[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007082934A1 - Procédé d'adaptation dynamique de la longueur de cycle drx dans un système de radiocommunication - Google Patents

Procédé d'adaptation dynamique de la longueur de cycle drx dans un système de radiocommunication Download PDF

Info

Publication number
WO2007082934A1
WO2007082934A1 PCT/EP2007/050538 EP2007050538W WO2007082934A1 WO 2007082934 A1 WO2007082934 A1 WO 2007082934A1 EP 2007050538 W EP2007050538 W EP 2007050538W WO 2007082934 A1 WO2007082934 A1 WO 2007082934A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle length
user terminal
drx
radio communications
drx cycle
Prior art date
Application number
PCT/EP2007/050538
Other languages
English (en)
Inventor
Volker Breuer
Norbert Kroth
Original Assignee
Nokia Siemens Networks Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Siemens Networks Gmbh & Co. Kg filed Critical Nokia Siemens Networks Gmbh & Co. Kg
Publication of WO2007082934A1 publication Critical patent/WO2007082934A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • H04B1/1615Switching on; Switching off, e.g. remotely
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a method for dynamically adapting the DRX (Discontinuous Reception) cycle length in a radio communications system.
  • DRX Continuous Reception
  • 3G radio communications systems like e.g. UMTS
  • 3G radio communications systems like e.g. UMTS
  • a common way to save battery power and trigger state changes from inactive to active state is to use a paging mechanism wherein the user terminal periodically monitors a base station' s paging channel in order to identify that it has to turn on its receiver in order to fetch transmitted data. If a DRX mechanism is applied together with paging, an optimised battery power utilisation can be achieved allowing a tradeoff between activation time and power consumption at the user terminal .
  • the proposed technique provides for an efficient and simple control of a user terminal's battery power.
  • Said independent method controls a discontinuous reception cycle length of a user terminal in a radio communications system, wherein the cycle length is dynamically adapted depending on connection and/or terminal related parameters.
  • Said independent user terminal of a radio communications system comprises means for dynamically adapting a discontinuous reception cycle length depending on connection and/or terminal related parameters.
  • the nowadays static DRX cycle length is dynamically adapted to the user terminal' s behaviour, services and/or user characteristics in order to better match the time of inactivity from services perspective to the periodicity where the user terminal monitors the paging channel for detection of triggers for a state transition .
  • the DRX cycle length is dynamically adapted based on history/statistics and other information by
  • Fig. 1 shows a DRX cycle length adaptation scheme based on data throughput .
  • Fig. 2 shows an exemplary variation of the DRX cycle length over time for a user terminal.
  • Fig. 3 shows a DRX cycle length adaptation scheme based on packet-arrival-rate .
  • Fig. 4 shows an exemplary embodiment depicting the different means used to implement the inventive technique.
  • Fig. 1 shows a DRX cycle length adaptation scheme based on data throughput.
  • the exemplary scheme is based on data throughput wherein the DRX cycle length is continuously adapted for a particular user.
  • the process is characterised by two phases: a DRX Increase Phase and a DRX Decrease Phase.
  • the cycle length will be increased in case the user has received a service where high throughput (e.g. good peak to average ratio) has been achieved in active state.
  • high throughput e.g. good peak to average ratio
  • the user terminal is in a good radio condition where a longer paging period may be compensated with high peak data rate for successive transmissions.
  • the cycle length decreases in case the user terminal has re ⁇ ceived a service where low data throughput (e.g. bad peak to average ratio) has been achieved in active state.
  • low data throughput e.g. bad peak to average ratio
  • the gradient for increasing or decreasing the cycle length is defined by discrete curves, as shown in fig. 1 for three dif- ferent situations, high, medium, low throughput.
  • the new DRX cycle length can thus be calculated based on the current (stored) cycle length value which is used as an input parame ⁇ ter for the calculation of a new value according to the following DRX-formula.
  • New DRX cycle length f (current DRX cycle length, data throughput)
  • the DRX cycle length value would be continuously updated in case the user terminal changes from active to idle state, as shown for example in fig. 2.
  • Fig. 2 shows an exemplary variation of the DRX cycle length over time for a user terminal.
  • the example of fig. 3 shows a DRX cycle length adaptation scheme based on packet-arrival-rate, continuously adapting the DRX cycle length for a particular user terminal.
  • the DRX cycle length is increased if the last idle period was longer than the previous one, thus resulting in a lower packet arrival rate.
  • the DRX cycle length is de ⁇ creased.
  • the gradient for increasing or decreasing the cycle length is defined by discrete curves for the three dif ⁇ ferent situations, high, medium and low arrival-rate.
  • the new DRX cycle length will now be calculated based on the current (stored) cycle length value which is used as an input parame ⁇ ter in the calculation of the new value according to the DRX- formula below.
  • New DRX cycle length f (current DRX cycle length, packet- arrival-rate)
  • a "DRX evaluation window" based on multiple individual "DRX evaluation periods” (arbitrary idle period) may be used to adapt the DRX cycle length to a cumulated packet-arrival-rate, as shown in fig. 2.
  • the new DRX cycle length may be calcu ⁇ lated according to the following DRX-formula.
  • New DRX cycle length f (current DRX cycle length, packet- arrival-rate [DRX Evaluation Window] )
  • the maximum DRX cycle may be a parameter sig ⁇ nalled by the network or the base station to the user terminal, wherein the parameter is dimensioned depending on the operation environment the user is currently in.
  • the maximum value of the cycle length may also vary, for example depending on the cell environment (macro, micro, pico cells), terminal capacity and/or maximum expected user terminal speed, etc.
  • a radio communications system 1000 comprising of a plurality of base stations (BSs) 100 and a plurality of user terminals 10.
  • BS 100 and user terminal 10 communicate and exchange data over a connection C.
  • User terminal 10 comprises of means 11 adapted for dynamically adapting a discontinuous reception cycle length depending on connection and/or user terminal 10 related parameters as already mentioned herein above.
  • User terminal 10 also comprises of further means 12 adapted for receiving the at least one parameter transmitted from a base station 100 of the radio communications system 1000. Means 12 are also further adapted to transmit over a plurality of channels to base station 100. Means 11 are also further arranged to control the functioning of user terminal 10 and to execute any further operations required. User terminal 10 also comprises of means 13 arranged to store data, such as the different connection and/or user terminal 10 related parameters, cycle lengths, reception evaluation periods etc.
  • the different means can be implemented in at least one of the following: a microcomputer, an integrated circuit, a microprocessor .
  • Base station 100 comprises of means 101 arranged to control the functioning of the base station 100, and, means 102 arranged to transmit and to receive transmissions from user terminal 10.
  • the different means can also be implemented in at least one of the following: a microcomputer, an integrated circuit, a microprocessor.
  • paging/DRX mechanism e.g. packet-arrival-rate, pre-defined service scheduling
  • radio characteristics/conditions e.g. throughput

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Selon l'invention, une longueur de cycle d'une réception discontinue (DRX) au niveau d'un terminal utilisateur est adaptée dynamiquement en fonction de paramètres relatifs à la connexion et/ou au terminal.
PCT/EP2007/050538 2006-01-20 2007-01-19 Procédé d'adaptation dynamique de la longueur de cycle drx dans un système de radiocommunication WO2007082934A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP06001260.6 2006-01-20
EP06001260 2006-01-20
EP06020702.4 2006-10-02
EP06020702 2006-10-02

Publications (1)

Publication Number Publication Date
WO2007082934A1 true WO2007082934A1 (fr) 2007-07-26

Family

ID=37845333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050538 WO2007082934A1 (fr) 2006-01-20 2007-01-19 Procédé d'adaptation dynamique de la longueur de cycle drx dans un système de radiocommunication

Country Status (1)

Country Link
WO (1) WO2007082934A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2450167A (en) * 2007-06-18 2008-12-17 Nec Corp Discontinuous Reception In A Mobile Radio Communications Network
WO2009100136A3 (fr) * 2008-02-04 2009-12-30 Qualcomm Incorporated Mécanisme de déclenchement approprié pour commander l’identification de nouvelle cellule dans un équipement d’utilisateur dans un mode drx
US8089739B2 (en) 2007-10-30 2012-01-03 Agere Systems Inc. Electrostatic discharge protection circuit
WO2012065914A1 (fr) 2010-11-15 2012-05-24 Research In Motion Limited Gestion de communications sans fil
WO2012065915A1 (fr) * 2010-11-15 2012-05-24 Research In Motion Limited Gestion de communications sans fil
WO2013044415A1 (fr) * 2011-09-30 2013-04-04 Nokia Siemens Networks Oy Réception discontinue
WO2013006381A3 (fr) * 2011-07-01 2013-05-10 Intel Corporation Mode de fonctionnement discontinu déclenché dans un équipement utilisateur dans un réseau de communications sans fil
US8937876B2 (en) 2010-11-15 2015-01-20 Blackberry Limited Managing communications across a wireless network
US9225759B2 (en) 2012-01-27 2015-12-29 Intel Corporation User equipment and method for discontinuous reception (DRX) mode in wireless communication networks
US9693299B2 (en) 2009-11-30 2017-06-27 Nokia Technology Oy Method and apparatus for power saving operations in wireless network elements
JP2018522439A (ja) * 2015-05-04 2018-08-09 クアルコム,インコーポレイテッド モデム処理パイプラインを管理するためのノード間協調

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627836A2 (fr) * 1993-06-02 1994-12-07 Koninklijke Philips Electronics N.V. Procédé d'économie d'énergie pour système de communication portable et système de communication portable utilisant la méthode
US20030185162A1 (en) * 2002-03-28 2003-10-02 General Motors Corporation Method and system for dynamically determining sleep cycle values in a quiescent mobile vehicle
EP1499144A1 (fr) * 2003-07-18 2005-01-19 Kabushiki Kaisha Toshiba Terminal de communication mobile et son procédé de réception discontinu
EP1613107A2 (fr) * 1998-10-15 2006-01-04 Telefonaktiebolaget L M Ericsson (Publ) Mode sommeil variable pour stations mobiles dans un reseau de communications mobiles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627836A2 (fr) * 1993-06-02 1994-12-07 Koninklijke Philips Electronics N.V. Procédé d'économie d'énergie pour système de communication portable et système de communication portable utilisant la méthode
EP1613107A2 (fr) * 1998-10-15 2006-01-04 Telefonaktiebolaget L M Ericsson (Publ) Mode sommeil variable pour stations mobiles dans un reseau de communications mobiles
US20030185162A1 (en) * 2002-03-28 2003-10-02 General Motors Corporation Method and system for dynamically determining sleep cycle values in a quiescent mobile vehicle
EP1499144A1 (fr) * 2003-07-18 2005-01-19 Kabushiki Kaisha Toshiba Terminal de communication mobile et son procédé de réception discontinu

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAO ZHENG ET AL: "PMAC: An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks", PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, 2005. PROCEEDINGS. 19TH IEEE INTERNATIONAL DENVER, CO, USA 04-08 APRIL 2005, PISCATAWAY, NJ, USA,IEEE, 4 April 2005 (2005-04-04), pages 237a - 237a, XP010785829, ISBN: 0-7695-2312-9 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2450167A (en) * 2007-06-18 2008-12-17 Nec Corp Discontinuous Reception In A Mobile Radio Communications Network
GB2450167B (en) * 2007-06-18 2009-07-29 Nec Corp Discontinuous Reception In A Mobile Radio Communications Network
US8089739B2 (en) 2007-10-30 2012-01-03 Agere Systems Inc. Electrostatic discharge protection circuit
WO2009100136A3 (fr) * 2008-02-04 2009-12-30 Qualcomm Incorporated Mécanisme de déclenchement approprié pour commander l’identification de nouvelle cellule dans un équipement d’utilisateur dans un mode drx
US8121632B2 (en) 2008-02-04 2012-02-21 Qualcomm Incorporated Suitable trigger mechanism to control new cell identification in UE when in DRX mode
US9693299B2 (en) 2009-11-30 2017-06-27 Nokia Technology Oy Method and apparatus for power saving operations in wireless network elements
US8654691B2 (en) 2010-11-15 2014-02-18 Blackberry Limited Managing wireless communications
WO2012065914A1 (fr) 2010-11-15 2012-05-24 Research In Motion Limited Gestion de communications sans fil
EP4297527A3 (fr) * 2010-11-15 2024-03-13 Malikie Innovations Limited Gestion de communications sans fil
US8611240B2 (en) 2010-11-15 2013-12-17 Blackberry Limited Managing wireless communications
WO2012065915A1 (fr) * 2010-11-15 2012-05-24 Research In Motion Limited Gestion de communications sans fil
US8937876B2 (en) 2010-11-15 2015-01-20 Blackberry Limited Managing communications across a wireless network
EP3573421A1 (fr) * 2010-11-15 2019-11-27 BlackBerry Limited Gestion de communications sans fil
EP3515150A1 (fr) * 2010-11-15 2019-07-24 BlackBerry Limited Gestion de communications sans fil
US9538547B2 (en) 2011-07-01 2017-01-03 Intel Corporation User equipment initiated discontinuous operation in a wireless communications network
US9713164B2 (en) 2011-07-01 2017-07-18 Intel Corporation User equipment initiated discontinuous operation in a wireless communications network
EP2727418A4 (fr) * 2011-07-01 2015-11-18 Intel Corp Équipement utilisateur et procédé pour une réception discontinue basée sur une qualité d'expérience dans des réseaux lte-a
WO2013006381A3 (fr) * 2011-07-01 2013-05-10 Intel Corporation Mode de fonctionnement discontinu déclenché dans un équipement utilisateur dans un réseau de communications sans fil
US9420533B2 (en) 2011-09-30 2016-08-16 Nokia Solutions And Networks Oy Discontinuous reception
WO2013044415A1 (fr) * 2011-09-30 2013-04-04 Nokia Siemens Networks Oy Réception discontinue
US9225759B2 (en) 2012-01-27 2015-12-29 Intel Corporation User equipment and method for discontinuous reception (DRX) mode in wireless communication networks
JP2018522439A (ja) * 2015-05-04 2018-08-09 クアルコム,インコーポレイテッド モデム処理パイプラインを管理するためのノード間協調

Similar Documents

Publication Publication Date Title
WO2007082934A1 (fr) Procédé d'adaptation dynamique de la longueur de cycle drx dans un système de radiocommunication
EP1985036B1 (fr) Procédé pour mode sommeil apériodique assisté de téléphone mobile
CN101682891B (zh) 用于配置模式定时器的方法及装置
EP2205027B1 (fr) Méthode pour l'opération de transmission/réception discontinue pour réduire la consommation d'énergie dans le système cellulaire
US20090325533A1 (en) Method for using an adaptive waiting time threshold estimation for power saving in sleep mode of an electronic device
EP1202495B1 (fr) Méthodologie de gestion de consommation d'énergie dans un réseau sans fil commandé par un maítre en mode multiplexage temporel duplex
CN1675949B (zh) 无线通信系统中终端的基于计时器的睡眠
KR101576142B1 (ko) 휴대용 단말기에서 무선랜 모듈의 전원 관리 방법 및 장치
US8693355B2 (en) Jitter buffer management for power savings in a wireless communication device
EP2468049B1 (fr) Gestionnaire de puissance et procede
CN101523963A (zh) 用于从已调度通信模式改变到未调度通信模式的方法、设备或计算机程序
JP2009206762A (ja) 通信端末装置及び受信方法
WO2013184050A1 (fr) Commande d'état de dormance rapide
JP2004165791A (ja) 複数の無線端末と通信可能な無線基地局用の装置、無線基地局と通信する無線端末、そのためのプログラムおよび方法
Zheng et al. Performance analysis of power management policies in wireless networks
Zhu et al. On supporting power-efficient streaming applications in wireless environments
Chakraborty et al. Policies for increasing throughput and decreasing power consumption in bluetooth mac
Chakraborty et al. MAC scheduling policies with reduced power consumption and bounded packet delays for centrally controlled TDD wireless networks
KR20080046837A (ko) 통신시스템에서 파워 절약 방법 및 장치
Tabrizi et al. An intelligent power save mode mechanism for IEEE 802.11 WLAN
Hwang et al. The power saving mechanism with binary exponential traffic indications in the IEEE 802.16 e/m
De Turck et al. An analytic model of IEEE 802.16 e sleep mode operation with correlated traffic
JP2006042322A (ja) ネットワーク内の通信局のエネルギー消費を最適化する方法および通信局
Liu et al. A counter-driven adaptive sleep mode scheme for 802.16 e networks
WO2010028693A1 (fr) Mode d'économie d'énergie amélioré pour station mobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07704008

Country of ref document: EP

Kind code of ref document: A1