WO2007086550A1 - Laminate for wiring board - Google Patents
Laminate for wiring board Download PDFInfo
- Publication number
- WO2007086550A1 WO2007086550A1 PCT/JP2007/051352 JP2007051352W WO2007086550A1 WO 2007086550 A1 WO2007086550 A1 WO 2007086550A1 JP 2007051352 W JP2007051352 W JP 2007051352W WO 2007086550 A1 WO2007086550 A1 WO 2007086550A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyimide resin
- laminate
- aromatic
- resin layer
- dianhydride
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1085—Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0346—Organic insulating material consisting of one material containing N
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
Definitions
- the present invention relates to a laminate for a wiring board used for a flexible printed board, an HDD suspension, and the like, and an aromatic polyimide suitable for the laminate.
- Polyimide resin having excellent properties such as heat resistance, electrical properties, and moisture resistance is widely used for an insulating layer of a flexible printed circuit board (hereinafter referred to as FPC) generally used in electronic devices.
- FPC flexible printed circuit board
- Conventional polyimide resin has a rigid structure and high elastic modulus.
- mounting failure such as peeling or disconnection due to repulsive force occurs, and the radius at the time of bending increases.
- extra space was required.
- electronic devices have been rapidly increasing in performance, functionality, and miniaturization, and with this, electronic components used in electronic devices and the boards on which they are mounted have higher density and higher performance.
- the demand for performance is increasing.
- FPC fine wire processing, multilayer formation, etc. have been carried out, and thinning and dimensional stability have been strictly demanded for the materials constituting FPC.
- Patent Document 1 a method of blending a low-permeability filler in conventional polyimide resin, a method of using polyimide siloxane (Patent Documents 2 and 3), epoxy resin A method of mixing fat or the like (Patent Document 4) is well known.
- Patent Document 4 a method of blending a low-permeability filler in conventional polyimide resin, a method of using polyimide siloxane (Patent Documents 2 and 3), epoxy resin A method of mixing fat or the like (Patent Document 4) is well known.
- Patent Document 4 a method of blending a low-permeability filler in conventional polyimide resin, a method of using polyimide siloxane (Patent Documents 2 and 3), epoxy resin A method of mixing fat or the like (Patent Document 4) is well known.
- This makes it possible to easily obtain a polyimide film having an arbitrary modulus of elasticity from 1 X 10 5 to 1 X 10 1Q Pa.
- the heat resistance decreases, the coefficient
- Patent Document 5 discloses a method for providing an FPC substrate having excellent adhesion and thermal dimensional stability by multilayering a polyimide resin layer with a plurality of polyimide resins having different thermal expansion coefficients. Yes.
- the polyimide resin used there has a high hygroscopic property, it is a laminated body due to swelling when immersed in a solder bath, poor connection due to dimensional change after moisture absorption during thin wire processing, and dimensional change after moisture absorption. There was concern that it would cause problems such as warping.
- Non-Patent Document 1 and Non-Patent Document 2 there are reports on polyimide resin using diamine having a fluorene skeleton. However, the polyimide resins described in these documents do not satisfy the performance required for use in precision electrical and electronic equipment materials.
- the drilling process for a wiring board laminate generally used for a flexible printed wiring board is a force in which a dry etching method using an ultraviolet laser processing method or a plasma processing method is generally performed.
- the processing equipment to be used is expensive and has a high running cost such as the cost of gas used, and the mass productivity is poor.
- materials that can be wet-etched with organic alkalis or aqueous alkali solutions have been demanded.
- the higher the polyimide resin etch rate the higher the moisture absorption rate, and the higher the etch rate.
- the development of materials that are fast and have low moisture absorption has been desired.
- the FPC manufacturing method it is common to form a circuit after laminating a conductor layer such as a copper foil directly or via an adhesive on one or both sides of a polyimide resin layer.
- the polyimide resin layer is obtained by dehydrating and cyclizing a polyimide precursor resin (polyamic acid) produced from a tetracarboxylic acid component and a diamine component at a high temperature.
- polyamic acid polyamic acid
- the laminate for wiring boards used in FPC is obtained by applying a polyamic acid solution directly to a thin metal foil and curing it by heating.
- Patent Document 1 Japanese Patent Laid-Open No. 2005-23183
- Patent Document 2 JP 2000-103848 A
- Patent Document 3 Japanese Patent Laid-Open No. 2003-20404
- Patent Document 4 Japanese Patent Laid-Open No. 2005-36136
- Patent Document 5 Japanese Patent Laid-Open No. 8-250860
- Non-Patent Document 1 Journal of the Chemical Society of Japan, 1977, (5), 701-705
- Non-Patent Document 2 Journal of Polymer Science Part B, 33, 1907-1915 (1995)
- An object of the present invention is to provide a wiring board laminate having a polyimide resin layer having excellent heat resistance and low linear expansion coefficient. Another object is to provide a laminate for a wiring board having a polyimide resin layer that achieves both the above characteristics and low elasticity. Still another object is to provide a laminate for a wiring board having excellent heat resistance and thermal dimensional stability, and having a polyimide resin layer having low moisture absorption, low humidity expansion coefficient, and good etching property. is there. Another object is to provide an aromatic polyimide suitable for the wiring board laminate and an aromatic polyamic acid which is a precursor thereof. Means for solving the problem
- At least one layer of the polyimide resin layer has a structural unit represented by the following general formula (1): It is a laminate for a wiring board, comprising a polyimide resin containing 10 mol% or more.
- Ar is a tetravalent organic group having one or more aromatic rings, and Ar is represented by the following formula (a) or (b):
- the structural unit represented by the general formula (1) specifically includes those represented by the following formulas (al) and (bl).
- Ar is a tetravalent organic group having one or more aromatic rings.
- At least one polyimide resin layer constituting the laminate of the present invention contains 10 mol% or more of either or both of the structural units represented by the formulas (al) and (bl).
- the present invention is an aromatic polyimide resin or an aromatic polyamic acid having 10 mol% or more of a structural unit represented by the above formula (al) or the following formula (a2).
- Ar is a tetravalent organic group having one or more aromatic rings.
- the laminate for a wiring board of the present invention has a metal layer on one side or both sides of a single layer or multilayer polyimide resin layer.
- a metal layer used for flexible printed wiring board applications
- a copper foil with a thickness of 5-50 / ⁇ ⁇ is suitable, and when used as a substrate for an HDD suspension, a stainless steel with a thickness of 5-70 ⁇ m, preferably 10-70 ⁇ m. Foil is suitable.
- At least one of the polyimide resin layers is a polyimide resin layer containing 10 mol% or more of the structural unit represented by the general formula (1) (hereinafter also referred to as polyimide resin layer (1)). )
- a method for producing polyimide resin is generally a method in which diamine and aromatic dianhydride are reacted in a solvent. Therefore, this method will be described as a representative example, but the polyimide used in the present invention will be described.
- the method for producing rosin is not limited to this.
- Ar is a tetravalent organic group having one or more aromatic rings.
- the aromatic dianhydride is not particularly limited, and a known one can be used. Specific examples include pyromellitic dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 2,2', 3,3'-benzophenone tetracarboxylic dianhydride 2,3,3 ', 4 benzophenone tetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic acid Dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 4,8-dimethyl-1,2, 3,5,6,7-Hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl
- an aromatic dianhydride specifically, the CTE and thermal decomposition temperature of the polyimide obtained by polymerization and heating, the glass transition temperature (Tg), the humidity expansion coefficient, etc. are required. It is preferable to select so as to express the characteristics. Among these, pyromellitic dianhydride (PMDA) is preferably used from the viewpoint of low elasticity and low CTE, and it is preferable to use this as the main component of aromatic dianhydride. This is effective for polyimide resin containing 10 mol% or more of the structural unit represented by the formula (bl).
- PMDA pyromellitic dianhydride
- pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-biphenyl-tetracarboxylic dianhydride (BPDA), naphthalene-2,3 , 6,7-Tetracarboxylic dianhydride (NTCDA), naphthalene-1,4,5,8-tetracarboxylic dianhydride, 3,3 ", 4,4" -p-terphenyl tetracarboxylic acid Dianhydrides, 4,4, -oxydiphthalic dianhydride, 3,3,4,4, -benzophenonetetracarboxylic dianhydride and bis (2,3-dicarboxyphenol) sulfone dianhydride
- at least one aromatic tetracarboxylic acid selected from the group consisting of PMDA, NTCDA and BPDA is particularly preferable. This is effective for polyimide resin containing 10 mol% or more of the structural unit represented by
- the diamine used as an essential component in the synthesis of the polyimide resin used in the present invention is An aromatic diamine represented by the following formula (2) (hereinafter also referred to as DADBP) or an aromatic diamine represented by the formula (3) (hereinafter also referred to as ABF).
- DADBP gives the structural unit represented by formula (al)
- ABF gives the structural unit represented by formula (bl).
- a polyimide resin having a structural unit represented by the formula (al) and a polyamic acid which is a precursor thereof are novel.
- the aromatic diamine represented by the formula (2) is obtained by acidifying the ketone portion of 1,5-dinitrofluorone to an ester group with a peracid to combine 3,8-dinitrodibenzopyranone. And the ability to reduce the two -tro groups to diamine to give 3,8-diaminodibenzopyranone as the desired aromatic diamine.
- the polyimide resin used in the present invention is preferably obtained by reacting an aromatic dianhydride with a diamine containing 10 mol% or more of the aromatic diamine represented by the formula (2) or (3). Can be obtained.
- other diamines can be used in a proportion of 90 mol% or less.
- the polyimide can be used. Structural unit represented by the general formula (1), at least one layer 10 to 100 mole 0/0 of polyimide ⁇ layer, preferably 50 to 100 mole 0/0, more preferably 70 to 100 mole 0/0 It is good to include.
- the amount of DADBP or ABF in Jiamin is less than 10 mole 0/0, it is difficult to obtain a polyimide ⁇ to satisfaction of ⁇ and low CTE. Also, if the amount of ABF is small, it is difficult to obtain a polyimide resin satisfying low elasticity and low C C. However, increasing the amount of ABF decreases CT ⁇ but may increase the elastic modulus. From this viewpoint, the amount of ABF is particularly preferably 30 to 60 mol%. Also, if the amount of DADBP is small, it will satisfy low moisture absorption and low CTE. It becomes difficult to obtain an additional polyimide resin.
- the diamine used in the copolymerization is not particularly limited. Dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 3,3, -dimethyl-4,4, -diaminodiphenylmethane, 3,5,3, , 5, -tetramethyl-4,4, -diaminodiphenylmethane,
- Examples include 2.5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, and piperazine. These can be used alone or in combination of two or more.
- DAPE 4,4, -diaminodiphenyl ether
- PDA paraf-rangeamine
- m -TB 2,2, -dimethyl-4,4, -diaminobiphenyl
- MDA 4,4'-diaminodiphenylmethane
- the use ratio thereof is preferably in the range of 40 to 70 mol% of the total diamines.
- the aromatic polyamic acid for forming the polyimide resin layer uses substantially the same molar amount of the aromatic diamine component and the aromatic tetracarboxylic dianhydride component shown above as an organic electrode. It can manufacture by the well-known method of superposing
- the polyamic acid solution obtained by the above reaction is applied to a metal foil serving as a support or an adhesive layer formed on a metal foil using an applicator, and the temperature is 150 ° C or lower. After pre-drying at a temperature of 2 to 20 minutes, the heat treatment is usually performed at a temperature of about 130 to 360 ° C for about 2 to 30 minutes to remove the solvent and imidize, thereby obtaining the laminate for a wiring board of the present invention.
- the metal foil used is preferably a copper foil or SUS foil with a preferred thickness range of 50 ⁇ m or less, preferably 5 to 40 ⁇ m. A thinner metal foil is suitable for forming a fine pattern. From such a viewpoint, a range of 8 to 30 ⁇ m is preferable.
- the degree of polymerization of the polyamic acid and polyimide is 50,000 to 800,000, preferably 60,000 to 300,000 as the weight average molecular weight (Mw) of the polyamic acid solution.
- Mw weight average molecular weight
- the weight average molecular weight can be measured from GPC.
- the polyimide resin layer may be a single layer or a multilayer.
- a multilayer polyimide resin layer the operation of applying a polyamic acid solution and drying is repeated, and then heat treatment is performed to remove the solvent, and this is further heat-treated at a high temperature to imidize the multilayer structure.
- the polyimide resin layer can be formed.
- the total thickness of the formed polyimide resin layer is preferably in the range of 3 to 75 / ⁇ .
- at least one of the layers must be a polyimide resin layer (1) containing 10 mol% or more of the structural unit represented by the general formula (1), and the thickness thereof is polyimide. 30% or more, preferably 50% or more, more preferably 70% or more of the entire resin layer.
- thermoplastic resin layer a thermoplastic resin having a Tg of 250 ° C or higher is used for the layer in contact with the metal foil at this time, better adhesion can be obtained.
- aromatic diamine used in the thermoplastic resin layer the aromatic diamines exemplified above can be used, and among these, 2,2-bis (4-aminophenoxyphenol) can be used.
- BAPP Propane
- BAPS bis [4- (4-aminophenoxy) phenol] sulfone
- BAPS 3,4'-diaminodiphenyl ether (3,4, -DAPE)
- 4,4'-diaminodiphenyl ether (4,4'-DAPE) 1,4-bis (4-aminophenoxy) benzene
- TP E-Q 4,4'-bis (4-aminophenoxy) biphenyl
- BAPB 4,4'-bis (3-aminophenoxy) benzene
- APB 1,3-bis (4-aminophenoxy) benzene
- TPE-R 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane
- DANPG 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane
- the aromatic acid dianhydride the aromatic acid dianhydrides exemplified above can be used.
- pyromellitic dianhydride (PMDA) 3,3 ', 4,4 '-Biphenyltetracarboxylic dianhydride (BPDA), 3,3', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ', 4,4'- diphe -Lulsulfonetetracarboxylic dianhydride (DSDA), 4,4, -oxydiphthalic acid dianhydride (ODPA) and the like are preferably used.
- the preparation of the polyamic acid solution for forming the thermoplastic resin layer may be the same as that described above.
- thermocompression bonding In the case of producing a wiring board laminate having metal foil on both sides, a direct or adhesive layer is formed on the polyimide resin layer of the single-sided wiring board laminate obtained by the above method. After the formation, the metal foil is obtained by thermocompression bonding.
- the hot press temperature at the time of thermocompression bonding is not particularly limited, but it is desirable that the temperature is higher than the glass transition temperature of the polyimide resin used.
- the hot press pressure is preferably in the range of 1 to 500 kg / cm 2 depending on the type of press equipment used.
- the preferable metal foil used at this time can be the same as the above-mentioned metal foil, and the preferable thickness thereof is 50 ⁇ m or less, more preferably in the range of 5 to 40 ⁇ m.
- the polyimide resin layer constituting the laminate for a wiring board of the present invention includes an aromatic diamine represented by the formula (2) or (3) and another aromatic diamine used in combination with the aromatic diamine.
- Aromatic tetra force The properties can be controlled by various combinations with rubonic acid or its acid dianhydride. Among them, a glass transition temperature force that is an index of heat resistance is 3 ⁇ 4 oo ° c or more, and a polyimide resin layer having a linear expansion coefficient of 30 ppm / ° C or less, preferably 25 ppm / ° C or less is preferable. I like it.
- the glass transition temperature is 300 ° C or higher, and the linear expansion coefficient is 30ppm / ° C or lower, preferably 25ppm / It is preferable to use a polyimide resin layer having a temperature of not more than ° C and a moisture absorption of not more than 1.0 wt%, preferably not more than 0.7 wt%.
- a preferred polyimide resin layer has a glass transition temperature of 350 to 450 ° C, a linear expansion coefficient of force ⁇ to 25ppm / ° C, a moisture absorption of 0.01 to 0.7wt%, and a humidity expansion coefficient of 9ppm /% RH or less, Etching rate when etching at 80 ° C is 10 m / min or more using 30 wt% potassium hydroxide aqueous solution containing ethylenediamine llwt% and ethylene glycol 22 wt% as the etchant.
- the polyimide resin layer is a single layer, the above can be easily satisfied by using the polyimide resin layer (1), especially by increasing the structural unit represented by the formula (al).
- the polyimide resin layer is composed of two or more layers including other polyimide resin layers other than the polyimide resin layer (1), the types and thicknesses of the other polyimide resin layers are appropriately adjusted.
- the polyimide resin having 10 mol% or more of the structural unit represented by the formula (al) is a novel polyimide resin.
- This polyimide resin has an elastic modulus of 4.0 to 10 GPa at 23 ° C. It is preferable that the moisture absorption rate is 0.7 wt% or less, the humidity expansion coefficient at 30 to 50% RH is 9 ppm /% RH or less, and the CTE force S is 20 ppm Z ° C. or less.
- the polyimide resin is obtained by imidizing polyimide acid having 10 mol% or more of the structural unit represented by the formula (a2).
- the modulus at 25 ° C is 4.0 GPa or less, preferably 1 to 3 GPa, and CTE is 30 ppmZ ° C or less. Preferably, it is 1 to 25 ppm Z ° C.
- Tg is 350 ° C. or higher, preferably 350 to 500 ° C.
- the thermal decomposition temperature (Td5%) which is a 5% weight loss temperature in thermogravimetric analysis, should be 500 ° C or higher. If the elastic modulus of the polyimide resin layer exceeds 4.
- DADBP 3,8-diaminodibenzopyranone
- a 3mm x 15mm size polyimide film was subjected to a tensile test in a temperature range of 30 ° C force and 260 ° C at a constant temperature increase rate while adding 5.0g of load with a thermomechanical analysis (TMA) device.
- TMA thermomechanical analysis
- the linear expansion coefficient (ppm / ⁇ ) was also measured for the elongation force of the polyimide film with respect to temperature.
- An etching resist layer is provided on the copper foil of a 35 cm x 35 cm polyimide Z copper foil laminate, and this is arranged through a mask so that 16 points of lmm diameter are arranged at 10 cm intervals on four sides of a 30 cm square. Then, exposure and development were performed to obtain a polyimide film for CHE measurement having the above 16 copper foil remaining points. After drying this film at 120 ° C for 2 hours, leave it at 23 ° C / 30% RH and 80% RH thermostatic oven for 24 hours at each humidity and measure with a two-dimensional length measuring machine. The dimensional change force between the copper foil points at each humidity was determined as the humidity expansion coefficient (ppm /% RH).
- the etching rate is measured using a laminate in which a polyimide layer is formed on a copper foil and using a reference etching solution (ethylene diamine llwt%, ethylene glycol 22 wt%, potassium hydroxide 30 wt% and water 37 wt%).
- a reference etching solution ethylene diamine llwt%, ethylene glycol 22 wt%, potassium hydroxide 30 wt% and water 37 wt%.
- the thickness of the entire laminate having a polyimide layer formed on a copper foil was measured, and then immersed in the above standard etching solution at 80 ° C. while leaving the copper foil in a polyimide film.
- the time when all the fat was removed was measured, and the value obtained by dividing the initial thickness by the time required for etching was taken as the etching rate. It should be noted that the etching time is long, and for polyimide resin, the value obtained by dividing the amount of decrease in film thickness by the time required for etching
- a tension tester was used to pull a polyimide film with a width of 12.4mm and a length of 160mm at a load of 50kg / min. )
- the diamines shown in Table 1 were dissolved in the solvent DMAc with stirring in a 200 ml cellable flask under a nitrogen stream. Then, tetracarboxylic dianhydride shown in Table 1 was added. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction, and a yellow-brown viscous solution of polyamic acids A to I serving as a polyimide precursor was obtained.
- the weight average molecular weight (Mw) of each polyamic acid solution was in the range of about 100,000 to 250,000, and it was confirmed that a polyamic acid with a high degree of polymerization was produced.
- Table 1 shows the solid content and solution viscosity of the polyamic acid.
- the solid content is a weight ratio of the polyamic acid to the total amount of the polyamic acid and the solvent.
- the solution viscosity was measured using an E-type viscometer. The results are summarized in Table 1.
- surface shows a compounding quantity (g).
- Each solution of polyamic acid A to I was applied onto a copper foil using an applicator so that the film thickness after drying was about 15 m, dried at 130 ° C for 2.4 minutes, and then further 130 ° C, Stepwise heat treatment was performed at 160 ° C, 200 ° C, 230 ° C, 280 ° C, 320 ° C, and 360 ° C for 2 to 12 minutes to form a polyimide layer on the copper foil.
- Figures 1 to 6 show the results of IR structural analysis of each polyimide film.
- the copper foil is removed by etching using the strength of the laminate and the salty ferric aqueous solution.
- a polyimide film of ⁇ I was prepared, and the coefficient of thermal expansion (CTE), glass transition temperature (Tg), tensile modulus, 2% weight loss temperature (Td2%), moisture absorption coefficient and humidity expansion coefficient (CHE) were determined.
- the polyimide film of A-1 means that it was obtained from the polyamic acid of A-I, respectively.
- the polyimides of the examples exhibit a low coefficient of thermal expansion required for insulating resin applications such as flexible printed laminates, and have excellent heat resistance, that is, 2% weight reduction temperature of 500 ° C or higher. However, it showed a low moisture absorption rate and humidity expansion coefficient. In addition, the etching rate could be increased. On the other hand, the polyimide of the comparative example had a high moisture absorption rate and humidity expansion coefficient.
- the diamine shown in Table 3 was dissolved in 85 g of solvent DMAc with stirring force S in a 100 ml separable flask.
- the tetracarboxylic dianhydride shown in Table 3 was prepared. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a dark brown viscous solution of four types of polyamic acid solutions to be polyimide precursors.
- the viscosities (cP) of the respective polyamic acid solutions J to M obtained in Synthesis Examples 10 to 13 are in the range of 1,000 to 15,000.
- the values are shown in Table 3.
- the numerical value of the monomer component of the raw material in the table indicates the blending amount (g).
- the polyamic acid solutions J to M obtained in the synthesis examples were each applied onto a copper foil having a thickness of 12 ⁇ m using an applicator so that the film thickness after drying was about 20 ⁇ m. 130 minutes after drying for 3 minutes.
- C, 160 ° C, 200 ° C, 230 ° C, 280 ° C, 320 ° C, 360 ° C, and heat treatment step by step for 2-12 minutes each to form a single polyimide layer on the copper foil Four types of laminates were obtained. For each of the obtained laminates, a copper foil was etched away using an aqueous salt and ferric iron solution to create a polyimide film, and an elastic modulus'), a coefficient of thermal expansion (CTE), and a glass transition temperature (Tg). The thermal decomposition temperature (Td5) was determined. Table 4 shows the measurement results.
- the laminate for a wiring board of the present invention has the characteristics of a low linear expansion coefficient and excellent heat resistance, it can be widely applied to electronic material parts. It is especially useful for applications such as FPC and HDD suspension boards.
- the polyimide resin or polyimide resin layer containing the structural unit represented by the formula (al) has excellent heat resistance, low moisture absorption, and excellent dimensional stability, and is free from problems caused by the adhesive layer. It also has the effect of suppressing warping due to humidity. Further, it has a feature that the etching rate of the polyimide resin layer of the insulating layer is excellent, and can be widely applied to parts in the field of electronic materials.
- the polyimide resin layer containing the structural unit represented by the formula (bl) has a low linear expansion coefficient, heat resistance, and low elasticity, it can be widely applied to the above applications.
- the polyamic acid represented by the formula (a2) can be dehydrated and cyclized to give a polyimide resin having excellent heat resistance and low thermal expansion 'low moisture absorption' and low moisture absorption expansion. . That is, the polyimide resin represented by the formula (al) exhibits the above characteristics. Therefore, it can be used in various fields including electric and electronic fields, and is particularly useful as an insulating material for wiring boards.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Disclosed is a laminate for wiring boards which has a polyimide resin layer having low elasticity, low linear expansion coefficient, heat resistance or low moisture absorption, low moisture expansion coefficient, and excellent etching characteristics. The laminate for wiring boards is used for production of a flexible printed board or HDD suspension. Also disclosed is a polyimide resin used in such a laminate for wiring boards. Specifically disclosed is a laminate for wiring boards wherein a metal layer is arranged on one or both sides of a polyimide resin layer and at least one polyimide layer is composed of a polyimide resin containing not less than 10 mol% of a structural unit which is derived from a diamine selected from 3,7-diaminobenzofuran and 3,8-diaminodibenzopyranone and an aromatic tetracarboxylic acid dianhydride.
Description
明 細 書 Specification
配線基板用積層体 Laminate for wiring board
技術分野 Technical field
[0001] 本発明は、フレキシブルプリント基板や HDDサスペンション等に用いられる配線基 板用積層体及びそれに適した芳香族ポリイミドに関する。 TECHNICAL FIELD [0001] The present invention relates to a laminate for a wiring board used for a flexible printed board, an HDD suspension, and the like, and an aromatic polyimide suitable for the laminate.
背景技術 Background art
[0002] 近年、電子機器の高性能化、高機能化が急速に進んでおり、これに伴い電子機器 に用いられる電子部品やそれらを実装する基板に対しても、より高密度で高性能なも のへと要求が高まっている。一方、電子機器は益々軽量化、小型化、薄型化の傾向 にあり、電子部品を収容するスペースは狭まる一方である。 [0002] In recent years, the performance and functionality of electronic devices have been rapidly increasing. With this, electronic components used in electronic devices and the boards on which they are mounted have higher density and higher performance. The demand is increasing. On the other hand, electronic devices are becoming lighter, smaller, and thinner, and the space for housing electronic components is becoming narrower.
[0003] 一般的に電子機器に使用されるフレキシブルプリント基板 (以下、 FPCという)の絶 縁層には、耐熱性、電気特性、耐湿性等の諸特性に優れるポリイミド榭脂が広く用い られている。従来のポリイミド榭脂は構造が剛直で弾性率が高いため、例えば LCDモ ジュールに使用する際などには、反発力による剥がれや断線などの実装不良が起き たり、折り曲げ時の半径が大きくなるため余分にスペースが必要といった問題があつ た。また、近年、電子機器の高性能化、高機能化及び小型化が急速に進んでおり、 これに伴い電子機器に用いられる電子部品やそれらを実装する基板に対しても、より 高密度で高性能なものへの要求が高まっている。 FPCに関しては、細線加工、多層 形成等が行われるようになり、 FPCを構成する材料についても、薄型化及び寸法安 定性が厳しく要求されるようになってきた。 [0003] Polyimide resin having excellent properties such as heat resistance, electrical properties, and moisture resistance is widely used for an insulating layer of a flexible printed circuit board (hereinafter referred to as FPC) generally used in electronic devices. Yes. Conventional polyimide resin has a rigid structure and high elastic modulus. For example, when used in an LCD module, mounting failure such as peeling or disconnection due to repulsive force occurs, and the radius at the time of bending increases. There was a problem that extra space was required. In recent years, electronic devices have been rapidly increasing in performance, functionality, and miniaturization, and with this, electronic components used in electronic devices and the boards on which they are mounted have higher density and higher performance. The demand for performance is increasing. With regard to FPC, fine wire processing, multilayer formation, etc. have been carried out, and thinning and dimensional stability have been strictly demanded for the materials constituting FPC.
[0004] このような問題を解決するため、最近では、ポリイミド榭脂にも低弾性ィ匕が要求され るようになっている。低弾性ポリイミドを得るには、下記特許文献 1に示されるように従 来のポリイミド榭脂に低弹性フイラ一を配合する方法やポリイミドシロキサンを使用す る方法 (特許文献 2、 3)、エポキシ榭脂等を混入する方法 (特許文献 4)がよく知られて いる。これにより、 1 X 105〜1 X 101QPaまで任意の弾性率のポリイミドフィルムを容易に 得ることができるが、一方で耐熱性の低下や、線膨張係数 (CTE)の増大、ガラス転移 温度の低下といった種々の問題が発生し、 FPC用途として使用するには不向きであ
つた o [0004] In order to solve such problems, recently, polyimide resin has been required to have low elasticity. In order to obtain a low-elasticity polyimide, as shown in Patent Document 1 below, a method of blending a low-permeability filler in conventional polyimide resin, a method of using polyimide siloxane (Patent Documents 2 and 3), epoxy resin A method of mixing fat or the like (Patent Document 4) is well known. This makes it possible to easily obtain a polyimide film having an arbitrary modulus of elasticity from 1 X 10 5 to 1 X 10 1Q Pa. However, on the other hand, the heat resistance decreases, the coefficient of linear expansion (CTE) increases, the glass transition temperature. Various problems such as lowering of the frequency occur and are not suitable for use as FPC applications. I
[0005] また、最近では、接着層を形成しな!、で金属箔上に直接ポリイミド榭脂層を塗工形 成する方法が採用されてきている。特許文献 5には、ポリイミド榭脂層を熱膨張係数 の異なる複数のポリイミド榭脂で多層化することにより、接着力及び熱的寸法安定性 に優れた FPC用基板を提供する方法が開示されている。しかしながら、そこで使用さ れているポリイミド榭脂は吸湿性が大きいため、半田浴に浸漬する際の膨れや、細線 加工時の吸湿後の寸法変化による接続不良、吸湿後の寸法変化に伴う積層体の反 り等、不具合の原因となることが懸念されていた。 [0005] In addition, recently, a method has been adopted in which a polyimide resin layer is directly formed on a metal foil without forming an adhesive layer! Patent Document 5 discloses a method for providing an FPC substrate having excellent adhesion and thermal dimensional stability by multilayering a polyimide resin layer with a plurality of polyimide resins having different thermal expansion coefficients. Yes. However, since the polyimide resin used there has a high hygroscopic property, it is a laminated body due to swelling when immersed in a solder bath, poor connection due to dimensional change after moisture absorption during thin wire processing, and dimensional change after moisture absorption. There was concern that it would cause problems such as warping.
[0006] このような背景力 近年、優れた低吸湿性 ·吸湿後寸法安定性を有するポリイミド榭 脂への要求が高まっており、それに対する検討が種々行われている。例えば、フッ素 系榭脂を導入することにより、疎水性を向上し低吸湿性を発現するポリイミド榭脂が 提案されているが、製造コストがかさんだり、金属材料との接着性が悪いという欠点が ある。その他、低吸湿性'低熱膨張係数などの良好な特性を示すポリイミドも知られて V、るが、高耐熱性等の他の特性が劣るものであった。 [0006] In recent years, there has been an increasing demand for a polyimide resin having excellent low moisture absorption and post-moisture dimensional stability, and various studies have been made on it. For example, a polyimide resin that has improved hydrophobicity and exhibits low hygroscopicity by introducing a fluorine resin has been proposed, but has the disadvantages of increased production costs and poor adhesion to metal materials. There is. In addition, polyimides exhibiting good characteristics such as low hygroscopicity and low thermal expansion coefficient are also known, but other characteristics such as high heat resistance are inferior.
[0007] 非特許文献 1及び非特許文献 2においては、フルオレン骨格を有するジァミンを用 いたポリイミド榭脂についての報告がなされている。しかし、これらに記載のポリイミド 榭脂は、精密な電気'電子機器の材料に用いるための性能を満足するものではなか つた o [0007] In Non-Patent Document 1 and Non-Patent Document 2, there are reports on polyimide resin using diamine having a fluorene skeleton. However, the polyimide resins described in these documents do not satisfy the performance required for use in precision electrical and electronic equipment materials.
[0008] ところで、一般にフレキシブルプリント配線板に用いられる配線基板用積層体への 孔あけ加工は、紫外線レーザ加工法やプラズマ加工法によるドライエッチング法が一 般的に行われている力 これらに用いられる加工装置は高価な上、使用するガス代 などランニングコストが高ぐまた、量産性が悪いなどという問題がある。ドライエツチン グ法を代替する方法として、有機アルカリやアルカリ水溶液による湿式エッチングが 可能な材料が要望されてきたが、一般的にポリイミド榭脂のエッチング速度が速いと 吸湿率も大きくなるため、エッチング速度が速ぐ同時に吸湿率も少ない材料の開発 が望まれてきた。 [0008] By the way, the drilling process for a wiring board laminate generally used for a flexible printed wiring board is a force in which a dry etching method using an ultraviolet laser processing method or a plasma processing method is generally performed. The processing equipment to be used is expensive and has a high running cost such as the cost of gas used, and the mass productivity is poor. As an alternative to the dry etching method, materials that can be wet-etched with organic alkalis or aqueous alkali solutions have been demanded. However, generally, the higher the polyimide resin etch rate, the higher the moisture absorption rate, and the higher the etch rate. The development of materials that are fast and have low moisture absorption has been desired.
[0009] FPCの製法を簡単に説明すると、ポリイミド榭脂層の片面又は両面に直接あるいは 接着剤を介して銅箔等の導体層を積層したのち、回路を形成したものが一般的であ
る。このポリイミド榭脂層は、テトラカルボン酸成分とジァミン成分とから製造されるポリ イミド前駆体榭脂 (ポリアミック酸)を、高温に加熱して脱水環化することにより得られる 。このように、 FPCに使用される配線基板用積層体は、薄い金属箔にポリアミック酸溶 液を直接塗布し、加熱硬化しているため、金属箔とポリイミド榭脂の CTEの差が大きく 異なると、硬化時に樹脂の収縮が起き、結果として、基板に反りやカールが発生した り、電子部品を実装する際に寸法が変化して正確な実装ができなくなるといった問題 が起こるため、特に榭脂層の CTE増大の影響は深刻であった。 [0009] Briefly describing the FPC manufacturing method, it is common to form a circuit after laminating a conductor layer such as a copper foil directly or via an adhesive on one or both sides of a polyimide resin layer. The The polyimide resin layer is obtained by dehydrating and cyclizing a polyimide precursor resin (polyamic acid) produced from a tetracarboxylic acid component and a diamine component at a high temperature. In this way, the laminate for wiring boards used in FPC is obtained by applying a polyamic acid solution directly to a thin metal foil and curing it by heating. Therefore, if the difference in CTE between the metal foil and polyimide resin is greatly different, In particular, the resin shrinks during curing, resulting in problems such as warping and curling of the substrate, and changes in dimensions when mounting electronic components, making accurate mounting impossible. The impact of the increase in CTE was serious.
[0010] そこでこれまで、低弾性で低 CTEのポリイミド榭脂の検討がされてきて 、るが、元来 、低弾性と低 CTEは相反する性質であるため、この二つの性質を両立する物性を持 つポリイミド榭脂の開発は容易ではな力つた。実際、テトラカルボン酸成分とジァミン 成分を複数種類組み合わせた検討なども成されたが、未だ十分な性能を持つポリィ ミド榭脂は得られていない。 [0010] Therefore, low elasticity and low CTE polyimide resin has been studied so far. However, since low elasticity and low CTE are inherently contradictory properties, the physical properties satisfying these two properties are compatible. The development of polyimide resin with a high degree of strength was not easy. In fact, studies have been made on a combination of a plurality of tetracarboxylic acid components and diamine components, but a polyimide resin having sufficient performance has not yet been obtained.
[0011] 特許文献 1 :特開 2005— 23183号公報 Patent Document 1: Japanese Patent Laid-Open No. 2005-23183
特許文献 2 :特開 2000— 103848号公報 Patent Document 2: JP 2000-103848 A
特許文献 3:特開 2003 - 20404号公報 Patent Document 3: Japanese Patent Laid-Open No. 2003-20404
特許文献 4:特開 2005— 36136号公報 Patent Document 4: Japanese Patent Laid-Open No. 2005-36136
特許文献 5:特開平 8-250860号公報 Patent Document 5: Japanese Patent Laid-Open No. 8-250860
非特許文献 1 :日本化学会誌, 1977,(5), 701-705 Non-Patent Document 1: Journal of the Chemical Society of Japan, 1977, (5), 701-705
非特許文献 2 Journal of Polymer Science Part B, 33, 1907-1915 (1995) Non-Patent Document 2 Journal of Polymer Science Part B, 33, 1907-1915 (1995)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0012] 本発明は、耐熱性と低線膨張係数に優れるポリイミド榭脂層を有する配線基板用積 層体を提供することを目的とする。他の目的は、上記特性と低弾性の両立するポリイ ミド榭脂層を有する配線基板用積層体を提供することにある。更に他の目的は、優れ た耐熱性、熱的寸法安定性を有し、かつ低吸湿性、低湿度膨張係数、良エッチング 性のポリイミド榭脂層を有する配線基板用積層体を提供することにある。また他の目 的は、上記配線基板用積層体に適した芳香族ポリイミド及びその前駆体である芳香 族ポリアミド酸を提供することにある。
課題を解決するための手段 [0012] An object of the present invention is to provide a wiring board laminate having a polyimide resin layer having excellent heat resistance and low linear expansion coefficient. Another object is to provide a laminate for a wiring board having a polyimide resin layer that achieves both the above characteristics and low elasticity. Still another object is to provide a laminate for a wiring board having excellent heat resistance and thermal dimensional stability, and having a polyimide resin layer having low moisture absorption, low humidity expansion coefficient, and good etching property. is there. Another object is to provide an aromatic polyimide suitable for the wiring board laminate and an aromatic polyamic acid which is a precursor thereof. Means for solving the problem
[0013] 本発明者等は、上記課題につき検討を重ねた結果、ポリイミド榭脂層を構成する榭 脂層に、特定の骨格を有する芳香族ジァミンを用いたポリイミド榭脂を適用することで 上記課題を解決し得ることを見出し本発明を完成するに至った。 [0013] As a result of studying the above problems, the present inventors have applied the polyimide resin using an aromatic diamine having a specific skeleton to the resin layer constituting the polyimide resin layer. The inventors have found that the problems can be solved and have completed the present invention.
[0014] すなわち、本発明は、ポリイミド榭脂層の片面又は両面に金属層を有する積層体に おいて、該ポリイミド榭脂層の少なくとも一層が下記一般式(1)で表される構造単位 を 10モル%以上含有するポリイミド榭脂からなることを特徴とする配線基板用積層体 である。
That is, according to the present invention, in a laminate having a metal layer on one side or both sides of a polyimide resin layer, at least one layer of the polyimide resin layer has a structural unit represented by the following general formula (1): It is a laminate for a wiring board, comprising a polyimide resin containing 10 mol% or more.
-N ; N— Ar2- O O ( 1) -N ; N— Ar 2 -OO (1)
(式中、 Arは芳香環を 1個以上有する 4価の有機基であり、 Arは下記式 (a)又は (b)で (In the formula, Ar is a tetravalent organic group having one or more aromatic rings, and Ar is represented by the following formula (a) or (b):
1 2 示される含酸素環と縮合した構造を有する芳香族基である。 ) 1 2 An aromatic group having a structure condensed with the oxygen-containing ring shown. )
[0015] 一般式(1)で表される構造単位は、具体的には下記式 (al)及び (bl)で表されるもの がある。
[0015] The structural unit represented by the general formula (1) specifically includes those represented by the following formulas (al) and (bl).
式 (al)及び (bl)において、 Arは芳香環を 1個以上有する 4価の有機基である。 In the formulas (al) and (bl), Ar is a tetravalent organic group having one or more aromatic rings.
1 1
[0016] 本発明の積層体を構成する少なくとも 1層のポリイミド榭脂層は、式 (al)と (bl)で表さ れる構造単位のいずれか又は両方を 10モル%以上含有する。 [0016] At least one polyimide resin layer constituting the laminate of the present invention contains 10 mol% or more of either or both of the structural units represented by the formulas (al) and (bl).
[0017] また、本発明は、上記式 (al)又は下記式 (a2)で表される構造単位を 10モル%以 上有する芳香族ポリイミド榭脂又は芳香族ポリアミド酸である。 [0017] Further, the present invention is an aromatic polyimide resin or an aromatic polyamic acid having 10 mol% or more of a structural unit represented by the above formula (al) or the following formula (a2).
式 (al)及び (a2)において、 Arは芳香環を 1個以上有する 4価の有機基である。 In the formulas (al) and (a2), Ar is a tetravalent organic group having one or more aromatic rings.
1 1
以下に、本発明の配線基板用積層体について説明する。 Below, the laminated body for wiring boards of this invention is demonstrated.
本発明の配線基板用積層体は、一層又は多層のポリイミド榭脂層の片面又は両面 に、金属層を有する。金属層としては、フレキシブルプリント配線板用途に使用する
場合には、厚みが 5〜50 /ζ πιの銅箔が適しており、また、 HDDサスペンション用基板 として使用する場合には、厚みが 5〜70 μ m、好ましくは 10〜70 μ mのステンレス箔が 適している。 The laminate for a wiring board of the present invention has a metal layer on one side or both sides of a single layer or multilayer polyimide resin layer. As a metal layer, used for flexible printed wiring board applications In this case, a copper foil with a thickness of 5-50 / ζ πι is suitable, and when used as a substrate for an HDD suspension, a stainless steel with a thickness of 5-70 μm, preferably 10-70 μm. Foil is suitable.
[0019] 本発明において、ポリイミド榭脂層の少なくとも一層は、一般式(1)で表される構造 単位を 10モル%以上含有するポリイミド榭脂層(以下、ポリイミド榭脂層(1)ともいう) である。 In the present invention, at least one of the polyimide resin layers is a polyimide resin layer containing 10 mol% or more of the structural unit represented by the general formula (1) (hereinafter also referred to as polyimide resin layer (1)). )
[0020] ポリイミド榭脂の製造方法は、ジァミンと芳香族酸二無水物を溶媒中で反応させる 方法が一般的であるので、この方法で代表して説明するが、本発明で使用するポリイ ミド榭脂の製造方法はこれに限定されない。一般式(1)又は式 (al)、(bl)及び (a2)で 表される構造単位において、 Arは芳香環を 1個以上有する 4価の有機基であり、芳 [0020] A method for producing polyimide resin is generally a method in which diamine and aromatic dianhydride are reacted in a solvent. Therefore, this method will be described as a representative example, but the polyimide used in the present invention will be described. The method for producing rosin is not limited to this. In the structural unit represented by the general formula (1) or the formulas (al), (bl) and (a2), Ar is a tetravalent organic group having one or more aromatic rings.
1 1
香族酸二無水物から生じる残基ということができる。したがって、使用する芳香族酸 二無水物を説明することにより Arが理解される。好ましい Arを、芳香族酸二無水物 It can be said that the residue is derived from aromatic dianhydride. Therefore, Ar is understood by describing the aromatic dianhydride used. Preferred Ar, aromatic dianhydride
1 1 1 1
を用いて以下に説明する。 Will be described below.
[0021] 上記芳香族酸二無水物としては、特に限定されるものではなく公知のものを使用す ることができる。具体例を挙げると、ピロメリット酸二無水物、 3,3',4,4'-ベンゾフエノン テトラカルボン酸二無水物、 2,2',3,3'-ベンゾフエノンテトラカルボン酸二無水物、 2,3, 3', 4しベンゾフエノンテトラカルボン酸二無水物、ナフタレン- 1,2,5,6-テトラカルボン 酸二無水物、ナフタレン- 1,2,4,5-テトラカルボン酸二無水物、ナフタレン- 1,4,5,8-テ トラカルボン酸二無水物、ナフタレン- 1,2,6,7-テトラカルボン酸二無水物、 4,8-ジメチ ル -1,2,3,5,6,7-へキサヒドロナフタレン- 1,2,5, 6-テトラカルボン酸二無水物、 4,8-ジメ チル -1,2,3,5, 6,7-へキサヒドロナフタレン- 2,3, 6,7-テトラカルボン酸二無水物、 2,6-ジ クロロナフタレン- 1,4,5,8-テトラカルボン酸二無水物、 2, 7-ジクロロナフタレン- 1,4,5,8 -テトラカルボン酸二無水物、 2,3,6,7-テトラクロロナフタレン- 1,4,5, 8-テトラカルボン 酸二無水物、 1,4,5,8-テトラクロロナフタレン- 2,3,6,7-テトラカルボン酸二無水物、 3,3 ',4,4'-ビフエ-ルテトラカルボン酸二無水物、 2,2', 3,3'-ビフエ-ルテトラカルボン酸 二無水物、 2,3,3',4'-ビフエ-ルテトラカルボン酸二無水物、 3,3",4,4"- p-テルフエ- ルテトラカルボン酸二無水物、 2,2", 3,3"-p-テルフエ-ルテトラカルボン酸二無水物 、 2,3,3", 4"_p-テルフエ-ルテトラカルボン酸二無水物、 2,2-ビス (2,3-ジカルボキシ
フエ-ル)-プロパン二無水物、 2, 2-ビス (3,4-ジカルボキシフエ-ル)-プロパン二無水 物、ビス (2, 3-ジカルボキシフエ-ル)エーテル二無水物、ビス (2,3-ジカルボキシフエ -ル)メタン二無水物、ビス (3.4-ジカルボキシフエ-ル)メタン二無水物、ビス (2,3-ジカ ルボキシフエ-ル)スルホン二無水物、ビス (3,4-ジカルボキシフエ-ル)スルホン二無 水物、 1,1-ビス (2,3-ジカルボキシフエ-ル)エタンニ無水物、 1,1-ビス (3,4-ジカルボキ シフエ-ル)エタンニ無水物、ペリレン- 2,3,8,9-テトラカルボン酸二無水物、ペリレン- 3,4,9,10-テトラカルボン酸二無水物、ペリレン- 4,5, 10,11-テトラカルボン酸二無水物 、ペリレン- 5,6,11, 12-テトラカルボン酸二無水物、フエナンスレン- 1,2, 7,8-テトラカル ボン酸二無水物、フエナンスレン- 1, 2, 6,7-テトラカルボン酸二無水物、フエナンスレ ン -1,2,9, 10-テトラカルボン酸二無水物、シクロペンタン- 1,2,3,4-テトラカルボン酸二 無水物、ピラジン- 2,3,5,6-テトラカルボン酸二無水物、ピロリジン- 2,3,4,5-テトラカル ボン酸二無水物、チォフェン- 2,3,4,5-テトラカルボン酸二無水物、 4,4'-ォキシジフタ ル酸ニ無水物などが挙げられる。 [0021] The aromatic dianhydride is not particularly limited, and a known one can be used. Specific examples include pyromellitic dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 2,2', 3,3'-benzophenone tetracarboxylic dianhydride 2,3,3 ', 4 benzophenone tetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic acid Dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 4,8-dimethyl-1,2, 3,5,6,7-Hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydro Naphthalene-2,3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4 , 5,8-Tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetraca Bonic dianhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride Anhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3,3 ", 4, 4 "-p-terfeltetracarboxylic dianhydride, 2,2", 3,3 "-p-terfeltetracarboxylic dianhydride, 2,3,3", 4 "_p-terfene- Ditetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxy Phenol) -propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3.4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) sulfone dianhydride, bis (3 , 4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane anhydride, 1,1-bis (3,4-dicarboxyphenyl) Ethane anhydride, perylene-2,3,8,9-tetracarboxylic dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride, perylene-4,5, 10,11-tetracarboxylic Acid dianhydride, perylene-5,6,11,12-tetracarboxylic dianhydride, phenanthrene-1,2,7,8-tetracarboxylic dianhydride, phenanthrene-1, 2, 6,7-tetra Carboxylic dianhydride, phena Sren-1,2,9,10-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride Anhydrides, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, etc. Can be mentioned.
[0022] 芳香族酸二無水物の選定にあたっては、具体的には重合加熱して得られるポリイミ ドの CTEと熱分解温度、ガラス転移温度 (Tg)、湿度膨張係数など使用目的で必要と される特性を発現するように選択することが好ましい。これらの中でも、低弾性かつ低 CTEの見地からは、ピロメリット酸二無水物 (PMDA)が好ましく用いられ、これを芳香族 酸二無水物の主成分として使用することが好ましい。これは、式 (bl)で表される構造 単位を 10モル%以上含有するポリイミド榭脂について効果的である。 [0022] In selecting an aromatic dianhydride, specifically, the CTE and thermal decomposition temperature of the polyimide obtained by polymerization and heating, the glass transition temperature (Tg), the humidity expansion coefficient, etc. are required. It is preferable to select so as to express the characteristics. Among these, pyromellitic dianhydride (PMDA) is preferably used from the viewpoint of low elasticity and low CTE, and it is preferable to use this as the main component of aromatic dianhydride. This is effective for polyimide resin containing 10 mol% or more of the structural unit represented by the formula (bl).
[0023] 低湿度膨張係数の見地からは、ピロメリット酸二無水物 (PMDA)、 3,3' ,4,4' -ビフエ -ルテトラカルボン酸二無水物 (BPDA)、ナフタレン- 2,3,6,7-テトラカルボン酸二無水 物 (NTCDA)、ナフタレン- 1,4,5,8-テトラカルボン酸二無水物、 3,3",4,4"-p-テルフエ -ルテトラカルボン酸二無水物、 4,4,-ォキシジフタル酸二無水物、 3,3,4,4,-ベンゾ フエノンテトラカルボン酸二無水物及びビス(2,3-ジカルボキシフエ-ル)スルホン二 無水物から選ばれる少なくとも 1種の芳香族テトラカルボン酸が好ましく、その中でも 特に、 PMDA、 NTCDA及び BPDAから選ばれるものが好ましい。これは、式 (al)で表さ れる構造単位を 10モル%以上含有するポリイミド榭脂について効果的である。 [0023] From the standpoint of low humidity expansion coefficient, pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-biphenyl-tetracarboxylic dianhydride (BPDA), naphthalene-2,3 , 6,7-Tetracarboxylic dianhydride (NTCDA), naphthalene-1,4,5,8-tetracarboxylic dianhydride, 3,3 ", 4,4" -p-terphenyl tetracarboxylic acid Dianhydrides, 4,4, -oxydiphthalic dianhydride, 3,3,4,4, -benzophenonetetracarboxylic dianhydride and bis (2,3-dicarboxyphenol) sulfone dianhydride Of these, at least one aromatic tetracarboxylic acid selected from the group consisting of PMDA, NTCDA and BPDA is particularly preferable. This is effective for polyimide resin containing 10 mol% or more of the structural unit represented by the formula (al).
[0024] 本発明で用いられるポリイミド榭脂の合成で必須の成分として使用されるジァミンは
、下記式(2)で表される芳香族ジァミン(以下、 DADBPともいう)又は式(3)で表され る芳香族ジァミン(以下、 ABFともいう)である。そして、 DADBPは式 (al)で表される構 造単位を与え、 ABFは式 (bl)で表される構造単位を与える。 [0024] The diamine used as an essential component in the synthesis of the polyimide resin used in the present invention is An aromatic diamine represented by the following formula (2) (hereinafter also referred to as DADBP) or an aromatic diamine represented by the formula (3) (hereinafter also referred to as ABF). DADBP gives the structural unit represented by formula (al), and ABF gives the structural unit represented by formula (bl).
[0026] 式 (al)で表される構造単位を有するポリイミド榭脂及びその前駆体であるポリアミド 酸は新規である。そして、式(2)で表される芳香族ジァミンは、 1,5-ジニトロフルォレノ ンのケトン部分を過酸によりエステル基に酸ィ匕して、 3,8-ジニトロジベンゾピラノンを合 成する工程及び、二つの-トロ基を還元してジァミンとし、 目的とする芳香族ジァミン としての 3,8-ジアミノジベンゾピラノンを得る工程力も得ることができる。 [0026] A polyimide resin having a structural unit represented by the formula (al) and a polyamic acid which is a precursor thereof are novel. The aromatic diamine represented by the formula (2) is obtained by acidifying the ketone portion of 1,5-dinitrofluorone to an ester group with a peracid to combine 3,8-dinitrodibenzopyranone. And the ability to reduce the two -tro groups to diamine to give 3,8-diaminodibenzopyranone as the desired aromatic diamine.
[0027] 本発明で使用されるポリイミド榭脂は、有利には芳香族酸二無水物と式 (2)又は(3 )で表される芳香族ジァミンを 10モル%以上含むジァミンとを反応させて得ることがで きる。本発明においては、上記式(2)又は(3)で表される芳香族ジァミンと共に、それ 以外の他のジァミンを 90モル%以下の割合で使用することができ、そのことによって、 共重合型のポリイミドとすることができる。一般式(1)で表される構造単位は、ポリイミ ド榭脂層の少なくとも一層に 10〜100モル0 /0、好ましくは 50〜100モル0 /0、より好ましく は 70〜100モル0 /0含むことがよい。 [0027] The polyimide resin used in the present invention is preferably obtained by reacting an aromatic dianhydride with a diamine containing 10 mol% or more of the aromatic diamine represented by the formula (2) or (3). Can be obtained. In the present invention, in addition to the aromatic diamine represented by the above formula (2) or (3), other diamines can be used in a proportion of 90 mol% or less. The polyimide can be used. Structural unit represented by the general formula (1), at least one layer 10 to 100 mole 0/0 of polyimide榭脂layer, preferably 50 to 100 mole 0/0, more preferably 70 to 100 mole 0/0 It is good to include.
[0028] ジァミン中の DADBP又は ABFの量が 10モル0 /0未満であると、而熱性と低 CTEを満 足するポリイミド榭脂を得ることが困難となる。また、 ABFの量が少ないと低弾性と低 C ΤΕを満足するポリイミド榭脂を得ることが困難となる。しかし、 ABFの量を多くすると CT Εは低くなるが、弾性率が高くなる場合がある。この観点からは、 ABFの量が 30〜60モ ル%であることが特に好ましい。また、 DADBPの量が少ないと低吸湿性と低 CTEを満
足するポリイミド榭脂を得ることが困難となる。 [0028] If the amount of DADBP or ABF in Jiamin is less than 10 mole 0/0, it is difficult to obtain a polyimide榭脂to satisfaction of而熱and low CTE. Also, if the amount of ABF is small, it is difficult to obtain a polyimide resin satisfying low elasticity and low C C. However, increasing the amount of ABF decreases CT Ε but may increase the elastic modulus. From this viewpoint, the amount of ABF is particularly preferably 30 to 60 mol%. Also, if the amount of DADBP is small, it will satisfy low moisture absorption and low CTE. It becomes difficult to obtain an additional polyimide resin.
[0029] 式(2)又は(3)で表される芳香族ジァミン以外に、共重合に使用されるジァミンとし ては、特に限定されるものではないが、例を挙げると、 4,6-ジメチル- m -フエ-レンジ ァミン、 2,5-ジメチル- p-フエ二レンジァミン、 2,4-ジアミノメシチレン、 3,3,-ジメチル -4 ,4,-ジァミノジフエ二ルメタン、 3,5,3,,5,-テトラメチル- 4,4,-ジアミノジフエ二ルメタン、 [0029] In addition to the aromatic diamine represented by the formula (2) or (3), the diamine used in the copolymerization is not particularly limited. Dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 3,3, -dimethyl-4,4, -diaminodiphenylmethane, 3,5,3, , 5, -tetramethyl-4,4, -diaminodiphenylmethane,
2.4-トルエンジァミン、 m-フエ二レンジァミン、 p-フエ二レンジァミン、 4,4,-ジアミノジフ ェニルプロパン、 3,3,-ジアミノジフエ二ルプロパン、 4,4,-ジアミノジフエニルェタン、 3, 3,-ジアミノジフエニルェタン、 4,4,-ジアミノジフエ二ルメタン、 3,3,-ジアミノジフエ二 ルメタン、 2,2-ビス [4-(4-アミノフエノキシ)フエ-ル]プロパン、 4,4,-ジアミノジフエ-ル スルフイド、 3,3,-ジアミノジフエ-ルスルフイド、 4,4,-ジアミノジフエ-ルスルホン、 3,3 ' -ジアミノジフエニルスルホン、 4,4,-ジアミノジフエ二ルエーテル、 3,3,-ジアミノジフ ェ-ルエーテル、 1,3-ビス(3-アミノフエノキシ)ベンゼン、 1,3-ビス(4-ァミノフエノキシ )ベンゼン、 1,4-ビス(4-アミノフエノキシ)ベンゼン、ベンジジン、 3,3,-ジアミノビフエ ニル、 3,3,-ジメチル- 4,4,-ジアミノビフエニル、 3,3,-ジメトキシベンジジン、 4,4,,-ジァ ミノ- P-ターフェ-ル、 3,3"-ジァミノ- p-ターフェ-ル、ビス (p-アミノシクロへキシル)メタ ン、ビス (p- β -ァミノ- 1-ブチルフエ-ル)エーテル、ビス (p- β -メチル- δ -ァミノペンチ ル)ベンゼン、 ρ-ビス (2-メチル -4-ァミノペンチル)ベンゼン、 ρ-ビス (1,1-ジメチル -5- ァミノペンチル)ベンゼン、 1,5-ジァミノナフタレン、 2, 6-ジァミノナフタレン、 2,4-ビス( β -ァミノ- 1-ブチル)トルエン、 2,4-ジァミノトルエン、 m-キシレン- 2, 5-ジァミン、 p-キシ レン- 2,5-ジァミン、 m-キシリレンジァミン、 p-キシリレンジァミン、 2, 6-ジァミノピリジン、2.4-Toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4, -diaminodiphenylpropane, 3,3, -diaminodiphenylpropane, 4,4, -diaminodiphenylethane, 3, 3,- Diaminodiphenylethane, 4,4, -diaminodiphenylmethane, 3,3, -diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenol] propane, 4,4, -diaminodiphenyl- Sulfuryl, 3,3, -diaminodiphenylsulfide, 4,4, -diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 4,4, -diaminodiphenylether, 3,3, -diaminodiphenylether, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, benzidine, 3,3, -diaminobiphenyl, 3,3, -The Til-4,4, -diaminobiphenyl, 3,3, -dimethoxybenzidine, 4,4, -diamino-P-terfal, 3,3 "-diamino-p-terfal, bis ( p-aminocyclohexyl) methane, bis (p-β-amino-1-butylphenol) ether, bis (p-β-methyl-δ-aminopentyl) benzene, ρ-bis (2-methyl-4 -Aminopentyl) benzene, ρ-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino- 1 -Butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine, 2, 6- Diaminopyridine,
2.5-ジァミノピリジン、 2,5-ジァミノ- 1,3,4-ォキサジァゾール、ピぺラジンなどが挙げら れる。これらは単独でも又は 2種以上併用することもできる。 Examples include 2.5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, and piperazine. These can be used alone or in combination of two or more.
[0030] これらの中でも、 ABFと併用する場合は、 4,4,-ジアミノジフエ-ルエーテル (DAPE)、 パラフエ-レンジァミン (PDA)、 2,2,-ジメチル- 4,4,-ジアミノビフエ-ル (m-TB)、 4,4'- ジアミノジフエ二ルメタン (MDA)が好ましく用いられる。また、これらのジァミンを用いる 場合、その使用割合は、好ましくは全ジァミンの 40〜70モル%の範囲である。これら のジァミン成分を混合して用いることにより、金属箔と同程度の CTEに調整することが でき、実用的に要求される 30ppm/°C以下の値に調整することが可能である。それに
より積層体の反り、カールなどの発生を抑制することが可能である。 [0030] Among these, when used in combination with ABF, 4,4, -diaminodiphenyl ether (DAPE), paraf-rangeamine (PDA), 2,2, -dimethyl-4,4, -diaminobiphenyl (m -TB), 4,4'-diaminodiphenylmethane (MDA) is preferably used. Further, when these diamines are used, the use ratio thereof is preferably in the range of 40 to 70 mol% of the total diamines. By mixing and using these diamine components, the CTE can be adjusted to the same level as the metal foil, and it can be adjusted to a practically required value of 30 ppm / ° C or less. in addition Further, it is possible to suppress the occurrence of warpage and curling of the laminate.
[0031] DADBPと併用する場合は、 1,3-ビス(3-アミノフエノキシ)ベンゼン (APB)、 1,3-ビス( 4-アミノフエノキシ)ベンゼン (TPE-R)、 1,4-ビス(4-アミノフエノキシ)ベンゼン (TPE-Q) 、ジアミノジフエ-ルエーテル(DAPE)、 2,7-ビス(4-アミノフエノキシ)ナフタレン(NBO A)などが好ましく用いられる。また、これらのジァミンを用いる場合、その好ましい使 用割合は、全ジァミンの 0〜50モル0 /0、より好ましくは 0〜30モル0 /0の範囲である。 [0031] When used in combination with DADBP, 1,3-bis (3-aminophenoxy) benzene (APB), 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,4-bis (4- Aminophenoxy) benzene (TPE-Q), diaminodiphenyl ether (DAPE), 2,7-bis (4-aminophenoxy) naphthalene (NBO A) and the like are preferably used. In the case of using these Jiamin, its preferred use for proportion, from 0 to 50 mole 0/0 of the total Jiamin, more preferably from 0 to 30 mole 0/0.
[0032] ポリイミド榭脂層を形成するための芳香族ポリアミド酸は、上記に示した芳香族ジァ ミン成分と芳香族テトラカルボン酸二無水物成分とを実質的に等モル使用し、有機極 性溶媒中で重合する公知の方法によって製造することができる。すなわち、窒素気 流下 Ν,Ν-ジメチルァセトアミドなどの有機極性溶媒に芳香族ジァミンを溶解させた後 、芳香族テトラカルボン酸二無水物を加えて、室温で 3時間程度反応させることにより 得られる。 [0032] The aromatic polyamic acid for forming the polyimide resin layer uses substantially the same molar amount of the aromatic diamine component and the aromatic tetracarboxylic dianhydride component shown above as an organic electrode. It can manufacture by the well-known method of superposing | polymerizing in a neutral solvent. That is, it is obtained by dissolving aromatic diamine in an organic polar solvent such as Ν, ジ メ チ ル -dimethylacetamide under nitrogen flow, adding aromatic tetracarboxylic dianhydride, and reacting at room temperature for about 3 hours. It is done.
[0033] 上記反応により得られたポリアミド酸溶液を、支持体となる金属箔上に、あるいは金 属箔上に形成された接着層上に、アプリケータを用いて塗布し、 150°C以下の温度で 2〜20分予備乾燥した後、通常 130〜360°C程度の温度で 2〜30分程度熱処理して溶 剤除去、イミド化することにより、本発明の配線基板用積層体が得られる。このとき、 用いられる金属箔としては、銅箔又は SUS箔が好ましぐその好ましい厚み範囲も 50 μ m以下、有利には 5〜40 μ mである。金属箔厚みは、薄い方がファインパターンの 形成に適し、そのような観点からは 8〜30 μ mの範囲が好ましい。 [0033] The polyamic acid solution obtained by the above reaction is applied to a metal foil serving as a support or an adhesive layer formed on a metal foil using an applicator, and the temperature is 150 ° C or lower. After pre-drying at a temperature of 2 to 20 minutes, the heat treatment is usually performed at a temperature of about 130 to 360 ° C for about 2 to 30 minutes to remove the solvent and imidize, thereby obtaining the laminate for a wiring board of the present invention. . At this time, the metal foil used is preferably a copper foil or SUS foil with a preferred thickness range of 50 μm or less, preferably 5 to 40 μm. A thinner metal foil is suitable for forming a fine pattern. From such a viewpoint, a range of 8 to 30 μm is preferable.
[0034] ポリアミド酸及びポリイミドの重合度は、ポリアミド酸溶液の重量平均分子量 (Mw)と して 50,000〜800,000であり、好ましくは 60,000〜300,000の範囲にあることがよい。重 量平均分子量は、 GPC〖こより測定することができる。 [0034] The degree of polymerization of the polyamic acid and polyimide is 50,000 to 800,000, preferably 60,000 to 300,000 as the weight average molecular weight (Mw) of the polyamic acid solution. The weight average molecular weight can be measured from GPC.
[0035] ポリイミド榭脂層は単層であっても多層であってもよい。多層のポリイミド榭脂層の場 合は、ポリアミド酸溶液を塗布して乾燥する操作を繰り返した後、熱処理して溶剤除 去し、これを更に高温で熱処理してイミド化することにより、多層構造のポリイミド榭脂 層を形成できる。この時、形成されるポリイミド榭脂層の総厚みは、 3〜75 /ζ πιの範囲 が好ましい。多層である場合は、その少なくとも 1層が一般式(1)で表される構造単位 を 10モル%以上含有するポリイミド榭脂層 (1)である必要があり、その厚みはポリイミド
榭脂層全体の 30%以上、好ましくは 50%以上、より好ましくは 70%以上とすることがよ い。 [0035] The polyimide resin layer may be a single layer or a multilayer. In the case of a multilayer polyimide resin layer, the operation of applying a polyamic acid solution and drying is repeated, and then heat treatment is performed to remove the solvent, and this is further heat-treated at a high temperature to imidize the multilayer structure. The polyimide resin layer can be formed. At this time, the total thickness of the formed polyimide resin layer is preferably in the range of 3 to 75 / ζπι. In the case of a multilayer, at least one of the layers must be a polyimide resin layer (1) containing 10 mol% or more of the structural unit represented by the general formula (1), and the thickness thereof is polyimide. 30% or more, preferably 50% or more, more preferably 70% or more of the entire resin layer.
[0036] そして、このとき金属箔と接する層に、 250°C以上の Tgを有する熱可塑性榭脂を使 用すると、より良い接着力を得ることができる。熱可塑性榭脂層に使用する芳香族ジ ァミンとしては、上記で例示した芳香族ジァミンを使用することができるが、これらの中 でも、 2,2-ビス(4-ァミノフエノキシフエ-ル)プロパン (BAPP)、ビス〔4- (4-アミノフエノ キシ)フエ-ル〕スルホン (BAPS)、 3,4'-ジアミノジフエ-ルエーテル (3,4,- DAPE)、 4,4' -ジアミノジフエ-ルエーテル (4,4' - DAPE)、 1,4-ビス(4-アミノフエノキシ)ベンゼン (TP E— Q)、 4,4'—ビス(4—アミノフエノキシ)ビフエ-ル (BAPB)、 1,3—ビス(3—アミノフエノキシ) ベンゼン (APB)、 1,3-ビス(4-アミノフエノキシ)ベンゼン (TPE-R)、 1,3-ビス(4-アミノフ エノキシ) -2,2-ジメチルプロパン (DANPG)などが好ましく用いられる。芳香族酸二無 水物としては、上記で例示した芳香族酸二無水物を使用することができるが、これら の中でも、ピロメリット酸二無水物 (PMDA)、 3,3',4,4'-ビフエ-ルテトラカルボン酸二無 水物(BPDA)、 3,3',4,4'-ベンゾフエノンテトラカルボン酸二無水物 (BTDA)、 3,3',4,4'- ジフエ-ルスルホンテトラカルボン酸二無水物 (DSDA)、 4,4, -ォキシジフタル酸二無 水物 (ODPA)などが好ましく用いられる。熱可塑性榭脂層を形成するポリアミド酸溶液 の調製は前述した方法と同様でよい。 [0036] If a thermoplastic resin having a Tg of 250 ° C or higher is used for the layer in contact with the metal foil at this time, better adhesion can be obtained. As the aromatic diamine used in the thermoplastic resin layer, the aromatic diamines exemplified above can be used, and among these, 2,2-bis (4-aminophenoxyphenol) can be used. ) Propane (BAPP), bis [4- (4-aminophenoxy) phenol] sulfone (BAPS), 3,4'-diaminodiphenyl ether (3,4, -DAPE), 4,4'-diaminodiphenyl ether (4,4'-DAPE), 1,4-bis (4-aminophenoxy) benzene (TP E-Q), 4,4'-bis (4-aminophenoxy) biphenyl (BAPB), 1,3-bis (3-aminophenoxy) benzene (APB), 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane (DANPG), etc. Preferably used. As the aromatic acid dianhydride, the aromatic acid dianhydrides exemplified above can be used. Among these, pyromellitic dianhydride (PMDA), 3,3 ', 4,4 '-Biphenyltetracarboxylic dianhydride (BPDA), 3,3', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ', 4,4'- diphe -Lulsulfonetetracarboxylic dianhydride (DSDA), 4,4, -oxydiphthalic acid dianhydride (ODPA) and the like are preferably used. The preparation of the polyamic acid solution for forming the thermoplastic resin layer may be the same as that described above.
[0037] また、両面に金属箔を有する配線基板用積層体を製造する場合は、上記方法によ り得られた片面配線基板用積層体のポリイミド榭脂層上に、直接あるいは接着層を形 成した後、金属箔を加熱圧着することにより得られる。この加熱圧着時の熱プレス温 度については、特に限定されるものではないが、使用されるポリイミド榭脂のガラス転 移温度以上であることが望ましい。また、熱プレス圧力については、使用するプレス 機器の種類にもよるが、 l〜500kg/cm2の範囲であることが望ましい。更に、このとき 用いられる好ましい金属箔は、上記した金属箔と同様のものを用いることができ、そ の好ましい厚みも 50 μ m以下、より好ましくは 5〜40 μ mの範囲である。 [0037] In the case of producing a wiring board laminate having metal foil on both sides, a direct or adhesive layer is formed on the polyimide resin layer of the single-sided wiring board laminate obtained by the above method. After the formation, the metal foil is obtained by thermocompression bonding. The hot press temperature at the time of thermocompression bonding is not particularly limited, but it is desirable that the temperature is higher than the glass transition temperature of the polyimide resin used. The hot press pressure is preferably in the range of 1 to 500 kg / cm 2 depending on the type of press equipment used. Furthermore, the preferable metal foil used at this time can be the same as the above-mentioned metal foil, and the preferable thickness thereof is 50 μm or less, more preferably in the range of 5 to 40 μm.
[0038] 本発明の配線基板用積層体を構成するポリイミド榭脂層は、式 (2)又は(3)で表さ れる芳香族ジァミンと、これと併せて使用される他の芳香族ジァミンと芳香族テトラ力 ルボン酸又はその酸二無水物との種々の組み合わせにより特性を制御することがで
きるが、中でも、耐熱性の指標となるガラス転移温度力 ¾oo°c以上であり、線膨張係 数が 30ppm/°C以下、有利には 25ppm/°C以下のポリイミド榭脂層とすることが好まし い。 [0038] The polyimide resin layer constituting the laminate for a wiring board of the present invention includes an aromatic diamine represented by the formula (2) or (3) and another aromatic diamine used in combination with the aromatic diamine. Aromatic tetra force The properties can be controlled by various combinations with rubonic acid or its acid dianhydride. Among them, a glass transition temperature force that is an index of heat resistance is ¾ oo ° c or more, and a polyimide resin layer having a linear expansion coefficient of 30 ppm / ° C or less, preferably 25 ppm / ° C or less is preferable. I like it.
[0039] 式 (al)で表される構造単位を有するポリイミド榭脂層の場合は、ガラス転移温度が 3 00°C以上であり、線膨張係数が 30ppm/°C以下、有利には 25ppm/°C以下で、かつ、 吸湿率が 1.0wt%以下、有利には 0.7wt%以下のポリイミド榭脂層とすることが好まし い。特に、好ましいポリイミド榭脂層は、ガラス転移温度が 350〜450°C、線膨張係数 力^〜 25ppm/°C、吸湿率が 0.01〜0.7wt%で、湿度膨張係数が 9ppm/%RH以下、ェ チレンジァミン llwt%とエチレングリコール 22 wt%を添カ卩した 30wt%水酸化カリウム水溶 液をエッチング液として使用し、 80°Cでエッチングしたときのエッチング速度が 10 m /min以上であるものである。ポリイミド榭脂層が単層である場合は、ポリイミド榭脂層 (1 )を使用すること、特に式 (al)で表される構造単位を増加させることにより、上記を容易 に満足させることができる。ポリイミド榭脂層がポリイミド榭脂層 (1)以外の他のポリイミド 榭脂層を含む 2層以上カゝらなる場合は、他のポリイミド榭脂層の種類、厚みを適当に 調整する。 [0039] In the case of the polyimide resin layer having the structural unit represented by the formula (al), the glass transition temperature is 300 ° C or higher, and the linear expansion coefficient is 30ppm / ° C or lower, preferably 25ppm / It is preferable to use a polyimide resin layer having a temperature of not more than ° C and a moisture absorption of not more than 1.0 wt%, preferably not more than 0.7 wt%. In particular, a preferred polyimide resin layer has a glass transition temperature of 350 to 450 ° C, a linear expansion coefficient of force ^ to 25ppm / ° C, a moisture absorption of 0.01 to 0.7wt%, and a humidity expansion coefficient of 9ppm /% RH or less, Etching rate when etching at 80 ° C is 10 m / min or more using 30 wt% potassium hydroxide aqueous solution containing ethylenediamine llwt% and ethylene glycol 22 wt% as the etchant. . When the polyimide resin layer is a single layer, the above can be easily satisfied by using the polyimide resin layer (1), especially by increasing the structural unit represented by the formula (al). . When the polyimide resin layer is composed of two or more layers including other polyimide resin layers other than the polyimide resin layer (1), the types and thicknesses of the other polyimide resin layers are appropriately adjusted.
[0040] また、式 (al)で表される構造単位を 10モル%以上有するポリイミド榭脂は、新規な ポリイミド榭脂である力 このポリイミド榭脂は、 23°Cにおける弾性率が 4.0〜10GPa、 吸湿率が 0.7wt%以下、 30〜50%RHでの湿度膨張係数が 9ppm/%RH以下、 CTE力 S 20ppmZ°C以下であることがよい。上記ポリイミド榭脂は、式 (a2)で表される構造単位 を 10モル%以上有するポリイミド酸をイミド化することにより得られる。 [0040] Further, the polyimide resin having 10 mol% or more of the structural unit represented by the formula (al) is a novel polyimide resin. This polyimide resin has an elastic modulus of 4.0 to 10 GPa at 23 ° C. It is preferable that the moisture absorption rate is 0.7 wt% or less, the humidity expansion coefficient at 30 to 50% RH is 9 ppm /% RH or less, and the CTE force S is 20 ppm Z ° C. or less. The polyimide resin is obtained by imidizing polyimide acid having 10 mol% or more of the structural unit represented by the formula (a2).
[0041] また、式 (bl)で表される構造単位を含むポリイミド榭脂層の場合は、 25°Cにおける弹 性率が 4.0GPa以下、好ましくは l〜3GPaで、 CTEが 30ppmZ°C以下、好ましくは 1〜2 5ppmZ°Cであることがよい。また、耐熱性の観点からは、 Tgは 350°C以上、好ましくは 350〜500°Cであることがよい。更に、熱重量分析における 5%重量減少温度である熱 分解温度 (Td5%)は 500°C以上であることがよい。なお、ポリイミド榭脂層の弾性率が 4. OGPaを超えると、反発力による剥がれや断線などの実装不良が起きたり、折り曲げ時 の半径が大きくなるなどして、高性能化、高機能化の妨げとなりやすい。また、配線 基板用積層体としたときに十分な屈曲特性が得られにくい。一方、 CTEが 30ppm/°C
を超えると、カールが発生したり、ポリイミド榭脂層の収縮が大きすぎてうまく加工でき な 、などの諸問題が発生しやす 、。 [0041] In the case of a polyimide resin layer containing the structural unit represented by the formula (bl), the modulus at 25 ° C is 4.0 GPa or less, preferably 1 to 3 GPa, and CTE is 30 ppmZ ° C or less. Preferably, it is 1 to 25 ppm Z ° C. From the viewpoint of heat resistance, Tg is 350 ° C. or higher, preferably 350 to 500 ° C. Furthermore, the thermal decomposition temperature (Td5%), which is a 5% weight loss temperature in thermogravimetric analysis, should be 500 ° C or higher. If the elastic modulus of the polyimide resin layer exceeds 4. OGPa, mounting failure such as peeling or disconnection due to repulsive force may occur, or the radius at the time of bending may increase, resulting in higher performance and higher functionality. It is easy to get in the way. In addition, it is difficult to obtain sufficient bending characteristics when a wiring board laminate is obtained. On the other hand, CTE is 30ppm / ° C Exceeding the temperature tends to cause various problems such as curling and the polyimide resin layer shrinkage is too large to be processed well.
図面の簡単な説明 Brief Description of Drawings
[0042] [図 1]ポリイミドフィルム Aの IR ^ベクトル [0042] [Figure 1] IR ^ vector of polyimide film A
[図 2]ポリイミドフィルム Bの IR ^ベクトル [Figure 2] IR ^ vector of polyimide film B
[図 3]ポリイミドフィルム Cの IR ^ベクトル [Figure 3] IR ^ vector of polyimide film C
[図 4]ポリイミドフィルム Dの IRスペクトル [Figure 4] IR spectrum of polyimide film D
[図 5]ポリイミドフィルム Eの IRスぺクトノレ [Figure 5] IR spectrum of polyimide film E
[図 6]ポリイミドフィルム Fの IRスペクトル [Figure 6] IR spectrum of polyimide film F
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 以下、実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれらの 実施例の範囲に限定されるものではな!/、。 [0043] The contents of the present invention will be specifically described below based on examples, but the present invention is not limited to the scope of these examples! /.
[0044] 実施例等に用いた略号を下記に示す。 [0044] Abbreviations used in Examples and the like are shown below.
•DADBP: 3,8-ジアミノジベンゾピラノン DADBP: 3,8-diaminodibenzopyranone
• DAF: 2,7-ジァミノフルオレン • DAF: 2,7-daminofluorene
•ABF: 3,7-ジアミノジベンゾフラン • ABF: 3,7-Diaminodibenzofuran
•PMDA:ピロメリット酸二無水物 PMDA: pyromellitic dianhydride
• APAB: 4-ァミノフエ-ル- 4-ァミノべンゾエート • APAB: 4-aminophenol-4-aminobenzoate
• DAPE:ジアミノジフエ-ルエーテル • DAPE: Diaminodiphenyl ether
•BPDA: 3,3',4,4,-ビフエニルテトラカルボン酸二無水物 • BPDA: 3,3 ', 4,4, -biphenyltetracarboxylic dianhydride
•TPE-Q: 1,4-ビス(4-アミノフエノキシ)ベンゼン • TPE-Q: 1,4-bis (4-aminophenoxy) benzene
• TPE - R: 1 ,3-ビス(4-アミノフエノキシ)ベンゼン • TPE-R: 1,3-bis (4-aminophenoxy) benzene
• APB: 1,3-ビス(3-アミノフエノキシ)ベンゼン • APB: 1,3-bis (3-aminophenoxy) benzene
• D Ac: N,N-ジメチルァセトアミド • D Ac: N, N-dimethylacetamide
[0045] また、実施例中の各種物性の測定方法と条件を以下に示す。 [0045] Measurement methods and conditions for various physical properties in the examples are shown below.
[0046] [線膨張係数 (CTE)の測定] [0046] [Measurement of linear expansion coefficient (CTE)]
3mm X 15mmのサイズのポリイミドフィルムを、熱機械分析 (TMA)装置にて 5.0gの荷 重を加えながら一定の昇温速度で 30°C力 260°Cの温度範囲で引張り試験を行い、
温度に対するポリイミドフィルムの伸び量力も線膨張係数 (ppm/κ)を測定した。 A 3mm x 15mm size polyimide film was subjected to a tensile test in a temperature range of 30 ° C force and 260 ° C at a constant temperature increase rate while adding 5.0g of load with a thermomechanical analysis (TMA) device. The linear expansion coefficient (ppm / κ) was also measured for the elongation force of the polyimide film with respect to temperature.
[0047] [ガラス転移温度 (Tg)の測定] [0047] [Measurement of glass transition temperature (Tg)]
各実施例で得たポリイミドフィルム (10mm X 22.6mm)を動的熱器械分析装置にて 20 °Cから 500°Cまで 5°CZ分で昇温させたときの動的粘弾性を測定し、ガラス転移温度( tan δ極大値: °C)を求めた。 Measure the dynamic viscoelasticity of the polyimide film (10mm X 22.6mm) obtained in each example when the temperature was raised from 20 ° C to 500 ° C in 5 ° CZ minutes with a dynamic thermal analyzer. The glass transition temperature (tan δ maximum value: ° C) was determined.
[0048] [吸湿率の測定] [0048] [Measurement of moisture absorption rate]
4cm X 20cmのポリイミドフィルム (各 3枚)を、 120°Cで 2時間乾燥した後、 23°C/50%RH の恒温恒湿室で 24時間以上静置し、その前後の重量変化力も次式により求めた。 吸湿率 (wt%) = [(吸湿後重量-乾燥後重量) Z乾燥後重量] X 100 4cm x 20cm polyimide film (3 sheets each) is dried at 120 ° C for 2 hours, then left in a constant temperature and humidity room at 23 ° C / 50% RH for more than 24 hours. Obtained by the formula. Moisture absorption (wt%) = [(weight after moisture absorption-weight after drying) Z weight after drying] X 100
[0049] [湿度膨張係数 (CHE)の測定] [0049] [Measurement of Humidity Expansion Coefficient (CHE)]
35cm X 35cmのポリイミド Z銅箔積層体の銅箔上に、エッチングレジスト層を設け、こ れを一辺が 30cmの正方形の四辺に 10cm間隔で直径 lmmの点が 16箇所配置するよう にマスクを介して露光、現像を行 、上記 16箇所の銅箔残存点を有する CHE測定用 ポリイミドフィルムを得た。このフィルムを 120°Cで 2時間乾燥した後、 23°C/30%RH · 80% RHの恒温恒湿機で各湿度にお 、て 24時間以上静置し、二次元測長機により測定し た各湿度での銅箔点間の寸法変化力 湿度膨張係数 (ppm/%RH)を求めた。 An etching resist layer is provided on the copper foil of a 35 cm x 35 cm polyimide Z copper foil laminate, and this is arranged through a mask so that 16 points of lmm diameter are arranged at 10 cm intervals on four sides of a 30 cm square. Then, exposure and development were performed to obtain a polyimide film for CHE measurement having the above 16 copper foil remaining points. After drying this film at 120 ° C for 2 hours, leave it at 23 ° C / 30% RH and 80% RH thermostatic oven for 24 hours at each humidity and measure with a two-dimensional length measuring machine. The dimensional change force between the copper foil points at each humidity was determined as the humidity expansion coefficient (ppm /% RH).
[0050] [エッチング速度の測定] [0050] [Measurement of etching rate]
エッチング速度は、銅箔上にポリイミド層を形成した積層体を用い、基準エッチング 液(エチレンジァミン llwt%、エチレングリコール 22 wt%、水酸化カリウム 30wt%及び水 3 7wt%)を用いて測定する。測定は、まず、銅箔上にポリイミド層を形成した積層体全 体の厚みを測定し、次 、で銅箔を残したままの状態で 80°Cの上記基準エッチング液 に浸漬してポリイミド榭脂が全てなくなる時間を測定し、初期の厚みをエッチングに要 した時間で割った値をエッチング速度とした。なお、エッチング時間が長!、ポリイミド 榭脂に関しては、膜厚が減った量をエッチングに要した時間で割った値をエッチング 速度とした。 The etching rate is measured using a laminate in which a polyimide layer is formed on a copper foil and using a reference etching solution (ethylene diamine llwt%, ethylene glycol 22 wt%, potassium hydroxide 30 wt% and water 37 wt%). In the measurement, first, the thickness of the entire laminate having a polyimide layer formed on a copper foil was measured, and then immersed in the above standard etching solution at 80 ° C. while leaving the copper foil in a polyimide film. The time when all the fat was removed was measured, and the value obtained by dividing the initial thickness by the time required for etching was taken as the etching rate. It should be noted that the etching time is long, and for polyimide resin, the value obtained by dividing the amount of decrease in film thickness by the time required for etching was taken as the etching rate.
[0051] [粘度の測定] [0051] [Measurement of viscosity]
粘度は、恒温水槽付のコーンプレート式粘度計 (トキメック社製)にて、 25°Cで測定 した。
[0052] [引張り弾性率 (Ε' )の測定] The viscosity was measured at 25 ° C with a cone-plate viscometer (manufactured by Tokimec) with a thermostatic water bath. [0052] [Measurement of tensile modulus (Ε ')]
テンションテスターを用い、幅 12.4mm、長さ 160mmのポリイミドフィルムを 10kgの荷 重をカ卩えながら 50mm/minで引つ張り試験を行!、、 25°Cにおける弓 I張り弾性率 (E ' )を 求めた。 A tension tester was used to pull a polyimide film with a width of 12.4mm and a length of 160mm at a load of 50kg / min. )
[0053] [5%熱分解温度 (Td5)及び (Td2%)の測定] [0053] [Measurement of 5% thermal decomposition temperature (Td5) and (Td2%)]
窒素雰囲気下で 10〜20mgの重さのポリイミドフィルムを、熱重量分析 (TG)装置に て一定の速度で 30°Cから 550°Cまで昇温させたときの重量変化を測定し、 5%重量減 少温度 (Td5)及び 2%重量減少温度 (Td2%)を求めた。 Measure the change in weight of a polyimide film weighing 10 to 20 mg under a nitrogen atmosphere when the temperature is raised from 30 ° C to 550 ° C at a constant rate using a thermogravimetric analysis (TG) device. The weight loss temperature (Td5) and 2% weight loss temperature (Td2%) were determined.
実施例 Example
[0054] 実施例 1〜7及び比較例 1〜2 [0054] Examples 1 to 7 and Comparative Examples 1 to 2
ポリアミド酸の合成 Synthesis of polyamic acid
ポリアミド酸 A〜Iを合成するため、窒素気流下で、表 1に示したジァミンを 200mlのセ ノ ラブルフラスコの中で攪拌しながら溶剤 DMAcに溶解させた。次いで、表 1に示した テトラカルボン酸二無水物を加えた。その後、溶液を室温で 3時間攪拌を続けて重合 反応を行 、、ポリイミド前駆体となるポリアミド酸 A〜Iの黄〜茶褐色の粘稠な溶液を得 た。それぞれのポリアミド酸溶液の重量平均分子量 (Mw)は約 10万〜 25万の範囲内で あり、高重合度のポリアミド酸が生成されていることが確認された。ポリアミド酸の固形 分と溶液粘度を表 1に示した。ここで、固形分はポリアミド酸と溶剤の合計量に対する ポリアミド酸の重量比率である。溶液粘度は E型粘度計を用い測定した。結果をまと めて表 1に示す。なお、表中原料のモノマー成分の数値は配合量 (g)を示す。 In order to synthesize the polyamic acids A to I, the diamines shown in Table 1 were dissolved in the solvent DMAc with stirring in a 200 ml cellable flask under a nitrogen stream. Then, tetracarboxylic dianhydride shown in Table 1 was added. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction, and a yellow-brown viscous solution of polyamic acids A to I serving as a polyimide precursor was obtained. The weight average molecular weight (Mw) of each polyamic acid solution was in the range of about 100,000 to 250,000, and it was confirmed that a polyamic acid with a high degree of polymerization was produced. Table 1 shows the solid content and solution viscosity of the polyamic acid. Here, the solid content is a weight ratio of the polyamic acid to the total amount of the polyamic acid and the solvent. The solution viscosity was measured using an E-type viscometer. The results are summarized in Table 1. In addition, the numerical value of the monomer component of a raw material in a table | surface shows a compounding quantity (g).
[0055] 積層体の製造 [0055] Production of laminate
ポリアミド酸 A〜Iの溶液を、それぞれ銅箔上にアプリケータを用いて乾燥後の膜厚 が約 15 mとなるように塗布し、 130°Cで 2.4分間乾燥した後、更に 130°C、 160°C、 200 °C、 230°C、 280°C、 320°C、 360°Cで各 2〜12分段階的な熱処理を行って、銅箔上に ポリイミド層を形成した。 Each solution of polyamic acid A to I was applied onto a copper foil using an applicator so that the film thickness after drying was about 15 m, dried at 130 ° C for 2.4 minutes, and then further 130 ° C, Stepwise heat treatment was performed at 160 ° C, 200 ° C, 230 ° C, 280 ° C, 320 ° C, and 360 ° C for 2 to 12 minutes to form a polyimide layer on the copper foil.
[0056] ポリイミドフイルムの作成及び測定 [0056] Preparation and measurement of polyimide film
それぞれのポリイミドフィルムについて、 IRにより構造解析を行った結果を、図 1〜6 に示す。また、積層体力ゝら塩ィ匕第二鉄水溶液を用いて銅箔をエッチング除去して A
〜Iのポリイミドフィルムを作成し、熱膨張係数 (CTE)、ガラス転移温度 (Tg)、引張り弹 性率、 2%重量減少温度 (Td2%)、吸湿率及び湿度膨張係数 (CHE)を求めた。なお、 A 〜1のポリイミドフィルムは、各々 A〜Iのポリアミド酸から得られたことを意味する。 Figures 1 to 6 show the results of IR structural analysis of each polyimide film. In addition, the copper foil is removed by etching using the strength of the laminate and the salty ferric aqueous solution. A polyimide film of ~ I was prepared, and the coefficient of thermal expansion (CTE), glass transition temperature (Tg), tensile modulus, 2% weight loss temperature (Td2%), moisture absorption coefficient and humidity expansion coefficient (CHE) were determined. . In addition, the polyimide film of A-1 means that it was obtained from the polyamic acid of A-I, respectively.
[0057] 実施例のポリイミドは、フレキシブルプリント積層板などの絶縁樹脂用途で必要とさ れる低熱膨張係数を示し、優れた耐熱性、すなわち、 500°C以上の 2%重量減少温 度を保持しながら、低い吸湿率と湿度膨張係数を示した。また、エッチング速度を早 くすることができた。一方、比較例のポリイミドは、吸湿率や湿度膨張係数が高いもの であった。 [0057] The polyimides of the examples exhibit a low coefficient of thermal expansion required for insulating resin applications such as flexible printed laminates, and have excellent heat resistance, that is, 2% weight reduction temperature of 500 ° C or higher. However, it showed a low moisture absorption rate and humidity expansion coefficient. In addition, the etching rate could be increased. On the other hand, the polyimide of the comparative example had a high moisture absorption rate and humidity expansion coefficient.
[0058] [表 1] [0058] [Table 1]
[0059] [表 2]
実施例 比較例 評価項目 [0059] [Table 2] Examples Comparative examples Evaluation items
1 2 3 4 5 6 7 1 2 ホ。リイミドフィルム A B C D E F G H I 厚み ( ii m) 20 20 20 20 20 20 17 20 16 1 2 3 4 5 6 7 1 2 E Reimide film A B C D E F G H I Thickness (ii m) 20 20 20 20 20 20 17 20 16
CTE (ppm/ ) 5 7 9 8 8 15 24 21 18CTE (ppm /) 5 7 9 8 8 15 24 21 18
Tg (°C ) 357 365 334 350 352 310 366 39 1 390 引張弾性率 (GPa) 9.0 9.0 6.6 8.1 8.0 4.6 4.5Tg (° C) 357 365 334 350 352 310 366 39 1 390 Tensile modulus (GPa) 9.0 9.0 6.6 8.1 8.0 4.6 4.5
Td2% (°C ) 538 540 521 517 515 550 520 吸湿率 (wt% ) 0.65 0.68 0.58 0.48 0.58 0.46 0.8 1.2 1.1Td2% (° C) 538 540 521 517 515 550 520 Moisture absorption (wt%) 0.65 0.68 0.58 0.48 0.58 0.46 0.8 1.2 1.1
CHE (ppm/%RH) 5.6 7.9 8.0 6.7 5.9 6.6 9.0 18.5 6.6 エッチング'速度 CHE (ppm /% RH) 5.6 7.9 8.0 6.7 5.9 6.6 9.0 18.5 6.6 Etching 'speed
13 10 13 18 12 10 26 5 42 ( l-L m/mm 13 10 13 18 12 10 26 5 42 (l-L m / mm
[0060] 実施例 8〜11 [0060] Examples 8-11
合成例 Synthesis example
窒素気流下で、表 3に示したジァミンを 100mlのセパラブルフラスコの中で攪拌しな 力 Sら溶剤 DMAc85gに溶解させた。次いで、表 3に示したテトラカルボン酸二無水物を カロえた。その後、溶液を室温で 3時間攪拌を続けて重合反応を行い、ポリイミド前駆 体となる 4種類のポリアミド酸溶液の茶褐色の粘稠な溶液を得た。合成例 10〜13で得 られたそれぞれのポリアミド酸溶液 J〜Mの粘度(cP)は 1,000〜15,000の範囲内であり 、その値を表 3に示した。なお、表中原料のモノマー成分の数値は配合量 (g)を示す Under a nitrogen stream, the diamine shown in Table 3 was dissolved in 85 g of solvent DMAc with stirring force S in a 100 ml separable flask. Next, the tetracarboxylic dianhydride shown in Table 3 was prepared. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a dark brown viscous solution of four types of polyamic acid solutions to be polyimide precursors. The viscosities (cP) of the respective polyamic acid solutions J to M obtained in Synthesis Examples 10 to 13 are in the range of 1,000 to 15,000. The values are shown in Table 3. In addition, the numerical value of the monomer component of the raw material in the table indicates the blending amount (g).
[0061] 積層体の製造 [0061] Production of laminate
合成例で得たポリアミド酸溶液 J〜Mを、それぞれ厚さ 12 ^ mの銅箔上にアプリケー タを用いて乾燥後の膜厚が約 20 μ mとなるように塗布し、 130°Cで 3分間乾燥した後、 更に 130。C、 160°C、 200°C、 230°C、 280°C、 320°C、 360°Cで各 2〜12分段階的な熱処 理を行い、銅箔上に単層のポリイミド層を有する 4種の積層体を得た。得られた積層 体について、それぞれ塩ィ匕第二鉄水溶液を用いて銅箔をエッチング除去してポリイミ ドフィルムを作成し、弾性率 ')、熱膨張係数 (CTE)、ガラス転移温度 (Tg)、熱分解 温度 (Td5)を求めた。各測定結果を、表 4に示す。 The polyamic acid solutions J to M obtained in the synthesis examples were each applied onto a copper foil having a thickness of 12 ^ m using an applicator so that the film thickness after drying was about 20 μm. 130 minutes after drying for 3 minutes. C, 160 ° C, 200 ° C, 230 ° C, 280 ° C, 320 ° C, 360 ° C, and heat treatment step by step for 2-12 minutes each to form a single polyimide layer on the copper foil Four types of laminates were obtained. For each of the obtained laminates, a copper foil was etched away using an aqueous salt and ferric iron solution to create a polyimide film, and an elastic modulus'), a coefficient of thermal expansion (CTE), and a glass transition temperature (Tg). The thermal decomposition temperature (Td5) was determined. Table 4 shows the measurement results.
[0062] [表 3]
ポリアミ ド酸 [0062] [Table 3] Polyamidic acid
合成例 ABF DAPE PMDA Synthesis example ABF DAPE PMDA
(cP) (cP)
10 J 2. 1 5. 1 7. 8 1, 700 10 J 2. 1 5. 1 7. 8 1, 700
11 K 2. 9 4. 3 7. 8 7, 29011 K 2. 9 4. 3 7. 8 7, 290
12 L 3. 6 3. 6 7. 8 12, 50012 L 3. 6 3. 6 7. 8 12, 500
13 M 4. 3 2. 9 7. 8 14, 250 [表 4]13 M 4. 3 2. 9 7. 8 14, 250 [Table 4]
産業上の利用可能性 Industrial applicability
本発明の配線基板用積層体は、低線膨張係数で、かつ耐熱性にも優れているとい う特性を有していることにより、電子材料部品に広く適用することができる。特に、 FPC や HDDサスペンション用基板等の用途に有用である。式 (al)で表される構造単位を 含むポリイミド榭脂又はポリイミド榭脂層は、耐熱性に優れ、低吸湿、かつ寸法安定 性にも優れており、接着層由来の諸問題を伴わずに湿度による反りを抑制する効果 をも有する。また、絶縁層のポリイミド樹脂層のエッチング速度が優れるという特徴を 有し、電子材料分野の部品に広く適用することができる。式 (bl)で表される構造単位 を含むポリイミド榭脂層は、低線膨張係数で、耐熱性で、低弾性であるため、上記用 途に広く適用することができる。また、式 (a2)で表されるポリアミド酸は、脱水、閉環さ せて、優れた耐熱性を有し、かつ低熱膨張性'低吸湿'低吸湿膨張性のポリイミド榭 脂とすることができる。すなわち、式 (al)で表されるポリイミド樹脂は、上記特性を示す
ことが可能であるから、電気'電子分野を始めとする種々の分野に使用することがで き、特に、配線基板の絶縁材料用途として有用である。
Since the laminate for a wiring board of the present invention has the characteristics of a low linear expansion coefficient and excellent heat resistance, it can be widely applied to electronic material parts. It is especially useful for applications such as FPC and HDD suspension boards. The polyimide resin or polyimide resin layer containing the structural unit represented by the formula (al) has excellent heat resistance, low moisture absorption, and excellent dimensional stability, and is free from problems caused by the adhesive layer. It also has the effect of suppressing warping due to humidity. Further, it has a feature that the etching rate of the polyimide resin layer of the insulating layer is excellent, and can be widely applied to parts in the field of electronic materials. Since the polyimide resin layer containing the structural unit represented by the formula (bl) has a low linear expansion coefficient, heat resistance, and low elasticity, it can be widely applied to the above applications. In addition, the polyamic acid represented by the formula (a2) can be dehydrated and cyclized to give a polyimide resin having excellent heat resistance and low thermal expansion 'low moisture absorption' and low moisture absorption expansion. . That is, the polyimide resin represented by the formula (al) exhibits the above characteristics. Therefore, it can be used in various fields including electric and electronic fields, and is particularly useful as an insulating material for wiring boards.
Claims
請求の範囲 The scope of the claims
ポリイミド榭脂層の片面又は両面に金属層を有する積層体において、該ポリイミド榭 脂層の少なくとも一層が下記一般式(1)で表される構造単位を 10モル%以上含有す るポリイミド榭脂からなることを特徴とする配線基板用積層体。 In a laminate having a metal layer on one or both sides of a polyimide resin layer, at least one layer of the polyimide resin layer contains a polyimide resin containing 10 mol% or more of a structural unit represented by the following general formula (1) A laminate for a wiring board, comprising:
(式中、 Arは芳香環を I個以上有する 4価の有機基であり、 Arは下記式 (a)又は (b)で (In the formula, Ar is a tetravalent organic group having I or more aromatic rings, and Ar is represented by the following formula (a) or (b):
I 2 I 2
示される含酸素環と縮合した構造を有する芳香族基である。 ) An aromatic group having a structure condensed with the oxygen-containing ring shown. )
(a) (a)
[2] 一般式(I)で表される構造単位を 10モル%以上含有するポリイミド榭脂層の 25°Cに おける弾性率が 4GPa以下、線膨張係数が 30ppm/K以下であり、 5%熱分解温度 (Td[2] Polyimide resin layer containing 10 mol% or more of the structural unit represented by the general formula (I) has an elastic modulus at 25 ° C of 4 GPa or less, a linear expansion coefficient of 30 ppm / K or less, Thermal decomposition temperature (Td
5)が 500°C以上である請求項 I記載の配線基板用積層体。 The laminate for a wiring board according to claim I, wherein 5) is 500 ° C or higher.
[3] 一般式(I)で表される構造単位を 10モル%以上含有するポリイミド榭脂層が、線膨 張係数が 25ppmZK以下、吸湿率が 0.7wt%以下、かつ 30〜80%RHの湿度膨張係数 力 ¾ppm/%RH以下である請求項 1記載の配線基板用積層体。 [3] A polyimide resin layer containing 10 mol% or more of the structural unit represented by the general formula (I) has a linear expansion coefficient of 25 ppmZK or less, a moisture absorption rate of 0.7 wt% or less, and 30 to 80% RH. The laminate for a wiring board according to claim 1, wherein the coefficient of humidity expansion is ¾ ppm /% RH or less.
[4] ポリイミド榭脂層が複数のポリイミド榭脂層力もなり、一般式 (1)で表される構造単位
を 10モル%以上含有するポリイミド榭脂層の他にガラス転移温度が 250°C以上である 熱可塑性ポリイミド榭脂層を 1層以上有する請求項 1又は 2記載の配線基板用積層体 [4] A structural unit represented by the general formula (1) in which the polyimide resin layer also has a plurality of polyimide resin layers. The laminate for a wiring board according to claim 1 or 2, further comprising at least one thermoplastic polyimide resin layer having a glass transition temperature of 250 ° C or more in addition to the polyimide resin layer containing 10 mol% or more of
[5] 一般式(1)で表される構造単位を 10モル%以上含有するポリイミド榭脂層が、ェチ レンジァミン エチレングリコール 22 wt%を添カ卩した 30wt%水酸化カリウム水溶液 をエッチング液として使用し、 80°Cでエッチングしたときのエッチング速度が 10 μ m/m in以上である請求項 1記載の配線基板用積層体。 [5] A polyimide resin layer containing 10 mol% or more of the structural unit represented by the general formula (1) is prepared by using 30 wt% potassium hydroxide aqueous solution containing 22 wt% of ethylenediamine ethylene glycol as an etching solution. The laminate for a wiring board according to claim 1, wherein the laminate is used and etched at 80 ° C and has an etching rate of 10 µm / min or more.
[6] 下記式 (a2)で表される構造単位を 10モル%以上有することを特徴とする芳香族ポ リアミド酸。 [6] An aromatic polyamic acid having a structural unit represented by the following formula (a2) of 10 mol% or more.
(式中、 Arは芳香環を 1個以上有する 4価の有機基である。 ) (In the formula, Ar is a tetravalent organic group having one or more aromatic rings.)
1 1
[7] 下記式 (al)で表される構造単位を 10モル%以上有することを特徴とする芳香族ポ リイミド榭脂。 [7] An aromatic polyimide resin characterized by having 10 mol% or more of a structural unit represented by the following formula (al).
(式中、 Arは芳香環を 1個以上有する 4価の有機基である。 ) (In the formula, Ar is a tetravalent organic group having one or more aromatic rings.)
1 1
[8] 式(al)において、 Arの少なくとも一部力 ピロメリット酸二無水物、 3,3, ,4,4,-ビフエ -ルテトラカルボン酸二無水物、ナフタレン- 2,3, 6,7-テトラカルボン酸二無水物、ナ フタレン- 1,4,5,8-テトラカルボン酸二無水物、 3,3",4,4"-p-テルフエ-ルテトラカルボ
ン酸ニ無水物、 4,4,-ォキシジフタル酸二無水物、 3, 3,4,4,-ベンゾフエノンテトラカル ボン酸二無水物及びビス(2,3-ジカルボキシフエ-ル)スルホン二無水物から選ばれ る少なくとも 1種の芳香族テトラカルボン酸の残基である請求項 7に記載の芳香族ポリ イミド榭脂。 [8] In the formula (al), at least a partial force of Ar pyromellitic dianhydride, 3,3,, 4,4, -biphenyltetracarboxylic dianhydride, naphthalene-2,3, 6, 7-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, 3,3 ", 4,4" -p-terfel tetracarbo Dianhydride, 4,4, -oxydiphthalic dianhydride, 3, 3, 4, 4, benzophenone tetracarboxylic dianhydride and bis (2,3-dicarboxyphenol) sulfone 8. The aromatic polyimide resin according to claim 7, which is a residue of at least one aromatic tetracarboxylic acid selected from dianhydrides.
[9] 23°Cにおける弾性率力 S4〜10GPa、吸湿率が 0.7wt%以下、かつ 30〜50%RHの湿度 膨張係数力 ¾ppm/%RH以下であり、熱膨張係数が 20ppm/K以下である請求項 7に記 載の芳香族ポリイミド榭脂。 [9] Elastic modulus power at 23 ° C S4 ~ 10GPa, moisture absorption 0.7wt% or less, humidity 30 ~ 50% RH expansion coefficient power ¾ppm /% RH or less, thermal expansion coefficient 20ppm / K or less The aromatic polyimide resin according to claim 7.
[10] 請求項 6記載の芳香族ポリアミド酸をイミド化することを特徴とする請求項 7記載の 芳香族ポリイミド榭脂の製造方法。
10. The method for producing an aromatic polyimide resin according to claim 7, wherein the aromatic polyamic acid according to claim 6 is imidized.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-018523 | 2006-01-27 | ||
JP2006018523A JP4994672B2 (en) | 2006-01-27 | 2006-01-27 | Aromatic polyamic acid and aromatic polyimide |
JP2006-098244 | 2006-03-31 | ||
JP2006098244A JP2007273767A (en) | 2006-03-31 | 2006-03-31 | Laminate for wiring board |
JP2006231993A JP2008060128A (en) | 2006-08-29 | 2006-08-29 | Laminate for wiring board |
JP2006-231993 | 2006-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007086550A1 true WO2007086550A1 (en) | 2007-08-02 |
Family
ID=38309327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/051352 WO2007086550A1 (en) | 2006-01-27 | 2007-01-29 | Laminate for wiring board |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007086550A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104987506A (en) * | 2015-06-29 | 2015-10-21 | 桂林理工大学 | Soluble polyimide containing tert-butyl and benzofuran structure and preparation method of soluble polyimide |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08250860A (en) * | 1995-11-13 | 1996-09-27 | Nippon Steel Chem Co Ltd | Flexible printed board |
JP2004124091A (en) * | 2002-09-13 | 2004-04-22 | Kanegafuchi Chem Ind Co Ltd | Polyimide film, its manufacturing method and its use |
-
2007
- 2007-01-29 WO PCT/JP2007/051352 patent/WO2007086550A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08250860A (en) * | 1995-11-13 | 1996-09-27 | Nippon Steel Chem Co Ltd | Flexible printed board |
JP2004124091A (en) * | 2002-09-13 | 2004-04-22 | Kanegafuchi Chem Ind Co Ltd | Polyimide film, its manufacturing method and its use |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104987506A (en) * | 2015-06-29 | 2015-10-21 | 桂林理工大学 | Soluble polyimide containing tert-butyl and benzofuran structure and preparation method of soluble polyimide |
CN104987506B (en) * | 2015-06-29 | 2017-12-12 | 桂林理工大学 | Soluble polyimide containing the tert-butyl group and benzofuran structure and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102694527B1 (en) | Metal-clad laminate and circuit board | |
WO2009110387A1 (en) | Laminate for flexible board and heat conductive polyimide film | |
JP4757575B2 (en) | Laminate for wiring board | |
KR101170201B1 (en) | Laminate for wiring board | |
JP2009028993A (en) | Laminate for wiring substrate | |
JP2021070824A (en) | Polyimide composition, resin film, laminate, cover ray film, copper foil with resin, metal-clad laminate and circuit board | |
JP2021160148A (en) | Resin film, metal-clad laminate and circuit board | |
JP4642664B2 (en) | Laminate for wiring board | |
TW202319444A (en) | Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit | |
JP2015193117A (en) | metal-clad laminate and circuit board | |
JPWO2020022129A1 (en) | Metal-clad laminate and circuit board | |
CN113043690A (en) | Metal-clad laminate and circuit board | |
KR101077405B1 (en) | Laminate for wiring board | |
JP2015127118A (en) | Metal-clad laminate and circuit board | |
JP7413489B2 (en) | Method for manufacturing circuit board with adhesive layer and method for manufacturing multilayer circuit board | |
KR20230117670A (en) | Metal clad laminate and circuit board | |
JP4994672B2 (en) | Aromatic polyamic acid and aromatic polyimide | |
CN114672048A (en) | Polyimide film, metal-clad laminate, method for producing metal-clad laminate, and circuit board | |
JP7120870B2 (en) | Method for producing polyimide film and method for producing metal-clad laminate | |
TW202237705A (en) | Polyimide, metal-clad laminate plate and circuit board | |
WO2007086550A1 (en) | Laminate for wiring board | |
JP2008159896A (en) | Laminate for wiring board | |
JP2008060128A (en) | Laminate for wiring board | |
JP2007273767A (en) | Laminate for wiring board | |
TW202237765A (en) | Circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07707583 Country of ref document: EP Kind code of ref document: A1 |