[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007007767A1 - 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体 - Google Patents

固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体 Download PDF

Info

Publication number
WO2007007767A1
WO2007007767A1 PCT/JP2006/313794 JP2006313794W WO2007007767A1 WO 2007007767 A1 WO2007007767 A1 WO 2007007767A1 JP 2006313794 W JP2006313794 W JP 2006313794W WO 2007007767 A1 WO2007007767 A1 WO 2007007767A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
fuel cell
cation exchange
electrolyte membrane
group
Prior art date
Application number
PCT/JP2006/313794
Other languages
English (en)
French (fr)
Inventor
Jyunichi Tayanagi
Eiji Endoh
Hisao Kawazoe
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2007524666A priority Critical patent/JPWO2007007767A1/ja
Priority to EP06768107A priority patent/EP1912272A4/en
Priority to CA002614876A priority patent/CA2614876A1/en
Publication of WO2007007767A1 publication Critical patent/WO2007007767A1/ja
Priority to US12/007,418 priority patent/US20080118808A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell that can obtain a high output voltage over a long period of time when the initial output voltage is high.
  • a fuel cell is a cell that directly converts the reaction energy of a gas that is a raw material into electric energy, and a hydrogen 'oxygen fuel cell has a reaction product that is essentially only water, and has an impact on the global environment. rare.
  • solid polymer fuel cells that use solid polymer membranes as electrolytes have been developed with polymer electrolyte membranes that have high conductivity and ion conductivity, and can operate even at normal temperatures, resulting in high output density. Therefore, solid polymer fuel cells are expected to be used as power sources for mobile vehicles for electric vehicles and small cogeneration systems as social demands for energy and global environmental issues increase in recent years. .
  • a proton conductive ion exchange membrane is usually used as a solid polymer electrolyte, and in particular, an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group.
  • gas diffusible electrode layers are arranged on both sides of an ion exchange membrane, and a gas containing hydrogen as a fuel and a gas containing oxygen (such as air) as an oxidizing agent are respectively supplied to an anode and Power is generated by supplying power swords.
  • the solid polymer fuel cell was first put to practical use when it was adopted as a power source for a Gemini spacecraft in the United States. At this time, a membrane obtained by sulfonating a styrene-dibutenebenzene polymer was used. Although used as an electrolyte membrane, there was a problem with durability over a long period of time.
  • Techniques for improving such problems include a method of adding a transition metal oxide capable of catalytic decomposition of hydrogen peroxide or a compound having a phenolic hydroxyl group to the polymer electrolyte membrane (see Patent Document 1), A method is known in which catalytic metal particles are supported in a molecular electrolyte membrane and hydrogen peroxide is decomposed (see Patent Document 2).
  • Patent Document 1 A method is known in which catalytic metal particles are supported in a molecular electrolyte membrane and hydrogen peroxide is decomposed (see Patent Document 2).
  • these technologies are technologies for decomposing the hydrogen peroxide that is produced, and do not attempt to suppress the degradation of the ion exchange membrane itself. There was a possibility that a big problem occurred in the sex. There was also a problem of high costs.
  • an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is known as a polymer that is remarkably excellent in radical stability compared to a hydrocarbon-based polymer.
  • polymer electrolyte fuel cells using ion-exchange membranes made of these perfluorocarbon polymers have been expected to be used as power sources in the automotive and residential markets, and the demand for practical use has increased and development has progressed. Accelerating. In these applications, since operation with particularly high efficiency is required, operation at a higher voltage is desired, and at the same time, low cost is desired. In addition, there are many cases where operation with low or no humidification is required in terms of the efficiency of the entire fuel cell system.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-118591 (Claim 1, page 2, lines 2 to 9)
  • Patent Document 2 JP-A-6_103992 (Means for solving the problem, page 2, lines 33-37)
  • Non-Patent Document 1 New Energy ⁇ Summary of Annual Report on Solid Polymer Fuel Cell Research and Development, Hosted by National Institute of Advanced Industrial Science and Technology, 56, pages 16-24
  • the present invention is capable of power generation with sufficiently high energy efficiency in the practical application of a polymer electrolyte fuel cell for in-vehicle and residential markets, and stable power generation over a long period of time. It is an object of the present invention to provide a membrane for a polymer electrolyte fuel cell capable of satisfying the requirements. Means for solving the problem
  • the present invention comprises a cation exchange membrane comprising a fluorinated polymer having a cation exchange group having an ion exchange capacity of 1.0 to 2.5 meq / g dry resin.
  • a cation exchange membrane comprising a fluorinated polymer having a cation exchange group having an ion exchange capacity of 1.0 to 2.5 meq / g dry resin.
  • an electrolyte membrane for a polymer electrolyte fuel cell part of which is ion-exchanged with at least one selected from the group consisting of cerium ions and manganese ions.
  • the electrolyte membrane of the present invention has excellent resistance to hydrogen peroxide or peroxide radicals.
  • the hydrogen peroxide or peroxide radical resistance of the electrolyte membrane is effective when a part of the cation exchange groups in the cation exchange membrane is ion-exchanged with cerium ions or manganese ions.
  • the ion exchange capacity of the cation exchange membrane is 1.0 milliequivalent to Zg dry resin or more, so that the electrolyte membrane is excellent even after some of the cation exchange groups are ion exchanged with cerium ions or manganese ions.
  • the conductivity of hydrogen ions can be expressed.
  • the present invention is the above-described method for producing an electrolyte membrane, wherein a fluorinated polymer having a cation exchange group is dissolved or dispersed in a liquid and then selected from the group consisting of cerium ions and manganese ions.
  • a method for producing an electrolyte membrane for a polymer electrolyte fuel cell characterized in that one or more of these are mixed with this, and the resulting liquid is cast to form an electrolyte membrane.
  • the present invention provides an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin, and a solid polymer form having an electrolyte membrane force disposed between the anode and the force sword.
  • a membrane electrode assembly for a fuel cell wherein the electrolyte membrane is a membrane electrode assembly for a solid polymer fuel cell, which is the electrolyte membrane described above.
  • the present invention also provides an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin, and an electrolyte membrane force disposed between the anode and the force sword for a polymer electrolyte fuel cell.
  • the ion exchange resin of at least one of the anode and the force sword contains an ion exchange capacity of 1.0 to 2.5 meq Zg dry resin containing a cation exchange group.
  • a membrane electrode joint for a polymer electrolyte fuel cell characterized in that it is made of a fluoropolymer and a part of the cation exchange group is ion exchanged with one or more selected from the group consisting of cerium ion and manganese ion. Provide the body.
  • the electrolyte membrane of the present invention has excellent resistance to hydrogen peroxide or peroxide radicals and hydrogen ion conductivity, a solid polymer provided with the membrane electrode assembly having the electrolyte membrane of the present invention
  • the fuel cell has excellent durability and can generate power stably over a long period of time.
  • the cation exchange membrane constituting the electrolyte membrane of the present invention is made of a fluorine-containing polymer having a cation exchange group, and has an ion exchange capacity of 1.0 to 2.5 meq / g dry resin. .
  • the cation exchange group of the fluorine-containing polymer is not particularly limited. Specifically, there are a sulfonic acid group, a sulfonimide group, a phosphonic acid group, a ketoimide group, etc., and chemical stability is particularly strong. High sulfonic acid groups and sulfonimide groups are preferred. Among them, the ease of synthesis and power The sulfonic acid group is particularly preferred.
  • the ion exchange capacity is 1.0 to 2.5 meq / g dry resin, preferably 1.:! To 2.4 meq / g dry resin, more preferably 1.2 to 2. 3 meq / g dry resin, particularly preferably 1.3 to 2.1 meq Zg dry resin. If the ion exchange capacity is lower than 1.0 meq / g dry resin, sufficient conductivity of hydrogen ions cannot be ensured when the cation exchange group is ion-exchanged with cerium ions or manganese ions. Membrane resistance increases and power generation characteristics decrease. If it is higher than 2.5 meq Zg dry resin, the water resistance and strength of the film will decrease.
  • the fluorine-containing polymer is preferably a perfluorocarbon polymer (which may contain an ether-bonded oxygen atom).
