[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007080925A1 - Optical pickup device and information processor provided with such optical pickup device - Google Patents

Optical pickup device and information processor provided with such optical pickup device Download PDF

Info

Publication number
WO2007080925A1
WO2007080925A1 PCT/JP2007/050245 JP2007050245W WO2007080925A1 WO 2007080925 A1 WO2007080925 A1 WO 2007080925A1 JP 2007050245 W JP2007050245 W JP 2007050245W WO 2007080925 A1 WO2007080925 A1 WO 2007080925A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light source
recording layer
pickup device
optical path
Prior art date
Application number
PCT/JP2007/050245
Other languages
French (fr)
Japanese (ja)
Inventor
Kouretsu Boku
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007080925A1 publication Critical patent/WO2007080925A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings

Definitions

  • the present invention relates to an optical pickup device and an information processing device including the optical pickup device.
  • the present invention relates to an optical pickup device and an information processing device including the optical pickup device. More specifically, the present invention is for recording information or reproducing information by emitting laser light of infrared to blue wavelength to an optical disk such as a CD, a DVD, or a high-density optical disk.
  • the present invention relates to an optical pickup device and an optical disc device.
  • Data recorded on an optical disc is reproduced by irradiating a rotating optical disc with a relatively weak light beam of a constant light quantity and detecting reflected light modulated by the optical disc.
  • a read-only optical disc information by pits is recorded in a spiral shape in advance at the manufacturing stage of the optical disc.
  • a recording material film capable of optically recording and reproducing data Z is formed on the surface of a substrate on which tracks having spiral lands or groups are formed by a method such as vapor deposition. It is deposited.
  • the optical disc is irradiated with a light beam whose amount of light is modulated according to the data to be recorded, thereby changing the characteristics of the recording material film locally.
  • the depth of the pits, the depth of the track, and the thickness of the recording material film are smaller than the thickness of the optical disk substrate.
  • the portion of the optical disc where data is recorded constitutes a two-dimensional surface and is sometimes referred to as the “recording surface” of information.
  • the phrase “recording layer” is used instead of the phrase “recording surface”. Will be used.
  • An optical disc has at least one such recording layer.
  • One recording layer force may actually include a plurality of layers such as a phase change material layer and a reflective layer.
  • the light beam is always on the target track in the recording layer. It is necessary to be in a predetermined focusing state. For this purpose, “focus control” and “tracking control” are required. “Focus control” controls the position of the objective lens in the normal direction of the recording layer (hereinafter referred to as “the depth direction of the substrate”) so that the focal position of the light beam is always located on the recording layer. That is. On the other hand, the tracking control is to control the position of the objective lens in the radial direction of the optical disc (hereinafter referred to as “disc radial direction”) so that the spot of the light beam is located on a predetermined track.
  • DVD Digital Versatile Disc
  • ROM Digital Versatile Disc
  • DVD-RAM DVD-RW
  • DVD-R DVD + RW
  • DVD + R etc.
  • CD Compact Disc
  • DVDs Digital versatile discs
  • CDs compact discs
  • optical disc optical disc
  • the wavelength of the laser beam may be shortened.
  • optical disks have been put into practical use, laser light has been shortened, and larger capacity optical disks have been developed. Following CDs using infrared laser light with a wavelength of 780 nm, DVDs using red laser light with a wavelength of 650 ⁇ m and high-density optical disks using blue laser light with a wavelength of 405 nm have been developed.
  • optical discs have various cross-sectional structures that differ depending on the type. For example, the physical structure of the track, the track pitch, and the depth of the recording layer (the optical incident side surface force of the optical disc is also the distance to the recording layer) are different. In this way, the physical structure is different.
  • Several types of optical disc power In order to read or write data properly, an optical system with a numerical aperture (NA) corresponding to the type of optical disc is used to irradiate the recording layer of the optical disc with an appropriate wavelength. There is a need to.
  • NA numerical aperture
  • FIG. 1 is a perspective view schematically showing an optical disc 200.
  • FIG. 1 shows an objective lens (focusing lens) 115 and a laser beam 22 focused by the objective lens 115.
  • the laser beam 22 is applied to the recording layer through the light incident surface of the optical disc 200, and forms a light beam spot on the recording layer.
  • FIGS. 2 (a), (b), and (c) schematically show cross sections of CD, DVD, and BD, respectively.
  • Each optical disk shown in FIG. 2 has a front surface (light incident side surface) 200a and a back surface (label surface) 200b, and has at least one recording layer 214 therebetween.
  • a label layer 218 including titles and graphics prints is provided on the back surface 200b of the optical disk.
  • Both optical discs have a total thickness of 1.2 mm and a diameter of 12 cm.
  • the concavo-convex structure such as pits and groups is not shown in the drawing, and the description of the reflective layer is also omitted.
  • the CD recording layer 214 is located at a depth of about 1.1 mm from the surface 200a force.
  • the numerical aperture (NA) of the objective lens used for focusing the laser beam is about 0.5.
  • the DVD recording layer 214 is located at a depth of about 0.6 mm from the surface 200a force.
  • two substrates with a thickness of approximately 0.6 mm are bonded together via an adhesive layer.
  • the distances from the surface 2OOa to the recording layer 214 are about 0.57 mm and about 0.63 mm, respectively, which are close to each other. Therefore, only one recording layer 2 14 is shown in the drawing regardless of the number of recording layers 214.
  • NA numerical aperture
  • the BD has a thin cover layer (100 m in thickness) on the surface 200a side.
  • the recording layer 214 is located at a depth of about 0.1 mm from the surface 200a.
  • the blue (blue-violet) laser beam (wavelength: 405 nm) so that the focal point is located on the recording layer 214.
  • the numerical aperture (NA) of the objective lens used for focusing the laser beam is 0.85.
  • the recording layer depth is 0.1 mm, and the recording capacity per layer is increased to about 5 times the recording capacity of conventional DVD (25 GB).
  • BD falls into this type of high density optical disc
  • the depth of the recording layer is 0.6 mm, which is the same as that of a conventional DVD.
  • the recording capacity per layer has been increased to 3 times (15GB) for DVDs for read-only media and 4 times (20GB) for DVDs for rewritable media.
  • HD—DVD corresponds to this type of high density optical disc.
  • the second type of high-density optical disk is similar to a DVD, so there are few changes in the conventional disk manufacturing facilities. Therefore, the second type of high density optical disk is more advantageous than the first type of high density optical disk from the viewpoint of disk manufacturing cost.
  • the first type of high-density optical disk is larger than the second type of high-density optical disk. Also, due to the increase in the number of recording layers, if the number of stacked layers is the same, the recording capacity difference of the first type optical disc is larger than that of the second type optical disc.
  • the first high-density optical disk with a large recording capacity is used for long-time HDTV broadcast recording
  • the second high-density optical disk with low disk manufacturing cost is used as a read-only medium for recording movie content. It may happen that you used it.
  • FIG. 3 shows a configuration of a general optical pickup device 110.
  • the semiconductor laser light source 111 emits a coherent light beam.
  • the light beam is reflected by the beam splitter 112, converted into parallel light by the collimator lens 113, reflected by the mirror 114, transmitted through the objective lens 115, and condensed on the recording layer of the optical disc 100.
  • the collected light beam is reflected by the recording layer of the optical disc 100, reaches the beam splitter 112 through the reverse path, passes through the beam splitter 112, and enters the photodiode 118.
  • the photodiode 118 is a so-called photodetector and outputs an electrical signal based on the intensity of incident light.
  • Information recorded as a change in reflectance on the recording layer is detected as a change in the amount of reflected light incident on the photodiode 118, and data is reproduced based on the electrical signal.
  • a part of the reflected light may be reflected to the light source 111 without passing through the beam splitter 112. This phenomenon returns to the laser light source and causes light noise.
  • the return light noise is caused by the interaction between the external resonator formed by the emission surface of the semiconductor laser light source 111 and the optical disk reflection surface and the internal resonator of the semiconductor laser light source 111 itself. It is known that the return light noise increases when the optical path length from the light emitting point of the semiconductor laser light source 111 to the optical disk 100 becomes an integral multiple of the effective resonator length. Note that the effective resonator length is represented by a product nL, where L is the internal resonator length of the semiconductor laser light source 111 and n is the refractive index in the resonator.
  • the return light noise can be suppressed to a low level by superimposing a high-frequency current from a high-frequency oscillation circuit on the laser drive current to multimode the laser light.
  • a high-frequency current from a high-frequency oscillation circuit on the laser drive current to multimode the laser light.
  • the current to be superimposed is too large, new problems such as an increase in unnecessary radiation of the circuit occur, so there is a limit to the measures to superimpose the high-frequency current.
  • Patent Document 1 describes light in which the optical path length from the light emitting point of the semiconductor laser light source to the optical disk is set to a value that is not an integral multiple of the effective resonator length of the semiconductor laser light source.
  • a pickup device is disclosed. This optical pickup device is A plurality of semiconductor laser light sources with different effective resonator lengths using a common optical system are installed, and the above settings are applied to each light source. As a result, it is possible to suppress an increase in return light noise with respect to the optical path of any light source.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-148135
  • the above-mentioned two types of high-density optical discs using blue laser light having a wavelength of 405 nm have a difference in distance to the recording layer of about 0.5 mm, which is greatly different, and therefore their optical path lengths are also different. Therefore, with the conventional technology, it is difficult to suppress an increase in the return light noise when using the other high-density optical disk, but it is difficult to suppress an increase in the return light noise when using the other high-density optical disk. Such inadequate performance cannot be applied to both high-density optical disks.
  • An object of the present invention is to provide an optical pickup device for recording / reproducing information using a common laser light source for a plurality of types of recording media having different distances to the recording layer. Is to keep the return light noise low.
  • the optical pickup device reads and writes data to a plurality of types of information recording media having different distances to the surface force recording layer on the light incident side using a common laser light source. Used to do at least one.
  • the optical pickup device includes a laser light source that emits a light beam, and an optical system that collects the light beam on an information recording medium and detects reflected light from the information recording medium, and the plurality of types of information recording media For each of the above, the optical path length from the light emitting point of the laser light source to the recording layer is set to a power value that is not an integral multiple of the effective resonator length of the laser light source.
  • the effective resonator length of the laser light source is represented by the product of the resonator length L and the refractive index n in the resonator, and among the plurality of types of information recording media, the distance to the recording layer is the shortest.
  • the distance from one recording medium to the recording layer is the longest, and for the second information recording medium, the theoretical optical path length from the light emitting point to the recording layer of the first recording medium is L1, and from the light emitting point to the first 2
  • the surface blur amount of the first recording medium is dl
  • the surface blur amount of the second recording medium is d2
  • the optical system includes an optical element that can be inserted into and removed from the optical path of the light beam, and the optical element is operated according to an operation performed on the first recording medium and the second recording medium.
  • the optical path length from the light emitting point of the laser light source to the recording layer may be set on the optical path of the light beam.
  • the optical system has an optical element that can be inserted into and removed from the optical path of the light beam, and the optical element is arranged on the optical path of the light beam according to the distance to the recording layer, The light emission point of the laser light source The optical path length to the recording layer may be set.
  • the effective resonator length of the laser light source is represented by the product of the resonator length L and the refractive index n in the resonator, and the theoretical optical path length from the light emitting point to the recording layer of the recording medium is expressed as L3 And when the surface deflection amount of the recording medium is d3, m X nL + d3 ⁇ L3 (m + 1) X nL d3 (m: negative, any integer) is set to be satisfied.
  • the optical system includes a condensing element that condenses the light beam on a recording layer of the information recording medium, and the optical element has a numerical aperture of the condensing element according to the type of the optical disc. (NA) may be changed.
  • the laser light source may emit a light beam that emits light in a blue wavelength region.
  • Each of the plurality of types of information recording media has one or a plurality of recording layers, and the surface force has a different distance to the first recording layer, from the emission point of the laser light source.
  • the optical path length to the first recording layer may be set to a value that is an integral multiple of the effective resonator length of the laser light source.
  • An information processing apparatus is based on any one of the above-described optical pickup devices further including a light detector that detects reflected light from the information recording medium, and the detected reflected light.
  • a signal processing circuit for generating at least one of a reproduction signal and a servo signal is provided.
  • the optical path length from the light emitting point of the light source to the recording layer is set to a value that is not an integral multiple of the effective resonator length of the light source.
  • FIG. 1 is a perspective view schematically showing an optical disc 200.
  • FIG. 1 is a perspective view schematically showing an optical disc 200.
  • FIG. 2 (a), (b), and (c) are schematic views of cross sections of CD, DVD, and BD, respectively.
  • FIG. 3 is a diagram showing a configuration of a general optical pickup device 110.
  • FIG. 4 is a diagram showing the relationship between the optical path lengths L1 and L2 from the laser light source 1 to the recording layers of two types of optical discs, and the effective resonator length nL of the laser light source 1.
  • FIG. 4 is a diagram showing the relationship between the optical path lengths L1 and L2 from the laser light source 1 to the recording layers of two types of optical discs, and the effective resonator length nL of the laser light source 1.
  • FIG. 5 is a diagram showing a functional block configuration of the optical disc apparatus 14 according to Embodiment 1.
  • FIG. 6 (a) is a diagram showing an optical path when a light beam is focused on the recording layer of the optical disc 101 having the shortest distance to the recording layer, and (b) is an optical disc having the longest distance to the recording layer.
  • FIG. 10 is a diagram showing an optical path when a light beam is condensed on a recording layer 102.
  • FIG. 7 (a) and (b) are diagrams showing the relationship between the optical path length and the resonator of the laser light source in the optical pickup provided with the hologram lens 22.
  • FIG. 8 is a diagram showing the shape of the hologram lens 22 in view of the optical axis direction force.
  • FIG. 9 is a cross-sectional view of hologram lens 22 by a plane including the optical axis.
  • FIG. 10 (a) and (b) are diagrams showing the relationship between the optical path length and the resonator of the laser light source in the optical pick-up provided with the intensity adjusting element 23 in addition to the first modification.
  • FIG. 11 is a diagram showing a configuration of an optical pickup device 23 according to Embodiment 2 having an optical path length correcting element 15. Explanation of symbols
  • FIG. 4 shows the relationship between the optical path lengths L1 and L2 from the laser light source 1 to the recording layers of the two types of optical disks, and the effective resonator length nL of the laser light source 1.
  • the two types of optical discs are BD and HD—DVD, for example.
  • the light source power of the laser light source 1 is such that the optical path length to the recording layer of each optical disc does not become an integral multiple of the effective resonator length nL of the laser light source 1.
  • the purpose is to adjust the optical system of the backup device.
  • Optical path length to the recording layer of the optical disk means an optical path length that also considers the surface blur of the optical disk, which is not limited to L1 and L2 described above. .
  • the optical disc may cause surface blur when rotated due to the warp of the disc. Due to such surface blurring, the actual optical path length of the laser light source 1 to the recording layer of the optical disc varies slightly from L1 and L2. On the other hand, surface blurring of a certain amount or less is normally allowed according to the standards. In consideration of such surface blurring, the “optical path length to the recording layer of the optical disk” is determined as an amount having an allowable amount of surface blurring centering on L1 and L2 described above.
  • Figure 4 shows the optical path length range A for BD and the optical path length range B for HD—DVD, taking into account surface blurring! When BD and HD—DVD are loaded, the position of the recording layer will fall within the ranges A and B shown.
  • the present embodiment is configured so that the optical path length from the light source 1 to the recording layer does not always become an integral multiple of the effective resonator length nL of the laser light source in consideration of the surface deflection of each type of optical disk. ing.
  • the effective resonator length nL is, for example, 2 to 4 mm.
  • the difference between L1 and L2 is about 0.5mm.
  • the optical disc apparatus can write data to a plurality of types of optical discs using a common laser light source, or read the written data.
  • FIG. 5 shows a functional block configuration of the optical disc apparatus 14 according to the present embodiment.
  • the optical disk device 14 includes an optical pickup device 13, a signal processing circuit 9, a servo control circuit 10, a spindle motor 11, and a traverse motor 12.
  • FIG. 5 shows the optical disc 100, this is for convenience of explanation and is not a constituent element of the optical disc device 14.
  • the optical pickup device 13 emits a light beam to the optical disc 100 to detect the reflected light from the optical disc 100, and outputs a light amount signal corresponding to the detection position of the reflected light and the detected light amount.
  • the signal processing circuit 9 generates a focus error (FE) signal indicating the focus state of the light beam on the optical disc 100 according to the light amount signal output from the optical pickup device 13, and the focus position of the light beam and the optical disc 100. Generates and outputs a tracking error (TE) signal that indicates the positional relationship with the track.
  • the FE signal and TE signal are collectively called servo signals.
  • the servo control circuit 10 generates a plurality of types of drive signals based on these signals.
  • the type of drive signal differs depending on the output destination.
  • the output destination is the actuator 6 of the spindle motor 11, the traverse motor 12 and the optical pickup device 13.
  • the spindle motor 11 rotates the optical disc 100 at a rotational speed corresponding to the recording speed Z reproduction speed based on the drive signal.
  • the traverse motor 12 moves the optical pickup device 13 in the radial direction of the optical disc 100 to the target recording position or reproduction position based on the drive signal.
  • the actuator 6 adjusts the position of the objective lens 5 based on the drive signal.
  • the focal point of the light beam emitted to the optical disc 100 is controlled so as not to deviate from the recording layer.
  • the signal processing circuit 9 In a state where the focus of the light beam is controlled so as not to deviate from the recording layer force, the signal processing circuit 9 outputs a reproduction signal based on the light amount signal.
  • the reproduction signal indicates data written on the optical disc 100.
  • reading of data from the optical disc 100 is realized.
  • data can be written to the optical disc 100 by making the optical power of the light beam larger than that during reproduction.
  • the optical pickup device 13 includes a light source 1, a beam splitter 2, a collimating lens 3, a mirror 4, an objective lens 5, an activator 6, a cylindrical lens 7, and a photodiode 8.
  • the light source 1 is a GaN-based semiconductor laser light source that emits a blue laser beam (light beam) having a wavelength of 405 nm, and is used for reading and writing data on the recording layer of the optical disc 100. Emits coherent light.
  • Beam splitter 2 is an optical beam emitted by light source 1. Reflect the light toward the collimating lens 3. The collimating lens 3 converts the light beam emitted from the light source 1 into parallel light. The mirror 4 reflects the incident light beam and directs the reflected light beam to the optical disc 100.
  • the objective lens 5 focuses the light beam on the recording layer of the optical disc 100.
  • the actuator 6 changes the position of the objective lens 5 in a direction perpendicular to the optical disc 100 or in a direction parallel to the optical disc 100 according to the level of the applied drive signal, so that the light is projected onto the recording layer of the optical disc 100. Focus the beam.
  • the cylindrical lens 7 causes the photodiode 8 to emit light.
  • the photodiode 8 receives the light beam reflected by the recording layer of the optical disc 100 and converts it into an electrical signal (light amount signal) according to the light amount.
  • the photodiode 8 may include a plurality of light receiving elements.
  • the signal processing circuit 9 that receives the light amount signal generates an FE signal and a TE signal using information on which light receiving element force is output as the light amount signal.
  • the optical pickup device 13 can read and write data on a plurality of types of optical discs using blue laser light having a wavelength of 405 nm.
  • the recording layer depths of multiple types of optical discs are different from each other.
  • the configuration of the optical pickup device 13 will be described by taking the optical disc with the shortest distance to the recording layer and the optical disc with the longest distance as examples.
  • FIG. 6 (a) shows an optical path when a light beam is collected on the recording layer of the optical disc 101 having the shortest distance to the recording layer
  • FIG. 6 (b) shows the longest distance to the recording layer.
  • the optical path when a light beam is emitted to the recording layer of the optical disc 102 is shown. Even if there is a deviation in Fig. 6 (a) and (b), the beam splitter mirror is omitted for simplification.
  • the optical disk 101 is, for example, a BD whose optical incident surface force is 0.1 mm from the recording layer.
  • the physical structure is greatly changed from that of the conventional DVD, and a structure for minimizing the influence of the improvement in the recording density is adopted.
  • the numerical aperture (NA) of the objective lens 5 required for the optical disk 101 is 0.85.
  • the spot diameter of the laser beam that determines the information recording density is inversely proportional to the numerical aperture (NA) of the objective lens. Yotsu Therefore, higher density has been realized using an objective lens with a relatively large numerical aperture (NA) of 0.85.
  • NA numerical aperture
  • the numerical aperture (NA) of the objective lens used for DVD is 0.6.
  • NA numerical aperture
  • coma aberration generated in the optical spot increases in proportion to the cube of the numerical aperture (NA). This means that the tolerance (tilt margin) for the angle deviation between the optical disk and the optical axis of the laser beam is reduced.
  • the coma aberration increases in proportion to the distance to the recording layer of the optical disc. Therefore, by reducing the distance by 1/6 from 0.6mm to 0.1mm of DVD, the amount of coma aberration can be reduced, and a tilt margin comparable to that of a conventional DVD can be secured.
  • the optical disk 102 is, for example, an HD-DVD whose optical incident surface force is 0.6 mm from the recording layer.
  • the optical disk 102 is configured so that the physical structure approximates that of a conventional DVD, and the capacity is increased only by shortening the wavelength of the laser beam.
  • the numerical aperture (NA) of the objective lens required for the optical disc 101 is at least 0.65.
  • the pickup device 13 of the present embodiment uses a common optical system for the two types of optical disks 101 and 102 having different distances to the recording layer. Therefore, the objective lens 5 having a numerical aperture (NA) of 0.85 is also used for the optical disc 102.
  • the resolution is higher for an objective lens with a numerical aperture (NA) of 0.65 than for an objective lens with a numerical aperture (NA) of 0.65, so the latter can be achieved by applying a technique such as limiting the numerical aperture (NA) to 0.65 or equivalent.
  • the hologram it is also possible to use the hologram to place the focal points of 0th order light and ⁇ 1st order light on the recording layers of the two types of optical disks 101 and 102. An example of using such a hologram will be described later with reference to FIGS.
  • a common semiconductor laser light source 1 is used.
  • the resonator length of this light source 1 is L, and the refractive index in the resonator is n.
  • the optical path length from the light source 1 to the recording layer of the optical disc 101 is L1.
  • the optical path length from the light source 1 to the recording layer of the optical disk 102 is L2.
  • the optical path lengths LI and L2 are values calculated in consideration of the refractive index of each medium on the optical path.
  • the ⁇ optical path length '' refers to the distance that light actually feels rather than the physical distance from the laser emission point to the recording layer (the distance that is determined in consideration of the difficulty of light traveling due to the medium on the optical path).
  • the wavelength of light is lZn, so if the physical distance of this medium is D, the optical path length is nD.
  • the optical path length corresponding to the maximum surface blur amount of the optical disc 101 is dl
  • the optical path length corresponding to the maximum surface blur amount of the optical disc 102 is d2.
  • the maximum surface blur amount is, for example, the maximum surface blur amount allowed in the standard. Since the refractive index of air is 1, in the normal usage mode of the optical pickup device 13 (that is, usage in the atmosphere), the values of the optical path lengths dl and d2 described above are the maximum surface blur value. The same. In this case, for example, the value of dl is 0.3 mm, and as a result, the value of d2 is 0.3 mm as a result of tilt control described later.
  • Equation 1 specifies that ⁇ dl range force m X nL to (m + 1) X nL is within the range from the optical path length L1! / And then.
  • Equation 1 specifies that the range A does not extend over a position that is an integral multiple of the effective resonator length nL.
  • the first equation of Equation 1 means that the end position (LI-dl) of the range A on the light source 1 side is larger than the position p that is m times the effective resonator length nL of the light source 1. is doing.
  • the optical path length L1 is defined for the optical disc 101 having the shortest distance to the recording layer
  • the optical path length L2 is defined for the optical disc 102 having the longest distance to the recording layer. Therefore, it is LKL2.
  • the magnitude relationship between the optical path lengths dl and d2 is also examined. These can be regarded as the tilt margin of the optical discs 101 and 102. As described above, the optical disc 101 has the same tilt margin as a conventional DVD, and the optical disc 102 has the same distance from the light incident surface of the optical disc to the recording layer as the conventional DVD. By applying light with a large numerical aperture (NA) and short wavelengths, it is affected by aberrations, and has a tilt margin that approximates that of a conventional DVD by performing tilt control. Therefore, the optical path lengths dl and d2 can be considered to be substantially the same as described above.
  • NA numerical aperture
  • Equation 1 According to the magnitude relationship between the optical path lengths L1 and L2 and the magnitude relation between the optical path lengths dl and d2, it can be said that (LI-dl) appearing in Equation 1 is smaller than (L2-d2) appearing in Equation 2. Therefore, if the first equation of Equation 1 is satisfied: m X nL ⁇ Ll-dl, it can be said that the Equation 1 of Equation 2 is also satisfied. In the same way, if the second equation of Equation 2: L2 + d2 ⁇ (m + 1) X nL is satisfied, the second equation of Equation 2 is also satisfied.
  • the optical path length of the optical pickup device 13 is set so as to satisfy Equation 3, In both cases of condensing and condensing on the optical disc 102, the optical path length from the laser emission point to the recording layer does not become an integral multiple of the effective resonator length nL of the laser light source. Therefore, no matter which optical disk is used, it is possible to avoid the return light noise of the laser light from becoming a peak, and to suppress the deterioration of the signal characteristics.
  • the optical disk 101 having the shortest distance to the recording layer and the optical disk 102 having the longest distance have been described. If the relationship of number 3 is satisfied for these optical discs, any two of them can be loaded even when three or more types of optical discs are loaded. The relationship of number 3 is satisfied with respect to the optical disc. Therefore, the above-described effects can be obtained regardless of which optical disk is used.
  • FIGS. 7A and 7B show the relationship between the optical path length in the optical pickup provided with the hologram lens 22 and the resonator of the laser light source.
  • the configuration shown in FIG. 7 is different from the configuration shown in FIG. 6 in that the hologram lens 22 is provided. This difference will be described below.
  • the hologram lens 22 focuses the 0th-order diffracted light (transmitted light) of the light beam on the recording layer of the optical disc 101 as shown by the solid line in FIG. 7 (a), and as shown by the solid line in FIG. 7 (b).
  • the first-order diffracted light is focused on the recording layer of the optical disk 102.
  • a grating pattern is provided in the central area 22a including the optical axis, and no grating pattern is provided in the peripheral area 22b positioned around the central area 22a.
  • the light beam incident on the central region 22a is diffracted and incident on the objective lens 5 as ⁇ first-order diffracted light. Then, the light beam is focused on the position of the recording layer of the optical disc 102.
  • the light beam incident on the peripheral region 22b is transmitted as it is and enters the objective lens 5 as 0th-order diffracted light. Then, the light beam is focused on the position of the recording layer of the optical disc 101.
  • the luminous point power of the laser light source 1 The optical path length L3 and L4 force to the recording layer of each optical disk
  • the optical system of the optical pickup device may be adjusted so that it does not become an integral multiple of the effective resonator length nL of the laser light source 1.
  • the definition of the optical path length is as described above.
  • the optical path lengths L1 and L2 in Fig. 6 should be read as L3 and L4, respectively, and adjusted so that the relationship satisfying Equation 3 above is satisfied.
  • the hologram lens 22 is formed on a transparent substrate.
  • FIG. 8 shows the shape of the hologram lens 22 as viewed from the optical axis direction.
  • Fig. 9 shows a hologram lens with a plane including the optical axis. 22 shows a cross section.
  • the lattice pattern of the central region 22a is concentric when viewed in the direction of the optical axis, and is formed only in a region having a diameter smaller than the opening determined by the objective lens 5. In addition, no lattice pattern is formed in the peripheral region 22b.
  • the diffraction efficiency of the + first-order diffracted light of the hologram lens 22 is less than 100%, and the 0th-order diffracted light (transmitted light) of the light beam is designed to have sufficient intensity.
  • the lattice pattern 22a of the hologram lens 22 is formed into an uneven shape as shown in FIG. 9, the height h of the unevenness of the lattice pattern 22a is set as h ⁇ ⁇ ( ⁇ -1).
  • is the refractive index of the transparent substrate of the hologram lens.
  • the hologram lens 22 in which the 0th-order diffracted light has sufficient intensity at any position of the hologram lens 22 is realized by making the amplitude of the phase change given to the light beam by the grating pattern smaller than 2 ⁇ . can do.
  • the side lobes of the condensed beam formed on the optical disc 101 or 102 can be relatively suppressed.
  • the side lobe is an unnecessary amount of light due to high-order diffracted light or the like. Side grooves cause deterioration of recorded pit shape and playback signal.
  • the phase of the 0th-order diffracted light (transmitted light) by the grating pattern of the hologram lens 22 is an average value of the phase modulation amount given by the grating pattern.
  • the focusing performance of the objective lens 5 can be improved by matching the phase of the light beam transmitted through the V ⁇ peripheral region 22b without the grating pattern to approximately the same as the 0th-order diffracted light by the grating pattern 22a.
  • the grating pattern of the hologram lens 22 is a relief type, as shown in FIG. 9, the height of the surface of the peripheral region 22b without the grating pattern is adjusted to the average level of the irregularities of the grating pattern.
  • the hologram lens 22 can be provided directly on the surface of the objective lens 5 on the light source 1 side, for example, with the force described as being provided as one optical element.
  • Figs. 10 (a) and 10 (b) show an optical pin provided with an intensity adjusting element 23 in addition to the first modification. The relationship between the optical path length in the backup and the resonator of the laser light source is shown.
  • the intensity adjusting element 23 is provided so that it can be inserted into and removed from the optical path by a drive mechanism (not shown), and the light transmittance is changed to keep the quantum noise of the light beam emitted from the light source 1 low. It is an optical element that changes the optical power in a state. For example, the intensity adjusting element 23 is retracted to a position that does not exist on the optical path during the recording operation with respect to the optical disk 101 or 102, and is inserted into the optical path during the reproducing operation.
  • the reason for providing the intensity adjusting element 23 is to realize an accurate operation regardless of whether it is a recording operation or a reproducing operation.
  • the light emission power of the laser light source differs greatly between the recording operation and the reproduction operation. Needless to say, the light emission power during recording is greater than the light emission power during playback. However, when the emission power level of the laser light source is lowered, the laser oscillation can become unstable. This is particularly noticeable for blue laser light sources. Therefore, by inserting / removing the intensity adjusting element 23 on the optical path, it is possible to stably secure the light amount necessary for the recording operation and the reproducing operation while keeping the light emission power level of the laser light source constant.
  • the optical path length when the intensity adjusting element 23 exists on the optical path is different from the optical path length when it does not exist.
  • the optical path length L5 from the light emitting point of the laser light source 1 to the recording layer of the optical disc 101 changes depending on whether or not the intensity adjusting element 23 exists. Therefore, in any case, the optical path length from the light emitting point of the laser light source 1 to the recording layer of each optical disk is not an integral multiple of the effective resonator length nL of the laser light source 1 so that the optical system of the optical pickup device If you adjust.
  • the optical path lengths L3 and L4 in Fig. 7 should be read as L5 and L6, respectively. Since the optical path lengths L5 and L6 both change depending on the presence or absence of the intensity adjusting element 23, the optical path lengths L5 and L6 may be adjusted so as to satisfy the above-described equation 3 in all cases.
  • Embodiment 2 of the present invention will be described.
  • FIG. 11 shows a configuration of the optical pickup device 23 according to the present embodiment.
  • the optical pickup device 23 according to the present embodiment is different from the optical pickup device 13 according to the first embodiment with respect to the optical path length.
  • the correction element 15 is added.
  • the optical pickup device 23 is the same as the optical pickup device 13 except for the optical path length correcting element 15. Therefore, in the following, the optical path length correction element 15 will be described in detail, and the description of other configurations and operations will be omitted.
  • optical disk device can be manufactured by using the optical pickup device 23 according to the present embodiment instead of the optical pickup device 13 of FIG.
  • the configuration and operation of this optical disc apparatus have already been described with reference to FIG.
  • the optical path length correction element 15 is a parallel plate having a refractive index larger than 1, and can be taken in and out of the optical path of the light beam. In the present embodiment, it is arranged so as to be insertable / removable on the optical path between the mirror 4 and the actuator 6. In order to insert / remove the optical path length correction element 15, an actuator (not shown) is separately provided. This actuator moves the optical path length correction element 15 based on, for example, a drive signal from the servo control circuit 10 of FIG.
  • the refractive index of the optical path length correction element 15 is n and the thickness in the optical axis direction is h.
  • the optical path length correcting element 15 is inserted on the optical path, the optical path length is increased by (n ⁇ l) h as compared with the case where the optical path force is also removed. This makes it possible to adjust the optical path length according to whether or not the distance to the recording layer of the optical disc is the shortest.
  • the optical path length correction element 15 is inserted into the optical path, and the optical path length is extended.
  • the optical path length correction element 15 is removed from the optical path. If the optical path length to the recording layer of the optical disk 101 extended by the insertion of the optical path length correction element 15 is approximately equal to the optical path length to the recording layer of the optical disk 102 when the optical path length correction element 15 is not present in the optical path.
  • mX nL + d and L2 (m + 1) X nL-d need only be satisfied.
  • the cavity length of the semiconductor laser light source is L
  • the refractive index in the cavity is n
  • the laser emission point force when focusing on the optical disk is L3
  • the optical path length to the recording layer is L3. If the amount of runout is d3, the optical path length should be adjusted so that the following formula 4 is satisfied when focusing on any disk. [0114] (Equation 4)
  • Equation 4 is an arrangement of Equation 3 by replacing L1 and L2 with L3 and substituting dl and d2 with d3 in Equation 3.
  • the optical path length of the optical pickup device 23 is set so as to satisfy the equation 4, it can be focused on the optical disc 101 or the optical disc 102.
  • the optical path length from the laser emission point to the recording layer does not become an integral multiple of the effective resonator length nL of the laser light source. Therefore, regardless of which optical disk is used, it is possible to avoid the peak of the return light noise of the laser light and to suppress the deterioration of the signal characteristics.
  • the optical pickup device 23 has a function of changing the aperture so that the optical path length correction element changes the numerical aperture (NA) of the objective lens in accordance with the type of the optical disk. May be.
  • the function of the intensity adjusting element 23 described in the second modification according to the first embodiment may be given to the optical path length correcting element 15 according to the present embodiment.
  • the optical path length is adjusted using the optical path length correction element 15.
  • the effective resonator length nL of the laser light source may be adjusted to be variable so that the optical path length does not become an integral multiple of the effective resonator length nL of the laser light source.
  • two curved high-reflectivity mirrors with curvature may be provided in the laser light source so as to face each other, and the number of times of laser light reflection between the two high-reflectivity mirrors may be changed. By changing the number of reflections, the resonator length can be arbitrarily extended or shortened.
  • 2002-171015 discloses a laser light source having such a variable effective resonator length. Note that the optical path length correction element 15 may be omitted when the effective resonator length is variable, but the optical path length correction element 15 may be provided to finely adjust the optical path length.
  • an optical disk having a distance to the recording layer of 0.1 mm and an optical disk having a distance of 0.6 mm are taken as examples, but this is an example.
  • the present invention can also be applied to optical disks having other distances.
  • the strength adjusting element 23 described in the second modification of the first embodiment can be used.
  • the optical pickup device may further include other laser light sources having different wavelengths. According to this configuration, it is possible to record and reproduce information on a wider variety of optical disks.
  • An optical disk is an example of an information recording medium, and may be a card or the like that can optically read and write data.
  • the present invention it is possible to manufacture a highly reliable optical pickup device that suppresses deterioration of signal characteristics due to laser return light noise during recording and reproduction. Furthermore, by incorporating such an optical pickup device, an optical disc device having highly reliable recording performance and reproducing performance can also be manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

In an optical pickup device wherein information is recorded and reproduced by commonly using a laser light source for a plurality of kinds of recording media having different distances to recording layers, returning light noise is suppressed for any of the recording media. The optical pickup device is used for at least reading or writing data by using the common laser light source from or on a plurality of kinds of information recording media having different distances between the surface on a light incoming side and the recording layers. The optical pickup device is provided with the laser beam light source for emitting an optical beam, and an optical system for collecting the optical beam on the information recording media and detecting the reflecting light from the information recording media. In the optical pickup device, an optical path length from a laser light source emitting point to a recording layer is set so as not to be an integral multiple of the effective resonator length of the laser light source in each of the information recording media.

Description

明 細 書  Specification
光ピックアップ装置および当該光ピックアップ装置を備えた情報処理装置 技術分野  TECHNICAL FIELD The present invention relates to an optical pickup device and an information processing device including the optical pickup device.
[0001] 本発明は、光ピックアップ装置および当該光ピックアップ装置を備えた情報処理装 置に関する。より具体的には、本発明は、 CDや DVD、高密度光ディスクなどの光デ イスクに対して赤外から青色の波長のレーザ光を放射して情報を記録し、または情報 を再生するための光ピックアップ装置および光ディスク装置に関する。  TECHNICAL FIELD [0001] The present invention relates to an optical pickup device and an information processing device including the optical pickup device. More specifically, the present invention is for recording information or reproducing information by emitting laser light of infrared to blue wavelength to an optical disk such as a CD, a DVD, or a high-density optical disk. The present invention relates to an optical pickup device and an optical disc device.
背景技術  Background art
[0002] 光ディスクに記録されているデータは、比較的弱い一定の光量の光ビームを回転 する光ディスクに照射し、光ディスクによって変調された反射光を検出することによつ て再生される。  [0002] Data recorded on an optical disc is reproduced by irradiating a rotating optical disc with a relatively weak light beam of a constant light quantity and detecting reflected light modulated by the optical disc.
[0003] 再生専用の光ディスクには、光ディスクの製造段階でピットによる情報が予めスパイ ラル状に記録されている。これに対して、書き換え可能な光ディスクでは、スパイラル 状のランドまたはグループを有するトラックが形成された基材表面に、光学的にデー タの記録 Z再生が可能な記録材料膜が蒸着等の方法によって堆積されて 、る。書き 換え可能な光ディスクにデータを記録する場合は、記録すべきデータに応じて光量 を変調した光ビームを光ディスクに照射し、それによつて記録材料膜の特性を局所的 に変化させることによってデータの書き込みを行う。  [0003] On a read-only optical disc, information by pits is recorded in a spiral shape in advance at the manufacturing stage of the optical disc. On the other hand, in a rewritable optical disc, a recording material film capable of optically recording and reproducing data Z is formed on the surface of a substrate on which tracks having spiral lands or groups are formed by a method such as vapor deposition. It is deposited. When recording data on a rewritable optical disc, the optical disc is irradiated with a light beam whose amount of light is modulated according to the data to be recorded, thereby changing the characteristics of the recording material film locally. Write.
[0004] なお、ピットの深さ、トラックの深さ、および記録材料膜の厚さは、光ディスク基材の 厚さに比べて小さい。このため、光ディスクにおいてデータが記録されている部分は 、 2次元的な面を構成しており、情報の「記録面」と称される場合がある。本明細書で は、このような記録面が深さ方向にも物理的な大きさを有していることを考慮し、「記 録面」の語句を用いる代わりに、「記録層」の語句を用いることとする。光ディスクは、 このような記録層を少なくとも 1つ有している。なお、 1つの記録層力 現実には、相変 化材料層や反射層などの複数の層を含んで 、てもよ 、。  [0004] The depth of the pits, the depth of the track, and the thickness of the recording material film are smaller than the thickness of the optical disk substrate. For this reason, the portion of the optical disc where data is recorded constitutes a two-dimensional surface and is sometimes referred to as the “recording surface” of information. In this specification, in consideration of the fact that such a recording surface also has a physical size in the depth direction, the phrase “recording layer” is used instead of the phrase “recording surface”. Will be used. An optical disc has at least one such recording layer. One recording layer force may actually include a plurality of layers such as a phase change material layer and a reflective layer.
[0005] 記録可能な光ディスクにデータを記録するとき、または、このような光ディスクに記録 されているデータを再生するとき、光ビームが記録層における目標トラック上で常に 所定の集束状態となる必要がある。このためには、「フォーカス制御」および「トラツキ ング制御」が必要となる。「フォーカス制御」は、光ビームの焦点の位置が常に記録層 上に位置するように対物レンズの位置を記録層の法線方向(以下、「基板の深さ方向 」と称する。)に制御することである。一方、トラッキング制御とは、光ビームのスポット が所定のトラック上に位置するように対物レンズの位置を光ディスクの半径方向(以下 、「ディスク径方向」と称する。)に制御することである。 [0005] When data is recorded on a recordable optical disk or when data recorded on such an optical disk is reproduced, the light beam is always on the target track in the recording layer. It is necessary to be in a predetermined focusing state. For this purpose, “focus control” and “tracking control” are required. “Focus control” controls the position of the objective lens in the normal direction of the recording layer (hereinafter referred to as “the depth direction of the substrate”) so that the focal position of the light beam is always located on the recording layer. That is. On the other hand, the tracking control is to control the position of the objective lens in the radial direction of the optical disc (hereinafter referred to as “disc radial direction”) so that the spot of the light beam is located on a predetermined track.
[0006] 従来、高密度 *大容量の光ディスクとして、 DVD (Digital Versatile Disc)— RO M, DVD-RAM, DVD-RW, DVD-R, DVD+RW, DVD+R等の光ディスク が実用化されてきた。また、 CD (Compact Disc)は今も普及している。  [0006] Conventionally, DVD (Digital Versatile Disc) —ROM, DVD-RAM, DVD-RW, DVD-R, DVD + RW, DVD + R, etc. have been put to practical use as high-density * large-capacity optical disks. I came. CD (Compact Disc) is still popular.
[0007] デジタルバーサタイルディスク(DVD)は、デジタルデータをコンパクトディスク(CD )の約 6倍の記録密度で記録することが可能であり、映画や音楽などの大容量のデジ タルデータを書き込むことができる情報記録媒体 (光ディスク)として知られて 、る。  [0007] Digital versatile discs (DVDs) can record digital data at a recording density approximately six times that of compact discs (CDs), and can write large volumes of digital data such as movies and music. It is known as a possible information recording medium (optical disc).
[0008] 近年は、地上波デジタル放送の開始による HDTV映像の録画ニーズなど、記録対 象となる情報の情報量が増加しているため、さらに容量の大きい光ディスクが求めら れている。現在は、これらの光ディスクよりもさらに高密度化 '大容量ィ匕されたブルー レイディスク(Blu— ray Disc ; BD)などの次世代光ディスクの開発 '実用化が進めら れつつある。  [0008] In recent years, since the information amount of information to be recorded such as the need for recording HDTV video due to the start of terrestrial digital broadcasting has increased, an optical disk having a larger capacity has been demanded. At present, the development of a next generation optical disc such as a Blu-ray Disc (BD), which has a higher density than these optical discs and a large capacity, is being put into practical use.
[0009] 光ディスクの容量を大きくするためには、情報の記録密度を高くする必要がある。こ れは一般に、データの書き込み時および読み出し時に光ディスクに放射されるレー ザ光のスポット径を小さくすることによって実現される。レーザ光のスポット径を小さく するためには、レーザ光の波長を短くすればよい。  In order to increase the capacity of an optical disc, it is necessary to increase the information recording density. This is generally achieved by reducing the spot diameter of the laser beam emitted to the optical disc during data writing and reading. In order to reduce the spot diameter of the laser beam, the wavelength of the laser beam may be shortened.
[0010] 光ディスクが実用化されて以来、レーザ光の短波長化が進み、より大容量の光ディ スクが開発されている。波長 780nmの赤外レーザ光を用いた CDに続き、波長 650η mの赤色レーザ光を使用した DVD、そして波長 405nmの青色レーザ光を使用した 高密度光ディスクが開発されてきた。  [0010] Since optical disks have been put into practical use, laser light has been shortened, and larger capacity optical disks have been developed. Following CDs using infrared laser light with a wavelength of 780 nm, DVDs using red laser light with a wavelength of 650 ηm and high-density optical disks using blue laser light with a wavelength of 405 nm have been developed.
[0011] これらの光ディスクは、その種類に応じて異なる多様な断面構造を有して 、る。例え ば、トラックの物理的構造、トラックピッチ、記録層の深さ(光ディスクの光入射側表面 力も記録層までの距離)などが異なるものがある。このように物理的な構造の異なる複 数種類の光ディスク力 適切にデータを読み出し、あるいは、データを書き込むため には、光ディスクの種別に応じた開口数 (NA)を有する光学系を用いて適切な波長 のレーザ光を光ディスクの記録層に照射する必要がある。 These optical discs have various cross-sectional structures that differ depending on the type. For example, the physical structure of the track, the track pitch, and the depth of the recording layer (the optical incident side surface force of the optical disc is also the distance to the recording layer) are different. In this way, the physical structure is different. Several types of optical disc power In order to read or write data properly, an optical system with a numerical aperture (NA) corresponding to the type of optical disc is used to irradiate the recording layer of the optical disc with an appropriate wavelength. There is a need to.
[0012] 図 1は、光ディスク 200を模式的に示す斜視図である。参考のため、図 1には、対物 レンズ (集束レンズ) 115と、この対物レンズ 115によって集束されたレーザ光 22が示 されている。レーザ光 22は、光ディスク 200の光入射面を経て記録層に照射され、記 録層上に光ビームスポットを形成する。  FIG. 1 is a perspective view schematically showing an optical disc 200. For reference, FIG. 1 shows an objective lens (focusing lens) 115 and a laser beam 22 focused by the objective lens 115. The laser beam 22 is applied to the recording layer through the light incident surface of the optical disc 200, and forms a light beam spot on the recording layer.
[0013] 図 2 (a)、 (b)、および(c)は、それぞれ、 CD、 DVD,および BDの断面の概略を模 式的に示している。図 2に示される各光ディスクは、表面(光入射側の面) 200aおよ び裏面(レーベル面) 200bを有し、それらの間に少なくとも 1つの記録層 214を有し ている。光ディスクの裏面 200bには、タイトルやグラフィックスのプリントを含むレーべ ル層 218が設けられている。いずれの光ディスクも全体の厚さは 1. 2mmであり、直 径は 12cmである。簡単のため、図面中にはピットやグループなどの凹凸構造は記載 していないし、反射層などの記載も省略している。  [0013] FIGS. 2 (a), (b), and (c) schematically show cross sections of CD, DVD, and BD, respectively. Each optical disk shown in FIG. 2 has a front surface (light incident side surface) 200a and a back surface (label surface) 200b, and has at least one recording layer 214 therebetween. A label layer 218 including titles and graphics prints is provided on the back surface 200b of the optical disk. Both optical discs have a total thickness of 1.2 mm and a diameter of 12 cm. For simplicity, the concavo-convex structure such as pits and groups is not shown in the drawing, and the description of the reflective layer is also omitted.
[0014] 図 2 (a)に示されるように、 CDの記録層 214は、表面 200a力ら約 1. 1mmの深さに 位置している。 CDの記録層 214からデータを読み出すには、近赤外レーザ光 (波長 : 785nm)を集束し、その焦点が記録層 214上に位置するように制御する必要がある 。レーザ光の集束に用いる対物レンズの開口数 (NA)は、約 0. 5である。  [0014] As shown in FIG. 2 (a), the CD recording layer 214 is located at a depth of about 1.1 mm from the surface 200a force. In order to read data from the recording layer 214 of the CD, it is necessary to control near-infrared laser light (wavelength: 785 nm) so that the focal point is located on the recording layer 214. The numerical aperture (NA) of the objective lens used for focusing the laser beam is about 0.5.
[0015] 図 2 (b)に示されるように、 DVDの記録層 214は、表面 200a力ら約 0. 6mmの深さ に位置している。現実の DVDでは、約 0. 6mmの厚さを有する 2枚の基板が接着層 を介して張り合わせられている。 2層の記録層 214を有する光ディスクの場合、表面 2 OOaから記録層 214までの距離は、それぞれ、約 0. 57mmおよび約 0. 63mm程度 であり、近接している。このため、記録層 214の数によらず、図面では 1層の記録層 2 14のみを記載している。 DVDの記録層 214からデータを読み出し、データを書き込 むには、赤色レーザ光 (波長: 660nm)を集束し、その焦点が記録層 214上に位置 するように制御する必要がある。レーザ光の集束に用いる対物レンズの開口数 (NA) は、約 0. 6である。  [0015] As shown in FIG. 2 (b), the DVD recording layer 214 is located at a depth of about 0.6 mm from the surface 200a force. In an actual DVD, two substrates with a thickness of approximately 0.6 mm are bonded together via an adhesive layer. In the case of an optical disc having two recording layers 214, the distances from the surface 2OOa to the recording layer 214 are about 0.57 mm and about 0.63 mm, respectively, which are close to each other. Therefore, only one recording layer 2 14 is shown in the drawing regardless of the number of recording layers 214. In order to read data from the DVD recording layer 214 and write the data, it is necessary to focus the red laser beam (wavelength: 660 nm) and control the focal point to be positioned on the recording layer 214. The numerical aperture (NA) of the objective lens used for focusing the laser beam is about 0.6.
[0016] 図 2 (c)に示されるように、 BDは、表面 200aの側に厚さ 100 mの薄いカバー層( 透明層)が設けられており、記録層 214は表面 200aから約 0. 1mmの深さに位置し ている。 BDの記録層 214からデータを読み出すには、青色 (青紫色)レーザ光 (波長 :405nm)を集束し、その焦点が記録層 214上に位置するように制御する必要がある 。レーザ光の集束に用いる対物レンズの開口数 (NA)は、 0. 85である。 [0016] As shown in FIG. 2 (c), the BD has a thin cover layer (100 m in thickness) on the surface 200a side. The recording layer 214 is located at a depth of about 0.1 mm from the surface 200a. In order to read data from the recording layer 214 of the BD, it is necessary to control the blue (blue-violet) laser beam (wavelength: 405 nm) so that the focal point is located on the recording layer 214. The numerical aperture (NA) of the objective lens used for focusing the laser beam is 0.85.
[0017] 青色レーザ光を使用する高密度光ディスクに関し、現在、大きく分けて 2種類の光 ディスクの開発が進められている。第 1の種類の高密度光ディスクでは、記録層の深 さは 0. 1mmとされ、 1層あたりの記録容量は従来の DVDの記録容量の 5倍(25GB )前後にまで高められて 、る。たとえば BDがこの種類の高密度光ディスクに該当する [0017] Currently, two types of optical discs are being developed, which are broadly divided into high-density optical discs using blue laser light. In the first type of high-density optical disc, the recording layer depth is 0.1 mm, and the recording capacity per layer is increased to about 5 times the recording capacity of conventional DVD (25 GB). For example, BD falls into this type of high density optical disc
[0018] 一方、第 2の種類の高密度光ディスクでは、図 2 (b)に示すように、記録層の深さは 従来の DVDと同等の 0. 6mmとされている。 1層あたりの記録容量は再生専用媒体 で DVDの 3倍(15GB)、書換え型媒体で DVDの 4倍(20GB)程度に高められてい る。たとえば HD— DVDがこの種類の高密度光ディスクに該当する。 On the other hand, in the second type of high-density optical disk, as shown in FIG. 2 (b), the depth of the recording layer is 0.6 mm, which is the same as that of a conventional DVD. The recording capacity per layer has been increased to 3 times (15GB) for DVDs for read-only media and 4 times (20GB) for DVDs for rewritable media. For example, HD—DVD corresponds to this type of high density optical disc.
[0019] 光ディスクの物理構造に注目すると、第 2の種類の高密度光ディスクは DVDと近 ヽ ため、従来のディスク製造設備力もの変更点が少ない。よってディスク製造コストの観 点からは、第 2の種類の高密度光ディスクが第 1の種類の高密度光ディスクよりも有 利である。  Focusing on the physical structure of the optical disk, the second type of high-density optical disk is similar to a DVD, so there are few changes in the conventional disk manufacturing facilities. Therefore, the second type of high density optical disk is more advantageous than the first type of high density optical disk from the viewpoint of disk manufacturing cost.
[0020] 一方、 1層あたりの記録容量の観点からは、第 1の種類の高密度光ディスクの方が 第 2の種類の高密度光ディスクよりも大きくなる。また、記録層の多層化により、積層 数が同一であれば第 1の種類の光ディスクの方が第 2の種類の光ディスクよりも記録 容量差が増加する。  [0020] On the other hand, from the viewpoint of the recording capacity per layer, the first type of high-density optical disk is larger than the second type of high-density optical disk. Also, due to the increase in the number of recording layers, if the number of stacked layers is the same, the recording capacity difference of the first type optical disc is larger than that of the second type optical disc.
[0021] 以上のようにいずれの種類にも一長一短があるため、用途に応じて両方の種類を 使い分けたいという要求がでてくることが考えられる。たとえば、長時間の HDTV放 送の録画には記録容量の大きい第 1の高密度光ディスクを使用し、映画コンテンツな どを記録した再生専用媒体にはディスク製造コストの低い第 2の高密度光ディスクを 使用した 、と 、うこともあり得る。  [0021] As described above, since both types have merits and demerits, it is conceivable that there is a demand to use both types according to applications. For example, the first high-density optical disk with a large recording capacity is used for long-time HDTV broadcast recording, and the second high-density optical disk with low disk manufacturing cost is used as a read-only medium for recording movie content. It may happen that you used it.
[0022] このような要求に対しては、光ディスク装置の製造コストや小型化などの観点から、 両種類の高密度光ディスクに対して情報の記録 '再生が可能な互換性を備えた光ピ ックアップ装置が当然求められることになる。 [0022] To meet such demands, from the viewpoint of manufacturing cost and downsizing of the optical disk apparatus, an optical pin having compatibility that enables recording and reproduction of information on both types of high-density optical disks. Naturally, a backup device is required.
[0023] 以下、これまでの光ピックアップ装置の構成を説明する。図 3は、一般的な光ピック アップ装置 110の構成を示す。半導体レーザ光源 111がコヒーレントな光ビームを放 射する。光ビームは、ビームスプリッタ 112で反射され、コリメートレンズ 113で平行光 にされ、ミラー 114で反射され、対物レンズ 115を透過して、光ディスク 100の記録層 上に集光される。  [0023] Hereinafter, the configuration of the conventional optical pickup device will be described. FIG. 3 shows a configuration of a general optical pickup device 110. The semiconductor laser light source 111 emits a coherent light beam. The light beam is reflected by the beam splitter 112, converted into parallel light by the collimator lens 113, reflected by the mirror 114, transmitted through the objective lens 115, and condensed on the recording layer of the optical disc 100.
[0024] データの読み出し時には、集光された光ビームは光ディスク 100の記録層で反射さ れ、逆の経路でビームスプリッタ 112に至り、ビームスプリッタ 112を透過してフォトダ ィオード 118に入射する。フォトダイオード 118はいわゆる光検出器であり、入射した 光の強度に基づいて電気信号を出力する。記録層上の反射率の変化として記録さ れている情報を、フォトダイオード 118に入射される反射光量の変化として検出し、そ の電気信号に基づ ヽてデータが再現される。  When reading data, the collected light beam is reflected by the recording layer of the optical disc 100, reaches the beam splitter 112 through the reverse path, passes through the beam splitter 112, and enters the photodiode 118. The photodiode 118 is a so-called photodetector and outputs an electrical signal based on the intensity of incident light. Information recorded as a change in reflectance on the recording layer is detected as a change in the amount of reflected light incident on the photodiode 118, and data is reproduced based on the electrical signal.
[0025] 上述の過程において、反射光の一部がビームスプリッタ 112を透過せずに反射さ れて光源 111に戻ることがある。この現象は、レーザ光源に戻り光ノイズを発生させる 原因となる。  In the above process, a part of the reflected light may be reflected to the light source 111 without passing through the beam splitter 112. This phenomenon returns to the laser light source and causes light noise.
[0026] 戻り光ノイズは、半導体レーザ光源 111の出射面と光ディスク反射面とによって形 成される外部共振器と、半導体レーザ光源 111自身の持つ内部共振器との相互作 用によって引き起こされる。戻り光ノイズは、半導体レーザ光源 111の発光点から光 ディスク 100までの光路長が実効共振器長の整数倍となったときに増大することが知 られている。なお実効共振器長は、半導体レーザ光源 111の内部共振器長を L、そ の共振器内の屈折率を nとしたとき、それらの積 nLで表される。  The return light noise is caused by the interaction between the external resonator formed by the emission surface of the semiconductor laser light source 111 and the optical disk reflection surface and the internal resonator of the semiconductor laser light source 111 itself. It is known that the return light noise increases when the optical path length from the light emitting point of the semiconductor laser light source 111 to the optical disk 100 becomes an integral multiple of the effective resonator length. Note that the effective resonator length is represented by a product nL, where L is the internal resonator length of the semiconductor laser light source 111 and n is the refractive index in the resonator.
[0027] 戻り光ノイズは、レーザ駆動電流に高周波発振回路による高周波電流を重畳して、 レーザ光をマルチモードィ匕することで低く抑えることができる。しかし、重畳する電流 が大きすぎると回路の不要輻射が増加する等の新たな問題が生じるため、高周波電 流を重畳する対策にも限界がある。  [0027] The return light noise can be suppressed to a low level by superimposing a high-frequency current from a high-frequency oscillation circuit on the laser drive current to multimode the laser light. However, if the current to be superimposed is too large, new problems such as an increase in unnecessary radiation of the circuit occur, so there is a limit to the measures to superimpose the high-frequency current.
[0028] 戻り光ノイズを低減するために、たとえば特許文献 1は、半導体レーザ光源の発光 点から光ディスクまでの光路長を半導体レーザ光源の実効共振器長の整数倍となら ない値に設定した光ピックアップ装置を開示している。この光ピックアップ装置は、共 通の光学系を利用する、実効共振器長の異なる複数の半導体レーザ光源を搭載し ており、各光源に対して上述の設定を適用している。これにより、いずれの光源の光 路に関しても戻り光ノイズの増大を抑えることができる。 [0028] In order to reduce the return light noise, for example, Patent Document 1 describes light in which the optical path length from the light emitting point of the semiconductor laser light source to the optical disk is set to a value that is not an integral multiple of the effective resonator length of the semiconductor laser light source. A pickup device is disclosed. This optical pickup device is A plurality of semiconductor laser light sources with different effective resonator lengths using a common optical system are installed, and the above settings are applied to each light source. As a result, it is possible to suppress an increase in return light noise with respect to the optical path of any light source.
特許文献 1 :特開 2001— 148135号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-148135
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0029] し力しながら、従来の技術では、一つのレーザ光源に対して光路長が異なる複数の 光路を設けることは考えられていな力つた。その理由は、従来は一つのレーザ光源に 対して一つの光路長のみを考慮して設計していたためである。これでは、一つのレー ザ光源に対して複数の光路長が存在するときには全ての光路にお ヽて戻り光ノイズ の増大を抑えることができな 、。  [0029] However, in the conventional technology, it has not been considered to provide a plurality of optical paths having different optical path lengths for one laser light source. The reason for this is that, in the past, one laser light source was designed taking into account only one optical path length. In this case, when multiple optical path lengths exist for one laser light source, it is impossible to suppress an increase in return light noise in all the optical paths.
[0030] たとえば波長 405nmの青色レーザ光を使用する上述の 2種類の高密度光ディスク は、記録層までの距離の差が約 0. 5mmであり大きく異なるため、その光路長も異な る。よって、従来の技術では、一方の高密度光ディスクの使用時には戻り光ノイズの 増大を抑えることができても、他方の使用時には戻り光ノイズの増大を抑えることは困 難である。このような不十分な性能では、両方の高密度光ディスクに対応したというこ とはできない。  [0030] For example, the above-mentioned two types of high-density optical discs using blue laser light having a wavelength of 405 nm have a difference in distance to the recording layer of about 0.5 mm, which is greatly different, and therefore their optical path lengths are also different. Therefore, with the conventional technology, it is difficult to suppress an increase in the return light noise when using the other high-density optical disk, but it is difficult to suppress an increase in the return light noise when using the other high-density optical disk. Such inadequate performance cannot be applied to both high-density optical disks.
[0031] 本発明の目的は、記録層までの距離が異なる複数種類の記録媒体に対して共通 のレーザ光源を利用して情報を記録 ·再生する光ピックアップ装置において、いずれ の記録媒体に対しても戻り光ノイズを低く抑えることである。  [0031] An object of the present invention is to provide an optical pickup device for recording / reproducing information using a common laser light source for a plurality of types of recording media having different distances to the recording layer. Is to keep the return light noise low.
課題を解決するための手段  Means for solving the problem
[0032] 本発明による光ピックアップ装置は、光入射側の表面力 記録層までの距離が異な る複数種類の情報記録媒体に対して、共通のレーザ光源を用いてデータの読み出 しおよび書き込みの少なくとも一方を行うために用いられる。前記光ピックアップ装置 は、光ビームを発するレーザ光源と、前記光ビームを情報記録媒体に集光し、前記 情報記録媒体からの反射光を検出する光学系とを備え、前記複数種類の情報記録 媒体の各々に関し、前記レーザ光源の発光点から前記記録層までの光路長が前記 レーザ光源の実効共振器長の整数倍とならな ヽ値に設定されて ヽる。 [0033] 前記レーザ光源の実効共振器長は、共振器長 Lおよび共振器内の屈折率 nの積で 表され、前記複数種類の情報記録媒体のうち、記録層までの距離が最も短い第 1記 録媒体および記録層までの距離が最も長 、第 2情報記録媒体に関して、前記発光 点から前記第 1記録媒体の記録層までの理論上の光路長を L1とし、前記発光点から 前記第 2記録媒体の記録層までの理論上の光路長を L2とし、前記第 1記録媒体の 面ぶれ量を dlとし、前記第 2記録媒体の面ぶれ量を d2としたとき、 m X nL<Ll -d 1 かつ L2 + d2く(m+ 1) X nL (m:負でない任意の整数)が満たされるように設 定されていてもよい。 The optical pickup device according to the present invention reads and writes data to a plurality of types of information recording media having different distances to the surface force recording layer on the light incident side using a common laser light source. Used to do at least one. The optical pickup device includes a laser light source that emits a light beam, and an optical system that collects the light beam on an information recording medium and detects reflected light from the information recording medium, and the plurality of types of information recording media For each of the above, the optical path length from the light emitting point of the laser light source to the recording layer is set to a power value that is not an integral multiple of the effective resonator length of the laser light source. [0033] The effective resonator length of the laser light source is represented by the product of the resonator length L and the refractive index n in the resonator, and among the plurality of types of information recording media, the distance to the recording layer is the shortest. The distance from one recording medium to the recording layer is the longest, and for the second information recording medium, the theoretical optical path length from the light emitting point to the recording layer of the first recording medium is L1, and from the light emitting point to the first 2 When the theoretical optical path length to the recording layer of the recording medium is L2, the surface blur amount of the first recording medium is dl, and the surface blur amount of the second recording medium is d2, m X nL <Ll -d 1 and L2 + d2 (m + 1) XnL (m: any non-negative integer) may be set to be satisfied.
[0034] 前記光学系は、前記光ビームの光路上に挿抜可能な光学素子を有しており、前記 第 1記録媒体および前記第 2記録媒体に対して行う動作に応じて、前記光学素子を 前記光ビームの光路上に配置して、前記レーザ光源の発光点から前記記録層まで の光路長を設定してもよい。  [0034] The optical system includes an optical element that can be inserted into and removed from the optical path of the light beam, and the optical element is operated according to an operation performed on the first recording medium and the second recording medium. The optical path length from the light emitting point of the laser light source to the recording layer may be set on the optical path of the light beam.
[0035] 前記光学系は、前記光ビームの光路上に挿抜可能な光学素子を有しており、前記 記録層までの距離に応じて前記光学素子を前記光ビームの光路上に配置して、前 記レーザ光源の発光点力 前記記録層までの光路長を設定してもよい。  [0035] The optical system has an optical element that can be inserted into and removed from the optical path of the light beam, and the optical element is arranged on the optical path of the light beam according to the distance to the recording layer, The light emission point of the laser light source The optical path length to the recording layer may be set.
[0036] 前記レーザ光源の実効共振器長は、共振器長 Lおよび共振器内の屈折率 nの積で 表され、前記発光点から前記記録媒体の記録層までの理論上の光路長を L3とし、 前記記録媒体の面ぶれ量を d3としたときにおいて、 m X nL+d3<L3く (m+ 1) X nL d3 (m:負でな 、任意の整数)が満たされるように設定されて 、てもよ!/、。  [0036] The effective resonator length of the laser light source is represented by the product of the resonator length L and the refractive index n in the resonator, and the theoretical optical path length from the light emitting point to the recording layer of the recording medium is expressed as L3 And when the surface deflection amount of the recording medium is d3, m X nL + d3 <L3 (m + 1) X nL d3 (m: negative, any integer) is set to be satisfied. Well! /
[0037] 前記光学系は、前記光ビームを前記情報記録媒体の記録層に集光する集光素子 を有しており、前記光学素子は、光ディスクの種類に応じて前記集光素子の開口数( NA)を変化させてもよい。  [0037] The optical system includes a condensing element that condenses the light beam on a recording layer of the information recording medium, and the optical element has a numerical aperture of the condensing element according to the type of the optical disc. (NA) may be changed.
[0038] 前記レーザ光源は、青色の波長領域にお!ヽて発光する光ビームを放射してもよ 、  [0038] The laser light source may emit a light beam that emits light in a blue wavelength region.
[0039] 前記複数種類の情報記録媒体の各々は、 1または複数の記録層を有し、かつ、前 記表面力 最初の記録層までの距離が異なっており、前記レーザ光源の発光点から 前記最初の記録層までの光路長が、前記レーザ光源の実効共振器長の整数倍とな らな 、値に設定されて 、てもよ 、。 [0040] 本発明による情報処理装置は、前記情報記録媒体からの反射光を検出する光検 出器をさらに有する上述のいずれかの光ピックアップ装置、および、検出された前記 反射光に基づいて、再生信号およびサーボ信号の少なくとも一方を生成する信号処 理回路を備えている。 [0039] Each of the plurality of types of information recording media has one or a plurality of recording layers, and the surface force has a different distance to the first recording layer, from the emission point of the laser light source. The optical path length to the first recording layer may be set to a value that is an integral multiple of the effective resonator length of the laser light source. [0040] An information processing apparatus according to the present invention is based on any one of the above-described optical pickup devices further including a light detector that detects reflected light from the information recording medium, and the detected reflected light. A signal processing circuit for generating at least one of a reproduction signal and a servo signal is provided.
発明の効果  The invention's effect
[0041] 本発明によれば、複数種類の情報記録媒体の各々に関し、光源の発光点から記 録層までの光路長が、光源の実効共振器長の整数倍とならない値に設定されている 。これにより、いずれの情報記録媒体に対しても、レーザ光の戻り光ノイズがピークと なることを回避し、信号特性の劣化を抑えることができる。  [0041] According to the present invention, for each of a plurality of types of information recording media, the optical path length from the light emitting point of the light source to the recording layer is set to a value that is not an integral multiple of the effective resonator length of the light source. . As a result, for any information recording medium, it is possible to avoid the peak of the return light noise of the laser beam and to suppress the deterioration of the signal characteristics.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]光ディスク 200を模式的に示す斜視図である。 FIG. 1 is a perspective view schematically showing an optical disc 200. FIG.
[図 2] (a)、 (b)、および(c)は、それぞれ、 CD、 DVD,および BDの断面の概略図で ある。  FIG. 2 (a), (b), and (c) are schematic views of cross sections of CD, DVD, and BD, respectively.
[図 3]—般的な光ピックアップ装置 110の構成を示す図である。  FIG. 3 is a diagram showing a configuration of a general optical pickup device 110.
[図 4]レーザ光源 1から 2種類の光ディスクの記録層までの各光路長 L1および L2と、 レーザ光源 1の実効共振器長 nLとの関係を示す図である。  4 is a diagram showing the relationship between the optical path lengths L1 and L2 from the laser light source 1 to the recording layers of two types of optical discs, and the effective resonator length nL of the laser light source 1. FIG.
[図 5]実施形態 1による光ディスク装置 14の機能ブロックの構成を示す図である。  FIG. 5 is a diagram showing a functional block configuration of the optical disc apparatus 14 according to Embodiment 1.
[図 6] (a)は記録層までの距離が最も短い光ディスク 101の記録層に光ビームを集光 したときの光路を示す図であり、 (b)は記録層までの距離が最も長い光ディスク 102 の記録層に光ビームを集光したときの光路を示す図である。  [Fig. 6] (a) is a diagram showing an optical path when a light beam is focused on the recording layer of the optical disc 101 having the shortest distance to the recording layer, and (b) is an optical disc having the longest distance to the recording layer. FIG. 10 is a diagram showing an optical path when a light beam is condensed on a recording layer 102.
[図 7] (a)および (b)は、ホログラムレンズ 22を備えた光ピックアップにおける光路長と レーザ光源の共振器の関係を示す図である。  7 (a) and (b) are diagrams showing the relationship between the optical path length and the resonator of the laser light source in the optical pickup provided with the hologram lens 22.
[図 8]光軸方向力も見たホログラムレンズ 22の形状を示す図である。  FIG. 8 is a diagram showing the shape of the hologram lens 22 in view of the optical axis direction force.
[図 9]光軸を含む平面によるホログラムレンズ 22の断面図である。  FIG. 9 is a cross-sectional view of hologram lens 22 by a plane including the optical axis.
[図 10] (a)および (b)は、第 1の変形例に対してさらに強度調整素子 23を備えた光ピ ックアップにおける光路長とレーザ光源の共振器の関係を示す図である。  [FIG. 10] (a) and (b) are diagrams showing the relationship between the optical path length and the resonator of the laser light source in the optical pick-up provided with the intensity adjusting element 23 in addition to the first modification.
[図 11]光路長補正素子 15を有する実施形態 2による光ピックアップ装置 23の構成を 示す図である。 符号の説明 FIG. 11 is a diagram showing a configuration of an optical pickup device 23 according to Embodiment 2 having an optical path length correcting element 15. Explanation of symbols
[0043] 1 光源  [0043] 1 light source
2 ビームスプリッタ  2 Beam splitter
3 コリメートレンズ  3 Collimating lens
4 ミラー  4 Mirror
5 対物レンズ  5 Objective lens
6 ァクチユエータ  6 Actuator
7 シリンドリカノレレンズ  7 Cylindrical lens
8 フォトダイオード  8 Photodiode
9 信号処理回路  9 Signal processing circuit
10 サーボ制御回路  10 Servo control circuit
11 スピンドノレモータ  11 Spinner motor
12 トラバースモータ  12 Traverse motor
13 光ピックアップ装置  13 Optical pickup device
14 光ディスク装置  14 Optical disk device
15 光路長補正素子  15 Optical path length correction element
100 光ディスク  100 optical disc
101 記録層までの距離が短い光ディスク  101 Optical disc with a short distance to the recording layer
102 記録層までの距離が長い光ディスク  102 Optical disc with long distance to recording layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 以下、添付の図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0045] (実施形態 1) [0045] (Embodiment 1)
まずはじめに、図 4を参照しながら本発明の主要な特徴を説明する。  First, the main features of the present invention will be described with reference to FIG.
[0046] 図 4は、レーザ光源 1から 2種類の光ディスクの記録層までの各光路長 L1および L2 と、レーザ光源 1の実効共振器長 nLとの関係を示す。 2種類の光ディスクとは、たとえ ば BDおよび HD— DVDである。 FIG. 4 shows the relationship between the optical path lengths L1 and L2 from the laser light source 1 to the recording layers of the two types of optical disks, and the effective resonator length nL of the laser light source 1. The two types of optical discs are BD and HD—DVD, for example.
[0047] 本発明の主要な特徴のひとつは、レーザ光源 1の発光点力 各光ディスクの記録 層までの光路長が、レーザ光源 1の実効共振器長 nLの整数倍にならないように光ピ ックアップ装置の光学系を調整することにある。 [0047] One of the main features of the present invention is that the light source power of the laser light source 1 is such that the optical path length to the recording layer of each optical disc does not become an integral multiple of the effective resonator length nL of the laser light source 1. The purpose is to adjust the optical system of the backup device.
[0048] ただし、ここで!/、う「光ディスクの記録層までの光路長」は、上述した L1および L2の みに限定されるのではなぐ光ディスクの面ぶれをも考慮した光路長を意味する。  [0048] Here,! /, "Optical path length to the recording layer of the optical disk" means an optical path length that also considers the surface blur of the optical disk, which is not limited to L1 and L2 described above. .
[0049] より詳しく説明すると、光ディスクはディスクの反りなどの影響で、回転させたときに 面ぶれを起こすことがある。このような面ぶれの影響で、レーザ光源 1の発光点力 光 ディスクの記録層までの実際の光路長は、 L1や L2から微小変動する。一方、一定量 以下の面ぶれは規格等にぉ 、て通常許容されて 、る。そのような面ぶれを考慮する と、「光ディスクの記録層までの光路長」は、上述した L1および L2を中心として面ぶ れの許容量の幅をもつ量として定められる。図 4には、面ぶれを考慮した BDの光路 長の範囲 Aおよび HD— DVDの光路長の範囲 Bが示されて!/、る。 BDおよび HD— DVDが装填されると、記録層の位置は図示された範囲 Aおよび Bに含まれることにな る。  More specifically, the optical disc may cause surface blur when rotated due to the warp of the disc. Due to such surface blurring, the actual optical path length of the laser light source 1 to the recording layer of the optical disc varies slightly from L1 and L2. On the other hand, surface blurring of a certain amount or less is normally allowed according to the standards. In consideration of such surface blurring, the “optical path length to the recording layer of the optical disk” is determined as an amount having an allowable amount of surface blurring centering on L1 and L2 described above. Figure 4 shows the optical path length range A for BD and the optical path length range B for HD—DVD, taking into account surface blurring! When BD and HD—DVD are loaded, the position of the recording layer will fall within the ranges A and B shown.
[0050] 本実施形態においては、各種類の光ディスクの面ぶれを考慮した上で、光源 1から 記録層までの光路長が常にレーザ光源の実効共振器長 nLの整数倍にならないよう に構成されている。なお、実効共振器長 nLは、たとえば 2〜4mmである。また L1と L 2との差は約 0. 5mmである。  [0050] The present embodiment is configured so that the optical path length from the light source 1 to the recording layer does not always become an integral multiple of the effective resonator length nL of the laser light source in consideration of the surface deflection of each type of optical disk. ing. Note that the effective resonator length nL is, for example, 2 to 4 mm. The difference between L1 and L2 is about 0.5mm.
[0051] 次に、図 5を参照しながら、光ディスク装置の構成および動作を説明し、さらに、そ の光ディスク装置に搭載される光ピックアップ装置の概略的な構成を説明する。その 後図 6を参照しながら、上述の特徴に関する光ピックアップ装置の構成を詳細に説明 する。  Next, the configuration and operation of the optical disk device will be described with reference to FIG. 5, and further, the schematic configuration of the optical pickup device mounted on the optical disk device will be described. Thereafter, the configuration of the optical pickup device relating to the above-described features will be described in detail with reference to FIG.
[0052] 本実施形態による光ディスク装置は、複数種類の光ディスクに対して共通のレーザ 光源を利用してデータを書き込み、または書き込まれているデータを読み出すことが できる。  The optical disc apparatus according to the present embodiment can write data to a plurality of types of optical discs using a common laser light source, or read the written data.
[0053] 図 5は、本実施形態による光ディスク装置 14の機能ブロックの構成を示す。光ディ スク装置 14は、光ピックアップ装置 13と、信号処理回路 9と、サーボ制御回路 10と、 スピンドルモータ 11と、トラバースモータ 12とを備えている。なお、図 5には光ディスク 100が示されているがこれは説明の便宜のためであり、光ディスク装置 14の構成要 素ではない。 [0054] まず、光ディスク装置 14の動作の概要を説明する。光ピックアップ装置 13は、光デ イスク 100に対して光ビームを放射して光ディスク 100からの反射光を検出し、反射 光の検出位置および検出光量に応じた光量信号を出力する。信号処理回路 9は、光 ピックアップ装置 13から出力される光量信号に応じて、光ディスク 100上における光 ビームの合焦状態を示すフォーカスエラー (FE)信号や、光ビームの焦点位置と光 ディスク 100のトラックとの位置関係を示すトラッキングエラー (TE)信号等を生成して 出力する。 FE信号や TE信号は、サーボ信号と総称される。 FIG. 5 shows a functional block configuration of the optical disc apparatus 14 according to the present embodiment. The optical disk device 14 includes an optical pickup device 13, a signal processing circuit 9, a servo control circuit 10, a spindle motor 11, and a traverse motor 12. Although FIG. 5 shows the optical disc 100, this is for convenience of explanation and is not a constituent element of the optical disc device 14. First, an outline of the operation of the optical disk device 14 will be described. The optical pickup device 13 emits a light beam to the optical disc 100 to detect the reflected light from the optical disc 100, and outputs a light amount signal corresponding to the detection position of the reflected light and the detected light amount. The signal processing circuit 9 generates a focus error (FE) signal indicating the focus state of the light beam on the optical disc 100 according to the light amount signal output from the optical pickup device 13, and the focus position of the light beam and the optical disc 100. Generates and outputs a tracking error (TE) signal that indicates the positional relationship with the track. The FE signal and TE signal are collectively called servo signals.
[0055] サーボ制御回路 10は、それらの信号に基づいて複数種類の駆動信号を生成する 。駆動信号の種類は出力先に応じて異なる。出力先は、スピンドルモータ 11、トラバ ースモータ 12および光ピックアップ装置 13のァクチユエータ 6である。  The servo control circuit 10 generates a plurality of types of drive signals based on these signals. The type of drive signal differs depending on the output destination. The output destination is the actuator 6 of the spindle motor 11, the traverse motor 12 and the optical pickup device 13.
[0056] スピンドルモータ 11は、駆動信号に基づいて記録速度 Z再生速度に応じた回転速 度で光ディスク 100を回転させる。トラバースモータ 12は、駆動信号に基づいて目的 の記録位置または再生位置に光ピックアップ装置 13を光ディスク 100の半径方向に 移動させる。  The spindle motor 11 rotates the optical disc 100 at a rotational speed corresponding to the recording speed Z reproduction speed based on the drive signal. The traverse motor 12 moves the optical pickup device 13 in the radial direction of the optical disc 100 to the target recording position or reproduction position based on the drive signal.
[0057] ァクチユエータ 6は、駆動信号に基づいて対物レンズ 5の位置を調整する。これによ り、光ディスク 100に放射される光ビームの焦点が記録層から外れないように制御さ れる。  The actuator 6 adjusts the position of the objective lens 5 based on the drive signal. Thus, the focal point of the light beam emitted to the optical disc 100 is controlled so as not to deviate from the recording layer.
[0058] 光ビームの焦点が記録層力 外れないように制御されている状態において、信号 処理回路 9は光量信号に基づいて再生信号を出力する。再生信号は光ディスク 100 に書き込まれたデータを示している。これにより、光ディスク 100からのデータの読み 出しが実現される。また、光ビームの光パワーを再生時よりも大きくすることにより、光 ディスク 100にデータを書き込むことができる。  [0058] In a state where the focus of the light beam is controlled so as not to deviate from the recording layer force, the signal processing circuit 9 outputs a reproduction signal based on the light amount signal. The reproduction signal indicates data written on the optical disc 100. As a result, reading of data from the optical disc 100 is realized. Also, data can be written to the optical disc 100 by making the optical power of the light beam larger than that during reproduction.
[0059] 以下、光ピックアップ装置 13の構成を説明する。光ピックアップ装置 13は、光源 1と 、ビームスプリッタ 2と、コリメートレンズ 3と、ミラー 4と、対物レンズ 5と、ァクチユエータ 6と、シリンドリカルレンズ 7と、フォトダイオード 8とを備える。  Hereinafter, the configuration of the optical pickup device 13 will be described. The optical pickup device 13 includes a light source 1, a beam splitter 2, a collimating lens 3, a mirror 4, an objective lens 5, an activator 6, a cylindrical lens 7, and a photodiode 8.
[0060] 光源 1は、波長 405nmの青色レーザ光(光ビーム)を発光する GaN系の半導体レ 一ザ光源であり、光ディスク 100の記録層に対して、データの読み出しおよび書き込 みのためのコヒーレント光を放射する。ビームスプリッタ 2は、光源 1が放射する光ビー ムをコリメ一トレンズ 3の方向へ反射する。コリメートレンズ 3は、光源 1が放射する光ビ ームを平行光に変換する。ミラー 4は、入射する光ビームを反射させ、反射された光 ビームを光ディスク 100へと指向させる。 [0060] The light source 1 is a GaN-based semiconductor laser light source that emits a blue laser beam (light beam) having a wavelength of 405 nm, and is used for reading and writing data on the recording layer of the optical disc 100. Emits coherent light. Beam splitter 2 is an optical beam emitted by light source 1. Reflect the light toward the collimating lens 3. The collimating lens 3 converts the light beam emitted from the light source 1 into parallel light. The mirror 4 reflects the incident light beam and directs the reflected light beam to the optical disc 100.
[0061] 対物レンズ 5は、光ビームを光ディスク 100の記録層に集光する。ァクチユエータ 6 は、印加された駆動信号のレベルに応じて、光ディスク 100に垂直な方向または光 ディスク 100に平行な方向に、対物レンズ 5の位置を変化させて、光ディスク 100の記 録層上に光ビームを合焦させる。シリンドリカルレンズ 7は、フォトダイオード 8に光ビ 一ム^ ^光させる。フォトダイオード 8は、光ディスク 100の記録層で反射された光ビ ームを受け取り、光量に応じて電気信号 (光量信号)に変換する。なお、フォトダイォ ード 8は複数の受光素子を含んでいてもよい。光量信号を受け取る信号処理回路 9 は、光量信号がいずれの受光素子力も出力されたかという情報も利用して、 FE信号 および TE信号を生成する。  The objective lens 5 focuses the light beam on the recording layer of the optical disc 100. The actuator 6 changes the position of the objective lens 5 in a direction perpendicular to the optical disc 100 or in a direction parallel to the optical disc 100 according to the level of the applied drive signal, so that the light is projected onto the recording layer of the optical disc 100. Focus the beam. The cylindrical lens 7 causes the photodiode 8 to emit light. The photodiode 8 receives the light beam reflected by the recording layer of the optical disc 100 and converts it into an electrical signal (light amount signal) according to the light amount. The photodiode 8 may include a plurality of light receiving elements. The signal processing circuit 9 that receives the light amount signal generates an FE signal and a TE signal using information on which light receiving element force is output as the light amount signal.
[0062] 次に、図 6 (a)および (b)を参照しながら、光ピックアップ装置 13の動作時における 光路長とレーザ光源の共振器の関係を説明する。  Next, the relationship between the optical path length during operation of the optical pickup device 13 and the resonator of the laser light source will be described with reference to FIGS. 6 (a) and 6 (b).
[0063] 本実施形態による光ピックアップ装置 13は、複数種類の光ディスクに対して波長 4 05nmの青色レーザ光を利用してデータの読み出し、書き込みが可能である。複数 種類の光ディスクの記録層の深さは、互いに異なっている。以下では、記録層までの 距離が最も短い光ディスクと最も長い光ディスクとを例に挙げて、光ピックアップ装置 13の構成を説明する。  The optical pickup device 13 according to the present embodiment can read and write data on a plurality of types of optical discs using blue laser light having a wavelength of 405 nm. The recording layer depths of multiple types of optical discs are different from each other. Hereinafter, the configuration of the optical pickup device 13 will be described by taking the optical disc with the shortest distance to the recording layer and the optical disc with the longest distance as examples.
[0064] 図 6 (a)は、記録層までの距離が最も短い光ディスク 101の記録層に光ビームを集 光したときの光路を示し、図 6 (b)は記録層までの距離が最も長い光ディスク 102の 記録層に光ビーム^^光したときの光路を示す。図 6 (a)および (b)の 、ずれにぉ ヽ ても、簡略化のためにビームスプリッタゃミラーは省略して 、る。  FIG. 6 (a) shows an optical path when a light beam is collected on the recording layer of the optical disc 101 having the shortest distance to the recording layer, and FIG. 6 (b) shows the longest distance to the recording layer. The optical path when a light beam is emitted to the recording layer of the optical disc 102 is shown. Even if there is a deviation in Fig. 6 (a) and (b), the beam splitter mirror is omitted for simplification.
[0065] 光ディスク 101は、たとえば光ディスクの光入射表面力も記録層までの距離が 0. 1 mmの BDである。光ディスク 101では、従来の DVDに対して物理構造が大きく変更 され、記録密度の向上に伴う影響を最小化するための構造が採用されている。光デ イスク 101に必要とされる対物レンズ 5の開口数 (NA)は 0. 85である。情報記録密度 を左右するレーザ光のスポット径は、対物レンズの開口数 (NA)に反比例する。よつ て、比較的大きな開口数 (NA) 0. 85の対物レンズを利用して更なる高密度化が実 現されている。なお、 DVDに対して利用される対物レンズの開口数 (NA)は 0. 6で ある。 The optical disk 101 is, for example, a BD whose optical incident surface force is 0.1 mm from the recording layer. In the optical disc 101, the physical structure is greatly changed from that of the conventional DVD, and a structure for minimizing the influence of the improvement in the recording density is adopted. The numerical aperture (NA) of the objective lens 5 required for the optical disk 101 is 0.85. The spot diameter of the laser beam that determines the information recording density is inversely proportional to the numerical aperture (NA) of the objective lens. Yotsu Therefore, higher density has been realized using an objective lens with a relatively large numerical aperture (NA) of 0.85. Note that the numerical aperture (NA) of the objective lens used for DVD is 0.6.
[0066] 対物レンズの開口数 (NA)を大きくすると、開口数 (NA)の 3乗に比例して光スポッ トで発生するコマ収差が大きくなる。これは光ディスクとレーザ光の光軸との角度ズレ に対する許容度 (チルトマージン)が小さくなることを意味する。コマ収差は光ディスク の記録層までの距離に比例して大きくなる。そこで、その距離を DVDの 0. 6mmから 0. 1mmへと 6分の 1に薄くすることで、コマ収差の発生量を小さくし、従来の DVD並 のチルトマージンを確保できる。  [0066] When the numerical aperture (NA) of the objective lens is increased, coma aberration generated in the optical spot increases in proportion to the cube of the numerical aperture (NA). This means that the tolerance (tilt margin) for the angle deviation between the optical disk and the optical axis of the laser beam is reduced. The coma aberration increases in proportion to the distance to the recording layer of the optical disc. Therefore, by reducing the distance by 1/6 from 0.6mm to 0.1mm of DVD, the amount of coma aberration can be reduced, and a tilt margin comparable to that of a conventional DVD can be secured.
[0067] 一方、光ディスク 102は、たとえば光ディスクの光入射表面力も記録層までの距離 が 0. 6mmの HD— DVDである。光ディスク 102では、従来の DVDに対して物理構 造が近似するように構成され、レーザ光の短波長化のみで大容量化を図って 、る。 光ディスク 101に必要とされる対物レンズの開口数 (NA)は少なくとも 0. 65である。  On the other hand, the optical disk 102 is, for example, an HD-DVD whose optical incident surface force is 0.6 mm from the recording layer. The optical disk 102 is configured so that the physical structure approximates that of a conventional DVD, and the capacity is increased only by shortening the wavelength of the laser beam. The numerical aperture (NA) of the objective lens required for the optical disc 101 is at least 0.65.
[0068] ただし、本実施形態のピックアップ装置 13では、記録層までの距離が異なる 2種類 の光ディスク 101および 102に対して共通の光学系を利用する。よって、光ディスク 1 02に対しても開口数 (NA)が 0. 85の対物レンズ 5が利用される。分解能は開口数( NA) 0. 65の対物レンズよりも 0. 85の対物レンズの方が高いため、例えば開口数( NA)を 0. 65相当に制限する等の手法を適用することで後者を利用すればよい。な お、ホログラムを利用して 0次光と ± 1次光の各焦点が 2種類の光ディスク 101および 102の記録層上に位置することも可能である。このようなホログラムを利用する例は図 7〜図 10を参照しながら後述する。  However, the pickup device 13 of the present embodiment uses a common optical system for the two types of optical disks 101 and 102 having different distances to the recording layer. Therefore, the objective lens 5 having a numerical aperture (NA) of 0.85 is also used for the optical disc 102. The resolution is higher for an objective lens with a numerical aperture (NA) of 0.65 than for an objective lens with a numerical aperture (NA) of 0.65, so the latter can be achieved by applying a technique such as limiting the numerical aperture (NA) to 0.65 or equivalent. Can be used. It is also possible to use the hologram to place the focal points of 0th order light and ± 1st order light on the recording layers of the two types of optical disks 101 and 102. An example of using such a hologram will be described later with reference to FIGS.
[0069] 以下、図 6 (a)および (b)の光路に関する量を定義する。図 6 (a)および (b)におい ては、共通の半導体レーザ光源 1が利用される。この光源 1の共振器長は L、共振器 内の屈折率は nである。  [0069] In the following, the quantities related to the optical paths in Figs. 6 (a) and (b) are defined. 6 (a) and 6 (b), a common semiconductor laser light source 1 is used. The resonator length of this light source 1 is L, and the refractive index in the resonator is n.
[0070] また、図 6 (a)において、光源 1から光ディスク 101の記録層までの光路長を L1とす る。また図 6 (b)において、光源 1から光ディスク 102の記録層までの光路長を L2とす る。これらの光路長は、光ディスク 101および 102に反りなどがなぐ理想的な平面状 態のディスクであるとしたときに定まる理論上の値であるとする。 [0071] 光路長 LIおよび L2は光路上の各媒質の屈折率を考慮して算出される値である。 すなわち「光路長」は、レーザ発光点から記録層までの物理的な距離ではなぐ実際 に光が感じる距離 (光路上の媒質に起因する光の進みにくさを考慮して定められる 距離)をいい、光の波長を基準として表される。たとえば屈折率が nの媒質中では光 の波長は lZnとなるため、この媒質の物理的な距離を Dとすれば、光路長は nDとな る。 In FIG. 6A, the optical path length from the light source 1 to the recording layer of the optical disc 101 is L1. In FIG. 6B, the optical path length from the light source 1 to the recording layer of the optical disk 102 is L2. These optical path lengths are assumed to be theoretical values determined when the optical discs 101 and 102 are discs in an ideal planar state in which there is no warp or the like. The optical path lengths LI and L2 are values calculated in consideration of the refractive index of each medium on the optical path. In other words, the `` optical path length '' refers to the distance that light actually feels rather than the physical distance from the laser emission point to the recording layer (the distance that is determined in consideration of the difficulty of light traveling due to the medium on the optical path). , Expressed with reference to the wavelength of light. For example, in a medium with a refractive index n, the wavelength of light is lZn, so if the physical distance of this medium is D, the optical path length is nD.
[0072] いま、光ディスク 101の最大面ぶれ量に対応する光路長を dl、光ディスク 102の最 大面ぶれ量に対応する光路長を d2とする。最大面ぶれ量とは、たとえば規格等にお いて許容された最大の面ぶれ量である。なお、空気の屈折率は 1であるため、光ピッ クアップ装置 13の通常の利用態様 (すなわち大気中での利用)においては、上述の 光路長 dlおよび d2の値は最大面ぶれ量の値と同じである。このときは、たとえば dl の値は 0. 3mm、後述するチルト制御により、結果的に d2の値も 0. 3mmである。  Now, it is assumed that the optical path length corresponding to the maximum surface blur amount of the optical disc 101 is dl, and the optical path length corresponding to the maximum surface blur amount of the optical disc 102 is d2. The maximum surface blur amount is, for example, the maximum surface blur amount allowed in the standard. Since the refractive index of air is 1, in the normal usage mode of the optical pickup device 13 (that is, usage in the atmosphere), the values of the optical path lengths dl and d2 described above are the maximum surface blur value. The same. In this case, for example, the value of dl is 0.3 mm, and as a result, the value of d2 is 0.3 mm as a result of tilt control described later.
[0073] まず光ディスク 101に関して、レーザ光源 1に戻り光ノイズを発生させないようにする ためには、負でない任意の整数を mとして、下記数 1の成立が必要である。  First, in order to prevent the optical disk 101 from returning to the laser light source 1 and generating optical noise, it is necessary to establish the following formula 1 where m is any non-negative integer.
[0074] (数 1)  [0074] (Equation 1)
mX nL<Ll -dl かつ Ll + dl < (m+ 1) X nL  mX nL <Ll -dl and Ll + dl <(m + 1) X nL
[0075] 図 6 (a)を参照すると、数 1は、光路長 L1を基準として ±dlの範囲力 m X nLから( m+ 1) X nLまでの範囲に入って!/、ることを規定して 、る。  [0075] Referring to Fig. 6 (a), Equation 1 specifies that ± dl range force m X nL to (m + 1) X nL is within the range from the optical path length L1! / And then.
[0076] 先に説明した図 4を参照してよりわ力りやすく説明すると、数 1の意味は、範囲 Aが、 実効共振器長 nLの整数倍の位置に跨らないことを規定している。具体的には、数 1 の第 1式は、範囲 Aの光源 1側の端部位置 (LI— dl)が、光源 1の実効共振器長 nL の m倍の位置 pよりも大きいことを意味している。また数 1の第 2式は、範囲 Aの光源 1 と反対側の端部位置 (LI + dl)が、光源 1の実効共振器長 nLの (m+ 1)倍の位置 q よりも小さいことを意味している。なお q=p+nLである。  [0076] To explain more easily with reference to FIG. 4 described above, the meaning of Equation 1 specifies that the range A does not extend over a position that is an integral multiple of the effective resonator length nL. Yes. Specifically, the first equation of Equation 1 means that the end position (LI-dl) of the range A on the light source 1 side is larger than the position p that is m times the effective resonator length nL of the light source 1. is doing. The second equation in Equation 1 indicates that the end position (LI + dl) on the opposite side of the light source 1 in range A is smaller than the position q that is (m + 1) times the effective resonator length nL of light source 1. I mean. Note that q = p + nL.
[0077] 次に光ディスク 102に関して、レーザ光源 1に戻り光ノイズを発生させないようにす るためには、任意の整数を mとして、下記数 2の成立が必要である。  Next, in order to prevent the optical disk 102 from returning to the laser light source 1 and generating optical noise, it is necessary to establish the following formula 2 where m is an arbitrary integer.
[0078] (数 2)  [0078] (Number 2)
mX nL<L2-d2 かつ L2 + d2く(m+ 1) X nL [0079] この数 2もまた数 1と同様に解釈される。なお、 mの値は数 1および数 2において同じ とする。 mX nL <L2-d2 and L2 + d2 (m + 1) X nL [0079] This number 2 is also interpreted in the same manner as the number 1. The value of m is the same in Equation 1 and Equation 2.
[0080] ここで光路長 L1および L2の大小関係を検討する。上述のように、光路長 L1は記 録層までの距離が最も短い光ディスク 101に対して規定され、光路長 L2は記録層ま での距離が最も長い光ディスク 102に対して規定される。よって、 LKL2である。  Here, the relationship between the optical path lengths L1 and L2 is examined. As described above, the optical path length L1 is defined for the optical disc 101 having the shortest distance to the recording layer, and the optical path length L2 is defined for the optical disc 102 having the longest distance to the recording layer. Therefore, it is LKL2.
[0081] さらに、光路長 dlおよび d2の大小関係も検討する。これらは光ディスク 101および 102のチルトマージンと同視できる。上述のように光ディスク 101は従来の DVD並の チルトマージンを確保しており、また光ディスク 102では光ディスクの光入射表面から 記録層までの距離は従来の DVDと同じである力 従来の DVDに比べると開口数 (N A)が大きくかつ短波長の光を適用することで収差の影響を受け、チルト制御を行うこ とで従来の DVDに近似するチルトマージンを有する。よって、光路長 dlおよび d2は 前述したように実質的には同じと考えることができる。  [0081] Furthermore, the magnitude relationship between the optical path lengths dl and d2 is also examined. These can be regarded as the tilt margin of the optical discs 101 and 102. As described above, the optical disc 101 has the same tilt margin as a conventional DVD, and the optical disc 102 has the same distance from the light incident surface of the optical disc to the recording layer as the conventional DVD. By applying light with a large numerical aperture (NA) and short wavelengths, it is affected by aberrations, and has a tilt margin that approximates that of a conventional DVD by performing tilt control. Therefore, the optical path lengths dl and d2 can be considered to be substantially the same as described above.
[0082] 光路長 L1および L2の大小関係および光路長 dlおよび d2の大小関係によれば、 数 1に現れる(LI— dl)は、数 2に現れる(L2— d2)よりも小さいといえる。よって、数 1の第 1式: m X nL<Ll— dl が満たされていれば、数 2の第 1式も満たされている といえる。同様に考えると、数 2の第 2式: L2 + d2< (m+ 1) X nL が満たされてい れば、数 2の第 2式も満たされているといえる。  [0082] According to the magnitude relationship between the optical path lengths L1 and L2 and the magnitude relation between the optical path lengths dl and d2, it can be said that (LI-dl) appearing in Equation 1 is smaller than (L2-d2) appearing in Equation 2. Therefore, if the first equation of Equation 1 is satisfied: m X nL <Ll-dl, it can be said that the Equation 1 of Equation 2 is also satisfied. In the same way, if the second equation of Equation 2: L2 + d2 <(m + 1) X nL is satisfied, the second equation of Equation 2 is also satisfied.
[0083] 以上をまとめると、以下の数 3が得られる。  [0083] Summarizing the above, the following Equation 3 is obtained.
(数 3)  (Equation 3)
mX nL<Ll -dl かつ L2 + d2く(m+ 1) X nL (m:負でない任意の整数) [0084] 数 3を満たすように光ピックアップ装置 13の光路長を設定すれば、光ディスク 101 に集光する場合、および、光ディスク 102に集光する場合のどちらにおいても、レー ザ発光点から記録層までの光路長がレーザ光源の実効共振器長 nLの整数倍となる ことがない。よって、いずれの光ディスクを使用しても、レーザ光の戻り光ノイズがピー クとなることを回避し、信号特性の劣化を抑えることができる。  mX nL <Ll -dl and L2 + d2 (m + 1) XnL (m: any non-negative integer) [0084] If the optical path length of the optical pickup device 13 is set so as to satisfy Equation 3, In both cases of condensing and condensing on the optical disc 102, the optical path length from the laser emission point to the recording layer does not become an integral multiple of the effective resonator length nL of the laser light source. Therefore, no matter which optical disk is used, it is possible to avoid the return light noise of the laser light from becoming a peak, and to suppress the deterioration of the signal characteristics.
[0085] 上述の説明では、記録層までの距離が最も短い光ディスク 101および最も長い光 ディスク 102を挙げて説明した。これらの光ディスクに関して数 3の関係が満たされて いれば、 3種類以上の光ディスクが装填されるときであっても、そのうちの任意の 2つ の光ディスクに関して数 3の関係は満たされる。よってどの光ディスクを使用しても、 上述の効果を得ることができる。 In the above description, the optical disk 101 having the shortest distance to the recording layer and the optical disk 102 having the longest distance have been described. If the relationship of number 3 is satisfied for these optical discs, any two of them can be loaded even when three or more types of optical discs are loaded. The relationship of number 3 is satisfied with respect to the optical disc. Therefore, the above-described effects can be obtained regardless of which optical disk is used.
[0086] 次に、図 7〜9を参照しながら、本実施形態による光ピックアップの第 1の変形例を 説明し、その後図 10を参照しながら、第 2の変形例を説明する。 Next, a first modification of the optical pickup according to the present embodiment will be described with reference to FIGS. 7 to 9, and then a second modification will be described with reference to FIG.
[0087] 図 7 (a)および (b)は、ホログラムレンズ 22を備えた光ピックアップにおける光路長と レーザ光源の共振器の関係を示す。図 7に示す構成は、ホログラムレンズ 22を有し ている点において、図 6に示す構成と相違する。以下ではこの相違点を説明する。図FIGS. 7A and 7B show the relationship between the optical path length in the optical pickup provided with the hologram lens 22 and the resonator of the laser light source. The configuration shown in FIG. 7 is different from the configuration shown in FIG. 6 in that the hologram lens 22 is provided. This difference will be described below. Figure
6に示す構成要素と同じ機能を有する構成要素には同じ参照符号を付し、その説明 は省略する。 Constituent elements having the same functions as the constituent elements shown in FIG.
[0088] ホログラムレンズ 22は、図 7 (a)において実線で示すように光ビームの 0次回折光( 透過光)を光ディスク 101の記録層に集束させ、図 7 (b)において実線で示すように 光ビームの士 1次回折光を光ディスク 102の記録層に集束させる。  The hologram lens 22 focuses the 0th-order diffracted light (transmitted light) of the light beam on the recording layer of the optical disc 101 as shown by the solid line in FIG. 7 (a), and as shown by the solid line in FIG. 7 (b). The first-order diffracted light is focused on the recording layer of the optical disk 102.
[0089] ホログラムレンズ 22には、光軸を含む中心領域 22aに格子パターンが設けられて おり、中心領域 22aの周囲に位置する周辺領域 22bには格子パターンは設けられて いない。  In the hologram lens 22, a grating pattern is provided in the central area 22a including the optical axis, and no grating pattern is provided in the peripheral area 22b positioned around the central area 22a.
[0090] 中心領域 22aに入射した光ビームは回折されて ± 1次回折光として対物レンズ 5に 入射する。そして、光ビームは光ディスク 102の記録層の位置に集束される。  The light beam incident on the central region 22a is diffracted and incident on the objective lens 5 as ± first-order diffracted light. Then, the light beam is focused on the position of the recording layer of the optical disc 102.
[0091] 周辺領域 22bに入射した光ビームはそのまま透過して 0次回折光として対物レンズ 5に入射する。そして光ビームは光ディスク 101の記録層の位置に集束される。  The light beam incident on the peripheral region 22b is transmitted as it is and enters the objective lens 5 as 0th-order diffracted light. Then, the light beam is focused on the position of the recording layer of the optical disc 101.
[0092] 図 7 (a)および (b)に示すようなホログラムレンズ 22を用いた構成を採用しても、レー ザ光源 1の発光点力 各光ディスクの記録層までの光路長 L3および L4力 レーザ光 源 1の実効共振器長 nLの整数倍にならないように光ピックアップ装置の光学系を調 整すればよい。光路長の定義は上述の通りである。図 6における光路長 L1および L2 をそれぞれ L3および L4と読み替え、上述の数 3を満たす関係になるように調整すれ ばよい。  [0092] Even if the configuration using the hologram lens 22 as shown in Figs. 7 (a) and (b) is adopted, the luminous point power of the laser light source 1 The optical path length L3 and L4 force to the recording layer of each optical disk The optical system of the optical pickup device may be adjusted so that it does not become an integral multiple of the effective resonator length nL of the laser light source 1. The definition of the optical path length is as described above. The optical path lengths L1 and L2 in Fig. 6 should be read as L3 and L4, respectively, and adjusted so that the relationship satisfying Equation 3 above is satisfied.
[0093] 以下、図 8および 9を参照しながら、ホログラムレンズ 22を詳細に説明する。  Hereinafter, the hologram lens 22 will be described in detail with reference to FIGS. 8 and 9.
[0094] ホログラムレンズ 22は、透明な基板に形成されている。図 8は、光軸方向から見た ホログラムレンズ 22の形状を示す。また図 9は、光軸を含む平面によるホログラムレン ズ 22の断面を示す。 The hologram lens 22 is formed on a transparent substrate. FIG. 8 shows the shape of the hologram lens 22 as viewed from the optical axis direction. Fig. 9 shows a hologram lens with a plane including the optical axis. 22 shows a cross section.
[0095] 各図に示すように、中心領域 22aの格子パターンは光軸方向力 見ると同心円状 であり、対物レンズ 5により決定される開口よりも小さな径の領域にのみ形成されてい る。また、周辺領域 22bには格子パターンは形成されていない。  As shown in each figure, the lattice pattern of the central region 22a is concentric when viewed in the direction of the optical axis, and is formed only in a region having a diameter smaller than the opening determined by the objective lens 5. In addition, no lattice pattern is formed in the peripheral region 22b.
[0096] ホログラムレンズ 22の + 1次回折光の回折効率は 100%未満であり、光ビームの 0 次回折光 (透過光)についても充分な強度を有するように設計されている。例えばホ ログラムレンズ 22の格子パターン 22aを図 9に示すような凹凸形状に成形する場合、 格子パターン 22aの凹凸の高さ hを、 hく λ Ζ (η— 1)のように設定する。ここで、 は 光ビームの波長、 ηはホログラムレンズの透明基板の屈折率である。  The diffraction efficiency of the + first-order diffracted light of the hologram lens 22 is less than 100%, and the 0th-order diffracted light (transmitted light) of the light beam is designed to have sufficient intensity. For example, when the lattice pattern 22a of the hologram lens 22 is formed into an uneven shape as shown in FIG. 9, the height h of the unevenness of the lattice pattern 22a is set as h λ Ζ (η-1). Where is the wavelength of the light beam, and η is the refractive index of the transparent substrate of the hologram lens.
[0097] すなわち、格子パターンにより光ビームに与える位相変化の振幅量を 2 πよりも小さ くすることにより、ホログラムレンズ 22のどの位置においても 0次回折光が充分な強度 を有するホログラムレンズ 22を実現することができる。  That is, the hologram lens 22 in which the 0th-order diffracted light has sufficient intensity at any position of the hologram lens 22 is realized by making the amplitude of the phase change given to the light beam by the grating pattern smaller than 2π. can do.
[0098] 同時に、 + 1次回折光及び 0次回折光が充分な強度を有することにより、相対的に 光ディスク 101または 102上に形成される集光ビームのサイドローブを低く抑えること ができる。なお、サイドローブとは、高次回折光等による不要な光量である。サイド口 ーブは記録ピット形状や再生信号を劣化させる原因となる。  At the same time, since the + first-order diffracted light and the 0th-order diffracted light have sufficient intensity, the side lobes of the condensed beam formed on the optical disc 101 or 102 can be relatively suppressed. The side lobe is an unnecessary amount of light due to high-order diffracted light or the like. Side grooves cause deterioration of recorded pit shape and playback signal.
[0099] ホログラムレンズ 22の格子パターンによる 0次回折光 (透過光)の位相は、格子パタ ーンにより与えられる位相変調量の平均値となる。これに対して、格子パターンのな Vヽ周辺領域 22bを透過した光束の位相を、格子パターン 22aによる 0次回折光とほぼ 同じに合わせることにより、対物レンズ 5による集光性能を向上させることができる。例 えば、ホログラムレンズ 22の格子パターンをレリーフ型にする場合、図 9に示すように 、格子パターンのない周辺領域 22bの表面の高さを、格子パターンの凹凸の平均レ ベルに合わせる。  [0099] The phase of the 0th-order diffracted light (transmitted light) by the grating pattern of the hologram lens 22 is an average value of the phase modulation amount given by the grating pattern. On the other hand, the focusing performance of the objective lens 5 can be improved by matching the phase of the light beam transmitted through the V ヽ peripheral region 22b without the grating pattern to approximately the same as the 0th-order diffracted light by the grating pattern 22a. . For example, when the grating pattern of the hologram lens 22 is a relief type, as shown in FIG. 9, the height of the surface of the peripheral region 22b without the grating pattern is adjusted to the average level of the irregularities of the grating pattern.
[0100] なお、ホログラムレンズ 22は 1つの光学素子として設けられるとして説明した力 たと えば対物レンズ 5の光源 1側の面上に直接設けることも可能である。  [0100] Note that the hologram lens 22 can be provided directly on the surface of the objective lens 5 on the light source 1 side, for example, with the force described as being provided as one optical element.
[0101] 次に、図 10を参照しながら、本実施形態による光ピックアップの第 2の変形例を説 明する。  Next, a second modification of the optical pickup according to the present embodiment will be described with reference to FIG.
[0102] 図 10 (a)および (b)は、第 1の変形例に対してさらに強度調整素子 23を備えた光ピ ックアップにおける光路長とレーザ光源の共振器の関係を示す。 [0102] Figs. 10 (a) and 10 (b) show an optical pin provided with an intensity adjusting element 23 in addition to the first modification. The relationship between the optical path length in the backup and the resonator of the laser light source is shown.
[0103] 強度調整素子 23は、駆動機構 (図示せず)によって光路上に挿抜可能に設けられ ており、光透過率を変化させて、光源 1が放射する光ビームの量子ノイズを低く保つ た状態で光パワーを変化させる光学素子である。たとえば、強度調整素子 23は、光 ディスク 101または 102に対する記録動作時には光路上に存在しない位置に退避さ れ、再生動作時には光路上に挿入される。  [0103] The intensity adjusting element 23 is provided so that it can be inserted into and removed from the optical path by a drive mechanism (not shown), and the light transmittance is changed to keep the quantum noise of the light beam emitted from the light source 1 low. It is an optical element that changes the optical power in a state. For example, the intensity adjusting element 23 is retracted to a position that does not exist on the optical path during the recording operation with respect to the optical disk 101 or 102, and is inserted into the optical path during the reproducing operation.
[0104] 強度調整素子 23を設ける理由は、記録動作時であっても再生動作時であっても、 正確な動作を実現することにある。記録動作時と再生動作時とではレーザ光源の発 光パワーが大きく異なる。言うまでもなく記録動作時の発光パワーの方が、再生動作 時の発光パワーよりも大きい。ところが、レーザ光源の発光パワーレベルを下げると、 レーザ発振が不安定となり得る。これは特に、青色レーザ光のレーザ光源に顕著で ある。そこで、強度調整素子 23を光路上に挿抜することによって、レーザ光源の発光 パワーレベルは一定にしつつ、記録動作時と再生動作時とに必要な光量を安定的 に確保できる。  [0104] The reason for providing the intensity adjusting element 23 is to realize an accurate operation regardless of whether it is a recording operation or a reproducing operation. The light emission power of the laser light source differs greatly between the recording operation and the reproduction operation. Needless to say, the light emission power during recording is greater than the light emission power during playback. However, when the emission power level of the laser light source is lowered, the laser oscillation can become unstable. This is particularly noticeable for blue laser light sources. Therefore, by inserting / removing the intensity adjusting element 23 on the optical path, it is possible to stably secure the light amount necessary for the recording operation and the reproducing operation while keeping the light emission power level of the laser light source constant.
[0105] ただし、光路上に強度調整素子 23が存在する場合の光路長と存在しない場合の 光路長は異なる。たとえば、図 10 (a)に示す例において、レーザ光源 1の発光点から 光ディスク 101の記録層までの光路長 L5は、強度調整素子 23が存在する力否かに よって変化する。したがって、いずれの場合においても、レーザ光源 1の発光点から 各光ディスクの記録層までの光路長が、レーザ光源 1の実効共振器長 nLの整数倍 にならな 、ように光ピックアップ装置の光学系を調整すればょ 、。これは光ディスク 1 02についても同様である。図 7における光路長 L3および L4をそれぞれ L5および L6 と読み替えればよい。光路長 L5および L6は、いずれも強度調整素子 23の有無によ つて変化するため、全ての場合において上述の数 3を満たす関係になるように調整 すればよい。  However, the optical path length when the intensity adjusting element 23 exists on the optical path is different from the optical path length when it does not exist. For example, in the example shown in FIG. 10 (a), the optical path length L5 from the light emitting point of the laser light source 1 to the recording layer of the optical disc 101 changes depending on whether or not the intensity adjusting element 23 exists. Therefore, in any case, the optical path length from the light emitting point of the laser light source 1 to the recording layer of each optical disk is not an integral multiple of the effective resonator length nL of the laser light source 1 so that the optical system of the optical pickup device If you adjust. The same applies to the optical disk 102. The optical path lengths L3 and L4 in Fig. 7 should be read as L5 and L6, respectively. Since the optical path lengths L5 and L6 both change depending on the presence or absence of the intensity adjusting element 23, the optical path lengths L5 and L6 may be adjusted so as to satisfy the above-described equation 3 in all cases.
[0106] (実施形態 2)  [Embodiment 2]
本発明の実施形態 2について説明する。  Embodiment 2 of the present invention will be described.
[0107] 図 11は、本実施形態による光ピックアップ装置 23の構成を示す。本実施形態によ る光ピックアップ装置 23は、実施形態 1による光ピックアップ装置 13に対して光路長 補正素子 15を加えて構成されている。光路長補正素子 15以外の構成については、 光ピックアップ装置 23は光ピックアップ装置 13と同じである。よって、以下では光路 長補正素子 15を詳細に説明し、それ以外の構成および動作の説明は省略する。 FIG. 11 shows a configuration of the optical pickup device 23 according to the present embodiment. The optical pickup device 23 according to the present embodiment is different from the optical pickup device 13 according to the first embodiment with respect to the optical path length. The correction element 15 is added. The optical pickup device 23 is the same as the optical pickup device 13 except for the optical path length correcting element 15. Therefore, in the following, the optical path length correction element 15 will be described in detail, and the description of other configurations and operations will be omitted.
[0108] なお、図 5の光ピックアップ装置 13に代えて本実施形態による光ピックアップ装置 2 3を利用することにより、光ディスク装置を製造することができる。この光ディスク装置 の構成および動作は図 5に関連して既に説明したとおりである。  Note that an optical disk device can be manufactured by using the optical pickup device 23 according to the present embodiment instead of the optical pickup device 13 of FIG. The configuration and operation of this optical disc apparatus have already been described with reference to FIG.
[0109] 光路長補正素子 15は屈折率が 1より大きい平行平板であり、光ビームの光路上に 出し入れすることができる。本実施形態においては、ミラー 4とァクチユエータ 6との間 の光路上に挿抜可能に配置されている。なお、光路長補正素子 15を挿抜するため にァクチユエータ(図示せず)が別途設けられる。このァクチユエータは、たとえば図 5 のサーボ制御回路 10からの駆動信号に基づいて光路長補正素子 15を移動させる。  [0109] The optical path length correction element 15 is a parallel plate having a refractive index larger than 1, and can be taken in and out of the optical path of the light beam. In the present embodiment, it is arranged so as to be insertable / removable on the optical path between the mirror 4 and the actuator 6. In order to insert / remove the optical path length correction element 15, an actuator (not shown) is separately provided. This actuator moves the optical path length correction element 15 based on, for example, a drive signal from the servo control circuit 10 of FIG.
[0110] いま、光路長補正素子 15の屈折率を n、光軸方向の厚さを hとする。光路長補正素 子 15が光路上挿入されている場合には、光路上力も外れている場合と比較して、光 路長が(n— l) hだけ長くなる。これにより光ディスクの記録層までの距離が最も短い か否かに応じて光路長を調節することが可能となる。  Now, it is assumed that the refractive index of the optical path length correction element 15 is n and the thickness in the optical axis direction is h. When the optical path length correcting element 15 is inserted on the optical path, the optical path length is increased by (n−l) h as compared with the case where the optical path force is also removed. This makes it possible to adjust the optical path length according to whether or not the distance to the recording layer of the optical disc is the shortest.
[0111] たとえば、記録層までの距離が最も短い光ディスク 101が装填されたときには、光 路長補正素子 15が光路に挿入され、光路長が延長される。一方、記録層までの距 離が最も長い光ディスク 102が装填されたときには、光路長補正素子 15が光路から 外される。光路長補正素子 15の挿入によって延長された光ディスク 101の記録層ま での光路長と、光路長補正素子 15が光路に存在しないときの光ディスク 102の記録 層までの光路長とを概ね等しくすればよ!、。  For example, when the optical disc 101 having the shortest distance to the recording layer is loaded, the optical path length correction element 15 is inserted into the optical path, and the optical path length is extended. On the other hand, when the optical disc 102 having the longest distance to the recording layer is loaded, the optical path length correction element 15 is removed from the optical path. If the optical path length to the recording layer of the optical disk 101 extended by the insertion of the optical path length correction element 15 is approximately equal to the optical path length to the recording layer of the optical disk 102 when the optical path length correction element 15 is not present in the optical path. Yeah!
[0112] 具体的には、 L2— Ll = (n— l) hとなるように hを設定することにより、光ディスク 10 1に対して光路長補正素子 15を挿入するだけで L 1が L 1 + (n— 1 ) h = L2に変化す る。この結果、 mX nL + dく L2 (m+ 1) X nL— dを満たせばよいことになる。  Specifically, by setting h so that L2−Ll = (n−l) h, L 1 is set to L 1 simply by inserting the optical path length correction element 15 into the optical disc 101. + (n— 1) h = L2. As a result, mX nL + d and L2 (m + 1) X nL-d need only be satisfied.
[0113] 換言すれば、半導体レーザ光源の共振器長を L、共振器内の屈折率を n、光デイス クに集光する際のレーザ発光点力 記録層までの光路長を L3、光ディスクの面ぶれ 量を d3としたときに、いずれのディスクに集光する際にも以下の数 4の関係を満たす ように光路長を調整すればょ 、。 [0114] (数 4) [0113] In other words, the cavity length of the semiconductor laser light source is L, the refractive index in the cavity is n, the laser emission point force when focusing on the optical disk is L3, and the optical path length to the recording layer is L3. If the amount of runout is d3, the optical path length should be adjusted so that the following formula 4 is satisfied when focusing on any disk. [0114] (Equation 4)
mX nL + d3<L3< (m+ 1) X nL— d3 (m:負でない任意の整数)  mX nL + d3 <L3 <(m + 1) X nL— d3 (m: any non-negative integer)
[0115] 数 4は、数 3において L1および L2を L3に置換し、 dlおよび d2を d3に置換して式 を整理したものである。 [0115] Equation 4 is an arrangement of Equation 3 by replacing L1 and L2 with L3 and substituting dl and d2 with d3 in Equation 3.
[0116] 以上のように、数 4を満たすように光ピックアップ装置 23の光路長を設定すれば、光 ディスク 101に集光する場合、および、光ディスク 102に集光する場合のどちらにお いても、レーザ発光点カゝら記録層までの光路長がレーザ光源の実効共振器長 nLの 整数倍となることがない。よって、いずれの光ディスクを使用しても、レーザ光の戻り 光ノイズがピークとなることを回避し、信号特性の劣化を抑えることができる。  [0116] As described above, if the optical path length of the optical pickup device 23 is set so as to satisfy the equation 4, it can be focused on the optical disc 101 or the optical disc 102. The optical path length from the laser emission point to the recording layer does not become an integral multiple of the effective resonator length nL of the laser light source. Therefore, regardless of which optical disk is used, it is possible to avoid the peak of the return light noise of the laser light and to suppress the deterioration of the signal characteristics.
[0117] なお、本実施形態による光ピックアップ装置 23は、光路長補正素子が光ディスクの 種類に応じて対物レンズの開口数 (NA)を変化させるための、開口を変化させる機 能を有していてもよい。  Note that the optical pickup device 23 according to the present embodiment has a function of changing the aperture so that the optical path length correction element changes the numerical aperture (NA) of the objective lens in accordance with the type of the optical disk. May be.
[0118] また、本実施形態による光路長補正素子 15に、実施形態 1による第 2の変形例で 説明した強度調整素子 23の機能を与えてもよい。  In addition, the function of the intensity adjusting element 23 described in the second modification according to the first embodiment may be given to the optical path length correcting element 15 according to the present embodiment.
[0119] 本実施形態においては、光路長補正素子 15を利用して光路長が調整されるとした 。し力し光路長を調整するのではなぐレーザ光源の実効共振器長 nLを可変にして 調整することにより、光路長がレーザ光源の実効共振器長 nLの整数倍にならないよ うにしてもよい。たとえば、レーザ光源内に、 2枚の曲率付き多重折り返し高反射率鏡 を対向して設け、 2枚の高反射率鏡間のレーザ光の反射回数を変えればよい。反射 回数を変化させることにより、共振器長を任意に延長し、または短縮することができる 。たとえば特開 2002— 171015号公報は、このような可変の実効共振器長を有する レーザ光源を開示する。なお、実効共振器長が可変であるときには光路長補正素子 15を省略してもよいが、光路長を微調整するために光路長補正素子 15を設けてもよ い。  In the present embodiment, the optical path length is adjusted using the optical path length correction element 15. Instead of adjusting the optical path length, the effective resonator length nL of the laser light source may be adjusted to be variable so that the optical path length does not become an integral multiple of the effective resonator length nL of the laser light source. . For example, two curved high-reflectivity mirrors with curvature may be provided in the laser light source so as to face each other, and the number of times of laser light reflection between the two high-reflectivity mirrors may be changed. By changing the number of reflections, the resonator length can be arbitrarily extended or shortened. For example, Japanese Patent Laid-Open No. 2002-171015 discloses a laser light source having such a variable effective resonator length. Note that the optical path length correction element 15 may be omitted when the effective resonator length is variable, but the optical path length correction element 15 may be provided to finely adjust the optical path length.
[0120] 上述の実施形態では、記録層までの距離が 0. 1mmの光ディスクと 0. 6mmの光 ディスクとを例に挙げたが、これは例である。本発明はその他の距離を有する光ディ スクに対しても適用することができる。  [0120] In the above-described embodiment, an optical disk having a distance to the recording layer of 0.1 mm and an optical disk having a distance of 0.6 mm are taken as examples, but this is an example. The present invention can also be applied to optical disks having other distances.
[0121] さらに、光ディスクの記録層の数は 1つであることを想定して説明した。しかし記録 層の数は 1つでも複数でもよい。複数の記録層が存在するときには、光入射側の面 力も最初の記録層までの深さを基準として、記録媒体の種類を定めればよい。なお、[0121] Furthermore, the description has been made assuming that the number of recording layers of the optical disc is one. But record The number of layers may be one or more. When there are a plurality of recording layers, the surface force on the light incident side may be determined based on the depth to the first recording layer. In addition,
1つの光ディスクであっても、複数の記録層を有する場合には、レーザ光を合焦させ る記録層の深さによって、レーザ光源の発光パワーを変化させる必要がある。その際Even if one optical disk has a plurality of recording layers, it is necessary to change the light emission power of the laser light source depending on the depth of the recording layer for focusing the laser light. that time
、実施形態 1の第 2の変形例において説明した強度調整素子 23を利用することがで きる。 The strength adjusting element 23 described in the second modification of the first embodiment can be used.
[0122] 上述の実施形態においては、複数種類の光ディスクに対して共通のレーザ光源が 利用されるとして説明した。しかし、光ピックアップ装置は、波長が異なる他のレーザ 光源をさらに搭載していてもよい。この構成によれば、より多種類の光ディスクに対し 、情報の記録 '再生が可能になる。  In the above-described embodiment, it has been described that a common laser light source is used for a plurality of types of optical disks. However, the optical pickup device may further include other laser light sources having different wavelengths. According to this configuration, it is possible to record and reproduce information on a wider variety of optical disks.
[0123] 光ディスクは情報記録媒体の一例であり、他に光学的にデータを読み出しおよび 書き込みできるカード等であってもよ 、。  [0123] An optical disk is an example of an information recording medium, and may be a card or the like that can optically read and write data.
産業上の利用可能性  Industrial applicability
[0124] 本発明によれば、記録再生時のレーザ戻り光ノイズによる信号特性の劣化を抑えた 、信頼性の高い光ピックアップ装置を製造することができる。さらにそのような光ピック アップ装置を組み込むことにより、信頼性の高い記録性能および再生性能を有する 光ディスク装置もまた製造することができる。 According to the present invention, it is possible to manufacture a highly reliable optical pickup device that suppresses deterioration of signal characteristics due to laser return light noise during recording and reproduction. Furthermore, by incorporating such an optical pickup device, an optical disc device having highly reliable recording performance and reproducing performance can also be manufactured.

Claims

請求の範囲 The scope of the claims
[1] 光入射側の表面力 記録層までの距離が異なる複数種類の情報記録媒体に対し て、共通のレーザ光源を用いてデータの読み出しおよび書き込みの少なくとも一方を 行うための光ピックアップ装置であって、  [1] Surface force on the light incident side An optical pickup device for performing at least one of reading and writing of data using a common laser light source on a plurality of types of information recording media having different distances to the recording layer. And
光ビームを発するレーザ光源と、  A laser light source that emits a light beam;
前記光ビームを情報記録媒体に集光し、前記情報記録媒体からの反射光を検出 する光学系とを備え、  An optical system that focuses the light beam on an information recording medium and detects reflected light from the information recording medium;
前記複数種類の情報記録媒体の各々に関し、前記レーザ光源の発光点から前記 記録層までの光路長が前記レーザ光源の実効共振器長の整数倍とならない値に設 定されている、光ピックアップ装置。  An optical pickup device in which the optical path length from the emission point of the laser light source to the recording layer is set to a value that does not become an integral multiple of the effective resonator length of the laser light source for each of the plurality of types of information recording media. .
[2] 前記レーザ光源の実効共振器長は、共振器長 Lおよび共振器内の屈折率 nの積で 表され、  [2] The effective resonator length of the laser light source is represented by the product of the resonator length L and the refractive index n in the resonator,
前記複数種類の情報記録媒体のうち、記録層までの距離が最も短い第 1記録媒体 および記録層までの距離が最も長い第 2情報記録媒体に関して、  Among the plurality of types of information recording media, the first recording medium having the shortest distance to the recording layer and the second information recording medium having the longest distance to the recording layer,
前記発光点から前記第 1記録媒体の記録層までの理論上の光路長を L1とし、 前記発光点から前記第 2記録媒体の記録層までの理論上の光路長を L2とし、 前記第 1記録媒体の面ぶれ量を dlとし、  The theoretical optical path length from the light emitting point to the recording layer of the first recording medium is L1, and the theoretical optical path length from the light emitting point to the recording layer of the second recording medium is L2, and the first recording The amount of surface blur of the medium is dl,
前記第 2記録媒体の面ぶれ量を d2としたとき、  When the amount of surface deflection of the second recording medium is d2,
mX nL<Ll -dl かつ L2 + d2く(m+ 1) X nL (m:負でない任意の整数) が満たされるように設定されて 、る、請求項 1に記載の光ピックアップ装置。  2. The optical pickup device according to claim 1, wherein mX nL <Ll −dl and L 2 + d 2 (m + 1) X nL (m: any non-negative integer) are set.
[3] 前記光学系は、前記光ビームの光路上に挿抜可能な光学素子を有しており、 前記第 1記録媒体および前記第 2記録媒体に対して行う動作に応じて、前記光学 素子を前記光ビームの光路上に配置して、前記レーザ光源の発光点から前記記録 層までの光路長を設定する、請求項 1に記載の光ピックアップ装置。 [3] The optical system includes an optical element that can be inserted into and extracted from an optical path of the light beam, and the optical element is operated according to an operation performed on the first recording medium and the second recording medium. 2. The optical pickup device according to claim 1, wherein the optical pickup device is disposed on an optical path of the light beam and sets an optical path length from a light emitting point of the laser light source to the recording layer.
[4] 前記光学系は、前記光ビームの光路上に挿抜可能な光学素子を有しており、 前記記録層までの距離に応じて前記光学素子を前記光ビームの光路上に配置し て、前記レーザ光源の発光点から前記記録層までの光路長を設定する、請求項 1に 記載の光ピックアップ装置。 [4] The optical system includes an optical element that can be inserted into and removed from the optical path of the light beam, and the optical element is disposed on the optical path of the light beam according to the distance to the recording layer. The optical pickup device according to claim 1, wherein an optical path length from a light emitting point of the laser light source to the recording layer is set.
[5] 前記レーザ光源の実効共振器長は、共振器長 Lおよび共振器内の屈折率 nの積で 表され、 [5] The effective resonator length of the laser light source is represented by the product of the resonator length L and the refractive index n in the resonator,
前記発光点から前記記録媒体の記録層までの理論上の光路長を L3とし、 前記記録媒体の面ぶれ量を d3としたときにおいて、  When the theoretical optical path length from the light emitting point to the recording layer of the recording medium is L3, and the amount of surface blur of the recording medium is d3,
mX nL + d3<L3< (m+ 1) X nL— d3 (m:負でない任意の整数)  mX nL + d3 <L3 <(m + 1) X nL— d3 (m: any non-negative integer)
が満たされるように設定されて!ヽる、請求項 4に記載の光ピックアップ装置。  Is set to be met! 5. The optical pickup device according to claim 4, wherein
[6] 前記光学系は、前記光ビームを前記情報記録媒体の記録層に集光する集光素子 を有しており、 [6] The optical system includes a condensing element that condenses the light beam on a recording layer of the information recording medium,
前記光学素子は、光ディスクの種類に応じて前記集光素子の開口数 (NA)を変化 させる、請求項 4に記載の光ピックアップ装置。  5. The optical pickup device according to claim 4, wherein the optical element changes a numerical aperture (NA) of the condensing element according to a type of the optical disk.
[7] 前記レーザ光源は、青色の波長領域にお!、て発光する光ビームを放射する、請求 項 1に記載の光ピックアップ装置。 7. The optical pickup device according to claim 1, wherein the laser light source emits a light beam that emits light in a blue wavelength region.
[8] 前記複数種類の情報記録媒体の各々は、 1または複数の記録層を有し、かつ、前 記表面から最初の記録層までの距離が異なっており、 [8] Each of the plurality of types of information recording media has one or more recording layers, and the distance from the surface to the first recording layer is different.
前記レーザ光源の発光点から前記最初の記録層までの光路長が、前記レーザ光 源の実効共振器長の整数倍とならな 、値に設定されて 、る、請求項 1に記載の光ピ ックアップ装置。  The optical pin according to claim 1, wherein an optical path length from a light emitting point of the laser light source to the first recording layer is set to a value that is not an integral multiple of an effective resonator length of the laser light source. A backup device.
[9] 前記情報記録媒体からの反射光を検出する光検出器をさらに有する請求項 1から 7の 、ずれかに記載の光ピックアップ装置、および、  [9] The optical pickup device according to any one of claims 1 to 7, further comprising a photodetector for detecting reflected light from the information recording medium, and
検出された前記反射光に基づいて、再生信号およびサーボ信号の少なくとも一方 を生成する信号処理回路を備えた情報処理装置。  An information processing apparatus comprising a signal processing circuit that generates at least one of a reproduction signal and a servo signal based on the detected reflected light.
PCT/JP2007/050245 2006-01-12 2007-01-11 Optical pickup device and information processor provided with such optical pickup device WO2007080925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-004416 2006-01-12
JP2006004416 2006-01-12

Publications (1)

Publication Number Publication Date
WO2007080925A1 true WO2007080925A1 (en) 2007-07-19

Family

ID=38256330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050245 WO2007080925A1 (en) 2006-01-12 2007-01-11 Optical pickup device and information processor provided with such optical pickup device

Country Status (1)

Country Link
WO (1) WO2007080925A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150756A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Optical pickup and optical disk device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287850A (en) * 1988-05-16 1989-11-20 Victor Co Of Japan Ltd Magneto-optical disk reproducing device
JPH1116188A (en) * 1997-06-26 1999-01-22 Victor Co Of Japan Ltd Semiconductor laser and optical pickup
JP2002334470A (en) * 2001-05-10 2002-11-22 Sankyo Seiki Mfg Co Ltd Optical head device
JP2003272215A (en) * 2002-03-13 2003-09-26 Rohm Co Ltd Optical pickup and optical disk system
JP2005038523A (en) * 2003-07-15 2005-02-10 Sony Corp Optical pickup and optical disk recording-and-reproducing device
JP2005064387A (en) * 2003-08-19 2005-03-10 Sony Corp Laser light source and optical pickup
JP2005209299A (en) * 2004-01-23 2005-08-04 Pioneer Electronic Corp Optical pickup and recording reproducing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287850A (en) * 1988-05-16 1989-11-20 Victor Co Of Japan Ltd Magneto-optical disk reproducing device
JPH1116188A (en) * 1997-06-26 1999-01-22 Victor Co Of Japan Ltd Semiconductor laser and optical pickup
JP2002334470A (en) * 2001-05-10 2002-11-22 Sankyo Seiki Mfg Co Ltd Optical head device
JP2003272215A (en) * 2002-03-13 2003-09-26 Rohm Co Ltd Optical pickup and optical disk system
JP2005038523A (en) * 2003-07-15 2005-02-10 Sony Corp Optical pickup and optical disk recording-and-reproducing device
JP2005064387A (en) * 2003-08-19 2005-03-10 Sony Corp Laser light source and optical pickup
JP2005209299A (en) * 2004-01-23 2005-08-04 Pioneer Electronic Corp Optical pickup and recording reproducing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150756A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Optical pickup and optical disk device
US8879375B2 (en) 2012-04-02 2014-11-04 Panasonic Corporation Optical pickup and optical disk device
JPWO2013150756A1 (en) * 2012-04-02 2015-12-17 パナソニックIpマネジメント株式会社 Optical pickup and optical disc apparatus

Similar Documents

Publication Publication Date Title
US20080084798A1 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
JP4447574B2 (en) Optical pickup and optical recording / reproducing apparatus
JP2002109775A (en) Optical pickup unit and object lens
JP2010157315A (en) Aspheric lens and optical pickup adopting the same as objective lens
JP4342439B2 (en) Double stacked optical data storage media and use of such media
JP4465838B2 (en) Optical pickup device and objective lens
US9105278B2 (en) Optical information recording medium having super-resolution film
KR101058859B1 (en) Optical pickup and recording and / or reproducing apparatus using the same
WO2009022747A1 (en) Optical pickup device and optical disc device provided with the same
WO2007080925A1 (en) Optical pickup device and information processor provided with such optical pickup device
KR100661898B1 (en) Optical disc apparatus
TWI383389B (en) Optical pickup and optical information processing device
JP4891530B2 (en) Manufacturing method of optical disk
JP4279485B2 (en) Objective lens and optical pickup device
KR20050012934A (en) Compatible optical pickup and optical recording and/or reproducing apparatus employing it
JP4419797B2 (en) Optical pickup device
JP2009134868A (en) Optical disk and recording and reproducing device therefor
JP2007048374A (en) Optical pickup and optical disk drive
JP2008226402A (en) Optical pickup device and correcting element
JP2005317120A (en) Optical pickup and optical recording medium recording/reproducing device
JPWO2008114549A1 (en) Optical pickup device
KR20080008946A (en) Object lens and optical pick-up apparatus having the same
KR20070018682A (en) Optical pickup and optical disc apparatus
JP2007080341A (en) Optical pickup apparatus
JP2008181657A (en) Optical disk and its recording and playing-back device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP