[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007083579A1 - 複眼方式のカメラモジュール及びその製造方法 - Google Patents

複眼方式のカメラモジュール及びその製造方法 Download PDF

Info

Publication number
WO2007083579A1
WO2007083579A1 PCT/JP2007/050351 JP2007050351W WO2007083579A1 WO 2007083579 A1 WO2007083579 A1 WO 2007083579A1 JP 2007050351 W JP2007050351 W JP 2007050351W WO 2007083579 A1 WO2007083579 A1 WO 2007083579A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical axis
module
camera module
axis
Prior art date
Application number
PCT/JP2007/050351
Other languages
English (en)
French (fr)
Inventor
Satoshi Tamaki
Katsumi Imada
Tatsutoshi Suenaga
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2007800025971A priority Critical patent/CN101371568B/zh
Priority to JP2007554873A priority patent/JP4147273B2/ja
Priority to US12/159,288 priority patent/US8194169B2/en
Publication of WO2007083579A1 publication Critical patent/WO2007083579A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/41Extracting pixel data from a plurality of image sensors simultaneously picking up an image, e.g. for increasing the field of view by combining the outputs of a plurality of sensors

Definitions

  • the present invention relates to a small and thin camera module and a manufacturing method thereof.
  • the present invention relates to a compound-eye camera module that captures an image with a plurality of photographing optical lenses and a manufacturing method thereof.
  • a subject image is converted into two-dimensional image information by forming a subject image on an image sensor such as a CCD or CMOS through a lens.
  • a camera module mounted on such an imaging apparatus is required to be small and thin.
  • Patent Document 1 An example of a compound eye type camera module is described in Patent Document 1, which will be described with reference to FIG.
  • a lens array 100 having three lenses 100a, 100b, and 100c and an image pickup element 105 are arranged to face each other.
  • An optical filter array 102 having a green spectral filter 102a, a red spectral filter 102b, and a blue spectral filter 102c corresponding to each of the three lenses 100a, 100b, and 100c is provided on the subject-side surface of the lens array 100.
  • the Lens array of image sensor 105 100-rule surface [This also has an optical filter array 103 having a green spectral filter 103a, a red spectral filter 103b, and a blue spectral filter 103c corresponding to the three lenses 100a, 100b, and 100c, respectively. It is provided! On the subject side of the optical filter array 102, a diaphragm member 107 having a diaphragm (aperture) is disposed at a position that coincides with the optical axes of the lenses 100a, 100b, and 100c. The lenses 100a, 100b, and 100c form subject images on corresponding imaging regions on the image sensor 105, respectively.
  • the lenses 100a, 100b, and 100c each have a limited wavelength of light, the subject image can be formed on the image sensor 105 while being a single lens. Therefore, it is possible to make the camera module thinner.
  • the diaphragm member 107 and the lens array 100 are An optical filter array 102 is provided between them, and an optical filter array 103 is provided between the lens array 100 and the image sensor 105. Since it is necessary to secure a necessary optical length between the lens array 100 and the image sensor 105, even if the optical filter array 103 is provided between them, the thickness of the lens module does not increase.
  • the camera module becomes thicker by the thickness of the optical filter array 102. That is, the camera module in FIG. 13 has a problem that it is not sufficiently thin.
  • a compound-eye camera module that solves this problem is described in Patent Document 2, which will be described with reference to FIG.
  • An aperture member 111, a lens array 112, a light blocking block 113, an optical filter array 114, and an image sensor 116 are arranged in this order from the subject side.
  • the lens array 112 includes a plurality of lenses.
  • the diaphragm member 111 includes a diaphragm (aperture) at a position that coincides with the optical axis of each lens of the lens array 112.
  • the optical filter array 114 includes a plurality of optical filters having different spectral characteristics for each region corresponding to each lens of the lens array 112, and covers the light receiving surface of the image sensor 116.
  • the light shielding block 113 includes a light shielding wall 113a at a position that coincides with a boundary between adjacent lenses of the lens array 112, that is, a boundary between adjacent optical filters of the optical filter array 114.
  • the image sensor 116 is mounted on the semiconductor substrate 115.
  • a driving circuit 117 and a signal processing circuit 118 are further mounted on the semiconductor substrate 115.
  • the light shielding wall 113a of the light shielding block 113 prevents the light from entering the filter without corresponding to this lens of the optical filter array 114 that has passed through a certain lens. Therefore, the optical filter array 102 between the diaphragm member 107 and the lens array 100, which is necessary in the camera module of FIG. Therefore, the camera module can be made thinner.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-78217
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-143459
  • the light shielding wall 113a of the light shielding block 113 is not attached to the image sensor 116 due to assembly variations of the light shielding block 113 with respect to the lens array 112 in the direction parallel to the plane perpendicular to the optical axis. There was a problem if the necessary imaging area was blocked. In addition, if the imaging region on the image sensor 116 is set wide in consideration of this variation, there is a problem that the number of pixels that are not used in actual imaging increases, leading to an increase in size and cost of the image sensor 116.
  • the present invention solves the above-described conventional problems, and provides a compound eye type camera module that is thin and has a small number of wasted pixels in an image sensor, and is therefore low in cost and a manufacturing method thereof. For the purpose.
  • the compound-eye camera module of the present invention includes a lens module integrally including a plurality of lenses arranged on a single plane, a plurality of imaging regions, and the lens module and the plurality of imaging regions.
  • An optical filter array having a plurality of optical filters that are arranged and each transmit light of a specific wavelength band, and arranged between the lens module and the plurality of imaging regions, and form a plurality of independent openings.
  • a light shielding block having a light shielding wall.
  • the plurality of lenses, the plurality of imaging regions, the plurality of optical filters, and the plurality of openings correspond one-to-one.
  • a first sliding surface is provided on the light shielding block. Further, a second slide that slides on the first sliding surface so that the lens module can rotate with respect to the light-shielding block with an axis perpendicular to the plurality of imaging regions as a rotation center axis. A surface is provided on the lens module.
  • the manufacturing method of the present invention for a compound eye type camera module includes a lens module integrally including a plurality of lenses arranged on one plane, a plurality of imaging regions, the lens module, and the plurality of the plurality of lenses.
  • An optical filter array having a plurality of optical filters that are arranged between the imaging region and each transmitting light of a specific wavelength band, and arranged between the lens module and the plurality of imaging regions and independent of each other.
  • a compound eye type power module module in which a region, the plurality of optical filters, and the plurality of openings correspond one-to-one.
  • the lens module is rotated with respect to the light shielding block with an axis perpendicular to the plurality of imaging regions as a rotation center axis, and then the lens module and the light shielding block are fixed. It is characterized by doing.
  • the light-shielding block having the light-shielding wall is used to prevent the light from the lens that does not correspond to the imaging area from entering the imaging area.
  • a camera module can be realized.
  • the light shielding block includes a first sliding surface
  • the lens module includes a second sliding surface that slides on the first sliding surface.
  • the lens module is rotated with respect to the light shielding block with the axis perpendicular to the plurality of imaging regions as the rotation center axis, and then the lens module and the light shielding block are fixed.
  • the imaging area of the lens does not protrude from the imaging area, and it is not necessary to use a large imaging element having many unnecessary pixels. Therefore, it is possible to reduce the size and cost of the camera module.
  • FIG. 1 is an exploded perspective view of a compound-eye camera module according to Embodiment 1 of the present invention.
  • Fig. 2 is a perspective view of the upper lens barrel as viewed from the side of the imaging device in the compound eye type camera module according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view of the light shielding block as viewed from the subject side in the compound-eye camera module according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram of a lens array for an imaging region of an imaging element before positioning in a direction parallel to a plane perpendicular to the optical axis in the compound-eye camera module according to Embodiment 1 of the present invention. It is the top view which showed arrangement
  • FIG. 5 is a diagram of a lens array for an imaging region of an imaging element after positioning in a direction parallel to a plane perpendicular to the optical axis in the compound-eye camera module according to Embodiment 1 of the present invention. It is the top view which showed arrangement
  • FIG. 6 is an exploded perspective view of a compound-eye camera module according to Embodiment 2 of the present invention.
  • Fig. 7 is a perspective view of the upper lens barrel as seen from the subject side force in the compound-eye camera module according to Embodiment 2 of the present invention.
  • FIG. 8 is a perspective view of a light-shielding block as viewed from the subject side in a compound eye camera module according to Embodiment 2 of the present invention.
  • FIG. 9 is a front view of a compound-eye camera module according to Embodiment 2 of the present invention.
  • FIG. 10 is a perspective view of a compound eye camera module according to Embodiment 2 of the present invention as viewed from the subject side.
  • FIG. 11A is a diagram of positions of optical axes of a plurality of lenses and a plurality of imaging regions before rotation adjustment of a lens module with respect to a light shielding block in a compound eye type camera module according to Embodiment 3 of the present invention. It is the top view which showed the relationship.
  • FIG. 11B is a diagram illustrating positions of the optical axes of a plurality of lenses and a plurality of imaging regions after rotation adjustment of the lens module with respect to the light shielding block in the compound-eye camera module according to Embodiment 3 of the present invention. It is the top view which showed the relationship.
  • FIG. 12A is a side view for explaining the principle of measuring the distance to the subject using the compound-eye camera module according to the present invention.
  • FIG. 12B is a plan view for explaining the principle of measuring the distance to the subject using the compound-eye camera module according to the present invention.
  • FIG. 13 is a cross-sectional view of an imaging system of a conventional camera module.
  • FIG. 14 is an exploded perspective view of an imaging system of another conventional camera module.
  • the first sliding surface includes at least a part of a cylindrical surface having the rotation center axis as a central axis
  • the second sliding surface is a cylindrical surface. It is preferable that at least a part of is included.
  • the compound-eye camera module according to the present invention further includes a mechanism for limiting an angle of the rotation of the lens module with respect to the light shielding block.
  • a mechanism for limiting an angle of the rotation of the lens module with respect to the light shielding block is reduced, so that the productivity can be improved and a low-cost compound-eye camera module can be realized.
  • the lens module and the light shielding block are fixed by the mechanism. This eliminates the need to newly design and provide parts and shapes for fixing the lens module and the light blocking block.
  • the fixing method between the lens module and the shading block can be simplified, and the assembly workability is improved. Accordingly, it is possible to realize a low-cost compound-eye camera module.
  • the pixels of the plurality of imaging regions are arranged in a matrix along a first direction and a second direction orthogonal to each other. It is preferable that the lens module has at least first to fourth lenses arranged in lattice points.
  • the direction connecting the optical axis of the first lens and the optical axis of the third lens and the direction connecting the optical axis of the second lens and the optical axis of the fourth lens are the first direction and
  • the directions are substantially parallel and connect the optical axis of the first lens and the optical axis of the second lens
  • the direction connecting the optical axis of the third lens and the optical axis of the fourth lens are It is preferable to be substantially parallel to the second direction.
  • One or both of the shift amounts are preferably equal to or smaller than the arrangement pitch of the pixels in the second direction. This makes use of the principle of triangulation using the first and third lenses arranged substantially along the first direction and the second and fourth lenses arranged substantially along the Z or first direction. Thus, the distance to the subject can be measured with high accuracy in a short time.
  • the pixels of the plurality of imaging regions are arranged in a matrix along a first direction and a second direction orthogonal to each other.
  • the lens module has at least first and second lenses.
  • the direction connecting the optical axis of the first lens and the optical axis of the second lens is substantially parallel to the first direction.
  • a deviation amount in the second direction of the optical axis of the second lens with respect to the optical axis of the first lens is equal to or less than an arrangement pitch of the pixels in the second direction. This makes it possible to measure the distance to the subject with high accuracy in a short time using the principle of triangulation using the first and second lenses arranged substantially along the first direction. .
  • the camera module force further includes a mechanism for limiting an angle of the rotation of the lens module with respect to the light shielding block. And it is preferable to rotate the said lens module with respect to the said light-shielding block within the range of the said restricted angle. As a result, the rotation adjustment range of the lens module relative to the light shielding block is reduced, so that productivity can be improved and a low-cost compound eye type camera module can be provided.
  • the lens module and the light shielding block are fixed by the mechanism. This eliminates the need to newly design and provide parts and shapes for fixing the lens module and the light blocking block.
  • the fixing method between the lens module and the light-blocking block can be simplified, and the assembly workability is improved. Accordingly, it is possible to provide a compound eye type camera module at a lower cost.
  • the pixels of the plurality of imaging regions are arranged in a matrix along a first direction and a second direction orthogonal to each other. It is preferable to have at least first to fourth lenses arranged in lattice points.
  • the direction connecting the optical axis of the first lens and the optical axis of the third lens, and the direction connecting the optical axis of the second lens and the optical axis of the fourth lens are substantially the same as the first direction.
  • a direction connecting the optical axis of the first lens and the optical axis of the second lens, and a direction connecting the optical axis of the third lens and the optical axis of the fourth lens are substantially parallel to each other.
  • the amount of deviation in the second direction of the optical axis of the third lens with respect to the optical axis of the first lens and the amount of deviation of the fourth lens with respect to the optical axis of the second lens are substantially parallel to the two directions.
  • One or both of the shift amounts of the optical axis in the second direction is the second direction.
  • the lens module is rotated with respect to the light shielding block so as to be equal to or less than a pixel arrangement pitch. This makes use of the principle of triangulation using the first and third lenses arranged substantially along the first direction and the second and fourth lenses arranged substantially along the first direction. The distance to the subject can be measured with high accuracy in a short time.
  • the pixels of the plurality of imaging regions are arranged in a matrix along a first direction and a second direction orthogonal to each other.
  • Preferably has at least a first and a second lens.
  • the direction connecting the optical axis of the first lens and the optical axis of the second lens is substantially parallel to the first direction, and the optical axis of the second lens with respect to the optical axis of the first lens
  • the lens module is rotated with respect to the light shielding block so that a shift amount in the second direction is equal to or less than an arrangement pitch of the pixels in the second direction. This makes it possible to measure the distance to the subject with high accuracy in a short time using the principle of triangulation using the first and second lenses arranged substantially along the first direction. .
  • Embodiment 1 of the present invention will be described below with reference to the drawings.
  • FIG. 1 is an exploded perspective view of the compound-eye camera module according to the first embodiment.
  • 1 is a lens array
  • 2 is an optical filter array
  • 3 is a substrate
  • 4 is an image sensor
  • 5 is an upper lens barrel
  • 6 is a light shielding block (lower lens barrel)
  • 7 is a lens module.
  • the XYZ Cartesian coordinate system as shown is set.
  • the Z axis passes through almost the center of the effective pixel area of the image sensor 4 and is perpendicular to the center.
  • the X axis is perpendicular to the Z axis and is parallel to the light shielding walls 6 la and 61c described later of the light shielding block 6.
  • the Y axis is perpendicular to the Z axis and light shielding walls 6 lb and 6 Id described later. It is a parallel axis.
  • the lens array 1 integrally includes four single lenses la to Id arranged in a lattice point on the same plane parallel to the XY plane.
  • the optical axes of the four lenses la to Id are parallel to the Z axis and are arranged at the four vertices of a virtual rectangle parallel to the XY plane.
  • the lenses la to ld are MTF required for light in the wavelength band of red, blue, or green among the three primary colors of light. Designed to satisfy optical specifications such as Specifically, the lens la is red, the lens lb is green, the lens lc is green, and the lens Id is optimally designed for light in each wavelength band.
  • Lens la ⁇ : Ld is integrally formed using a material such as glass or plastic. Each of the lenses la to ld forms light on the image sensor 4 after passing light from a subject (not shown) through the optical filter array 2.
  • the optical filter array 2 is disposed between the lens array 1 and the image sensor 4. Similarly to the lens array 1, the optical filter array 2 has four optical filters 2a to 2d arranged on the same plane parallel to the XY plane.
  • the four optical filters 2a to 2d transmit only light in any wavelength band of red, green, and blue, respectively. Specifically, the optical filter 2a transmits light in each wavelength band of red, the optical filter 2b is green, the optical filter 2c is green, and the optical filter 2d is blue.
  • the characteristics may be attached to the optical filters 2a to 2d.
  • the four optical filters 2a to 2d are respectively disposed on the optical axes of the four lenses la to Ld.
  • the image sensor 4 is an image sensor such as a CCD, and includes a large number of pixels arranged two-dimensionally in the vertical and horizontal directions.
  • the effective pixel area of the image sensor 4 is almost equally divided into four image areas 4a to 4d.
  • the four imaging areas 4a to 4d are respectively arranged on the optical axes of the four lenses la to Ld.
  • subject images that have power only in the wavelength components of red, green, and blue are independently formed. Specifically, only the red wavelength band light out of the light from the subject that has passed through the lens la passes through the optical filter 2a to form a subject image having only the red wavelength component on the imaging region 4a.
  • Each pixel constituting the imaging regions 4a to 4d of the imaging device 4 receives incident light from the subject force. It performs photoelectric conversion and outputs electrical signals (not shown) corresponding to the light intensity.
  • the electric signal output from the image sensor 4 is subjected to various signal processing and image processing.
  • the two image forces captured by the imaging regions 4b and 4c that receive light in the green wavelength band also determine the amount of parallax between these images, and from this, the four imaging regions 4a to 4d capture images between the four images. It is possible to create a single color image by determining the amount of parallax and combining the three colors of red, green, and blue in consideration of these amounts of parallax.
  • the distance to the subject can be measured using the principle of triangulation by comparing two images captured by the imaging regions 4b and 4c. These processes can be performed using a digital signal processor (DSP, not shown) or the like.
  • DSP digital signal processor
  • the upper lens barrel 5 is provided with a recess 51 on the lower surface thereof for holding and fixing the lens array 1.
  • the lens array 1 is positioned in the upper lens barrel 5 by being inserted into the recess 51.
  • four diaphragms (apertures) 5a to 5d are formed at positions where the optical axes of the four lenses la to Ld of the held lens array 1 pass.
  • the upper barrel 5 is made of a material that does not transmit light, and blocks external light that does not require any force other than the diaphragms 5a to 5d from entering the lenses la to Ld.
  • a lens module 7 is composed of the lens array 1 and the upper barrel 5 that holds the lens array 1.
  • the light shielding block 6 includes light shielding walls 6 la to 6 Id arranged in a cross shape so as to form four independent openings 6a to 6d, and light shielding walls 6 la to 6 And an outer cylindrical portion 62 for holding Id.
  • the light shielding walls 61a to 61d extend radially with respect to the Z axis, which is the central axis of the light shielding block 6, the light shielding walls 61a and 61c are along the XZ plane, and the light shielding walls 61b and 61d are along the YZ plane. ing.
  • the four openings 6a to 6d are arranged on the optical axes of the four lenses la to ld, respectively.
  • the light shielding walls 6 la to 6 Id divide the effective pixel area of the image sensor 4 into four image areas 4 a to 4 d.
  • the sizes of the openings 6a to 6d viewed from the direction parallel to the Z axis are substantially the same as or larger than the imaging regions 4a to 4d.
  • Lenses la ⁇ Light from the subject that has passed through Ld passes through apertures 6a-6d and is imaged on imaging regions 4a-4d, respectively.
  • the light shielding walls 61a to 61d prevent light that has passed through one of the lenses la to ld from entering an imaging region that does not correspond to the lens.
  • green wavelength band light that is incident on the lens lb obliquely and passed through the optical filter 2b should be incident only on the red wavelength band light.
  • a light shielding wall 61a that blocks the green wavelength band light is provided along the boundary between the imaging region 4a and the imaging region 4b so as not to enter the imaging region 4a.
  • the outer cylinder part 62 surrounding the openings 6a to 6d prevents outside light from entering the imaging regions 4a to 4d without passing through the lens array 1 and the optical filter array 2. In this way, the light blocking block 6 can prevent the generation of stray light or the like that prevents unnecessary light from entering each of the imaging regions 4a to 4d.
  • the light shielding block 6 has a material force that does not transmit light, like the upper lens barrel 5. Furthermore, the light shielding walls 6 la to 6 Id exposed in the openings 6 a to 6 d and the side surfaces of the outer cylindrical portion 62 are subjected to various surface treatments (for example, roughening treatment, plating, blackening, etc.) so as to minimize light reflection. It is preferable to be treated!
  • a surface of the light blocking block 6 on the lens array 1 side is provided with a recess 63 that holds and fixes the optical filter array 2.
  • the optical filter array 2 is positioned with respect to the light shielding block 6 by being fitted into the recess 63.
  • the optical filters 2a to 2d are disposed in the openings 6a to 6d, respectively.
  • the image sensor 4 is positioned and fixed with respect to the substrate 3.
  • the image sensor 4 is electrically connected to the substrate 3 by wire bonding or the like, and is further connected to an electronic component such as a DSP that processes an electric signal from the image sensor 4.
  • Electronic components such as DSP may also be mounted on the board 3.
  • the board 3 functions as an electrical connection and a reference surface for each component during assembly.
  • the Z axis which is the central axis of the light shielding block 6, passes through substantially the center of the effective pixel area of the image sensor 4, and the light shielding walls 6 la to 6 Id of the light shielding block 6 constitute the image sensor 4.
  • the light blocking block 6 on which the optical filter array 2 is fixed is positioned with respect to the image sensor 4 and fixed on the substrate 3 so as to coincide with the vertical and horizontal arrangement directions of a large number of pixels.
  • the light receiving surface of the imaging element 4 is perpendicular to the Z axis, and one arrangement direction (for example, the horizontal arrangement direction) of a large number of pixels arranged in a matrix constituting the imaging element 4 is the X axis.
  • the other arrangement direction (for example, the vertical arrangement direction) is parallel to the Y axis.
  • the effective pixel area of the image sensor 4 is substantially equally divided into four image areas 4a to 4d corresponding to the four openings 6a to 6d.
  • the lens module 7 having the lens array 1 fixed to the upper barrel 5 is fitted onto the light blocking block 6.
  • the tip surfaces of the legs 53 a to 53 d at the four corners of the upper barrel 5 come into contact with the substrate 3.
  • the lens array 1 is parallel to the XY plane and is positioned in the Z-axis direction.
  • the lens module 7 including the lens array 1 must be accurately positioned with respect to the imaging element 4 and the light shielding block 6 in a direction parallel to the XY plane. That is, the central axis 55 of the upper lens barrel 5 shown in FIG. 2 (this is a virtual rectangular shape parallel to each optical axis of the four lenses la to ld of the lens array 1 and having each optical axis position as a vertex. The axis that passes through the center) must be almost coincident with the Z axis in the XY plane. In addition to this, as shown in FIG.
  • the long side 12a and the short side 12b of an imaginary rectangle whose apexes are the optical axis positions l la to l Id of the four lenses la to Ld are the X axis and the Y axis, respectively. Each must be approximately parallel. If the long side 12a and the short side 12b are not parallel to the X axis and the Y axis, respectively, among the imaging regions 13a to 13d of the lens la to Ld, shaded regions 14a to 14d are imaging regions 4a to 4d. This is because it protrudes from 4d. That is, it is impossible to secure pixels necessary for imaging the subject on which the lenses la to Ld are imaged.
  • reference numeral 41 denotes a pixel constituting the image sensor 4.
  • this is realized as follows.
  • First sliding surfaces 66, 67, 68, 69 which are part of 65c are provided.
  • a virtual cylindrical surface with the central axis 55 of the upper barrel 5 as the central axis and a radius of Second sliding surfaces 56, 57, 58, 59 which are part of 55c are provided.
  • the second sliding surface 56, 57, 58, 59 of the upper lens barrel 5 on the rotating side slides on the first sliding surface 66, 67, 68, 69 of the shading block 6 on the fixed side.
  • the radius r2 is slightly less than the radius rl so that the required minimum clearance is formed between the first sliding surface 66, 67, 68, 69 and the second sliding surface 56, 57, 58, 59. Is set to a large value.
  • the lens module is mounted on the light blocking block 6 so that the second sliding surfaces 56, 57, 58, 59 of the upper barrel 5 face the first sliding surfaces 66, 67, 68, 69 of the light blocking block 6, respectively.
  • the Z axis which is the central axis of the light shielding block 6, and the central axis 55 of the upper barrel 5 substantially coincide.
  • the lens module 7 is rotated and adjusted in the XY plane with respect to the light shielding block 6, and the optical axis positions 11a of the four lenses la to ld shown in FIG.
  • the long side 12a and the short side 12b are made parallel to the X axis and the Y axis, respectively.
  • the rotation adjustment of the lens module 7 can be performed as follows, for example.
  • a parallel light source as a subject is installed on the Z axis, and subject images are formed on the imaging regions 4a to 4d via the lenses la to Ld and the optical filters 2a to 2d.
  • the optical axis positions 11a to Lid of the lens la to Ld are calculated from the positions of the spots captured by the imaging regions 4a to 4d, respectively.
  • the lens module is arranged so that the long side 12a and the short side 12b force of the virtual rectangle whose apexes are the optical axis positions 11a to id are parallel to the X axis and the Y axis, respectively. Rotate 7 in the XY plane.
  • the subject images can be captured without omission in each of the imaging regions 4a to 4d where the imaging regions 13a to 13d of the lenses la to Ld do not protrude from the imaging regions 4a to 4d.
  • the plane including the tip surfaces of the legs 53a to 53d at the four corners of the upper barrel 5 is parallel to the plane on which the four lenses la to ld are arranged.
  • the tip surfaces of the legs 53a to 53d at the four corners slide while always contacting the substrate 3. Therefore, even if the lens module 7 is rotated, the spot shapes formed by the lenses la to Ld on the imaging regions 4a to 4d do not change. Therefore, the rotation adjustment work becomes easy, and the photographed image does not change depending on the rotation position.
  • the light shielding block 6 including the light shielding walls 61a to 61d is provided. This eliminates the need for two optical filter arrays for color separation. Therefore, the camera module can be thinned.
  • the light shielding block 6 includes the first sliding surfaces 66, 67, 68, 69 and the upper lens barrel 5 includes the second sliding surfaces 5 6, 57, 58, 59,
  • the central axis (Z axis) and the central axis 55 of the upper lens barrel 5 can be made to substantially coincide with each other.
  • the long side 12a and the short side of the virtual rectangle having the optical axis positions lla to lld of the lens la to Ld are apexes.
  • 12b can be parallel to the X and Y axes, respectively.
  • the imaging regions 13a to 13d of the lenses la to Ld do not protrude from the imaging regions 4a to 4d, and it is not necessary to use a large image sensor having many unnecessary pixels. Accordingly, it is possible to reduce the size and cost of the camera module.
  • the subject at the time of rotation adjustment is not limited to this in the present invention.
  • the optical axis position 1 la to l Id may be obtained using.
  • the rotation adjustment is performed on the light blocking block 6 and the image sensor 4 on the fixed side and the lens module 7 on the rotating side.
  • the present invention is not limited to this, and the fixed side Even if the rotation side is opposite to the above, the relative position of both can be changed, and the same effect as above can be obtained.
  • an optical system that separates light from a subject into light in four wavelength bands of red, green, green, and blue is shown.
  • the optical system of the present invention is not limited to this.
  • it may be an optical system that separates into two near-infrared wavelength band lights and two green wavelength band lights, or may be a combination of other wavelength band lights.
  • the above-described effect of the present embodiment can be obtained regardless of the selected wavelength band.
  • the lens array 1 includes four lenses la to Ld
  • the lens array of the present invention is not limited to this.
  • the number of lenses provided in the lens array is not limited to 4, but may be 2 or more.
  • the arrangement of two or more lenses is not limited to the lattice point arrangement.
  • the lens module 7 includes the lens array 1 and the upper lens barrel 5 that holds the lens array 1, and the second sliding surfaces 56, 57, 58, 59 are the upper lens barrel 5.
  • the lens module 7 of the present invention is not limited to this.
  • the lens module 7 force lens la ⁇ : a member having a lens array having Ld and second sliding surfaces 56, 57, 58, 59, and a diaphragm member having diaphragms 5a to 5d may be provided.
  • the first sliding surfaces 66, 67, 68, 69 are formed discontinuously only at the four corners of the light shielding block 6.
  • the first sliding surface of the present invention is for example, a cylindrical surface that is continuous over the entire circumference of the light shielding block 6 may be used.
  • the second sliding surfaces 56, 57, 58, 59 are formed discontinuously on the legs 53a to 53d at the four corners of the upper barrel 5.
  • the sliding surface is not limited to this, and may be, for example, a cylindrical surface continuous over the entire circumference.
  • each of the first sliding surface and the second sliding surface includes four discontinuous surfaces.
  • the first sliding surface and the second sliding surface according to the present invention are included.
  • the surface is not limited to this. If the lens module 7 can be rotated with respect to the light-shielding block 6 by sliding the second sliding surface on the first sliding surface, one or both of the first sliding surface and the second sliding surface may be used. May contain two, three, five or more discontinuous faces.
  • first sliding surface and the second sliding surface are both along the cylindrical surface, but the first sliding surface and the second sliding surface of the present invention.
  • the surface is not limited to this.
  • the first sliding surface and the second sliding surface may be surfaces along the surface of the rotating body such as a conical surface or a spherical surface.
  • first sliding surface and the second sliding surface are in surface contact with each other
  • the present invention is not limited to this.
  • one of the first sliding surface and the second sliding surface may be a surface having a predetermined area, and the other may be a spherical surface that makes point contact with this surface or a cylindrical surface that makes line contact. .
  • the virtual radius r2 of the lens module 7 is provided outside the first sliding surfaces 66, 67, 68, 69 along the virtual cylindrical surface of the light shielding block 6 having the radius rl.
  • the second sliding surface 56, 57, 58, 59 along the cylindrical surface of the lens is shown in FIG. A sliding surface may be arranged.
  • the difference between the force radius rl and the radius r2 that satisfies rl> r2 is preferably as small as in the above embodiment.
  • the optical axis positions 11a to Ld of the lenses la to Ld are set as vertices.
  • the lens module 7 is arranged so that the directions of the long side 12a and the short side 12b of the virtual rectangle are parallel to the vertical and horizontal arrangement directions (that is, the Y axis and the X axis) of a large number of pixels constituting the imaging device 4.
  • the rotation adjustment of the present invention is not limited to this.
  • the lens module 7 is arranged such that each direction of the long side 12a and the short side 12b is inclined at a slight angle with respect to the vertical and horizontal arrangement directions (that is, the Y axis and the X axis) of a large number of pixels of the imaging device 4. In this case, a high-resolution image can be obtained by shifting the pixels.
  • FIG. 6 is an exploded perspective view of the compound-eye camera module according to the second embodiment.
  • the same members as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • This embodiment is different from the first embodiment with respect to the shapes of the upper lens barrel 500 and the light shielding block 600.
  • FIG. 7 is a perspective view of the upper barrel 500 viewed from the subject side.
  • the upper barrel 500 of the present embodiment is different from the upper barrel 5 of the first embodiment in that grooves 501, 502 are provided on two opposite sides.
  • FIG. 8 is a perspective view of the light blocking block 600 viewed from the subject side.
  • the light shielding block 600 according to the present embodiment is different from the light shielding block 6 according to the first embodiment in that walls 601 and 602 are provided with two opposite side surfaces extended to the subject side and protruding.
  • the walls 601, 602 force S are fitted into the grooves 501, 502 as shown in FIGS.
  • the rotatable range is limited to a range where the walls 601, 602 and the grooves 501, 502 are not in contact with each other. That is, the walls 601, 602 and the grooves 501, 502 function as a mechanism (stopper) for limiting the rotation angle of the lens module 7 including the upper lens barrel 500 with respect to the light shielding block 600.
  • the upper lens barrel 500 is fitted into the light shielding block 600 so that the walls 601, 602 are fitted into the grooves 501, 502, and the four lenses la ⁇ shown in FIG. It is possible to reduce the amount of inclination of the long side 12a and the short side 12b of the virtual rectangle with the vertices at the optical axis positions 1 la to 1 Id of Ld with respect to the X axis and the Y axis. Therefore, the amount of adjustment in the subsequent rotation adjustment process of the lens module 7 can be reduced. Therefore, the time for the rotation adjustment process of the lens module 7 can be shortened, and the productivity of the camera module can be improved.
  • the side surfaces of the grooves 501, 502 and Z or the walls 601, 602 are inclined so that the distance between the grooves 501, 502 and the walls 601, 602 increases as the distance from the subject increases in the Z-axis direction. Also good. As a result, the adhesive can be surely injected into the gaps 901 and 902, and the adhesive area of the adhesive is expanded, so that the light shielding block 600 and the lens module 7 can be more firmly fixed. .
  • the force indicating the combination of the grooves 501, 502 and the walls 601, 602 is not limited to this.
  • a combination of an arc-shaped groove (or hole) and a pin inserted therein allows the light-blocking block 600 to rotate in the XY plane of the lens module 7, and its rotation angle is predetermined. Any mechanism that can be limited to the above range can be used, and in this case, the same effect as described above can be obtained.
  • the lens array 1 having a plurality of lenses is made of, for example, a lens material (for example, resin or glass
  • FIGS. 12A and 12B show a side view taken along a direction perpendicular to the plane including the optical axes 11a and 11c of the two lenses la and lc
  • FIG. 12B shows a parallel view with the optical axes 11a and 11c of the two lenses la and lc.
  • a plan view along the various directions is shown.
  • 15a and 15c are positions where the optical axes 11a and 11c intersect with the imaging region of the imaging device 4.
  • the subject 200 on the optical axis 11c is imaged as subject images 201a and 201c on the imaging region of the imaging device 4 by the lenses la and lc.
  • the subject distance A can be obtained by obtaining the parallax amount S.
  • the captured image obtained through the lens lc is used as a reference image
  • the captured image obtained through the lens la is used as a compared image
  • the compared image with respect to the position of the subject image 201c in the reference image is compared.
  • a displacement amount (namely, a parallax amount) S of the position of the subject image 201a in the image is obtained.
  • it is necessary to search the subject image 201a corresponding to the subject image 201c in the reference image in the comparison image this is “stereo matching” t).
  • the subject image 201a cannot be accurately identified in the compared image, and the subject distance cannot be determined accurately. Alternatively, it takes a lot of time to search for the subject image 201a in the comparison image, and the calculation time becomes long.
  • Stereo matching is performed between the two captured images obtained from the upper two imaging regions 4a and 4c, using a camera module having four lenses arranged in a lattice point as shown in Fig. 11A.
  • the subject distance is measured and the subject distance is measured by performing stereo matching between the two captured images obtained from the lower two imaging regions 4b and 4d.
  • the measurement accuracy of the subject distance decreases, and the calculation time becomes longer.
  • Is preferably set to be equal to or smaller than the arrangement pitch of the pixels 41 in the Y-axis direction.
  • stereo matching is performed between the two captured images obtained from the upper two imaging regions 4a and 4c, and two captured images obtained from the lower two imaging regions 4b and 4d are obtained.
  • the case where stereo matching is performed between them has been described, but the present invention is not limited to this.
  • stereo matching is performed between two captured images obtained from the right two imaging regions 4a and 4b, and stereo imaging is performed between the two captured images obtained from the left two imaging regions 4c and 4d. It is also possible to perform matching.
  • the deviation Dy is less than the arrangement pitch of the pixels 41 in the Y-axis direction.
  • the displacement Dx is determined by the arrangement of the pixels 41 in the X-axis direction.
  • the pitch is set below the setting pitch.
  • the displacement Dx is the arrangement pitch of the pixels 41 in the X-axis direction. It is preferable to set as follows.
  • the lens array has four lenses.
  • the optical axes of the two lenses are connected.
  • the direction substantially parallel to the X axis or Y axis as described above, the same effect as described above can be obtained.
  • the lens array has five or more lenses, two or four of them are arranged with respect to the image sensor 4 so that the above-described conditions are satisfied. The same effect can be obtained.
  • Stereo matching can be performed between two captured images, and the subject distance can be measured.
  • the field of application of the compound-eye camera module of the present invention is not particularly limited. It can be preferably used for mobile phones, digital still cameras, surveillance cameras, in-vehicle cameras, etc. that are compact and thin and have camera functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)
  • Blocking Light For Cameras (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 一平面上に配置された複数のレンズ(1a~1d)を一体に有するレンズモジュール(7)と、複数の撮像領域(4a~4d)との間に、複数の光学フィルタ(2a~2d)を有する光学フィルタアレイ(2)と、互いに独立した複数の開口(6a~6d)を形成する遮光壁(61a~61d)を備えた遮光ブロック(6)とが配置されている。遮光ブロックには第1摺動面(66~69)が設けられている。レンズモジュールには、複数の撮像領域に対して垂直な軸を回転中心軸として遮光ブロックに対してレンズモジュールが回転可能なように、第1摺動面上を摺動する第2摺動面(56~59)が設けられている。これにより、小型、薄型、低コストの複眼方式のカメラモジュールを実現できる。

Description

明 細 書
複眼方式のカメラモジュール及びその製造方法
技術分野
[0001] 本発明は、小型、薄型のカメラモジュール及びその製造方法に関する。特に、複数 の撮影光学レンズによって画像を撮像する複眼方式のカメラモジュール及びその製 造方法に関する。
背景技術
[0002] デジタルビデオやデジタルカメラのような撮像装置では、レンズを介して被写体像を CCDや CMOS等の撮像素子上に結像することにより、被写体を 2次元の画像情報 に変換する。このような撮像装置に搭載されるカメラモジュールには小型、薄型化が 要求される。
[0003] カメラモジュールの小型、薄型化を実現するために、複眼方式のカメラモジュール が提案されている。
[0004] 複眼式のカメラモジュールの一例が特許文献 1に記載されており、これを図 13を用 いて説明する。 3つのレンズ 100a, 100b, 100cを有するレンズアレイ 100と、撮像 素子 105とが対向して配置されている。レンズアレイ 100の被写体側の面には、 3つ のレンズ 100a, 100b, 100cにそれぞれ対応して緑色分光フィルタ 102a、赤色分光 フィルタ 102b、青色分光フィルタ 102cを有する光学フィルタアレイ 102が設けられて ヽる。撮像素子 105のレンズアレイ 100ィ則の面【こも、 3つのレンズ 100a, 100b, 100 cにそれぞれ対応して緑色分光フィルタ 103a、赤色分光フィルタ 103b、青色分光フ ィルタ 103cを有する光学フィルタアレイ 103が設けられて!/、る。光学フィルタアレイ 1 02の被写体側には、レンズ 100a, 100b, 100cの光軸と一致する位置に絞り(開口) を有する絞り部材 107が配置されている。レンズ 100a, 100b, 100cは、被写体像を 撮像素子 105上の対応する撮像領域上にそれぞれ形成する。レンズ 100a, 100b, 100cは、それぞれが受け持つ光の波長が限定されるので、単レンズでありながら、 被写体像を撮像素子 105上に結像することができる。従って、カメラモジュールを薄 型化することが可能である。 [0005] しかしながら、このカメラモジュールでは、あるレンズを通過した光力 撮像素子 105 上のこのレンズと対応しな ヽ撮像領域に入射するのを防止するために、絞り部材 107 とレンズアレイ 100との間に光学フィルタアレイ 102が設けられ、更にレンズアレイ 10 0と撮像素子 105との間に光学フィルタアレイ 103が設けられている。レンズアレイ 10 0と撮像素子 105との間には必要な光学長を確保する必要があるため、これらの間に 光学フィルタアレイ 103を設けても、レンズモジュールの厚みは増加しない。ところが 、絞り部材 107とレンズアレイ 100との間に光学フィルタアレイ 102を設けると、この光 学フィルタアレイ 102の厚み分だけカメラモジュールが厚くなつてしまう。即ち、図 13 のカメラモジュールは、薄型化が不十分であるという問題があった。
[0006] この問題を解決する複眼式のカメラモジュールが特許文献 2に記載されており、こ れを図 14を用いて説明する。被写体側から順に、絞り部材 111、レンズアレイ 112、 遮光ブロック 113、光学フィルタアレイ 114、撮像素子 116が配置されている。レンズ アレイ 112は複数のレンズを備える。絞り部材 111は、レンズアレイ 112の各レンズの 光軸と一致する位置にそれぞれ絞り(開口)を備える。光学フィルタアレイ 114は、レ ンズアレイ 112の各レンズに対応する領域ごとに分光特性が異なる複数の光学フィ ルタを備え、撮像素子 116の受光面を覆っている。遮光ブロック 113は、レンズアレイ 112の隣り合うレンズ間の境界、即ち、光学フィルタアレイ 114の隣り合う光学フィル タ間の境界と一致する位置に遮光壁 113aを備えている。撮像素子 116は半導体基 板 115上に搭載されている。半導体基板 115上には、更に、駆動回路 117、信号処 理回路 118が実装されて 、る。
[0007] このカメラモジュールによれば、あるレンズを通過した光力 光学フィルタアレイ 114 のこのレンズに対応しな 、フィルタに入射するのを遮光ブロック 113の遮光壁 113a が防止する。従って、図 13のカメラモジュールにおいて必要であった、絞り部材 107 とレンズアレイ 100との間の光学フィルタアレイ 102が不要である。よって、カメラモジ ユールの更なる薄型化が可能である。
特許文献 1 :特開 2001— 78217号公報
特許文献 2 :特開 2003— 143459号公報
発明の開示 発明が解決しょうとする課題
[0008] しかしながら、図 14のカメラモジュールでは、光軸と垂直な面と平行な方向におけ るレンズアレイ 112に対する遮光ブロック 113の組み立てばらつきなどによって、遮光 ブロック 113の遮光壁 113aが撮像素子 116の必要な撮像領域を塞 、でしまうと 、う 問題があった。また、このばらつきを考慮して撮像素子 116上の撮像領域を広く設定 すると、実際の撮像では使用されない画素数が増加して、撮像素子 116の大型化、 コスト高を招くという問題があった。
[0009] 本発明は、上記の従来の問題を解決し、薄型で、撮像素子の無駄になる画素が少 な 、ために小型且つ低コストである複眼方式のカメラモジュール及びその製造方法 を提供することを目的とする。
課題を解決するための手段
[0010] 本発明の複眼方式のカメラモジュールは、一平面上に配置された複数のレンズを 一体に有するレンズモジュールと、複数の撮像領域と、前記レンズモジュールと前記 複数の撮像領域との間に配置され、それぞれが特定の波長帯域の光を透過させる 複数の光学フィルタを有する光学フィルタアレイと、前記レンズモジュールと前記複数 の撮像領域との間に配置され、互いに独立した複数の開口を形成する遮光壁を備え た遮光ブロックとを備える。前記複数のレンズと前記複数の撮像領域と前記複数の光 学フィルタと前記複数の開口とが一対一に対応する。
[0011] 第 1摺動面が前記遮光ブロックに設けられている。また、前記複数の撮像領域に対 して垂直な軸を回転中心軸として前記遮光ブロックに対して前記レンズモジュールが 回転可能なように、前記第 1摺動面上を摺動する第 2摺動面が前記レンズモジユー ルに設けられている。
[0012] 次に、複眼方式のカメラモジュールの本発明の製造方法は、一平面上に配置され た複数のレンズを一体に有するレンズモジュールと、複数の撮像領域と、前記レンズ モジュールと前記複数の撮像領域との間に配置され、それぞれが特定の波長帯域 の光を透過させる複数の光学フィルタを有する光学フィルタアレイと、前記レンズモジ ユールと前記複数の撮像領域との間に配置され、互いに独立した複数の開口を形成 する遮光壁を備えた遮光ブロックとを備え、前記複数のレンズと前記複数の撮像領 域と前記複数の光学フィルタと前記複数の開口とが一対一に対応する複眼方式の力 メラモジュールの製造方法である。
[0013] 前記製造方法において、前記複数の撮像領域に対して垂直な軸を回転中心軸とし て前記遮光ブロックに対して前記レンズモジュールを回転させ、次いで、前記レンズ モジュールと前記遮光ブロックとを固定することを特徴とする。
発明の効果
[0014] 本発明によれば、撮像領域に、これと対応しな!ヽレンズからの光が入射するのを防 止するために、遮光壁を備えた遮光ブロックを用いているので、薄型のカメラモジュ ールを実現できる。
[0015] また、本発明のカメラモジュールでは、遮光ブロックが第 1摺動面を備え、レンズモ ジュールが第 1摺動面上を摺動する第 2摺動面を備える。また、本発明の製造方法 では、複数の撮像領域に対して垂直な軸を回転中心軸として遮光ブロックに対してレ ンズモジュールを回転させ、次いで、レンズモジュールと遮光ブロックとを固定する。 これにより、レンズの結像領域が撮像領域力もはみ出すことがなぐまた、多くの不要 画素を有する大型の撮像素子を用いる必要もない。従って、カメラモジュールの小型 ィ匕、低コストィ匕が可能である。
[0016] 力べして、薄型、小型、且つ安価な複眼方式のカメラモジュールを提供することがで きる。
図面の簡単な説明
[0017] [図 1]図 1は、本発明の実施の形態 1に係る複眼方式のカメラモジュールの分解斜視 図である。
[図 2]図 2は、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて、 上鏡筒の撮像素子側力 見た斜視図である。
[図 3]図 3は、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて、 遮光ブロックの被写体側から見た斜視図である。
[図 4]図 4は、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて、 光軸と垂直な面と平行な方向における位置決め前の、撮像素子の撮像領域に対す るレンズアレイのレンズの配置を示した平面図である。 [図 5]図 5は、本発明の実施の形態 1に係る複眼方式のカメラモジュールにおいて、 光軸と垂直な面と平行な方向における位置決め後の、撮像素子の撮像領域に対す るレンズアレイのレンズの配置を示した平面図である。
[図 6]図 6は、本発明の実施の形態 2に係る複眼方式のカメラモジュールの分解斜視 図である。
[図 7]図 7は、本発明の実施の形態 2に係る複眼方式のカメラモジュールにおいて、 上鏡筒の被写体側力 見た斜視図である。
[図 8]図 8は、本発明の実施の形態 2に係る複眼方式のカメラモジュールにおいて、 遮光ブロックの被写体側から見た斜視図である。
[図 9]図 9は、本発明の実施の形態 2に係る複眼方式のカメラモジュールの正面図で ある。
[図 10]図 10は、本発明の実施の形態 2に係る複眼方式のカメラモジュールの被写体 側から見た斜視図である。
[図 11A]図 11Aは、本発明の実施の形態 3に係る複眼方式のカメラモジュールにお いて、遮光ブロックに対するレンズモジュールの回転調整前の複数のレンズの光軸と 複数の撮像領域との位置関係を示した平面図である。
[図 11B]図 11Bは、本発明の実施の形態 3に係る複眼方式のカメラモジュールにおい て、遮光ブロックに対するレンズモジュールの回転調整後の複数のレンズの光軸と複 数の撮像領域との位置関係を示した平面図である。
[図 12A]図 12Aは、本発明に係る複眼方式のカメラモジュールを用いて被写体まで の距離を測定する原理を説明する側面図である。
[図 12B]図 12Bは、本発明に係る複眼方式のカメラモジュールを用いて被写体までの 距離を測定する原理を説明する平面図である。
[図 13]図 13は、従来のカメラモジュールの撮像系の断面図である。
[図 14]図 14は、従来の別のカメラモジュールの撮像系の分解斜視図である。
発明を実施するための最良の形態
本発明の上記の複眼方式のカメラモジュールにおいて、前記第 1摺動面は前記回 転中心軸を中心軸とする円筒面の少なくとも一部を含み、前記第 2摺動面は円筒面 の少なくとも一部を含むことが好ましい。これにより、遮光ブロックに対してレンズモジ ユールが回転する機構を容易に実現できる。
[0019] 本発明の上記の複眼方式のカメラモジュールは、前記遮光ブロックに対する前記レ ンズモジュールの前記回転の角度を制限する機構を更に備えることが好ましい。これ により、遮光ブロックに対するレンズモジュールの回転調整範囲が小さくなるので、生 産性を向上でき、更に低コストな複眼方式のカメラモジュールを実現することが可能と なる。
[0020] この場合において、前記機構にて前記レンズモジュールと前記遮光ブロックとが固 定されていることが好ましい。これにより、レンズモジュールと遮光ブロックとを固定す るための部品や形状などを新たに設計して設ける必要がない。また、レンズモジユー ルと遮光ブロックとの固定方法が簡単ィ匕でき、組み立て作業性が向上する。従って、 更に低コストな複眼方式のカメラモジュールを実現することが可能となる。
[0021] 本発明の上記の複眼方式のカメラモジュールにおいて、互いに直交する第 1方向 及び第 2方向に沿って前記複数の撮像領域の画素がマトリクス状に配置されているこ とが好ましぐ前記レンズモジュールが格子点状に配置された少なくとも第 1〜第 4の レンズを有していることが好ましい。この場合、前記第 1レンズの光軸と前記第 3レンズ の光軸とを結ぶ方向、及び前記第 2レンズの光軸と前記第 4レンズの光軸とを結ぶ方 向は前記第 1方向とほぼ平行であり、且つ、前記第 1レンズの光軸と前記第 2レンズ の光軸とを結ぶ方向、及び前記第 3レンズの光軸と前記第 4レンズの光軸とを結ぶ方 向は前記第 2方向とほぼ平行であることが好ましい。そして、前記第 1レンズの光軸に 対する前記第 3レンズの光軸の前記第 2方向におけるずれ量、及び、前記第 2レンズ の光軸に対する前記第 4レンズの光軸の前記第 2方向におけるずれ量のうちの一方 又は両方が前記第 2方向における前記画素の配置ピッチ以下であることが好ましい。 これにより、第 1方向にほぼ沿って配置された第 1及び第 3レンズ及び Z又は第 1方 向にほぼ沿って配置された第 2及び第 4レンズを用いて、三角測量の原理を利用し て、被写体までの距離を短時間で高精度に測定することができる。
[0022] あるいは、本発明の上記の複眼方式のカメラモジュールにおいて、互いに直交する 第 1方向及び第 2方向に沿って前記複数の撮像領域の画素がマトリクス状に配置さ れていることが好ましぐ前記レンズモジュールが少なくとも第 1及び第 2のレンズを有 していることが好ましい。この場合、前記第 1レンズの光軸と前記第 2レンズの光軸と を結ぶ方向は前記第 1方向とほぼ平行であることが好ましい。そして、前記第 1レンズ の光軸に対する前記第 2レンズの光軸の前記第 2方向におけるずれ量が前記第 2方 向における前記画素の配置ピッチ以下であることが好ましい。これにより、第 1方向に ほぼ沿って配置された第 1及び第 2レンズを用いて、三角測量の原理を利用して、被 写体までの距離を短時間で高精度に測定することができる。
[0023] 次に、本発明の上記の製造方法において、前記カメラモジュール力 前記遮光プロ ックに対する前記レンズモジュールの前記回転の角度を制限する機構を更に備える ことが好ましい。そして、前記制限された角度の範囲内で前記遮光ブロックに対して 前記レンズモジュールを回転させることが好ましい。これにより、遮光ブロックに対す るレンズモジュールの回転調整範囲が小さくなるので、生産性を向上でき、更に低コ ストな複眼方式のカメラモジュールを提供することが可能となる。
[0024] この場合において、前記レンズモジュールと前記遮光ブロックとの固定を前記機構 にて行うことが好ましい。これにより、レンズモジュールと遮光ブロックとを固定するた めの部品や形状などを新たに設計して設ける必要がない。また、レンズモジュールと 遮光ブロックとの固定方法が簡単化でき、組み立て作業性が向上する。従って、更に 低コストな複眼方式のカメラモジュールを提供することが可能となる。
[0025] 本発明の上記の製造方法において、互いに直交する第 1方向及び第 2方向に沿つ て前記複数の撮像領域の画素がマトリクス状に配置されていることが好ましぐ前記レ ンズモジュールが格子点状に配置された少なくとも第 1〜第 4のレンズを有しているこ とが好ましい。この場合、前記第 1レンズの光軸と前記第 3レンズの光軸とを結ぶ方向 、及び前記第 2レンズの光軸と前記第 4レンズの光軸とを結ぶ方向が記第 1方向とほ ぼ平行であり、且つ、前記第 1レンズの光軸と前記第 2レンズの光軸とを結ぶ方向、 及び前記第 3レンズの光軸と前記第 4レンズの光軸とを結ぶ方向が前記第 2方向とほ ぼ平行であり、且つ、前記第 1レンズの光軸に対する前記第 3レンズの光軸の前記第 2方向におけるずれ量、及び、前記第 2レンズの光軸に対する前記第 4レンズの光軸 の前記第 2方向におけるずれ量のうちの一方又は両方が前記第 2方向における前記 画素の配置ピッチ以下となるように、前記遮光ブロックに対して前記レンズモジュール を回転させることが好ましい。これにより、第 1方向にほぼ沿って配置された第 1及び 第 3レンズ及び Z又は第 1方向にほぼ沿って配置された第 2及び第 4レンズを用いて 、三角測量の原理を利用して、被写体までの距離を短時間で高精度に測定すること ができる。
[0026] あるいは、本発明の上記の製造方法において、互いに直交する第 1方向及び第 2 方向に沿って前記複数の撮像領域の画素がマトリクス状に配置されていることが好ま しぐ前記レンズモジュールが少なくとも第 1及び第 2のレンズを有していることが好ま しい。この場合、前記第 1レンズの光軸と前記第 2レンズの光軸とを結ぶ方向が前記 第 1方向とほぼ平行であり、且つ、前記第 1レンズの光軸に対する前記第 2レンズの 光軸の前記第 2方向におけるずれ量が前記第 2方向における前記画素の配置ピッチ 以下となるように、前記遮光ブロックに対して前記レンズモジュールを回転させること が好ましい。これにより、第 1方向にほぼ沿って配置された第 1及び第 2レンズを用い て、三角測量の原理を利用して、被写体までの距離を短時間で高精度に測定するこ とがでさる。
[0027] (実施の形態 1)
以下、本発明の実施の形態 1について、図面を参照しながら説明する。
[0028] 図 1は、本実施の形態 1の複眼方式のカメラモジュールの分解斜視図である。図 1 において、 1はレンズアレイ、 2は光学フィルタアレイ、 3は基板、 4は撮像素子、 5は上 鏡筒、 6は遮光ブロック(下鏡筒)、 7はレンズモジュールである。説明の便宜のために 、図示したような XYZ直交座標系を設定する。ここで Z軸は、撮像素子 4の有効画素 領域のほぼ中心を通り、これと垂直な軸とする。 X軸は Z軸と直交し遮光ブロック 6の 後述する遮光壁 6 la, 61cと平行な軸であり、 Y軸は Z軸と直交し遮光ブロック 6の後 述する遮光壁 6 lb, 6 Idと平行な軸である。
[0029] レンズアレイ 1は、 XY面と平行な同一平面上に格子点状に配置された 4つ単レンズ la〜 Idを一体に有する。 4つのレンズ la〜 Idの各光軸は Z軸と平行であり、 XY面 に平行な仮想の長方形の 4つの頂点に配置されている。レンズ la〜ldは、それぞれ 光の 3原色のうちの赤、青、緑のいずれかの波長帯域の光に対して要求される MTF 等の光学仕様を満足するよう設計されている。具体的は、レンズ laは赤色、レンズ lb は緑色、レンズ lcは緑色、レンズ Idは青色の各波長帯域の光に最適に設計されて いる。レンズ la〜: Ldは、ガラスあるいはプラスチックなどの材料を用いて一体に形成 されている。レンズ la〜ldの各々は、被写体(図示せず)からの光を光学フィルタァ レイ 2を通過した後、撮像素子 4上に結像させる。
[0030] 光学フィルタアレイ 2はレンズアレイ 1と撮像素子 4との間に配置されている。光学フ ィルタアレイ 2も、レンズアレイ 1と同様に、 XY面と平行な同一平面上に配置された 4 つの光学フィルタ 2a〜2dを有する。 4つの光学フィルタ 2a〜2dは、それぞれ赤、緑、 青のうちのいずれかの波長帯域の光のみを透過する。具体的には、光学フィルタ 2a は赤色、光学フィルタ 2bは緑色、光学フィルタ 2cは緑色、光学フィルタ 2dは青色の 各波長帯域の光を透過させる。なお、赤外線をカットする必要がある場合には、光学 フィルタ 2a〜2dにその特性が付カ卩されていても良い。 4つの光学フィルタ 2a〜2dは 、 4つのレンズ la〜: Ldの各光軸上にそれぞれ配置される。
[0031] 撮像素子 4は、 CCD等の撮像センサであり、縦横方向に 2次元配列された多数の 画素を備えている。撮像素子 4の有効画素領域は、 4つの撮像領域 4a〜4dにほぼ 等分されている。 4つの撮像領域 4a〜4dは、 4つのレンズ la〜: Ldの各光軸上にそれ ぞれ配置されている。これにより、 4つの撮像領域 4a〜4d上に、赤、緑、青のうちの いずれかの波長成分のみ力 なる被写体像が独立して形成される。具体的には、レ ンズ laを通過した被写体からの光のうち赤色の波長帯域光のみ力 光学フィルタ 2a を通過して撮像領域 4a上に赤色の波長成分のみ力もなる被写体像を結像する。同 様に、レンズ lbを通過した被写体からの光のうち緑色の波長帯域光のみが、光学フ ィルタ 2bを通過して撮像領域 4b上に緑色の波長成分のみ力もなる被写体像を結像 する。レンズ lcを通過した被写体力もの光のうち緑色の波長帯域光のみ力 光学フィ ルタ 2cを通過して撮像領域 4c上に緑色の波長成分のみ力 なる被写体像を結像す る。レンズ Idを通過した被写体力もの光のうち青色の波長帯域光のみ力 光学フィル タ 2dを通過して撮像領域 4d上に青色の波長成分のみ力もなる被写体像を結像する
[0032] 撮像素子 4の撮像領域 4a〜4dを構成する各画素は、入射した被写体力ゝらの光を 光電変換し、光の強度に応じた電気信号 (図示せず)をそれぞれ出力する。
[0033] 撮像素子 4から出力された電気信号は、様々な信号処理が施され、映像処理され る。たとえば、緑色の波長帯域光が入射する撮像領域 4b, 4cが撮像した 2つの画像 力もこれらの画像間の視差量を求め、これより 4つの撮像領域 4a〜4dがそれぞれ撮 像した 4つの画像間の視差量を求め、これらの視差量を考慮して赤、緑、青の 3色の 画像を合成して 1つのカラー画像を作成することができる。あるいは、撮像領域 4b, 4 cが撮像した 2つの画像を比較して被写体までの距離を三角測量の原理を利用して 測定することもできる。これらの処理はデジタル信号プロセッサ(DSP、図示せず)等 を用いて行うことができる。
[0034] 上鏡筒 5は、図 2に示すように、その下面に、レンズアレイ 1を保持し固定する凹部 5 1を備える。レンズアレイ 1は凹部 51内に嵌入されることで、上鏡筒 5に対して位置決 めされる。また、保持されたレンズアレイ 1の 4つのレンズ la〜: Ldの各光軸が通過す る位置に 4つの絞り(開口) 5a〜5dが形成されている。上鏡筒 5は光を透過しない材 料からなり、絞り 5a〜5d以外力も不要な外光がレンズ la〜: Ldに入射するのを遮蔽す る。
[0035] レンズアレイ 1と、これを保持する上鏡筒 5とで、レンズモジュール 7が構成される。
[0036] 遮光ブロック 6は、図 3に示すように、互いに独立した 4つの開口 6a〜6dを形成する ように十字状に配置された遮光壁 6 la〜6 Idと、遮光壁 6 la〜6 Idを保持する外筒 部 62とを備える。遮光壁 61a〜61dは遮光ブロック 6の中心軸である Z軸に対して放 射状に伸びており、遮光壁 61a, 61cは XZ面に沿っており、遮光壁 61b, 61dは YZ 面に沿っている。 4つの開口 6a〜6dは、 4つのレンズ la〜ldの各光軸上にそれぞれ 配置される。遮光壁 6 la〜6 Idが撮像素子 4の有効画素領域を 4つの撮像領域 4a〜 4dに分割している。 Z軸と平行な方向から見た開口 6a〜6dの大きさは、撮像領域 4a 〜4dとほぼ同じかこれより大きい。レンズ la〜: Ldをそれぞれ通過した被写体からの 光は、開口 6a〜6dを通過して、撮像領域 4a〜4d上にそれぞれ結像される。遮光壁 61a〜61dは、レンズ la〜ldのうちの一つを通過した光が、このレンズと対応しない 撮像領域に入射するのを防ぐ。例えば、斜めにレンズ lbに入射し光学フィルタ 2bを 通過した緑色の波長帯域光が、本来、赤色の波長帯域光のみが入射すべきである 撮像領域 4aに入射しないように、この緑色の波長帯域光を遮断する遮光壁 61aが撮 像領域 4aと撮像領域 4bとの境界に沿って設けられている。開口 6a〜6dを取り囲む 外筒部 62は、レンズアレイ 1及び光学フィルタアレイ 2を通過しな ヽ外光が撮像領域 4a〜4dに入射するのを防止する。このように遮光ブロック 6によって、各撮像領域 4a 〜4dに不要光が入射することがなぐ迷光等の発生を防止できる。この機能を有効 に発揮させるため、遮光ブロック 6は、上鏡筒 5と同様に光を透過しない材料力 なる 。さらに開口 6a〜6d内に露出された遮光壁 6 la〜6 Id及び外筒部 62の側面は光の 反射が極力小さくなるように、各種表面処理 (例えば、粗面化処理、メツキ、黒色化処 理など)が施されて 、ることが好まし!/、。
[0037] 遮光ブロック 6のレンズアレイ 1側の面には、光学フィルタアレイ 2を保持し固定する 凹部 63を備える。光学フィルタアレイ 2は凹部 63内に嵌入されることで、遮光ブロック 6に対して位置決めされる。光学フィルタ 2a〜2dは、開口 6a〜6d内にそれぞれ配置 される。
[0038] 次に、本実施の形態のカメラモジュールの組み立て方法を説明する。
[0039] 撮像素子 4が基板 3に対して位置決めされ固定される。撮像素子 4は、基板 3とワイ ヤーボンディング等で電気的に接続され、更に、撮像素子 4からの電気信号を処理 する DSP等の電子部品に接続される。この DSP等の電子部品も基板 3に実装されて いても良い。基板 3は、電気的な接続と、組立て時の各部品の基準面としての機能を 果たす。
[0040] 次に、遮光ブロック 6の中心軸である Z軸が撮像素子 4の有効画素領域のほぼ中心 を通り、且つ、遮光ブロック 6の遮光壁 6 la〜6 Idが撮像素子 4を構成する多数の画 素の縦横の配列方向と一致するように、光学フィルタアレイ 2が固定された遮光ブロッ ク 6が撮像素子 4に対して位置決めされて基板 3上に固定される。これにより、撮像素 子 4の受光面は Z軸に対して垂直となり、撮像素子 4を構成するマトリクス状に配置さ れた多数の画素の一方の配列方向(例えば横の配列方向)は X軸と平行となり、他方 の配列方向(例えば縦の配列方向)は Y軸と平行となる。また、撮像素子 4の有効画 素領域が、 4つの開口 6a〜6dに対応して 4つの撮像領域 4a〜4dにほぼ等分される [0041] 次に、上鏡筒 5にレンズアレイ 1が固定されたレンズモジュール 7が遮光ブロック 6上 に嵌合される。このとき、上鏡筒 5の四隅の足 53a〜53dの先端面が基板 3と接触す る。力くして、レンズアレイ 1は XY面に対して平行となり、且つ、 Z軸方向において位 置決めされる。
[0042] 更に、 XY面と平行な方向において、レンズアレイ 1を含むレンズモジュール 7は撮 像素子 4及び遮光ブロック 6に対して正確に位置決めされなければならな 、。即ち、 図 2に示した上鏡筒 5の中心軸 55 (これは、レンズアレイ 1の 4つのレンズ la〜ldの 各光軸と平行で、且つ各光軸位置を頂点とする仮想の長方形の中心を通る軸である )は XY面内において Z軸とほぼ一致している必要がある。これに加えて、図 4に示す ように、 4つのレンズ la〜: Ldの光軸位置 l la〜l Idを頂点とする仮想の長方形の長 辺 12a及び短辺 12bが X軸及び Y軸とそれぞれほぼ平行である必要がある。長辺 12 a及び短辺 12bが X軸及び Y軸に対してそれぞれ平行でないと、レンズ la〜: Ldの結 像領域 13a〜 13dのうち、斜線を施した領域 14a〜 14dが撮像領域 4a〜4dからはみ 出してしまうからである。即ち、レンズ la〜: Ldがそれぞれ結像した被写体を撮像する のに必要な画素が確保できない。図 4において、 41は撮像素子 4を構成する画素を 示す。
[0043] 本実施の形態は、これを以下により実現する。基板 3に位置決めされ固定された遮 光ブロック 6の四隅の外周壁に、図 3に示すように、遮光ブロック 6の中心軸である Z 軸を中心軸とし、半径が rlである仮想の円筒面 65cの一部である第 1摺動面 66, 67 , 68, 69が設けられている。一方、図 2に示すように、レンズモジュール 7の上鏡筒 5 の四隅の足 53a〜53dの内壁面に、上鏡筒 5の中心軸 55を中心軸とし、半径が で ある仮想の円筒面 55cの一部である第 2摺動面 56, 57, 58, 59が設けられている。 固定側である遮光ブロック 6の第 1摺動面 66, 67, 68, 69上を、回転側である上鏡 筒 5の第 2摺動面 56, 57, 58, 59が摺動するのに必要な最小限度の隙間が第 1摺 動面 66, 67, 68, 69と第 2摺動面 56, 57, 58, 59との間に形成されるように、半径 r 2は半径 rlより僅かに大きく設定される。
[0044] 遮光ブロック 6の第 1摺動面 66, 67, 68, 69に上鏡筒 5の第 2摺動面 56, 57, 58, 59がそれぞれ対向するように、遮光ブロック 6にレンズモジュール 7を嵌合させると、 遮光ブロック 6の中心軸である Z軸と上鏡筒 5の中心軸 55とがほぼ一致する。次いで 、遮光ブロック 6に対してレンズモジュール 7を XY面内で回転調整して、図 4に示した 、 4つのレンズ la〜ldの光軸位置 11a〜: L idを頂点とする仮想の長方形の長辺 12a 及び短辺 12bを、 X軸及び Y軸にそれぞれ平行にする。
[0045] このレンズモジュール 7の回転調整は、例えば以下のようにして行うことができる。 Z 軸上に被写体としての平行光源を設置して、レンズ la〜: Ld及び光学フィルタ 2a〜2 dを介して撮像領域 4a〜4d上に被写体像を結像させる。撮像領域 4a〜4dがそれぞ れ撮像したスポットの位置からレンズ la〜: Ldの光軸位置 11a〜: L idを算出する。そし て、図 5に示すように、光軸位置 11 a〜 l idを頂点とする仮想の長方形の長辺 12a及 び短辺 12b力 X軸及び Y軸にそれぞれ平行になるように、レンズモジュール 7を XY 面内にて回転させる。この結果、レンズ la〜: Ldの結像領域 13a〜 13dが撮像領域 4 a〜4dからはみ出すことがなぐ撮像領域 4a〜4dのそれぞれにおいて、被写体像を 欠落なく撮像することができる。
[0046] 半径 rlと半径 r2との差は小さいので、回転調整の際、第 1摺動面 66, 67, 68, 69 に対して第 2摺動面 56, 57, 58, 59はほぼ接触しながら摺動する。従って、 XY面内 において、 Z軸に対して上鏡筒 5の中心軸 55はほとんどずれることはない。よって、レ ンズモジュール 7の回転調整時に、各撮像領域 4a〜4dに対する各光軸位置 1 la〜 l idの相対的位置関係は、常に互いにほぼ同じである。
[0047] 上鏡筒 5の四隅の足 53a〜53dの先端面を含む平面と 4つのレンズ la〜ldが配置 された平面とは平行である。そして、レンズモジュール 7の回転調整時には、四隅の 足 53a〜53dの先端面が基板 3に常に接触しながら摺動する。従って、レンズモジュ ール 7を回転しても、レンズ la〜: Ldが撮像領域 4a〜4d上にそれぞれ形成するスポッ ト形状は変化することがない。従って、回転調整作業が容易になるとともに、回転位 置によって撮影画像が変化することがない。
[0048] 以上のように、本実施の形態によれば、撮像領域に、これと対応しないレンズからの 光が入射するのを防止するために、遮光壁 61a〜61dを備えた遮光ブロック 6を用い ているので、色分離を行う光学フィルタアレイを 2層設ける必要がない。従って、カメラ モジュールの薄型化が可能である。 [0049] また、遮光ブロック 6が第 1摺動面 66, 67, 68, 69を備え、上鏡筒 5が第 2摺動面 5 6, 57, 58, 59を備えるので、遮光ブロック 6の中心軸(Z軸)と上鏡筒 5の中心軸 55 とをほぼ一致させることができる。更に、遮光ブロック 6及び撮像素子 4に対してレンズ モジュール 7を回転調整することで、レンズ la〜: Ldの光軸位置 l la〜l ldを頂点と する仮想の長方形の長辺 12a及び短辺 12bを X軸及び Y軸にそれぞれ平行にするこ とができる。これにより、レンズ la〜: Ldの結像領域 13a〜13dが撮像領域 4a〜4dか らはみ出すことがなぐまた、多くの不要画素を有する大型の撮像素子を用いる必要 もない。従って、カメラモジュールの小型化、低コストィ匕が可能である。
[0050] 上記の実施の形態は一例であって、本発明はこれに限定されない。
[0051] 例えば、上記の実施の形態では、レンズモジュール 7の回転調整時に被写体として 平行光源を用いる例を示したが、本発明において回転調整時の被写体はこれに限 定されず、例えば各種チャートを用いて光軸位置 1 la〜l Idを求めても良 、。
[0052] また、上記の実施の形態では、回転調整は、遮光ブロック 6及び撮像素子 4を固定 側とし、レンズモジュール 7を回転側としたが、本発明はこれに限定されず、固定側及 び回転側が上記と逆であっても、両者の相対的位置を変えることができ、上記と同様 の効果を得ることができる。
[0053] また、上記の実施の形態では、被写体からの光を赤、緑、緑、青の 4つの波長帯域 光に分離する光学系を示したが、本発明の光学系はこれに限定されず、例えば 2つ の近赤外波長帯域光と 2つの緑色波長帯域光とに分離する光学系であっても良ぐ あるいはこれ以外の波長帯域光の組み合わせであっても良い。選択される波長帯域 光によらず、本実施の形態の上記の効果を得ることができる。
[0054] また、上記の実施の形態では、レンズアレイ 1が 4つのレンズ la〜: Ldを備える例を 示したが、本発明のレンズアレイはこれに限定されない。レンズアレイに設けられるレ ンズの数は、 4に限定されず、 2以上であればよい。また、 2以上のレンズの配置は格 子点状配置に限定されない。
[0055] 更に、上記の実施の形態では、レンズモジュール 7は、レンズアレイ 1とこれを保持 する上鏡筒 5とからなり、第 2摺動面 56, 57, 58, 59が上鏡筒 5に形成された例を示 したが、本発明のレンズモジュール 7はこれに限定されない。例えば、レンズモジユー ル 7力 レンズ la〜: Ldを備えたレンズアレイと第 2摺動面 56, 57, 58, 59とを備える 部材と、絞り 5a〜5dを備えた絞り部材とカもなつていても良い。
[0056] また、上記の実施の形態では、第 1摺動面 66, 67, 68, 69は遮光ブロック 6の四隅 のみに不連続に形成されていたが、本発明の第 1摺動面はこれに限定されず、例え ば、遮光ブロック 6の全周にわたって連続する円筒面であっても良い。同様に、上記 の実施の形態では、第 2摺動面 56, 57, 58, 59は、上鏡筒 5の四隅の足 53a〜53d に不連続に形成されていたが、本発明の第 2摺動面はこれに限定されず、例えば、 全周にわたつて連続する円筒面であっても良 、。
[0057] また、上記の実施の形態では、第 1摺動面及び第 2摺動面はそれぞれ不連続な 4 つの面を含んでいたが、本発明の第 1摺動面及び第 2摺動面はこれに限定されない 。第 1摺動面上で第 2摺動面を摺動させて遮光ブロック 6に対してレンズモジュール 7 を回転させることができれば、第 1摺動面及び第 2摺動面のうちの一方又は両方は不 連続な 2つ、 3つ、又は 5つ以上の面を含んでいても良い。
[0058] また、上記の実施の形態では、第 1摺動面及び第 2摺動面はいずれも円筒面に沿 つた面であつたが、本発明の第 1摺動面及び第 2摺動面はこれに限定されない。例え ば、第 1摺動面及び第 2摺動面が円錐面、球面などの回転体の表面に沿った面であ つても良い。
[0059] また、上記の実施の形態では、第 1摺動面と第 2摺動面とは互いに面接触する例を 示したが、本発明はこれに限定されない。例えば、第 1摺動面及び第 2摺動面のうち の一方が所定の面積を有する面であり、他方がこの面に対して点接触する球面又は 線接触する円筒面であってもよ ヽ。
[0060] また、上記の実施の形態では、遮光ブロック 6の半径 rlの仮想の円筒面に沿った第 1摺動面 66, 67, 68, 69の外側に、レンズモジュール 7の半径 r2の仮想の円筒面に 沿った第 2摺動面 56, 57, 58, 59が配置される例を示した力 この逆に、遮光ブロッ ク 6の第 1摺動面の内側にレンズモジュール 7の第 2摺動面が配置さても良い。この場 合、 rl >r2となる力 半径 rlと半径 r2との差は小さい方が好ましいことは上記の実施 の形態と同様である。
[0061] また、上記の実施の形態では、レンズ la〜: Ldの光軸位置 11a〜: L idを頂点とする 仮想の長方形の長辺 12a及び短辺 12bの各方向が撮像素子 4を構成する多数の画 素の縦横の配列方向(即ち、 Y軸及び X軸)と平行となるように、レンズモジュール 7を 遮光ブロック 6に対して回転調整する場合を説明したが、本発明の回転調整はこれ に限定されない。例えば、長辺 12a及び短辺 12bの各方向が撮像素子 4の多数の画 素の縦横の配列方向(即ち、 Y軸及び X軸)に対して僅かな角度で傾斜するように、 レンズモジュール 7を遮光ブロック 6に対して回転調整しても良ぐこの場合には、画 素ずらしにより高解像度画像を得ることが可能になる。
[0062] (実施の形態 2)
以下、本発明の実施の形態 2について、図面を参照しながら説明する。
[0063] 図 6は、本実施の形態 2の複眼方式のカメラモジュールの分解斜視図である。図 6 において図 1と同じ部材には同じ符号が付されており、それらについての説明を省略 する。
[0064] 本実施の形態のカメラモジュールの基本的構成は実施の形態 1とほぼ同じである。
本実施の形態は、上鏡筒 500及び遮光ブロック 600の形状に関して実施の形態 1と 異なる。
[0065] 図 7は被写体側から見た上鏡筒 500の斜視図である。本実施の形態の上鏡筒 500 は、相反する 2側面に溝 501, 502が設けられている点で、実施の形態 1の上鏡筒 5 と異なる。
[0066] 図 8は被写体側から見た遮光ブロック 600の斜視図である。本実施の形態の遮光 ブロック 600は、相反する 2側面が被写体側に延長されて突出した壁 601, 602が設 けられている点で、実施の形態 1の遮光ブロック 6と異なる。
[0067] 遮光ブロック 600に上鏡筒 500を嵌合させると、図 9及び図 10に示すように、溝 50 1, 502に壁 601, 602力 S嵌り込む。このとき、壁 601, 602に itベて溝 501, 502力 S 大きいので、遮光ブロック 600に対して上鏡筒 500を XY面内において回転させるこ とは可能である。但し、その回転可能範囲は、壁 601, 602と溝 501, 502とが当接し ない範囲に限定される。即ち、壁 601, 602及び溝 501, 502は、遮光ブロック 600 に対する上鏡筒 500を含むレンズモジュール 7の回転の角度を制限する機構 (ストツ パー)として機能する。 [0068] 本実施の形態では、溝 501, 502に壁 601, 602が嵌り込むように遮光ブロック 600 に上鏡筒 500を嵌合させるだけで、図 4に示した、 4つのレンズ la〜: Ldの光軸位置 1 la〜 1 Idを頂点とする仮想の長方形の長辺 12a及び短辺 12bの X軸及び Y軸に対 する傾き量を小さくすることができる。従って、その後のレンズモジュール 7の回転調 整工程における調整量を少なくすることができる。よって、レンズモジュール 7の回転 調整工程の時間を短縮することができ、カメラモジュールの生産性を向上させること ができる。
[0069] 溝 501, 502と壁 601, 602との間には、レンズモジユーノレ 7の回転調整を行うこと ができる程度の隙間 901, 902が存在している。従って、レンズモジュール 7の回転 調整工程後に、この隙間 901, 902に接着剤を塗布して上鏡筒 500と遮光ブロック 6 00とを固定することができる。このように、遮光ブロック 600に対するレンズモジュール 7の回転制限機構 (ストッパー)を利用してレンズモジュール 7と遮光ブロック 600とを 固定することで、両者の固定方法が簡単化でき、組み立て作業性が向上する。また、 遮光ブロック 600とレンズモジュール 7とを固定するための部品や形状などを新たに 設計して設ける必要がない。従って、更に低コストな複眼方式のカメラモジュールを 実現することが可能となる。
[0070] 溝 501, 502と壁 601, 602との間の間隔が Z軸方向において被写体に近いほど大 きくなるように、溝 501, 502及び Z又は壁 601, 602の側面が傾斜していても良い。 これにより、隙間 901, 902内に接着剤を確実に注入させることができ、また、接着剤 の接着面積が拡大するので、遮光ブロック 600とレンズモジュール 7とをより強固に固 定することができる。
[0071] 上記の実施の形態では、遮光ブロック 600に対するレンズモジュール 7の回転制限 機構として、溝 501, 502と壁 601, 602との組み合わせを示した力 本発明の回転 制限機構はこれに限定されず、例えば円弧状の溝 (又は穴)とこれに挿入されたピン との組み合わせなど、遮光ブロック 600に対してレンズモジュール 7の XY面内での回 転を許容し、且つその回転角度を所定の範囲内に制限できる機構であれば使用す ることができ、その場合も上記と同様の効果を得ることができる。
[0072] (実施の形態 3) 複数のレンズを有するレンズアレイ 1は、例えばレンズ材料 (例えば榭脂又はガラス
)を金型を用いて成型することにより一体に得ることができる。このような場合、金型の 製作誤差や成型誤差等により、得られたレンズアレイ上の複数のレンズの光軸位置 が所望する位置力もずれてしまう場合がある。例えば、図 11Aに示すように、格子点 状に配置された 4つのレンズ la〜: Ld (図示せず)の光軸位置 1 la〜l Idを頂点とす る四角形が正確に長方形でない場合がある。このような場合、レンズ la〜: Ldの結像 領域 13a〜13dが撮像領域 4a〜4dからはみ出さないように遮光ブロック 6, 600に対 してレンズモジュール 7を回転調整しても、例えばカメラモジュールを用いて被写体ま での距離を三角測量の原理を利用して測定する場合に、測定精度が低下したり、演 算時間が長時間化したりするという問題が生じる。
カメラモジュールを用いて距離を測定する原理を図 12A及び図 12Bを用いて説明 する。図 12Aは、 2つのレンズ la, lcの光軸 11a, 11cを含む面と直交する方向に沿 つて見た側面図を示し、図 12Bは 2つのレンズ la, lcの光軸 11a, 11cと平行な方向 に沿って見た平面図を示す。 15a, 15cは光軸 11a, 11cが撮像素子 4の撮像領域と 交わる位置である。光軸 11c上にある被写体 200は、レンズ la, lcにより、撮像素子 4の撮像領域上に被写体像 201a, 201cとして結像される。レンズ la, lcの光軸 11a , 11cが互いに異なるため、レンズ la, lcから被写体 200までの距離が変わると、被 写体像 20 laの位置は撮像素子 4上で、交点 15aと交点 15cとを結ぶ直線 202上を 移動する。この現象は「視差」と呼ばれる。被写体像 201aの交点 15aからのずれ量( 以下、「視差量」という)を S、光軸 11a, 11c間の距離を d、被写体距離 (レンズ lcから 被写体 200までの距離)を A、結像距離を fとすると、これらは AZd=fZSの関係を 満足する。従って、視差量 Sを求めれば被写体距離 Aを求めることができる。具体的 には、レンズ lcを介して得られた撮像画像を基準画像とし、レンズ laを介して得られ た撮像画像を被比較画像として、基準画像内での被写体像 201cの位置に対する、 被比較画像内での被写体像 201aの位置のずれ量 (即ち視差量) Sを求める。視差 量 Sを求めるためには、基準画像内の被写体像 201cに対応する被写体像 201aを 被比較画像内で探索する(これを「ステレオマッチング」 t 、う)必要がある。このステ レオマッチングを行う場合、図 12Bに示す直線 202の方向と撮像素子 4の画素の配 列方向とがー致して 、な 、と、被比較画像内にぉ 、て被写体像 201aを正確に特定 できず、被写体距離を正確に求めることができなくなる。あるいは、被比較画像内で 被写体像 201aを探索するのに多くの時間が必要となり、演算時間が長くなる。
[0074] 図 11 Aのように格子点状に配置された 4つのレンズを備えたカメラモジュールを用 いて、上 2つの撮像領域 4a, 4cから得られた 2つの撮像画像間でステレオマッチング を行い被写体距離を測定し、且つ、下 2つの撮像領域 4b, 4dから得られた 2つの撮 像画像間でステレオマッチングを行 ヽ被写体距離を測定する場合を考える。この場 合、光軸 11a, 11cを結ぶ直線 12aの方向及び Z又は光軸 l ib, l idを結ぶ直線 1
1
2aの方向が、画素 41の横の配列方向(即ち X軸)と平行でないと、上述したように被
2
写体距離の測定精度が低下し、また、演算時間が長くなる。
[0075] そこで、 X軸に対する直線 12a及び直線 12aの平行度が最適化されるように、遮
1 2
光ブロック 6, 600に対してレンズモジュール 7を回転調整する。具体的は、図 11Bに 示すように、光軸 11cに対する光軸 11aの Y軸方向におけるずれ量 Dy及び光軸 11 dに対する光軸 l ibの Y軸方向におけるずれ量 Dyのうちの一方 (より好ましくは両方
2
)が Y軸方向における画素 41の配置ピッチ以下に設定されることが好ましい。これに より、被写体距離測定において実用上問題のない測定精度及び演算時間が得られ る。
[0076] 上記の説明では、上 2つの撮像領域 4a, 4cから得られた 2つの撮像画像間でステ レオマッチングを行い、且つ、下 2つの撮像領域 4b, 4dから得られた 2つの撮像画像 間でステレオマッチングを行う場合を説明したが、本発明はこれに限定されな 、。
[0077] 例えば、右 2つの撮像領域 4a, 4bから得られた 2つの撮像画像間でステレオマッチ ングを行い、且つ、左 2つの撮像領域 4c, 4dから得られた 2つの撮像画像間でステレ ォマッチングを行うこともできる。この場合、光軸 11aに対する光軸 l ibの X軸方向に おけるずれ量 Dx及び光軸 11cに対する光軸 l idの X軸方向におけるずれ量 Dxの
1 2 うちの一方 (より好ましくは両方)が X軸方向における画素 41の配置ピッチ以下になる ように、遮光ブロック 6, 600に対してレンズモジュール 7を回転調整することが好まし い。
[0078] あるいは、上 2つの撮像領域 4a, 4cから得られた 2つの撮像画像のみを用いて被 写体距離を測定しても良ぐその場合は、ずれ量 Dyが Y軸方向における画素 41の
1
配置ピッチ以下に設定されることが好ましい。同様に、下 2つの撮像領域 4b, 4dから 得られた 2つの撮像画像のみを用いて被写体距離を測定しても良ぐその場合は、 ずれ量 Dyが Y軸方向における画素 41の配置ピッチ以下に設定されることが好まし
2
い。更に、右 2つの撮像領域 4a, 4bから得られた 2つの撮像画像のみを用いて被写 体距離を測定しても良ぐその場合は、ずれ量 Dxが X軸方向における画素 41の配
1
置ピッチ以下に設定されることが好ましい。同様に、左 2つの撮像領域 4c, 4dから得 られた 2つの撮像画像のみを用いて被写体距離を測定しても良ぐその場合は、ず れ量 Dxが X軸方向における画素 41の配置ピッチ以下に設定されることが好ましい。
2
[0079] 上記の実施の形態では、レンズアレイが 4つのレンズを有する場合を例に説明した 1S レンズアレイが 2つのレンズのみを有している場合には、 2つのレンズの光軸を結 ぶ方向を上記のように X軸又は Y軸とほぼ平行に設定することにより、上記と同様の 効果を得ることができる。
[0080] また、レンズアレイが 5以上のレンズを有する場合には、そのうちの 2つ又は 4つのレ ンズを、上記の条件が満足されるように撮像素子 4に対して配置することにより、上記 と同様の効果を得ることができる。被写体距離の測定精度を向上させるためには、レ ンズの光軸間距離 dが大きくなるように、距離測定に利用するレンズを選択するのが 好ましい。
[0081] 測定精度及び演算速度を向上させるためには、同じ波長帯域光により得られた 2つ の撮像画像間でステレオマッチングを行うことが好まし 、が、異なる波長帯域光により 得られた 2つの撮像画像間でもステレオマッチングを行うことは可能であり被写体距 離を測定することは可能である。
[0082] 以上に説明した実施の形態は、いずれもあくまでも本発明の技術的内容を明らか にする意図のものであって、本発明はこのような具体例にのみ限定して解釈されるも のではなぐその発明の精神と請求の範囲に記載する範囲内でいろいろと変更して 実施することができ、本発明を広義に解釈すべきである。
産業上の利用可能性
[0083] 本発明の複眼方式のカメラモジュールの利用分野は特に制限はな 、が、例えば小 型、薄型でカメラ機能を備えた携帯電話、デジタルスチルカメラ、監視用カメラ、車載 カメラなどに好ましく利用することができる。

Claims

請求の範囲
[1] 一平面上に配置された複数のレンズを一体に有するレンズモジュールと、複数の撮 像領域と、前記レンズモジュールと前記複数の撮像領域との間に配置され、それぞ れが特定の波長帯域の光を透過させる複数の光学フィルタを有する光学フィルタァ レイと、前記レンズモジュールと前記複数の撮像領域との間に配置され、互いに独立 した複数の開口を形成する遮光壁を備えた遮光ブロックとを備え、前記複数のレンズ と前記複数の撮像領域と前記複数の光学フィルタと前記複数の開口とが一対一に対 応する複眼方式のカメラモジュールであって、
第 1摺動面が前記遮光ブロックに設けられており、
前記複数の撮像領域に対して垂直な軸を回転中心軸として前記遮光ブロックに対 して前記レンズモジュールが回転可能なように、前記第 1摺動面上を摺動する第 2摺 動面が前記レンズモジュールに設けられていることを特徴とする複眼方式のカメラモ ジュール。
[2] 前記第 1摺動面は前記回転中心軸を中心軸とする円筒面の少なくとも一部を含み 、前記第 2摺動面は円筒面の少なくとも一部を含む請求項 1に記載の複眼方式の力 メラモジユーノレ。
[3] 前記遮光ブロックに対する前記レンズモジュールの前記回転の角度を制限する機 構を更に備える請求項 1に記載の複眼方式のカメラモジュール。
[4] 前記機構にて前記レンズモジュールと前記遮光ブロックとが固定されて!ヽる請求項 3に記載の複眼方式のカメラモジュール。
[5] 互いに直交する第 1方向及び第 2方向に沿って前記複数の撮像領域の画素がマト リクス状に配置されており、
前記レンズモジュールが格子点状に配置された少なくとも第 1〜第 4のレンズを有し 前記第 1レンズの光軸と前記第 3レンズの光軸とを結ぶ方向、及び前記第 2レンズ の光軸と前記第 4レンズの光軸とを結ぶ方向は前記第 1方向とほぼ平行であり、 前記第 1レンズの光軸と前記第 2レンズの光軸とを結ぶ方向、及び前記第 3レンズ の光軸と前記第 4レンズの光軸とを結ぶ方向は前記第 2方向とほぼ平行であり、 前記第 1レンズの光軸に対する前記第 3レンズの光軸の前記第 2方向におけるずれ 量、及び、前記第 2レンズの光軸に対する前記第 4レンズの光軸の前記第 2方向にお けるずれ量のうちの一方又は両方が前記第 2方向における前記画素の配置ピッチ以 下である請求項 1に記載の複眼方式のカメラモジュール。
[6] 互いに直交する第 1方向及び第 2方向に沿って前記複数の撮像領域の画素がマト リクス状に配置されており、
前記レンズモジュールが少なくとも第 1及び第 2のレンズを有し、
前記第 1レンズの光軸と前記第 2レンズの光軸とを結ぶ方向は前記第 1方向とほぼ 平行であり、
前記第 1レンズの光軸に対する前記第 2レンズの光軸の前記第 2方向におけるずれ 量が前記第 2方向における前記画素の配置ピッチ以下である請求項 1に記載の複眼 方式のカメラモジュール。
[7] 一平面上に配置された複数のレンズを一体に有するレンズモジュールと、複数の撮 像領域と、前記レンズモジュールと前記複数の撮像領域との間に配置され、それぞ れが特定の波長帯域の光を透過させる複数の光学フィルタを有する光学フィルタァ レイと、前記レンズモジュールと前記複数の撮像領域との間に配置され、互いに独立 した複数の開口を形成する遮光壁を備えた遮光ブロックとを備え、前記複数のレンズ と前記複数の撮像領域と前記複数の光学フィルタと前記複数の開口とが一対一に対 応する複眼方式のカメラモジュールの製造方法であって、
前記複数の撮像領域に対して垂直な軸を回転中心軸として前記遮光ブロックに対 して前記レンズモジュールを回転させ、
次 、で、前記レンズモジュールと前記遮光ブロックとを固定する
ことを特徴とする複眼方式のカメラモジュールの製造方法。
[8] 前記カメラモジュール力 前記遮光ブロックに対する前記レンズモジュールの前記 回転の角度を制限する機構を更に備え、
前記制限された角度の範囲内で前記遮光ブロックに対して前記レンズモジュール を回転させる請求項 7に記載の複眼方式のカメラモジュールの製造方法。
[9] 前記レンズモジュールと前記遮光ブロックとの固定を前記機構にて行う請求項 8に 記載の複眼方式のカメラモジュールの製造方法。
[10] 互いに直交する第 1方向及び第 2方向に沿って前記複数の撮像領域の画素がマト リクス状に配置されており、
前記レンズモジュールが格子点状に配置された少なくとも第 1〜第 4のレンズを有し 前記第 1レンズの光軸と前記第 3レンズの光軸とを結ぶ方向、及び前記第 2レンズ の光軸と前記第 4レンズの光軸とを結ぶ方向が記第 1方向とほぼ平行であり、且つ、 前記第 1レンズの光軸と前記第 2レンズの光軸とを結ぶ方向、及び前記第 3レンズの 光軸と前記第 4レンズの光軸とを結ぶ方向が前記第 2方向とほぼ平行であり、且つ、 前記第 1レンズの光軸に対する前記第 3レンズの光軸の前記第 2方向におけるずれ 量、及び、前記第 2レンズの光軸に対する前記第 4レンズの光軸の前記第 2方向にお けるずれ量のうちの一方又は両方が前記第 2方向における前記画素の配置ピッチ以 下となるように、前記遮光ブロックに対して前記レンズモジュールを回転させる請求項 7に記載の複眼方式のカメラモジュール。
[11] 互いに直交する第 1方向及び第 2方向に沿って前記複数の撮像領域の画素がマト リクス状に配置されており、
前記レンズモジュールが少なくとも第 1及び第 2のレンズを有し、
前記第 1レンズの光軸と前記第 2レンズの光軸とを結ぶ方向が前記第 1方向とほぼ 平行であり、且つ、前記第 1レンズの光軸に対する前記第 2レンズの光軸の前記第 2 方向におけるずれ量が前記第 2方向における前記画素の配置ピッチ以下となるよう に、前記遮光ブロックに対して前記レンズモジュールを回転させる請求項 7に記載の 複眼方式のカメラモジュール。
PCT/JP2007/050351 2006-01-20 2007-01-12 複眼方式のカメラモジュール及びその製造方法 WO2007083579A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800025971A CN101371568B (zh) 2006-01-20 2007-01-12 复眼方式的照相机模块及其制造方法
JP2007554873A JP4147273B2 (ja) 2006-01-20 2007-01-12 複眼方式のカメラモジュール及びその製造方法
US12/159,288 US8194169B2 (en) 2006-01-20 2007-01-12 Compound eye camera module and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-012819 2006-01-20
JP2006012819 2006-01-20

Publications (1)

Publication Number Publication Date
WO2007083579A1 true WO2007083579A1 (ja) 2007-07-26

Family

ID=38287532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050351 WO2007083579A1 (ja) 2006-01-20 2007-01-12 複眼方式のカメラモジュール及びその製造方法

Country Status (4)

Country Link
US (1) US8194169B2 (ja)
JP (1) JP4147273B2 (ja)
CN (1) CN101371568B (ja)
WO (1) WO2007083579A1 (ja)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087974A1 (ja) * 2008-01-11 2009-07-16 Panasonic Corporation 複眼カメラモジュール
KR20110010784A (ko) * 2008-05-20 2011-02-07 펠리칸 이매징 코포레이션 이종 이미저를 구비한 모놀리식 카메라 어레이를 이용한 이미지의 캡처링 및 처리
JPWO2009057436A1 (ja) * 2007-11-01 2011-03-10 コニカミノルタホールディングス株式会社 撮像装置
JP2012182309A (ja) * 2011-03-01 2012-09-20 Seiko Instruments Inc 光学デバイス
WO2012165281A1 (ja) * 2011-06-01 2012-12-06 コニカミノルタアドバンストレイヤー株式会社 複眼ユニット
WO2013065455A1 (ja) * 2011-10-31 2013-05-10 コニカミノルタ株式会社 レンズユニットの製造方法、レンズアレイ及びレンズユニット
JP2013520855A (ja) * 2010-02-19 2013-06-06 デュアル・アパーチャー・インコーポレーテッド 多開口画像データの処理
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US8861089B2 (en) 2009-11-20 2014-10-14 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9197821B2 (en) 2011-05-11 2015-11-24 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
JP2017138600A (ja) * 2016-02-03 2017-08-10 台湾東電化股▲ふん▼有限公司 カメラ装置
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
KR101826718B1 (ko) * 2011-12-22 2018-02-08 엘지이노텍 주식회사 촬상 장치
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
WO2020085571A1 (ko) * 2018-10-25 2020-04-30 전자부품연구원 360 vr 영상을 실시간으로 생성하는 영상변환장치 및 시스템
JP2020086447A (ja) * 2018-11-27 2020-06-04 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド レンズモジュール
US10880475B2 (en) 2018-10-25 2020-12-29 Korea Electronics Technology Institute Video conversion apparatus and system for generating 360-degree virtual reality video in real time
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
JP7315988B1 (ja) 2022-01-13 2023-07-27 誠一 杉田 移動体の走行制御システム
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US12020455B2 (en) 2021-03-10 2024-06-25 Intrinsic Innovation Llc Systems and methods for high dynamic range image reconstruction
US12069227B2 (en) 2021-03-10 2024-08-20 Intrinsic Innovation Llc Multi-modal and multi-spectral stereo camera arrays
US12067746B2 (en) 2021-05-07 2024-08-20 Intrinsic Innovation Llc Systems and methods for using computer vision to pick up small objects

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6120523B2 (ja) * 2012-10-24 2017-04-26 オリンパス株式会社 撮像素子及び撮像装置
US9568713B2 (en) 2013-01-05 2017-02-14 Light Labs Inc. Methods and apparatus for using multiple optical chains in parallel to support separate color-capture
CN103076709B (zh) * 2013-01-16 2016-06-29 瑞声声学科技(深圳)有限公司 阵列照相机
US9197816B2 (en) * 2013-10-18 2015-11-24 The Lightco Inc. Zoom related methods and apparatus
US9563033B2 (en) 2013-10-18 2017-02-07 Light Labs Inc. Methods and apparatus for capturing images and/or for using captured images
US9374514B2 (en) 2013-10-18 2016-06-21 The Lightco Inc. Methods and apparatus relating to a camera including multiple optical chains
US9736365B2 (en) 2013-10-26 2017-08-15 Light Labs Inc. Zoom related methods and apparatus
US9467627B2 (en) 2013-10-26 2016-10-11 The Lightco Inc. Methods and apparatus for use with multiple optical chains
US9686471B2 (en) 2013-11-01 2017-06-20 Light Labs Inc. Methods and apparatus relating to image stabilization
US9554031B2 (en) 2013-12-31 2017-01-24 Light Labs Inc. Camera focusing related methods and apparatus
US9955053B2 (en) * 2014-01-27 2018-04-24 Himax Technologies Limited Image-capturing assembly and array lens units thereof
US20150244949A1 (en) 2014-02-21 2015-08-27 Rajiv Laroia Illumination methods and apparatus
US9979878B2 (en) 2014-02-21 2018-05-22 Light Labs Inc. Intuitive camera user interface methods and apparatus
US10582186B1 (en) * 2014-06-11 2020-03-03 Amazon Technologies, Inc. Approaches for identifying misaligned cameras
WO2016004422A1 (en) 2014-07-04 2016-01-07 The Lightco Inc. Methods and apparatus relating to detection and/or indicating a dirty lens condition
US10110794B2 (en) 2014-07-09 2018-10-23 Light Labs Inc. Camera device including multiple optical chains and related methods
JP6627083B2 (ja) * 2014-08-22 2020-01-08 パナソニックIpマネジメント株式会社 画像取得装置および画像形成システム
WO2016061565A1 (en) 2014-10-17 2016-04-21 The Lightco Inc. Methods and apparatus for using a camera device to support multiple modes of operation
EP3235243A4 (en) 2014-12-17 2018-06-20 Light Labs Inc. Methods and apparatus for implementing and using camera devices
US9544503B2 (en) 2014-12-30 2017-01-10 Light Labs Inc. Exposure control methods and apparatus
US20160255323A1 (en) 2015-02-26 2016-09-01 Dual Aperture International Co. Ltd. Multi-Aperture Depth Map Using Blur Kernels and Down-Sampling
US20180095275A1 (en) * 2015-03-30 2018-04-05 Nikon Corporation Image-capturing device, multi-lens camera, and method for manufacturing image-capturing device
US9824427B2 (en) 2015-04-15 2017-11-21 Light Labs Inc. Methods and apparatus for generating a sharp image
US10091447B2 (en) 2015-04-17 2018-10-02 Light Labs Inc. Methods and apparatus for synchronizing readout of multiple image sensors
US9967535B2 (en) 2015-04-17 2018-05-08 Light Labs Inc. Methods and apparatus for reducing noise in images
US10075651B2 (en) 2015-04-17 2018-09-11 Light Labs Inc. Methods and apparatus for capturing images using multiple camera modules in an efficient manner
US9857584B2 (en) 2015-04-17 2018-01-02 Light Labs Inc. Camera device methods, apparatus and components
WO2016172641A1 (en) 2015-04-22 2016-10-27 The Lightco Inc. Filter mounting methods and apparatus and related camera apparatus
US10129483B2 (en) 2015-06-23 2018-11-13 Light Labs Inc. Methods and apparatus for implementing zoom using one or more moveable camera modules
US10491806B2 (en) 2015-08-03 2019-11-26 Light Labs Inc. Camera device control related methods and apparatus
US10365480B2 (en) 2015-08-27 2019-07-30 Light Labs Inc. Methods and apparatus for implementing and/or using camera devices with one or more light redirection devices
US9749549B2 (en) 2015-10-06 2017-08-29 Light Labs Inc. Methods and apparatus for facilitating selective blurring of one or more image portions
US10225445B2 (en) 2015-12-18 2019-03-05 Light Labs Inc. Methods and apparatus for providing a camera lens or viewing point indicator
US10003738B2 (en) 2015-12-18 2018-06-19 Light Labs Inc. Methods and apparatus for detecting and/or indicating a blocked sensor or camera module
US10306218B2 (en) 2016-03-22 2019-05-28 Light Labs Inc. Camera calibration apparatus and methods
US9948832B2 (en) 2016-06-22 2018-04-17 Light Labs Inc. Methods and apparatus for synchronized image capture in a device including optical chains with different orientations
US10462377B2 (en) 2016-07-29 2019-10-29 Nokia Of America Corporation Single-aperture multi-sensor lensless compressive image acquisition
US20180035046A1 (en) * 2016-07-29 2018-02-01 Xin Yuan Block-based lensless compressive image acquisition
US10502548B2 (en) * 2017-05-09 2019-12-10 Google Llc Sensor combination
CN110351473A (zh) * 2019-08-13 2019-10-18 宁波为森智能传感技术有限公司 疲劳驾驶监控装置
TWI708089B (zh) * 2019-09-04 2020-10-21 群光電子股份有限公司 數位成像裝置
CN114236853B (zh) * 2022-01-26 2024-01-05 中煤科工开采研究院有限公司 一种分体式矿用ar眼镜固定装置及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135010A (ja) * 1995-11-07 1997-05-20 Konica Corp ベアチップccdの取付け方法
JP2002171430A (ja) * 2000-11-30 2002-06-14 Canon Inc 複眼撮像系、撮像装置および電子機器
JP2003110946A (ja) * 2001-09-11 2003-04-11 Samsung Electro Mech Co Ltd 撮像素子モジュールパッケージ
JP2003143459A (ja) * 2001-11-02 2003-05-16 Canon Inc 複眼撮像系およびこれを備えた装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0019666B1 (en) * 1979-05-28 1983-11-30 Océ-Helioprint A.S. Lens turret
EP0801319B1 (en) * 1995-11-01 2005-01-26 Matsushita Electric Industrial Co., Ltd. Outgoing efficiency control device, projection type display apparatus
US5818637A (en) * 1996-02-26 1998-10-06 Hoover; Rex A. Computerized video microscopy system
US6833873B1 (en) * 1999-06-30 2004-12-21 Canon Kabushiki Kaisha Image pickup apparatus
JP3397754B2 (ja) 1999-06-30 2003-04-21 キヤノン株式会社 撮像装置
US7262799B2 (en) * 2000-10-25 2007-08-28 Canon Kabushiki Kaisha Image sensing apparatus and its control method, control program, and storage medium
US6804460B1 (en) * 2003-09-30 2004-10-12 Arc Design, Inc. Lens turret with back focal length adjustment
JP2005109092A (ja) 2003-09-30 2005-04-21 Konica Minolta Opto Inc 固体撮像装置及び該固体撮像装置を備えた撮像装置
JP2005134835A (ja) * 2003-10-31 2005-05-26 Olympus Corp 撮像装置と、撮像装置を有する撮像用機器
US7048408B2 (en) * 2004-07-30 2006-05-23 Fiskars Brands, Inc. Lighting head mechanism and filter
US20060054782A1 (en) * 2004-08-25 2006-03-16 Olsen Richard I Apparatus for multiple camera devices and method of operating same
JP2006080597A (ja) 2004-09-07 2006-03-23 Canon Inc 撮像モジュール及び撮像モジュールの製造方法
JP2006246193A (ja) 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd 撮像装置
JP2007110588A (ja) * 2005-10-17 2007-04-26 Funai Electric Co Ltd 複眼撮像装置
JP4492533B2 (ja) * 2005-12-27 2010-06-30 船井電機株式会社 複眼撮像装置
JP4138867B2 (ja) * 2006-04-21 2008-08-27 松下電器産業株式会社 複眼方式のカメラモジュール
JP2009164654A (ja) 2006-04-24 2009-07-23 Panasonic Corp 複眼方式のカメラモジュール
JP2007329714A (ja) * 2006-06-08 2007-12-20 Funai Electric Co Ltd 複眼撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135010A (ja) * 1995-11-07 1997-05-20 Konica Corp ベアチップccdの取付け方法
JP2002171430A (ja) * 2000-11-30 2002-06-14 Canon Inc 複眼撮像系、撮像装置および電子機器
JP2003110946A (ja) * 2001-09-11 2003-04-11 Samsung Electro Mech Co Ltd 撮像素子モジュールパッケージ
JP2003143459A (ja) * 2001-11-02 2003-05-16 Canon Inc 複眼撮像系およびこれを備えた装置

Cited By (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224142B2 (ja) * 2007-11-01 2013-07-03 コニカミノルタホールディングス株式会社 撮像装置
JPWO2009057436A1 (ja) * 2007-11-01 2011-03-10 コニカミノルタホールディングス株式会社 撮像装置
WO2009087974A1 (ja) * 2008-01-11 2009-07-16 Panasonic Corporation 複眼カメラモジュール
US9041823B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Systems and methods for performing post capture refocus using images captured by camera arrays
US12022207B2 (en) 2008-05-20 2024-06-25 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9188765B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9191580B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by camera arrays
US9049411B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Camera arrays incorporating 3×3 imager configurations
JP2011523538A (ja) * 2008-05-20 2011-08-11 ペリカン イメージング コーポレイション 異なる種類の撮像装置を有するモノリシックカメラアレイを用いた画像の撮像および処理
KR101588877B1 (ko) 2008-05-20 2016-01-26 펠리칸 이매징 코포레이션 이종 이미저를 구비한 모놀리식 카메라 어레이를 이용한 이미지의 캡처링 및 처리
US9049391B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of near-IR images including occlusions using camera arrays incorporating near-IR light sources
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US8885059B1 (en) 2008-05-20 2014-11-11 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by camera arrays
US8896719B1 (en) 2008-05-20 2014-11-25 Pelican Imaging Corporation Systems and methods for parallax measurement using camera arrays incorporating 3 x 3 camera configurations
US8902321B2 (en) 2008-05-20 2014-12-02 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
JP2019220957A (ja) * 2008-05-20 2019-12-26 フォトネイション リミテッド 異なる種類の撮像装置を有するモノリシックカメラアレイを用いた画像の撮像および処理
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
KR101733443B1 (ko) 2008-05-20 2017-05-10 펠리칸 이매징 코포레이션 이종 이미저를 구비한 모놀리식 카메라 어레이를 이용한 이미지의 캡처링 및 처리
US12041360B2 (en) 2008-05-20 2024-07-16 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9094661B2 (en) 2008-05-20 2015-07-28 Pelican Imaging Corporation Systems and methods for generating depth maps using a set of images containing a baseline image
US9077893B2 (en) 2008-05-20 2015-07-07 Pelican Imaging Corporation Capturing and processing of images captured by non-grid camera arrays
JP2016197878A (ja) * 2008-05-20 2016-11-24 ペリカン イメージング コーポレイション 異なる種類の撮像装置を有するモノリシックカメラアレイを用いた画像の撮像および処理
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US9060120B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Systems and methods for generating depth maps using images captured by camera arrays
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9060142B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including heterogeneous optics
US9049367B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using images captured by camera arrays
US9235898B2 (en) 2008-05-20 2016-01-12 Pelican Imaging Corporation Systems and methods for generating depth maps using light focused on an image sensor by a lens element array
KR20110010784A (ko) * 2008-05-20 2011-02-07 펠리칸 이매징 코포레이션 이종 이미저를 구비한 모놀리식 카메라 어레이를 이용한 이미지의 캡처링 및 처리
US9060124B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images using non-monolithic camera arrays
US9049381B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for normalizing image data captured by camera arrays
US9049390B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of images captured by arrays including polychromatic cameras
US9055213B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera
US9055233B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using a set of images containing a baseline image
JP2015109667A (ja) * 2008-05-20 2015-06-11 ペリカン イメージング コーポレイション 異なる種類の撮像装置を有するモノリシックカメラアレイを用いた画像の撮像および処理
US9060121B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US8861089B2 (en) 2009-11-20 2014-10-14 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
JP2013520855A (ja) * 2010-02-19 2013-06-06 デュアル・アパーチャー・インコーポレーテッド 多開口画像データの処理
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
US9047684B2 (en) 2010-12-14 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using a set of geometrically registered images
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9041824B2 (en) 2010-12-14 2015-05-26 Pelican Imaging Corporation Systems and methods for dynamic refocusing of high resolution images generated using images captured by a plurality of imagers
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9361662B2 (en) 2010-12-14 2016-06-07 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
JP2012182309A (ja) * 2011-03-01 2012-09-20 Seiko Instruments Inc 光学デバイス
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9197821B2 (en) 2011-05-11 2015-11-24 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
WO2012165281A1 (ja) * 2011-06-01 2012-12-06 コニカミノルタアドバンストレイヤー株式会社 複眼ユニット
JPWO2012165281A1 (ja) * 2011-06-01 2015-02-23 コニカミノルタ株式会社 複眼ユニット
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US9031342B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding refocusable light field image files
US9129183B2 (en) 2011-09-28 2015-09-08 Pelican Imaging Corporation Systems and methods for encoding light field image files
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US12052409B2 (en) 2011-09-28 2024-07-30 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9036928B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for encoding structured light field image files
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9031335B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having depth and confidence maps
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9025894B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding light field image files having depth and confidence maps
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9025895B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding refocusable light field image files
US9042667B2 (en) 2011-09-28 2015-05-26 Pelican Imaging Corporation Systems and methods for decoding light field image files using a depth map
US9031343B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having a depth map
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US9036931B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for decoding structured light field image files
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
JP5673820B2 (ja) * 2011-10-31 2015-02-18 コニカミノルタ株式会社 レンズユニットの製造方法
JPWO2013065455A1 (ja) * 2011-10-31 2015-04-02 コニカミノルタ株式会社 レンズユニットの製造方法
WO2013065455A1 (ja) * 2011-10-31 2013-05-10 コニカミノルタ株式会社 レンズユニットの製造方法、レンズアレイ及びレンズユニット
KR101826718B1 (ko) * 2011-12-22 2018-02-08 엘지이노텍 주식회사 촬상 장치
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US12002233B2 (en) 2012-08-21 2024-06-04 Adeia Imaging Llc Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9123118B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation System and methods for measuring depth using an array camera employing a bayer filter
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9123117B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation Systems and methods for generating depth maps and corresponding confidence maps indicating depth estimation reliability
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US9129377B2 (en) 2012-08-21 2015-09-08 Pelican Imaging Corporation Systems and methods for measuring depth based upon occlusion patterns in images
US9147254B2 (en) 2012-08-21 2015-09-29 Pelican Imaging Corporation Systems and methods for measuring depth in the presence of occlusions using a subset of images
US9240049B2 (en) 2012-08-21 2016-01-19 Pelican Imaging Corporation Systems and methods for measuring depth using an array of independently controllable cameras
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US11985293B2 (en) 2013-03-10 2024-05-14 Adeia Imaging Llc System and methods for calibration of an array camera
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9124864B2 (en) 2013-03-10 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9602805B2 (en) 2013-03-15 2017-03-21 Fotonation Cayman Limited Systems and methods for estimating depth using ad hoc stereo array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9264592B2 (en) 2013-11-07 2016-02-16 Pelican Imaging Corporation Array camera modules incorporating independently aligned lens stacks
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9456134B2 (en) 2013-11-26 2016-09-27 Pelican Imaging Corporation Array camera configurations incorporating constituent array cameras and constituent cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
JP2017138600A (ja) * 2016-02-03 2017-08-10 台湾東電化股▲ふん▼有限公司 カメラ装置
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
US11983893B2 (en) 2017-08-21 2024-05-14 Adeia Imaging Llc Systems and methods for hybrid depth regularization
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
WO2020085571A1 (ko) * 2018-10-25 2020-04-30 전자부품연구원 360 vr 영상을 실시간으로 생성하는 영상변환장치 및 시스템
US10880475B2 (en) 2018-10-25 2020-12-29 Korea Electronics Technology Institute Video conversion apparatus and system for generating 360-degree virtual reality video in real time
JP2020086447A (ja) * 2018-11-27 2020-06-04 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド レンズモジュール
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11982775B2 (en) 2019-10-07 2024-05-14 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US12099148B2 (en) 2019-10-07 2024-09-24 Intrinsic Innovation Llc Systems and methods for surface normals sensing with polarization
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US12020455B2 (en) 2021-03-10 2024-06-25 Intrinsic Innovation Llc Systems and methods for high dynamic range image reconstruction
US12069227B2 (en) 2021-03-10 2024-08-20 Intrinsic Innovation Llc Multi-modal and multi-spectral stereo camera arrays
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US12067746B2 (en) 2021-05-07 2024-08-20 Intrinsic Innovation Llc Systems and methods for using computer vision to pick up small objects
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
JP2023108070A (ja) * 2022-01-13 2023-08-04 誠一 杉田 移動体の走行制御システム
JP7315988B1 (ja) 2022-01-13 2023-07-27 誠一 杉田 移動体の走行制御システム

Also Published As

Publication number Publication date
US8194169B2 (en) 2012-06-05
CN101371568A (zh) 2009-02-18
CN101371568B (zh) 2010-06-30
JP4147273B2 (ja) 2008-09-10
JPWO2007083579A1 (ja) 2009-06-11
US20100225755A1 (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4147273B2 (ja) 複眼方式のカメラモジュール及びその製造方法
CN108377378B (zh) 摄像装置
JP4374078B2 (ja) 複眼カメラモジュール
US7924327B2 (en) Imaging apparatus and method for producing the same, portable equipment, and imaging sensor and method for producing the same
US20070097249A1 (en) Camera module
US20190064399A1 (en) Optical lens head, camera module and assembling method therefor
US8456552B2 (en) Image pick up unit using a lens array including a plurality of lens sections corresponding to m×n pixels of image pickup device
KR101823195B1 (ko) 렌즈 조립체 및 이를 구비하는 카메라 모듈
US9300885B2 (en) Imaging device, portable information terminal, and imaging system
WO2007123064A1 (ja) 複眼方式のカメラモジュール
WO2007125761A1 (ja) 複眼方式のカメラモジュール
TWI638221B (zh) 具有至少兩個鏡頭的全景影像擷取裝置及其全景影像擷取模組
EP1720340A1 (en) Camera module
JP3958055B2 (ja) 測距及び測光装置
TWI584643B (zh) 基於單一成像感測器的攝影機裝置及系統以及其製造方法
JP2009201008A (ja) 複眼式撮像装置
JP2001005054A (ja) 撮像装置
JP7124366B2 (ja) 撮像素子固定構造及び撮像装置
JP2007295141A (ja) 撮像装置
CN109756656B (zh) 手持式电子设备及其摄像头装置
JP2009180976A (ja) 複眼カメラモジュール
JPS60207107A (ja) 固体撮像装置の位置合わせ方法
JP2006203616A (ja) イメージセンサモジュール
JP2012195758A (ja) 撮像モジュール
TWI436475B (zh) 光學模組及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007554873

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12159288

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780002597.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706693

Country of ref document: EP

Kind code of ref document: A1