[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007093082A1 - Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant - Google Patents

Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant Download PDF

Info

Publication number
WO2007093082A1
WO2007093082A1 PCT/CN2006/000229 CN2006000229W WO2007093082A1 WO 2007093082 A1 WO2007093082 A1 WO 2007093082A1 CN 2006000229 W CN2006000229 W CN 2006000229W WO 2007093082 A1 WO2007093082 A1 WO 2007093082A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
liquid
crucible
wafer
melting point
Prior art date
Application number
PCT/CN2006/000229
Other languages
English (en)
Chinese (zh)
Inventor
Yonggang Jin
Original Assignee
Yonggang Jin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yonggang Jin filed Critical Yonggang Jin
Priority to CN2006800019054A priority Critical patent/CN101133194B/zh
Priority to PCT/CN2006/000229 priority patent/WO2007093082A1/fr
Publication of WO2007093082A1 publication Critical patent/WO2007093082A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/001Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • the invention belongs to crystal growth, and in particular relates to a manufacturing process and equipment for a silicon wafer.
  • Silicon is a non-metal, with an atomic number of 14, and an atomic weight of 28.0855 g.mol- 1 .
  • Silicon materials are widely used in industries such as semiconductors and solar cells. Production of semiconductor grade silicon wafers or CZochralski (CZ method) or zone melting methods for the fabrication of solar cell wafers. Single crystal silicon is often used for semiconductor silicon materials, and single crystal silicon or polycrystalline silicon is used for solar cells.
  • the single crystal silicon fabrication process mainly uses a Czochralski (CZochralski, CZ) method and a floating zone melting method (FZ method).
  • the crystal pulling method for example, US Pat. No. 3,679,370 (CRYSTAL GROWER WITH EXPANDABLE CHAMBER), CN1150355 (Crystal continuous pulling method and apparatus), is basically used to put a raw material polycrystalline silicon in a quartz crucible in a single crystal furnace.
  • a rod-shaped seed crystal (called seed crystal) having a diameter of only 10 mm is immersed in the melt.
  • seed crystal a rod-shaped seed crystal having a diameter of only 10 mm is immersed in the melt.
  • the silicon atoms in the melt form regular crystals at the solid-liquid interface along the arrangement of the silicon atoms of the seed crystal, becoming a single crystal.
  • the silicon atoms in the melt continue to crystallize on the previously formed single crystal and continue its regular atomic arrangement. If the entire crystallization environment is stable, crystals can be formed in a recurring manner, and finally a cylindrical silicon single crystal crystal in which the atoms are arranged neatly, that is, a silicon single crystal ingot is formed.
  • the crystal diameter becomes thicker, and the increase in the speed can make the diameter thinner, and the increase in temperature can suppress the crystallization rate.
  • the crystal becomes slower and the diameter becomes thinner it is controlled by lowering the pulling speed and lowering the temperature. After seeding and crystal pulling, a narrow neck with a diameter of 3 to 5 mm is taken out to eliminate crystal dislocations. This process is called seeding.
  • the single crystal diameter is then amplified to the process requirements and entered into the equal diameter growth stage until most of the silicon melt crystallizes into a single crystal ingot, and then a small amount of residual material remains.
  • the floating zone melting method for example, similar to the CN1139678 patent (method of single crystal growth), is to vertically fix the pre-treated polycrystalline silicon rod and the seed crystal together in the zone melting furnace to sense the polycrystalline silicon rod by high frequency. The heating is directed from the beginning to the end to form a crystal of the molten zone, and the silicon rod is repeatedly purified several times.
  • the technical solution disclosed in the patent of CN1095505 (the straight-pull zone melting method for producing single crystal silicon) combines the above two methods.
  • the present invention is directed to an apparatus and process for producing silicon wafers in a continuous, large-scale and low-cost manner in order to increase wafer productivity and reduce production costs.
  • the technical solution adopted by the present invention is as follows:
  • a manufacturing process of a float silicon wafer which is obtained by a continuous process of melting, crystal forming, grinding and cutting:
  • A The silicon raw material is melted, and the silicon raw material is added to the crucible by a feeding device.
  • the temperature in the crucible is set to be higher than the melting point of the silicon by 1421 ° C, and the solid silicon raw material is melted into liquid silicon at a temperature above 1421 ° C.
  • Argon gas or other inert gas is continuously removed from the top of the silicon through the feeding port;
  • the crystallization zone trough is connected with the crucible liquid discharge port, the tank is filled with liquid tin metal or other alloy whose melting point is lower than the melting point of silicon as the carrier, and the temperature near the discharge port is higher than the melting point of silicon 1421 ° C The temperature at the other end is between 1421 ° C and 400 ° C.
  • the liquid silicon moves to the end of the float forming zone, the liquid silicon solidifies into a solid state, and the upper layer of the corresponding silicon surface in the crystallization zone is relatively close to the drain of the crucible.
  • the plate is adjusted to control the thickness of the wafer, and the temperature is set in a molten state in which the molten metal having a melting point lower than the melting point of the silicon is filled in the bottom of the trough, and the upper layer of the corresponding silicon surface is relatively close to the baffle discharge opening of the crucible discharge port. Control the thickness of the wafer;
  • the metal having a melting point lower than the melting point of silicon at the bottom of the crystallization zone is tin metal.
  • the device adopting the manufacturing process of the float silicon wafer the crucible is rectangular, the feeding port is provided with a gas nozzle in the direction of the pot, and the argon gas or other inert gas is continuously discharged, and the crystallization zone trough is connected with the dip pan discharge port, crystallizing
  • the upper layer of the corresponding silicon surface is provided with a baffle relatively close to the drain port of the crucible.
  • the liquid discharge port of the crucible is set to U shape, and the liquid discharge port is lower than the liquid level of the carrier such as liquid tin in the float crystal region.
  • the invention adopts a continuous process for preparing polycrystals or single crystals, and in particular, the crystal forming process adopts tin metal which has a large difference from the melting point of silicon, so that the invention achieves an unexpected effect.
  • Tin has a melting point of 292 V and a boiling point of 2270 ° C.
  • the use of tin not only allows the silicon to float on the surface layer of the tin liquid, but also allows harmful heavy metal impurities of the silicon single crystal to diffuse to the surface of the silicon single crystal, and finally to the molten tin. in.
  • the drawing is a schematic diagram of the equipment for the production process of a float silicon wafer.
  • 1-feeding device 2-tank, 3-tank drain, 4-crystallization zone chute, 5-baffle, 6-cooling section, 7-grinding section, 8-cut wafer area.
  • the silicon raw material is added to the crucible 2 through a feeding device, and the temperature in the crucible is set to be higher than the melting point of the silicon by 1421 ° C, and the solid silicon raw material is melted into liquid silicon at 1421 ° C or higher.
  • the design of the crucible is different from that of ordinary crucibles. Gas nozzles can be installed near the feeding device 1 to continuously remove argon or other inert gases to avoid air contact.
  • the shape of the crucible is rectangular, one end is the feeding device 1, the other end is the crucible liquid discharge port 3, and the crucible liquid discharge port 3 is designed at the bottom of the crucible.
  • Such a crucible design allows continuous feeding and continuous smelting to produce liquid silicon. Unlike the existing Czochralski single crystal method and the casting method, the two can only be intermittently produced, with low productivity and high cost.
  • the liquid discharge port 3 of the crucible is set to a U shape, and the discharge port is lower than the liquid surface of the carrier such as liquid tin in the float crystal region. Since the density of the liquid silicon is smaller than the density of the liquid carrier, the liquid silicon will automatically float, which can reduce the liquid. Splash caused by discharge.
  • a float crystallized zone Connected to the drain port 3 of the crucible is a float crystallized zone.
  • the crystal zone is filled with liquid tin metal or other germanium as a carrier. Since the buoyancy of the liquid silicon is smaller than the carrier, the liquid silicon floats on it.
  • the carrier temperature near the discharge port is higher than the melting point of silicon. Liquid silicon will continue to move forward along the crystallization zone along with gravity.
  • the high temperature resistant baffle 5 passes, the liquid silicon flowing there will be formed to a certain thickness due to the gap between the baffle 5 and the carrier. 5
  • High-precision stepper motor and computer control can control the gap between the baffle and the carrier to the micron level, and control the thickness of the solidified wafer to 1000 microns.
  • the carrier temperature drops to 1300 - 1400 °C.
  • the liquid silicon crystallizes into solid silicon to form a solid silicon plate of a certain thickness.
  • seed crystal flat single crystal seed crystal
  • the silicon atoms in the molten metal are aligned along the silicon atom arrangement of the seed crystal.
  • a regular crystal is formed on the liquid interface to form a single crystal.
  • the seed crystal is slightly rotated and stretched forward, and the silicon atoms in the melt continue to crystallize on the previously formed single crystal and continue its regular atomic arrangement.
  • the condensed silicon plate is mechanically transferred to the cooling section 6.
  • the cooling method is conductive hot plate cooling, or it can be designed as a convection type for airflow cooling.
  • the cooling method affects the shape and size of the grains in the silicon plate.
  • the silicon plate After cooling, the silicon plate continues to advance to the sanding and polishing section 7, where the entire silicon plate is polished and polished, and the process here is continuous and uninterrupted.
  • the abrasive sheet is mounted on the top and reciprocally moved in the horizontal direction. Different grades of abrasive sheets can be arranged along the direction of advancement of the silicon plate, from rough grinding to precision polishing. Whether it is CZ Czochralski single crystal method or zone melting method, it is first made into ingot, then cut into silicon wafer, and then polished and polished. Since silicon is a brittle material, the cutting method is different from that of metal, and it is technically in the form of sanding. The cutter is used to squeeze the material section.
  • microcracks are formed on the fracture surface, and it is necessary to remove a certain thickness of the material by grinding to completely eliminate the microcrack. Nearly half of the material is wasted during the production process.
  • the invention is pre-formed to a certain thickness, eliminating the need for cutting, which can greatly reduce the cost of the material, which is about 50% or more.
  • the polished wafer is cut into silicon wafers of different sizes by a diamond cutter or laser cutter in the cutting zone (8).
  • the wafers are turned away from the production line, polished, and placed in a package.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

La présente invention concerne un procédé de la méthode du flottage de production de tranches de silicium, comprenant des processus successifs de fusion, de cristallisation pour moulage, de brunissage et de découpe. Le procédé comprend: l'ajout d'une matière première de silicium dans un creuset (2) via une unité d'alimentation (1), la température dans le creuset étant établie au-dessus de la température de fusion de silicium de 1421, la matière première de silicium étant fondue en du silicium liquide au-dessus de la température de 1421; la décharge en continu de gaz argon et d'autres gaz inertes via un orifice d'alimentation sur le silicium liquide; une fente de zone de cristallisation (4) étant en communication avec une ouverture d'évacuation du creuset (3), la fente étant remplie d'un métal à base d'étain liquide ou d'autres alliages comme support dont les températures de fusion sont inférieures à celle du silicium; la température à proximité de l'orifice d'évacuation étant supérieure à la température de fusion de silicium de 1421, la température de l'autre extrémité étant comprise entre 1421 et 400. Lorsque le silicium liquide se déplace vers l'extrémité de la zone de moulage du processus de flottage, le silicium liquide va se solidifier vers l'état solide; un tampon (5) est installé en haut de la zone de cristallisation adjacent à l'ouverture d'évacuation du creuset (3) pour contrôler l'épaisseur des tranches de silicium; après le moulage, la tranche de silicium cristallisée est soumise à une section de refroidissement (6), une section de brunissage et de polissage (7); la découpe appropriée de la tranche est effectuée au niveau de la section de découpe (8). Le procédé de flottage convient à la production de piles solaires et de tranches de silicium semi-conductrices.
PCT/CN2006/000229 2006-02-16 2006-02-16 Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant WO2007093082A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800019054A CN101133194B (zh) 2006-02-16 2006-02-16 浮法硅晶片的制作工艺和设备
PCT/CN2006/000229 WO2007093082A1 (fr) 2006-02-16 2006-02-16 Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2006/000229 WO2007093082A1 (fr) 2006-02-16 2006-02-16 Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant

Publications (1)

Publication Number Publication Date
WO2007093082A1 true WO2007093082A1 (fr) 2007-08-23

Family

ID=38371167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000229 WO2007093082A1 (fr) 2006-02-16 2006-02-16 Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant

Country Status (2)

Country Link
CN (1) CN101133194B (fr)
WO (1) WO2007093082A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010056350A2 (fr) * 2008-11-14 2010-05-20 Carnegie Mellon University Procedes de coulage par un processus flotte et appareils associes
EP2319089A2 (fr) * 2008-08-15 2011-05-11 Varian Semiconductor Equipment Associates Contrôle de l'épaisseur d'une feuille
CN109778307A (zh) * 2019-02-15 2019-05-21 江苏大学 一种适用于单晶硅水平生长机构的过程控制系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764901B2 (en) * 2010-05-06 2014-07-01 Varian Semiconductor Equipment Associates, Inc. Removing a sheet from the surface of a melt using elasticity and buoyancy
CN102071405B (zh) * 2010-12-03 2012-04-18 湖南大学 一种多晶硅薄膜制备方法
CN102260903B (zh) * 2011-07-11 2013-07-24 浙江碧晶科技有限公司 一种生长薄板硅晶体的方法
CN103063692A (zh) * 2012-12-31 2013-04-24 上海申和热磁电子有限公司 一种硅片体内重金属的焙烤方法及检测方法
CN110172729B (zh) * 2019-06-19 2020-12-08 江阴市广跃新材料科技有限公司 一种浮法硅片的生产设备及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102891A (ja) * 1982-11-30 1984-06-14 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
CN1033981A (zh) * 1987-01-02 1989-07-19 Ppg工业公司 均化平板玻璃的方法及其装置
CN1037050A (zh) * 1988-03-11 1989-11-08 单一检索有限公司 改进的溶液生长硅薄膜的方法
CN1095505C (zh) * 2000-03-30 2002-12-04 天津市环欧半导体材料技术有限公司 生产硅单晶的直拉区熔法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102891A (ja) * 1982-11-30 1984-06-14 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
CN1033981A (zh) * 1987-01-02 1989-07-19 Ppg工业公司 均化平板玻璃的方法及其装置
CN1037050A (zh) * 1988-03-11 1989-11-08 单一检索有限公司 改进的溶液生长硅薄膜的方法
CN1095505C (zh) * 2000-03-30 2002-12-04 天津市环欧半导体材料技术有限公司 生产硅单晶的直拉区熔法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ET AL.: "Xianhua: Tin defect of the float glass", GLASS, vol. 24, no. 2, 1997, pages 36 - 37 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2319089A2 (fr) * 2008-08-15 2011-05-11 Varian Semiconductor Equipment Associates Contrôle de l'épaisseur d'une feuille
EP2319089A4 (fr) * 2008-08-15 2011-10-26 Varian Semiconductor Equipment Contrôle de l'épaisseur d'une feuille
US8475591B2 (en) 2008-08-15 2013-07-02 Varian Semiconductor Equipment Associates, Inc. Method of controlling a thickness of a sheet formed from a melt
WO2010056350A2 (fr) * 2008-11-14 2010-05-20 Carnegie Mellon University Procedes de coulage par un processus flotte et appareils associes
WO2010056350A3 (fr) * 2008-11-14 2011-04-14 Carnegie Mellon University Procedes de coulage par un processus flotte et appareils associes
US9050652B2 (en) 2008-11-14 2015-06-09 Carnegie Mellon University Methods for casting by a float process and associated apparatuses
CN109778307A (zh) * 2019-02-15 2019-05-21 江苏大学 一种适用于单晶硅水平生长机构的过程控制系统

Also Published As

Publication number Publication date
CN101133194A (zh) 2008-02-27
CN101133194B (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
TWI463043B (zh) 板厚控制
Ciszek Techniques for the crystal growth of silicon ingots and ribbons
WO2007093082A1 (fr) Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant
JP4203603B2 (ja) 半導体バルク多結晶の作製方法
US8617447B2 (en) Methods of making an unsupported article of pure or doped semiconducting material
US8398768B2 (en) Methods of making an article of semiconducting material on a mold comprising semiconducting material
WO1993012272A1 (fr) Procede et appareil de coulee d'un lingot de silicium cristallin par fusion par bombardement electronique
Arnberg et al. State-of-the-art growth of silicon for PV applications
WO2013007108A1 (fr) Procédé de croissance d'un cristal de silicium à plaque mince
US20110168081A1 (en) Apparatus and Method for Continuous Casting of Monocrystalline Silicon Ribbon
JPWO2002068732A1 (ja) 固形状多結晶原料のリチャージ管及びそれを用いた単結晶の製造方法
JP4060106B2 (ja) 一方向凝固シリコンインゴット及びこの製造方法並びにシリコン板及び太陽電池用基板及びスパッタリング用ターゲット素材
EP2430221A1 (fr) Procédés de fabrication d'un article en matériau semi-conducteur sur un moule comprenant des particules d'un matériau semi-conducteur
KR101756402B1 (ko) 용융물 정제 및 배송 시스템
US8603242B2 (en) Floating semiconductor foils
KR20100113925A (ko) 연속주조법을 이용한 태양전지용 실리콘 기판 직접 제조 장치, 이를 이용하여 제조된 태양전지용 실리콘 기판 및 그 제조 방법
US4561930A (en) Process for the production of coarsely crystalline silicon
JP5201446B2 (ja) ターゲット材およびその製造方法
WO2003029143A1 (fr) Plaque de silicium et cellule solaire comprenant cette plaque
JP2000001308A (ja) 多結晶シリコン鋳塊の製造方法及びその製造装置
RU2641760C1 (ru) Способ очистки поверхности расплава при выращивании монокристаллов германия
CN111270302B (zh) 一种高品质半导体硅材料耗材生长方法
Arnberg et al. Solidification of silicon for electronic and solar applications
US8501139B2 (en) Floating Si and/or Ge foils
US11661672B2 (en) Method for producing a sheet from a melt by imposing a periodic change in the rate of pull

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680001905.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06705650

Country of ref document: EP

Kind code of ref document: A1