  • n represents an integer of 0 to 3
  • n represents an integer of 1 to 12
  • p represents 0 or 1
  • X represents a fluorine atom or a trifluoromethyl group.
  • a copolymer containing polymerized units based on
  • perfluoro compound examples include compounds represented by the following formulas (i) to (m).
  • q is an integer of !! to 8
  • r is an integer of ! to 8
  • t is an integer of 1 to 3.
  • CF 2 CF 0 CF 2 CF (CF 3 ) O (CF 2 ) r -SO s H
  • CF 2 CF (OCF 2 CF (CF 3 )) t O (CF 2 ) 2 -S0 3 H (iii)
  • the perfluorocarbon polymer having a sulfonic acid group is obtained by copolymerizing a compound in which the SO H group of the perfluoro compound exemplified above is a SO F group, followed by hydrolysis, acid type
  • the polymer having a sulfonimide group is a SO H of the perfluoro compound exemplified above.
  • the SO F group is converted to a sulfonimide by a known method.
  • the molecular weight of the fluoropolymer is not particularly limited, but for example, the weight average molecular weight is 150,000 to 3 million as measured by gel permeation chromatography (hereinafter referred to as GPC). Is preferred. If the molecular weight is too low, the fluoropolymer of the present invention May have poor water resistance due to its high content of hydrophilic cation exchange groups. On the other hand, if the molecular weight is too high, the moldability, film forming property, solubility, etc. may be inferior. Particularly preferred is 200,000 to 1,000,000, and more preferred is 300,000 to 1,000,000.
  • the melt fluidity can be measured.
  • a fluorine-containing polymer having a sulfonic acid group a fluorine-containing polymer having a S0F group, which is a precursor thereof, can be obtained by using a flow tester (Shimadzu Corporation).
  • CFT-500D can be used to measure the temperature at which the flow rate becomes 100 mm / second by melting and flowing out from a nozzle with a length of 1 mm and an inner diameter of 1 mm under a pressure of 94 MPa.
  • This temperature is 170 to 400 ° C.
  • Force S preferably 180 to 350 ° C.
  • Force S more preferably 200 to 350 ° C., particularly preferably 220 to 330 ° C.
  • cerium ions and manganese ions (hereinafter referred to as "cerium ions etc.") is contained in the fluorinated polymer having a cation exchange group.
  • the method to obtain is not specifically limited, For example, the following method is mentioned. (1) A method in which a fluorinated polymer having a cation exchange group is dissolved or dispersed in a liquid, and then mixed with cerium ions and the like, and cast into a film using the obtained liquid. (2) A method of immersing a film made of a fluoropolymer having a cation exchange group in a solution containing cerium ion or the like.
  • the method (1) is preferable because a homogeneous film can be obtained, the process is simplest, and the mass productivity is excellent.
  • the valence may be +3 or +4.
  • Cerium ions that can be dissolved in a liquid medium (for example, water, alcohol, etc.) to obtain a solution containing cerium ions Things are used.
  • a liquid medium for example, water, alcohol, etc.
  • salts containing trivalent cerium ions include cerium carbonate (Ce (CO) ⁇ 8 ⁇ ), cerium acetate (Ce (CHCO ⁇ ) .H 2 O), cerium chloride
  • salts containing +4 valent cerium ions include cerium sulfate.
  • manganese compounds that can be dissolved in a liquid medium are used in order to obtain a solution containing manganese ions whose valence is +2 or +3. + Specific examples of salts containing divalent manganese ions include manganese acetate (Mn (CH C
  • salts containing trivalent manganese ions include manganese acetate (Mn (CH COO))
  • cerium carbonate or manganese carbonate can be used as the cerium compound or manganese compound that can be dissolved in the fluorine-containing polymer dispersion. I like it. Cerium carbonate or manganese carbonate is preferable because it dissolves in the dispersion of the fluorine-containing polymer to produce cerium ions and the like, and at the same time, carbon dioxide can be removed as a gas.
  • an aqueous solution of cerium nitrate, cerium sulfate, manganese nitrate or manganese sulfate because it is easy to handle.
  • the nitric acid or sulfuric acid produced when ion exchange of the fluorinated polymer having a cation exchange group in these aqueous solutions can be easily dissolved and removed in the aqueous solution.
  • the cerium ion is trivalent and the cation exchange group is a sulfonic acid group
  • the sulfonic acid group is ion-exchanged by the cerium ion, as shown below, there are three Ce 3+ — Combines with SO—.
  • the cation exchange group of the fluoropolymer is a sulfonic acid group, it is contained in the electrolyte membrane.
  • cerium ion content 0.9% of the total amount of the sulfonic acid group sulfonic acid group ion-exchanged with cerium ion and the sulfonic acid group ion-exchanged with cerium ion. is synonymous with 60 molar is 0/0.
  • the content of cerium ions is more preferably from 0.7 to 16 molar%, more preferably 1 to: 13 mole 0/0.
  • cerium ion content is lower than the above range, sufficient stability against hydrogen peroxide or peroxide radicals may not be secured. If the content of cerium ions is larger than the above range, sufficient conductivity of hydrogen ions cannot be ensured.
  • the film resistance may increase and the power generation characteristics may deteriorate.
  • the number of manganese ions contained in the electrolyte membrane is a 0.5 to 30 mole 0/0 SO- group in the film
  • manganese ion content If the manganese ion is completely bound to two SO-groups, the sulfone ion-exchanged with the manganese ion
  • the content of manganese ions is more preferably:! ⁇ 2
  • the film resistance may increase and the power generation characteristics may deteriorate.
  • the electrolyte membrane of the present invention has the following formula so that the cation exchange group has sufficient conductivity of hydrogen ions and exhibits long-term power generation performance even after ion exchange with cerium ions or the like.
  • the value of 1) is preferably 0.9 mmol / g or more.
  • the value of the above formula (1) is more preferably 1.0 mmol / g or more, and still more preferably 1.1 mmol / g or more.
  • the electrolyte membrane of the present invention may be a membrane made only of a fluorinated copolymer having a cation exchange group, partly containing cerium ions or the like, but may also contain other components.
  • it may be a membrane reinforced by fibers such as other resins such as polytetrafluoroethylene and perfluoroalkyl ether, woven fabric, non-woven fabric, porous material, and the like.
  • the polymer electrolyte fuel cell having the electrolyte membrane of the present invention has the following configuration, for example. That is, a membrane / electrode assembly in which an anode having a catalyst layer containing a catalyst and an ion exchange resin and a force sword are arranged on both surfaces of the electrolyte membrane is provided.
  • the anode and the force sword of the membrane electrode assembly are preferably provided with a gas diffusion layer made of carbon cloth, carbon paper or the like outside the catalyst layer (opposite the membrane).
  • grooves serving as fuel gas or oxidant gas passages are formed and separators are disposed, and a stack in which a plurality of membrane electrode assemblies are stacked via the separators is formed. Is supplied with hydrogen gas, and oxygen or air is supplied to the power sword side.
  • the reaction of H ⁇ 2H + + 2e— occurs at the anode, and 1/20 + 2H + + 2e_ ⁇ H ⁇
  • the electrolyte membrane of the present invention can also be used in a direct methanol fuel cell that supplies methanol instead of fuel gas to the anode side.
  • the membrane / electrode assembly can be obtained in the following manner, for example, according to a normal method. First, a conductive carbon black powder carrying platinum catalyst or platinum alloy catalyst fine particles and a solution of ion exchange resin are mixed to obtain a uniform dispersion.
  • the gas diffusion electrode is formed by any of the following methods. To obtain a membrane electrode assembly.
  • the first method is a method in which the dispersion liquid is applied to both surfaces of the electrolyte membrane, dried, and then both surfaces are adhered to each other with two carbon cloths or carbon paper.
  • the second method the dispersion is applied onto two pieces of carbon cloth or carbon paper and dried, and then the dispersion is applied.
  • This is a method of sandwiching from both surfaces of the electrolyte membrane so that the opposite surface is in close contact with the electrolyte membrane.
  • the carbon cloth or carbon paper has a function as a gas diffusion layer and a function as a current collector for uniformly diffusing gas in the layer containing the catalyst.
  • a method is also available in which the above dispersion is applied to a separately prepared substrate to produce a catalyst layer, bonded to the electrolyte membrane by a method such as transfer, and then peeled off and sandwiched between the gas diffusion layers. Can be used.
  • the ion exchange resin contained in the catalyst layer is not particularly limited, but has an ion exchange capacity of 1.0 to 2 as in the fluoropolymer having a cation exchange group constituting the electrolyte membrane in the present invention.
  • a fluoropolymer having a cation exchange group which is a 5 meq / g dry resin is preferred, and a perfluorocarbon polymer having a sulfonic acid group is particularly preferred.
  • the catalyst layer may be ion-exchanged with one or more selected from the group consisting of cerium ions and manganese ions, as in the electrolyte membrane according to the present invention.
  • an ion exchange resin containing at least one selected from the group consisting of cerium ions and manganese ions is used, and only one or more types selected from the group consisting of cerium ions and manganese ions are used in the catalyst layer. Can also be included.
  • cerium carbonate or carbonic acid is added to the dispersion of the fluoropolymer having cation exchange groups.
  • a catalyst layer is formed in the same manner as described above using a coating solution obtained by adding manganese and ion-exchanging a part of the cation exchange group with cerium ions or manganese ions, and dispersing the catalyst in the resulting solution. What should I do?
  • Amount 1 1 milliequivalent Zg dry resin (hereinafter referred to as polymer A) 300 g, 420 g of ethanol and 28 Og of water were charged into a 2 L autoclave, sealed, and mixed and stirred at 105 ° C for 6 hours with a double helical blade. And a uniform liquid (hereinafter referred to as Solution A) was obtained. The solid content concentration of Solution A was 30% by mass.
  • the resulting liquid composition has a solid content concentration of 30.1 mass 0 /. Met.
  • This composition is cast-coated on a 100 ⁇ m ETFE (ethylene tetrafluoroethylene) sheet (trade name: Aflex 100N, manufactured by Asahi Glass Co., Ltd.) with a die coater, and reserved for 10 minutes at 80 ° C. After drying, the film was dried at 120 ° C. for 10 minutes, and further annealed at 150 ° C. for 30 minutes to obtain an electrolyte membrane having a thickness of 50 ⁇ m.
  • ETFE ethylene tetrafluoroethylene
  • the coating solution was dried in a dryer at 80 ° C for 30 minutes to produce an anode catalyst layer and a force sword catalyst layer, respectively. did. Calculate the amount of platinum per unit area contained in the catalyst layer by measuring the mass of the base film only before formation of the catalyst layer and the mass of the base film after formation of the catalyst layer. As a result, the anode layer was 0.2 mg / cm 2 and the force sword layer was 0.4 mgZcm 2 .
  • the above-described ion exchange membrane containing cerium ions is used, and catalyst layers formed on the base film are arranged on both sides of the membrane, and are transferred by hot pressing.
  • a membrane catalyst layer assembly was obtained in which the node catalyst layer and the force sword catalyst layer were bonded to both surfaces of the ion exchange membrane, respectively.
  • the electrode area was 16 cm 2 .
  • a membrane / electrode assembly was produced by sandwiching this membrane / catalyst layer assembly between two gas diffusion layers made of carbon cloth having a thickness of 350 ⁇ m, and this was assembled in a power generation cell. Initial characteristics were evaluated under the operating conditions. Test conditions are normal pressure, hydrogen ( 70 % utilization)
  • OCV test open circuit test
  • hydrogen (utilization rate 70%) and air (utilization rate 40%) corresponding to a current density of 0.2 A / cm 2 were supplied to the anode and power sword, respectively, at a normal pressure, and the cell temperature was 90 ° C.
  • the anode gas dew point was 60 ° C
  • the cathode gas dew point was 60 ° C
  • power generation was not performed for 100 hours in an open circuit state.
  • Amount 1 24 milliequivalents / g dry tree moon 300g, ethanol tank 420g and water 280g were placed in a 2L old ⁇ clave, sealed, mixed and stirred at 105 ° C for 6 hours with a double helical blade, and evenly mixed. A liquid (hereinafter referred to as Solution B) was obtained. The solid content concentration of Solution B was 30% by mass.
  • the membrane contains the same absolute amount of cerium ion as in Example 1, in a 300 mL glass round bottom flask, 100 g of solution B and cerium carbonate hydrate (Ce (CO) ⁇ 8 ⁇ O) Charge 0.5g
  • the mixture was stirred with a PTFE meniscus blade for 8 hours at room temperature. Gas from CO generation from the start of stirring
  • the resulting liquid composition had a solid content concentration of 30.1% by mass.
  • This composition was cast on a 100 zm ETFE sheet with a die coater, pre-dried at 80 ° C for 10 minutes, then dried at 120 ° C for 10 minutes, and then annealed at 150 ° C for 30 minutes. And an electrolyte membrane having a thickness of 50 ⁇ was obtained. [0054] From this electrolyte membrane, a membrane having a size of 5 cm x 5 cm was cut out, allowed to stand in dry nitrogen for 16 hours, and then weighed accurately. 0. Impregnated in an aqueous solution of ImolZL of hydrochloric acid, and cerium ions were introduced. A completely extracted liquid was obtained. The liquid to be to measured by ICP spectroscopy was quantified cerium ions in the electrolyte membrane, the content of cerium ions 4. was 44 mol 0/0.
  • An electrolyte membrane was obtained by casting the solution A without adding anything.
  • a membrane / catalyst layer assembly was obtained in the same manner as in Example 1 except that this electrolyte membrane was used, and a membrane / electrode assembly was further obtained.
  • this membrane electrode assembly was evaluated in the same manner as in Example 1, the results shown in Table 1 were obtained.
  • An electrolyte membrane having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the solution A used in Example 1 was used and no cerium ion was contained.
  • Amount 1.33 meq / g dry tree moon) 300 g, ethanol tank 420 g and water 280 g were charged into a 2L old clave, sealed, and mixed and stirred at 105 ° C for 6 hours with a double helical blade. (Hereinafter referred to as solution C).
  • the solid content concentration of Solution C was 30% by mass.
  • An electrolyte membrane having a thickness of 50 xm was obtained in the same manner as in Example 1 except that Solution C was used and no cerium ion was contained.
  • the resulting liquid composition had a solid content concentration of 30.1% by mass.
  • This composition was cast-coated on a 10 ⁇ ⁇ ⁇ ETFE sheet with a die coater, pre-dried at 80 ° C for 10 minutes, and then dried at 120 ° G for 10 minutes. An anorino was applied for 30 minutes to obtain an electrolyte membrane with a huge thickness of 50 xm.
  • Solution D (Amount 0 ⁇ 91 meq / g dry resin) 5g, ethanol 57g and water 38g in a 0.2L autoclave, sealed, mixed and stirred at 105 ° C for 6 hours with a double helical blade, and evenly mixed A liquid was obtained (hereinafter referred to as Solution D).
  • the solid content concentration of Solution D was 5% by mass.
  • the solution D was poured onto a glass petri dish, pre-dried at 80 ° C for 10 minutes, then dried at 120 ° C for 10 minutes, further annealed at 150 ° C for 30 minutes, and a film thickness of 40 zm An electrolyte membrane was obtained.
  • the solid content concentration of the obtained liquid composition was 5.0% by mass.
  • This composition is poured onto a glass petri dish, pre-dried at 80 ° C for 10 minutes, then dried at 120 ° C for 10 minutes, Further, annealing was performed at 150 ° C for 30 minutes to obtain an electrolyte membrane having a thickness of 40 zm.
  • Table 2 also shows the ion exchange capacity (AR) of the fluoropolymer constituting the electrolyte membrane and the Ce ion content in the electrolyte membrane.
  • Example 1 instead of cerium carbonate hydrate, manganese carbonate hydrate (MnC0 ⁇ ⁇
  • Example 10 a film with a manganese content of 8.87% is obtained in the same manner as in Example 10.
  • a membrane / catalyst layer assembly is obtained in the same manner as in Example 1, and a membrane / electrode assembly is further obtained.
  • This membrane When the electrode assembly is evaluated in the same manner as in Example 1, the results shown in Table 3 are obtained.
  • Example 10 a film with a manganese content of 8.27% is obtained in the same manner as in Example 10.
  • a membrane / catalyst layer assembly is obtained in the same manner as in Example 1, and a membrane / electrode assembly is further obtained.
  • this membrane / electrode assembly was evaluated in the same manner as in Example 1, the results shown in Table 3 were obtained.
  • a film having a muon content rate of 3 ⁇ 4 mol% was obtained.
  • a membrane / catalyst layer assembly is obtained in the same manner as in Example 1, and further a membrane / electrode assembly is obtained.
  • this membrane electrode assembly was evaluated in the same manner as in Example 1, the following results were obtained.
  • the electrolyte membrane of the present invention exhibits high power generation characteristics and is excellent in durability. Since the electrolyte membrane of the present invention is composed of a cation exchange membrane having a relatively high ion exchange capacity, the specific resistance is low even after ion exchange with cerium ions, so that high power generation characteristics can be exhibited.
  • the electrolyte membrane of the present invention is extremely excellent in durability against hydrogen peroxide or peroxide radicals generated by power generation of a fuel cell. Therefore, a polymer electrolyte fuel cell comprising a membrane electrode assembly having this electrolyte membrane has a long-term durability even in low humidified power generation. Has durability. It should be noted that the entire contents of the description, claims, drawings and abstract of Japanese Patent Application No. 2005-203183 filed on July 12, 2005 are cited here as disclosure of the specification of the present invention. Incorporate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

 高いエネルギー効率での発電が可能であり、供給ガスの露点によらず、高い発電性能を有し、かつ長期間に渡って安定した発電が可能な固体高分子形燃料電池用電解質膜を提供する。  イオン交換容量が1.0~2.5ミリ当量/g乾燥樹脂である陽イオン交換基を有する含フッ素重合体からなる陽イオン交換膜からなり、前記陽イオン交換基の一部がセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上によりイオン交換されている電解質膜を、固体高分子形燃料電池用電解質膜として使用する。

Description

明 細 書
固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形 燃料電池用膜電極接合体
技術分野
[0001] 本発明は、初期の出力電圧が高ぐ長期に渡って高い出力電圧を得られる固体高 分子形燃料電池用の電解質膜に関する。
背景技術
[0002] 燃料電池は、原料となるガスの反応エネルギーを直接電気エネルギーに変換する 電池であり、水素'酸素燃料電池は、その反応生成物が原理的に水のみであり地球 環境への影響がほとんどない。なかでも電解質として固体高分子膜を使用する固体 高分子形燃料電池は、高レ、イオン導電性を有する高分子電解質膜が開発され、常 温でも作動でき高出力密度が得られる。そこで、固体高分子形燃料電池は、近年の エネルギー、地球環境問題への社会的要請の高まりとともに、電気自動車用等の移 動車両や、小型コージェネレーションシステムの電源として大きな期待が寄せられて いる。
[0003] 固体高分子形燃料電池では、通常、固体高分子電解質としてプロトン伝導性のィ オン交換膜が使用され、特にスルホン酸基を有するパーフルォロカーボン重合体か らなるイオン交換膜が基本特性に優れている。固体高分子形燃料電池では、イオン 交換膜の両面にガス拡散性の電極層を配置し、燃料である水素を含むガス及び酸 化剤となる酸素を含むガス (空気等)を、それぞれアノード及び力ソードに供給するこ とにより発電を行う。
[0004] 固体高分子形燃料電池の力ソードにおける酸素の還元反応は過酸化水素(H O )
2 2 を経由して反応が進行することから、触媒層中で生成する過酸化水素又は過酸化物 ラジカルによって、電解質膜の劣化が引き起こされる可能性が懸念されている。また 、アノードには、力ソードから酸素分子が膜内を透過してくるため、同様に過酸化水 素又は過酸化物ラジカルが生成することも懸念される。特に炭化水素系膜を固体高 分子電解質膜とする場合は、ラジカルに対する安定性に乏しぐ長期間にわたる運 転においては大きな問題となっていた。
[0005] 例えば、固体高分子形燃料電池が初めて実用化されたのは、米国のジェミニ宇宙 船の電源として採用された時であり、この時にはスチレン一ジビュルベンゼン重合体 をスルホン化した膜が電解質膜として使用されたが、長期間にわたる耐久性には問 題があった。この様な問題を改善する技術としては、高分子電解質膜中に過酸化水 素を接触分解できる遷移金属酸化物又はフエノール性水酸基を有する化合物を添 加する方法 (特許文献 1参照)や、高分子電解質膜内に触媒金属粒子を担持し、過 酸化水素を分解する方法(特許文献 2参照)が知られている。しかし、これらの技術は 、生成する過酸化水素を分解する技術であり、イオン交換膜自体の分解の抑制を試 みるものではないため、初期的には改善の効果があるものの、長期間にわたる耐久 性には大きな問題が生じる可能性があった。またコスト的にも高くなるという問題があ つた。
[0006] 一方、炭化水素系の重合体に対し、ラジカルに対する安定性が格段に優れる重合 体として、スルホン酸基を有するパーフルォロカーボン重合体からなるイオン交換膜 が知られている。近年、これらのパーフルォロカーボン重合体からなるイオン交換膜 を用いた固体高分子形燃料電池は、 自動車用、住宅用市場等の電源として期待さ れ、実用化への要望が高まり開発が加速している。これらの用途では、特に高い効 率での運転が要求されるため、より高い電圧での運転が望まれると同時に低コストィ匕 が望まれている。また、燃料電池システム全体の効率の点から低加湿又は無加湿で の運転が要求されることも多レ、。
[0007] し力し、スルホン酸基を有するパーフルォロカーボン重合体からなるイオン交換膜 を用いた燃料電池においても、高加湿下での運転では安定性が非常に高いものの、 低加湿又は無加湿での運転条件においては、電圧低下が大きいことが報告されて いる(非特許文献 1参照)。すなわち、低加湿又は無加湿での運転条件においては、 スルホン酸基を有するパーフルォロカーボン重合体からなるイオン交換膜においても 過酸化水素又は過酸化物ラジカルにより電解質膜の劣化が進行するものと考えられ る。
[0008] 特許文献 1 :特開 2001— 118591号公報 (請求項 1、 2頁 2〜9行) 特許文献 2:特開平 6 _ 103992号公報(問題を解決するための手段、 2頁 33〜37 行)
非特許文献 1:新エネルギー ·産業技術総合開発機構主催 平成 12年度固体高分 子形燃料電池研究開発成果報告会要旨集、 56頁 16〜24行
発明の開示
発明が解決しょうとする課題
[0009] そこで本発明は、車載用、住宅用市場等への固体高分子形燃料電池の実用化に おいて、十分に高いエネルギー効率での発電が可能であり、かつ長期間にわたって 安定した発電が可能な固体高分子形燃料電池用膜を提供することを目的とする。 課題を解決するための手段
[0010] 本発明はイオン交換容量が 1. 0〜2. 5ミリ当量/ g乾燥樹脂である陽イオン交換基 を有する含フッ素重合体からなる陽イオン交換膜からなり、前記陽イオン交換基の一 部がセリウムイオン及びマンガンイオンからなる群から選ばれる 1種以上によりイオン 交換されていることを特徴とする固体高分子形燃料電池用電解質膜を提供する。
[0011] 本発明の電解質膜は、過酸化水素又は過酸化物ラジカルに対して優れた耐性を 有する。この理由は明確ではないが、陽イオン交換膜中の陽イオン交換基の一部が セリウムイオン又はマンガンイオンでイオン交換されることにより、電解質膜の過酸化 水素又は過酸化物ラジカル耐性が効果的に向上されると推定される。ここで陽イオン 交換膜のイオン交換容量が 1. 0ミリ当量 Zg乾燥樹脂以上であることにより、陽イオン 交換基の一部がセリウムイオン又はマンガンイオンでイオン交換された後も、電解質 膜は優れた水素イオンの伝導性を発現できる。
[0012] また本発明は、上述の電解質膜の製造方法であって、陽イオン交換基を有する含 フッ素重合体を液体中に溶解又は分散させた後、セリウムイオン及びマンガンイオン 力 なる群から選ばれる 1種以上をこれに混合し、得られた液を用いてキャスト製膜し 電解質膜を作製することを特徴とする固体高分子形燃料電池用電解質膜の製造方 法を提供する。
[0013] また本発明は、触媒とイオン交換樹脂とを含む触媒層を有するアノード及びカソー ドと、前記アノードと前記力ソードとの間に配置される電解質膜力 なる固体高分子形 燃料電池用膜電極接合体であって、前記電解質膜は上記の電解質膜である固体高 分子形燃料電池用膜電極接合体を提供する。
[0014] また本発明は、触媒とイオン交換樹脂とを含む触媒層を有するアノード及びカソー ドと、前記アノードと前記力ソードとの間に配置される電解質膜力 なる固体高分子形 燃料電池用膜電極接合体であって、前記アノードと前記力ソードの少なくとも一方の 触媒のイオン交換樹脂は、イオン交換容量が 1. 0〜2. 5ミリ当量 Zg乾燥樹脂である 陽イオン交換基を有する含フッ素重合体からなり、前記陽イオン交換基の一部がセリ ゥムイオン及びマンガンイオンからなる群から選ばれる 1種以上によりイオン交換され ていることを特徴とする固体高分子形燃料電池用膜電極接合体を提供する。
発明の効果
[0015] 本発明の電解質膜は過酸化水素又は過酸化物ラジカルに対して優れた耐性と水 素イオンの伝導性を有するため、本発明の電解質膜を有する膜電極接合体を備える 固体高分子形燃料電池は、耐久性に優れ、長期にわたって安定な発電が可能であ る。
発明を実施するための最良の形態
[0016] 本発明の電解質膜を構成する陽イオン交換膜は、陽イオン交換基を有する含フッ 素重合体からなり、イオン交換容量は 1. 0〜2. 5ミリ当量/ g乾燥樹脂である。
含フッ素重合体の陽イオン交換基は、特に制約されないが、具体的には、スルホン 酸基、スルホンイミド基、ホスホン酸基、ケトイミド基等があり、特に酸性度が強ぐ化 学的安定性の高いスルホン酸基、スルホンイミド基が好ましい。なかでも合成の容易 さ力 スルホン酸基が特に好ましレ、。
[0017] イオン交換容量は 1. 0〜2. 5ミリ当量/ g乾燥樹脂であり、好ましくは 1.:!〜 2. 4ミ リ当量/ g乾燥樹脂であり、より好ましくは 1. 2〜2. 3ミリ当量/ g乾燥樹脂、特に好ま しくは 1. 3〜2. 1ミリ当量 Zg乾燥樹脂である。イオン交換容量が 1. 0ミリ当量/ g乾 燥樹脂より低いと陽イオン交換基がセリウムイオン又はマンガンイオン等でイオン交 換されたとき水素イオンの十分な伝導性を確保することができず、膜抵抗が増大して 発電特性が低下する。また 2. 5ミリ当量 Zg乾燥樹脂より高いと膜の耐水性や強度が 低下する。 [0018] 含フッ素重合体は、耐久性の観点から、パーフルォロカーボン重合体(エーテル結 合性の酸素原子を含んでいてもよい。)であることが好ましい。パーフルォロカーボン 重合体としては特に限定されないが、テトラフルォロエチレンに基づく重合単位と、 C F =CF- (OCF CFX) -0 - (CF ) —SO Hで表されるパーフルォロ化合物(
2 2 m p 2 n 3
mは 0〜3の整数を示し、 nは 1〜12の整数を示し、 pは 0又は 1を示し、 Xはフッ素原 子又はトリフルォロメチル基を示す。 )に基づく重合単位とを含む共重合体であること が好ましい。
[0019] 上記パーフルォロ化合物の好ましい例をより具体的に示すと、下記式 (i)〜(m)で 表される化合物が挙げられる。ただし、下記式中、 qは:!〜 8の整数、 rは:!〜 8の整数 、 tは 1〜3の整数を示す。
[0020] [化 1]
CF2 = CFO (CF2) q-S03H ■·■ ( i )
CF2 = CF〇CF2CF (CF3) O (CF2) r-SOsH ■■· (ii)
CF2 = CF (OCF2CF (CF3)) tO (CF2) 2-S03H (iii)
[0021] スルホン酸基を有するパーフルォロカーボン重合体は、上に例示したパーフルォロ 化合物の SO H基が SO F基である化合物を共重合させた後、加水分解、酸型
3 2
化処理を行うことにより得られる。重合後にフッ素化することにより重合体の末端がフ ッ素化処理されたものを用いてもよい。重合体の末端がフッ素化されていると、より過 酸化水素や過酸化物ラジカルに対する安定性が優れるため耐久性が向上する。
[0022] スルホンイミド基を有する重合体は、上に例示したパーフルォロ化合物の SO H
3 基が SO F基である化合物を公知の方法によりスルホンイミド基に変換した後、重
2
合を行うことにより得られる。又は、上に例示したパーフルォロ化合物の SO H基が
3
-SO F基である化合物を重合し、必要により重合体の末端フッ素化処理を行い、 -
2
SO F基を有するポリマーを得た後、公知の方法により該 SO F基をスルホンイミド
2 2
基に変換してもよい。
[0023] 含フッ素重合体の分子量としては、特に限定されるものではないが、例えばゲルパ 一ミエーシヨンクロマトグラフィー(以下 GPCという)による測定で、重量平均分子量で 15万〜 300万であることが好ましい。分子量が低すぎると、本発明の含フッ素重合体 は親水性である陽イオン交換基の含量が高いため、耐水性に劣るおそれがある。ま た、分子量が高すぎると、成形性、製膜性、溶解性等に劣るおそれがある。特に好ま しくは 20万〜 100万、さらに好ましくは 30万〜 100万である。
[0024] また、含フッ素重合体の溶解性が低く GPCの測定が困難な場合には、溶融流動性 を測定することが可能である。例えば、スルホン酸基を有する含フッ素重合体の場合 、その前駆体となる S〇 F基を有する含フッ素重合体を、フローテスター(島津製作所
2
製 CFT—500Dなど)を用いて、 2. 94MPa加圧下、長さ lmm、内径 lmmのノズノレ から溶融流出せしめ、流量が 100mm/秒になる温度を指標とできる。この温度が 17 0〜400°Cであること力 S好ましく、 180〜350°C力 Sより好ましく、 200〜350°C力特に 好ましぐ 220〜330°Cがさらに好ましい。
[0025] 陽イオン交換基を有する含フッ素重合体中にセリウムイオン及びマンガンイオンか らなる群から選ばれる 1種以上(以下、「セリウムイオン等」という)を含有させて本発明 の電解質膜を得る方法は特に限定されないが、例えば以下の方法が挙げられる。 (1 )陽イオン交換基を有する含フッ素重合体を液体中に溶解又は分散させた後、セリウ ムイオン等をこれに混合し、得られた液を用いてキャスト製膜する方法。 (2)セリウムィ オン等が含まれる溶液中に陽イオン交換基を有する含フッ素重合体からなる膜を浸 漬する方法。 (3)セリウムイオンの有機金属錯塩を陽イオン交換基を有する含フッ素 重合体力 なる陽イオン交換膜と接触させてセリウムイオン等を含有させる方法等。 上記(1)の方法が、均質な膜が得られ、工程が最も簡便であり、量産性にも優れるこ とから好ましい。
[0026] ここでセリウムイオンの場合は、価数は + 3価でも + 4価でもよ セリウムイオンを含 む溶液を得るために液状媒体 (例えば、水、アルコール等)に溶解可能なセリウムィ匕 合物が使用される。 + 3価のセリウムイオンを含む塩を具体的に挙げると、例えば、炭 酸セリウム(Ce (CO ) · 8Η〇)、酢酸セリウム(Ce (CH CO〇) .H O)、塩化セリウ
2 3 3 2 3 3 2
ム(CeCl · 6Η〇)、硝酸セリウム(Ce (N〇) .6H O)、硫酸セリウム(Ce (SO ) .8
3 2 3 3 2 2 4 3
H〇)等が挙げられる。 +4価のセリウムイオンを含む塩としては、例えば、硫酸セリウ
2
ム(Ce (SO ) ·4Η O)、硝酸二アンモニゥムセリウム(Ce (NH ) (NO ) )、硫酸四
4 2 2 4 2 3 6 アンモニゥムセリウム(Ce (NH ) (SO ) ) ·4Η Ο)等が挙げられる。またセリウムの 有機金属錯塩としてはセリウムァセチルァセトナート(Ce (CH COCHCOCH ) · 3
3 3 3
Η〇)等が挙げられる。
2
[0027] また、マンガンイオンの場合は、価数は + 2価でも + 3価でもよぐマンガンイオンを 含む溶液を得るために液状媒体に溶解可能なマンガンィ匕合物が使用される。 + 2価 のマンガンイオンを含む塩を具体的に挙げると、例えば、酢酸マンガン(Mn (CH C
3
〇0) ·4Η 0)、塩化マンガン(MnCl ·4Η Ο)、硝酸マンガン(Μη (Ν〇 ) · 6Η Ο
2 2 2 2 3 2 2
)、硫酸マンガン(MnS〇 · 5Η〇)、炭酸マンガン(MnCO ·ηΗ〇)等が挙げられる
4 2 3 2
。 + 3価のマンガンイオンを含む塩としては、例えば、酢酸マンガン(Mn (CH COO)
3
•2H〇)等が挙げられる。またマンガンの有機金属錯塩としてはマンガンァセチル
3 2
ァセトナート(Mn (CH COCHCOCH ) )等が挙げられる。
3 3 2
[0028] 上記の化合物のなかでも、上記(1)の製法により電解質膜を作製する場合、含フッ 素重合体の分散液に溶解可能なセリウム化合物又はマンガン化合物としては、炭酸 セリウム又は炭酸マンガンが好ましレ、。炭酸セリウム又は炭酸マンガンは含フッ素重 合体の分散液中で溶解し、セリウムイオン等を生じると同時に、炭酸はガスとして除去 できるので好ましい。また、上記(2)の製法により電解質膜を作製する場合は、硝酸 セリウム、硫酸セリウム、硝酸マンガン又は硫酸マンガンの水溶液を用いると、取扱い が容易であり好ましい。これらの水溶液で陽イオン交換基を有する含フッ素重合体を イオン交換した際に生成する硝酸又は硫酸は、容易に水溶液中に溶解し、除去でき る。
[0029] 例えばセリウムイオンが 3価であり、陽イオン交換基がスルホン酸基である場合、ス ルホン酸基がセリウムイオンによりイオン交換されると、下記に示すように Ce3+が 3個 の— SO—と結合する。
3
[0030] [化 2]
Figure imgf000008_0001
[0031] 含フッ素重合体の陽イオン交換基がスルホン酸基である場合、電解質膜中に含ま れるセリウムイオンの数は、膜中の一SO—基の 0. 3〜20モル0 /0であることが好まし
3
レ、(以下、この割合を「セリウムイオンの含有率」という)。セリウムイオンが完全に上記 の構造になっている場合には、セリウムイオンでイオン交換されたスルホン酸基力 ス ルホン酸基とセリウムイオンでイオン交換されたスルホン酸基との合量の 0. 9〜60モ ル0 /0であることと同義である。セリウムイオンの含有率は、より好ましくは 0. 7〜16モ ル%、さらに好ましくは 1〜: 13モル0 /0である。
[0032] セリウムイオンの含有率が上述の範囲よりも小さいと過酸化水素又は過酸化物ラジ カルに対する十分な安定性が確保できなレ、おそれがある。またセリウムイオンの含有 率が上述の範囲よりも大きいと、水素イオンの十分な伝導性を確保することができず
、膜抵抗が増大して発電特性が低下するおそれがある。
[0033] また、マンガンイオンが + 2価である場合、スルホン酸基がマンガンイオンによりィォ ン交換されると、 2個のプロトンとマンガンイオンが置き換わり、 Mn2+が 2個の SO "
3 と結合することになる。
[0034] 含フッ素重合体の陽イオン交換基がスルホン酸基である場合、電解質膜中に含ま れるマンガンイオンの数は、膜中の SO—基の 0. 5〜30モル0 /0であることが好まし
3
レ、(以下、この割合を「マンガンイオンの含有率」という)。マンガンイオンが完全に 2個 の SO—基と結合している場合には、マンガンイオンでイオン交換されたスルホン
3
酸基力 スルホン酸基とマンガンイオンでイオン交換されたスルホン酸基との合量の 1
〜60モル0 /0であることと同義である。マンガンイオンの含有率は、より好ましくは:!〜 2
5モノレ0 /0、さらに好ましくは 1. 5〜20モル0 /0である。
[0035] マンガンイオンの含有率がこの範囲よりも小さいと過酸化水素又は過酸化物ラジカ ルに対する十分な安定性が確保できなレ、おそれがある。またマンガンイオンの含有 率が上述の範囲よりも大きいと、水素イオンの十分な伝導性を確保することができず
、膜抵抗が増大して発電特性が低下するおそれがある。
[0036] 本発明の電解質膜は、陽イオン交換基がセリウムイオン等によりイオン交換された 後も、水素イオンの十分な伝導性を有し長期的な発電性能を発現するように、下記 式(1)の値が 0. 9ミリモル/ g以上であることが好ましい。
(m- 3x- 2y) ÷ (陽イオン交換膜の質量) (1) ただし、式中、 mはイオン交換される前の陽イオン交換膜のイオン交換容量(当量) を、 Xは陽イオン交換膜中に含まれるセリウム原子のモル数を、 yは陽イオン交換膜中 に含まれるマンガン原子のモル数を示す。
上記式(1)の値は、より好ましくは 1. 0ミリモル/ g以上であり、さらに好ましくは 1. 1 ミリモル/ g以上である。
[0037] 本発明の電解質膜は、一部がセリウムイオン等を含む、陽イオン交換基を有する含 フッ素共重合体のみからなる膜であってもよいが、他の成分を含んでいてもよい。例 えば、ポリテトラフルォロエチレンやパーフルォロアルキルエーテル等の他の樹脂等 の繊維、織布、不織布、多孔体等により補強されている膜であってもよい。
[0038] 本発明の電解質膜を有する固体高分子形燃料電池は、例えば以下のような構成 である。すなわち、電解質膜の両面に、触媒とイオン交換樹脂とを含む触媒層を有す るアノード及び力ソードが配置された膜電極接合体を備える。膜電極接合体のァノー ド及び力ソードは、好ましくは触媒層の外側(膜と反対側)にカーボンクロスやカーボ ンペーパー等からなるガス拡散層が配置される。膜電極接合体の両面には、燃料ガ ス又は酸化剤ガスの通路となる溝が形成されセパレータが配置され、セパレータを介 して膜電極接合体が複数積層されたスタックを構成し、アノード側には水素ガスが供 給され、力ソード側には酸素又は空気が供給される構成である。アノードにおいては H→2H+ + 2e—の反応が起こり、力ソードにおいては 1/20 + 2H+ + 2e_→H〇
2 2 2 の反応が起こり、化学エネルギーが電気エネルギーに変換される。
また、本発明の電解質膜は、アノード側に燃料ガスではなくメタノールを供給する直 接メタノール燃料電池にも使用できる。
[0039] 膜電極接合体は通常の手法に従い、例えば以下のようにして得られる。まず、白金 触媒又は白金合金触媒の微粒子を担持させた導電性のカーボンブラック粉末とィォ ン交換樹脂の溶液を混合し均一な分散液を得て、例えば以下のいずれかの方法で ガス拡散電極を形成して膜電極接合体を得る。
[0040] 第 1の方法は、電解質膜の両面に上記分散液を塗布し乾燥後、両面を 2枚のカー ボンクロス又はカーボンペーパーで密着する方法である。第 2の方法は、上記分散液 を 2枚のカーボンクロス又はカーボンペーパー上に塗布乾燥後、分散液が塗布され た面が上記電解質膜と密着するように、上記電解質膜の両面から挟みこむ方法であ る。なお、ここでカーボンクロス又はカーボンペーパーは触媒を含む層により均一に ガスを拡散させるためのガス拡散層としての機能と集電体としての機能を有するもの である。また、別途用意した基材に上記分散液を塗工して触媒層を作製し、転写等 の方法により電解質膜と接合させた後に基材をはく離し、上記ガス拡散層で挟み込 む方法も使用できる。
[0041] 触媒層中に含まれるイオン交換樹脂は特に限定されないが、本発明における電解 質膜を構成する陽イオン交換基を有する含フッ素重合体と同様に、イオン交換容量 が 1. 0〜2. 5ミリ当量/ g乾燥樹脂である陽イオン交換基を有する含フッ素重合体で あることが好ましぐ特にスルホン酸基を有するパーフルォロカーボン重合体であるこ とが好ましい。触媒層は、本発明による電解質膜と同様に前記陽イオン交換基の一 部がセリウムイオン及びマンガンイオンからなる群から選ばれる 1種以上によりイオン 交換されていてもよい。このような触媒層では、イオン交換樹脂の分解が効果的に抑 制されるので、固体高分子形燃料電池はさらに耐久性が付与される。また、電解質 膜としてはセリウムイオン及びマンガンイオンからなる群から選ばれる 1種以上を含ま なレ、イオン交換樹脂を使用し、触媒層のみセリウムイオン及びマンガンイオンからな る群から選ばれる 1種以上を含有させることもできる。
[0042] 触媒層中のイオン交換樹脂の陽イオン交換基の一部をセリウムイオン等によりィォ ン交換させる場合、陽イオン交換基を有する含フッ素重合体の分散液に、炭酸セリウ ム又は炭酸マンガンを添カ卩して陽イオン交換基の一部をセリウムイオン又はマンガン イオンによりイオン交換し、得られた液に触媒を分散させたものを塗工液として上記 同様の方法で触媒層を形成すればよレ、。この場合、力ソード及びアノードのいずれ か一方のみをセリウムイオン等を含む分散液を使用して作製することもできるし、カソ ード、アノードともにセリウムイオン等を含む分散液を使用して作製することもできる。 実施例
[0043] 以下、本発明を具体的に実施例(例:!〜 6)及び比較例(例 7〜: 13)を用いて説明す る力 S、本発明はこれらに限定されない。
[0044] [例 1 (実施例)] CF =CF /CF =CFOCF CF (CF ) O (CF ) SO H共重合体(イオン交換容
2 2 2 2 3 2 2 3
量 1. 1ミリ当量 Zg乾燥樹脂、以下、重合体 Aという) 300gとエタノール 420gと水 28 Ogとを 2Lオートクレーブに仕込み、密閉し、ダブルヘリカル翼にて 105°Cで 6時間混 合撹拌して均一な液 (以下、溶液 Aという)を得た。溶液 Aの固形分濃度は 30質量% であった。
[0045] 300mLガラス製丸底フラスコに、溶液 Aを 100gと、炭酸セリウム水和物(Ce (CO
2 3
) · 8Η〇)0. 5gとを仕込み、 PTFE (ポリテトラフルォロエチレン)製半月板翼にて、
3 2
室温で 8時間撹拌した。撹拌開始より CO発生による気泡が発生したが、最終的に
2
は均一な透明の液状組成物を得た。得られた液状組成物の固形分濃度は 30. 1質 量0 /。であった。この組成物を 100 μ mの ETFE (エチレンテトラフルォロエチレン)シ ート(商品名:ァフレックス 100N、旭硝子社製)上に、ダイコータにてキャスト塗工し、 80°Cで 10分予備乾燥した後、 120°C、 10分乾燥し、さらに 150°C、 30分のァニール を施し、膜厚 50 μ mの電解質膜を得た。
[0046] この電解質膜から、 5cm X 5cmの大きさの膜を切り出し、乾燥窒素中で 16時間放 置した後、質量を精秤し 0. lmol/Lの塩酸水溶液中に含浸して、セリウムイオンを 完全に抽出した液を得た。この液を誘導結合プラズマ (ICP)発光分析にて測定する ことで、電解質膜中のセリウムイオンを定量したところ、セリウムイオンの含有率は 5モ ノレ%であった。
[0047] 次に、白金がカーボン担体 (比表面積 800m2/g)に触媒全質量の 50%含まれる ように担持された触媒粉末 (ェヌ 'ィーケムキャット社製) 1. 0gに、蒸留水 5. lgを混 合した。この混合液に CF =CF /CF =CFOCF CF (CF ) 0 (CF ) SO H共重
2 2 2 2 3 2 2 3 合体 (イオン交換容量 l . 1ミリ当量 Zg乾燥樹脂)をエタノールに分散させた固形分 濃度 9質量%の液 4. 5gを混合した。この混合物をホモジナイザー(商品名:ポリトロ ン、キネマチ力社製)を使用して混合、粉砕させ、触媒層形成用塗工液を作製した。
[0048] この塗工液を、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、 8 0°Cの乾燥器内で 30分間乾燥させてアノード触媒層及び力ソード触媒層を各々作製 した。なお、触媒層形成前の基材フィルムのみの質量と触媒層形成後の基材フィル ムの質量を測定することにより、触媒層に含まれる単位面積あたりの白金の量を算出 したところ、アノード層は 0. 2mg/cm2、力ソード層は 0. 4mgZcm2であった。
[0049] 次に、上述のセリウムイオンを含有させたイオン交換膜を用レ、、この膜の両面に基 材フィルム上に形成された触媒層をそれぞれ配置し、ホットプレス法により転写してァ ノード触媒層及び力ソード触媒層をイオン交換膜の両面にそれぞれ接合した、膜触 媒層接合体を得た。なお、電極面積は 16cm2であった。
[0050] この膜触媒層接合体を厚さ 350 μ mのカーボンクロスからなるガス拡散層 2枚の間 に挟んで膜電極接合体を作製し、これを発電用セルに組み込み、低加湿での運転 条件における初期特性評価を行った。試験条件は、常圧にて、水素 (利用率 70%)
/空気 (利用率 50%)を供給し、セル温度 80°Cにおいて電流密度 0. 2A/cm2とし た。アノード側は露点 64°C、力ソード側は露点 64°Cとしてそれぞれ水素及び空気を 加湿してセル内に供給し、運転初期のセル電圧を測定した。結果を表 1に示す。
[0051] また、加速試験として開回路試験(OCV試験)を行った。試験は、常圧で、電流密 度 0· 2A/cm2に相当する水素 (利用率 70%)及び空気 (利用率 40%)をそれぞれ アノード及び力ソードに供給し、セル温度は 90°C、アノードガスの露点は 60°C、カソ ードガスの露点は 60°Cとして、発電は行わずに開回路状態で 100時間運転し、その 間の電圧変化を測定した。結果を同じく表 1に示す。
[0052] [例 2 (実施例)]
CF =CF /CF =CFOCF CF (CF ) O (CF ) SO H共重合体(イオン交換容
2 2 2 2 3 2 2 3
量 1. 24ミリ当量/ g乾燥樹月旨 300gとエタノーノレ 420gと水 280gとを 2L才ー卜クレー ブに仕込み、密閉し、ダブルヘリカル翼にて 105°Cで 6時間混合撹拌して均一な液( 以下、溶液 Bという)を得た。溶液 Bの固形分濃度は 30質量%であった。
[0053] 膜中に例 1と同じ絶対量のセリウムイオンが含まれるように、 300mLガラス製丸底フ ラスコに、溶液 Bを 100gと、炭酸セリウム水和物(Ce (CO ) · 8Η O) 0. 5gとを仕込
2 3 3 2
み、 PTFE製半月板翼にて、室温で 8時間撹拌した。撹拌開始より CO発生による気
2
泡が発生したが、最終的には均一な透明の液状組成物を得た。得られた液状組成 物の固形分濃度は 30. 1質量%であった。この組成物を 100 z mの ETFEシート上 に、ダイコータにてキャスト塗工し、 80°Cで 10分予備乾燥した後、 120°C、 10分乾燥 し、さらに 150°C、 30分のァニールを施し、膜厚 50 μ ΐηの電解質膜を得た。 [0054] この電解質膜から、 5cm X 5cmの大きさの膜を切り出し、乾燥窒素中で 16時間放 置した後、質量を精秤し 0. ImolZLの塩酸水溶液中に含浸して、セリウムイオンを 完全に抽出した液を得た。この液を ICP分光分析にて測定することで、電解質膜中 のセリウムイオンを定量したところ、セリウムイオンの含有率は 4. 44モル0 /0であった。
[0055] 次に、この膜を用いて例 1と同様にして膜触媒層接合体を得てさらに膜電極接合体 を得た。この膜電極接合体について例 1と同様の評価を行うと、表 1に示す結果のと おりとなった。
[0056] [例 3 (比較例) ]
溶液 Aに何も加えずにキャスト製膜して電解質膜を得た。この電解質膜を用いた以 外は例 1と同様にして膜触媒層接合体を得て、さらに膜電極接合体を得た。この膜電 極接合体について例 1と同様の評価を行ったところ、表 1に示す結果のとおりとなった
[0057] [表 1]
Figure imgf000014_0001
[0058] [例 4 (比較例)]
例 1で用いた溶液 Aを用い、セリウムイオンを含有させないほかは例 1と同様にして 、膜厚 50 μ mの電解質膜を得た。
[0059] [例 5 (実施例) ]
例 1と同様にして、セリウムイオンの含有率が 5モル0 /0の膜厚 50 μ mの電解質膜を 得た。
[0060] [例 6 (比較例) ]
CF =CF /CF =CFOCF CF (CF ) O (CF ) SO H共重合体(イオン交換容
2 2 2 2 3 2 2 3
量 1. 33ミリ当量/ g乾燥樹月旨) 300gとエタノーノレ 420gと水 280gとを 2L才ートクレー ブに仕込み、密閉し、ダブルヘリカル翼にて 105°Cで 6時間混合撹拌して均一な液 を得た(以下、溶液 Cという)。溶液 Cの固形分濃度は 30質量%であった。 溶液 Cを用い、セリウムイオンを含有させないほかは例 1と同様にして、膜厚 50 x m の電解質膜を得た。
[0061] [例 7 (実施例)]
300mLガラス製丸底フラスコに、溶液 Cを 100gと、炭酸セリウム水和物(Ce (CO
2 3
) · 8Η O) 0. 6gとを仕込み、 PTFE製半月板翼にて、室温で 8時間撹拌した。撹拌
3 2
開始より C〇発生による気泡が発生したが、最終的には均一な透明の液状組成物を
2
得た。得られた液状組成物の固形分濃度は 30. 1質量%であった。この組成物を 10 Ο μ ΐηの ETFEシート上に、ダイコータにてキャスト塗工し、 80°Cで 10分予備乾燥し た後、 120°G、 10分乾燥し、さら【こ 150°G、 30分のァニーノレを施し、 莫厚 50 x mの 電解質膜を得た。
[0062] この電解質膜から、 5cm X 5cmの大きさの膜を切り出し、乾燥窒素中で 16時間放 置した後、質量を精秤し 0. lmol/Lの塩酸水溶液中に含浸して、セリウムイオンを 完全に抽出した液を得た。この液を ICP分光分析にて測定することで、電解質膜中 のセリウムイオンを定量したところ、セリウムイオンの含有率は 5モル0 /。であった。
[0063] [例 8 (比較例) ]
CF =CF /CF =CFOCF CF (CF ) O (CF ) SO H共重合体(イオン交換容
2 2 2 2 3 2 2 3
量 0· 91ミリ当量/ g乾燥樹脂)を 5gとエタノール 57gと水 38gとを 0. 2Lオートクレー ブに仕込み、密閉し、ダブルヘリカル翼にて 105°Cで 6時間混合撹拌して均一な液 を得た(以下、溶液 Dという)。溶液 Dの固形分濃度は 5質量%であった。
[0064] この溶液 Dをガラスシャーレ一上に流し込み、 80°Cで 10分予備乾燥した後、 120 °C、 10分乾燥し、さらに 150°C、 30分のァニールを施し、膜厚 40 z mの電解質膜を 得た。
[0065] [例 9 (比較例)]
300mLガラス製丸底フラスコに、溶液 Dを 100gと、炭酸セリウム水和物(Ce (CO
2 3
) · 8Η〇)69mgとを仕込み、 PTFE製半月板翼にて、室温で 8時間撹拌した。撹拌
3 2
開始より C〇発生による気泡が発生したが、最終的には均一な透明の液状組成物を
2
得た。得られた液状組成物の固形分濃度は 5. 0質量%であった。この組成物をガラ スシャーレ一上に流し込み、 80°Cで 10分予備乾燥した後、 120°C、 10分乾燥し、さ らに 150°C、 30分のァニールを施し、膜厚 40 z mの電解質膜を得た。
[0066] この電解質膜から、 5cm X 5cmの大きさの膜を切り出し、乾燥窒素中で 16時間放 置した後、質量を精秤し 0. ImolZLの塩酸水溶液中に含浸して、セリウムイオンを 完全に抽出した液を得た。この液を ICP分光分析にて測定することで、電解質膜中 のセリウムを定量したところ、セリウムイオンの含有率は 5モル0 /0であった。
[0067] [比抵抗の測定]
例 4〜9で得られた 6種類の膜についてについて Electrochimca. Acta., 43, 2 4, 3749— 3754 (1998)に従レヽ、電角军質月莫の 80oC、 95%RHにおける交流 it抵抗 を測定した。結果を表 2に示す。なお、表 2には、電解質膜を構成する含フッ素重合 体のイオン交換容量 (AR)と電解質膜中の Ceイオンの含有率も合わせて記載した。
[0068] [表 2]
Figure imgf000016_0001
[0069] [例 10]
例 1において、炭酸セリウム水和物のかわりに炭酸マンガン水和物(MnC〇 ·ηΗ
3 2
〇、マンガンの含有量が全質量の 41〜46%) 422mgを使用した以外は例 1と同様 にして、マンガンの含有率が 10%の膜を得た。次に、この膜を用いて例 1と同様にし て膜触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体について例 1と同様の評価を行うと、表 3に示すとおりの結果となる。
[0070] [例 11]
例 10において、重合体 Aのかわりに、イオン交換容量が 1. 24ミリ当量/ g乾燥榭 脂の CF =CF /CF =CFOCF CF (CF ) 0 (CF ) SO H共重合体を使用した
2 2 2 2 3 2 2 3
以外は例 10と同様にして、マンガンの含有率が 8. 87%の膜を得る。次に、この膜を 用いて例 1と同様にして膜触媒層接合体を得てさらに膜電極接合体を得る。この膜 電極接合体について例 1と同様の評価を行うと、表 3に示すとおりの結果となる。
[0071] [例 12]
例 10において、重合体 Aのかわりに、イオン交換容量が 1. 33ミリ当量/ g乾燥樹 脂の CF = CF /CF = CFOCF CF (CF ) 0 (CF ) SO H共重合体を使用した
2 2 2 2 3 2 2 3
以外は例 10と同様にして、マンガンの含有率が 8. 27%の膜を得る。次に、この膜を 用いて例 1と同様にして膜触媒層接合体を得てさらに膜電極接合体を得る。この膜 電極接合体について例 1と同様の評価を行うと、表 3に示すとおりの結果となる。
[0072] [例 13]
例 1で用いた重合体 Aのかわりに、例 12で用いたものと同じ CF = CF /CF = C
2 2 2
FOCF CF (CF ) 0 (CF ) SO H共重合体 (イオン交換容量 1. 33ミリ当量/ g乾燥
2 3 2 2 3
樹脂)を使用し、炭酸セリウム水和物(Ce (CO ) · 8Η O) 0. 6gを添加して、セリウ
2 3 3 2
ムイオンの含有率力 ¾モル%の膜を得た。次に、この膜を用いて例 1と同様にして膜 触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体について例 1と 同様の評価を行うと、以下に示す結果となる。
[0073] [表 3]
Figure imgf000017_0001
[0074] 本発明の電解質膜はセリウムイオンを有することにより、高い発電特性を発現し、ま た耐久性にも優れる。本発明の電解質膜はイオン交換容量の比較的高い陽イオン 交換膜からなるためセリウムイオンによりイオン交換された後も比抵抗が低いため、高 い発電特性を発現できる。
産業上の利用可能性
[0075] 本発明の電解質膜は、燃料電池の発電により生成される過酸化水素又は過酸化 物ラジカルに対する耐久性が極めて優れている。したがって、この電解質膜を有する 膜電極接合体を備える固体高分子形燃料電池は、低加湿発電においても長期の耐 久性を有する。 なお、 2005年 7月 12日に出願された日本特許出願 2005— 203183号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] イオン交換容量が 1. 0〜2· 5ミリ当量/ g乾燥樹脂である陽イオン交換基を有する 含フッ素重合体からなる陽イオン交換膜からなり、前記陽イオン交換基の一部がセリ ゥムイオン及びマンガンイオンからなる群から選ばれる 1種以上によりイオン交換され ていることを特徴とする固体高分子形燃料電池用電解質膜。
[2] 下記式(1)の値が 0. 9ミリ当量/ g乾燥樹脂以上である請求項 1に記載の固体高 分子形燃料電池用電解質膜。
(m- 3x- 2y) ÷ (陽イオン交換膜の質量) (1)
ただし、式中、 mは陽イオン交換膜のイオン交換容量(当量)を、 Xは陽イオン交換 膜中に含まれるセリウム原子のモル数を、 yは陽イオン交換膜に含まれるマンガン原 子のモル数を示す。
[3] 前記含フッ素重合体は、陽イオン交換基を有するパーフルォロカーボン重合体か らなる請求項 1又は 2に記載の固体高分子形燃料電池用電解質膜。
[4] 前記陽イオン交換基は、スルホン酸基である請求項 1〜3のいずれかに記載の固 体高分子形燃料電池用電解質膜。
[5] セリウムイオンは、前記陽イオン交換膜に含まれる— SO—基の 0. 3〜20モル%含
3
まれる請求項 4に記載の固体高分子形燃料電池用電解質膜。
[6] マンガンイオンは、前記陽イオン交換膜に含まれる— SO—基の 0. 5〜30モル0 /0
3
含まれる請求項 4に記載の固体高分子形燃料電池用電解質膜。
[7] 前記含フッ素重合体は、テトラフルォロエチレンに基づく繰り返し単位と CF =CF
2
— (〇CF CFX) — O— (CF ) -SO Hで表されるパーフルォロ化合物(Xはフッ
2 m p 2 n 3
素原子又はトリフルォロメチル基であり、 mは 0〜3の整数を示し、 nは 1〜: 12の整数 を示し、 pは 0又は 1を示す。)に基づく繰り返し単位とを含む共重合体である請求項 4 〜6のいずれかに記載の固体高分子形燃料電池用電解質膜。
[8] 請求項 1〜6のいずれかに記載の電解質膜の製造方法であって、陽イオン交換基 を有する含フッ素重合体を液体中に溶解又は分散させた後、セリウムイオン及びマン ガンイオンからなる群から選ばれる 1種以上をこれに混合し、得られた液を用いてキヤ スト製膜し電解質膜を作製することを特徴とする固体高分子形燃料電池用電解質膜 の製造方法。
[9] 触媒とイオン交換樹脂とを含む触媒層を有するアノード及び力ソードと、前記ァノー ドと前記力ソードとの間に配置される電解質膜力 なる固体高分子形燃料電池用膜 電極接合体であって、前記電解質膜は請求項:!〜 7のいずれかに記載の電解質膜 である固体高分子形燃料電池用膜電極接合体。
[10] 触媒とイオン交換樹脂とを含む触媒層を有するアノード及び力ソードと、前記ァノー ドと前記力ソードとの間に配置される電解質膜力 なる固体高分子形燃料電池用膜 電極接合体であって、前記アノードと前記力ソードの少なくとも一方の触媒層に含ま れるイオン交換樹脂は、イオン交換容量が 1. 0〜2. 5ミリ当量/ g乾燥樹脂である陽 イオン交換基を有する含フッ素重合体からなり、前記陽イオン交換基の一部がセリウ ムイオン及びマンガンイオンからなる群から選ばれる 1種以上によりイオン交換されて いることを特徴とする固体高分子形燃料電池用膜電極接合体。
PCT/JP2006/313794 2005-07-12 2006-07-11 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体 WO2007007767A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007524666A JPWO2007007767A1 (ja) 2005-07-12 2006-07-11 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
EP06768107A EP1912272A4 (en) 2005-07-12 2006-07-11 ELECTROLYTIC MEMBRANE FOR USE IN A SOLID POLYMER-TYPE FUEL CELL, PROCESS FOR PRODUCING THE MEMBRANE, AND MEMBRANE ELECTRODE ASSEMBLY FOR USE IN A SOLID POLYMER-TYPE COMBUSTIBLE CELL
CA002614876A CA2614876A1 (en) 2005-07-12 2006-07-11 Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US12/007,418 US20080118808A1 (en) 2005-07-12 2008-01-10 Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005203183 2005-07-12
JP2005-203183 2005-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/007,418 Continuation US20080118808A1 (en) 2005-07-12 2008-01-10 Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
WO2007007767A1 true WO2007007767A1 (ja) 2007-01-18

Family

ID=37637158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313794 WO2007007767A1 (ja) 2005-07-12 2006-07-11 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体

Country Status (6)

Country Link
US (1) US20080118808A1 (ja)
EP (1) EP1912272A4 (ja)
JP (1) JPWO2007007767A1 (ja)
CN (1) CN101218700A (ja)
CA (1) CA2614876A1 (ja)
WO (1) WO2007007767A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210793A (ja) * 2007-01-30 2008-09-11 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池の運転方法
WO2009086354A1 (en) * 2007-12-27 2009-07-09 3M Innovative Properties Company Durable fuel cell membrane electrode assembly with combined additives
JP2011508369A (ja) * 2007-12-14 2011-03-10 ゴア エンタープライズ ホールディングス,インコーポレイティド 高安定性燃料電池膜及びその製造方法
US8663866B2 (en) 2006-03-13 2014-03-04 E I Du Pont De Nemours And Company Stable proton exchange membranes and membrane electrode assemblies
US8722569B2 (en) 2006-03-13 2014-05-13 E I Du Pont De Nemours And Company Peroxide decomposition catalyst particles

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005024002D1 (de) 2004-06-22 2010-11-18 Asahi Glass Co Ltd Elektrolytmembran für eine festpolymer-brennstoffzelle, herstellungsverfahren dafür und membranelektrodenbaugruppe für eine festpolymer-brennstoffzelle
DE602005025213D1 (de) * 2004-06-22 2011-01-20 Asahi Glass Co Ltd Flüssige zusammensetzung, verfahren zu deren herstellung und verfahren zur herstellung einer membranelektrodenbaugruppe für polymerelektrolyt-brennstoffzelle
US8628871B2 (en) * 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
JP2009021228A (ja) * 2007-06-15 2009-01-29 Sumitomo Chemical Co Ltd 膜電極接合体、及びこれを備える膜電極ガス拡散層接合体、固体高分子形燃料電池、並びに膜電極接合体の製造方法
US8815335B2 (en) * 2008-12-16 2014-08-26 GM Global Technology Operations LLC Method of coating a substrate with nanoparticles including a metal oxide
CN101777656B (zh) * 2009-12-07 2012-09-19 山东华夏神舟新材料有限公司 一种燃料电池用固体含氟高分子聚合物质子交换膜及其制备
CN101771156B (zh) * 2009-12-07 2013-01-16 山东华夏神舟新材料有限公司 一种金属离子掺杂含氟高分子聚合物质子交换膜
JP6319311B2 (ja) * 2013-07-03 2018-05-09 旭硝子株式会社 含フッ素ポリマーの製造方法
CN117683310B (zh) * 2024-02-02 2024-04-30 国家电投集团氢能科技发展有限公司 一种复合物、离子交换膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102714A1 (ja) * 2003-05-13 2004-11-25 Asahi Glass Company, Limited 固体高分子型燃料電池用電解質ポリマー、その製造方法及び膜・電極接合体
JP2005019232A (ja) * 2003-06-26 2005-01-20 Toyota Central Res & Dev Lab Inc 遷移金属酸化物含有固体高分子電解質
JP2005071760A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池
JP2005093233A (ja) * 2003-09-17 2005-04-07 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7603539L (sv) * 1975-03-31 1976-10-01 Kureha Chemical Ind Co Ltd Katjonbytarmembran
JP3271801B2 (ja) * 1992-09-22 2002-04-08 田中貴金属工業株式会社 高分子固体電解質型燃料電池、該燃料電池の加湿方法、及び製造方法
JP2003229143A (ja) * 2002-02-06 2003-08-15 Kanegafuchi Chem Ind Co Ltd プロトン伝導性高分子膜及びそれからなる燃料電池
JP2004152615A (ja) * 2002-10-30 2004-05-27 Asahi Glass Co Ltd 固体高分子電解質膜、その製造方法及び膜電極接合体
WO2005001971A1 (ja) * 2003-06-30 2005-01-06 Sumitomo Chemical Company, Limited 高分子電解質複合膜、その製造方法及びその用途
US7537857B2 (en) * 2003-12-17 2009-05-26 Bdf Ip Holdings Ltd. Reduced degradation of ion-exchange membranes in electrochemical fuel cells
CN100573989C (zh) * 2004-03-04 2009-12-23 松下电器产业株式会社 复合电解质膜、催化剂层膜复合体、膜电极复合体及高分子电解质型燃料电池
DE602005024002D1 (de) * 2004-06-22 2010-11-18 Asahi Glass Co Ltd Elektrolytmembran für eine festpolymer-brennstoffzelle, herstellungsverfahren dafür und membranelektrodenbaugruppe für eine festpolymer-brennstoffzelle
DE602005025213D1 (de) * 2004-06-22 2011-01-20 Asahi Glass Co Ltd Flüssige zusammensetzung, verfahren zu deren herstellung und verfahren zur herstellung einer membranelektrodenbaugruppe für polymerelektrolyt-brennstoffzelle
US7572534B2 (en) * 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
JP4810868B2 (ja) * 2005-04-19 2011-11-09 旭硝子株式会社 固体高分子型燃料電池用電解質膜、その製造方法、固体高分子型燃料電池用膜電極接合体及びその運転方法
JP5095089B2 (ja) * 2005-05-31 2012-12-12 株式会社豊田中央研究所 固体高分子電解質、並びに、固体高分子型燃料電池及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102714A1 (ja) * 2003-05-13 2004-11-25 Asahi Glass Company, Limited 固体高分子型燃料電池用電解質ポリマー、その製造方法及び膜・電極接合体
JP2005019232A (ja) * 2003-06-26 2005-01-20 Toyota Central Res & Dev Lab Inc 遷移金属酸化物含有固体高分子電解質
JP2005071760A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池
JP2005093233A (ja) * 2003-09-17 2005-04-07 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1912272A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663866B2 (en) 2006-03-13 2014-03-04 E I Du Pont De Nemours And Company Stable proton exchange membranes and membrane electrode assemblies
US8722569B2 (en) 2006-03-13 2014-05-13 E I Du Pont De Nemours And Company Peroxide decomposition catalyst particles
US9728800B2 (en) 2006-03-13 2017-08-08 The Chemours Company Fc, Llc Stable proton exchange membranes and membrane electrode assemblies
JP2008210793A (ja) * 2007-01-30 2008-09-11 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池の運転方法
JP2011508369A (ja) * 2007-12-14 2011-03-10 ゴア エンタープライズ ホールディングス,インコーポレイティド 高安定性燃料電池膜及びその製造方法
WO2009086354A1 (en) * 2007-12-27 2009-07-09 3M Innovative Properties Company Durable fuel cell membrane electrode assembly with combined additives
JP2011508953A (ja) * 2007-12-27 2011-03-17 スリーエム イノベイティブ プロパティズ カンパニー 組み合わせ添加物を含む耐久性を備えた燃料電池の膜電極組立体
US8137828B2 (en) 2007-12-27 2012-03-20 3M Innovative Properties Company Durable fuel cell membrane electrode assembly with combined additives
US20120148937A1 (en) * 2007-12-27 2012-06-14 Pierpont Daniel M Durable fuel cell membrane electrode assembly with combined additives
US9023496B2 (en) 2007-12-27 2015-05-05 3M Innovative Properties Company Durable fuel cell membrane electrode assembly with combined additives
US9728801B2 (en) 2007-12-27 2017-08-08 3M Innovative Properties Company Durable fuel cell membrane electrode assembly with combined additives

Also Published As

Publication number Publication date
JPWO2007007767A1 (ja) 2009-01-29
EP1912272A4 (en) 2009-12-02
CN101218700A (zh) 2008-07-09
EP1912272A1 (en) 2008-04-16
CA2614876A1 (en) 2007-01-18
US20080118808A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP5287969B2 (ja) 固体高分子電解質膜及び固体高分子形燃料電池用膜電極接合体
WO2007007767A1 (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
US9455465B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
Pu Polymers for PEM fuel cells
US20070111076A1 (en) Elctrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JP4810868B2 (ja) 固体高分子型燃料電池用電解質膜、その製造方法、固体高分子型燃料電池用膜電極接合体及びその運転方法
JP4765908B2 (ja) 固体高分子電解質膜及び固体高分子型燃料電池用膜電極接合体
JP5286651B2 (ja) 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
JP2007031718A5 (ja)
JP4972867B2 (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP5109244B2 (ja) 固体高分子形燃料電池用電解質膜及びその製造方法
Li et al. Recent Development of Acid Doped Polybenzimidazole Membranes in Denmark-Polymer Chemistry and Durability Issues
Huang et al. Niobium Phosphates as Intermediate Temperature Proton Conductor
Aili et al. Anion conducting polymer membranes for hydrogen production through alkaline water electrolysis
Anfimova et al. Conductivity of NdPO4-CsH2PO4 composites investigated by electrochemical impedance spectroscopy
Permyakova et al. Poly (benzimidazole)–functionalized graphene as a stable and durable support for PEM fuel cell electrocatalysts
Holst et al. Energy Dispersive X-ray Analysis used to quantify the Phosphoric Acid Doping Level in Polybenzimidazole based Fuel Cells
Jensen et al. Fabrication and characterization of proton conducting composite materials for electrolytes in intermediate temperature fuel cells and water electrolysers
Vassiliev et al. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells with improved performance
Hu et al. Efficient electrocatalytic oxygen reduction over selfsupported polyaniline-based non-precious metal catalyst
García et al. Transition metal carbides as electrode materials for HT PEM systems
Christensen et al. Water Electrolysis using Polymeric Electrolyte Membranes at Elevated Temperatures
Nikiforov et al. Corrosion behavior of construction materials for intermediate temperature steam electrolysers
Steenberg et al. High Temperature Polymer Electrolyte Membrane Fuel Cells-Performance and degradation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025014.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524666

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2614876

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12007418

Country of ref document: US

Ref document number: 2006768107

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE