression in mammalian cells. N at Biotechnol 20, 497—500 (2002).
- Patent Document 8 Brummelkamp, TR, Bernards, R. & Agami, R. A system for stable ex pression of short interfering RNAs in mammalian cells. Science 296, 550-553 (2002).
- Non-Patent Document 9 Miyagishi, M. & Taira, K. Strategies for generation of an siRNA expre ssion library directed against the human genome.Oligonucleotides 13, 325-333 (200 3).
- Non-Patent Document 11 Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nat Biot echnol 23, 227-231 (2005)
- Non-Special Terms 13 Jazag, A. et al. Smad4 silencing in pancreatic cancer cell lines using stable RNA interference and gene expression profiles induced by transforming growt h factor-beta. Oncogene (2004).
- Non-Patent Literature Literature l4 Zanta MA et al "Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci US A. 19 99 Jan 5; 96 (1): 91— 6 )
- Non-Special Terms 15 Liu F, Huang L. Improving plasmid DNA-mediated liver gene transfe r by prolonging its retention in the hepatic vasculature. J. Gene Med. 2001 Nov— De c; 3 (6): 569-76
- Non-Patent Document 16 Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1, 611—617 (1998).
- Non-Patent Document 18 Ijichi, Tsuji et al. Smad4—independent regulation of p21 / WAFl by tran sforming growth factor-beta. Oncogene 23, 1043-1051 (2004).
- Non-Patent Document 19 Seoane, J., Le, HV, Shen, L., Anderson, SA & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioolasto ma cell proliferation.Cell 117, 211— 223 (2004).
- Non-Patent Document 20 Jackson, AL et al. Expression profiling reveals off- target gene regulation by RNAi. Nat Biotechnol 21, 635-637 (2003).
- Non-Patent Document 21 Bridge, AJ, Pebernard, S., Ducraux, A "Nicoulaz, AL & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 3 4, 263-264 (2003)
- Non-Patent Document 22 Pardali, K. et al. Role of Smad proteins and transcription factor Spl in p21 (Wafl / Cipl) regulation by transforming growth factor-beta.J Biol Chem 275, 29244-29256 (2000)
- Non-Patent Document 23 Kretschmer, A. et al. Differential regulation of TGF-beta signaling t hrough Smad2, Smad3 and Smad4. Oncogene 22, 6748—6763 (2003).
- Non-Patent Document 24 Major, M.B. & Jones, D.A.Identification of a gadd45beta 3 'enhancer that mediates SMAD3— and SMAD4— dependent transcriptional induction by transfo rming growth factor beta.J Biol Chem 279, 5278—5287 (2004).
- Non-Patent Document 25 Siegel, P.M. & Massague, J. Cytostatic and apoptotic actions of TG
- Non-Patent Document 26 Takaku, K. et al. Gastric and duodenal polyps in Smad4 (Dpc4) knoc kout mice. Cancer Res 59, 6113-6117 (1999)
- Non-patent document 27 Ashcroft, GS et al. Mice lacking Smad3 show accelerated wound he aling and an impaired local inflammatory response. Nat Cell Biol 1, 260- 26b (1999).
- Non-patent document 28 Shin, I "Bakin, AV , Rodeck, U., Brunet, A. & Arteaga, CL Trans forming growth factor beta enhances epithelial cell survival via AM— dependent regul ation of FKHRL1. Mol Biol Cell 12, 3328-3339 (2001)
- Non-Patent Document 29 Haley, B. & Zamore, P.D.Kinetic analysis of the RNAi enzyme comp lex. Nat Struct Mol Biol 11, 599-606 (2004)
- the present invention is a multi-type gene comprising a large number of shRNA expression cassettes targeting a large number of genes or targeting a single gene.
- the challenge is to develop a knockdown system.
- a multiple shRNA expression vector carrying a plurality of shRNA generation units capable of generating shRNA for suppressing the expression of a target gene in the vector
- the shRNA generator is configured by connecting DNA encoding shRNA downstream of the promoter,
- the DNA encoding the shRNA is constituted by linking an antisense DNA having a sequence complementary to the target gene and a sense DNA comprising a sequence capable of pairing with the antisense DNA with a linker DNA.
- Multiple shRNA expression vector is constituted by linking an antisense DNA having a sequence complementary to the target gene and a sense DNA comprising a sequence capable of pairing with the antisense DNA with a linker DNA.
- mismatch sequence on the sense DNA is formed by any one of substitution, deletion, insertion, addition, or a combination thereof in relation to the corresponding base on the antisense DNA.
- a method for producing a multiple shRNA expression vector from a circular structure first shRNA expression vector having a first shRNA generation unit and a circular second shRNA expression vector having a second shRNA generation unit as raw materials.
- the first and second shRNA expression vectors are provided with recognition digestion sites a and b for restriction enzymes A and B, respectively, upstream and downstream of the first and second shRNA generating units, respectively.
- the second shRNA expression vector is provided with a recognition digestion site c of restriction enzyme C that exists only in the a-b region on the side not containing the shRNA generation unit, and the restriction enzymes A, B, and C are all different, A and B are restriction enzymes that generate an end that can be connected to A and B, and an end that cannot be connected to the digested end of C.
- the a and b sites are the first, In conditions that exist as a single location in the second shRNA expression vector:
- a method comprising the following steps (1) to (4):
- restriction enzymes A, B, and C are restriction enzymes that generate sticky ends.
- the first and second shRNA expression vectors are provided with a selection marker, and a site c is provided in the selection marker.
- a cloning region into which DNA encoding shRNA provided downstream of the promoter can be inserted
- a recognition digestion site a of restriction enzyme A is provided upstream of the promoter, a recognition site b of restriction enzyme B is provided downstream of the cloning region,
- Within one selectable marker is a restriction enzyme C recognition digestion site c
- a and B are restriction enzymes that can generate connectable ends
- the restriction enzyme C is a restriction enzyme that can form a stump that cannot be connected to the digestive ends of A and B
- the a and b parts are provided as a single part.
- restriction enzymes A, B, and C are restriction enzymes that generate sticky ends.
- a pharmaceutical composition comprising the vector according to any one of 1 to 8 as a component.
- the multiplex shRNA expression vector of the present invention it is possible to obtain an animal in which a large number of genes are suppressed at the same time without creating a double Z triple knockout mouse, which has conventionally required time and labor to produce it. It becomes possible.
- FIG. La A photograph showing the results of examining the RNAi effect using a single knockdown construct.
- Four target sites were designed for each of the Smad2, Smad3, or TGFRB2 genes and subcloned into the pcPUR + U6i cassette to construct each siRNA expression vector.
- Each siRNA expression vector was transiently transfected into HeLa cells simultaneously with Smad2-, Smad3_, or TGFRB2-expression vectors, and the silencing efficiency was examined by Western blot analysis. Two identical samples were loaded per sample.
- FIG. Lb A photograph showing specific knockdown of Smad-2 or -3 by siSmad2 or siSmad3.
- pcDEF3 Flag (N) —Smad2, pcDEF3—Flag (N) —Smad3, and pcP UR + U6- Smad2i (left lane), or pcPUR + U6- Smad3i (center lane), or pcP UR + U6-GFPi (right lane) was transiently transferred. After lysing the cells, the inventors performed a Western plot analysis.
- FIG. Lc to FIG. Le are diagrams schematically showing the construction and construction method of RNAi vectors.
- Figure lc schematically shows the strategy for generating multitarget siRNA expression vectors.
- the pc PUR + U6-i cassette has a Bglll restriction enzyme site upstream of the U6 promoter, BamHI downstream of the RNAi cloning site, and a seal site for the ampicillin resistance gene. These sites are all single sites in this plasmid.
- N; D5 in the figure means an aagcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatc cgctc (Table 3 ⁇ 4 ⁇ No .: 162) and a base sequence of 55 bases in length.
- FIG. “N55” in the figure means the nucleotide sequence set forth in SEQ ID NO: 162.
- FIG. 2 shows that a double knockdown vector was prepared by ligation of two fragments linearized with a restriction enzyme.
- “N55” in the figure means the nucleotide sequence set forth in SEQ ID NO: 162.
- FIG. If is a schematic diagram of a single, double, and triple siRNA expression vector prepared in Examples. Of these, pcPUR + U6-Smad4i has already been reported (Non-Patent Documents 1 and 13) o
- FIGS. 2a to 2g are diagrams and photographs showing the effectiveness and specificity of stable knockdown cells prepared in Examples.
- Figure 2a shows endogenous Smad knockdown: HaCaT cells were treated with pcPUR + U6— GFPi ⁇ pcPUR + U6— Smad2i, pcPUR + U6— Smad3i, pcPUR + U6— Smad4i, pc PUR + U6— Smad23i, pcPUR + U6— Smad24i
- FIG. 1 shows endogenous Smad knockdown: HaCaT cells were treated with pcPUR + U6— GFPi ⁇ pcPUR + U6— Smad2i, pcPUR + U6— Smad3i, pcPUR + U6— Smad4i, pc PUR + U6— Smad23i, pcPUR + U6— Smad24i
- FIG. 2b is a photograph showing the results of detection of siRNA expression against Smad2, 3 and 4 by Northern analysis in each cell line.
- FIG. 2c shows that the relative expression of BTBD1 in the cell lines shown was evaluated by quantitative reverse transcriptase PCR. A value of 1.0 was assigned to the gene expression level in parental HaCaT cells. The knockdown vector did not induce silencing of the non-specific target gene, BTBD1.
- ⁇ 2d shows that the relative expression of prominin 2 in the cell lines shown was evaluated by quantitative reverse transcriptase PCR. A value of 1.0 was assigned to the gene expression level in parental HaCaT cells. The knockdown vector did not induce silencing of the nonspecific target gene, prominin 2.
- FIG. 2e shows that the relative expression of OAS1 in the cell lines shown was evaluated by quantitative reverse transcriptase PCR. A value of 1.0 was assigned to the gene expression level in parental HaCaT cells. The knockdown vector did not induce interferon induction.
- FIG. 2f Inhibition of TGF- ⁇ -Smad signaling in knockdown cells. Knockdown cells and control cells were transfected with (CAGA) 9-luc and pRL-SV40. After 24 hours, cells were incubated for an additional 24 hours in the presence or absence of TGF-
- FIG. 2g A photograph showing the induction of ⁇ -1 by TGF- ⁇ 1 by Western blotting. Cells were incubated for 10 hours in the presence or absence of 5 ng / ml TGF-jS to prepare total cell lysates.
- FIGS. 3a to 3e are diagrams and photographs showing analysis of TGF- ⁇ -dependent cell phenotypes.
- Figure 3a is a photograph showing a representative image of infiltration.
- FIG. 3b is a diagram showing the number of infiltrating cells. In the absence (white bar) and presence of TGF- ⁇ 1 (white bar) The number of cells infiltrated in Matrigel with black bars was counted in 5 random fields. The experiment is repeated three times and shows the mean and standard error (SE).
- SE standard error
- FIG. 3c A photograph showing a representative image of the running Atsey. Wound closure was assessed 24 hours later in the presence or absence of TGF-18 (15 ng / ml).
- FIG. 3d The distance from end to end of the wound after culturing in the absence (white bar) and presence (black! / ⁇ bar) of TGF- ⁇ 1 in the cell line shown It is a figure shown as a percentage based on distance. Repeat the experiment 3 times and show the mean and standard error (S.E.).
- FIG. 3e Percentage of apoptotic cells in 24 hours in the absence (white bars) or presence (black bars) of TGF-
- the present invention firstly relates to a multiple shRNA expression vector capable of generating a large number of shRNAs for knocking down a target gene.
- shRNA is an abbreviation for short hairpin RNA, and is a double-stranded RNA that can induce RNA interference.
- Double-stranded RNAs used for RNA interference generally include siRNA and shRNA.
- siRNA has a structure in which both ends are open, whereas shRNA has a structure in which one end is closed by a loop.
- shRNA has a structure in which one end is closed by a loop.
- shRNA has a loop structure at one end and can be synthesized as a single continuous RNA sequence, it is advantageous for production based on expression vectors. In this way, the present invention has a structure in which a plurality of shRNAs are expressed from a single vector because of the efficiency of production from the expression vector.
- the vector of the present invention is equipped with a plurality of shRNA units.
- the combination of a plurality of shRNA generation units mounted on one vector can be any of the following or a combination of two or more of these.
- multiple units that generate shRNA targeting two or more different genes As described above, the term “multiplex” in the present invention means that the shRNA sequence is the same or different, but V or not, but the number of DNA units encoding shRNA! Means.
- the number of shRNA generating units to be mounted on one vector can be determined by the length of the insert that can be inserted into a vector that is not particularly limited.
- the number of shRNA generating units to be mounted can be generally 2 to 30, preferably 2 to 10, and more preferably 2 to 5.
- Each shRNA generation unit is provided with an shRNA-encoding DN A and a promoter upstream thereof as essential elements for shRNA generation.
- the shRNA-encoding DNA consists of an antisense DNA having a sequence complementary to the target gene and a sense DNA consisting of a sequence that can be paired with the antisense DNA, linked by a linker DNA. . That is, the DNA encoding shRNA is composed of antisense DNA-linker-DNA-sense DNA. From this structure, RNA having the structure of antisense RNA—linker RNA—sense RNA is expressed, and among these, antisense RNA and sense RNA form a double strand to generate shRNA.
- the antisense DNA has a sequence that is completely complementary to the target gene so that an off-target effect can be avoided, and a sequence that has a mismatch with a gene other than the target is selected.
- the sequence design can be carried out using a program shown in Table 1 below.
- the sense DNA may have a mismatch sequence with the antisense DNA as long as it can be paired with the antisense DNA. Rather, when the sense DNA is composed of a sequence that is completely complementary to the antisense DNA, the above-mentioned “antisense DNA-linker DNA-sense DNA” has an inverted repeat structure, and the vector may be rearranged. May become unstable. Therefore, the sense DNA preferably has a mismatch sequence that does not complement the antisense DNA.
- the ratio of mismatch sequences can be, for example, 2 to 55%, preferably 10 to 35%, more preferably about 15 to 25%.
- the number of mismatched bases on the sense strand in a shRNA having a length of 21 bases as the length of the duplex forming region is 1 to: L 1 base, preferably 2 to 7 bases. Or 3-5 bases.
- the length of the duplex forming region has a wide range of selections such as 17 to 200 as will be described later, so the number of mismatch bases on the sense strand can be determined according to the selection length. .
- the mismatch is generally a force formed by substitution, that is, substitution to another base that does not complement the antisense DNA sequence in the sequence of the sense DNA, but the present invention is not limited to this.
- a mismatch occurs when one or more bases are deleted from the sense DNA sequence and the base corresponding to the antisense DNA is removed, and a base that does not correspond to the antisense DNA is included in the sense DNA sequence.
- a mismatch formed by insertion and a mismatch formed by adding an arbitrary base to the end of the sense DNA sequence are also included in the mismatch sequence of the present invention.
- C cytosine
- G guanine
- A adenine
- the length of the antisense DNA and the sense DNA may be longer than the length capable of maintaining specific binding with the target gene.
- a long double-stranded RNA may be cytotoxic. Therefore, when a mammalian cell is used as a host, it is preferable that the length of the shRNA expressed in the cell is not cytotoxic.
- antisense DNA and sense DN The length of A can be 17 to 200 bases, preferably 18 to 55 bases, more preferably 19 to 23 bases.
- the linker DNA that connects the antisense DNA and the sense DNA is a structure for forming a hairpin structure in shRNA.
- the sequence of the linker DNA can constitute any sequence ability other than the termination sequence that inhibits the generation of shRNA.
- the length may be any length that does not hinder pairing with antisense RNA or sense RNA.
- the sequence of a hairpin site of microRNA can be mentioned.
- the linker DNA may be composed of DNA encoding tRNA.
- the shRNA generation unit is provided with a "promoter".
- This promoter may be either a polll system or a polIII system as long as it can express shRNA, but preferably a polIII system suitable for expression of short RNAs such as shRNA can be used.
- the polIII promoter include U6 promoter, tRNA promoter, retroviral LTR promoter, adenovirus VA1 promoter, 5S rRNA promoter, 7SK RNA promoter, 7SL RNA promoter, HI RNA promoter and the like. it can.
- siRNA By using an inducible promoter as the promoter, siRNA can be expressed at a desired timing.
- These inducible promoters include tetracycline-inducible U6 promoter (Ohkawa, J. & Taira, K. Control of the functional activity of an antisense RNA by a tetracycline—responsive derivative of the human U6 snRNA promoter. Gene Ther. 11, 577-585 (2000)). You can also use a tissue-specific promoter or a DNA recombination system such as the Cre-LoxP system to control shRNA expression from the vector! /.
- the terminator is a sequence that can terminate transcription of the promoter, For example, a sequence in which four or more T (thymine) or A (adenine) are continuous, or a sequence capable of forming a nodromedome structure can be used.
- the vector carrying the shRNA generating unit can be selected according to the introduced cell and purpose.
- retrovirus vectors for example, retrovirus vectors, adenovirus vectors, adeno-associated virus vectors, vaccinia virus vectors, lentiwinores vectors, henolepusuinores vectors, ananolofinores vectors, EB winoles vectors
- examples include the papilloma winores vector and winomeless betaters such as the foamy winores betater.
- dumbbell-shaped DNA Non-patent Document 14
- naked plasmid which is not a viral vector, can also be suitably used (Non-patent Document 15).
- a vector or plasmid existing outside the chromosome when performing transient gene suppression among the above-mentioned vectors.
- each shRNA generation unit When a plurality of shRNA generation units are mounted on a vector, the expression directions of each shRNA generation unit may be mounted to be the same or may be mounted without setting the direction. In addition, the distances between the units may be connected with no gap between them or may be connected with a gap through an arbitrary arrangement.
- the vector can further hold a selection marker that can select a cell into which the vector has been introduced.
- Selectable markers include neomycin resistance gene, drug resistance marker such as idaromomycin resistance gene, puromycin resistance gene, marker that can be selected using enzyme activity such as galactosidase, or fluorescence emission such as GFP. The marker etc. which can be selected as a parameter
- index are mentioned.
- a selection marker or the like that can select a surface antigen such as EGF receptor, B7-2, or CD4 as an indicator may be used.
- a selectable marker it can be useful for the production of a multiple shRNA expression vector as described later, which is not useful for introducing a shRNA expression vector into a host.
- the multiple shRNA expression vector can suppress the expression of one or a plurality of target genes targeted by the mounted shRNA generation unit. Especially targeting multiple target genes This is an advantageous means.
- Cells or non-human animals into which this multi-shRNA expression vector has been introduced can be used as model cells or model animals in which a specific target gene is suppressed.
- a vector having the ability to integrate a vector into a chromosome is used, one or more targeted genes can be stably suppressed. Therefore, it is possible to easily create a multiple knockout animal, which has been conventionally created by spending a lot of time, by introducing this vector.
- the knockdown animal produced using the vector of the present invention can be used for functional analysis of a target gene or the like, or used for drug discovery screening as a disease model animal.
- the cells that can be used here include cells derived from prokaryotes, cells derived from eukaryotes, and the like, which are not particularly limited.
- Non-human animals can also include mammals such as mice, rats, rabbits, goats, pigs, monkeys and the like.
- the target gene is not particularly limited, but a disease-related gene or a gene of a foreign substance (bacteria or virus) that induces a disease can also be targeted.
- virus for example, HIV, RSV, HCV, HBV and the like can be targeted.
- DNA encoding shRNA targeting multiple genes on the viral chromosome, or shRNA targeting multiple sites within one gene on the viral chromosome was encoded. Can be equipped with DNA.
- shRNA vectors for treating HIV infection include, for example, shRNA targeting any of the HIV genes, particularly those involved in proliferation and infection, and the host CCR5 family! / As an example, a configuration capable of expressing shRNA targeting the above gene can be mentioned.
- the present invention relates to a method for efficiently producing the multiple shRNA expression vector.
- the production method of the present invention comprises one shRNA generation unit (for convenience, the first shRNA generation unit).
- a first shRNA expression vector having a circular structure provided with a “t”, and a second shRNA expression vector having a circular structure provided with a second shRNA generator are prepared. Since the configuration and design of the shRNA generation unit to be inserted into the vector are the same as those in the first embodiment, description thereof is omitted.
- the shRNA generation unit can be generated by a genetic engineering technique used by those skilled in the art, for example, by synthesis using a DNA synthesizer or PCR.
- the vector skeleton portion of the first shRNA expression vector and the second shRNA expression vector may be heterogeneous, but preferably the same vector is used.
- Different restriction enzyme A and B recognition / deletion sites a and b (hereinafter referred to as ⁇ site a '' and ⁇ site b '', respectively) upstream and downstream of the site or region to which the shRNA generator is connected on the vector
- a recognition site for restriction enzyme C that exists only in the a-b region on the side not containing the shRNA generation unit (hereinafter referred to as “site c”). Need to be.
- Sites a, b, and c may be either sequences provided in the vector itself or artificially inserted.
- restriction enzymes A and B can be arbitrarily selected from those satisfying the following conditions.
- Sites a and b are single, including the vector and the shRNA generation unit (sites a and b exist only in one place throughout the vector and do not exist in the shRNA generation unit)
- Restriction enzymes A and B generate ends that can be connected to each other (ends generated by restriction enzyme A deleting site a, and restriction enzyme B generated by digesting site b) Connectable to the end)
- restriction enzymes A and B may form blunt ends or sticky ends.
- the combinations of restriction enzymes ⁇ and ⁇ that form sticky ends can be selected with the same number of protruding bases and the same number of protruding bases in Tables 2-1 and 2-2.
- Restriction enzyme C can be selected arbitrarily as long as it satisfies the following conditions.
- Site c is different from sites a and b
- Site c is single, including the vector and shRNA generation unit (site c exists only in one place throughout the vector and does not exist in the shRNA generation unit)
- Restriction enzyme C is not particularly limited as long as restriction enzymes A and B have different blunt ends or cohesive ends.
- the vector is preferably provided with a selection marker such as drug resistance or auxotrophy.
- a selection marker such as drug resistance or auxotrophy.
- the selection marker can be selected depending on the host at the time of recovery, but in the case of prokaryotes such as E. coli, drug resistance markers such as kanamycin and ampicillin can be used.
- the steps (i) and (mouth) digestion is performed under conditions suitable for the selected restriction enzyme.
- the desired digested fragment that is, the ac fragment containing the first shRNA generating unit derived from the first shRNA expression vector, derived from the second shRNA expression vector
- Each bc fragment containing the second shRNA generating unit may be isolated and purified.
- fragments can be fractionated by electrophoresis, and fragments of the desired length can be recovered from the gel and purified.
- the ligation reaction in the process can be carried out according to a conventional method.
- a general genetic engineering technique is not particularly limited as a technique for recovering the target circular construct, that is, the multiple shRNA expression vector.
- a general genetic engineering technique is not particularly limited as a technique for recovering the target circular construct, that is, the multiple shRNA expression vector.
- an efficient technique there is a method in which a host such as E. coli is transformed and recovered from the transformant.
- efficiency can be increased by selecting a transformant using the selection marker as an index.
- the restriction enzyme C site c in the selection marker the target multiple shRNA expression vector can be recovered more efficiently. In other words, it is possible to selectively sort the products that have been ligated as intended using the selected marker as an indicator.
- the finally produced multiplex shRNA expression vector connects the ac fragment containing the first shRNA generation unit and the bc fragment containing the second shRNA generation unit derived from the second shRNA expression vector.
- a-c fragment a and b-c fragment b were connected, and c were connected.
- a sequence is formed that is no longer digested by either restriction enzyme A or restriction enzyme B.
- the finally produced multiplex shRNA expression vector has two or more shRNA generating units, and the site b derived from the first shRNA expression vector, the site a derived from the second shRNA expression vector, The site c derived from the first and second shRNA expression vectors connected to each other and formed again has a structure with a site c. Therefore, the multiple sh RNA expression vector generated here can be used as a starting material again as the first shRNA expression vector or the second shRNA expression vector which is the raw material of the production method. By using the obtained multiplex shRNA expression vector as a starting material, the number of shRNA generation units can be increased freely.
- the present invention relates to a vector for producing a multiple shRNA expression construct.
- Hon Baek The vector is a vector for use in the production of the first or second shRNA expression vector that is the production raw material of the second embodiment. Specifically, it is as follows.
- the vector of the present invention comprises a promoter, a cloning region capable of cloning shRNA coding DNA provided downstream of the promoter, and one or more selectable markers.
- a recognition digestion site a of restriction enzyme A is provided upstream of the promoter
- a recognition site b of restriction enzyme B is provided downstream of the cloning region
- a recognition digestion site c of restriction enzyme C is included in one selection marker.
- a and B are restriction enzymes that can generate connectable ends
- restriction enzyme C is a restriction enzyme that can form a stump that cannot be connected to the digestive ends of A and B.
- the a and b sites recognized by the restriction enzymes ⁇ and ⁇ are provided as a single site in the vector.
- an empty vector in which restriction enzyme sites used for the production of the multiplex shRNA expression vector of the present invention are prepared in advance an empty vector is a DNA encoding shRNA.
- Providing a pre-staged vector can facilitate the production of multiple shRNA expression vectors.
- the first or second shRNA It is possible to facilitate insertion of DNA encoding the expression vector.
- the present invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising the multiple shRNA expression vector of the first embodiment as a component.
- this shRNA expression vector can be used as a pharmaceutical product. can do.
- a multiple shRNA expression vector targeting a plurality of SMAD families is useful for the prevention and treatment of diseases involving the TGF-
- knocking down Smad2, Smad3, and Smad4 simultaneously with multiple shRNA expression vectors strongly inhibits the TGF- ⁇ pathway and induces apoptosis more strongly than knocking down either gene alone. It was shown that it was possible. Therefore, multiple shRNA expression vectors targeting these Smad2, Smad3, and Smad4 are expected to be applied as anticancer agents.
- the multiple shRNA expression vectors of the present invention are used to simultaneously suppress the expression of these causative factors. This makes it possible to prevent and treat diseases. Therefore, the multiple shRNA expression vector of the present invention can be applied to the development of therapeutic agents for diseases caused by gene expression, particularly, expression of two or more, preferably three or more genes. All prior art documents cited in this specification are incorporated herein by reference.
- the pcPUR + U6i cassette plasmid (3-5 g) was digested with Bs pMI in the reaction solution (100 1). The digested reaction solution was electrophoresed. The gel piece containing the DNA fragment of the desired length was excised, and the DNA in the piece was purified using the MinElute gel purification kit (Qiagen). Using the DNA ligation kit version 2.1 (TAKARA), the linearized plasmid DNA and the annealed oligonucleotide were ligated. E. coli host cells were transformed with the ligation product.
- TAKARA DNA ligation kit version 2.1
- Smad-2 and -3 double knockdown constructs were made as follows. pcPUR + U6-Smad2i was digested with BamHI and Seal, while pcPUR + U6-Smad3i was digested with Seal and Bglll (Step 1). A fragment containing the U6 promoter and hairpin loop unit was purified (step 2), followed by ligation to construct a double knockdown vector (step 3). The joint formed by filing the ends formed by Bglll and BamHI digestion can no longer be cleaved by either Bglll or BamHI. Thus, the same technique can be repeated when coding regions of multiple siRNAs are sequentially incorporated into the vector.
- the Seal site is present in the ampicillin resistance gene, which reduces the number of background bacterial colonies.
- the same method was applied to other double or triple knockdown constructs.
- the pcPUR + U6i cassette (Non-Patent Document 13), pcPUR + U6iGFP, and pcPUR + U6 + Smad4i (Non-Patent Documents 7 and 12) have already been reported.
- pCMV5- TGF jS RII / HA was provided by J ⁇ . Wrana, and pc DEF3-Flag (N) -Smad2 and pcDEF3-Flag (N) -Smad3 were donated by K. Miyazono.
- the HeLa cell line (American Type Culture Collection, Rockville, MD) was passaged in Dulbecco's modified Eagle's medium containing 10% sushi fetal serum (Sigma, St. Louis, MO).
- Human keratinocyte cell line HaCaT (J Cell Biol. 1988 Mar; 106 (3): 761-71.Normal keratinization in a spontaneously immortalized aneuploid nu man keratinocyte cell line.Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE.)
- RNAi cells To establish stable RNAi cells, the cells were selected by culturing for 2 weeks in the presence of 1 g of puromycin (Wako). To establish cells expressing stable shRNA, the puromycin concentration for selection in the HaCaT cell line is assayed and all cells that do not express puromycin die within 3 days. A concentration of 1 ⁇ g / ml was selected. Viable cells were observed in wells into which the siRNA expression vector was introduced. The first colony appeared at 2 weeks, and then cultured for another 2 weeks to create original stocks or grow to a density sufficient for the number of cells to perform expression analysis. Knockdown of target endogenous gene expression in stable cell lines was tested using the original stock and cells passaged 20 times from the original stock. The cells were further cultured in a medium containing puromycin (1 ⁇ g / ml) (Wako, Tokyo, Japan).
- Total RNA (5 g) is 18% (weight / volume ) Size fractionated with polyacrylamide urea gel and transferred to Hybond N + membrane (Amersham, Litt le Chalfont, UK). The membrane after transfer was dried at room temperature and fixed with ultraviolet light. The membrane is prehybridized with a solution (30% formamide, 10% dextran sulfate, 5x SSC, 0.5% SDS, 1 x Denhardt s solution, and 0.2 mg / ml salmon sperm DNA (Sigma Aidrich Co., Saint Louis, MO)). We did a dialysis.
- Hybridization was performed with a synthetic oligonucleotide probe at 36 ° C for 3 hours.
- This probe was composed of a sequence complementary to siRNA for Smad2, 3 and 4.
- As a loading control a complementary probe to human tRNA palin was used.
- the probe sequence is as follows.
- the synthetic probe was labeled with 32 P (Amasham, Little Chalfont, UK) using T4 polynucleotide kinase (Takara Shuzo Co., Kyoto, Japan).
- the membrane was washed twice at 36 ° C using 2x SSC and then analyzed using Fujix Bio-Image Analyzer BASIOOO (Fuji Photo Film Co. Ltd., Tokyo, Japan).
- Luciferase activity has been described and carried out as described (Non-patent Document 18).
- Cells were transfected with (CAGA) 9-luc, or p3TP-Lux and pRL-SV40. After 24 hours, cells were incubated for an additional 24 hours in the presence or absence of 2.5 ng of TGF-811 (R & D Systems) for double luciferase assay.
- (CAGA) 9-luc or p 3TP-Lux firefly luciferase activity was normalized based on pRL-SV40 renilla luciferase activity.
- Quantitative RT-PCR analysis was performed using the ABI 7000 real-time PCR system (Applied Biosystems) as previously described (Non-Patent Document 13).
- the ratio of the mRNA level of each gene to that of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was calculated and assigned a value of 1.0 to the parental cells. Each experiment was repeated twice, 3 per sample. The following primers were used.
- Infiltration was measured with a 8 mm diameter Matrigel coated polycarbonate membrane (pore size 8 ⁇ m) using a BD Biocoat Matrigel Infiltration Chamber (BD Biosciences). Total were seeded 10 5 knockdown or control HaCaT cells in the upper chamber of Ueru and cultured. After 24 hours, cells were incubated for an additional 24 hours in the presence or absence of TGF-8
- Non-patent Document 9 Smad2 gene (SEQ ID NO: 12), Smad3 gene (SEQ ID NO: 13), and TGFRB2 gene ( For each of SEQ ID NO: 14), four target sites with a chain length of 21 nucleotides were designed (Table 4). In addition, Smad4 has already been reported and the target site was used.
- site 2 S'-aggccaagctgaagcagaaca-S * (SEQ ID NO: 102) site 3 5'-acggctccctaaacactacca-3 '(SEQ ID NO: 1 03) site 4 5'aaggacatcttctcagacatc _ 3 T (SEQ ID NO: 10 04)
- site 2 5'-ggcctgatcttcacagtcatc_3 '(SEQ ID NO: 1 06) site 3 5 T -ggtttactctccaat ⁇ ttaac-3' (SEQ ID NO: 1 07) site 4 5 T -gccacctcctggatatatcag- 3, (SEQ ID NO: 1 08)
- site 2 5'-ggattgagctgcacctgaatg-3 '(SEQ ID NO: 1 1 0) site 3 5'-gagttcgccttcaatatgaag-3' (SEQ ID NO: 1 1 1) site 4 5'gggctgctctccaatgtcaac-3 T (SEQ ID NO: 1 1 2)
- the sense strand inserts two or more C, T, A or G point mutations into the target site sequence, and the antisense strand can induce RNA interference so that it can induce RNA interference.
- the sequence was kept complementary.
- Smad4 the sequence was designed by inserting a mismatch into the sense strand of the target sequence shown in Table 4 for which the inhibitory effect was already reported. For Smad4, it is possible to select other target regions and design other shRNA sequences based on the gene sequence (SEQ ID NO: 15).
- Smad2 region 1 sense 5'-ggattga ⁇ cttiatftgaatg-3 '(SEQ ID NO: 1 6) antisense 5'-cattcagatgaagttcaatcc-3' (eyes L! Sequence r: 1 I) region 2 sense 5'-ggcftgatctt ne gt ate-3 '(Distribution' J ⁇ ⁇ : 1 8)
- Smad3 region 1 sense 5'-ggccagacftgiaiagciacc-3 '( ⁇ ⁇ row 1 ⁇ 4: 24) antisense 5'-ggtggctgtgcaggtctggcc-3' (Bti ⁇ 1 J r : 2 o) region 2 sense 5'-ggattgagftg fctgaatg.3 '( ⁇ [!
- Smad4 domain 5 sense 5'- gtacttcata ifetgfcgatt -3 '(B self' J number: 32) antisense 5'-aatcggcatggtatgaagtac -3 '(S self 1 J number 3 3)
- TGFBR2 region 1 sense 5'-atgag artg gfetcacc.3 ' ( Rooster ⁇ 1: 34) antisense 5'-ggtgatgctgcagttgctcat -3' ( SEQ ID NO: 35) regions 2 sense 5'-aggciaagftgaagiagaaca-3 ' (a] evening - 1 J number: 3 o) antisense 5'-tgttctgcttcagcttggcct-3 '( ⁇ ⁇ 1 J number: 3 7) Region 3 sense 5'-acggftcfctaaaiactacca-3' ( ⁇ ⁇ ⁇ 1 ) 3 ⁇ 4 ⁇ : 3 8) antisense 5 '-tggtagtgtttagggagccgt-3' ( ⁇ L!
- a linker DNA is connected to the sense strand and the antisense strand to construct a DNA encoding shRNA, and a DNA strand in which a restriction enzyme site for cloning and a transcription termination codon are inserted is chemically synthesized.
- the complementary strand was also chemically synthesized (Table 6). These two DNA strands were annealed to form double stranded DNA fragments.
- Non-patent Document 7 The DNA fragments generated by annealing the DNAs complementary to each other were subcloned into pcPUR + U6-i cassette (Non-patent Document 7) to construct siRNA expression vectors. To screen silencing efficiency with these siRNA expression vectors, these vectors were transiently co-transformed into HeLa cells along with Smad2-, Smad3- or TGFRB2-expression vectors. After 48 hours of transfection, cells were collected, a cell lysate was prepared, and Smad2, Smad3 or TGFRB2 protein was detected by Western blotting (Fig. La).
- siRNA targeting one of the four sites in Smad2, three of the four sites in Smad3, and all four sites in TGFRB2 Suppresses the expression of the target gene by 0-10% and is effective (Figure la).
- Select the target site that was found to be most effective for knocking down the target gene specifically site 1 for Smad2, site 2 for Smad3, and site 1 for TGFRB2, and the following examples Used for.
- Expression vectors containing these sites knock down the Smad2, Smad3, or TGFRB2 protein, respectively, so "pcPUR + U6- Smad2i", “pcPUR + U6- Sm ad3i ”and“ pcPUR + U6-TGFRB2i ”.
- a schematic diagram of pcPUR + U6-Smad2i is shown as a representative ( Figure If).
- Smad2 and Smad3 are proteins with extremely high homology to each other, the above silencing activity is determined whether Smad3 can be knocked down by PCPUR + U6- Smad2i and Smad2 can be knocked down by pcPUR + U6-Smad3i. Similar to the measured experiments, co-transfection with Smad3— or Smad2—expression vectors in Hela cells was followed by Western blot analysis ( Figure lb). PcPUR + U6-Smad2i and pcPUR + U6-Smad3i, which are highly homologous to each other and target the Smad2 and Smad3 genes encoding proteins, respectively, can specifically knock down the target gene without cross-over effect. confirmed. Thus, the present inventors succeeded in obtaining knockdown vectors capable of specifically suppressing a single gene for Smad2, Smad3, and TGFRB2, respectively.
- the pcPUR + U6 vector has a Bglll recognition site upstream of the U6 promoter, a BamHI recognition site downstream of the RNAi insertion region, and a Seal recognition site in the ampicillin gene. All of these restriction enzyme recognition sites exist in the plasmid.
- Step 1) in c the fragment containing the expression cassette was ligated to create a single vector that could double knockdown both Smad2 and Smad3 (Step 2 in Figure Id).
- Double knockdown vectors for Smad2 and Smad3, Smad2 and Smad4, and Smad3 and Smad4 were named PCPUR + U6- Smad23i, pcPUR + U6- Smad 24i, and pcPUR + U6-Smad34i, respectively (Fig. Lf).
- a triple knockdown vector pcPUR + U6-S mad234i targeting Smads (S mad2, Smad3, and Smad4) associated with all pathways was also constructed in the same way ( Figure If).
- the advantage of this system is that the ends formed by Bglll and BamHI deletions are sticky ends with protruding complementary single strands, but the binding sites after ligation are also cleaved by Bglll or BamHI. You I can't. In other words, even in a new vector formed by linking two plasmids, one BglII, BamHI, and Seal recognition site can be maintained. Therefore, multiple knockdown vectors targeting a large number of genes can be easily produced by repeating the same technique. It should be noted that the only seal site in the ampicillin resistance gene is involved in reducing the number of knock-down bacterial colonies.
- the present inventors analyzed using a human keratinocyte cell line HaCaT having a functional TGF- ⁇ pathway.
- This cell line is known to be suitable for analysis of TGF-8 signaling (Non-patent Document 19).
- Western plot analysis was performed using the disrupted solution obtained by disrupting these cells (Fig. 2a).
- the present inventors confirmed that there was no cell change due to the genomic integration of the plasmid using a stable cell pool that was a mixture of puromycin-resistant polyclonal cells, but not an independent cell clone. .
- Non-patent Document 21 To induce silencing of non-target messenger RNA (mRNA) transcripts, 11-15 contiguous nucleotide sequences identical to siRNA have been reported to be sufficient (Non-patent Document 21). The inventors carefully selected the target sequence by using a unique algorithm, but could not rule out the possibility of knocking down non-specific genes. To investigate silencing of non-target genes in our cells, we use the BLAST database (http: ⁇ www.ncbi.nlm.nih.gov/BLAST) The human genomic force was also searched for the presence of any complementary sequence with at least 11 contiguous nucleotides matching the RNAi site used. Regarding the TGFRB2 site, no gene appeared to have sequence similarity.
- BLAST database http: ⁇ www.ncbi.nlm.nih.gov/BLAST
- Smad2 site 1 one protein containing the BTB / POZ domain (hereinafter referred to as “BTBD1”! was matched with 17 adjacent nucleotides, and the number of others searched was low in similarity. .
- the 5-transmembrane glycoprotein (prominin 2) had 15 contiguous nucleotides similar to site 2 of Smad3.
- RNA expression of non-target genes in knockdown cells was assessed using quantitative reverse transcriptase polymerase chain reaction (RT-PCR).
- RT-PCR quantitative reverse transcriptase polymerase chain reaction
- non-target genes BTBD1, promin 2 and OAS1 is decreased in SK2D or SK3D cells compared to parental HaCaT cells ( Figure 2b, c) or iGFP control cell line (data not shown). It ’s wrong. From this, we conclude that non-target gene silencing existed and was viable in established cell lines.
- dsRNA double-stranded RNA
- the pcPUR-U6 construct Since it was suggested that the pcPUR-U6 construct has high specificity for the target gene and is effective in gene silencing, the functional analysis of the TGF- ⁇ pathway is performed using these cells. It was decided.
- TGF- ⁇ pathway Functional analysis of the TGF- ⁇ pathway was performed by luciferase assay using Smad-dependent reporter (CAGA) 9-Luc.
- Smad-dependent reporter CAGA 9-Luc.
- signal transduction dependent on canonical TGF- ⁇ -Smad was markedly inhibited in all cell lines except S2KD (Fig. 2f).
- Fig. 2f Conservation of luciferase induction by TGF-j8 in S2KD cells (Fig. 2f) suggests that Smad3 and Smad4 bind to "CAGA" Smad binding elements. Consistent with literature 16).
- luciferase assay was performed using a p3TP-Luc reporter plasmid containing an element different from the “CAGA” Smad binding element.
- the p3TP-Luc reporter plasmid is activated via three TRE elements derived from the human collagenase gene (Smad) in the -740 / -636 region of the PAI-1 promoter, which is selectively induced by TGF-jS.
- a luciferase gene is connected downstream of a sequence that binds an element specific to the activin pathway of the TGF- ⁇ family.
- the present inventors examined the induction of -1AI-1, a well-known TGF- ⁇ -responsive gene, in knockdown cell lines.
- the knockdown cell line was cultured in the presence or absence of TGF-
- 8 was inhibited in all knockdown cell lines except S2KD cell line.
- the PAI-1 Western blot results were consistent with the reporter assembly results shown above (Figure 2f). This suggests that TGF-jS-mediated PAI-1 induction is highly dependent on the “CAGA” Smad binding element in its promoter region.
- Non-patent Document 22 Smad dominant-negative constructs
- Non-patent Document 23 antisense RNA
- siRNA duplexes Non-patent Document 24.
- TGF- ⁇ -dependent invasion of S23KD, S24KD, and S34KD cells was not statistically significant compared to control iGFP cells (fold increase was 4.3, 4.3, 3.8, and 3.8 times, respectively).
- the fold increase in invasion by TGF- in S4KD cells was more than 10 times that of control cells with intact Smad4 (Fig. 3a, b).
- 8 is statistically significantly reduced in triple knockdown cell lines compared to Smad4 knockdown cells (magnification, 8.25 times), and cells lacking Smad4 function Suggests that Smad2 and Smad3 are important for TGF-8
- TGF-18 Since TGF-18 is known to promote wound closure by activating cell migration, we have established TGF-
- Smad4 knockdown inhibited wound closure induced by TGF-jS in Pac-1 cells (Non-patent Document 13).
- wound closure was accelerated when lost alone with Smad3 or with Smad2 or Smad4. This finding is consistent with a report in Smad3 knockout mice (Non-patent Document 27).
- S2KD and S23 4KD cells were weaker in wound closure compared to control cells (FIGS. 3c, d). All Smads are downstream mediators of the same TGF-jS pathway. Each Smad appears to have a different involvement in cell migration.
- Non-patent Document 25 The effect of TGF- ⁇ on cell apoptosis varies greatly depending on the cell type (Non-patent Document 25).
- TGF-j8 has been reported to increase cell viability by suppressing apoptosis through Akt-dependent regulation of FKHRL1 (Non-patent Document 28).
- Fig. 3d The percentage of apoptotic cells for different cell types in the presence of TGF-
- TGF-j8 still prevented apoptosis in single or double knockdown cells.
- Smad2 Smad2, Smad3, and Smad4
- TGF-18 lost its anti-apoptotic function and lost apoptosis. Obtained the guidance function.
- the underlying mechanism is unknown, but our data is
- shRNA to knock down HIV.
- the next 16 target sites of shRNA were selected based on the HIV genomic DNA sequence.
- a multiple shRNA expression vector for suppressing and protecting against HIV infection is prepared by introducing two or more DNA sequences encoding each sh RNA in Table 7 above into a vector. By introducing this vector into cells infected with HIV, Activities such as v multiplication can be suppressed. That is,
- a method for treating HIV infection comprising the step of administering a multiple shRNA expression vector having a plurality of shRNA generating units, wherein any one of the nucleotide sequences set forth in SEQ ID NOs: 134 to 149 is connected downstream of the promoter,
- the multiple shRNA expression vector of the present invention is effective in silencing two or more targets simultaneously.
- Both the technology for creating knockout animal models of multiple genes and the stable RNAi technology targeting multiple genes according to the present invention have the common feature of stably suppressing the expression of a large number of genes, which is a different technology.
- the former is a technology that has left enormous achievements in life science research so far, but the method of the present invention cited as the latter is expected to be a technology that can replace the former.
- RNAi The mechanism of RNAi is a cyclically acting enzyme complex, and once activated, a single RISC complex can possibly cleave multiple copies of multiple RNA targets (29). ), This feature could effectively silence many targets simultaneously. If effective shRNA does not work due to the low concentration of shRNAs produced, efficient knocking can be achieved by increasing the number of copies of the RNAi cassette carried on the plasmid by a factor of 2, 4 or more. The results shown in this example suggest that the construct can be downed.
- the advantage of this system is that the number of shRN As can be increased without significantly changing the overall plasmid length. For example, if the upper limit of the length of plasmid DNA that can be introduced into cells by transfection is 20 kb, theoretically, one siRNA expression plasmid should carry 30 or more shRNA cassettes. It will be possible. Therefore, the best target that can be effectively silenced using this method. In order to determine the large number or copy number, those skilled in the art will be able to adjust appropriately depending on the cells used, the amount of target, and the regenerative capacity.
- the present invention will be a technique widely used in the field of life science such as functional analysis of various genes and identification of drug discovery targets as a technique for suppressing the expression of a large number of target genes. .
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
A multiple shRNA expression vector for use in the inhibition of the expression of a target gene, which carries multiple shRNA-producing units each of which can produce shRNA. In the vector, each of the shRNA-producing units comprises DNA encoding shRNA ligated downstream to a promoter, the DNA encoding the shRNA is composed of antisense DNA encoding antisense RNA which has a sequence complementary to mRNA of the target gene and sense DNA encoding sense RNA having a sequence hybridizable with the antisense DNA, and both of the antisense DNA and the sense DNA are ligated to each other through linker DNA.
Description
明 細 書 Specification
多重 shRNA発現ベクター Multiple shRNA expression vector
技術分野 Technical field
[0001] 本発明は、標的遺伝子の発現を抑制し得る shRNAを産生するベクターに関し、特 に、複数の遺伝子を標的とした複数の shRNAを単一のベクター力 産生させるベクタ 一に関する。 [0001] The present invention relates to a vector that produces shRNA capable of suppressing the expression of a target gene, and more particularly to a vector that produces a single vector force that produces a plurality of shRNAs targeting a plurality of genes.
背景技術 Background art
[0002] RNA干渉(以下、「RNAi」という)は、近年の生命科学の偉大な発見の一つである( 非特許文献 1、 2、 3)。しかし、効果的な短い干渉用 RNA (以下、「siRNA」という)二本 鎖をデザインするために種々改善が行なわれて ヽるにもかかわらず (非特許文献 4、 5)、なおも低いトランスフエクシヨン効率および方法により効率的な RNAiを誘導するこ とが難しい(非特許文献 6)。ベクターより発現される siRNA系が開発されたことは革新 的進歩であり(特許文献 1、非特許文献 7、 8)、従来のオリゴ siRNAを用いた場合の以 下の(1)から (3)に掲げる課題等を克服することができる。 [0002] RNA interference (hereinafter referred to as "RNAi") is one of the great discoveries of life science in recent years (Non-Patent Documents 1, 2, and 3). However, despite various improvements made to design effective short interfering RNA (hereinafter “siRNA”) duplexes (Non-Patent Documents 4 and 5), still low transfer It is difficult to induce efficient RNAi using the efficiency and method (Non-patent Document 6). The development of siRNA systems expressed from vectors is an innovative advance (Patent Document 1, Non-Patent Documents 7 and 8), and the following (1) to (3) when using conventional oligo siRNAs: We can overcome problems listed in
(1)オリゴ siRNA二本鎖のノックダウン効率は、宿主細胞株のトランスフエクシヨン効率 に大きく依存する。十分なノックダウン効果を得るためには大量でかつ最適条件下で トランスフエクシヨンを行う必要があり、そのため、最適化などの時間およびオリゴ RNA の大量合成の費用も力かる。 (1) The knockdown efficiency of oligo siRNA duplexes depends greatly on the transfection efficiency of the host cell line. In order to obtain a sufficient knockdown effect, it is necessary to carry out transfection under a large amount and under optimum conditions. Therefore, the time for optimization and the cost of mass synthesis of oligo RNA are also high.
(2)第二に、オリゴ siRNA二本鎖が一過性であるという特性のため、長い半減期を有 する標的遺伝子をサイレンシングさせることは難しい。 (2) Second, due to the transient nature of the oligo siRNA duplex, it is difficult to silence target genes with long half-lives.
(3)第三に、ほとんどのトランスフエクシヨン法は、細胞障害性であり、このために細胞 死、アポトーシスおよび細胞増殖のような重要な表現型の変化を観察することが難し い。 (3) Third, most transfection methods are cytotoxic, which makes it difficult to observe important phenotypic changes such as cell death, apoptosis and cell proliferation.
[0003] 上記に示すオリゴ siRNAを用いた場合の課題は、 DNAである siRNA発現ベクターを 用い、ベクター力も siRNAを発現させることにより安定なノックダウン細胞株を確立す ること〖こよって、これら問題を克月 βすることができる。 [0003] When using the oligo siRNA shown above, the problem is that using a siRNA expression vector, which is DNA, and establishing a stable knockdown cell line by expressing the siRNA, these problems Katsutsuki can be β.
[0004] また、大規模 RNAiライブラリを作製する ヽくつかの労力のカゝかる技術が導入された
力 S (非特許文献 9、 10)、それらは費用および時間を要し、同じ細胞において多数の 遺伝子を類似のレベルまで安定にノックダウンするためには最適化が必要である。大 規模 RNAiライブラリのスクリーニングの目的以外にも、複数種の選択マーカーを使用 することなぐ標的とする多数の遺伝子を安定にかつ同時に抑制し得る多重ノックダ ゥン法の開発が要望されている。 [0004] In addition, several labor-intensive techniques for creating large-scale RNAi libraries were introduced. Force S (9, 10), they are costly and time consuming, and optimization is required to stably knock down multiple genes to similar levels in the same cell. In addition to the purpose of screening large-scale RNAi libraries, there is a demand for the development of a multiple knockdown method that can stably and simultaneously suppress a large number of target genes without using multiple types of selectable markers.
[0005] 最近の研究では、鎖長の短いヘアピン(short hairpin :以下、「sh」と略す)型 RNAダ ィサ一基質が、 RNAiの誘導にぉ 、て有効であることが報告された (非特許文献 11)。 この結果から、将来、 sh型 RNA発現ベクターは RNAi解析のための主流のツールとな ることが予想される。 [0005] Recent studies have reported that short hairpin (hereinafter abbreviated as “sh”) type RNA dicer substrates are effective for inducing RNAi ( Non-patent document 11). From this result, it is expected that sh-type RNA expression vectors will become the mainstream tool for RNAi analysis in the future.
[0006] 特許文献 l :WO 03/046186ノ ンフレット [0006] Patent Literature l: WO 03/046186 Nonfret
非特干文献 1: Fire, A. et ai. Potent and specific genetic interference by double- stra nded RNA in Caenorhabditis elegans. Nature 391, 806—811 (1998). Non-patent literature 1: Fire, A. et ai. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806—811 (1998).
非特許文献 2 : Elbashir, S.M. et al. Duplexes of 21- nucleotide RNAs mediate RNA in terference in cultured mammalian cells. Nature 411, 494-498 (2001). Non-Patent Document 2: Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA in terference in cultured mammalian cells.Nature 411, 494-498 (2001).
非特許文献 3 : Hannon, G.J. & Rossi, J.J. Unlocking the potential of the human geno me with RNA interference. Nature 431, 371—378 (2004). Non-Patent Document 3: Hannon, G.J. & Rossi, J.J.Unlocking the potential of the human geno me with RNA interference.Nature 431, 371-378 (2004).
特許文献 4 : Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208 (2003). Patent Document 4: Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex.Cell 115, 199-208 (2003).
^^特許文献 5 : Reynolds, A. et al. Rational siRNA design for RNA interference. Nat Biotechnol 22, 326-330 (2004). ^^ Patent Literature 5: Reynolds, A. et al. Rational siRNA design for RNA interference. Nat Biotechnol 22, 326-330 (2004).
非特許文献 6 : Dykxhoorn, D.M., Novina, CD. & Sharp, P.A. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-467 (2003). 非特許文献 7 : Miyagishi, M. & Taira, K. U6 promoter-driven siRNAs with four uridi ne 3 overhangs efficiently suppress targeted gene expression in mammalian cells. N at Biotechnol 20, 497—500 (2002). Non-Patent Document 6: Dykxhoorn, DM, Novina, CD. & Sharp, PA Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-467 (2003). Non-Patent Document 7: Miyagishi, M & Taira, K. U6 promoter-driven siRNAs with four uridi ne 3 overhangs efficiently suppress targeted gene expression in mammalian cells. N at Biotechnol 20, 497—500 (2002).
特許文献 8 : Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable ex pression of short interfering RNAs in mammalian cells. Science 296, 550-553 (2002). 非特許文献 9 : Miyagishi, M. & Taira, K. Strategies for generation of an siRNA expre
ssion library directed against the human genome. Oligonucleotides 13, 325 - 333 (200 3). Patent Document 8: Brummelkamp, TR, Bernards, R. & Agami, R. A system for stable ex pression of short interfering RNAs in mammalian cells. Science 296, 550-553 (2002). Non-Patent Document 9: Miyagishi, M. & Taira, K. Strategies for generation of an siRNA expre ssion library directed against the human genome.Oligonucleotides 13, 325-333 (200 3).
特言午文献 10 : Downward, J. Use of RNA interference libraries to investigate oncog enic signalling in mammalian cells. Oncogene 23, 8376-8383 (2004). Special Review 10: Downward, J. Use of RNA interference libraries to investigate oncog enic signaling in mammalian cells.Oncogene 23, 8376-8383 (2004).
非特許文献 11 : Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nat Biot echnol 23, 227-231 (2005) Non-Patent Document 11: Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nat Biot echnol 23, 227-231 (2005)
特言午文献 12 : Imamura, T. et al. Proteomic analysis of the TGF— beta signaling pat hway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 e xpression. Biochem Biophys Res Commun 318, 289-296 (2004) Special Review 12: Imamura, T. et al. Proteomic analysis of the TGF— beta signaling pat hway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 e xpression. Biochem Biophys Res Commun 318, 289-296 (2004)
非特言午文献 13 :Jazag, A. et al. Smad4 silencing in pancreatic cancer cell lines using stable RNA interference and gene expression profiles induced by transforming growt h factor-beta. Oncogene (2004). Non-Special Terms 13: Jazag, A. et al. Smad4 silencing in pancreatic cancer cell lines using stable RNA interference and gene expression profiles induced by transforming growt h factor-beta. Oncogene (2004).
非特言午文献 l4 : Zanta M.A. et al" Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci U S A. 19 99 Jan 5;96(1):91— 6) Non-Patent Literature Literature l4: Zanta MA et al "Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci US A. 19 99 Jan 5; 96 (1): 91— 6 )
非特言午文献 15 : Liu F, Huang L. Improving plasmid DNA- mediated liver gene transfe r by prolonging its retention in the hepatic vasculature. J. Gene Med. 2001 Nov— De c;3(6):569-76 Non-Special Terms 15: Liu F, Huang L. Improving plasmid DNA-mediated liver gene transfe r by prolonging its retention in the hepatic vasculature. J. Gene Med. 2001 Nov— De c; 3 (6): 569-76
非特許文献 16 : Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific tran scription activators. Mol Cell 1, 611—617 (1998). Non-Patent Document 16: Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1, 611—617 (1998).
特言午文献 17 : Ijichi, H. et al. Systematic analysis of the TGF— beta— Smad signaling pathway in gastrointestinal cancer cells. Biochem Biophys Res Commun 289, 350—35 7 (2001) Special Review 17: Ijichi, H. et al. Systematic analysis of the TGF— beta— Smad signaling pathway in gastrointestinal cancer cells. Biochem Biophys Res Commun 289, 350—35 7 (2001)
非特許文献 18 : Ijichi, Η· et al. Smad4— independent regulation of p21/WAFl by tran sforming growth factor-beta. Oncogene 23, 1043-1051 (2004). Non-Patent Document 18: Ijichi, Tsuji et al. Smad4—independent regulation of p21 / WAFl by tran sforming growth factor-beta. Oncogene 23, 1043-1051 (2004).
非特許文献 19 : Seoane, J., Le, H.V., Shen, L., Anderson, S.A. & Massague, J. Integ ration of Smad and forkhead pathways in the control of neuroepithelial and glioolasto ma cell proliferation. Cell 117, 211—223 (2004).
非特許文献 20 : Jackson, A.L. et al. Expression profiling reveals off- target gene regu lation by RNAi. Nat Biotechnol 21, 635—637 (2003). Non-Patent Document 19: Seoane, J., Le, HV, Shen, L., Anderson, SA & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioolasto ma cell proliferation.Cell 117, 211— 223 (2004). Non-Patent Document 20: Jackson, AL et al. Expression profiling reveals off- target gene regulation by RNAi. Nat Biotechnol 21, 635-637 (2003).
非特許文献 21 : Bridge, A.J., Pebernard, S., Ducraux, A" Nicoulaz, A.L. & Iggo, R. I nduction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 3 4, 263-264 (2003) Non-Patent Document 21: Bridge, AJ, Pebernard, S., Ducraux, A "Nicoulaz, AL & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 3 4, 263-264 (2003)
非特許文献 22 : Pardali, K. et al. Role of Smad proteins and transcription factor Spl in p21(Wafl/Cipl) regulation by transforming growth factor-beta. J Biol Chem 275, 29244-29256 (2000) Non-Patent Document 22: Pardali, K. et al. Role of Smad proteins and transcription factor Spl in p21 (Wafl / Cipl) regulation by transforming growth factor-beta.J Biol Chem 275, 29244-29256 (2000)
非特許文献 23: Kretschmer, A. et al. Differential regulation of TGF- beta signaling t hrough Smad2, Smad3 and Smad4. Oncogene 22, 6748—6763 (2003). Non-Patent Document 23: Kretschmer, A. et al. Differential regulation of TGF-beta signaling t hrough Smad2, Smad3 and Smad4. Oncogene 22, 6748—6763 (2003).
非特許文献 24 : Major, M.B. & Jones, D.A. Identification of a gadd45beta 3' enhance r that mediates SMAD3— and SMAD4— dependent transcriptional induction by transfo rming growth factor beta. J Biol Chem 279, 5278—5287 (2004). Non-Patent Document 24: Major, M.B. & Jones, D.A.Identification of a gadd45beta 3 'enhancer that mediates SMAD3— and SMAD4— dependent transcriptional induction by transfo rming growth factor beta.J Biol Chem 279, 5278—5287 (2004).
非特許文献 25 : Siegel, P.M. & Massague, J. Cytostatic and apoptotic actions of TGNon-Patent Document 25: Siegel, P.M. & Massague, J. Cytostatic and apoptotic actions of TG
F- beta in homeostasis and cancer. Nat Rev Cancer 3, 807-821 (2003) F-beta in homeostasis and cancer.Nat Rev Cancer 3, 807-821 (2003)
非特許文献 26: Takaku, K. et al. Gastric and duodenal polyps in Smad4 (Dpc4) knoc kout mice. Cancer Res 59, 6113—6117 (1999) Non-Patent Document 26: Takaku, K. et al. Gastric and duodenal polyps in Smad4 (Dpc4) knoc kout mice. Cancer Res 59, 6113-6117 (1999)
非特許文献 27 :Ashcroft, G.S. et al. Mice lacking Smad3 show accelerated wound he aling and an impaired local inflammatory response. Nat Cell Biol 1, 260- 26b (1999). 非特許文献 28 : Shin, I" Bakin, A.V., Rodeck, U., Brunet, A. & Arteaga, C.L. Trans forming growth factor beta enhances epithelial cell survival via AM— dependent regul ation of FKHRL1. Mol Biol Cell 12, 3328—3339 (2001) Non-patent document 27: Ashcroft, GS et al. Mice lacking Smad3 show accelerated wound he aling and an impaired local inflammatory response. Nat Cell Biol 1, 260- 26b (1999). Non-patent document 28: Shin, I "Bakin, AV , Rodeck, U., Brunet, A. & Arteaga, CL Trans forming growth factor beta enhances epithelial cell survival via AM— dependent regul ation of FKHRL1. Mol Biol Cell 12, 3328-3339 (2001)
非特許文献 29 : Haley, B. & Zamore, P.D. Kinetic analysis of the RNAi enzyme comp lex. Nat Struct Mol Biol 11, 599-606 (2004) Non-Patent Document 29: Haley, B. & Zamore, P.D.Kinetic analysis of the RNAi enzyme comp lex. Nat Struct Mol Biol 11, 599-606 (2004)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
本発明は、 sh型の発現ベクターにおいて、多数の遺伝子を標的とする、あるいは単 一遺伝子を標的とする、多数の shRNA発現カセットを単一ベクターに備えた、多重ノ
ックダウンシステムを開発することを課題とする。 In the sh-type expression vector, the present invention is a multi-type gene comprising a large number of shRNA expression cassettes targeting a large number of genes or targeting a single gene. The challenge is to develop a knockdown system.
課題を解決するための手段 Means for solving the problem
[0008] 本発明者らは、単一のベクターから多数の shRNAを発現し得るシステムの開発に 当たって、 Smad— TGF- |8のシグナル伝達系の機能解析を同時に行なうことを試み た。本発明者らは、複雑なシグナル伝達経路を分析するために、短いヘアピン型 RN A発現ベクターを用いた Smad4の機能的分析を既に報告したが (非特許文献 12、 13 )、他の Smad遺伝子を同時にノックダウンすることにより、さらなる機能分析を行い得る と考えた。 [0008] In developing a system capable of expressing a large number of shRNAs from a single vector, the present inventors tried to simultaneously perform functional analysis of the signal transduction system of Smad-TGF- | 8. The present inventors have already reported the functional analysis of Smad4 using a short hairpin RNA expression vector to analyze complex signal transduction pathways (Non-Patent Documents 12 and 13), but other Smad genes. At the same time, we thought that further functional analysis could be performed.
[0009] 本発明者らは、鋭意努力した結果、複数の遺伝子を標的とする sh型 RNAsを産生し 得る系の開発に成功するとともに、 Smadファミリーを同時に抑制し得る系を開発する ことに成功した。本発明は、これら成果に基づくものであり、具体的には以下に示す 通りである。 [0009] As a result of diligent efforts, the present inventors have succeeded in developing a system capable of producing sh-type RNAs targeting multiple genes and succeeding in developing a system capable of simultaneously suppressing the Smad family. did. The present invention is based on these results, and is specifically as follows.
[0010] 1. 標的遺伝子の発現を抑制するための shRNAを生成し得る shRNA生成ユニット をベクター内に複数担持した多重 shRNA発現ベクターであって、 [0010] 1. A multiple shRNA expression vector carrying a plurality of shRNA generation units capable of generating shRNA for suppressing the expression of a target gene in the vector,
前記 shRNA生成ュ-ットは、プロモーターの下流に shRNAをコードした DNAが接続 されて構成され、 The shRNA generator is configured by connecting DNA encoding shRNA downstream of the promoter,
前記 shRNAをコードした DNAは、前記標的遺伝子と相補的な配列を有するアンチ センス DNAと、該アンチセンス DNAと対合し得る配列からなるセンス DNAとがリンカ一 DNAで連結されて構成された、多重 shRNA発現ベクター。 The DNA encoding the shRNA is constituted by linking an antisense DNA having a sequence complementary to the target gene and a sense DNA comprising a sequence capable of pairing with the antisense DNA with a linker DNA. Multiple shRNA expression vector.
2. センス DNA内には、アンチセンス DNAと相補しないミスマッチ配列が含まれる、 上記 1記載の多重 shRNA発現ベクター。 2. The multiplex shRNA expression vector according to 1 above, wherein the sense DNA contains a mismatch sequence that does not complement the antisense DNA.
3. ミスマッチ配列がセンス DNA内に 2〜55%含まれる、上記 2記載の多重 shRNA 発現ベクター。 3. The multiplex shRNA expression vector according to 2 above, wherein the mismatch sequence is contained in 2-55% of the sense DNA.
4. センス DNA上のミスマッチ配列が、アンチセンス DNA上の対応する塩基との関 係において置換、欠失、挿入または付加のいずれかまたはこれらの組合せにより形 成されている、上記 2記載の多重 shRNA発現ベクター。 4. The multiplex according to 2 above, wherein the mismatch sequence on the sense DNA is formed by any one of substitution, deletion, insertion, addition, or a combination thereof in relation to the corresponding base on the antisense DNA. shRNA expression vector.
5. 置換がセンス DNA上の Cを Tへ、または Gを A〖こ変更すること〖こよる、上記 4記載 の多重 shRNA発現ベクター。
6. ベクターが一過的な発現を誘導するベクターまたは安定的な発現を誘導する ベクターである、上記 1記載の多重 shRNA発現ベクター。 5. The multiple shRNA expression vector according to 4 above, wherein the substitution is performed by changing C on the sense DNA to T or G to A. 6. The multiple shRNA expression vector according to 1 above, wherein the vector is a vector that induces transient expression or a vector that induces stable expression.
7. ベクター内に担持されて!、る複数の shRNA生成ユニットが下記(1)から(3)の いずれかまたはこれら二つ以上の組合せに該当する、上記 1記載の多重 shRNA発現 ベクター。 7. The multiple shRNA expression vector according to 1 above, wherein the plurality of shRNA generation units supported in the vector correspond to any one of the following (1) to (3) or a combination of two or more thereof.
(1)単一遺伝子の同一部位を標的とした同一の shRNA生成ユニットが複数力もなる (1) The same shRNA generation unit targeting the same site of a single gene can be used multiple times
(2)単一遺伝子の異なる二以上の部位を標的とした複数の shRNA生成ユニットから なる (2) Consists of multiple shRNA generation units targeting two or more different sites of a single gene
(3)異なる二以上の遺伝子を標的とした複数の shRNA生成ユニットからなる (3) Consists of multiple shRNA generation units targeting two or more different genes
8. プロモーターが polIII系プロモーターである、上記 1記載の多重 shRNA発現べ クタ一。 8. The multiple shRNA expression vector according to 1 above, wherein the promoter is a polIII promoter.
9. 第一 shRNA生成ユニットを備えた環状構造の第一 shRNA発現ベクターおよび 第二 shRNA生成ユニットを備えた環状構造の第二 shRNA発現ベクターを原料として 、多重 shRNA発現ベクターを製造する方法であって、 9. A method for producing a multiple shRNA expression vector from a circular structure first shRNA expression vector having a first shRNA generation unit and a circular second shRNA expression vector having a second shRNA generation unit as raw materials. ,
前記第一および第二 shRNA発現ベクターには同様に、第一、第二 shRNA生成ュ- ットの上流、下流にそれぞれ制限酵素 A、 Bの認識消化部位 a、 bが設けられ、 前記第一および第二 shRNA発現ベクターにはそれぞれ shRNA生成ユニットを含ま ない側の a— b領域内にのみ存在する制限酵素 Cの認識消化部位 cが備えられ、 前記制限酵素 A、 B、 Cは全て異なり、前記 Aおよび Bは、 Aと Bとは互いに接続可能 な末端を生成し、前記 Cの消化末端とは接続し得ない末端を生成する制限酵素であ り、前記 a、 b部位は第一、第二 shRNA発現ベクター内に単一箇所として存在する条 件において、 Similarly, the first and second shRNA expression vectors are provided with recognition digestion sites a and b for restriction enzymes A and B, respectively, upstream and downstream of the first and second shRNA generating units, respectively. And the second shRNA expression vector is provided with a recognition digestion site c of restriction enzyme C that exists only in the a-b region on the side not containing the shRNA generation unit, and the restriction enzymes A, B, and C are all different, A and B are restriction enzymes that generate an end that can be connected to A and B, and an end that cannot be connected to the digested end of C. The a and b sites are the first, In conditions that exist as a single location in the second shRNA expression vector:
下記(1)から (4)の工程を含む、方法。 A method comprising the following steps (1) to (4):
(1)制限酵素 A、 Cで第一 shRNA発現ベクターを消化する工程、 (1) digesting the first shRNA expression vector with restriction enzymes A and C,
(2)制限酵素 B、 Cで第二 shRNA発現ベクターを消化する工程、 (2) digesting the second shRNA expression vector with restriction enzymes B and C,
(3)前記(1)、 (2)の消化断片を混合し、ライゲーシヨンを行なう工程 (3) Step of mixing the digested fragments of (1) and (2) above and performing ligation
(4)第一 shRNA発現ベクターの第一 shRNA生成ユニットを含む a- c断片と、第二 shRNA発現ベクターの第二 shRNA生成ユニットを含む b-c断片とが接続された
環状構築物を回収する工程 (4) The a-c fragment containing the first shRNA generating unit of the first shRNA expression vector and the bc fragment containing the second shRNA generating unit of the second shRNA expression vector were connected. Recovering the circular structure
10. 制限酵素 A、 B、 Cは粘着末端を生成する制限酵素である、上記 9記載の方 法。 10. The method according to 9 above, wherein restriction enzymes A, B, and C are restriction enzymes that generate sticky ends.
11. 制限酵素 A、 Bは、それぞれ生成する末端が互いに接続した際に aとも bとも異 なる配列を形成し得る、上記 9記載の方法。 11. The method according to 9 above, wherein the restriction enzymes A and B can form a sequence different from both a and b when the generated ends are connected to each other.
12. 第一、第二 shRNA発現ベクターには選択マーカーが備えられ、前記選択マ 一力一内に部位 cが設けられ、 12. The first and second shRNA expression vectors are provided with a selection marker, and a site c is provided in the selection marker.
前記(3)工程の後に、前記選択マーカーで選択する工程を含む、上記 9記載の方 法。 10. The method according to 9 above, comprising a step of selecting with the selection marker after the step (3).
13. 多重 shRNA発現コンストラクト製造用のベクターであって、 13. A vector for the production of a multiple shRNA expression construct,
プロモーターと、 A promoter,
前記プロモーターの下流に設けられた shRNAをコードした DNAを挿入し得るクロー ユング領域と、 A cloning region into which DNA encoding shRNA provided downstream of the promoter can be inserted;
一つ以上の選択マーカーとが備えられ、 With one or more selection markers,
前記プロモーターの上流側に制限酵素 Aの認識消化部位 aが設けられ、 前記クローニング領域の下流に制限酵素 Bの認識部位 bが設けられ、 A recognition digestion site a of restriction enzyme A is provided upstream of the promoter, a recognition site b of restriction enzyme B is provided downstream of the cloning region,
一の選択マーカー内には制限酵素 Cの認識消化部位 cが備えられ、 Within one selectable marker is a restriction enzyme C recognition digestion site c,
前記 Aと Bとは接続可能な末端を生成し得る制限酵素であり、前記制限酵素 Cは前 記 A、 Bの消化末端とは接続し得ない断端を形成し得る制限酵素であり、前記 a、 b部 位は単一の部位として備えられて 、る、 A and B are restriction enzymes that can generate connectable ends, and the restriction enzyme C is a restriction enzyme that can form a stump that cannot be connected to the digestive ends of A and B, and The a and b parts are provided as a single part.
ベクター。 vector.
14. 制限酵素 A、 B、 Cは粘着末端を生成する制限酵素である、上記 13記載のベ クタ一。 14. The vector according to 13 above, wherein restriction enzymes A, B, and C are restriction enzymes that generate sticky ends.
15. 制限酵素 A、 Bは、それぞれ生成する末端が互いに接続した際に aとも bとも異 なる配列を形成し得る、上記 14記載のベクター。 15. The vector according to the above 14, wherein the restriction enzymes A and B can form a sequence different from both a and b when the generated ends are connected to each other.
16. 上記 1から 8のいずれかに記載のベクターを保持した、細胞。 16. A cell having the vector according to any one of 1 to 8 above.
17. 上記 1から 8のいずれかに記載のベクターを保持した、非ヒト動物。 17. A non-human animal carrying the vector according to any one of 1 to 8 above.
18. 上記 1から 8のいずれかに記載のベクターを成分とする、医薬組成物。
発明の効果 18. A pharmaceutical composition comprising the vector according to any one of 1 to 8 as a component. The invention's effect
[0011] 本発明によれば、単一のベクター力 複数の shRNAを発現させることが可能となる。 [0011] According to the present invention, it is possible to express a plurality of shRNAs with a single vector force.
そのため、ベクター上で単一の shRNAのコピーを多数として、細胞内での発現するコ ピー数を増加させることもできる。また、一つの遺伝子の異なる部分を標的とする異 種の shRNAをコードした DNAを一つのベクターに搭載させることにより、より強力に遺 伝子の発現抑制が期待できる。さらに、本発明で最も有効な用途として、異なる遺伝 子をそれぞれターゲットとした複数の shRNAを単一のベクターに搭載させることにより 、一種類のベクターの導入により、同時に複数の遺伝子を RNAi効果により発現抑制 することが可能となる。例えば、一つのシグナル伝達経路に関与する複数の遺伝子 をターゲットとした多重 shRNAベクターの場合には、該シグナル伝達経路の複数のポ イントが抑制されるため、強力に経路伝達の抑制を行なうことができる。これによりシ グナル伝達経路に関与する一遺伝子の抑制では検出することができないような機能 を解明することも期待できる。とりわけ、バイパス経路などが別に存在するようなシグ ナル伝達系のような場合に、本発明の多重 shRNA発現ベクターを用いれば、本流と ノ ィパスとの両経路それぞれに関与する遺伝子を同時にターゲットとして発現抑制 することも可會である。 Therefore, it is also possible to increase the number of copies expressed in a cell by making multiple copies of a single shRNA on the vector. In addition, it is expected that gene expression can be more strongly suppressed by mounting DNA encoding different shRNAs targeting different parts of one gene in one vector. Furthermore, as the most effective use in the present invention, multiple genes can be simultaneously expressed by RNAi effect by introducing a single vector by mounting multiple shRNAs targeting different genes on a single vector. It can be suppressed. For example, in the case of a multiple shRNA vector that targets multiple genes involved in a single signal transduction pathway, multiple points in the signal transduction pathway are suppressed, so it is possible to strongly suppress the pathway transmission. it can. This can be expected to elucidate functions that cannot be detected by suppression of a single gene involved in the signal transduction pathway. In particular, in the case of a signal transduction system in which bypass pathways exist separately, if the multiple shRNA expression vector of the present invention is used, genes involved in both the mainstream and the nopass pathway are expressed simultaneously as targets. It is also possible to suppress it.
また、本発明の多重 shRNA発現ベクターによれば、従来、その作成には時間と手 間を要したダブル Zトリプルノックアウトマウスを作成することなく、同時に多数の遺伝 子を抑制した動物を得ることも可能となる。 In addition, according to the multiplex shRNA expression vector of the present invention, it is possible to obtain an animal in which a large number of genes are suppressed at the same time without creating a double Z triple knockout mouse, which has conventionally required time and labor to produce it. It becomes possible.
以上の通り、本発明によれば、遺伝子 Zタンパク質の機能解明を加速させる重要な ツールとなるとともに、疾患の発生機序などの解明にも寄与することが期待できる。 図面の簡単な説明 As described above, according to the present invention, it can be expected to be an important tool for accelerating the elucidation of the function of gene Z protein and to contribute to the elucidation of the mechanism of disease occurrence. Brief Description of Drawings
[0012] [図 la]シングルノックダウンコンストラクトを用いた RNAi効果を検討した結果を示す写 真である。 Smad2、 Smad3、または TGFRB2遺伝子のそれぞれに関して四つの標的部 位を設計して、 pcPUR+U6iカセットにサブクローユングして各 siRNA発現ベクターを構 築した。各 siRNA発現ベクターを、 Smad2-、 Smad3_、または TGFRB2-発現ベクターと 共に同時に HeLa細胞に一過性にトランスフエタトして、ウェスタンブロット分析によつ てサイレンシング効率を検討した。同じ試料を 1試料あたり 2個ずつローデイングした。
[図 lb]siSmad2または siSmad3による Smad-2または- 3の特異的ノックダウンを示す写真 である。 HaCaT細胞に pcDEF3— Flag(N)— Smad2、 pcDEF3— Flag(N)— Smad3、および pcP UR+U6- Smad2i (左のレーン)、または pcPUR+U6- Smad3i (中央のレーン)、または pcP UR+U6- GFPi (右のレーン)を一過性にトランスフ タトした。細胞を溶解した後、本発 明者らは、ウェスタンプロット分析を行った。 [0012] [Fig. La] A photograph showing the results of examining the RNAi effect using a single knockdown construct. Four target sites were designed for each of the Smad2, Smad3, or TGFRB2 genes and subcloned into the pcPUR + U6i cassette to construct each siRNA expression vector. Each siRNA expression vector was transiently transfected into HeLa cells simultaneously with Smad2-, Smad3_, or TGFRB2-expression vectors, and the silencing efficiency was examined by Western blot analysis. Two identical samples were loaded per sample. [Fig. Lb] A photograph showing specific knockdown of Smad-2 or -3 by siSmad2 or siSmad3. For HaCaT cells, pcDEF3—Flag (N) —Smad2, pcDEF3—Flag (N) —Smad3, and pcP UR + U6- Smad2i (left lane), or pcPUR + U6- Smad3i (center lane), or pcP UR + U6-GFPi (right lane) was transiently transferred. After lysing the cells, the inventors performed a Western plot analysis.
[図 lc]図 lcから図 leは、 RNAiベクターの構成および構築方法を模式的に示す図で ある。図 lcは、多重標的 siRNA発現ベクターの生成ストラテジーを模式的に示す。 pc PUR+U6- iカセットは、 U6プロモーターの上流に Bglllの制限酵素部位を有し、 RNAiク ローニング部位の下流に BamHIを有し、およびアンピシリン耐性遺伝子にぉ 、て Seal 部位を有する。これらの部位は全てこのプラスミドにおいて単一サイトである。図中の 「N;D5」は、 aagcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatc cgctc (目列 ¾·号: 1 62)力 なる 55塩基長の塩基配列を意味する。 [FIG. Lc] FIG. Lc to FIG. Le are diagrams schematically showing the construction and construction method of RNAi vectors. Figure lc schematically shows the strategy for generating multitarget siRNA expression vectors. The pc PUR + U6-i cassette has a Bglll restriction enzyme site upstream of the U6 promoter, BamHI downstream of the RNAi cloning site, and a seal site for the ampicillin resistance gene. These sites are all single sites in this plasmid. “N; D5” in the figure means an aagcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatc cgctc (Table ¾ · No .: 162) and a base sequence of 55 bases in length.
[図 ld]Smad2および- 3の双方を標的とするダブルノックダウンベクターを作製するた めに、 PCPUR+U6- Smad2iは BamHIおよび Sealによって消化し、 pcPUR+U6- Smad3iは Bglllおよび Sealによって消化したことを示す図である。図中の「N55」は、配列番号: 16 2に記載の塩基配列を意味する。 [Fig.ld] PCPUR + U6- Smad2i was digested with BamHI and Seal and pcPUR + U6- Smad3i was digested with Bglll and Seal to create a double knockdown vector targeting both Smad2 and -3 FIG. “N55” in the figure means the nucleotide sequence set forth in SEQ ID NO: 162.
圆 le]制限酵素により線状化された二つの断片をライゲーシヨンして、ダブルノックダ ゥンベクターを作製したことを示す図である。図中の「N55」は、配列番号: 162に記載 の塩基配列を意味する。 FIG. 2 shows that a double knockdown vector was prepared by ligation of two fragments linearized with a restriction enzyme. “N55” in the figure means the nucleotide sequence set forth in SEQ ID NO: 162.
[図 If]実施例において作製されたシングル、ダブル、およびトリプル siRNA発現べクタ 一の模式図である。このうち pcPUR+U6-Smad4iは既に報告されている(非特許文献 1 2、 13) o FIG. If is a schematic diagram of a single, double, and triple siRNA expression vector prepared in Examples. Of these, pcPUR + U6-Smad4i has already been reported (Non-Patent Documents 1 and 13) o
[図 2a]図 2aから図 2gは、実施例で作成した安定なノックダウン細胞の有効性および特 異性を示す図および写真である。図 2aは、内因性の Smadノックダウン: HaCaT細胞に pcPUR+U6— GFPiゝ pcPUR+U6— Smad2i、 pcPUR+U6— Smad3i、 pcPUR+U6— Smad4i、 pc PUR+U6— Smad23i、 pcPUR+U6— Smad24i、 pcPUR+U6— Smad34i、または pcPUR+U6— S mad234iをトランスフエタトさせて、ピューロマイシン(1 μ g/ml)と共にインキュベートし て安定に形質転換した細胞を選択したことを示す写真である。トータル細胞溶解物を
用いてウェスタンブロット分析を行った。 [FIG. 2a] FIGS. 2a to 2g are diagrams and photographs showing the effectiveness and specificity of stable knockdown cells prepared in Examples. Figure 2a shows endogenous Smad knockdown: HaCaT cells were treated with pcPUR + U6— GFPi ゝ pcPUR + U6— Smad2i, pcPUR + U6— Smad3i, pcPUR + U6— Smad4i, pc PUR + U6— Smad23i, pcPUR + U6— Smad24i FIG. 3 shows that cells transformed stably by purifying pcPUR + U6-Smad34i or pcPUR + U6-Smad234i and incubating with puromycin (1 μg / ml) were selected. Total cell lysate Western blot analysis was performed.
[図 2b]各細胞株における Smad2,3および 4に対する siRNAの発現をノーザン解析によ り検出した結果を示す写真である。 FIG. 2b is a photograph showing the results of detection of siRNA expression against Smad2, 3 and 4 by Northern analysis in each cell line.
[図 2c]図示された細胞株における BTBD1の相対的発現を定量的逆転写酵素 PCRに よって評価したことを示す図である。親 HaCaT細胞における遺伝子発現レベルに値 1 .0を割付した。ノックダウンベクターは、非特異的標的遺伝子である BTBD1のサイレ ンシングを誘発しなかった。 FIG. 2c shows that the relative expression of BTBD1 in the cell lines shown was evaluated by quantitative reverse transcriptase PCR. A value of 1.0 was assigned to the gene expression level in parental HaCaT cells. The knockdown vector did not induce silencing of the non-specific target gene, BTBD1.
圆 2d]図示された細胞株におけるプロミニン 2の相対的発現を定量的逆転写酵素 PC Rによって評価したことを示す図である。親 HaCaT細胞における遺伝子発現レベルに 値 1.0を割付した。ノックダウンベクターは、非特異的標的遺伝子であるプロミニン 2の サイレンシングを誘発しなかった。 圆 2d] shows that the relative expression of prominin 2 in the cell lines shown was evaluated by quantitative reverse transcriptase PCR. A value of 1.0 was assigned to the gene expression level in parental HaCaT cells. The knockdown vector did not induce silencing of the nonspecific target gene, prominin 2.
[図 2e]図示された細胞株における OAS1の相対的発現を定量的逆転写酵素 PCRによ つて評価したことを示す図である。親 HaCaT細胞における遺伝子発現レベルに値 1.0 を割付した。ノックダウンベクターは、インターフェロン誘導を誘発しな力つた。 FIG. 2e shows that the relative expression of OAS1 in the cell lines shown was evaluated by quantitative reverse transcriptase PCR. A value of 1.0 was assigned to the gene expression level in parental HaCaT cells. The knockdown vector did not induce interferon induction.
[図 2f]ノックダウン細胞における TGF- β -Smadシグナル伝達の阻害を示す図である。 ノックダウン細胞および対照細胞に(CAGA) 9-lucおよび pRL-SV40をトランスフエタト した。 24時間後、細胞を TGF- |8 1 2.5 ng/mlの存在下または非存在下でさらに 24時 間インキュベートして、ダブルルシフェラーゼアツセィを行った。(CAGA) 9-lucのホタ ルのルシフェラーゼ活性を、 pRL-SV40のゥミシィタケルシフェラーゼ活性に対して標 準化した。 TGF- jS 1の非存在下での細胞におけるルシフェラーゼのレベルに値 1.0を 割付し(白い棒)、相対活性を計算した。実験は 1試料あたり 2個ずつ 3回行って、平均 値および標準誤差 (S.E.)を示す。 [FIG. 2f] Inhibition of TGF-β-Smad signaling in knockdown cells. Knockdown cells and control cells were transfected with (CAGA) 9-luc and pRL-SV40. After 24 hours, cells were incubated for an additional 24 hours in the presence or absence of TGF- | 8 1 2.5 ng / ml for double luciferase assay. (CAGA) 9-luc firefly luciferase activity was normalized to pRL-SV40 renilla luciferase activity. The value of 1.0 was assigned to the level of luciferase in cells in the absence of TGF-jS 1 (white bar) and the relative activity was calculated. Experiments are performed 3 times, 2 per sample, and mean and standard error (S.E.) are shown.
[図 2g]TGF- β 1による ΡΑΙ-1の誘導をウェスタンブロットによって調べた写真である。 細胞を 5 ng/ml TGF- jSの存在下または非存在下で 10時間インキュベートして、トー タル細胞溶解物を調製した。 [Fig. 2g] A photograph showing the induction of ΡΑΙ-1 by TGF-β1 by Western blotting. Cells were incubated for 10 hours in the presence or absence of 5 ng / ml TGF-jS to prepare total cell lysates.
[図 3a]図 3aから図 3eは、 TGF- β依存的細胞表現型の分析を示す図および写真であ る。図 3aは、浸潤アツセィの代表的な像を示す写真である。 [FIG. 3a] FIGS. 3a to 3e are diagrams and photographs showing analysis of TGF-β-dependent cell phenotypes. Figure 3a is a photograph showing a representative image of infiltration.
[図 3b]浸潤細胞の数を示す図である。 TGF- β 1の非存在下(白い棒)および存在下(
黒 、棒)でマトリゲルの中を浸潤した細胞数を、無作為な 5視野にぉ 、て計数した。 実験は 3回繰り返し、平均値および標準誤差 (S.E.)を示す。 FIG. 3b is a diagram showing the number of infiltrating cells. In the absence (white bar) and presence of TGF-β1 (white bar) The number of cells infiltrated in Matrigel with black bars was counted in 5 random fields. The experiment is repeated three times and shows the mean and standard error (SE).
[図 3c]遊走アツセィの代表的な像を示す写真である。創傷閉鎖は TGF- 18 (1 5 ng/ml )存在下または非存在下で 24時間後に評価した。 [Fig. 3c] A photograph showing a representative image of the running Atsey. Wound closure was assessed 24 hours later in the presence or absence of TGF-18 (15 ng / ml).
[図 3d]図示した細胞株における TGF- β 1の非存在下(白い棒)および存在下(黒!/ヽ 棒)で培養した後の創傷の端から端までの距離を創傷形成時のその距離を基準とし た百分率として示した図である。実験を 3回繰り返して、平均値および標準誤差 (S.E. )を示す。 [Fig. 3d] The distance from end to end of the wound after culturing in the absence (white bar) and presence (black! / ヽ bar) of TGF-β1 in the cell line shown It is a figure shown as a percentage based on distance. Repeat the experiment 3 times and show the mean and standard error (S.E.).
[図 3e]TGF- |8 (1 5 ng)非存在下(白い棒)または存在下(黒い棒)における 24時間の アポトーシス細胞の百分率を示した図である。 3回の独立した実験を行ったが類似の 結果が得られ、代表的な結果を示す。 [FIG. 3e] Percentage of apoptotic cells in 24 hours in the absence (white bars) or presence (black bars) of TGF- | 8 (15 ng). Three independent experiments were performed, but similar results were obtained and representative results are shown.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0013] [第一の実施形態] [0013] [First embodiment]
本発明は、第一に標的遺伝子をノックダウンするための shRNAを多数生成し得る多 重 shRNA発現ベクターに関する。 The present invention firstly relates to a multiple shRNA expression vector capable of generating a large number of shRNAs for knocking down a target gene.
shRNAは、 short hairpin RNAの略であり、 RNA干渉を誘導し得る二重鎖 RNAである 。 RNA干渉に利用される二重鎖 RNAには、一般に、 siRNAと shRNAとがある。 siRNAは 両末端が開放された構造を有するが、 shRNAでは一端がループにより閉ざされた構 造を有している。本発明では、このうち shRNAを発現させる系に関する。 shRNAは一 端がループ構造を有し、一本の連なった RNA配列として合成すればよいことから、発 現ベクターに基づく生成にお 、て有利である。このように発現ベクターからの生成効 率のょ 、shRNAを本発明では、単一ベクターから複数発現させる構成を有して!/、る。 shRNA is an abbreviation for short hairpin RNA, and is a double-stranded RNA that can induce RNA interference. Double-stranded RNAs used for RNA interference generally include siRNA and shRNA. siRNA has a structure in which both ends are open, whereas shRNA has a structure in which one end is closed by a loop. In this invention, it is related with the system which expresses shRNA among these. Since shRNA has a loop structure at one end and can be synthesized as a single continuous RNA sequence, it is advantageous for production based on expression vectors. In this way, the present invention has a structure in which a plurality of shRNAs are expressed from a single vector because of the efficiency of production from the expression vector.
[0014] 単一ベクターから複数の shRNAを生成するために、本発明ベクターには複数の shR NAユニットが搭載されている。一ベクターに搭載させる複数の shRNA生成ユニットの 組み合わせは、次のいずれかあるいはこれら二つ以上の組合せが可能である。 [0014] In order to generate a plurality of shRNAs from a single vector, the vector of the present invention is equipped with a plurality of shRNA units. The combination of a plurality of shRNA generation units mounted on one vector can be any of the following or a combination of two or more of these.
(1)同一遺伝子の同一箇所を標的とする同一の shRNAを生成する複数のユニット (1) Multiple units that generate the same shRNA targeting the same part of the same gene
(2)同一遺伝子の異なる箇所を標的とする異なる shRNAを生成する複数のユニット(2) Multiple units that generate different shRNAs targeting different parts of the same gene
(3)二以上の異なる遺伝子を標的とする shRNAを生成する複数のユニット
上記の通り、本発明における「多重」とは、 shRNA配列は同一であっても、異なって V、てもよ 、が、 shRNAをコードして!/、る DNAのユニット数として複数であることを意味 する。 (3) Multiple units that generate shRNA targeting two or more different genes As described above, the term “multiplex” in the present invention means that the shRNA sequence is the same or different, but V or not, but the number of DNA units encoding shRNA! Means.
[0015] 一つのベクターに搭載させる shRNA生成ユニットの数は、特に制限はなぐベクター に挿入し得るインサートの長さにより搭載ユニット数を決定することができる。例えば、 搭載する shRNA生成ユニットの数は、一般には 2〜30、好適には 2〜10、より好適に は 2〜5とすることができる。 [0015] The number of shRNA generating units to be mounted on one vector can be determined by the length of the insert that can be inserted into a vector that is not particularly limited. For example, the number of shRNA generating units to be mounted can be generally 2 to 30, preferably 2 to 10, and more preferably 2 to 5.
[0016] 各 shRNA生成ユニットは、 shRNA生成に必須の要素として、 shRNAをコードした DN Aとその上流にプロモーターが備えられている。また、 shRNAをコードした DNAは、標 的遺伝子と相補的な配列を有するアンチセンス DNAと、アンチセンス DNAと対合し得 る配列からなるセンス DNAとがリンカ一 DNAで連結されて構成される。すなわち、 shR NAをコードした DNAはアンチセンス DNA—リンカ一 DNA—センス DNAという構成から なる。この構成より、アンチセンス RNA—リンカ一 RNA—センス RNAという構成を持つ た RNAが発現され、このうちアンチセンス RNAとセンス RNAが二重鎖を形成して shRN Aが生成される。 [0016] Each shRNA generation unit is provided with an shRNA-encoding DN A and a promoter upstream thereof as essential elements for shRNA generation. The shRNA-encoding DNA consists of an antisense DNA having a sequence complementary to the target gene and a sense DNA consisting of a sequence that can be paired with the antisense DNA, linked by a linker DNA. . That is, the DNA encoding shRNA is composed of antisense DNA-linker-DNA-sense DNA. From this structure, RNA having the structure of antisense RNA—linker RNA—sense RNA is expressed, and among these, antisense RNA and sense RNA form a double strand to generate shRNA.
[0017] ここで、アンチセンス DNAは、オフターゲットエフェクトなどを回避し得るように、標的 遺伝子と完全相補する配列を備え、標的以外の遺伝子とはミスマッチを有する配列 を選択することが好ましい。配列のデザインについては、例えば、以下の表 1に示す プログラムなどを用いて実施することができる。 [0017] Here, it is preferable that the antisense DNA has a sequence that is completely complementary to the target gene so that an off-target effect can be avoided, and a sequence that has a mismatch with a gene other than the target is selected. For example, the sequence design can be carried out using a program shown in Table 1 below.
[0018] [表 1] [0018] [Table 1]
[0019] アンチセンス DNAは標的遺伝子の RNAと完全相補する配列を選択することが好ま
しいが、一方、センス DNAはアンチセンス DNAと対合し得る配列であれば、アンチセ ンス DNAとの間にミスマッチ配列を有していてもよい。むしろ、アンチセンス DNAと完 全相補する配列カゝらセンス DNAを構成した場合には、上記「アンチセンス DNA—リン カー DNA—センス DNA」はインバーテッドリピート構造となり、リアレンジなどによりべク ターが不安定化することがある。そのため、センス DNAは好ましくは、アンチセンス DN Aと相補しないミスマッチ配列を備えることが好ましい。ミスマッチ配列の割合は、例え ば、 2〜55%、好ましくは、 10〜35%、より好ましくは 15〜25%程度とすることがで きる。一例を示せば、二重鎖形成領域の長さとして 21塩基長を有する shRNAにおけ るセンス鎖上のミスマッチ塩基の数は、 1〜: L 1塩基、好ましくは 2〜7塩基、より好まし くは 3〜5塩基である。なお、二重鎖形成領域の長さは、後述するように 17〜200な ど選択に広がりがあるため、その選択長さに応じて、センス鎖上のミスマッチ塩基の 数を決定することができる。 [0019] For antisense DNA, it is preferable to select a sequence that completely complements the RNA of the target gene. On the other hand, the sense DNA may have a mismatch sequence with the antisense DNA as long as it can be paired with the antisense DNA. Rather, when the sense DNA is composed of a sequence that is completely complementary to the antisense DNA, the above-mentioned “antisense DNA-linker DNA-sense DNA” has an inverted repeat structure, and the vector may be rearranged. May become unstable. Therefore, the sense DNA preferably has a mismatch sequence that does not complement the antisense DNA. The ratio of mismatch sequences can be, for example, 2 to 55%, preferably 10 to 35%, more preferably about 15 to 25%. As an example, the number of mismatched bases on the sense strand in a shRNA having a length of 21 bases as the length of the duplex forming region is 1 to: L 1 base, preferably 2 to 7 bases. Or 3-5 bases. Note that the length of the duplex forming region has a wide range of selections such as 17 to 200 as will be described later, so the number of mismatch bases on the sense strand can be determined according to the selection length. .
[0020] ミスマッチは、一般的には置換、すなわちセンス DNAの配列においてアンチセンス DNA配列と相補しない他の塩基に置き換えにより形成される力 本発明ではこれに 限定されない。例えば、センス DNA配列上から一つ以上の塩基を欠失させ、アンチ センス DNAと対応する塩基をがな ヽことにより形成された不対合、センス DNA配列内 にアンチセンス DNAと対応しない塩基を挿入することにより形成された不対合、セン ス DNA配列の末端に任意の塩基を付加することより形成される不対合も本発明でい うミスマッチ配列に含まれる。置換によるミスマッチ配列を形成させる場合には、セン ス DNA上のアンチセンス DNAと相補するシトシン(C)をチミン (T)へ、またはアンチセ ンス DNAと相補するグァニン (G)をアデニン (A)に置き換えることが好ましい。 C,Gに 比べ、 Α,Τは結合の力が弱いことから、不安定なインバーテッドリピート構造によるべ クタ一のリアレンジを抑制することができる。 [0020] The mismatch is generally a force formed by substitution, that is, substitution to another base that does not complement the antisense DNA sequence in the sequence of the sense DNA, but the present invention is not limited to this. For example, a mismatch occurs when one or more bases are deleted from the sense DNA sequence and the base corresponding to the antisense DNA is removed, and a base that does not correspond to the antisense DNA is included in the sense DNA sequence. A mismatch formed by insertion and a mismatch formed by adding an arbitrary base to the end of the sense DNA sequence are also included in the mismatch sequence of the present invention. When forming a mismatch sequence by substitution, cytosine (C) complementary to the antisense DNA on the sense DNA is converted to thymine (T), or guanine (G) complementary to the antisense DNA is converted to adenine (A). Replacement is preferred. Compared to C and G, 結合 and Τ have a weaker coupling force, so the rear range of the vector due to the unstable inverted repeat structure can be suppressed.
[0021] 上記アンチセンス DNAとセンス DNAの長さは、標的遺伝子との特異的な結合を保 持し得る長さ以上であればよい。一方、哺乳動物細胞内では長い鎖長の二重鎖 RNA は細胞毒性を有することがある。そのため、哺乳動物細胞を宿主とする場合には、細 胞内で発現させた shRNAが細胞毒性を与えな 、長さとすることが好ま 、。例えば、 哺乳動物細胞内の遺伝子をターゲットとする場合には、アンチセンス DNAとセンス DN
Aの長さは 17〜200塩基、好ましくは 18〜55塩基、さらに好ましくは 19〜23塩基と することができる。 [0021] The length of the antisense DNA and the sense DNA may be longer than the length capable of maintaining specific binding with the target gene. On the other hand, in mammalian cells, a long double-stranded RNA may be cytotoxic. Therefore, when a mammalian cell is used as a host, it is preferable that the length of the shRNA expressed in the cell is not cytotoxic. For example, when targeting genes in mammalian cells, antisense DNA and sense DN The length of A can be 17 to 200 bases, preferably 18 to 55 bases, more preferably 19 to 23 bases.
[0022] アンチセンス DNAとセンス DNAをつなぐリンカ一 DNAは、 shRNAにおけるヘアピン 構造を形成させるための構造体である。リンカー DNAの配列は shRNAの生成を阻害 するようなターミネーシヨン配列以外であれば任意の配列力も構成することができる。 長さは、アンチセンス RNA、センス RNAとの対合に支障のない長さであればよい。一 例としては、マイクロ RNAのヘアピン部位の配列などを挙げることができる。また、リン カー DNAを tRNAをコードした DNAで構成してもよ ヽ。実際に後述する実施例ではリ ンカー DNA配列として「gtgtgctgtcc」(配列番号: 1)ならびにその相補鎖や「acgtgtgc tgtccgtj (配列番号: 2)ならびにその相補鎖を用いた。 [0022] The linker DNA that connects the antisense DNA and the sense DNA is a structure for forming a hairpin structure in shRNA. The sequence of the linker DNA can constitute any sequence ability other than the termination sequence that inhibits the generation of shRNA. The length may be any length that does not hinder pairing with antisense RNA or sense RNA. As an example, the sequence of a hairpin site of microRNA can be mentioned. Alternatively, the linker DNA may be composed of DNA encoding tRNA. In fact, in Examples described later, “gtgtgctgtcc” (SEQ ID NO: 1) and its complementary strand, “acgtgtgc tgtccgtj (SEQ ID NO: 2) and its complementary strand were used as the linker DNA sequence.
[0023] 上記 shRNAをコードした DNAから shRNAを発現させるために shRNA生成ユニットに は、「プロモーター」が備えられている。このプロモーターは、 shRNAを発現させること ができるものであれば、 polll系、 polIII系のいずれでもよいが、好ましくは shRNAのよう な短 ヽ RNAの発現に適した polIII系を用いることができる。この polIII系のプロモーター としては、例えば、 U6プロモーター、 tRNAプロモーター、レトロウイルス性 LTRプロ モーター、アデノウイルス VA1プロモーター、 5S rRNAプロモーター、 7SK RNAプ 口モーター、 7SL RNAプロモーター、 HI RNAプロモーターなどを挙げることがで きる。 [0023] In order to express shRNA from the DNA encoding the above shRNA, the shRNA generation unit is provided with a "promoter". This promoter may be either a polll system or a polIII system as long as it can express shRNA, but preferably a polIII system suitable for expression of short RNAs such as shRNA can be used. Examples of the polIII promoter include U6 promoter, tRNA promoter, retroviral LTR promoter, adenovirus VA1 promoter, 5S rRNA promoter, 7SK RNA promoter, 7SL RNA promoter, HI RNA promoter and the like. it can.
[0024] 上記プロモーターとして、誘導可能なプロモーターを用いることにより、所望のタイミ ングで siRNAを発現させることも可能となる。このような誘導可能なプロモーターとして は、テトラサイクリンで誘導可能な U6プロモーター(Ohkawa, J. & Taira, K. Control of the functional activity of an antisense RNA by a tetracycline— responsive derivative of the human U6 snRNA promoter. Hum Gene Ther. 11, 577-585 (2000))等が挙げ られる。また、組織特異性のあるプロモーターあるいは Cre-LoxPシステムのような DN A組み換えのシステムを用いて、ベクターからの shRNAの発現を制御してもよ!/、。 [0024] By using an inducible promoter as the promoter, siRNA can be expressed at a desired timing. These inducible promoters include tetracycline-inducible U6 promoter (Ohkawa, J. & Taira, K. Control of the functional activity of an antisense RNA by a tetracycline—responsive derivative of the human U6 snRNA promoter. Gene Ther. 11, 577-585 (2000)). You can also use a tissue-specific promoter or a DNA recombination system such as the Cre-LoxP system to control shRNA expression from the vector! /.
[0025] また、プロモーターから shRNAと!、う短!、配列を精度よく発現させるために、 shRNA をコードした DNAの 3'末端に転写を終結させるためのターミネータ一を備えることが 好ましい。ターミネータ一は、プロモーターの転写を終結し得る配列であれば、特に
限定はなぐ例えば、 T (チミン)や A (アデニン)が 4つ以上連続した配列、ノ リンドロー ム構造を形成し得る配列などを用いることができる。 [0025] In addition, in order to express the shRNA and !! sequences from the promoter accurately, it is preferable to provide a terminator for terminating transcription at the 3 'end of the DNA encoding shRNA. If the terminator is a sequence that can terminate transcription of the promoter, For example, a sequence in which four or more T (thymine) or A (adenine) are continuous, or a sequence capable of forming a nodromedome structure can be used.
[0026] 上記 shRNA生成ユニットを担持させるベクターは、導入した 、細胞や目的に応じて 選択することができる。哺乳動物細胞では、例えば、レトロウイルスベクター、アデノウ ィルスベクター、アデノ関連ウィルスベクター、ワクシニアウィルスベクター、レンチウ イノレスベクター、へノレぺスゥイノレスベクター、ァノレファゥイノレスベクター、 EBウイノレスべ クタ一、パピローマウイノレスベクター、フォーミーウイノレスベタターなどのウイノレスベタ ターなどが挙げられる。また、ウィルスベクターではなぐダンベル型 DNA (非特許文 献 14)、または naked plasmidもまた好適に用いることができる(非特許文献 15)。 目的 別にみると、上記ベクターのうち一過性の遺伝子抑制を行なう場合には、染色体外に 存在するベクターやプラスミドを用いることが好ましい。安定的に標的遺伝子の発現 抑制を行なう場合には、染色体内にインテグレーションする能力を有するベクターを 選択することが好ましい。 [0026] The vector carrying the shRNA generating unit can be selected according to the introduced cell and purpose. In mammalian cells, for example, retrovirus vectors, adenovirus vectors, adeno-associated virus vectors, vaccinia virus vectors, lentiwinores vectors, henolepusuinores vectors, ananolofinores vectors, EB winoles vectors, Examples include the papilloma winores vector and winomeless betaters such as the foamy winores betater. In addition, dumbbell-shaped DNA (Non-patent Document 14) or naked plasmid, which is not a viral vector, can also be suitably used (Non-patent Document 15). From the viewpoint of purpose, it is preferable to use a vector or plasmid existing outside the chromosome when performing transient gene suppression among the above-mentioned vectors. In order to stably suppress the expression of the target gene, it is preferable to select a vector having the ability to integrate into the chromosome.
[0027] ベクターに複数の shRNA生成ユニットを搭載させる場合、各 shRNA生成ユニットの 発現方向は同一となるように搭載させても、方向を定めずに搭載させてもよい。また、 各ユニット間の距離も、間隔を空けずに連結させても、任意の配列により間隔を空け て接続してもよい。 [0027] When a plurality of shRNA generation units are mounted on a vector, the expression directions of each shRNA generation unit may be mounted to be the same or may be mounted without setting the direction. In addition, the distances between the units may be connected with no gap between them or may be connected with a gap through an arbitrary arrangement.
ベクターには、必要に応じて、ベクターが導入された細胞を選択し得る選択マーカ 一などをさらに保持させることができる。選択マーカーとしては、ネオマイシン耐性遺 伝子、ノ、イダロマイシン耐性遺伝子、ピューロマイシン耐性遺伝子のような薬剤耐性 マーカー、ガラクトシダーゼなどの酵素活性を指標に選択し得るマーカー、あるいは 、 GFPなどの蛍光発光などを指標に選択し得るマーカーなどが挙げられる。また、 E GFレセプター、 B7— 2、または CD4などの表面抗原を指標に選択し得る選択マー カーなども用いてもよい。このように選択マーカーを用いることにより、宿主への shRN A発現ベクターの導入に役立つことば力りではなぐ後述するような多重 shRNA発現 ベクターの製造にも役立ち得る。 If necessary, the vector can further hold a selection marker that can select a cell into which the vector has been introduced. Selectable markers include neomycin resistance gene, drug resistance marker such as idaromomycin resistance gene, puromycin resistance gene, marker that can be selected using enzyme activity such as galactosidase, or fluorescence emission such as GFP. The marker etc. which can be selected as a parameter | index are mentioned. In addition, a selection marker or the like that can select a surface antigen such as EGF receptor, B7-2, or CD4 as an indicator may be used. Thus, by using a selectable marker, it can be useful for the production of a multiple shRNA expression vector as described later, which is not useful for introducing a shRNA expression vector into a host.
[0028] 上記多重 shRNA発現ベクターは、搭載された shRNA生成ユニットが標的とする一あ るいは複数の標的遺伝子の発現を抑制し得る。特に複数の標的遺伝子をターゲット
とする場合に有利な手段となる。この多重 shRNA発現ベクターが導入された細胞や 非ヒト動物は、特定の標的遺伝子が抑制されたモデル細胞やモデル動物として利用 し得る。特に、ベクターを染色体内にインテグレーションする能力を有するベクターを 用いた場合には、標的とする一つあるいは複数の遺伝子を安定的に抑制することが できる。そのため、従来、膨大な時間を費やして作成されたマルチプルノックアウト動 物を、本ベクターを導入することにより簡便に作成することも可能となる。こうして本発 明のベクターを用いて作製されたノックダウン動物は、標的遺伝子等の機能解析へ の応用や、疾患モデル動物として創薬スクリーニングなどに利用することができる。な お、ここで用いることができる細胞は特に限定はなぐ原核生物由来の細胞、真核生 物由来の細胞などを含めることができる。また非ヒト動物は、哺乳動物、例えば、マウ ス、ラット、ゥサギ、ャギ、ブタ、サルなどを含めることができる。 [0028] The multiple shRNA expression vector can suppress the expression of one or a plurality of target genes targeted by the mounted shRNA generation unit. Especially targeting multiple target genes This is an advantageous means. Cells or non-human animals into which this multi-shRNA expression vector has been introduced can be used as model cells or model animals in which a specific target gene is suppressed. In particular, when a vector having the ability to integrate a vector into a chromosome is used, one or more targeted genes can be stably suppressed. Therefore, it is possible to easily create a multiple knockout animal, which has been conventionally created by spending a lot of time, by introducing this vector. Thus, the knockdown animal produced using the vector of the present invention can be used for functional analysis of a target gene or the like, or used for drug discovery screening as a disease model animal. The cells that can be used here include cells derived from prokaryotes, cells derived from eukaryotes, and the like, which are not particularly limited. Non-human animals can also include mammals such as mice, rats, rabbits, goats, pigs, monkeys and the like.
[0029] また、標的とする遺伝子は特に限定はないが、疾患関連遺伝子や、疾患を誘導す るような異物(細菌、ウィルス)の遺伝子などをターゲットとすることもできる。ウィルスと しては、例えば、 HIV、 RSV、 HCV、 HBVなどを標的とすることができる。これらウィル スを標的とする場合には、ウィルス染色体上の複数の遺伝子をターゲットする shRNA をコードした DNA、あるいは、ウィルス染色体上の一遺伝子内の複数の部位をターゲ ットとする shRNAをコードした DNAを搭載することができる。 [0029] The target gene is not particularly limited, but a disease-related gene or a gene of a foreign substance (bacteria or virus) that induces a disease can also be targeted. As the virus, for example, HIV, RSV, HCV, HBV and the like can be targeted. When targeting these viruses, DNA encoding shRNA targeting multiple genes on the viral chromosome, or shRNA targeting multiple sites within one gene on the viral chromosome was encoded. Can be equipped with DNA.
またウィルス染色体上の遺伝子と、宿主の内因性遺伝子とをターゲットとする複数 の shRNAを生成するユニット群を搭載することができる。例えば、 HIVの場合には宿 主内の細胞に HIVが感染する経路として、 CCR5ファミリーの受容体や表面抗原が関 与することが知られている。 CCR5ファミリーには、 CCR5、 CXCR4、 CD4などが含まれ る。したがって、 HIV感染を治療するための多重 shRNAベクターとしては、例えば、 HI Vのいずれかの遺伝子、特に増殖や感染に関与する遺伝子をターゲットとした shRNA と、宿主の CCR5ファミリーの!/、ずれかの遺伝子をターゲットとした shRNAとを発現させ 得る構成を一例として挙げることができる。 It is also possible to mount a unit group that generates multiple shRNAs that target genes on the viral chromosome and host endogenous genes. For example, in the case of HIV, it is known that receptors in the CCR5 family and surface antigens are involved as a route for HIV to infect cells in the host. The CCR5 family includes CCR5, CXCR4, and CD4. Therefore, multiple shRNA vectors for treating HIV infection include, for example, shRNA targeting any of the HIV genes, particularly those involved in proliferation and infection, and the host CCR5 family! / As an example, a configuration capable of expressing shRNA targeting the above gene can be mentioned.
[0030] [第二の実施形態] [0030] [Second Embodiment]
本発明は、第二に上記多重 shRNA発現ベクターを効率よく製造する方法に関する 。本発明の製造方法は、一つの shRNA生成ユニット (便宜的に「第一 shRNA生成ュ-
ット」 t 、う)を備えた環状構造の第一 shRNA発現ベクターと、第二 shRNA生成ュ-ッ トを備えた環状構造の第二 shRNA発現ベクターをそれぞれ調製する。ベクターに挿 入する shRNA生成ユニットの構成、デザインは上記第一の実施形態と同一であるた め、その説明は省略する。また、 shRNA生成ユニットの生成は、当業者が用いる遺伝 子工学的な手法により実施することができ、例えば、 DNA合成器で合成しても、また は PCRを用いて合成してもよ 、。 Secondly, the present invention relates to a method for efficiently producing the multiple shRNA expression vector. The production method of the present invention comprises one shRNA generation unit (for convenience, the first shRNA generation unit). A first shRNA expression vector having a circular structure provided with a “t”, and a second shRNA expression vector having a circular structure provided with a second shRNA generator are prepared. Since the configuration and design of the shRNA generation unit to be inserted into the vector are the same as those in the first embodiment, description thereof is omitted. The shRNA generation unit can be generated by a genetic engineering technique used by those skilled in the art, for example, by synthesis using a DNA synthesizer or PCR.
[0031] 第一 shRNA発現ベクターと、第二 shRNA発現ベクターのベクター骨格部分は異種 であってもよいが、好ましくは同一のベクターを用いる。ベクター上の shRNA生成ュ- ットが接続される部位または領域の上流と下流には、異なる制限酵素 A、 Bの認識消 化部位 a、 b (以下、それぞれ「部位 a」、「部位 b」と記載する)がそれぞれ備わり、さらに 、 shRNA生成ユニットを含まない側の a— b領域内にのみ存在する制限酵素 Cの認識 消化部位 c (以下、それぞれ「部位 c」と記載する)が備えられている必要がある。部位 a、 b、 cはベクター自身に備わっている配列であっても、人為的に挿入したもののい ずれであってもよい。 [0031] The vector skeleton portion of the first shRNA expression vector and the second shRNA expression vector may be heterogeneous, but preferably the same vector is used. Different restriction enzyme A and B recognition / deletion sites a and b (hereinafter referred to as `` site a '' and `` site b '', respectively) upstream and downstream of the site or region to which the shRNA generator is connected on the vector And a recognition site for restriction enzyme C that exists only in the a-b region on the side not containing the shRNA generation unit (hereinafter referred to as “site c”). Need to be. Sites a, b, and c may be either sequences provided in the vector itself or artificially inserted.
[0032] 先ず、制限酵素 A、 Bは以下の条件を満たすものから任意に選択し得る。 First, restriction enzymes A and B can be arbitrarily selected from those satisfying the following conditions.
(1)部位&、 bが異なる配列である (1) Sites & and b are different sequences
(2)部位 a、 bがベクターおよび shRNA生成ユニットを含めて、それぞれ単一である( 部位 a、 bは、ベクター全域にわたり 1箇所のみに存在し、かつ、 shRNA生成ユニット内 には存在しない) (2) Sites a and b are single, including the vector and the shRNA generation unit (sites a and b exist only in one place throughout the vector and do not exist in the shRNA generation unit)
(3)制限酵素 Aと Bは互いに接続可能な末端を生成する (制限酵素 Aが部位 aを消 化することにより生成された末端と、制限酵素 Bが部位 bを消化することにより生成され た末端とは、接続可能である) (3) Restriction enzymes A and B generate ends that can be connected to each other (ends generated by restriction enzyme A deleting site a, and restriction enzyme B generated by digesting site b) Connectable to the end)
このような制限酵素 A、Bは平滑末端あるいは粘着末端を形成するものであってもよ い。例えば、粘着末端を形成する制限酵素 Α,Βの組合せは、表 2—1、表 2— 2にお いて、突出塩基配列が共通し、突出塩基数が同じもの同士力 選択することができる Such restriction enzymes A and B may form blunt ends or sticky ends. For example, the combinations of restriction enzymes Α and Β that form sticky ends can be selected with the same number of protruding bases and the same number of protruding bases in Tables 2-1 and 2-2.
[0033] [表 2-1]
突出 tjm 末 u而の コ一ド 代理 酵素名 認識配列 基配列 基数 種類 酵素[0033] [Table 2-1] Protrusion tjm powder u meta code Proxy enzyme name Recognition sequence Base sequence Radix Type Enzyme
Eam1 105I GACNNNINNGTC N Eam1 105I GACNNNINNGTC N
(配列番号: 151 ) 1 3'突出 2 (SEQ ID NO: 151) 1 3 'overhang 2
Xcml CCANNNNNlNNNNTGG N Xcml CCANNNNNlNNNNTGG N
(配列番号: 152 ) 1 3'突出 2 (SEQ ID NO: 152) 1 3 'overhang 2
Tth1 1 1 I GACNINNGTC N 1 5'突出 3 PflFI Tth1 1 1 I GACNINNGTC N 1 5 'protruding 3 PflFI
EcoNI CCTNNlNNNAGG N EcoNI CCTNNlNNNAGG N
(配列番号: 153 ) 1 5'突出 3 (SEQ ID NO: 153) 1 5 'overhang 3
Fnu4HI GC|NGC N 1 5'突出 4 Fnu4HI GC | NGC N 1 5 'overhang 4
ScrFI CC|NGG N 1 5'突出 4 ScrFI CC | NGG N 1 5 'protruding 4
Pvul CGATlCG AT 2 3'突出 5 Pvul CGATlCG AT 2 3 'protruding 5
Pad TTAATlTAA AT 2 3'突出 5 Pad TTAATlTAA AT 2 3 'protruding 5
Clal ATlCGAT CG 2 5'突出 6 8 BspDI Clal ATLCGAT CG 2 5 'protruding 6 8 BspDI
HapII C|CGG CG 2 5'突出 6 7 8 MspiHapII C | CGG CG 2 5 'overhang 6 7 8 Mspi
Hinl l GRlCGYC CG 2 5'突出 6 7 8 BsaHIHinl l GRlCGYC CG 2 5 'protruding 6 7 8 BsaHI
Psp1406I AAlCGTT CG 2 5'突出 6 8 Psp1406I AAlCGTT CG 2 5 'protruding 6 8
TthHB8I T|CGA CG 2 5'突出 7 Taql TthHB8I T | CGA CG 2 5 'overhang 7 Taql
BstBI TT|CGAA CG 2 5'突出 8 BstBI TT | CGAA CG 2 5 'protruding 8
Ndel CA|TATG TA 2 5'突出 10 9 Ndel CA | TATG TA 2 5 'protruding 10 9
PshBI AT|TAAT TA 2 5'突出 9 PshBI AT | TAAT TA 2 5 'protruding 9
Xspl C|TAG TA 2 5'突出 10 9 Bfal Xspl C | TAG TA 2 5 'protruding 10 9 Bfal
Msel T|TAA TA 2 5'突出 10 Msel T | TAA TA 2 5 'Protrusion 10
Bgll GCCNNNNlNGGC NNN 3 3'突出 12 Bgll GCCNNNNlNGGC NNN 3 3 'protruding 12
(配列番号: 154 ) (SEQ ID NO: 154)
Sfil GGCCNNNNlNGGCC NNN 3 3'突出 1 1 Sfil GGCCNNNNlNGGCC NNN 3 3 'protruding 1 1
(配列番号: 155 ) (SEQ ID NO: 155)
Van91 I CCANNNNINTGG NNN 3 3'突出 1 1 12 Van91 I CCANNNNINTGG NNN 3 3 'protruding 1 1 12
(配列番号: 156 ) (SEQ ID NO: 156)
AlwNI CAGNNNlCTG NNN 3 3'突出 13 AlwNI CAGNNNlCTG NNN 3 3 'protrusion 13
BstAPI GCANNNNINTGC NNN 3 3'突出 12 BstAPI GCANNNNINTGC NNN 3 3 'protrusion 12
(配列番号: 157 ) (SEQ ID NO: 157)
DraHI CACNNNIGTG NNN 3 3'突出 1 3 DraHI CACNNNIGTG NNN 3 3 'protruding 1 3
Cpol CGIGWCCG GWC 3 5'突出 14 Cpol CGIGWCCG GWC 3 5 'protrusion 14
PpuMI RGIGWCCY GWC 3 5'突出 14 PpuMI RGIGWCCY GWC 3 5 'protruding 14
Bpu1 102I GClTNAGC TNA 3 5'突出 15 Blpl Bpu1 102I GClTNAGC TNA 3 5 'protruding 15 Blpl
Eco81 I CClTNAGG TNA 3 5'突出 15 Bsu36IEco81 I CClTNAGG TNA 3 5 'overhang 15 Bsu36I
EcoT22I ATGCAlT TGCA 4 3'突出 16 17 NsilEcoT22I ATGCAlT TGCA 4 3 'protrusion 16 17 Nsil
Pstl CTGCAlG TGCA 4 3'突出 16 Pstl CTGCAlG TGCA 4 3 'protrusion 16
Sse8387I CCTGCAIGG TGCA 4 3'突出 17 Sbfl Sse8387I CCTGCAIGG TGCA 4 3 'protruding 17 Sbfl
EcoRI G|AATTC AATT 4 5'突出 18 EcoRI G | AATTC AATT 4 5 'Protrusion 18
Muni ClAATTG AATT 4 5'突出 18 19 2- 2]
Apol RlAATTY AATT 4 5'突出 19 Muni ClAATTG AATT 4 5 'protrusion 18 19 2- 2] Apol RlAATTY AATT 4 5 'Protrusion 19
Ncol ClCATGG CATG 4 5'突出 20 23 Xmal, Ncol ClCATGG CATG 4 5 'protruding 20 23 Xmal,
AccIII, AccIII,
BspHI TlCATGA CATG 4 5'突出 20 23 BspEIBspHI TlCATGA CATG 4 5 'protruding 20 23 BspEI
Pcil AlCATGT CATG 4 5'突出 20 Pcil AlCATGT CATG 4 5 'protruding 20
Cfrl OI RlCCGGY CCGG 4 5'突出 21 22 BsrFI Cfrl OI RlCCGGY CCGG 4 5 'protruding 21 22 BsrFI
BsaWI WlCCGGW CCGG 4 5'突出 22 BsaWI WlCCGGW CCGG 4 5 'protruding 22
NgoMIV GlCCGGC CCGG 4 5'突出 22 NgoMIV GlCCGGC CCGG 4 5 'overhang 22
SgrAI CRlCCGGYG CCGG 4 5'突出 23 SgrAI CRlCCGGYG CCGG 4 5 'protruding 23
BssHII GlCGCGC CGCG 4 5'突出 24 BssHII GlCGCGC CGCG 4 5 'overhang 24
lul AlCGCGT CGCG 4 5'突出 24 25 lul AlCGCGT CGCG 4 5 'protrusion 24 25
Ascl GGlCGCGCC CGCG 4 5'突出 25 Ascl GGlCGCGCC CGCG 4 5 'overhang 25
AfllH AlCRYGT CRYG 4 5'突出 26 AfllH AlCRYGT CRYG 4 5 'protrusion 26
Btgl ClCRYGG CRYG 4 5'突出 26 Btgl ClCRYGG CRYG 4 5 'protruding 26
Blnl ClCTAGG CTAG 4 5'突出 27 Blnl ClCTAGG CTAG 4 5 'protruding 27
Nhel GlCTAGC CTAG 4 5'突出 27 Nhel GlCTAGC CTAG 4 5 'protruding 27
Spel AlCTAGT CTAG 4 5'突出 27 Spel AlCTAGT CTAG 4 5 'protruding 27
Xbal T|CTAGA CTAG 4 5'突出 27 Xbal T | CTAGA CTAG 4 5 'protruding 27
BamHI GlGATCC GATC 4 5'突出 28 BamHI GlGATCC GATC 4 5 'protruding 28
BglH AlGATCT GATC 4 5'突出 28 BglH AlGATCT GATC 4 5 'protruding 28
Fbal T|GATCA GATC 4 5'突出 28 29 Fbal T | GATCA GATC 4 5 'protruding 28 29
Mfll RlGATCY GATC 4 5'突出 29 Mfll RlGATCY GATC 4 5 'protruding 29
Kasl GIGCGCC GCGC 4 5'突出 30 31 32 PspOMI Kasl GIGCGCC GCGC 4 5 'protrusion 30 31 32 PspOMI
Eael YlGGCCR GGCC 4 5'突出 30 Eael YlGGCCR GGCC 4 5 'overhang 30
Eco52I ClGGCCG GGCC 4 5'突出 31 Eagl Eco52I ClGGCCG GGCC 4 5 'protruding 31 Eagl
Notl GClGGCCGC GGCC 4 5'突出 32 Notl GClGGCCGC GGCC 4 5 'overhang 32
Bsp1407I TlGTACA GTAC 4 5'突出 33 BsrGI Bsp1407I TlGTACA GTAC 4 5 'overhang 33 BsrGI
Acc65I GlGTACC GTAC 4 5'突出 33 Acc65I GlGTACC GTAC 4 5 'protrusion 33
BsiWI ClGTACG GTAC 4 5'突出 33 BsiWI ClGTACG GTAC 4 5 'protruding 33
Sail GlTCGAC TCGA 4 5'突出 34 Sail GlTCGAC TCGA 4 5 'protruding 34
Xhol ClTCGAG TCGA 4 5'突出 34 PaeR7I また、平滑末端を形成する制限酵素 A、 Bの組合せは、表 3から選択することができ る。 Xhol ClTCGAG TCGA 4 5 ′ overhang 34 PaeR7I The combination of restriction enzymes A and B that form blunt ends can be selected from Table 3.
[表 3]
I y丄〇|ov人 IVesg [Table 3] I y 丄 〇 | ov people IVesg
I wv|丄丄丄 I wv | 丄 丄 丄
I vv丄 |v丄丄 I!sd I vv 丄 | v 丄 丄 I! Sd
I VOOlDO丄' PS|A| V00|3CLL Ilea I VOOlDO 丄 'PS | A | V00 | 3CLL Ilea
I V03|33丄' ldsJ II!AV I V03 | 33 丄 'l ds J II! A V
I VE)0|SO丄 I VE) 0 | SO 丄
I V丄 3|3V丄 I V 丄 3 | 3V 丄
I OVid|AlE) H。U!HI OVid | AlE) H. U ! H
I 3VW|丄丄丄 0 ISLUdI 3VW | 丄 丄 丄 0 I SLU d
I OVV|丄丄 3 iedHI OVV | 丄 丄 3 iedH
L OV丄 |V1〇 ' IZ1S8 OV丄 |V丄 3 腿 L OV 丄 | V1〇 'IZ1 S 8 OV 丄 | V 丄 3 thigh
I 3V 0 m I 3V 0 m
L OONlNOD ΛΙΒΙΝL OONlNOD ΛΙ Β ΙΝ
I OOOlODO MS i 00|OD IIIaBHI OOOlODO MS i 00 | OD III aB H
I OON|NOO I OON | NOO
I ODDlOOD I9eNI ODDlOOD I 9e N
Ϊ 0丄 VNNINN丄 VS Ϊ 0 丄 VNNINN 丄 VS
I 0丄 V|丄 I 0 丄 V | 丄
I DDOlDVO I DDOlDVO
(09 ^蓥 (09 ^ 蓥
I 0丄 3NN|NN3V3 IV4sd I 0 丄 3NN | NN3V3 IV4 s d
(69L : (69L :
I μιιχ I μιιχ
3丄丄 NN|NNWE) (3 丄 丄 NN | NNWE)
y 00|DO imsa y DO|DO'imsa DO|00 II。。V l DDDlOOO y 00 | DO im s ay DO | DO'imsa DO | 00 II. . V l DDDlOOO
(89L : (89L :
l 3丄 NNINN人 VO IISIAI l 3 丄 NNINN people VO II S IAI
S丄 0|3V0 S 丄 0 | 3V0
l 0丄 OlOVO'Ilwd S丄 0|3V3 l 0 丄 OlOVO'Ilwd S 丄 0 | 3V3
l OLO|OVO l OLO | OVO
y 丄 VW|丄丄丄 V IB S l 丄 OV|丄 OV ie。S l 丄 30|03V InlS l 丄 o loov'i^v 丄 30|00V ΙΗ1 ^°ν l 上 0|OV in|V l 丄丄 V|丄 W |dsS — c 峯鋰 ½ mm Z0MC/900Zdf/X3d 03 01780Ϊ0/.00Ζ OAV
なお、表 2、 3において、 Rは A又は Gを、 Yは C又は Tを、 Mは A又は Cを、 Kは G又は Tを、 Sは C又は Gを、 Wは A又は Tを、 Hは A、 Cまたは Tを、 Bは C、 G又は Tを、 Vは A、 C又は Gを、 Dは A、 G又は Tを、 Nは A、 C、 G又は Tを、それぞれ意味する。 y 丄 VW | 丄 丄 丄 V IB S l 丄 OV | 丄 OV ie. S l 丄 30 | 03V I n lS l 丄 o loov'i ^ v 丄 30 | 00V ΙΗ1 ^ ° ν l Up 0 | OV in | V l 丄 丄 V | 丄 W | ds S — c 峯 鋰 ½ mm Z0MC / 900Zdf / X3d 03 01780Ϊ0 / .00Ζ OAV In Tables 2 and 3, R is A or G, Y is C or T, M is A or C, K is G or T, S is C or G, W is A or T, H means A, C or T, B means C, G or T, V means A, C or G, D means A, G or T, N means A, C, G or T .
[0035] 制限酵素 Cは、以下の条件を満たすもの力 任意に選択し得る。 [0035] Restriction enzyme C can be selected arbitrarily as long as it satisfies the following conditions.
(1)部位 cは部位 a、 bと異なる (1) Site c is different from sites a and b
(2)部位 cがベクターおよび shRNA生成ユニットを含めて、それぞれ単一である(部 位 cは、ベクター全域にわたり 1箇所のみに存在し、かつ、 shRNA生成ユニット内には 存在しない) (2) Site c is single, including the vector and shRNA generation unit (site c exists only in one place throughout the vector and does not exist in the shRNA generation unit)
制限酵素 Cも平滑末端あるいは粘着末端を形成するものであってもよぐ制限酵素 A、 Bの異なる制限酵素であれば特に制限はない。 Restriction enzyme C is not particularly limited as long as restriction enzymes A and B have different blunt ends or cohesive ends.
[0036] また、ベクターには好ましくは薬剤耐性または栄養要求性などの選択マーカーを備 えることが好ましい。選択マーカーを備えることにより、後述する遺伝子組換え後の産 物を宿主の形質転換体から回収する際の効率を向上し得る。選択マーカーは、回収 する際の宿主により選択し得るが、大腸菌などの原核生物の場合には、カナマイシン 、アンピシリンなどの薬剤耐性マーカーなどを用いることができる。また、目的とする 多重 shRNA発現ベクターの回収を容易にするためには、上記部位 cは選択マーカー 内に設置することが好ま 、。 [0036] The vector is preferably provided with a selection marker such as drug resistance or auxotrophy. By providing a selection marker, the efficiency in recovering the product after genetic recombination described later from the transformant of the host can be improved. The selection marker can be selected depending on the host at the time of recovery, but in the case of prokaryotes such as E. coli, drug resistance markers such as kanamycin and ampicillin can be used. In addition, in order to facilitate recovery of the target multiplex shRNA expression vector, it is preferable to place the site c in a selection marker.
[0037] 上記第一 shRNA発現ベクターと第二 shRNA発現ベクターとを調製した後、以下の( ィ)から (二)の一連の操作を実施する。 [0037] After the first shRNA expression vector and the second shRNA expression vector are prepared, the following series of operations (i) to (2) are performed.
(ィ)制限酵素 A、 Cで第一 shRNA発現ベクターを消化する (I) Digest the first shRNA expression vector with restriction enzymes A and C
(口)制限酵素 B、 Cで第二 shRNA発現ベクターを消化する (Mouth) Digest the second shRNA expression vector with restriction enzymes B and C
(ハ)前記 (ィ)、(口)で生成された消化断片を混合し、ライゲーシヨンを行なう (C) Mix the digested fragments generated in (i) and (mouth) above and perform ligation.
(二)第一 shRNA発現ベクターの第一 shRNA生成ユニットを含む a- c断片と、第二 shR NA発現ベクターの第二 shRNA生成ユニットを含む b-c断片とが接続された環状構築 物を回収する (2) Collect the circular construct in which the a-c fragment containing the first shRNA generating unit of the first shRNA expression vector and the b-c fragment containing the second shRNA generating unit of the second shRNA expression vector are connected.
[0038] 上記 (ィ)、(口)の工程は、選択した制限酵素に適した条件で消化を行なう。(ィ)、 ( 口)の工程後に、必要に応じて、目的とする消化断片、すなわち、第一 shRNA発現べ クタ一由来の第一 shRNA生成ユニットを含む a-c断片、第二 shRNA発現ベクター由来
の第二 shRNA生成ユニットを含む b-c断片をそれぞれ単離精製してもよ ヽ。単離精製 する方法の一例を示せば、電気泳動によりフラグメントを分画し、目的の長さのフラグ メントをゲルから回収して、精製することができる。(ハ)工程におけるライゲーシヨン反 応は常法に従って実施することができる。 [0038] In the steps (i) and (mouth), digestion is performed under conditions suitable for the selected restriction enzyme. After the steps (i) and (mouth), if necessary, the desired digested fragment, that is, the ac fragment containing the first shRNA generating unit derived from the first shRNA expression vector, derived from the second shRNA expression vector Each bc fragment containing the second shRNA generating unit may be isolated and purified. As an example of the isolation and purification method, fragments can be fractionated by electrophoresis, and fragments of the desired length can be recovered from the gel and purified. (C) The ligation reaction in the process can be carried out according to a conventional method.
[0039] (ホ)工程にぉ 、て、目的とする環状構築物、すなわち多重 shRNA発現ベクターを 回収するための手法は特に限定はなぐ一般の遺伝子工学的な手法を用いることが できる。効率のよい手法として、大腸菌などの宿主に形質転換し、形質転換体から回 収する方法が挙げられる。ベクターに選択マーカーが備わっている場合には、選択 マーカーを指標として形質転換体を選択することにより効率を上げることができる。さ らに、上記制限酵素 Cの部位 cを選択マーカー内に設けることにより、目的とする多重 shRNA発現ベクターの回収を一層効率的に行なうことができる。すなわち、選択マー カーを指標として目的通りにライゲーシヨンが行なわれた産物を選択的に分取するこ とが可能となる。 [0039] Throughout the process (e), a general genetic engineering technique is not particularly limited as a technique for recovering the target circular construct, that is, the multiple shRNA expression vector. As an efficient technique, there is a method in which a host such as E. coli is transformed and recovered from the transformant. When the vector has a selection marker, efficiency can be increased by selecting a transformant using the selection marker as an index. Furthermore, by providing the restriction enzyme C site c in the selection marker, the target multiple shRNA expression vector can be recovered more efficiently. In other words, it is possible to selectively sort the products that have been ligated as intended using the selected marker as an indicator.
[0040] 上述の通り、最終的に製造された多重 shRNA発現ベクターは、上記第一 shRNA生 成ユニットを含む a-c断片と第二 shRNA発現ベクター由来の第二 shRNA生成ユニット を含む b-c断片とが接続されて形成されている。すなわち、 a- c断片の aと b- c断片の b が接続し、 c同士が接続して形成された。ここで aと bが接続されると、もはや制限酵素 Aによっても、制限酵素 Bによっても消化されない配列が形成される。したがって、最 終的に製造された多重 shRNA発現ベクターは、 shRNA生成ユニットを二つ以上備え 、第一 shRNA発現ベクター由来の部位 bがー箇所、第二 shRNA発現ベクター由来の 部位 aがー箇所、第一と第二の shRNA発現ベクター由来の部位 cが接続されて再び 形成された部位 cがー箇所を備えた構造を有する。従って、ここで生成された多重 sh RNA発現ベクターは、本製造方法の原料である第一 shRNA発現ベクターあるいは第 二 shRNA発現ベクターとして再び出発物質として利用しえる。得られた多重 shRNA発 現ベクターを出発物質として利用することにより、 shRNA生成ユニットの搭載数を自在 に増やすことが可能となる。 [0040] As described above, the finally produced multiplex shRNA expression vector connects the ac fragment containing the first shRNA generation unit and the bc fragment containing the second shRNA generation unit derived from the second shRNA expression vector. Has been formed. In other words, a-c fragment a and b-c fragment b were connected, and c were connected. Here, when a and b are connected, a sequence is formed that is no longer digested by either restriction enzyme A or restriction enzyme B. Therefore, the finally produced multiplex shRNA expression vector has two or more shRNA generating units, and the site b derived from the first shRNA expression vector, the site a derived from the second shRNA expression vector, The site c derived from the first and second shRNA expression vectors connected to each other and formed again has a structure with a site c. Therefore, the multiple sh RNA expression vector generated here can be used as a starting material again as the first shRNA expression vector or the second shRNA expression vector which is the raw material of the production method. By using the obtained multiplex shRNA expression vector as a starting material, the number of shRNA generation units can be increased freely.
[0041] [第三の実施形態] [0041] [Third embodiment]
本発明は、第三に多重 shRNA発現コンストラクト製造用のベクターに関する。本べク
ターは、上記第 2の実施形態の製造原料となる第一あるいは第二 shRNA発現べクタ 一の製造に使用するためのベクターである。具体的には、次の通りである。 Thirdly, the present invention relates to a vector for producing a multiple shRNA expression construct. Hon Baek The vector is a vector for use in the production of the first or second shRNA expression vector that is the production raw material of the second embodiment. Specifically, it is as follows.
本発明のベクターは、プロモーターと、前記プロモーターの下流に設けられた shRN Aコード DNAをクローユングし得るクロー-ング領域と、一つ以上の選択マーカーとが 備えられている。前記プロモーターの上流側に制限酵素 Aの認識消化部位 aが設け られ、前記クローニング領域の下流に制限酵素 Bの認識部位 bが設けられ、一の選択 マーカー内には制限酵素 Cの認識消化部位 cが備えられている。前記 Aと Bとは接続 可能な末端を生成し得る制限酵素であり、前記制限酵素 Cは前記 A、 Bの消化末端と は接続し得ない断端を形成し得る制限酵素である。前記制限酵素 Α,Βがそれぞれ認 識する a、 b部位はベクター内で単一の部位として備えられて 、る。 The vector of the present invention comprises a promoter, a cloning region capable of cloning shRNA coding DNA provided downstream of the promoter, and one or more selectable markers. A recognition digestion site a of restriction enzyme A is provided upstream of the promoter, a recognition site b of restriction enzyme B is provided downstream of the cloning region, and a recognition digestion site c of restriction enzyme C is included in one selection marker. Is provided. A and B are restriction enzymes that can generate connectable ends, and restriction enzyme C is a restriction enzyme that can form a stump that cannot be connected to the digestive ends of A and B. The a and b sites recognized by the restriction enzymes Α and Β are provided as a single site in the vector.
[0042] 上述した通り、第二の実施形態の製造方法を実施するためには、制限酵素 A、 B、 C に対応した部位 a、 b、 cがベクターに備えられている必要がある。このような制限酵素 部位の設置を容易にするために、本発明の多重 shRNA発現ベクターの製造に使用 する制限酵素部位が予め設けられた空のベクター(空のベクターとは shRNAをコード した DNAが搭載される前段階のベクターを意味する)を提供することにより、多重 shR NA発現ベクターの製造を容易にすることができる。また、 shRNAをコードした DNAを 挿入するクローユング領域として、制限酵素 A、 B、 Cの認識部位と異なる単一認識部 位の制限酵素部位を一つ以上設けることにより、第一あるいは第二の shRNA発現べ クタ一をコードした DNAの挿入を容易にすることができる。 [0042] As described above, in order to carry out the production method of the second embodiment, it is necessary for the vector to have sites a, b, and c corresponding to the restriction enzymes A, B, and C. In order to facilitate the installation of such restriction enzyme sites, an empty vector in which restriction enzyme sites used for the production of the multiplex shRNA expression vector of the present invention are prepared in advance (an empty vector is a DNA encoding shRNA). Providing a pre-staged vector) can facilitate the production of multiple shRNA expression vectors. In addition, by providing one or more restriction enzyme sites with a single recognition site different from the recognition sites of restriction enzymes A, B, and C as the cloning region for inserting DNA encoding shRNA, the first or second shRNA It is possible to facilitate insertion of DNA encoding the expression vector.
なお、使用し得るベクターの種類、プロモーターは第一の実施形態で説明した通り であるため、その説明は省略する。制限酵素 A、 B、 Cおよび対応する部位 a、 b、 cに ついては好適な態様を含め、第二の実施形態で説明した通りであることから、その説 明は省略する。 Since the types of vectors and promoters that can be used are as described in the first embodiment, the description thereof is omitted. Since the restriction enzymes A, B, C and the corresponding sites a, b, c are as described in the second embodiment, including preferred embodiments, the description thereof is omitted.
[0043] [第四の実施形態] [0043] [Fourth embodiment]
本発明は、第一の実施形態の多重 shRNA発現ベクターを成分とする、医薬組成物 に関する。 The present invention relates to a pharmaceutical composition comprising the multiple shRNA expression vector of the first embodiment as a component.
上記第一の実施形態に示した多重 shRNA発現ベクターから発現される shRNAの標 的を疾患関連遺伝子とすることにより、この shRNA発現ベクターを医薬品として利用
することができる。例えば、後述する実施例に示す通り、 SMADファミリーの複数を標 的とする多重 shRNA発現ベクターは TGF- |8経路が関与する疾患、例えば、癌などの 予防'治療に有用となる。特に、 Smad2、 Smad3、および Smad4を多重 shRNA発現べク ターにより同時にノックダウンすることにより、いずれかの遺伝子を単独でノックダウン するよりも TGF- β経路を強く阻害して、アポトーシスを強く誘導することができること が示された。したがって、これら Smad2、 Smad3、および Smad4を標的とする多重 shRN A発現ベクターは制癌剤として応用が期待される。 By using the target shRNA expressed from the multiple shRNA expression vector shown in the first embodiment as a disease-related gene, this shRNA expression vector can be used as a pharmaceutical product. can do. For example, as shown in the Examples described later, a multiple shRNA expression vector targeting a plurality of SMAD families is useful for the prevention and treatment of diseases involving the TGF- | 8 pathway, such as cancer. In particular, knocking down Smad2, Smad3, and Smad4 simultaneously with multiple shRNA expression vectors strongly inhibits the TGF-β pathway and induces apoptosis more strongly than knocking down either gene alone. It was shown that it was possible. Therefore, multiple shRNA expression vectors targeting these Smad2, Smad3, and Smad4 are expected to be applied as anticancer agents.
[0044] それ以外の疾患に関しても、疾患の原因が複数の遺伝子の発現に起因しているよ うな場合には、本発明の多重 shRNA発現ベクターを用いて、これら原因因子の発現 を同時に抑制することにより疾患の予防 ·治療を図ることが可能となる。したがって、 本発明の多重 shRNA発現ベクターは、遺伝子の発現、とりわけ、二つ以上、好ましく は、 3つ以上の遺伝子の発現が原因となる疾患の治療薬の開発に応用し得る。 なお本明細書において引用されたすベての先行技術文献は、参照として本明細書 に組み入れられる。 [0044] Regarding other diseases, if the cause of the disease is caused by the expression of multiple genes, the multiple shRNA expression vectors of the present invention are used to simultaneously suppress the expression of these causative factors. This makes it possible to prevent and treat diseases. Therefore, the multiple shRNA expression vector of the present invention can be applied to the development of therapeutic agents for diseases caused by gene expression, particularly, expression of two or more, preferably three or more genes. All prior art documents cited in this specification are incorporated herein by reference.
実施例 Example
[0045] 以下に、本発明を実施例を挙げて説明するが、本発明はこれら実施例により限定さ れるものではない。まず、実施例を説明するに当たり、本実施例で用いた方法、材料 について説明する。 [0045] Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. First, in describing the example, the method and materials used in this example will be described.
〔方法および材料〕 [Methods and Materials]
1) siRNAの設計および構築 1) siRNA design and construction
Smad2、 Smad3、または TGFRB2遺伝子を標的とする異なる四つの配列を独自のァ ルゴリズム (非特許文献 9)を用いて選択した。サイレンシング活性を改善するため、 および本文に記述した技術的障害を克服するため、ヘアピンループのセンス DNA内 のみに Cから Tまたは Aから Gの変異を多数導入し、アンチセンス DNAとセンス DNAと に複数のミスマッチを形成させた。ヘアピン型の単一の RNAiベクターを構築するため を 1 M NaCl ( 1 1)と混合した。この混合液を 95°Cで 2分間インキュベートし、 72°Cま で急速に冷却して、 2時間かけて 4°Cに徐々に冷却して、センスおよびアンチセンスォ
リゴヌクレオチドをアニーリングさせた。本発明者らは、ァニールしたオリゴヌクレオチ ドを TE緩衝液によって 200倍に希釈して、 1 μ 1をプラスミド DNAとのライゲーシヨンの ために用いた。 pcPUR+U6iカセットプラスミド(3〜5 g)を反応溶液(100 1)中で Bs pMIにより消化した。消化後の反応液を電気泳動した。 目的の長さの DNA断片を含 むゲル小片を切除し、小片中の DNAを MinEluteゲル精製キット(キアゲン)を用いて 精製した。 DNAライゲーシヨンキットバージョン 2.1 (TAKARA)を用いて、線状化したプ ラスミド DNAと上記アニーリングさせたオリゴヌクレオチドをライゲーシヨンさせた。ライ ゲーシヨン産物により大腸菌宿主細胞を形質転換した。 Four different sequences targeting the Smad2, Smad3, or TGFRB2 gene were selected using a unique algorithm (9). In order to improve silencing activity and to overcome the technical obstacles described in the text, many C to T or A to G mutations were introduced only into the hairpin loop sense DNA, and the antisense DNA and sense DNA Multiple mismatches were formed. To construct a single hairpin RNAi vector, it was mixed with 1 M NaCl (11). Incubate the mixture at 95 ° C for 2 minutes, quickly cool to 72 ° C, and gradually cool to 4 ° C over 2 hours to allow sense and antisense Rigonucleotides were annealed. We diluted the annealed oligonucleotide 200-fold with TE buffer and used 1 μl for ligation with plasmid DNA. The pcPUR + U6i cassette plasmid (3-5 g) was digested with Bs pMI in the reaction solution (100 1). The digested reaction solution was electrophoresed. The gel piece containing the DNA fragment of the desired length was excised, and the DNA in the piece was purified using the MinElute gel purification kit (Qiagen). Using the DNA ligation kit version 2.1 (TAKARA), the linearized plasmid DNA and the annealed oligonucleotide were ligated. E. coli host cells were transformed with the ligation product.
Smad-2および- 3ダブルノックダウンコンストラクトは以下のように作製した。 pcPUR+ U6-Smad2iを BamHIおよび Sealによって消化し、一方の pcPUR+U6- Smad3iを Sealおよ び Bglllによって消化した(段階 1)。 U6プロモーターおよびヘアピンループ単位を含 む断片を精製し (段階 2)、その後、ライゲーシヨンを行なって、ダブルノックダウンべク ターを構築した (段階 3)。 Bglllおよび BamHI消化により形成された末端がァユーリン グすることで形成されたつなぎ目は、もはや Bglllおよび BamHIのいずれでも切断する ことができない。このように、多数の siRNAsのコード領域を順次ベクターに組み込む 際に、同じ技法を繰り返すことができる。 Seal部位はアンピシリン耐性遺伝子に存在し 、これはバックグラウンドの細菌コロニーの数を減少させる。同じ方法を他のダブルま たはトリプルノックダウンコンストラクトに適用した。なお、 pcPUR+U6iカセット(非特許 文献 13)、および pcPUR+U6iGFPならびに pcPUR+U6+Smad4i (非特許文献 7、 12)に ついては既に報告されている。 pCMV5- TGF jS RII/HAは J丄. Wranaより提供され、 pc DEF3- Flag(N)- Smad2および pcDEF3- Flag(N)- Smad3は、 K. Miyazono氏から寄贈さ れた。(CAGA)9-Luc (非特許文献 16)は、 S.E. Kern氏から寄贈された。および p3TP- Luxは、 J. Massague氏からの寄贈され、既に報告もされている(Wrana J L, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang X— F, Massague J. TuF- β sign als through a heteromeric protein kinase receptor complex. Cell 1992;71:1003-1014 )。ゥミシィタケのルシフェラーゼのコード配列の上流にシミアンウィルス (SV) 40プロモ 一ターを含む PRL-SV40 (プロメガ)を、ルシフェラーゼアツセィにおける内部標準とし て用いた。
[0047] 2)細胞培養およびトランスフエクシヨン Smad-2 and -3 double knockdown constructs were made as follows. pcPUR + U6-Smad2i was digested with BamHI and Seal, while pcPUR + U6-Smad3i was digested with Seal and Bglll (Step 1). A fragment containing the U6 promoter and hairpin loop unit was purified (step 2), followed by ligation to construct a double knockdown vector (step 3). The joint formed by filing the ends formed by Bglll and BamHI digestion can no longer be cleaved by either Bglll or BamHI. Thus, the same technique can be repeated when coding regions of multiple siRNAs are sequentially incorporated into the vector. The Seal site is present in the ampicillin resistance gene, which reduces the number of background bacterial colonies. The same method was applied to other double or triple knockdown constructs. The pcPUR + U6i cassette (Non-Patent Document 13), pcPUR + U6iGFP, and pcPUR + U6 + Smad4i (Non-Patent Documents 7 and 12) have already been reported. pCMV5- TGF jS RII / HA was provided by J 丄. Wrana, and pc DEF3-Flag (N) -Smad2 and pcDEF3-Flag (N) -Smad3 were donated by K. Miyazono. (CAGA) 9-Luc (Non-Patent Document 16) was donated by SE Kern. And p3TP-Lux was donated by J. Massague and has already been reported (Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang X—F, Massague J. TuF- β sign als through a heteromeric protein kinase receptor complex. Cell 1992; 71: 1003-1014). PRL-SV40 (Promega) containing the Simian virus (SV) 40 promoter upstream of the Renilla luciferase coding sequence was used as an internal standard in the luciferase assembly. [0047] 2) Cell culture and transfection
HeLa細胞株(アメリカンタイプカルチャーコレクション、ロックビル、メリーランド州)は 10%ゥシ胎児血清(シグマ(Sigma)、セントルイス、ミズーリ州)を含むダルベッコ改変 イーグル培地において継代した。ヒトケラチサイト細胞株 HaCaT (J Cell Biol. 1988 Ma r; 106(3) :761-71.Normal keratinization in a spontaneously immortalized aneuploid nu man keratinocyte cell line.Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE.)は 10%ゥシ胎児血清を含むダノレべッコ改変ィーグノレ培地 において継代した。トランスフエクシヨンは、製造元の説明書に従って「Effectene」(キ ァゲン)を用いて行った。安定な RNAi細胞を確立するために、細胞をピューロマイシ ン (和光) 1 g存在下で 2週間培養して選択した。安定した shRNAを発現している細 胞を確立するために、 HaCaT細胞株における選択のためのピューロマイシン濃度を 検定し、ピューロマイシンが発現していない細胞は 3日以内に全て死滅するという適 切な濃度として 1 μ g/mlを選択した。生存細胞は siRNA発現ベクターが導入されたゥ エルで観察された。最初のコロニーは 2週間目に現れ、その後さらに 2週間培養して オリジナルストックを作成したり、発現解析を実行するための細胞数として十分な密集 度まで増殖させた。安定した細胞株における標的内在性遺伝子の発現のノックダウ ンは、上記オリジナルストックおよびオリジナルストックを 20回継代した細胞を用いて 試験した。細胞をピューロマイシン(1 μ g/ml)含有培地 (Wako, Tokyo, Japan)にてさ らに培養した。 The HeLa cell line (American Type Culture Collection, Rockville, MD) was passaged in Dulbecco's modified Eagle's medium containing 10% sushi fetal serum (Sigma, St. Louis, MO). Human keratinocyte cell line HaCaT (J Cell Biol. 1988 Mar; 106 (3): 761-71.Normal keratinization in a spontaneously immortalized aneuploid nu man keratinocyte cell line.Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE.) Were subcultured in Danolebecko modified ignore medium containing 10% urine fetal serum. Transfusion was performed using “Effectene” according to the manufacturer's instructions. To establish stable RNAi cells, the cells were selected by culturing for 2 weeks in the presence of 1 g of puromycin (Wako). To establish cells expressing stable shRNA, the puromycin concentration for selection in the HaCaT cell line is assayed and all cells that do not express puromycin die within 3 days. A concentration of 1 μg / ml was selected. Viable cells were observed in wells into which the siRNA expression vector was introduced. The first colony appeared at 2 weeks, and then cultured for another 2 weeks to create original stocks or grow to a density sufficient for the number of cells to perform expression analysis. Knockdown of target endogenous gene expression in stable cell lines was tested using the original stock and cells passaged 20 times from the original stock. The cells were further cultured in a medium containing puromycin (1 μg / ml) (Wako, Tokyo, Japan).
[0048] 3)ウェスタンブロット [0048] 3) Western blot
ウェスタンブロッテイングは既に記述されて ヽる通りに実施した (非特許文献 18)。 等量のタンパク質を電気泳動して、タンパク質をそれぞれ、 250倍希釈した抗 Smad2/ 3もしくは抗 Smd4抗体 (BDトランスダクシヨンラボラトリーズ)、 2500倍希釈した抗 β -ァ クチンもしくは抗 Flag抗体 (シグマ)、抗 ΗΑ抗体 (ロシュ)、または 1000倍希釈した抗 Ρ AI-1抗体 (BDトランスダクシヨンラボラトリーズ)によって検出した。 Western blotting was performed as described (Non-patent Document 18). Equal volume of protein is electrophoresed and the protein is diluted 250-fold by anti-Smad2 / 3 or anti-Smd4 antibody (BD Transduction Laboratories), 2500-fold diluted by anti-β-actin or anti-Flag antibody (Sigma), respectively. , Anti-antipox antibody (Roche), or anti-antipox AI-1 antibody (BD Transduction Laboratories) diluted 1000-fold.
[0049] 4)ノーザン解析 [0049] 4) Northern analysis
トータル RNAは安定的にノックダウンされた細胞より Isogen Reagent (Wako, Tokyo, Japan)を用い、添付資料に従って回収した。トータル RNA (5 g)は 18% (重量/容量
)ポリアクリルアミド尿素ゲルにてサイズ分画し、 Hybond N+メンブレン (Amersham, Litt le Chalfont, UK)に転写した。転写後のメンブレンを室温にて乾燥させ、紫外光で固 定した。メンブレンは溶液(30% formamide, 10% dextran sulfate, 5x SSC, 0.5% SDS, 1 x Denhardt s solution, and 0.2 mg/ml salmon sperm DNA (Sigma Aidrich Co., Saint Louis, MO))にてプレハイブリダィゼーシヨンを行なった。ハイブリダィゼーシヨンは合 成オリゴヌクレオチドプローブにて 36度、 3時間行った。このプローブは Smad2、 3及 び 4に対する siRNAと相補的な配列で構成した。ローデイングコントロールとして、ヒト t RNAパリンに対する相補的なプローブを用いた。プローブ配列は次の通りである。 Total RNA was collected from stably knocked-down cells using Isogen Reagent (Wako, Tokyo, Japan) according to the attached document. Total RNA (5 g) is 18% (weight / volume ) Size fractionated with polyacrylamide urea gel and transferred to Hybond N + membrane (Amersham, Litt le Chalfont, UK). The membrane after transfer was dried at room temperature and fixed with ultraviolet light. The membrane is prehybridized with a solution (30% formamide, 10% dextran sulfate, 5x SSC, 0.5% SDS, 1 x Denhardt s solution, and 0.2 mg / ml salmon sperm DNA (Sigma Aidrich Co., Saint Louis, MO)). We did a dialysis. Hybridization was performed with a synthetic oligonucleotide probe at 36 ° C for 3 hours. This probe was composed of a sequence complementary to siRNA for Smad2, 3 and 4. As a loading control, a complementary probe to human tRNA palin was used. The probe sequence is as follows.
•tRNA valinに対するプローブ: (配列番号: 150) • Probe for tRNA valin: (SEQ ID NO: 150)
5, - GAA CGT GAT AAC CAC TAC ACT ACG GAA ACC CTA TAG TGA GT C GTA TTA GGC GGG AAC CGC CTA ATA CGA CTC ACT ATA GG- 3' 5,-GAA CGT GAT AAC CAC TAC ACT ACG GAA ACC CTA TAG TGA GT C GTA TTA GGC GGG AAC CGC CTA ATA CGA CTC ACT ATA GG-3 '
• Smad2 siRNAに対するプローブ: (配列番号: 98) • Probe for Smad2 siRNA: (SEQ ID NO: 98)
5 '- GGATTGAACTTC ATCTGAA- 3 ' , 5 '-GGATTGAACTTC ATCTGAA- 3',
• Smad3 siRNAに対するプローブ: (配列番号: 99) • Probe for Smad3 siRNA: (SEQ ID NO: 99)
5 -GGATTGAGCTGCACCTGAA-3 ' 5 -GGATTGAGCTGCACCTGAA-3 '
• Smad4 siRNAに対するプローブ: (配列番号: 100) • Probe for Smad4 siRNA: (SEQ ID NO: 100)
5し GTACTTCATACCATGCCGA- 3'. 5 and GTACTTCATACCATGCCGA-3 '.
合成プローブは T4ポリヌクレオチドキナーゼ (Takara Shuzo Co., Kyoto, Japan)を用 いて、 32P(Amasham, Little Chalfont, UK)標識した。メンブレンを 2x SSCを用いて 36 度にて 2回洗い、その後、 Fujix Bio-Image Analyzer BASIOOO (Fuji Photo Film Co. L td., Tokyo, Japan)を用いて解析した。 The synthetic probe was labeled with 32 P (Amasham, Little Chalfont, UK) using T4 polynucleotide kinase (Takara Shuzo Co., Kyoto, Japan). The membrane was washed twice at 36 ° C using 2x SSC and then analyzed using Fujix Bio-Image Analyzer BASIOOO (Fuji Photo Film Co. Ltd., Tokyo, Japan).
5)ルシフェラーゼアツセィ 5) Luciferase Atsey
ルシフェラーゼアツセィは既に記述されて 、る通りに実施した (非特許文献 18)。細 胞に、(CAGA)9- luc、または p3TP- Luxおよび pRL- SV40をトランスフエタトした。 24時 間後、細胞を TGF- |8 1 (R&Dシステムズ) 2.5 ng存在下または非存在下でさらに 24時 間インキュベートして、ダブルルシフェラーゼアツセィを行った。(CAGA)9-lucまたは p 3TP-Luxのホタルのルシフェラーゼ活性を pRL-SV40のゥミシィタケのルシフェラーゼ 活性に基づき標準化した。 TGF- |8 1非存在における細胞のルシフェラーゼレベルに
値 1.0を割り付けて、相対活性を計算した。実験は 1試料あたり 2個ずつ 3回実施した。 Luciferase activity has been described and carried out as described (Non-patent Document 18). Cells were transfected with (CAGA) 9-luc, or p3TP-Lux and pRL-SV40. After 24 hours, cells were incubated for an additional 24 hours in the presence or absence of 2.5 ng of TGF-811 (R & D Systems) for double luciferase assay. (CAGA) 9-luc or p 3TP-Lux firefly luciferase activity was normalized based on pRL-SV40 renilla luciferase activity. Cellular luciferase levels in the absence of TGF- | 8 1 The value 1.0 was assigned to calculate the relative activity. The experiment was performed 3 times, 2 pieces per sample.
[0051] 6)定量的逆転写酵素 PCR [0051] 6) Quantitative reverse transcriptase PCR
既に記述されているように(非特許文献 13)、 ABI 7000リアルタイム PCRシステム (A pplied Biosystems)を用いて定量的 RT- PCR分析を行った。グリセルアルデヒド- 3-リ ン酸デヒドロゲナーゼ(GAPDH)の mRNAレベルに対する各遺伝子の mRNAレベルの 比を計算して、値 1.0を親細胞に割付した。各実験は 1試料あたり 3個ずつ 2回繰り返 した。以下のプライマーを用いた。 Quantitative RT-PCR analysis was performed using the ABI 7000 real-time PCR system (Applied Biosystems) as previously described (Non-Patent Document 13). The ratio of the mRNA level of each gene to that of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was calculated and assigned a value of 1.0 to the parental cells. Each experiment was repeated twice, 3 per sample. The following primers were used.
•BTBD1 • BTBD1
フォワード(5'- CAAGGCGTCGCTGAAGGA- 3';配列番号: 3) Forward (5'-CAAGGCGTCGCTGAAGGA-3 '; SEQ ID NO: 3)
リバース(5'- CCCAGTACGAAGCGCACAT- 3';配列番号: 4) Reverse (5'- CCCAGTACGAAGCGCACAT-3 '; SEQ ID NO: 4)
•プロミニン 2 • Prominin 2
フォワード(5'- TGCCCTCTGTGGACCATGT- 3';配列番号: 5) Forward (5'-TGCCCTCTGTGGACCATGT-3 '; SEQ ID NO: 5)
リバース(5'- GGCGTTGAAGGTGCTGTTCT- 3';配列番号: 6) Reverse (5'-GGCGTTGAAGGTGCTGTTCT-3 '; SEQ ID NO: 6)
• OAS1 • OAS1
フォワード(5'- AGGTGGTAAAGGGTGGCTCC- 3';配列番号: 7) Forward (5'-AGGTGGTAAAGGGTGGCTCC-3 '; SEQ ID NO: 7)
リバース(5し ACAACCAGGTCAGCGTCAGAT- 3';配列番号: 8) Reverse (5 ACAACCAGGTCAGCGTCAGAT-3 '; SEQ ID NO: 8)
• GAPDH • GAPDH
フォワード(5'- CCACCCATGGCAAATTCC- 3';配列番号: 9) Forward (5'-CCACCCATGGCAAATTCC-3 '; SEQ ID NO: 9)
リバース(5'- TGGGATTTCCATTGATGACAAG- 3';配列番号: 10) Reverse (5'-TGGGATTTCCATTGATGACAAG-3 '; SEQ ID NO: 10)
M13 (配列の確認のため)、リバース(5'- CAGGAAACAGCTATGAC- 3';配列番号: 1 M13 (for sequence confirmation), reverse (5'-CAGGAAACAGCTATGAC-3 '; SEQ ID NO: 1
1) 1)
[0052] 7)浸潤アツセィ [0052] 7) Infiltration Atsey
浸潤は、 BDバイオコートマトリゲル浸潤チャンバ一(BDバイオサイェンシズ)を用い て、直径 8 mmのマトリゲルコーティングポリカーボネートメンブレン(孔径 8 μ m)によつ て測定した。全体でノックダウンまたは対照 HaCaT細胞 105個をゥエルの上室に播種 し、培養した。 24時間後、細胞を TGF- |8 (1 5 ng/ml)存在下または非存在下でさらに 24時間インキュベートした。次に、濾紙の上部表面に存在する細胞を綿花で拭き取 つて、濾紙の下側に浸潤した細胞を固定して、「DiffQuick」 (Dade Behring)によって
染色し、明視野顕微鏡によって無作為な 5視野を選択して、倍率 200倍で視野内の染 色細胞を計数した。実験は 3回繰り返した。 Infiltration was measured with a 8 mm diameter Matrigel coated polycarbonate membrane (pore size 8 μm) using a BD Biocoat Matrigel Infiltration Chamber (BD Biosciences). Total were seeded 10 5 knockdown or control HaCaT cells in the upper chamber of Ueru and cultured. After 24 hours, cells were incubated for an additional 24 hours in the presence or absence of TGF-8 | 8 (15 ng / ml). Next, wipe the cells on the upper surface of the filter paper with cotton and fix the cells that have infiltrated on the lower side of the filter paper, and use `` DiffQuick '' (Dade Behring) After staining, five random fields were selected with a bright-field microscope, and stained cells in the field were counted at 200x magnification. The experiment was repeated three times.
[0053] 8)創傷閉鎖アツセィ [0053] 8) Wound closure
創傷閉鎖アツセィは既に記述されている通りに (非特許文献 13)実施した。コンフル ェント細胞単層に、幅 1.2 mmのピペットの先端を用いて剥離させて損傷を与え、 TGF - j8 1 5 ng/mlの存在下または非存在下で 24時間インキュベートした。細胞の遊走を、 様々な時間に注意深く観察した。実験は 3回繰り返した。 Wound closure assembly was performed as previously described (13). Confluent cell monolayers were damaged by exfoliation using a 1.2 mm wide pipette tip and incubated for 24 hours in the presence or absence of TGF-j8 15 ng / ml. Cell migration was carefully observed at various times. The experiment was repeated three times.
7)アポトーシス 7) Apoptosis
10 cm培養皿に細胞 2 X 106個を播種し、 TGF- (1 5 ng)存在下または非存在下で 24時間インキュベートして、 ApopTagフルォレセイン in situアポトーシス検出キット S71 11 (Serologicals Corporation)を用いてアポトーシスを分析した。測定には、「CellQue st」ソフトウェアを備えたベタトン'ディッキンソンフローサイトメーターを用いた。実験は 1試料あたり 2個ずつ 3回繰り返した。 Inoculate 2 x 10 6 cells in a 10 cm culture dish, incubate for 24 hours in the presence or absence of TGF- (15 ng), and use ApopTag fluorescein in situ apoptosis detection kit S71 11 (Serologicals Corporation) Apoptosis was analyzed. For the measurement, a Betaton Dickinson flow cytometer equipped with “CellQuest” software was used. The experiment was repeated three times, two per sample.
[0054] 〔実施例 1〕 [Example 1]
(1)シングル siRNA発現ベクターの作製 (1) Preparation of single siRNA expression vector
既に報告されている有効な siRNA設計に関する様々なアルゴリズムに基づくソフトゥ エア (非特許文献 9)を用いて、 Smad2遺伝子 (配列番号: 12)、 Smad3遺伝子 (配列番 号: 13)、および TGFRB2遺伝子(配列番号: 14)のそれぞれに対して、鎖長 21ヌクレ ォチドの標的部位 4箇所を設計した (表 4)。また、 Smad4については既に報告がされ て 、るターゲット部位を用いた。 Using software based on various algorithms for effective siRNA design that have already been reported (Non-patent Document 9), Smad2 gene (SEQ ID NO: 12), Smad3 gene (SEQ ID NO: 13), and TGFRB2 gene ( For each of SEQ ID NO: 14), four target sites with a chain length of 21 nucleotides were designed (Table 4). In addition, Smad4 has already been reported and the target site was used.
[0055] [表 4]
[0055] [Table 4]
TGFBR2 site 1 5'-atgagcaactgcagcatcacc-3' (配列番号: 1 0 1) TGFBR2 site 1 5'-atgagcaactgcagcatcacc-3 '(SEQ ID NO: 1 0 1)
site 2 S'-aggccaagctgaagcagaaca-S* (配列番号: 102) site 3 5'-acggctccctaaacactacca-3' (配列番号: 1 03) site 4 5'aaggacatcttctcagacatc_3T (配列番号: 1 04) site 2 S'-aggccaagctgaagcagaaca-S * (SEQ ID NO: 102) site 3 5'-acggctccctaaacactacca-3 '(SEQ ID NO: 1 03) site 4 5'aaggacatcttctcagacatc _ 3 T (SEQ ID NO: 10 04)
Smad2 site 1 5'-ggattgaacttcatctgaatg-3' (配列番号: 1 05) Smad2 site 1 5'-ggattgaacttcatctgaatg-3 '(SEQ ID NO: 1 05)
site 2 5'-ggcctgatcttcacagtcatc_3' (配列番号: 1 06) site 3 5T-ggtttactctccaat^ttaac-3' (配列番号: 1 07) site 4 5T- gccacctcctggatatatcag- 3, (配列番号: 1 08) site 2 5'-ggcctgatcttcacagtcatc_3 '(SEQ ID NO: 1 06) site 3 5 T -ggtttactctccaat ^ ttaac-3' (SEQ ID NO: 1 07) site 4 5 T -gccacctcctggatatatcag- 3, (SEQ ID NO: 1 08)
Smad3 site 1 5'-ggccagacctgcacagccacc-3' (配列番号: 1 09) Smad3 site 1 5'-ggccagacctgcacagccacc-3 '(SEQ ID NO: 1 09)
site 2 5'-ggattgagctgcacctgaatg-3' (配列番号: 1 1 0) site 3 5'-gagttcgccttcaatatgaag-3' (配列番号: 1 1 1) site 4 5'gggctgctctccaatgtcaac-3T (配列番号: 1 1 2) site 2 5'-ggattgagctgcacctgaatg-3 '(SEQ ID NO: 1 1 0) site 3 5'-gagttcgccttcaatatgaag-3' (SEQ ID NO: 1 1 1) site 4 5'gggctgctctccaatgtcaac-3 T (SEQ ID NO: 1 1 2)
Smad4 site 1 5' GTAATGATGCCTGTCTGAGCA-3' (配列番号: 1 1 3) Smad4 site 1 5 'GTAATGATGCCTGTCTGAGCA-3' (SEQ ID NO: 1 1 3)
site 2 5'_GGATTTCCTCATGTGATCTAT-3' (配列番号: 1 14) site 3 5' GTAGGACTGCACCATACACAC-3' (配列番号: 1 1 5) site 4 5f GAAACACCTTGCTGGATTGAA-3f (配列番号: 1 1 6) site 5 5† GTACTTCATACCATGCCGATT-3' (配列番号: 1 1 7) サイレンシング活性を改善するため、および siRNA発現構築物にお 、て起こる頻繁 な変異またはノ リンドローム配列によるシークェンシングの難しさのような技術的な障 害を克服する配列をデザインした。表 5に示すようにセンス鎖は上記ターゲット部位の 配列に二つまたはそれ以上の C力も Tまたは A力も Gの点変異を挿入し、アンチセンス 鎖は RNA干渉を誘導し得るようにターゲット配列との相補性を保つ配列とした。なお、 Smad4に関しては、既に抑制効果が報告されている表 4に示すターゲット配列のセン ス鎖にミスマッチを挿入して配列をデザインした。なお、 Smad4に関してはその遺伝 子配列(配列番号: 15)に基づき、他の標的領域の選択および他の shRNA配列をデ ザインすることは可能である。 site 2 5'_GGATTTCCTCATGTGATCTAT-3 '(SEQ ID NO: 1 14) site 3 5' GTAGGACTGCACCATACACAC-3 '(SEQ ID NO: 1 1 5) site 4 5 f GAAACACCTTGCTGGATTGAA-3 f (SEQ ID NO: 1 1 6) site 5 5 † GTACTTCATACCATGCCGATT-3 '(SEQ ID NO: 1 1 7) To improve silencing activity and technical difficulties such as frequent sequencing of siRNA expression constructs or the difficulty of sequencing due to the nordromic sequence We designed an array that overcomes various obstacles. As shown in Table 5, the sense strand inserts two or more C, T, A or G point mutations into the target site sequence, and the antisense strand can induce RNA interference so that it can induce RNA interference. The sequence was kept complementary. Regarding Smad4, the sequence was designed by inserting a mismatch into the sense strand of the target sequence shown in Table 4 for which the inhibitory effect was already reported. For Smad4, it is possible to select other target regions and design other shRNA sequences based on the gene sequence (SEQ ID NO: 15).
[表 5]
Smad2 領域 1 sense 5'-ggattga^cttiatftgaatg-3' (配列番号: 1 6) antisense 5'-cattcagatgaagttcaatcc-3' (目 L!列 r : 1 I ) 領域 2 sense 5'-ggcftgatctt ね gt ate-3' (配歹 'J畨号: 1 8) [Table 5] Smad2 region 1 sense 5'-ggattga ^ cttiatftgaatg-3 '(SEQ ID NO: 1 6) antisense 5'-cattcagatgaagttcaatcc-3' (eyes L! Sequence r: 1 I) region 2 sense 5'-ggcftgatctt ne gt ate-3 '(Distribution' J 畨 号: 1 8)
antisense 5'-gatgactgtgaagatcaggcc-3' (目 歹1 J番 - : 1 9) 領域 3 sense 5'-ggtttactrtciagtgttaac-3' (配列番号: 20) antisense 5'-gttaacattggagagtaaacc-3' (目 d歹'』¾· : 2 1 ) 領域 4 sense 5'-gccacftcftggatatatfag-3' (配列番号: 22) antisense 5'-ctgatatatccaggaggtggc-3' (酉己歹 ϋΐ!·τ7: 23ノantisense 5'-gatgactgtgaagatcaggcc-3 '(eyes 歹1 J number-: 1 9) region 3 sense 5'-ggtttactrtciagtgttaac-3' (SEQ ID NO: 20) antisense 5'-gttaacattggagagtaaacc-3 '(eyes d 歹') ¾ ·: 2 1) Region 4 sense 5'-gccacftcftggatatatfag-3 '(SEQ ID NO: 22) antisense 5'-ctgatatatccaggaggtggc-3' (酉 己 歹 ϋΐ! · Τ7: 23
Smad3 領域 1 sense 5'-ggccagacftgiaiagciacc-3' (酉 ΰ列 ¼ : 24) antisense 5'-ggtggctgtgcaggtctggcc-3' (Bti歹1 J r : 2 o ) 領域 2 sense 5'-ggattgagftg fctgaatg.3' (酉 [!歹 ϋ番^" : 26) antisense S'-cattcaggtgcagctcaatcc-d' (酉 列 ¾" : ) 領域 3 sense 5'-gagttigfcttiaatatgaag-3' (SJ列,番号 : 28) antisense 5'-cttcatattgaaggcgaactc-3' (目 d歹1 J番 : 29) 領域 4 sense 5'-gggitgftctfcaatgt aac-3' (酉己歹 'J番号: 30) antisense 5'-gttgacattggagagcagccc-3' (酉己歹1 J备 : 3 1 )Smad3 region 1 sense 5'-ggccagacftgiaiagciacc-3 '(酉 ΰ row ¼: 24) antisense 5'-ggtggctgtgcaggtctggcc-3' (Bti 歹1 J r : 2 o) region 2 sense 5'-ggattgagftg fctgaatg.3 '(酉[! 歹 ϋ 番 ^ ": 26) antisense S'-cattcaggtgcagctcaatcc-d '(酉 row ¾":) Region 3 sense 5'-gagttigfcttiaatatgaag-3' (SJ row, number: 28) antisense 5'-cttcatattgaaggcgaactc-3 '(Eyes d 歹1 J number: 29) domain 4 sense 5'-gggitgftctfcaatgt aac-3' (酉 己酉 'J number: 30) antisense 5'-gttgacattggagagcagccc-3' (酉 self 歹1 J equipment: 3 1 )
Smad4 領域 5 sense 5'- gtacttcata ifetgfcgatt -3' (B己歹 'J番 : 32) antisense 5'-aatcggcatggtatgaagtac -3' (S己歹1 J番 3 3 )Smad4 domain 5 sense 5'- gtacttcata ifetgfcgatt -3 '(B self' J number: 32) antisense 5'-aatcggcatggtatgaagtac -3 '(S self 1 J number 3 3)
TGFBR2 領域 1 sense 5'-atgag artg gfetcacc.3' (酉 ΰ歹1 : 34) antisense 5'-ggtgatgctgcagttgctcat-3' (配列番 : 35) 領域 2 sense 5'-aggciaagftgaagiagaaca-3' (a]夕-1 J番 : 3 o ) antisense 5'-tgttctgcttcagcttggcct-3' (酉己歹1 J番号: 3 7 ) 領域 3 sense 5'-acggftcfctaaaiactacca-3' (酉己歹1』¾■ : 3 8 ) antisense 5'-tggtagtgtttagggagccgt-3' (酉 L!列番^": 39) 領域 4 sense 5'-aagga¾tcttctfegaね tc-3' (配列番 40) antisense 5'-gatgtctgagaagatgtcctt-3' (配歹1 Jft : 4 】 ) ミスマッチ塩基は斜体字にて示す。 TGFBR2 region 1 sense 5'-atgag artg gfetcacc.3 ' ( Rooster ΰ歹1: 34) antisense 5'-ggtgatgctgcagttgctcat -3' ( SEQ ID NO: 35) regions 2 sense 5'-aggciaagftgaagiagaaca-3 ' (a] evening - 1 J number: 3 o) antisense 5'-tgttctgcttcagcttggcct-3 '(酉 己酉1 J number: 3 7) Region 3 sense 5'-acggftcfctaaaiactacca-3' (酉 己 歹1 ) ¾ ■: 3 8) antisense 5 '-tggtagtgtttagggagccgt-3' (酉 L! sequence number ^ ": 39) region 4 sense 5'-aagga¾tcttctfega ne tc-3 '(sequence number 40) antisense 5'-gatgtctgagaagatgtcctt-3' (distribution 1 Jft: 4) ) Mismatch bases are shown in italics.
[0056] 上記センス鎖、アンチセンス鎖にリンカ一 DNAを接続し、 shRNAをコードした DNAを 構成し、これにクローユング用の制限酵素サイトおよび転写終結コドンを挿入した DN A鎖を化学合成し、また、その相補鎖も化学合成した (表 6)。これら 2本の DNA鎖をァ ニーリングして、二本鎖 DNA断片を形成した。 [0056] A linker DNA is connected to the sense strand and the antisense strand to construct a DNA encoding shRNA, and a DNA strand in which a restriction enzyme site for cloning and a transcription termination codon are inserted is chemically synthesized. The complementary strand was also chemically synthesized (Table 6). These two DNA strands were annealed to form double stranded DNA fragments.
[0057] [表 6]
[0057] [Table 6]
4 Four
配列番号) :47 配^ (列): 46 番^ (列) 5 :4 番号 (列):44 (Sequence number): 47 Arrangement ^ (column): 46th ^ (column) 5: 4 Number (column): 44
site 2 5cacccrtatcttaiat tcttcttccat--'' site 2 5cacccrtatcttaiat tcttcttccat-- ''
番号) (列: 34 番^ (列): 42 si 1
TGFBR2 site 1 S' accatgag^a/te^g^tcacc^^gct^ccggtsatectecaett^ctcatttttt-S' Number) (column: number 34 ^ (column): 42 si 1 TGFBR2 site 1 S 'accatgag ^ a / te ^ g ^ tcacc ^^ gct ^ ccggtsatectecaett ^ ctcatttttt-S'
(配列番^ : 5 8 ) (Sequence number ^: 5 8)
S'-gcataaaaaatgagcaactgcaecatcaccsgacaecacacgstgat^ctaca^tt^ctcat-S' S'-gcataaaaaatgagcaactgcaecatcaccsgacaecacacgstgat ^ ctaca ^ tt ^ ctcat-S '
(配列番号: 5 9 ) (SEQ ID NO: 5 9)
site 2 5'_ciicciiggc grtgaag aaca t gtcct tctscttcagcttracctttttt-3' site 2 5'_ciicciiggc grtgaag aaca t gtcct tctscttcagcttracctttttt-3 '
(配列番号: 6 0 ) (SEQ ID NO: 6 0)
5'-ecataaaaaae2ccaaect£:aagcagaacaggacagcacactsttctacttcaactt^cct-3' 5'-ecataaaaaae2ccaaect £: aagcagaacaggacagcacactsttctacttcaactt ^ cct-3 '
(配列番^ : 6 1 ) (Array number ^: 6 1)
site 3 S'-caccacgffftc ctaaaiactaccagtgtgctstcctggtastgtttagsgragccstttttt-S' site 3 S'-caccacgffftc ctaaaiactaccagtgtgctstcctggtastgtttagsgragccstttttt-S '
(配列番¾ : 6 2 ) (Sequence number ¾: 6 2)
D'-srcataaaaaacE ectccctaaacactaccaegacaecacactegtaetatttaaaga^ccet-S' D'-srcataaaaaacE ectccctaaacactaccaegacaecacactegtaetatttaaaga ^ ccet-S '
(配列番号: 6 3 ) (SEQ ID NO: 6 3)
site 4 S'-caccaagea i^cttct^ga^tcst^ectetccgatgtct^asaaeatetccttttttt-S site 4 S'-caccaagea i ^ cttct ^ ga ^ tcst ^ ectetccgatgtct ^ asaaeatetccttttttt-S
(配列番 : 6 4 ) (Sequence number: 6 4)
S'gcataaaaaaaggacatcttctcagacatcggacagcacaceratatct^aeaaea^tcctt-S' S'gcataaaaaaaggacatcttctcagacatcggacagcacaceratatct ^ aeaaea ^ tcctt-S '
(配列番号: 6 5 ) 注)ミスマッチ配列は斜体で示す。リンカ一 (ループ)配列は下線を付して示す。タ ーミネーター(転写終結コドン) は二重下線を付して示す。 BspMI認識サイトは破線 を付して示す。 (SEQ ID NO: 6 5) Note) Mismatch sequences are shown in italics. The linker (loop) sequence is shown underlined. The terminator (transcription termination codon) is indicated with a double underline. BspMI recognition sites are shown with broken lines.
[0058] 上記互いに相補する DNAをアニーリングして生成した DNA断片を pcPUR+U6-iカセ ット(非特許文献 7)にそれぞれサブクローユングして、 siRNA発現ベクターを構築した 。これら siRNA発現ベクターによるサイレンシング効率をスクリーニングするために、こ れらベクターを Smad2-、 Smad3-または TGFRB2-発現ベクターと共に HeLa細胞に一 過的にコトランスフエクシヨンをした。トランスフエクシヨン 48時間後に細胞を回収し、 細胞破砕液を調製して、ウェスタンブロッテイングにより Smad2、 Smad3または TGFRB2 タンパク質を検出した (図 la)。 [0058] The DNA fragments generated by annealing the DNAs complementary to each other were subcloned into pcPUR + U6-i cassette (Non-patent Document 7) to construct siRNA expression vectors. To screen silencing efficiency with these siRNA expression vectors, these vectors were transiently co-transformed into HeLa cells along with Smad2-, Smad3- or TGFRB2-expression vectors. After 48 hours of transfection, cells were collected, a cell lysate was prepared, and Smad2, Smad3 or TGFRB2 protein was detected by Western blotting (Fig. La).
[0059] Smad2における四つの部位のうち一つ、 Smad3における四つの部位のうち三つ、お よび TGFRB2における 4箇所全てを標的とした siRNA力 その標的遺伝子の発現を 0 〜10%まで抑制し有効であることが確認された(図 la)。標的遺伝子をノックダウンす るために最も有効であることが確認された標的部位、具体的には、 Smad2に関して部 位 1、 Smad3に関して部位 2、および TGFRB2に関して部位 1を選択し、以下の実施例 に使用した。これらの部位を含む発現ベクターは、それぞれ Smad2、 Smad3、または T GFRB2タンパク質をノックダウンすることから、「pcPUR+U6- Smad2i」、「pcPUR+U6- Sm
ad3i」、および「pcPUR+U6- TGFRB2i」と命名した。代表として pcPUR+U6- Smad2iの模 式図を示す(図 If)。 [0059] siRNA targeting one of the four sites in Smad2, three of the four sites in Smad3, and all four sites in TGFRB2 Suppresses the expression of the target gene by 0-10% and is effective (Figure la). Select the target site that was found to be most effective for knocking down the target gene, specifically site 1 for Smad2, site 2 for Smad3, and site 1 for TGFRB2, and the following examples Used for. Expression vectors containing these sites knock down the Smad2, Smad3, or TGFRB2 protein, respectively, so "pcPUR + U6- Smad2i", "pcPUR + U6- Sm ad3i ”and“ pcPUR + U6-TGFRB2i ”. A schematic diagram of pcPUR + U6-Smad2i is shown as a representative (Figure If).
[0060] Smad2および Smad3は互いに極めて高い相同性を有するタンパク質であることから、 PCPUR+U6- Smad2iにより Smad3を、 pcPUR+U6- Smad3iにより Smad2をノックダウンし得 るかを、上記サイレンシング活性を測定した実験と同様に、 Hela細胞への Smad3—あ るいは Smad2—発現ベクターともにコトランスフエクシヨンを行い、その後、ウェスタンブ ロット分析って調べた(図 lb)。互 、に相同性が高 、タンパク質をコードした Smad2お よび Smad3遺伝子をそれぞれ標的とした pcPUR+U6-Smad2i、 pcPUR+U6-Smad3iは、 交差作用はなく特異的に標的遺伝子をノックダウンすることが確認された。このように 、本発明者らは Smad2、 Smad3、および TGFRB2〖こ対して、それぞれ特異的に単一遺 伝子を抑制し得るノックダウンベクターを得ることに成功した。 [0060] Since Smad2 and Smad3 are proteins with extremely high homology to each other, the above silencing activity is determined whether Smad3 can be knocked down by PCPUR + U6- Smad2i and Smad2 can be knocked down by pcPUR + U6-Smad3i. Similar to the measured experiments, co-transfection with Smad3— or Smad2—expression vectors in Hela cells was followed by Western blot analysis (Figure lb). PcPUR + U6-Smad2i and pcPUR + U6-Smad3i, which are highly homologous to each other and target the Smad2 and Smad3 genes encoding proteins, respectively, can specifically knock down the target gene without cross-over effect. confirmed. Thus, the present inventors succeeded in obtaining knockdown vectors capable of specifically suppressing a single gene for Smad2, Smad3, and TGFRB2, respectively.
[0061] (2)ダブルまたはトリプル siRNA発現ベクターの開発 [0061] (2) Development of double or triple siRNA expression vectors
次に、本発明者らは、これらの構築物を組み合わせることによって多数の遺伝子を 同時に抑制し得る多重ノックダウンベクターの作製を試みた。 pcPUR+U6ベクターは、 U6プロモーターの上流に Bglll認識部位、 RNAi挿入領域の下流に BamHI認識部位、 およびアンピシリン遺伝子内に Seal認識部位を有する。これら制限酵素の認識部位 は全て、プラスミド内に 1箇所ずつ存在する。 Smad2および Smad3を標的とするダブル ノックダウンベクターを作製するために、本発明者らは、 pcPUR+U6-Smad2iを BamHI および Sealによって、そして PCPUR+U6- Smad3iを Bglllおよび Sealによって消化し(図 1 cにおけるステップ 1)、発現カセットを含む断片をライゲーシヨンして、 Smad2および Sm ad3の双方をダブルノックダウンし得る単一のベクターを作製した(図 Idにおけるステ ップ 2)。 Smad2および Smad3、 Smad2および Smad4、ならびに Smad3および Smad4に対 するダブルノックダウンベクターをそれぞれ、 PCPUR+U6- Smad23i、 pcPUR+U6- Smad 24i、および pcPUR+U6-Smad34iと命名した(図 lf)。 全ての経路に関連する Smads (S mad2、 Smad3、および Smad4)を標的とするトリプルノックダウンベクター pcPUR+U6-S mad234iも、同じ方法で作製した(図 If)。このシステムの長所は、 Bglllおよび BamHI消 化によりそれぞれ形成される断端は相補的な一本鎖が突出した粘着末端であるが、 これらをライゲーシヨンさせた後の結合部位は Bglllあるいは BamHIによっても切断す
ることができない。つまり、二つのプラスミドを結合させて形成された新たなベクターに おいても、 BglII、 BamHIおよび Seal認識部位を各一つ存在する状態に維持することが できる。そのため、多数の遺伝子を標的とする多重ノックダウンベクターは、同じ技法 を繰り返すことにより容易に作製することができる。なお、アンピシリン耐性遺伝子に おける唯一の Seal部位は、ノ ックグラウンド細菌コロニーの数の減少に関与する。 Next, the present inventors tried to produce a multiple knockdown vector capable of simultaneously suppressing a large number of genes by combining these constructs. The pcPUR + U6 vector has a Bglll recognition site upstream of the U6 promoter, a BamHI recognition site downstream of the RNAi insertion region, and a Seal recognition site in the ampicillin gene. All of these restriction enzyme recognition sites exist in the plasmid. To create a double knockdown vector targeting Smad2 and Smad3, we digested pcPUR + U6-Smad2i with BamHI and Seal and PCPUR + U6- Smad3i with Bglll and Seal (Figure 1). Step 1) in c, the fragment containing the expression cassette was ligated to create a single vector that could double knockdown both Smad2 and Smad3 (Step 2 in Figure Id). Double knockdown vectors for Smad2 and Smad3, Smad2 and Smad4, and Smad3 and Smad4 were named PCPUR + U6- Smad23i, pcPUR + U6- Smad 24i, and pcPUR + U6-Smad34i, respectively (Fig. Lf). A triple knockdown vector pcPUR + U6-S mad234i targeting Smads (S mad2, Smad3, and Smad4) associated with all pathways was also constructed in the same way (Figure If). The advantage of this system is that the ends formed by Bglll and BamHI deletions are sticky ends with protruding complementary single strands, but the binding sites after ligation are also cleaved by Bglll or BamHI. You I can't. In other words, even in a new vector formed by linking two plasmids, one BglII, BamHI, and Seal recognition site can be maintained. Therefore, multiple knockdown vectors targeting a large number of genes can be easily produced by repeating the same technique. It should be noted that the only seal site in the ampicillin resistance gene is involved in reducing the number of knock-down bacterial colonies.
[0062] 〔実施例 2〕 Smadsノックダウンの確認 [Example 2] Confirmation of Smads knockdown
上記シングルあるいは多重ノックダウンベクターの有効性を調べるために、本発明 者らは、機能的 TGF- β経路を有するヒトケラチノサイト細胞株 HaCaTを用いて分析し た。この細胞株は、 TGF- |8シグナル伝達の解析に適していることが知られている(非 特許文献 19)。 HaCaTに上記ベクターをトランスフエタトし、 5週間経過後に、 1 μ g/m 1ピューロマイシンによって選択して安定なノックダウン細胞株 S2KD、 S3KD、 S4KD、 S 23KD、 S24KD, S34KD、 S234KD,および iGFPをそれぞれ得た。これら細胞を破砕し た破砕液を用いて、ウェスタンプロット分析を行った(図 2a)。なお、本発明者らは、独 立した細胞クローンではな 、が、ピューロマイシン耐性ポリクローナル細胞の混合物 である安定な細胞プールを用いて、プラスミドのゲノム組込による如何なる細胞変化 もないことを確認した。 In order to examine the effectiveness of the single or multiple knockdown vectors, the present inventors analyzed using a human keratinocyte cell line HaCaT having a functional TGF-β pathway. This cell line is known to be suitable for analysis of TGF-8 signaling (Non-patent Document 19). Transfect the above vector into HaCaT, and after 5 weeks, select the stable knockdown cell lines S2KD, S3KD, S4KD, S23KD, S24KD, S34KD, S234KD, and iGFP selected with 1 μg / m1 puromycin Respectively. Western plot analysis was performed using the disrupted solution obtained by disrupting these cells (Fig. 2a). In addition, the present inventors confirmed that there was no cell change due to the genomic integration of the plasmid using a stable cell pool that was a mixture of puromycin-resistant polyclonal cells, but not an independent cell clone. .
[0063] 図 2aに示すように、安定な形質転換体(レーン 2〜8)のほとんどは、意図した通りの 内因性の Smad2、 Smad3、および Smad4タンパク質の発現が劇的に減少していること が示された。とりわけ S234KD細胞内では、異なる三つの siRNAsが発現される力 この 手法により 3つの標的遺伝子がノックダウンされた。ノーザン解析では、シングル、ダ ブル、トリプルノックダウン細胞において、 Smad2、 Smad3および Smad4に対する siRN Aが、安定的に同量発現し、それも長時間の培養(トランスフ クシヨン 31時間経過) 後においても維持されることが示された(図 2b)。 [0063] As shown in Figure 2a, most of the stable transformants (lanes 2-8) have a dramatically reduced expression of the endogenous Smad2, Smad3, and Smad4 proteins as intended. It has been shown. In particular, the ability to express three different siRNAs in S234KD cells. This technique knocked down three target genes. Northern analysis shows that the same amount of siRNA for Smad2, Smad3, and Smad4 is stably expressed in single, double, and triple knockdown cells, and is maintained even after prolonged incubation (31 hours of transfection) (Figure 2b).
一方、 TGFRB2を標的とするノックダウンベクターではトランスフエクシヨン後に生じた 大量の細胞死のために、安定な TGFRB2ノックダウン細胞株を得ることができなかつ た。しかし、この結果は細胞の生存にとって TGFRB2が重要であることを示唆している 。多重ノックダウンにおける各遺伝子のサイレンシング効率は、 siRNA発現コンストラタ トがベクター内に挿入された位置または数により影響を受けな力つた (データは示し
ていない)。 On the other hand, with the knockdown vector targeting TGFRB2, a stable TGFRB2 knockdown cell line could not be obtained due to the massive cell death that occurred after transfection. However, this result suggests that TGFRB2 is important for cell survival. The silencing efficiency of each gene in multiple knockdowns was unaffected by the location or number of siRNA expression constructs inserted into the vector (data shown Not)
[0064] 非標的メッセンジャー RNA (mRNA)転写物のサイレンシングを誘導するためには、 si RNAと同一な 11〜15隣接ヌクレオチド配列で十分であると報告されている (非特許文 献 21)。本発明者らは、独自のアルゴリズムを用いることによって標的配列を注意深く 選択したが、非特異的遺伝子をノックダウンする可能性を除外することができなかつ た。本発明者らの細胞における非標的遺伝子のサイレンシングを調べるために、本 発明者らは、 BLASTデータベース(http:〃 www.ncbi.nlm.nih.gov/BLAST)を用いて、 本発明者が用いた RNAi部位にマッチする少なくとも 11隣接ヌクレオチドを有する任 意の相補的配列の存在をヒトゲノム力も検索した。 TGFRB2部位に関しては、如何な る遺伝子も配列類似性を有しないようであった。 Smad2部位 1に関しては、 BTB/POZ ドメインを含む一つのタンパク質(以下「BTBD1」と!、う)が 17隣接ヌクレオチドがマツ チし、他のいくつ力検索されたものは、類似性が低力つた。 5回膜貫通糖タンパク質( プロミニン 2)は、 Smad3の部位 2と類似する 15隣接ヌクレオチドを有していた。 [0064] To induce silencing of non-target messenger RNA (mRNA) transcripts, 11-15 contiguous nucleotide sequences identical to siRNA have been reported to be sufficient (Non-patent Document 21). The inventors carefully selected the target sequence by using a unique algorithm, but could not rule out the possibility of knocking down non-specific genes. To investigate silencing of non-target genes in our cells, we use the BLAST database (http: 〃 www.ncbi.nlm.nih.gov/BLAST) The human genomic force was also searched for the presence of any complementary sequence with at least 11 contiguous nucleotides matching the RNAi site used. Regarding the TGFRB2 site, no gene appeared to have sequence similarity. Regarding Smad2 site 1, one protein containing the BTB / POZ domain (hereinafter referred to as “BTBD1”!) Was matched with 17 adjacent nucleotides, and the number of others searched was low in similarity. . The 5-transmembrane glycoprotein (prominin 2) had 15 contiguous nucleotides similar to site 2 of Smad3.
[0065] 本発明者らは、定量的逆転写酵素ポリメラーゼ連鎖反応 (RT-PCR)を用いて、ノッ クダウン細胞における非標的遺伝子の mRNA発現を調べた。ノックダウン細胞株 (S2K D、 S3KD)およびコントロールの親 HaCaT細胞または iGFP対照細胞株からトータル R NAを回収し、 RT- PCRを行った(図 2c、 d)。 [0065] The present inventors examined the mRNA expression of non-target genes in knockdown cells using quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Total RNA was recovered from knockdown cell lines (S2KD, S3KD) and control parental HaCaT cells or iGFP control cell lines, and RT-PCR was performed (Fig. 2c, d).
非標的遺伝子である BTBD1、プロミン 2、 OAS1の発現は、親 HaCaT細胞(図 2b、 c) または iGFP対照細胞株(データは示して ヽな 、)と比較して、 SK2Dまたは SK3D細胞 において減少しなカゝつた。このことから、本発明者らは、確立された細胞株において 非標的遺伝子のサイレンシングが存在しな力つたと結論した。別の報告から、インタ 一フエロン反応が哺乳類細胞において U6プロモーター Zレンチウィルス shRNA構築 物によって誘導されたことが証明された (非特許文献 21)。 ひ インターフェロンは、 二本鎖 RNA(dsRNA) -結合酵素である OAS1を誘導し、これは dsRNA依存的に活性 化される。本発明者らの構築物は、レンチウィルスに由来しな力つた力 如何なる非 特異的 RNA分解を除外するために OAS-1誘導をチェックした。理論的には、より多く の siRNAsを産生する可能性がある三重ノックダウン細胞は、より多くの OAS-1を誘導 する可能性があるが、ノックダウン細胞株と親 HaCaT細胞株(図 2e)あるいは iGFP対
照細胞株(データは示していない)との間には、 OAS-1 mRNAの統計学的な差は認 められなかった。 The expression of non-target genes BTBD1, promin 2 and OAS1 is decreased in SK2D or SK3D cells compared to parental HaCaT cells (Figure 2b, c) or iGFP control cell line (data not shown). It ’s nasty. From this, we conclude that non-target gene silencing existed and was viable in established cell lines. Another report demonstrated that the interferon response was induced in mammalian cells by the U6 promoter Z lentiviral shRNA construct (21). Interferon induces OAS1, a double-stranded RNA (dsRNA) -linked enzyme, that is activated in a dsRNA-dependent manner. Our construct was checked for OAS-1 induction to rule out any non-specific RNA degradation due to the inability of lentivirus. Theoretically, triple knockdown cells that could produce more siRNAs could induce more OAS-1, but the knockdown cell line and the parent HaCaT cell line (Figure 2e) Or iGFP pair There was no statistical difference in OAS-1 mRNA between the tumor cell line (data not shown).
[0066] 〔実施例 3〕 TGF- β経路の機能解析 [0066] [Example 3] Functional analysis of TGF-β pathway
pcPUR-U6構築物が標的遺伝子に対して高 、特異性を有し、遺伝子のサイレンシ ングにおいて有効であることが示唆されたことから、これらの細胞を用いて TGF- β経 路の機能解析を行うこととした。 Since it was suggested that the pcPUR-U6 construct has high specificity for the target gene and is effective in gene silencing, the functional analysis of the TGF-β pathway is performed using these cells. It was decided.
TGF- β経路の機能的解析は、 Smad-依存的レポーター(CAGA) 9-Lucを用いたル シフェラーゼアツセィにより行った。ルシフェラーゼアツセィにおいて、カノ二カル TGF - β -Smadに依存的なシグナル伝達は、 S2KDを除く全ての細胞株において顕著に阻 害されたことが示された(図 2f)。 S2KD細胞において TGF- j8によるルシフェラーゼ誘 導が保存されたこと(図 2f)は、 Smad3および Smad4が「CAGA」 Smad結合エレメントに 結合する力 mad2は結合しな 、と 、う当初の報告 (非特許文献 16)と一致する。 Functional analysis of the TGF-β pathway was performed by luciferase assay using Smad-dependent reporter (CAGA) 9-Luc. In luciferase atsey, signal transduction dependent on canonical TGF-β-Smad was markedly inhibited in all cell lines except S2KD (Fig. 2f). Conservation of luciferase induction by TGF-j8 in S2KD cells (Fig. 2f) suggests that Smad3 and Smad4 bind to "CAGA" Smad binding elements. Consistent with literature 16).
[0067] 一方、「CAGA」 Smad結合エレメントとは異なるエレメントを備えた p3TP- Lucレポータ 一プラスミドを用いてルシフェラーゼアツセィを行った。 p3TP- Lucレポータープラスミ ドは、 TGF- jSによって選択的に誘導される PAI-1プロモーターの- 740/-636領域にヒ トコラゲナーゼ遺伝子由来の三つの TREエレメント(Smadを介して活性ィ匕される TGF- βファミリーの一つ activin経路に特異的なエレメント)を結合させた配列の下流にル シフェラーゼ遺伝子が接続されて 、る。この p3TP-Lucをレポータープラスミドとして用 いた場合には、 S2KD細胞における TGF- |8添カ卩時のルシフェラーゼ活性の誘導は、 対照細胞の 20%にダウンレギュレートされた(データは示して ヽな 、)。 On the other hand, luciferase assay was performed using a p3TP-Luc reporter plasmid containing an element different from the “CAGA” Smad binding element. The p3TP-Luc reporter plasmid is activated via three TRE elements derived from the human collagenase gene (Smad) in the -740 / -636 region of the PAI-1 promoter, which is selectively induced by TGF-jS. A luciferase gene is connected downstream of a sequence that binds an element specific to the activin pathway of the TGF-β family. When this p3TP-Luc was used as a reporter plasmid, the induction of luciferase activity in S2KD cells when TGF-8 was added was down-regulated to 20% of control cells (data not shown). ,).
[0068] 本発明者らは、ノックダウン細胞株にぉ 、て、周知の TGF- β反応性遺伝子である Ρ AI-1の誘導を調べた。この解析を行うために、ノックダウン細胞株を TGF- |8存在下あ るいは非存在下で培養し、その後、細胞破砕液を調製して、ウェスタンプロット解析を 行った(図 2g)。解析の結果、 TGF- |8に起因した PAI-1誘導力 S2KD細胞株を除く 全てのノックダウン細胞株において阻害されたことが示された。この PAI-1ウェスタン ブロットの結果は、先に示したレポーターアツセィの結果(図 2f)と一致した。このこと 力 TGF- jS媒介 PAI-1誘導は、そのプロモーター領域における「CAGA」 Smad結合 エレメントに大きく依存して 、ることが示唆された。
[0069] 〔実施例 4〕 Smadsノックダウン細胞株の表現型 [0068] The present inventors examined the induction of -1AI-1, a well-known TGF-β-responsive gene, in knockdown cell lines. In order to perform this analysis, the knockdown cell line was cultured in the presence or absence of TGF- | 8, and then a cell lysate was prepared and subjected to Western plot analysis (FIG. 2g). As a result of the analysis, it was shown that PAI-1 inducibility caused by TGF-8 | 8 was inhibited in all knockdown cell lines except S2KD cell line. The PAI-1 Western blot results were consistent with the reporter assembly results shown above (Figure 2f). This suggests that TGF-jS-mediated PAI-1 induction is highly dependent on the “CAGA” Smad binding element in its promoter region. [Example 4] Phenotype of Smads knockdown cell line
複数の Smadタンパク質間での機能的な違いに関する知見は、 Smadドミナント-ネガ ティブ構築物(非特許文献 22)、アンチセンス RNA (非特許文献 23)、および siRNA二 本鎖 (非特許文献 24)を用いることによって過去に蓄積されて 、る。これらの研究は、 これまでの方法の特性が一過性であったために表現型の観察が制限されたことから 、表現型の変化よりも、むしろ分子標的またはシグナル伝達の変化に主に重点を置 いていた。これらとは対照的に、上述したように安定な RNAi構築物が得られたことに よって、本発明者らは、 Smadをノックダウンした際における、浸潤、創傷閉鎖、および アポトーシスのような TGF- β -Smad依存的表現型における変化に着目することとした Findings regarding functional differences among multiple Smad proteins can be found in Smad dominant-negative constructs (Non-patent Document 22), antisense RNA (Non-patent Document 23), and siRNA duplexes (Non-patent Document 24). Accumulated in the past through use. These studies have focused primarily on changes in molecular targets or signaling rather than phenotypic changes, as phenotypic observations have been limited due to the transient nature of previous methods. I was there. In contrast, by obtaining a stable RNAi construct as described above, we were able to achieve TGF-β such as infiltration, wound closure, and apoptosis when knocking down Smad. -Smad-dependent phenotype focused on changes
[0070] (1)浸潤 [0070] (1) Infiltration
マトリゲル浸潤チャンバ一を用いた in vitroシステムにより、 TGF- 依存的浸潤を分 祈した(図 3b)。マウスにおいて Smad4が失われると、転移の増加および腫瘍の浸潤 が起こるという報告があるが(非特許文献 25、 26)、本発明者らの結果は、 TGF- 非 存在下での S4KD細胞の浸潤活性が他の如何なる細胞よりも低 、こと、そして TGF- βが浸潤を強く刺激する(41.3倍の増加)ことを示している。対照的に、 S2KDおよび S 3KD細胞は基礎レベルで浸潤特徴を有するが、 TGF- |8に対する反応は弱い(増加 倍数はそれぞれ、 8.3倍および 3.5倍)。 S23KD、 S24KD,および S34KD細胞の TGF- β依存的浸潤は、対照 iGFP細胞と比較して統計学的に有意差を示さな力つた (増加 倍数はそれぞれ、 4.3、 4.3、 3.8および 3.8倍)。 S4KD細胞における TGF- による浸潤 の増加倍率は、無傷の Smad4を有する対照細胞の 10倍より大き力つた(図 3a、 b)。 TG F- |8によって誘導される浸潤は、 Smad4ノックダウン細胞と比較してトリプルノックダウ ン細胞株では統計学的に有意に減少し (増加倍率、 8.25倍)、 Smad4の機能を欠損 する細胞では、 Smad2および Smad3が TGF- |8媒介細胞浸潤にとって重要であること を示唆している。 We prayed for TGF-dependent invasion by an in vitro system using a matrigel infiltration chamber (Fig. 3b). Although there is a report that loss of Smad4 in mice results in increased metastasis and tumor invasion (Non-patent Documents 25 and 26), our results indicate that invasion of S4KD cells in the absence of TGF- It indicates that the activity is lower than any other cell, and that TGF-β strongly stimulates invasion (41.3-fold increase). In contrast, S2KD and S3KD cells have invasive characteristics at the basal level, but a weak response to TGF- | 8 (8.3 and 3.5 fold increase, respectively). TGF-β-dependent invasion of S23KD, S24KD, and S34KD cells was not statistically significant compared to control iGFP cells (fold increase was 4.3, 4.3, 3.8, and 3.8 times, respectively). The fold increase in invasion by TGF- in S4KD cells was more than 10 times that of control cells with intact Smad4 (Fig. 3a, b). Invasion induced by TG F- | 8 is statistically significantly reduced in triple knockdown cell lines compared to Smad4 knockdown cells (magnification, 8.25 times), and cells lacking Smad4 function Suggests that Smad2 and Smad3 are important for TGF-8 | 8-mediated cell invasion.
[0071] (2)創傷閉鎖 [0071] (2) Wound closure
TGF- 18は、細胞の遊走を活性化することによって創傷の閉鎖を促進することが知 られていることから、本発明者らは、確立されたノックダウン細胞株において TGF- |8
が創傷閉鎖を誘導するか否かを調べた。幅 1.2 mmのチップによってコンフルェント細 胞単層に損傷を与え、創傷の閉鎖を TGF- の投与の 24時間後に観察した。本発明 者らの先の報告において、 Smad4ノックダウンは、 Pac-1細胞において TGF- jSによつ て誘導された創傷の閉鎖を阻害した (非特許文献 13)。本発明者らは、 HaCaT細胞 において類似の結果を観察した。図 3cおよび 3dに示すように、 Smad3のみまたは Sma d2もしくは Smad4と共に失われると、創傷閉鎖が加速された。この知見は、 Smad3ノッ クアウトマウスにおける報告と一致する(非特許文献 27)。対照的に、 S2KDおよび S23 4KD細胞は、対照細胞と比較して創傷閉鎖が弱力つた(図 3c、 d)。全ての Smadsは、 同じ TGF- jS経路の下流のメディエータである力 それぞれの Smadは、細胞の遊走に 対する関与が異なるように思われる。 Since TGF-18 is known to promote wound closure by activating cell migration, we have established TGF- | 8 in an established knockdown cell line. Was examined to induce wound closure. The confluent cell monolayer was damaged by a 1.2 mm wide tip, and wound closure was observed 24 hours after administration of TGF-. In our previous report, Smad4 knockdown inhibited wound closure induced by TGF-jS in Pac-1 cells (Non-patent Document 13). We observed similar results in HaCaT cells. As shown in Figures 3c and 3d, wound closure was accelerated when lost alone with Smad3 or with Smad2 or Smad4. This finding is consistent with a report in Smad3 knockout mice (Non-patent Document 27). In contrast, S2KD and S23 4KD cells were weaker in wound closure compared to control cells (FIGS. 3c, d). All Smads are downstream mediators of the same TGF-jS pathway. Each Smad appears to have a different involvement in cell migration.
(3)アポトーシス (3) Apoptosis
細胞のアポトーシスに及ぼす TGF- βの影響は、細胞タイプに応じて大きく異なる( 非特許文献 25)。 HaCaT細胞において、 TGF- j8は、 FKHRL1の Akt-依存的調節を 通してアポトーシスを抑制することによって細胞の生存性が高まることが報告されてい る(非特許文献 28)。本発明者らは、 TGF- の能力がその下流の調節因子の破壊 によって影響を受ける力否かを調べた(図 3d)。 TGF- |8の存在下 Z非存在下におけ る異なる細胞タイプに関するアポトーシス細胞の割合は、以下の通りであった: iGFP 0.21/0.15 The effect of TGF-β on cell apoptosis varies greatly depending on the cell type (Non-patent Document 25). In HaCaT cells, TGF-j8 has been reported to increase cell viability by suppressing apoptosis through Akt-dependent regulation of FKHRL1 (Non-patent Document 28). We examined whether TGF- ability was affected by the destruction of its downstream regulators (Fig. 3d). The percentage of apoptotic cells for different cell types in the presence of TGF- | 8 in the absence of Z was as follows: iGFP 0.21 / 0.15
S2KD 0.61/1.01 S2KD 0.61 / 1.01
S3KD 1.64/1.78 S3KD 1.64 / 1.78
S4KD 0.29/0.31 S4KD 0.29 / 0.31
S23KD 1.41/2.50 S23KD 1.41 / 2.50
S24KD 1.47/2.5 S24KD 1.47 / 2.5
S34KD 1.48/1.31 S34KD 1.48 / 1.31
S234KD 1.42/12.32 S234KD 1.42 / 12.32
意外にも、 TGF- j8は、シングルまたはダブルノックダウン細胞においてアポトーシス をなおも予防した。本発明者らが全ての Smads (Smad2、 Smad3、および Smad4)をノッ クダウンしたところ、 TGF- 18は、そのアポトーシス防止機能を喪失して、アポトーシス
誘導機能を獲得した。基礎となるメカニズムは不明であるが、本発明者らのデータはSurprisingly, TGF-j8 still prevented apoptosis in single or double knockdown cells. When the inventors knocked down all Smads (Smad2, Smad3, and Smad4), TGF-18 lost its anti-apoptotic function and lost apoptosis. Obtained the guidance function. The underlying mechanism is unknown, but our data is
、この細胞株において全ての Smadsをノックダウンすることにより、 Smad非依存的な TG F- β経路がアポトーシスシグナルを伝達することを示唆して 、る。 By knocking down all Smads in this cell line, we suggest that the Smad-independent TGF-β pathway transmits apoptotic signals.
[0073] 〔実施例 5〕 HIVノックダウン用の shRNA配列のデザイン [Example 5] Design of shRNA sequence for HIV knockdown
次に HIVをノックダウンするための shRNAのデザインを行なった。 HIVゲノム DNA配 列に基づき shRNAの次の 16箇所のターゲット部位を選択した。 Next, we designed an shRNA to knock down HIV. The next 16 target sites of shRNA were selected based on the HIV genomic DNA sequence.
Sitel AGACCAGGATGAACAACAA (配列番号: 118) Sitel AGACCAGGATGAACAACAA (SEQ ID NO: 118)
Site2 AGACAAAGATGACTTATAA (配列番号: 119) Site2 AGACAAAGATGACTTATAA (SEQ ID NO: 119)
Site3 AGAGAAGAATTCACTTAGA (配列番号: 120) Site3 AGAGAAGAATTCACTTAGA (SEQ ID NO: 120)
Site4 GAGAAAGCGCTTAAGTTTA (配列番号: 121) Site4 GAGAAAGCGCTTAAGTTTA (SEQ ID NO: 121)
Site5 GGATGAACAACAATCAAAC (配列番号: 122) Site5 GGATGAACAACAATCAAAC (SEQ ID NO: 122)
Site6 GCGACATAGTTTACAGAGA (配列番号: 123) Site6 GCGACATAGTTTACAGAGA (SEQ ID NO: 123)
Site7 GGTGAGATGCTAAACACAT (配列番号: 124) Site7 GGTGAGATGCTAAACACAT (SEQ ID NO: 124)
Site8 AGAACACCTTATATCCCAA (配列番号: 125) Site8 AGAACACCTTATATCCCAA (SEQ ID NO: 125)
Site9 GGAAGAAGCTGATTGAGAG (配列番号: 126) Site9 GGAAGAAGCTGATTGAGAG (SEQ ID NO: 126)
Site 10 GATAGAGTGTACATAACAG (配列番号: 127) Site 10 GATAGAGTGTACATAACAG (SEQ ID NO: 127)
Sitel 1 ACCCAAAGATTATCCAGGA (配列番号: 128) Sitel 1 ACCCAAAGATTATCCAGGA (SEQ ID NO: 128)
Site 12 GGCAGGACATTGGTGACAT (配列番号: 129) Site 12 GGCAGGACATTGGTGACAT (SEQ ID NO: 129)
Site 13 GGGACAACTCTATCAAGAT (配列番号: 130) Site 13 GGGACAACTCTATCAAGAT (SEQ ID NO: 130)
Sitel4 GCTCTGACGTGCATAGGAA (配列番号: 131) Sitel4 GCTCTGACGTGCATAGGAA (SEQ ID NO: 131)
Site 15 GGCTCAAATGTATAGAAAG (配列番号: 132) Site 15 GGCTCAAATGTATAGAAAG (SEQ ID NO: 132)
Site 16 AATGGAACGTCATCTGTGA (配列番号: 133) Site 16 AATGGAACGTCATCTGTGA (SEQ ID NO: 133)
[0074] 上記配列をターゲットとし、上記 Smad遺伝子のノックダウン用の shRNAの構築と同 様に、アンチセンス鎖とミスマッチ配列を含むセンス鎖とをリンカ一 DNAにより接続し て shRNAをコードした DNA配列を構築した(表 7)。各ターゲット部位に対する shRNA コード DNAの例を示す。なお、ミスマッチの有無、位置などによりこの配列は変更する ことができる。表 7において、斜体はミスマッチ配列を示し、一本下線はリンカ一 DNA を、二本下線はターミネタ一配列を示す。
[表 7] [0074] In the same manner as the construction of the shRNA for knocking down the Smad gene targeting the above sequence, a DNA sequence encoding the shRNA by connecting the antisense strand and the sense strand containing the mismatch sequence with a linker DNA. (Table 7). Examples of shRNA-encoded DNA for each target site are shown. This sequence can be changed depending on the presence / absence of mismatch, position, etc. In Table 7, italics indicate mismatch sequences, a single underline indicates a linker DNA, and a double underline indicates a terminator sequence. [Table 7]
Site 1 Site 1
CTTTTTT (K列番 : 1 34) CTTTTTT (K column number: 1 34)
Site 2 : AGA 7AAAGATGA 7TT 6TAAACGTGTGCTGTCCGTTTATAAGTCATCTTTGT Site 2: AGA 7AAAGATGA 7TT 6TAAACGTGTGCTGTCCGTTTATAAGTCATCTTTGT
CTTTTTT (配列番 : 1 35) CTTTTTT (SEQ ID NO: 1 35)
Site 3 : AG GGAAG GATTCA 7TTAGA. CGTGTGCTGTCCGTTCTAAGTGAATTCTTC Site 3: AG GGAAG GATTCA 7TTAGA. CGTGTGCTGTCCGTTCTAAGTGAATTCTTC
TCTTTTTT (配列番号: 1 36) TCTTTTTT (SEQ ID NO: 1 36)
Site4: GAG GAAG 7ϋ 7TTAAGTTT.4ACGTGTGCTGTCCGTTAAACTTAAGCGCTTT CTCTTTTT (配列番号: 1 37) Site4 : GAG GAAG 7ϋ 7TTAAGTTT.4ACGTGTGCTGTCCGTTAAACTTAAGCGCTTT CTCTTTTT (SEQ ID NO: 1 37)
Site 5: Site 5:
TCCTTTTT (配列番号: 1 38) TCCTTTTT (SEQ ID NO: 1 38)
SiteG: SiteG:
CGCTTTTT (配列番 : 1 39) CGCTTTTT (SEQ ID NO: 1 39)
Site?: GGTGGGATG 7TAAA mCATACGTGTGCTGTCCGTATGTGTTTAGCATCTC ACCTTTTT (配列番 : 1 40) Site ?: GGTGGGATG 7TAAA mCATACGTGTGCTGTCCGTATGTGTTTAGCATCTC ACCTTTTT (SEQ ID NO: 1 40)
Site8: AGGACAC 7TTATATC 7 AAACGTGTGCTGTCCGTTTGGGATATAAGGTGT Site8: AGGACAC 7TTATATC 7 AAACGTGTGCTGTCCGTTTGGGATATAAGGTGT
TCTTTTTT (配列番 : 14 1 ) TCTTTTTT (SEQ ID NO: 14 1)
Site9: GG<7AGAAG7TGATTG6GAlACGTGTGCTGTCCGTTTCTCAATCAGCTTCT TCCTTTTT (配列番号: 1 42) Site9: GG <7AGAAG7TGATTG6GAlACGTGTGCTGTCCGTTTCTCAATCAGCTTCT TCCTTTTT (SEQ ID NO: 1 42)
TATCTTTTT (配列番 5 : 143) TATCTTTTT (SEQ ID NO: 5: 143)
Site 11 Site 11
GGTTTTTT (配列番号: 1 44) GGTTTTTT (SEQ ID NO: 1 44)
GCCTTTTT (配列番号: 145)GCCTTTTT (SEQ ID NO: 145)
CCCTTTTT (配列番号 : 146) CCCTTTTT (SEQ ID NO: 146)
Site 14: GCT TTGA 7GTGCAT GGGAAACGTGTGCTGTCCGTTTCCTATGCACGTCAG AGCTTTTT (配列番^ : 1 47) Site 14: GCT TTGA 7GTGCAT GGGAAACGTGTGCTGTCCGTTTCCTATGCACGTCAG AGCTTTTT (SEQ ID NO: 1 47)
GCCTTTTT (配列番号: 148) GCCTTTTT (SEQ ID NO: 148)
Site 16 AATGG Gk 7GTCAT 7 GTCx. ACGTGTCxCTGTCCGTTCACAGATGACGTTCCA TTTTTTT (配列番号: 1 49) Site 16 AATGG Gk 7GTCAT 7 GTCx. ACGTGTCxCTGTCCGTTCACAGATGACGTTCCA TTTTTTT (SEQ ID NO: 1 49)
HIV感染を抑制し、防御するための多重 shRNA発現ベクターは、上記表 7中の各 sh RNAをコードした DNA配列を任意に二以上組み合わせてベクターに導入することに より作成する。そして、このベクターを HIV感染している細胞に導入することにより、 HI
vの増殖等の活動を抑制することができる。すなわち、 A multiple shRNA expression vector for suppressing and protecting against HIV infection is prepared by introducing two or more DNA sequences encoding each sh RNA in Table 7 above into a vector. By introducing this vector into cells infected with HIV, Activities such as v multiplication can be suppressed. That is,
配列番号 134から 149に記載のいずれかの塩基配列をプロモーターの下流に接続さ れて成る shRNA生成ユニットを複数保持する多重 shRNA発現ベクターを投与するェ 程を含む、 HIV感染症の治療方法、 A method for treating HIV infection, comprising the step of administering a multiple shRNA expression vector having a plurality of shRNA generating units, wherein any one of the nucleotide sequences set forth in SEQ ID NOs: 134 to 149 is connected downstream of the promoter,
HIV感染症の治療薬を製造するための、配列番号 134から 149に記載のいずれかの 塩基配列をプロモーターの下流に接続されて成る shRNA生成ユニットを複数保持す る多重 shRNA発現ベクターの使用、 Use of a multiple shRNA expression vector having a plurality of shRNA generating units each comprising one of the nucleotide sequences set forth in SEQ ID NOs: 134 to 149 connected downstream of the promoter, for the manufacture of a therapeutic agent for HIV infection,
が可能になる。 Is possible.
産業上の利用可能性 Industrial applicability
[0076] 上記実施例において、本発明の多重 shRNA発現ベクターは、二つ以上の標的を同 時にサイレンシングさせる際に有効であることが示された。複数の遺伝子のノックァゥ ト動物モデルの作製技術および本発明による多遺伝子を標的とした安定な RNAi技 術という両者は、異なる技術である力 多数の遺伝子発現を安定に抑制するという共 通の特徴を有する。前者はこれまでに生命科学の研究にぉ ヽて膨大な功績を残す 技術であるが、後者として挙げた本発明の方法は前者の技術を代替しえる技術とな ることが期待される。 [0076] In the above examples, it was shown that the multiple shRNA expression vector of the present invention is effective in silencing two or more targets simultaneously. Both the technology for creating knockout animal models of multiple genes and the stable RNAi technology targeting multiple genes according to the present invention have the common feature of stably suppressing the expression of a large number of genes, which is a different technology. Have. The former is a technology that has left enormous achievements in life science research so far, but the method of the present invention cited as the latter is expected to be a technology that can replace the former.
RNAiの機構は、循環的に作用する酵素複合体であり、一度活性化されると、単一 の RISC複合体がおそらく複数の RNA標的の多数のコピーを切断することができ(非 特許文献 29)、この特徴によって多数の標的を同時に有効にサイレンシングすること ができるであろう。仮に、産生された shRNAsの濃度が低いために有効な shRNAが作 用しない場合には、プラスミドに担持させる RNAiカセットのコピー数を 2倍、 4倍、さら に増加させることによって、効率的なノックダウンを行い得るコンストラクトとすることが できることを本実施例に示した結果は示唆して 、る。 The mechanism of RNAi is a cyclically acting enzyme complex, and once activated, a single RISC complex can possibly cleave multiple copies of multiple RNA targets (29). ), This feature could effectively silence many targets simultaneously. If effective shRNA does not work due to the low concentration of shRNAs produced, efficient knocking can be achieved by increasing the number of copies of the RNAi cassette carried on the plasmid by a factor of 2, 4 or more. The results shown in this example suggest that the construct can be downed.
[0077] このシステムの長所は、全体的なプラスミドの長さを顕著に変化させることなく shRN Asの数を増カロさせることができる点である。例えば、細胞にトランスフエクシヨンにより 導入し得るプラスミド DNAの長さの上限が 20 kbである場合には、理論的には、一つ の siRNA発現プラスミドには 30個以上の shRNAカセットを担持させることができるであ ろう。したがって、この方法を用いて有効にサイレンシングすることができる標的の最
大数あるいはコピー数を決定するためには、用いる細胞、標的の量、および再生能 に応じて、当業者であれば適宜調整することができるであろう。 [0077] The advantage of this system is that the number of shRN As can be increased without significantly changing the overall plasmid length. For example, if the upper limit of the length of plasmid DNA that can be introduced into cells by transfection is 20 kb, theoretically, one siRNA expression plasmid should carry 30 or more shRNA cassettes. It will be possible. Therefore, the best target that can be effectively silenced using this method. In order to determine the large number or copy number, those skilled in the art will be able to adjust appropriately depending on the cells used, the amount of target, and the regenerative capacity.
以上の通り、本発明は、多数の標的遺伝子の発現を抑制する手法として、各種遺 伝子の機能解析、創薬ターゲットの同定などの生命科学の分野において広く利用さ れる技術となるであろう。
As described above, the present invention will be a technique widely used in the field of life science such as functional analysis of various genes and identification of drug discovery targets as a technique for suppressing the expression of a large number of target genes. .
Claims
[1] 標的遺伝子の発現を抑制するための shRNAを生成し得る shRNA生成ユニットをべク ター内に複数担持した多重 shRNA発現ベクターであって、 [1] A multi-shRNA expression vector carrying a plurality of shRNA generation units in a vector capable of generating shRNA for suppressing the expression of a target gene,
前記 shRNA生成ュ-ットは、プロモーターの下流に shRNAをコードした DNAが接続 されて構成され、 The shRNA generator is configured by connecting DNA encoding shRNA downstream of the promoter,
前記 shRNAをコードした DNAは、前記標的遺伝子と相補的な配列を有するアンチ センス DNAと、該アンチセンス DNAと対合し得る配列からなるセンス DNAとがリンカ一 The DNA encoding the shRNA is composed of an antisense DNA having a sequence complementary to the target gene and a sense DNA comprising a sequence capable of pairing with the antisense DNA.
DNAで連結されて構成された、多重 shRNA発現ベクター。 Multiple shRNA expression vector constructed by ligation with DNA.
[2] センス DNA内には、アンチセンス DNAと相補しないミスマッチ配列が含まれる、請求 項 1記載の多重 shRNA発現ベクター。 [2] The multiplex shRNA expression vector according to claim 1, wherein the sense DNA contains a mismatch sequence that does not complement the antisense DNA.
[3] ミスマッチ配列がセンス DNA内に 2〜55%含まれる、請求項 2記載の多重 shRNA発 現ベクター。 [3] The multiplex shRNA expression vector according to claim 2, wherein the mismatch sequence is contained in the sense DNA in an amount of 2 to 55%.
[4] センス DNA上のミスマッチ配列力 アンチセンス DNA上の対応する塩基との関係にお いて置換、欠失、挿入または付加のいずれかまたはこれらの組合せにより形成されて いる、請求項 2記載の多重 shRNA発現ベクター。 [4] The mismatch sequence power on the sense DNA is formed by substitution, deletion, insertion, addition, or a combination thereof in relation to the corresponding base on the antisense DNA. Multiple shRNA expression vector.
[5] 置換がセンス DNA上の Cを Tへ、または Gを Aに変更することによる、請求項 4記載の 多重 shRNA発現ベクター。 [5] The multiple shRNA expression vector according to claim 4, wherein the substitution is performed by changing C on the sense DNA to T or G to A.
[6] ベクターが一過的な発現を誘導するベクターまたは安定的な発現を誘導するべクタ 一である、請求項 1記載の多重 shRNA発現ベクター。 [6] The multiple shRNA expression vector according to claim 1, wherein the vector is a vector that induces transient expression or a vector that induces stable expression.
[7] ベクター内に担持されて!、る複数の shRNA生成ユニットが下記(1)から(3)の 、ずれ 力またはこれら二つ以上の組合せに該当する、請求項 1記載の多重 shRNA発現べク ター。 [7] The multiple shRNA expression unit according to claim 1, wherein the plurality of shRNA generation units carried in the vector correspond to the displacement force or a combination of two or more of the following (1) to (3): Kuter.
(1)単一遺伝子の同一部位を標的とした同一の shRNA生成ユニットが複数力もなる (1) The same shRNA generation unit targeting the same site of a single gene can be used multiple times
(2)単一遺伝子の異なる二以上の部位を標的とした複数の shRNA生成ユニットから なる (2) Consists of multiple shRNA generation units targeting two or more different sites of a single gene
(3)異なる二以上の遺伝子を標的とした複数の shRNA生成ユニットからなる (3) Consists of multiple shRNA generation units targeting two or more different genes
[8] プロモーターが polIII系プロモーターである、請求項 1記載の多重 shRNA発現べクタ
[8] The multiple shRNA expression vector according to claim 1, wherein the promoter is a polIII promoter.
[9] 第一 shRNA生成ユニットを備えた環状構造の第一 shRNA発現ベクターおよび第二 sh RNA生成ユニットを備えた環状構造の第二 shRNA発現ベクターを原料として、多重 sh RNA発現ベクターを製造する方法であって、 [9] A method for producing a multiple sh RNA expression vector from a circular structure first shRNA expression vector having a first shRNA generation unit and a circular structure second shRNA expression vector having a second sh RNA generation unit as raw materials Because
前記第一および第二 shRNA発現ベクターには同様に、第一、第二 shRNA生成ュ- ットの上流、下流にそれぞれ制限酵素 A、 Bの認識消化部位 a、 bが設けられ、 前記第一および第二 shRNA発現ベクターにはそれぞれ shRNA生成ユニットを含ま ない側の a— b領域内にのみ存在する制限酵素 Cの認識消化部位 cが備えられ、 前記制限酵素 A、 B、 Cは全て異なり、前記 Aおよび Bは、 Aと Bとは互いに接続可能 な末端を生成し、前記 Cの消化末端とは接続し得ない末端を生成する制限酵素であ り、前記 a、 b部位は第一、第二 shRNA発現ベクター内に単一箇所として存在する条 件において、 Similarly, the first and second shRNA expression vectors are provided with recognition digestion sites a and b for restriction enzymes A and B, respectively, upstream and downstream of the first and second shRNA generating units, respectively. And the second shRNA expression vector is provided with a recognition digestion site c of restriction enzyme C that exists only in the a-b region on the side not containing the shRNA generation unit, and the restriction enzymes A, B, and C are all different, A and B are restriction enzymes that generate an end that can be connected to A and B, and an end that cannot be connected to the digested end of C. The a and b sites are the first, In conditions that exist as a single location in the second shRNA expression vector:
下記(1)から (4)の工程を含む、方法。 A method comprising the following steps (1) to (4):
(1)制限酵素 A、 Cで第一 shRNA発現ベクターを消化する工程 (1) Digestion of the first shRNA expression vector with restriction enzymes A and C
(2)制限酵素 B、 Cで第二 shRNA発現ベクターを消化する工程 (2) Digestion of the second shRNA expression vector with restriction enzymes B and C
(3)前記(1)、 (2)の消化断片を混合し、ライゲーシヨンを行なう工程 (3) Step of mixing the digested fragments of (1) and (2) above and performing ligation
(4)第一 shRNA発現ベクターの第一 shRNA生成ユニットを含む a-c断片と、第二 shR NA発現ベクターの第二 shRNA生成ユニットを含む b-c断片とが接続された環状構築 物を回収する工程 (4) A step of recovering a circular construct in which the a-c fragment containing the first shRNA generating unit of the first shRNA expression vector and the b-c fragment containing the second shRNA generating unit of the second shRNA expression vector are connected.
[10] 制限酵素 A、 B、 Cは粘着末端を生成する制限酵素である、請求項 9記載の方法。 [10] The method according to claim 9, wherein the restriction enzymes A, B, and C are restriction enzymes that generate sticky ends.
[11] 制限酵素 A、 Bは、それぞれ生成する末端が互いに接続した際に aとも bとも異なる配 列を形成し得る、請求項 9記載の方法。 [11] The method according to claim 9, wherein the restriction enzymes A and B can form different sequences from a and b when the generated ends are connected to each other.
[12] 第一、第二 shRNA発現ベクターには選択マーカーが備えられ、前記選択マーカー内 に部位 cが設けられ、 [12] The first and second shRNA expression vectors are provided with a selection marker, and a site c is provided in the selection marker,
前記(3)工程の後に、前記選択マーカーで選択する工程を含む、請求項 9記載の 方法。 The method according to claim 9, further comprising a step of selecting with the selection marker after the step (3).
[13] 多重 shRNA発現コンストラクト製造用のベクターであって、 [13] A vector for producing a multiple shRNA expression construct,
プロモーターと、 A promoter,
前記プロモーターの下流に設けられた shRNAをコードした DNAを挿入し得るクロー
ユング領域と、 A claw into which DNA encoding shRNA provided downstream of the promoter can be inserted. Jung area,
一つ以上の選択マーカーとが備えられ、 With one or more selection markers,
前記プロモーターの上流側に制限酵素 Aの認識消化部位 aが設けられ、 前記クローニング領域の下流に制限酵素 Bの認識部位 bが設けられ、 一の選択マーカー内には制限酵素 Cの認識消化部位 cが備えられ、 前記 Aと Bとは接続可能な末端を生成し得る制限酵素であり、前記制限酵素 Cは 前記 A、 Bの消化末端とは接続し得ない断端を形成し得る制限酵素であり、前記 a、 b 部位は単一の部位として備えられて 、る、 A recognition digestion site a of restriction enzyme A is provided upstream of the promoter, a recognition site b of restriction enzyme B is provided downstream of the cloning region, and a recognition digestion site c of restriction enzyme C is included in one selection marker. The A and B are restriction enzymes that can generate connectable ends, and the restriction enzyme C is a restriction enzyme that can form a stump that cannot be connected to the digestive ends of the A and B. The a and b sites are provided as a single site;
ベクター。 vector.
[14] 制限酵素 A、 B、 Cは粘着末端を生成する制限酵素である、請求項 13記載のベクター [14] The vector according to claim 13, wherein the restriction enzymes A, B, and C are restriction enzymes that generate sticky ends.
[15] 制限酵素 A、 Bは、それぞれ生成する末端が互いに接続した際に aとも bとも異なる配 列を形成し得る、請求項 14記載のベクター。 15. The vector according to claim 14, wherein the restriction enzymes A and B can form different sequences from a and b when the generated ends are connected to each other.
[16] 請求項 1から 8のいずれかに記載のベクターを保持した、細胞。 [16] A cell carrying the vector according to any one of claims 1 to 8.
[17] 請求項 1から 8のいずれかに記載のベクターを保持した、非ヒト動物。 [17] A non-human animal carrying the vector according to any one of claims 1 to 8.
[18] 請求項 1から 8のいずれかに記載のベクターを成分とする、医薬組成物。
[18] A pharmaceutical composition comprising the vector according to any one of claims 1 to 8 as a component.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-206601 | 2005-07-15 | ||
JP2005206601A JP2008237023A (en) | 2005-07-15 | 2005-07-15 | MULTIPLE shRNA EXPRESSION VECTOR |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007010840A1 true WO2007010840A1 (en) | 2007-01-25 |
Family
ID=37668721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/314028 WO2007010840A1 (en) | 2005-07-15 | 2006-07-14 | MULTIPLE shRNA EXPRESSION VECTOR |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008237023A (en) |
WO (1) | WO2007010840A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009207417A (en) * | 2008-03-04 | 2009-09-17 | Tottori Univ | Simple method for simultaneously inhibiting function of multiple gene in nematode |
RU2525935C2 (en) * | 2012-03-01 | 2014-08-20 | Федеральное Государственное Бюджетное Учреждение Науки Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук (Имб Ран) | Method for preparing cartridge genetic constructs expressing several rna hairpins |
US10407677B2 (en) | 2012-04-26 | 2019-09-10 | Intana Bioscience Gmbh | High complexity siRNA pools |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006033756A2 (en) * | 2004-08-23 | 2006-03-30 | Nucleonics, Inc. | Multiple rna polymerase iii promoter expression constructs |
-
2005
- 2005-07-15 JP JP2005206601A patent/JP2008237023A/en active Pending
-
2006
- 2006-07-14 WO PCT/JP2006/314028 patent/WO2007010840A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006033756A2 (en) * | 2004-08-23 | 2006-03-30 | Nucleonics, Inc. | Multiple rna polymerase iii promoter expression constructs |
Non-Patent Citations (2)
Title |
---|
COOPER L.J.N. ET AL.: "Enhancing siRNA-effects in T cells", BLOOD, vol. 102, no. 11, 2003, pages 747A, XP009039369 * |
SEKINE M. ET AL.: "RNAi ho to Antisense ho -Atarashii RNA no Kagaku to Oyo", DAI 1 SATSU KODANSHA LTD., 20 June 2005 (2005-06-20), pages 52,53,90 - 93, XP003007609 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009207417A (en) * | 2008-03-04 | 2009-09-17 | Tottori Univ | Simple method for simultaneously inhibiting function of multiple gene in nematode |
RU2525935C2 (en) * | 2012-03-01 | 2014-08-20 | Федеральное Государственное Бюджетное Учреждение Науки Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук (Имб Ран) | Method for preparing cartridge genetic constructs expressing several rna hairpins |
US10407677B2 (en) | 2012-04-26 | 2019-09-10 | Intana Bioscience Gmbh | High complexity siRNA pools |
Also Published As
Publication number | Publication date |
---|---|
JP2008237023A (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20040072643A (en) | siRNA expression system and method for producing functional gene knock-down cell using the system | |
US9982256B2 (en) | Random RNAi libraries, methods of generating same, and screening methods utilizing same | |
EP1462525A1 (en) | siRNA EXPRESSION SYSTEM AND PROCESS FO RPRODUCING FUNCTIONAL GENE KNOCKDOWN CELL OR THE LIKE USING THE SAME | |
US20100292299A1 (en) | Nucleotide Motifs Providing Localization Elements and Methods of Use | |
WO2003091433A1 (en) | EXPRESSION SYSTEMS FOR STEM LOOP RNA MOLECULE HAVING RNAi EFFECT | |
WO2006044663A2 (en) | THIO-siRNA APTAMERS | |
WO2007010840A1 (en) | MULTIPLE shRNA EXPRESSION VECTOR | |
CN1867672B (en) | Improved siRNA molecule and method of inhibiting gene expression with the use of the same | |
Du et al. | Validating siRNA using a reporter made from synthetic DNA oligonucleotides | |
US20050064489A1 (en) | Engineered U6 and H1 promoters | |
CN1662652B (en) | Randomised DNA libraries and double-stranded RNA libraries, use and method of production thereof | |
Hernández-Hoyos et al. | Analysis of T-cell development by using short interfering RNA to knock down protein expression | |
Størvold et al. | A retroviral vector for siRNA expression in mammalian cells | |
Chatterton et al. | Ribozymes in gene identification, target validation and drug discovery | |
US20060216823A1 (en) | Method for obtaining an enriched population of siRNA-expressing cells | |
AU2014202015B2 (en) | Random RNAi libraries, methods of generating same, and screening methods utilizing same | |
Li et al. | RNA interference and its application in bone-related diseases | |
JP2011087601A (en) | Double stranded rna for interference | |
US8795988B2 (en) | Primer-extension based method for the generation of siRNA/miRNA expression vectors | |
Saayman et al. | Effective Pol III-expressed long hairpin RNAs targeted to multiple unique sites of HIV-1 | |
JP4753130B2 (en) | Long interfering double-stranded RNA with reduced interferon response | |
Park et al. | Enzymatic construction of shRNA library from oligonucleotide library | |
WO2007100091A1 (en) | Composition for suppressing the expression of fucosyltransferase | |
FLORES‐JASSO et al. | One‐oligonucleotide method for constructing vectors for RNA interference 1 | |
JP2005046003A (en) | EXPRESSION SYSTEM FOR STEM LOOP TYPE RNA MOLECULE HAVING RNAi EFFECT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06781102 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |