[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007074600A1 - 特徴抽出装置、特徴抽出方法、および特徴抽出プログラム - Google Patents

特徴抽出装置、特徴抽出方法、および特徴抽出プログラム Download PDF

Info

Publication number
WO2007074600A1
WO2007074600A1 PCT/JP2006/323695 JP2006323695W WO2007074600A1 WO 2007074600 A1 WO2007074600 A1 WO 2007074600A1 JP 2006323695 W JP2006323695 W JP 2006323695W WO 2007074600 A1 WO2007074600 A1 WO 2007074600A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sub
feature extraction
correlation
main
Prior art date
Application number
PCT/JP2006/323695
Other languages
English (en)
French (fr)
Inventor
Atsushi Marugame
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US12/086,778 priority Critical patent/US8374434B2/en
Priority to JP2007551868A priority patent/JPWO2007074600A1/ja
Publication of WO2007074600A1 publication Critical patent/WO2007074600A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/771Feature selection, e.g. selecting representative features from a multi-dimensional feature space
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/211Selection of the most significant subset of features
    • G06F18/2113Selection of the most significant subset of features by ranking or filtering the set of features, e.g. using a measure of variance or of feature cross-correlation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2135Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis

Definitions

  • the present invention relates to a feature extraction device, a feature extraction method, and a feature extraction program that extract features for data classification and collation.
  • the amount of information of a type that is difficult to acquire is less than that of a type of information that is difficult to acquire, that is, easy to acquire. End up.
  • measures such as collating or classifying data that lacks the type of information that has a high level of acquisition difficulty are excluded, or using only types of information that have a low level of difficulty to acquire. Then, it becomes difficult to improve the accuracy of classification and collation.
  • Patent Document 1 describes an image classification device (defect classification device) that automatically classifies defect images.
  • Patent Document 2 describes a correlation extraction device for image feature amounts.
  • Patent Document 3 describes a facial feature extraction device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-188906 (paragraph 0051)
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-157439 (paragraph 0022)
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-21924 (paragraphs 0028-0044)
  • Information that is not necessarily obtainable for all individual forces is referred to as information that is difficult to obtain. Even if it is difficult to obtain information that is difficult to acquire, it is preferable that features that are advantageous for classification and verification can be extracted using the acquired information that is difficult to acquire.
  • the feature is a feature used for data classification and collation.
  • the present invention provides a feature extraction device that can extract features that are advantageous for classification and collation using information that is difficult to obtain, even when information that is difficult to obtain cannot be obtained. It is an object to provide a feature extraction method and a feature extraction program. It is another object of the present invention to provide a feature extraction apparatus, a feature extraction method, and a feature extraction program that can perform feature extraction suitable for classification and collation. It is another object of the present invention to provide a feature extraction device, a feature extraction method, and a feature extraction program that can extract features depending on the internal structure of data such as appearance.
  • the feature extraction device is a feature extraction device that extracts the individual information of the main information power obtained from the individual power of the data, and based on the correlation between the main information and the sub-information different from the main information, It is characterized by a correlation feature extraction means for calculating the feature quantity of an individual using main information and sub information.
  • Sub-information storage means for example, sub-information input means 20 for storing sub-information classified into categories in advance, and the degree of attribution of each sub-information to the category is calculated.
  • Sub-information selecting means for selecting sub-information that is larger than the main information and the sub-information selected by the sub-information selecting means based on the correlation between the main information and the sub-information. It may be configured to calculate individual features!
  • the sub-information selection means performs the principal component analysis of the sub-information!
  • the correlation feature extracting means may be configured to calculate a feature amount using a difference between main information and sub information having the same dimension.
  • the feature extraction method according to the present invention is a feature extraction method for extracting individual features from main information obtained from an individual of data, wherein the correlation feature extraction means has sub-information different from the main information and the main information. Based on the correlation with, individual feature values are calculated using main information and sub information.
  • the sub information storage means stores the sub information classified into categories in advance, and the sub information selection means calculates the degree of attribution of each sub information to the category, and the degree of attribution is larger than a predetermined criterion.
  • This is a method in which the information is selected and the correlation feature extraction means calculates the feature quantity of the individual using the sub information selected by the main information and the sub information selection means based on the correlation between the main information and the sub information.
  • the sub-information selection means performs the principal component analysis of the sub-information!
  • the correlation feature extraction means may be a method of calculating a feature amount using a difference between main information and sub information having the same dimension.
  • a feature extraction program is a computer that extracts individual features from main information obtained from an individual of data, and stores sub-information that is classified into categories based on brilliantly different from main information.
  • a feature extraction program installed in a computer having sub information storage means (e.g., storage device 703) that uses the main information and sub information based on the correlation between the main information and the sub information.
  • sub information storage means e.g., storage device 703
  • the computer calculates the degree of attribution of each sub-information to the category, and executes a sub-information selection process for selecting sub-information whose degree of attribution is larger than a predetermined standard. It may be a program that calculates the feature quantity of an individual using main information and selected sub-information based on the correlation between sub-information and sub-information.
  • the computer performs the principal component analysis of the sub-information in the sub-information selection process, and the reconstruction error in the category to which the sub-information for which the attribution is calculated belongs and the category other than that category.
  • a program that calculates the degree of attribution using the average of reconstruction errors may be used.
  • the program may cause a computer to calculate a feature amount by using a difference between main information and sub information having the same dimension in correlation feature extraction.
  • the correlation feature extraction means calculates the feature amount of the individual using the main information and the sub information based on the correlation between the main information and the sub information different from the main information. Therefore, it is possible to extract features that depend on the internal structure of the data, such as eyesight.
  • the sub information selection means calculates the degree of attribution of each sub information to the category, selects sub information whose degree of belonging is larger than a predetermined criterion, and the correlation feature extraction means determines the main information and its information.
  • the feature amount of the individual is calculated using the selected sub information. Therefore, even if sub information cannot be obtained from all individuals, features can be extracted using the sub information.
  • the feature amount can be calculated by inputting the main information. Therefore, it is possible to facilitate the design of a data classification system.
  • information that is difficult to obtain for a representative individual is selected for information (information that is difficult to obtain) that cannot be obtained for all individual forces. Then, the information that is difficult to obtain is used as a feature extraction filter that extracts features that are easy to obtain. Easy-to-obtain information is information that can be obtained from each individual. An individual is one piece of data in each category.
  • the calculation of the degree of attribution is performed as follows (however, a more detailed description of the calculation of the degree of attribution will be described later.) 0
  • the power category to which each piece of data belongs Calculate the approximate expression by the member excluding self in, and record the expression error at that time (error in self-category).
  • an approximate expression by all members of each category to which the target individual does not belong is calculated, and the expression error at that time (unaffiliated) (Error in category).
  • calculate the average error for all unaffiliated categories is expressed as the difference between the average error in all unaffiliated categories and the error in its own category, or the ratio of the average error in all unaffiliated categories and the error in its own category. .
  • Information having a high degree of belonging defined as described above is information in which the characteristics of the own category with respect to other categories are emphasized. By using information with a high degree of attribution, the performance of data classification can be improved.
  • one category is one data and the other categories are one.
  • the definition of the degree of attribution is a reconstruction error in categories composed of other than self.
  • It and la the difference between them
  • FIG. 1 is a block diagram showing a configuration example of Embodiment 1 of the present invention.
  • the feature extraction apparatus according to Embodiment 1 includes a main information input unit 10, a sub information input unit 20, a sub information selection unit 30, and
  • the main information input means 10 inputs easily obtainable information as main information, and accumulates the input main information.
  • the sub information input means 20 inputs information that is difficult to obtain as sub information, and accumulates the input sub information.
  • the sub information selection means 30 selects difficult information that is effective for data classification and verification from the sub information input and stored in the sub information input means 20.
  • the correlation feature extraction unit 40 extracts a feature related to the correlation with the main information from the sub information selected by the sub information selection unit 30.
  • the extracted features are referred to when classifying or collating data.
  • the feature extraction apparatus may include a learning / identification means 50 for classifying and collating data.
  • the learning / identification means 50 is not an essential component of the feature extraction device.
  • the learning / identification unit 50 is an output destination from which the correlation feature extraction unit 40 outputs the feature.
  • FIG. 2 is a flowchart showing an example of processing progress by the feature extraction apparatus of the first embodiment.
  • the sub information input means 20 inputs information that is difficult to obtain as sub information, and accumulates (stores) the input sub information (step Sl). Accumulation of sub-information of step SI is performed in advance before step S2. Further, the sub information input means 20 inputs and accumulates each sub information in a lump.
  • An example of information that is difficult to obtain as sub-information is information obtained by a special device such as a range finder or a thermo camera. More specifically, three-dimensional information acquired by a range finder, a thermo image acquired by a thermo camera, and the like can be mentioned.
  • the sub information is information that is difficult to obtain compared to the main information.
  • the number of sub-information input and stored in step S1 may not be as large as the main information input and stored in step S2 described below. That is, the number of sub information may be smaller than the number of main information. Further, the sub-information input and stored in step S1 does not necessarily have to be information acquired from the same individual as the main information input and stored in step S2.
  • each sub-information input and accumulated in step S1 is classified into a categorized category.
  • the main information input means 10 inputs easy-to-acquire information as main information, and accumulates the input main information (step S2).
  • main information for example, an image obtained by a widely used device such as a camera can be cited. Images are often used for data classification and verification.
  • the manner in which the main information is input and stored by the main information input means 10 may be a mode in which each main information is input and stored in a lump.
  • the main information may be sequentially input and sequentially stored, and the processing after step S3 may be performed. Further, information generally used in a system for classifying and collating data may be diverted to be input to the main information input means 10 as main information.
  • the sub-information selecting unit 30 evaluates the attribute level of each sub-information category stored in the sub-information input unit 20, and selects sub-information having a high category attribute level (step S3).
  • the sub information selection means 30 performs the selection of the sub information based on the category attribution, for example, as follows.
  • the sub information selection means 30 selects the sub information for which the degree of attribution is calculated, and the sub information Enter the column vector and confirm the category (subject to i) to which the sub information belongs.
  • the sub-information that is a column vector is expressed as A.
  • the sub information selection means 30 calculates the reconstruction error g seli in its own category (the category to which the sub information selected as the attribute calculation target belongs).
  • the sub information selection means 30 may calculate the reconstruction error g seli by the following equation (2)!
  • norm is a norm amount such as a least square norm or a Manhattan distance.
  • the sub information selection means 30 calculates the average reconstruction error (average reconstruction error) g for the counter category at this time. Calculate thCTS .
  • the sub information selecting means 30 calculates the reconstruction error average g ° thCTS by the following equation (3).
  • the degree of category attribution of sub-information is the difference between the reconstruction error average g ° thCTS and the reconstruction error g seli in its own category, as shown in Equation (4) below.
  • Equation (5) the ratio between the average reconstruction error g ° thCTS and the reconstruction error g seli in its category (the average reconstruction error g ° relative to the reconstruction error g seli tCTS ratio).
  • the sub information selection unit 30 calculates the category attribution degree g bel ° ng of the sub information by the above formula (4) or formula (5). As described above, the sub-information selection means 30 evaluates the degree of attribution of each sub-information, and sorts out the sub-information with a high degree of category attribution.
  • Preferred, subsidiary information g bel ° ng i.e., sub-information g bel ° ng to be sorted
  • the self-category of the error of g eli is small instrument against category (reconstruction error of the own category) error (Perfection Category reconstruction error average) This is sub-information when g ° thCTS is large. If the error g seli of your own category is smaller and the error g ° of the counter category is larger than thCTS , the degree of attribution g bel ° regardless of the definition of the degree of attribution in either Equation (4) or Equation (5) ng is a larger value.
  • the sub information selection means 30 When the degree of membership g bel ° ng is defined as shown in equation (4), when g bel ° ng is 0 or less, it does not have the characteristics of its own category with respect to other categories. Therefore, when the degree of attribution g bel ° ng is defined as shown in Equation (4), the sub information selection means 30 also removes the sub information whose attribution degree g bel ° ng is 0 or less from the selection target power. This is true. In other words, it is preferable that the sub information selection unit 30 selects sub information whose attribution level g bel ° ng is greater than 0.
  • the sub-information selection means 30 also removes the sub-information whose degree of attribution g bel ° ng is 1 or less from the selection target power. Is this. In other words, it is preferable that the sub-information selecting unit 30 selects sub-information with the degree of attribution g bel ng greater than 1.
  • the sub-information selection means 30 has a large value of the degree of attribution g bel ° ng Select the sub information in order.
  • the effect can be expected.
  • the minimum estimated error F (I) obtained in this way is used as a feature value that reflects the degree of category attribution.
  • the correlation feature extraction means 40 calculates F (I) by the equation (6) using the sub-information X selected in step S3 and the main information stored in the main information input means 10.
  • the calculation result F (I) may be a feature.
  • Correlation feature extraction means 40 calculates the calculated feature
  • the feature quantity output by the correlation feature extraction means 40 is input to a learning / identification system (a system that classifies and collates data.
  • the learning'identification means 50 is input to the learning / identification system.
  • the function f does not necessarily have to be an accurate function.
  • the function f may be a simple map 1. If there is a known function indicating the relationship between the main information and the sub information, it is recommended to use the known function. As an example of a case where a known function can be used, there is a case where the main information Ii is an image and the sub information XI is based on an illumination space.
  • the basis of the illumination space is the amount of information that reflects the three-dimensional shape and reflectivity of the face, and the document ⁇ Peter N. Belhumeur, David J Knegman, What Is the Set of Images of an Object Under All Possible Illumination Conditions? ", International
  • s is called an illumination vector, and is a three-dimensional vector representing the direction and magnitude of illumination.
  • the correlation feature extraction means 40 minimizes the value of the equation (8) shown below.
  • the correlation feature extraction means 40 calculates the feature FO (Ii) by the following equation (9).
  • the correlation feature extracting means 40 calculates the feature amount using the difference between the main information I and the sub information X, as shown in Equation (9). You can calculate
  • the feature value F (I) obtained by the above equation (9) is the same as the feature value F (I) obtained by the equation (8).
  • 0 i 0 i is not a direct feature. However, it is a feature quantity that reflects the degree of attribution of the category by the main information and sub-information, and uses the property that the degree of attribution of the category by the main information and sub-information is reflected in the learning / identification system. can do.
  • the correlation feature extraction unit 40 outputs the obtained feature amount to the learning / identification unit 50, and the learning / identification unit 50 classifies and collates data based on the feature amount.
  • the learning / identification means 50 is not an essential component of the present invention.
  • the sub-information selecting unit 30 selects sub-information having a high category membership from the sub-information (information that is difficult to obtain), and the correlation feature extracting unit 40 uses the sub-information. To extract features. Therefore, even when information that is difficult to obtain cannot be obtained even with all individual strengths, it is possible to extract features that are advantageous for classification and collation using information that is difficult to obtain.
  • the correlation feature extraction means 40 extracts (calculates) the feature corresponding to the main information and the correlation power of the main information and the sub information, using the sub information classified in the category in advance as a feature extraction filter.
  • a feature having unique information for each category can be extracted.
  • This feature is advantageous for classification because it reflects the characteristics of the category to be classified. That is, in the present invention, feature extraction suitable for classification can be performed. For example, for the category , ⁇ , ⁇ , sub information as,
  • the correlation is strong for am and as, weak for am and
  • a feature vector reflecting the above is obtained.
  • the correlation is weak at
  • the correlation feature extraction means 40 uses the sub-information (information that is difficult to acquire) as a feature extraction filter, and uses the feature extraction filter to extract features from the main information (information that can be easily acquired). Do. Therefore, features that depend on the internal structure of the data, such as appearance, can be extracted.
  • the sub information selection means 30 selects effective sub information (the value of the degree of belonging is larger than the reference !, sub information), and the correlation feature extraction means 40 uses the sub information as a feature extraction filter. Use as. Further, the sub-information to be selected is input and stored in advance in the sub-information input means 20. Therefore, the main information input means 10 can extract features by inputting the main information. As a result, it is possible to easily design a system for performing classification and collation.
  • the sub-information selecting unit 30 may calculate the category membership level for each sub-information and sort the sub-information based on the level of the attribute level.
  • the main information input means 10 may sequentially input and store the main information, and the correlation feature extraction means 40 may extract features corresponding to the main information using the main information and the selected sub-information. . That is, step S3 may be executed before step S2.
  • FIG. 3 is a block diagram showing a configuration example of the second embodiment of the present invention.
  • the feature extraction apparatus of the second embodiment includes each device corresponding to each means described in the first embodiment. That is, the feature extraction device of Embodiment 2 includes a main information input device 100 and a sub information input as shown in FIG. A force device 200, a sub information sorting device 300, and a correlation feature extraction device 400. Also equipped with a learning and identification device 500.
  • the main information input device 100 corresponds to the main information input means 10 in the first embodiment, and operates in the same manner as the main information input means 10.
  • the sub information input device 200 corresponds to the sub information input unit 20 in the first embodiment, and operates in the same manner as the sub information input unit 20.
  • the sub information sorting device 300 corresponds to the sub information sorting unit 30 in the first embodiment, and operates in the same manner as the sub information sorting unit 30.
  • the correlation feature extraction apparatus 400 corresponds to the correlation feature extraction unit 40 in the first embodiment, and operates in the same manner as the correlation feature extraction unit 40.
  • the learning “identification device 500 corresponds to the learning” identification unit 50 in the first embodiment and operates in the same manner as the learning / identification unit 50.
  • each device 100 to 500 is the same as that of each means 10 to 50 (see FIG. 1) in the first embodiment, and the feature extraction device of the second embodiment is the same as that in steps S1 to S4 (see FIG. 2). Perform the action. Therefore, detailed description regarding the operation is omitted.
  • the configuration of each device will be described below.
  • FIG. 4 is an explanatory diagram showing a configuration example of the main information input apparatus 100.
  • the main information input device 100 is realized by a storage device 101 such as a disk or a memory, for example.
  • the manner in which the main information is input and stored in the main information input device 100 may be a mode in which the main information is input and stored (stored) in a lump.
  • the main information may be sequentially input and sequentially stored, and the processing after step S3 may be performed.
  • the main information is sequentially input and stored and the processes after step S3 are executed, it is preferable to use, for example, a DRAM capable of high-speed access as the storage apparatus 101.
  • the main information stored in the storage device 101 is read by the correlation feature extraction device 400 in step S4.
  • FIG. 5 is an explanatory diagram showing a configuration example of the sub information input device 200.
  • the sub information input device 200 is realized by a storage device 201 such as a disk or a memory, for example.
  • the sub information input device 200 is premised on inputting and accumulating sub information in a lump. Therefore, it is preferable to use, for example, a large capacity magnetic disk as the storage device 201.
  • the sub information stored in the storage device 201 is stored in the sub information sorting device 300 in step S3. To be read.
  • FIG. 6 is an explanatory diagram showing a configuration example of the sub information selection device 300.
  • the sub information sorting device 300 includes an arithmetic device 301 such as a CPU and a storage device 302 such as a disk or memory.
  • the arithmetic unit 301 reads each sub-information from the storage device 201 of the sub-information input device 200, calculates the attribution, and sub-information whose attribution is greater than the reference value. Sort out. This process is the same as the operation of the sub information selection unit 30 in the first embodiment.
  • the arithmetic device 301 accumulates the selected sub information in the storage device 302.
  • the sub information stored in the storage device 302 is read by the correlation feature extraction means 400 in step S4.
  • FIG. 7 is an explanatory diagram showing a configuration example of the correlation feature extraction apparatus 400.
  • the correlation feature extraction device 400 includes a calculation device 401 such as a CPU.
  • the arithmetic device 401 reads main information from the storage device 101 of the main information input device 100, and also reads sub information selected from the storage device 302 of the sub information sorting device 300. . Then, the arithmetic unit 401 calculates a feature corresponding to the main information from the correlation between the main information and the sub information according to the equation (6). The arithmetic device 401 outputs the calculated feature.
  • the learning / identification device 500 is the output destination of the feature.
  • FIG. 8 is an explanatory diagram showing a configuration example of the learning / identification device 500.
  • the learning / identification device 500 includes an arithmetic device 501 such as a CPU, a storage device 502 capable of high-speed access such as a DRAM memory that accumulates temporary calculation results, and a disk that stores the arithmetic results of the arithmetic device 501.
  • the computing device 501 uses the features output by the correlation feature extracting means 400 to perform calculations related to learning and identification, and accumulates the calculation results in the mass storage device 503.
  • the processing does not necessarily have to proceed in the order shown in FIG.
  • the sub-information sorting apparatus 300 may calculate the category membership level for each sub-information and sort the sub-information based on the magnitude of the degree of attribution.
  • the main information input device 100 sequentially inputs and accumulates main information and extracts correlation features.
  • the device 400 may extract features corresponding to the main information using the main information and the selected sub-information. That is, step S3 may be executed before step S2.
  • FIG. 9 is a block diagram showing a configuration example of Embodiment 3 of the present invention.
  • the feature extraction apparatus of the third embodiment includes an arithmetic device 701, a program storage unit 702, a storage device 703, a main information input unit 704, a sub information input unit 705, and an output unit 706.
  • the arithmetic device 701 controls the entire feature extraction device 700 according to the feature extraction program stored in the program storage unit 702, and executes the processing of each step described in the first embodiment.
  • the arithmetic device 701 is realized by a CPU, for example.
  • the feature extraction device 700 includes a buffer (not shown) for loading main information and sub information used by the arithmetic device 701 for the arithmetic operation.
  • the program storage unit 702 performs a feature extraction program that causes the arithmetic device 701 to execute processing. .
  • the storage device 703 stores the input main information and sub information.
  • the main information input unit 704 is a main information input interface
  • the sub information input unit 705 is a sub information input interface.
  • the input interface for main information and the input interface for sub information may be common.
  • the output unit 706 is an interface that outputs the features calculated by the arithmetic device 701.
  • the arithmetic device 701 inputs main information via the main information input unit 704 and accumulates the main information in the storage device 703. Similarly, the arithmetic device 701 inputs the sub information via the sub information input unit 705 and accumulates the sub information in the storage device 703.
  • the arithmetic device 701 performs sub-information selection in the same manner as the sub-information selection unit 30 in the first embodiment, and extracts features in the same manner as the correlation feature extraction unit 40 in the first embodiment.
  • the computing device 701 outputs the extracted features via the output unit 706.
  • an information input mode a group of data having main information and sub-information (however, some individual data lack sub-information) is input collectively (the first input mode and
  • the data group having the main information and the data group having the sub information are independently! /, And a small number of sub information is input and stored in the feature extraction device in advance.
  • Input mode No. 2 input modes).
  • FIG. 10 is a flowchart showing an example of processing progress of the arithmetic device 701 in the case of the first input mode. Note that the main information and sub information of the data group (the sub information of some individual data is missing and the number of sub information is less than the number of main information) is already input in a batch and stored in the storage device 703. It is assumed that
  • the computing device 701 loads one piece of main information of each individual into the buffer (step S100). Then, the computing device 701 determines the loadability of the sub-information of the same individual from which the main information is acquired (Steps S101 and S102). If the sub-information of the same individual as the individual from which the main information has been acquired does not exist and cannot be loaded (N in step S102), the process proceeds to step S100, and the processes after step S100 are repeated.
  • step S102 If the sub-information of the same individual as the individual from which the main information is obtained exists and can be loaded (Y in step S102), the arithmetic unit 701 loads the sub-information into the buffer (step S10 3).
  • step S104 the arithmetic unit 701 determines whether or not all the main information has been loaded into the buffer (step S104). If all the main information has not been loaded (N in step S104), the process proceeds to step S100, and the processes after step S100 are repeated.
  • step S105 the degree of attribution of each sub-information
  • step S106 the computing device 701 selects sub information according to the degree of attribution. The calculation of the degree of attribution and the selection of sub information in steps S105 and S106 may be performed in the same manner as the calculation and selection shown in the first embodiment.
  • the arithmetic device 701 extracts (calculates) the features of the main information using the selected sub-information as a feature extraction filter (step S107). This calculation may be performed in the same manner as the calculation shown in the first embodiment.
  • arithmetic device 701 determines whether or not the feature has been calculated for all the main information (step S108). If the feature has not been calculated for all the main information (N in Step S108), the process proceeds to Step S107, and the processes after Step S107 are repeated.
  • the computing device 701 outputs the calculated feature.
  • FIG. 11 is a flowchart showing an example of processing progress of the arithmetic device 701 in the case of the second input mode. It is a chart.
  • the second input mode it is assumed that only the sub information can be obtained in advance without having to acquire the main information and the sub information with the same individual strength.
  • such sub information is input in advance and stored in the storage apparatus 703.
  • Arithmetic unit 701 loads all the sub information into the buffer (step S200). Next, the computing device 701 calculates the category membership for each piece of sub information (step S201). After calculating the degree of attribution for one piece of sub information, the arithmetic device 701 determines whether the calculation of the degree of attribution has been completed for all the sub information (step S202). If the attribution calculation has not been completed for all the sub information (N in step S202), the process proceeds to step S201, and the processes in and after step S201 are repeated. If the calculation of the degree of attribution is completed for all the sub information (Y in step S202), the sub information is selected according to the size of the degree of attribution (step S203). The calculation of attribution and the selection of sub information may be performed in the same manner as the calculation and selection shown in the first embodiment.
  • the arithmetic unit 701 loads the sequentially input main information into the buffer (step S04). Then, the arithmetic device 701 uses the selected sub-information as a feature extraction filter to extract (calculate) the feature of the main information power (step S205). This calculation may be performed in the same manner as the calculation shown in the first embodiment.
  • Embodiment 3 the same effect as in Embodiment 1 can be obtained.
  • the present invention provides, for example, classification of personal data required for collection of customer data such as a convenience store, security in an immigration system, entertainment services such as game centers and mobile terminal applications, etc. It can be applied to feature extraction that is used for collation of human data.
  • FIG. 1 is a block diagram showing a configuration example of Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an example of processing progress by the feature extraction apparatus of the present invention.
  • FIG. 3 is a block diagram showing a configuration example of Embodiment 2 of the present invention.
  • FIG. 4 is an explanatory diagram showing a configuration example of a main information input device.
  • FIG. 5 is an explanatory diagram showing a configuration example of a sub information input device.
  • FIG. 6 is an explanatory diagram showing a configuration example of a sub information selection device.
  • FIG. 7 is an explanatory diagram showing a configuration example of a correlation feature extraction apparatus.
  • FIG. 8 is an explanatory diagram showing a configuration example of a learning / identification device.
  • FIG. 9 is a block diagram showing a configuration example of Embodiment 3 of the present invention.
  • FIG. 10 is a flowchart showing an example of processing progress of the arithmetic device.
  • FIG. 11 is a flowchart showing an example of processing progress of the arithmetic device. Explanation of symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Image Analysis (AREA)

Abstract

【課題】取得困難な情報を全個体から取得できない場合であっても、取得困難な情報を用いて、分類や照合に有利な特徴を抽出することができるようにする。 【解決手段】副情報入力手段20は、取得困難な情報を副情報として入力し、入力した副情報を蓄積する。主情報入力手段10は、取得容易な情報を主情報として入力し、入力した主情報を蓄積する。副情報選別手段30は、蓄積された各副情報のカテゴリの帰属度を評価し、カテゴリの帰属度の高い副情報を選別する。相関特徴抽出手段40は、副情報選別手段30によって選別された副情報を特徴抽出フィルタとして用い、主情報を副情報の相関関係から主情報に対応する特徴を抽出する。

Description

明 細 書
特徴抽出装置、特徴抽出方法、および特徴抽出プログラム
技術分野
[0001] 本発明は、データの分類や照合のための特徴を抽出する特徴抽出装置、特徴抽 出方法、および特徴抽出プログラムに関する。
背景技術
[0002] 複数の個体によるデータ群において、分類や照合を行う際に、各個体に対して画 像および三次元情報のように 2種類以上の情報が用いられることがある。複数種類の 情報を用いることにより、分類や照合の精度は一般的に向上する。
[0003] しかし、情報によっては、取得難易度 (情報の取得しやすさ)に差がある。例えば、 上記の画像および三次元情報の例において、画像は、カメラによって容易に取得す ることが可能である。一方、三次元情報を取得するためには、例えばレンジファインダ を用いる必要がある。レンジファインダは、一般的にカメラほど普及しておらず、また、 高額で使用制限があるので、三次元情報の取得は、画像の取得よりも難しくなる。
[0004] このように情報の取得難易度に差がある場合、取得難度の高い、すなわち取得しに くい種類の情報量は、取得難度の低い、すなわち取得しやすい種類の情報よりも、 少なくなつてしまう。そのような場合、取得難度の高い種類の情報が欠落したデータ を照合や分類の対象力 外したり、取得難度の低い種類の情報だけを用いて照合や 分類を行うなどの処置がとられる。すると、分類や照合の精度を向上させにくくなる。
[0005] 特許文献 1には、欠陥画像を自動分類する画像分類装置 (欠陥分類装置)が記載 されている。特許文献 2には、画像特徴量の相関抽出装置が記載されている。特許 文献 3には、顔特徴抽出装置が記載されている。
[0006] 特許文献 1:特開 2001— 188906号公報(段落 0051)
特許文献 2:特開 2003— 157439号公報 (段落 0022)
特許文献 3:特開 2004 - 21924号公報(段落 0028 - 0044)
発明の開示
発明が解決しょうとする課題 [0007] 「全個体力 必ずしも取得可能ではな 、情報」を、取得困難な情報と記す。取得困 難な情報を全個体力 取得できな!、場合であっても、取得できた取得困難な情報を 用いて、分類や照合に有利な特徴を抽出できることが好ましい。ここで、特徴とは、デ ータの分類や照合に用いられる特徴のことである。
[0008] また、分類や照合に適した特徴抽出を行えることが好ま 、。
[0009] また、見かけなどデータの内部構造に依存した特徴抽出を行えることが好ましい。
[0010] そこで、本発明は、取得困難な情報を全個体力 取得できない場合であっても、取 得困難な情報を用いて、分類や照合に有利な特徴を抽出することができる特徴抽出 装置、特徴抽出方法、および特徴抽出プログラムを提供することを目的とする。また、 分類や照合に適した特徴抽出を行うことができる特徴抽出装置、特徴抽出方法、お よび特徴抽出プログラムを提供することを目的とする。また、見かけなどデータの内部 構造に依存した特徴を抽出することができる特徴抽出装置、特徴抽出方法、および 特徴抽出プログラムを提供することを目的とする。
課題を解決するための手段
[0011] 本発明による特徴抽出装置は、データの個体力 得られる主情報力も個体の特徴 を抽出する特徴抽出装置であって、主情報と主情報とは異なる副情報との相関関係 に基づき、主情報および副情報を用いて、個体の特徴量を計算する相関特徴抽出 手段を備えたことを特徴とする。
[0012] あらかじめカテゴリに分類された副情報を記憶する副情報記憶手段 (例えば、副情 報入力手段 20)と、各副情報のカテゴリへの帰属度を計算し、帰属度が所定の基準 よりも大きい副情報を選別する副情報選別手段とを備え、相関特徴抽出手段が、主 情報と副情報との相関関係に基づき、主情報および副情報選別手段によって選別さ れた副情報を用いて、個体の特徴量を計算する構成であってもよ!ヽ。
[0013] 副情報選別手段が、副情報の主成分分析を行!ヽ、帰属度の計算対象とした副情 報が所属するカテゴリでの再構成誤差と、そのカテゴリ以外のカテゴリにおける再構 成誤差の平均とを用いて帰属度を計算する構成であってもよ 、。
[0014] 相関特徴抽出手段が、次元が同じ主情報および副情報の差分を用いて特徴量を 計算する構成であってもよ ヽ。 [0015] 本発明による特徴抽出方法は、データの個体から得られる主情報から個体の特徴 を抽出する特徴抽出方法であって、相関特徴抽出手段が、主情報と主情報とは異な る副情報との相関関係に基づき、主情報および副情報を用いて、個体の特徴量を計 算することを特徴とする。
[0016] 副情報記憶手段が、あらかじめカテゴリに分類された副情報を記憶し、副情報選別 手段が、各副情報のカテゴリへの帰属度を計算し、帰属度が所定の基準よりも大きい 副情報を選別し、相関特徴抽出手段が、主情報と副情報との相関関係に基づき、主 情報および副情報選別手段によって選別された副情報を用いて、個体の特徴量を 計算する方法であってもよ 、。
[0017] 副情報選別手段が、副情報の主成分分析を行!ヽ、帰属度の計算対象とした副情 報が所属するカテゴリでの再構成誤差と、そのカテゴリ以外のカテゴリにおける再構 成誤差の平均とを用いて帰属度を計算する方法であってもよ 、。
[0018] 相関特徴抽出手段が、次元が同じ主情報および副情報の差分を用いて特徴量を 計算する方法であってもよ 、。
[0019] 本発明による特徴抽出プログラムは、データの個体から得られる主情報から個体の 特徴を抽出するコンピュータであって、主情報とは異なりあら力じめカテゴリに分類さ れた副情報を記憶する副情報記憶手段 (例えば、ストレージ装置 703)を備えたコン ピュータに搭載される特徴抽出プログラムであって、コンピュータに、主情報と副情報 との相関関係に基づき、主情報および副情報を用いて、個体の特徴量を計算する相 関特徴抽出処理を実行させることを特徴とする。
[0020] コンピュータに、各副情報のカテゴリへの帰属度を計算し、帰属度が所定の基準よ りも大きい副情報を選別する副情報選別処理を実行させ、相関特徴抽出処理で、主 情報と副情報との相関関係に基づき、主情報および選別された副情報を用いて、個 体の特徴量を計算させるプログラムであってもよ 、。
[0021] コンピュータに、副情報選別処理で、副情報の主成分分析を行わせ、帰属度の計 算対象とした副情報が所属するカテゴリでの再構成誤差と、そのカテゴリ以外のカテ ゴリにおける再構成誤差の平均とを用いて帰属度を計算させるプログラムであっても よい。 [0022] コンピュータに、相関特徴抽出で、次元が同じ主情報および副情報の差分を用い て特徴量を計算させるプログラムであってもよ 、。
[0023] 本発明では、相関特徴抽出手段が、主情報と主情報とは異なる副情報との相関関 係に基づき、主情報および副情報を用いて、個体の特徴量を計算する。従って、見 力けなどデータの内部構造に依存した特徴を抽出することができる。
[0024] また、副情報選別手段が、各副情報のカテゴリへの帰属度を計算し、帰属度が所 定の基準よりも大きい副情報を選別し、相関特徴抽出手段が、主情報およびその選 別された副情報を用いて、個体の特徴量を計算する。従って、副情報を全個体から 取得できな 、場合であっても、副情報を用いて特徴を抽出することができる。
[0025] また、あら力じめカテゴリに分類された副情報を用いるので、カテゴリ毎の固有の情 報を持つ特徴量を計算することができる。その結果、データの分類に適した特徴量を 計算することができる。
[0026] また、あらかじめカテゴリに分類された副情報を記憶する副情報記憶手段を備える ことにより、主情報を入力すれば特徴量を計算することができる。従って、データ分類 を行うシステムの設計を容易にすることができる。
発明の効果
[0027] 本発明によれば、取得困難な情報を全個体力 取得できな 、場合であっても、取 得困難な情報を用いて、分類や照合に有利な特徴量を計算することができる。また、 見かけなどデータの内部構造に依存した特徴量を計算することができる。また、デー タの分類に適した特徴量を計算することができる。また、データ分類を行うシステムの 設計を容易にすることができる。
発明を実施するための最良の形態
[0028] 本発明では、全個体力 必ずしも取得可能でな 、情報 (取得困難な情報)に関して 、代表的な個体の取得困難な情報を選択する。そして、その取得困難な情報を、取 得容易な情報カゝら特徴を抽出する特徴抽出フィルタとして用いる。取得容易な情報と は、各個体から取得することができる情報である。また、個体は、各カテゴリ内の一つ のデータである。
[0029] 取得困難な情報の代表的な個体の選択は、取得困難な各情報のカテゴリの帰属 度を用いて行う。「カテゴリの帰属度が高い。」とは、データが所属するカテゴリの他の メンバによる近似表現は容易で、他のカテゴリのメンバによる近似表現が困難な状態 であることを意味している。
[0030] 帰属度の計算は、例えば、以下のように行う(ただし、帰属度の計算のより詳細な説 明については後述する。 )0個々のデータに関して、その個々のデータが所属する力 テゴリでの自己を除いたメンバによる近似表現を計算し、そのときの表現誤差(自力テ ゴリでの誤差)を記録する。また、着目している個体が所属していない各カテゴリの全 メンバによる近似表現(同一カテゴリ内のメンバによる近似表現と同一の方法による近 似表現)を計算し、そのときの表現誤差 (未所属カテゴリでの誤差)を計算する。さら に、全未所属カテゴリでの誤差の平均を計算する。帰属度は、全未所属カテゴリでの 誤差の平均と、自カテゴリでの誤差との差、または、全未所属カテゴリでの誤差の平 均と、自カテゴリでの誤差との比として表される。
[0031] このように定義された帰属度が高い情報は、他カテゴリに対する自カテゴリの特徴 が強調された情報となる。帰属度が高い情報を用いることによって、データ分類の性 能を向上させることができる。
[0032] 照合の場合、自カテゴリが 1データとなり、他のカテゴリが 1つになる。そして、帰属 度の定義は、自己以外で構成されたカテゴリでの再構成誤差となる。
[0033] 取得困難な情報のうち帰属度が高い個体 (より具体的には、その個体から取得した 取得困難な情報)を選別し、特徴抽出フィルタとする。特徴抽出は、取得容易な情報 に対して、取得容易な情報と取得困難な情報との相関関係を用いて行う。取得容易 な情報と取得困難な情報との相関関係として両者の差を用いることが、最も簡単な場 合の例として挙げられる。また、画像と照明空間基底のように関係が明確な場合には 、その関係を相関関係として用いることがよい。このように相関関係は、データの内部 構造を反映するため、抽出される特徴もデータに影響される。
[0034] また、特徴抽出フィルタとして用いられる取得困難な情報は、任意に選択されるの ではなぐ帰属度に基づいて選択されている。換言すれば、カテゴリの性質を代表し た分類、照合に有利な情報 (取得困難な情報)が選択される。従って、分類や照合に 有利な特徴を抽出することができる。 [0035] 次に、再構成誤差、および誤差最小推定誤差について説明する。まず、再構成誤 差について説明する。本物 (真)の情報 (例えば、真の画像)を Itとする。情報 Itは、要 素 P1, · ' · , Ρηと、関数 f ( により、 It=f (Pl, Ρ2, · · · , Pn)と表されるとする。また 、不備のある要素 P1, · · · , Pnと、関数 f ( により再構成した情報を laとする。情報 la は不備のある要素 PI, · · · , Pnにより、 Ia=f (Pl, · · · , Pn)と表せる。 laにおいて、 要素に不備があるため、真の情報 Itと情報 laは一致しない。この両者 (Itおよび la)の 差を、再構成誤差と呼ぶ。
[0036] また、情報 Itを f (P1, · · · , Pn)により推定する場合、通常、再構成誤差が最小にな るような推定法 (例えば、最小二乗推定)で推定する。このときの誤差が、誤差最小推 定誤差である。
[0037] 次に、本発明の実施形態を図面を参照して説明する。
[0038] (実施形態 1)
図 1は、本発明の実施形態 1の構成例を示すブロック図である。実施形態 1による特 徴抽出装置は、主情報入力手段 10と、副情報入力手段 20と、副情報選別手段 30と
、相関特徴抽出手段 40とを備える。
[0039] 主情報入力手段 10は、取得容易な情報を主情報として入力し、入力した主情報を 蓄積する。副情報入力手段 20は、取得困難な情報を副情報として入力し、入力した 副情報を蓄積する。
[0040] 副情報選別手段 30は、副情報入力手段 20に入力され蓄積された副情報から、デ ータの分類や照合に有効である取得困難な情報を選別する。
[0041] 相関特徴抽出手段 40は、副情報選別手段 30によって選別された副情報から主情 報との相関に関する特徴を抽出する。
[0042] 抽出された特徴は、データの分類や照合を行うときに参照される。特徴抽出装置は 、データの分類や照合を行う学習 ·識別手段 50を備えていてもよい。ただし、学習' 識別手段 50は、特徴抽出装置の必須の構成要素ではない。特徴抽出装置が学習- 識別手段 50を備える場合、学習'識別手段 50は、相関特徴抽出手段 40が特徴を出 力する出力先となる。
[0043] 次に、動作について説明する。 図 2は、実施形態 1の特徴抽出装置による処理経過の例を示すフローチャートであ る。副情報入力手段 20は、取得困難な情報を副情報として入力し、入力した副情報 を蓄積 (記憶)する (ステップ Sl)。ステップ SIの副情報の蓄積は、ステップ S2より前 に事前に行う。また、副情報入力手段 20は、各副情報を一括して入力し、蓄積する。 副情報となる取得困難な情報の例として、例えば、レンジファインダゃサーモカメラな どの特殊な装置によって取得される情報が挙げられる。より具体的には、レンジフアイ ンダで取得される三次元情報や、サーモカメラで取得されるサーモ画像などが挙げら れる。副情報は、主情報と比較して、取得が困難な情報である。
[0044] ステップ S1にお 、て入力、蓄積される副情報の数は、次に説明するステップ S2で 入力、蓄積される主情報ほど多くの数でなくてもよい。すなわち、副情報の数は、主 情報の数よりも少なくてよい。また、ステップ S1において入力、蓄積される副情報は、 必ずしも、ステップ S2で入力、蓄積される主情報と同一の個体から取得された情報 でなくてもよい。
[0045] また、ステップ S1において入力、蓄積される各副情報は、あら力じめカテゴリに分類 されている。
[0046] 主情報入力手段 10は、取得容易な情報を主情報として入力し、入力した主情報を 蓄積する (ステップ S 2)。主情報となる取得容易な情報の例として、例えば、カメラな どの広く普及した装置によって取得される画像が挙げられる。画像は、データの分類 や照合において、よく用いられる情報である。主情報入力手段 10の主情報の入力お よび蓄積の態様は、各主情報を一括して入力して、蓄積する態様であってもよい。ま た、各主情報を逐次入力、逐次蓄積して、ステップ S3以降の処理を行う態様であつ てもよい。また、データの分類や照合を行うシステムで一般的に用いられる情報を流 用して、主情報として主情報入力手段 10に入力されるようにしてもよい。
[0047] 副情報選別手段 30は、副情報入力手段 20に蓄積された各副情報のカテゴリの帰 属度を評価し、カテゴリの帰属度の高い副情報を選別する (ステップ S3)。副情報選 別手段 30は、カテゴリの帰属度による副情報の選別を、例えば、以下のようにして行 うことがさる。
[0048] 副情報選別手段 30は、帰属度を計算する対象となる副情報を選択し、その副情報 を列ベクトルィ匕し、その副情報が所属するカテゴリ (iとする。)を確認する。また、ここ で、列ベクトルィ匕した副情報を Aと表すことにする。副情報選別手段 30は、カテゴリ i の副情報のうち副情報 A以外のメンバ(Leave-One-Out )で主成分分析を行う。この 主成分分析の結果を、 ^= [Ρΐ', · · , Pk1, · · · , Ρχ とする。そして、副情報選別手 段 30は、以下に示す を計算する。以下に示す式(1)において、 "T"は転置を表し ている。
[0049] t[ = [tO1, · · · , tx1] τ = ATpi 式( 1 )
[0050] 次に、副情報選別手段 30は、自カテゴリ(帰属度の計算対象として選択した副情報 が所属するカテゴリ)での再構成誤差 gseliを計算する。副情報選別手段 30は、以下 に示す式 (2)によって再構成誤差 gseliを計算すればよ!ヽ。
[0051] gseli = norm ( A—PV) = norm (A—piATpi) 式(2)
[0052] ここで、 norm ( は、最小二乗ノルム、マンハッタン距離などのノルム量である。
[0053] 副情報 Aが所属しない対抗カテゴリが、カテゴリ 1, · · · , j, · · '?^(;1≠ の?^ー1個ぁ るとする。副情報選別手段 30は、その N— 1個の各カテゴリで主成分分析を行う。各 カテゴリでの主成分分析の結果を、 Pj= [Plj, · · · , Pkj, · · · , Pxj]とする。
[0054] 副情報選別手段 30は、このときの対抗カテゴリの再構成誤差平均 (再構成誤差の 平均) gthCTSを計算する。副情報選別手段 30は、以下に示す式 (3)によって再構成 誤差平均 g°thCTSを計算すればょ 、。
[0055] [数 1] gothers = -PjATPj )
Figure imgf000010_0001
式 (3)
[0056] 副情報のカテゴリ帰属度 (gbel°ngとする。 )は、以下に示す式 (4)に示すように再構成 誤差平均 g°thCTSと自カテゴリでの再構成誤差 gseliとの差として、または、以下に示す式 (5)に示すように再構成誤差平均 g°thCTSと自カテゴリでの再構成誤差 gseliとの比 (再構 成誤差 gseliに対する再構成誤差平均 g°tCTSの比)として定義される。
[0057] gbelone=g°thers-gself 式 (4)
[0058]
Figure imgf000010_0002
式 (5) [0059] 従って、副情報選別手段 30は、上記の式 (4)または式(5)によって副情報のカテゴ リ帰属度 gbel°ngを計算する。副情報選別手段 30は、以上のようにして、各副情報の力 テゴリの帰属度を評価し、カテゴリの帰属度の高!、副情報を選別する。
[0060] 好ま 、副情報 gbel°ng (すなわち、選別すべき副情報 gbel°ng)は、自カテゴリの誤差 ( 自カテゴリでの再構成誤差) g eliが小さぐ対抗カテゴリの誤差 (対抗カテゴリの再構 成誤差平均) g°thCTSが大き 、場合における副情報である。自カテゴリの誤差 gseliがより 小さぐ対抗カテゴリの誤差 g°thCTSがより大きい場合には、式 (4)と式 (5)のいずれの 帰属度の定義であっても、帰属度 gbel°ngは、より大きな値となる。
[0061] 帰属度 gbel°ngを式 (4)に示すように定義した場合には、 gbel°ngが 0以下のときには、 他のカテゴリに対する自カテゴリの特性を持たないことになる。よって、帰属度 gbel°ng を式 (4)に示すように定義した場合には、副情報選別手段 30は、帰属度 gbel°ngが 0以 下となった副情報を選択対象力も外すことがこのましい。換言すれば、副情報選別手 段 30は、帰属度 gbel°ngが 0よりも大きくなる副情報を選別することが好ま 、。
[0062] また、帰属度 gbel°ngを式 (5)に示すように定義した場合には、 gbel°ngが 1以下のときに は、他のカテゴリに対する自カテゴリの特'性を持たないことになる。よって、帰属度 gbel °ngを式 (5)に示すように定義した場合には、副情報選別手段 30は、帰属度 gbel°ngが 1 以下となった副情報を選択対象力も外すことがこのましい。換言すれば、副情報選別 手段 30は、帰属度 gbel°ngが 1よりも大きくなる副情報を選別することが好ましい。
[0063] また、相関特徴抽出手段 40におけるリソースの制限から、フィルタとして用いること ができる副情報の数が制限される場合、副情報選別手段 30は、帰属度 gbel°ngの値が 大き 、順に副情報を選択すればょ 、。
[0064] なお、抽出した特徴を用いて照合を行う場合、帰属度を計算する対象となる一つの 副情報は、その副情報自身のみで一つのカテゴリをなす。よって、帰属度 gbel°ngを式 (4)に示すように定義する場合、 g eli=0とする。また、帰属度 gbel°ngを式 (5)に示すよ うに定義する場合、 gseli= iとする。
[0065] ステップ S3の後、相関特徴抽出手段 40は、副情報選別手段 30によって選別され た副情報を特徴抽出フィルタとして用い、主情報を副情報の相関関係から主情報に 対応する特徴を抽出する (ステップ S4)。 [0066] 同一個体の主情報 とする。)と副情報 とする。)との間に = )を満足する 関数 fが存在するとする。この場合、別の個体の副情報 X0を用いて以下に示す式 (6 )のように表される誤差最小推定誤差 F (1 も主情報 I1の性質を表す特徴量としての
0
効果を期待することができる。
[0067] F (l ) =norm(l -f (X ) ) 式(6)
0 i i 0
[0068] カテゴリ帰属度をもとにして選別された副情報 Xを上記の式 (6)で用いることによつ
0
て得られる誤差最小推定誤差 F (I )は、カテゴリの帰属度を反映した特徴量として用
0 i
いることができる。従って、相関特徴抽出手段 40は、ステップ S3で選別された副情報 Xと、主情報入力手段 10に蓄積された主情報を用いて、式 (6)により F (I )を計算し
0 0 i
、その計算結果 F (I )を特徴とすればよい。相関特徴抽出手段 40は、計算した特徴
0 i
(特徴量)を出力する。
[0069] 相関特徴抽出手段 40によって出力された特徴量が学習 ·識別システム (データの 分類や照合を行うシステム。図 1に示す例では学習'識別手段 50)に入力され、学習 •識別システムが特徴量を補正するのであれば、関数 fは、必ずしも正確な関数でなく てもよい。この場合、関数 fは、単純写像 1であってもよい。また、主情報と副情報との 関係を示す既知の関数があれば、その既知の関数を用いるのがよい。既知の関数を 用いることができる場合の例として、主情報 Iiが画像であり、副情報 XIが照明空間基 底の場合がある。照明空間基底とは、顔の三次元形状と反射率を反映した情報量で めり、文献「Peter N. Belhumeur, David J Knegman, What Is the Set of Ima ges of an Object Under All Possible Illumination Conditions?", International
Journal of Computer Vision, Vol.no.28, 245-260, 998」によれば、画像 I N 次元の縦ベクトルとすると、 N X 3の行列となり、以下に示す式(7)の関係が成り立つ
[0070] I =X 式(7)
[0071] 式(7)において、 sは照明ベクトルと呼ばれ、照明の方向と大きさを表す三次元べク トルである。この場合、別の個体の副情報 (主情報とは別の個体から取得した副情報 )Xを用いるとき、相関特徴抽出手段 40は、以下に示す式 (8)の値の値が最小にな
0
る s (照明ベクトル)を計算して、そのときの F (I )を特徴として用いることが可能である
0 i [0072] F (I ) =norm (I— X ) 式(8)
0 i i Os
[0073] 主情報と副情報との関係を示す関数が未知である場合の例として、主情報 が生物 の画像であり、副情報 ^がその生物のサーモ画像である場合が挙げられる。この場 合、主情報と副情報との明確な関係は分からない。しかし、両者 (主情報および副情 報)は共に画像であり、次元が同じであるので、関数 fを単純写像 1とすることが考えら れる。この場合、相関特徴抽出手段 40は、以下に示す式(9)によって特徴 FO (Ii)を 計算してちょい。
[0074] F (I ) =norm (I— X ) 式(9)
0 i i 0
[0075] すなわち、相関特徴抽出手段 40は、主情報および副情報の次元が同じである場 合、式 (9)に示すように、主情報 Iと副情報 Xの差分を用いて特徴量を算出してもよ
i 0
い。上記の式(9)により求めた特徴量 F (I )は、式 (8)により求めた特徴量 F (I )のよ
0 i 0 i うに直接の根拠がある特徴量ではない。しかし、主情報と副情報とによるカテゴリの帰 属度が反映された特徴量であり、学習 ·識別システムにおいて、主情報と副情報とに よるカテゴリの帰属度が反映されているという性質を利用することができる。
[0076] 相関特徴抽出手段 40は、求めた特徴量を学習 ·識別手段 50に出力し、学習'識別 手段 50は、その特徴量に基づいてデータの分類や照合を行う。ただし、既に説明し たように、学習'識別手段 50は、本発明の必須の構成要素ではない。
[0077] 本発明によれば、副情報選別手段 30が、副情報 (取得困難な情報)のうち、カテゴ リ帰属度が高い副情報を選別し、相関特徴抽出手段 40がその副情報を用いて特徴 を抽出する。従って、取得困難な情報を全個体力も取得できない場合であっても、取 得困難な情報を用いて、分類や照合に有利な特徴を抽出することができる。
[0078] また、相関特徴抽出手段 40は、あらかじめカテゴリに分類された副情報を特徴抽出 フィルタとして用い、主情報と副情報の相関関係力 主情報に対応する特徴を抽出( 算出)する。この結果、カテゴリ毎の固有の情報を持つ特徴を抽出することができる。 この特徴は、分類したいカテゴリの特徴を反映するので分類に有利になる。すなわち 、本発明では分類に適した特徴抽出を行うことができる。例えば、カテゴリひ, β , γ に関して、それぞれ副情報 a s, |8 s, γ s、主情報 a m, β ηι, γ mが得られていると する。主情報 a mに対して副情報 a s, β s, γ sを用いて特徴を抽出すると、 a mお よび a sでは相関強、 a mおよび |8 sでは相関弱、 a mおよび γ sでは相関弱という、 カテゴリを反映した特徴ベクトルが得られる。同様に、主情報 β mに対して副情報 oc s , j8 s, γ sを用いて特徴を抽出すると、 |8 mおよび a sでは相関弱、 |8 111ぉょび|8 3で は相関強、 j8 mおよび γ sでは相関弱という、カテゴリを反映した特徴ベクトルが得ら れる。同様に、主情報 γ mに対して副情報 a s, β S, γ sを用いて特徴を抽出すると 、 Ύ mおよび a sでは相関弱、 γ mおよび β sでは相関弱、 γ mおよび γ sでは相関 強と 、う、カテゴリを反映した特徴ベクトルが得られる。
[0079] また、実施形態 1では、相関特徴抽出手段 40が、副情報 (取得困難な情報)を特徴 抽出フィルタとし、その特徴抽出フィルタを用いて主情報 (取得容易な情報)から特徴 抽出を行う。よって、見かけなどデータの内部構造に依存した特徴を抽出することが できる。
[0080] また、副情報選別手段 30は、有効な副情報 (帰属度の値が基準よりも大き!、副情 報)を選別し、相関特徴抽出手段 40は、その副情報を特徴抽出フィルタとして用いる 。また、選別される副情報は、予め副情報入力手段 20に入力され、蓄積されている。 従って、主情報入力手段 10が、主情報を入力することにより、特徴を抽出することが できる。この結果、分類や照合を行うシステムの設計を容易にすることができる。
[0081] なお、図 2に示すフローチャートは、例示であり、必ずしも図 2に示す順序で処理を 進めなくてもよい。例えば、予め、副情報を入力、蓄積した後、副情報選別手段 30が 、各副情報についてカテゴリの帰属度を算出し、帰属度の大きさに基づいて副情報 を選別してもよい。その後、主情報入力手段 10が逐次、主情報を入力、蓄積し、相 関特徴抽出手段 40がその主情報および選別された副情報を用いて、主情報に対応 する特徴を抽出してもよい。すなわち、ステップ S2の前にステップ S3を実行してもよ い。
[0082] (実施形態 2)
図 3は、本発明の実施形態 2の構成例を示すブロック図である。実施形態 2の特徴 抽出装置は、実施形態 1で示した各手段に対応する各装置を備える。すなわち、実 施形態 2の特徴抽出装置は、図 3に示すように、主情報入力装置 100と、副情報入 力装置 200と、副情報選別装置 300と、相関特徴抽出装置 400とを備える。また、学 習 ·識別装置 500を備えて 、てもよ 、。
[0083] 主情報入力装置 100は、実施形態 1における主情報入力手段 10に相当し、主情 報入力手段 10と同様に動作する。副情報入力装置 200は、実施形態 1における副 情報入力手段 20に相当し、副情報入力手段 20と同様に動作する。副情報選別装 置 300は、実施形態 1における副情報選別手段 30に相当し、副情報選別手段 30と 同様に動作する。相関特徴抽出装置 400は、実施形態 1における相関特徴抽出手 段 40に相当し、相関特徴抽出手段 40と同様に動作する。学習'識別装置 500は、 実施形態 1における学習'識別手段 50に相当し、学習 ·識別手段 50と同様に動作す る。各装置 100〜500の動作は、実施形態 1における各手段 10〜50 (図 1参照。)と 同様であり、実施形態 2の特徴抽出装置はステップ S1〜S4と同様(図 2参照。)の動 作を行う。よって、動作に関する詳細な説明は省略する。以下、各装置の構成につい て説明する。
[0084] 図 4は、主情報入力装置 100の構成例を示す説明図である。主情報入力装置 100 は、例えば、ディスクやメモリなどのストレージ装置 101によって実現される。主情報 入力装置 100における主情報の入力および蓄積の態様は、各主情報を一括して入 力して、蓄積 (記憶)する態様であってもよい。また、各主情報を逐次入力、逐次蓄積 して、ステップ S3以降の処理を行う態様であってもよい。一括処理で大量の主情報を 蓄積する態様では、ストレージ装置 101として、例えば、大容量の磁気ディスクを用 いることが好ましい。また、主情報を逐次入力、蓄積して、ステップ S3以降の処理を 実行する態様では、ストレージ装置 101として、例えば、高速アクセスが可能な DRA Mなどを用いることが好ましい。ストレージ装置 101に記憶された主情報は、ステップ S4において、相関特徴抽出装置 400に読み取られる。
[0085] 図 5は、副情報入力装置 200の構成例を示す説明図である。副情報入力装置 200 は、例えば、ディスクやメモリなどのストレージ装置 201によって実現される。副情報 入力装置 200は、副情報を一括して入力、蓄積することを前提とする。従って、ストレ ージ装置 201として、例えば、大容量の磁気ディスクを用いることが好ましい。ストレ ージ装置 201に記憶された副情報は、ステップ S3において、副情報選別装置 300 に読み取られる。
[0086] 図 6は、副情報選別装置 300の構成例を示す説明図である。副情報選別装置 300 は、 CPUなどの演算装置 301と、ディスクやメモリなどのストレージ装置 302とを備え る。演算装置 301は、ステップ S3 (図 2参照。)において、副情報入力装置 200のスト レージ装置 201から各副情報を読込み、帰属度を計算し、帰属度が基準となる値より も大きい副情報を選別する。この処理は、第 1の実施の形態における副情報選別手 段 30の動作を同様である。演算装置 301は、選別した副情報をストレージ装置 302 に蓄積する。ストレージ装置 302に蓄積された副情報は、ステップ S4において、相関 特徴抽出手段 400に読み取られる。
[0087] 図 7は、相関特徴抽出装置 400の構成例を示す説明図である。相関特徴抽出装置 400は、 CPUなどの演算装置 401を備える。演算装置 401は、ステップ S4 (図 2参照 。;)において、主情報入力装置 100のストレージ装置 101から主情報を読込み、また 、副情報選別装置 300のストレージ装置 302から選別された副情報を読み込む。そ して、演算装置 401は、式 (6)によって、主情報と副情報の相関関係から主情報に対 応する特徴を計算する。演算装置 401は、計算した特徴を出力する。特徴抽出装置 力 学習 ·識別装置 500を備えている場合、学習'識別装置 500が特徴の出力先とな る。
[0088] 図 8は、学習 ·識別装置 500の構成例を示す説明図である。学習'識別装置 500は 、 CPUなどの演算装置 501と、一時的な計算結果を蓄積する DRAMメモリなどの高 速アクセスが可能なストレージ装置 502と、演算装置 501による演算結果を記憶する ディスクなどの大容量ストレージ装置 503とを備える。演算装置 501は、相関特徴抽 出手段 400が出力する特徴を用いて、学習,識別に関する計算を行い、その計算結 果を大容量ストレージ装置 503に蓄積する。
[0089] 実施形態 2でも、実施形態 1と同様の効果が得られる。
[0090] また、実施形態 1で説明したように、必ずしも図 2に示す順序で処理を進めなくても よい。例えば、予め、副情報を入力、蓄積した後、副情報選別装置 300が、各副情報 についてカテゴリの帰属度を算出し、帰属度の大きさに基づいて副情報を選別しても よい。その後、主情報入力装置 100が逐次、主情報を入力、蓄積し、相関特徴抽出 装置 400がその主情報および選別された副情報を用いて、主情報に対応する特徴 を抽出してもよい。すなわち、ステップ S2の前にステップ S3を実行してもよい。
[0091] (実施形態 3)
図 9は、本発明の実施形態 3の構成例を示すブロック図である。実施形態 3の特徴 抽出装置は、演算装置 701と、プログラム記憶部 702と、ストレージ装置 703と、主情 報入力部 704と、副情報入力部 705と、出力部 706とを備える。
[0092] 演算装置 701は、プログラム記憶部 702に記憶される特徴抽出プログラムに従って 、特徴抽出装置 700全体を制御し、実施形態 1で説明した各ステップの処理を実行 する。演算装置 701は、例えば、 CPUによって実現される。また、特徴抽出装置 700 は、演算装置 701が演算に用いる主情報や副情報をロードするバッファ(図示せず。 )を備える。
[0093] プログラム記憶部 702は、演算装置 701に処理を実行させる特徴抽出プログラムを feす。。
[0094] ストレージ装置 703は、入力された主情報や副情報を記憶する。
[0095] 主情報入力部 704は、主情報の入力インタフェースであり、副情報入力部 705は、 副情報の入力インタフェースである。主情報の入力インタフェースと副情報の入カイ ンタフェースが共通であってもよい。出力部 706は、演算装置 701によって計算され た特徴を出力するインタフェースである。
[0096] 演算装置 701は、主情報入力部 704を介して主情報を入力し、その主情報をストレ ージ装置 703に蓄積する。同様に、演算装置 701は、副情報入力部 705を介して副 情報を入力し、その副情報をストレージ装置 703に蓄積する。
[0097] また、演算装置 701は、実施形態 1における副情報選別手段 30と同様に副情報の 選別を行い、実施形態 1における相関特徴抽出手段 40と同様に特徴を抽出する。演 算装置 701は、抽出した特徴を、出力部 706を介して出力する。
[0098] 情報の入力態様として、主情報と副情報を持つデータ群 (ただし、一部の個体デー タでは副情報が欠けている)がー括して入力される態様 (第 1入力態様とする。)や、 主情報を持つデータ群と副情報を持つデータ群が独立して!/、て、予め少数の副情 報が特徴抽出装置に入力、蓄積されていて、主情報が後に逐次入力される態様 (第 2入力態様)がある。
[0099] 図 10は、第 1入力態様の場合における演算装置 701の処理経過の例を示すフロ 一チャートである。なお、データ群の主情報および副情報 (一部の個体データの副情 報は欠けていて、副情報の数は主情報の数より少ない。)は、既に一括入力されスト レージ装置 703に蓄積されているものとする。
[0100] 演算装置 701は、各個体の主情報の一つをバッファにロードする(ステップ S 100) 。そして、演算装置 701は、その主情報が取得された個体と同一の個体の副情報を ロード可能力判定する (ステップ S101, S102)。主情報が取得された個体と同一の 個体の副情報が存在せず、ロードできない場合 (ステップ S 102の N)、ステップ S 10 0に移行し、ステップ S 100以降の処理を繰り返す。
[0101] 主情報が取得された個体と同一の個体の副情報が存在し、ロードできる場合 (ステ ップ S 102の Y)、演算装置 701は、その副情報をバッファにロードする(ステップ S10 3)。
[0102] ステップ S103の後、演算装置 701は、主情報を全てバッファにロードしたか否かを 判定する(ステップ S 104)。主情報を全てロードしていない場合 (ステップ S 104の N) 、ステップ S100に移行し、ステップ S 100以降の処理を繰り返す。主情報を全てロー ドしている場合 (ステップ S 104の Y)、演算装置 701は、各副情報の帰属度を計算す る (ステップ S105)。そして、演算装置 701は、帰属度の大きさによって副情報を選 別する(ステップ S 106)。ステップ S105, S106における帰属度の計算および副情 報の選別は、第 1の実施の形態で示した計算や選別と同様に行えばよい。
[0103] 続いて、演算装置 701は、選別された副情報を特徴抽出フィルタとして主情報の特 徴を抽出 (計算)する (ステップ S107)。この計算も、実施形態 1で示した計算と同様 に行えばよい。
[0104] ステップ S107の後、演算装置 701は、主情報全てについて特徴を計算したカゝ否か を判定する (ステップ S108)。主情報全てにっ 、て特徴を計算して 、なければ (ステ ップ S108の N)、ステップ S107に移行し、ステップ S107以降の処理を繰り返す。演 算装置 701は、計算した特徴を出力する。
[0105] 図 11は、第 2入力態様の場合における演算装置 701の処理経過の例を示すフロ 一チャートである。第 2入力態様では、主情報と副情報は同一の個体力 取得された ものである必要はなぐ事前に副情報だけを入手できることが想定される。ここでは、 そのような副情報が予め入力され、ストレージ装置 703に蓄積されているものとする。
[0106] 演算装置 701は、全副情報をバッファにロードする (ステップ S 200)。次に、演算装 置 701は、一つ一つの副情報についてカテゴリの帰属度を計算する (ステップ S201 )。一つの副情報について帰属度を計算した後、演算装置 701は、全ての副情報に ついて帰属度の計算が完了したかを判定する (ステップ S202)。全ての副情報につ いて帰属度の計算が完了していなければ (ステップ S202の N)、ステップ S201に移 行し、ステップ S201以降の処理を繰り返す。全ての副情報について帰属度の計算 が完了したならば (ステップ S202の Y)、帰属度の大きさによって副情報を選別する( ステップ S203)。帰属度の計算および副情報の選別は、実施形態 1で示した計算や 選別と同様に行えばよい。
[0107] 次に、演算装置 701は、逐次入力された主情報をバッファにロードする (ステップ S 04)。そして、演算装置 701は、選別された副情報を特徴抽出フィルタとして、その主 情報力も特徴を抽出 (計算)する (ステップ S205)。この計算も、第 1の実施の形態で 示した計算と同様に行えばよい。
[0108] 実施形態 3でも、実施形態 1と同様の効果が得られる。
産業上の利用可能性
[0109] 本発明は、例えば、コンビ-エンスストアなどの顧客データ収集、入国管理システム におけるセキュリティ確保、ゲームセンタや携帯端末アプリケーションなどのエンター ティメントサービスなどで必要とされる人物データのカテゴリ別分類や人物データの 照合において用いられる特徴抽出に適用可能である。
図面の簡単な説明
[0110] [図 1]本発明の実施形態 1の構成例を示すブロック図である。
[図 2]本発明の特徴抽出装置による処理経過の例を示すフローチャートである。
[図 3]本発明の実施形態 2の構成例を示すブロック図である。
[図 4]主情報入力装置の構成例を示す説明図である。
[図 5]副情報入力装置の構成例を示す説明図である。 [図 6]副情報選別装置の構成例を示す説明図である。
[図 7]相関特徴抽出装置の構成例を示す説明図である。
[図 8]学習'識別装置の構成例を示す説明図である。
[図 9]本発明の実施形態 3の構成例を示すブロック図である。
[図 10]演算装置の処理経過の例を示すフローチャートである。
[図 11]演算装置の処理経過の例を示すフローチャートである。 符号の説明
10 主情報入力手段
20 副情報入力手段
30 副情報選別手段
40 相関特徴抽出手段

Claims

請求の範囲
[1] データの個体力 得られる主情報力 個体の特徴を抽出する特徴抽出装置であつ て、
前記主情報と前記主情報とは異なる副情報との相関関係に基づき、主情報および 副情報を用いて、個体の特徴量を計算する相関特徴抽出手段を備えたことを特徴と する特徴抽出装置。
[2] あらかじめカテゴリに分類された副情報を記憶する副情報記憶手段と、
各副情報のカテゴリへの帰属度を計算し、帰属度が所定の基準よりも大き 1、副情報 を選別する副情報選別手段とを備え、
相関特徴抽出手段は、主情報と副情報との相関関係に基づき、主情報および副情 報選別手段によって選別された副情報を用いて、個体の特徴量を計算する
請求項 1に記載の特徴抽出装置。
[3] 副情報選別手段は、副情報の主成分分析を行!ヽ、帰属度の計算対象とした副情 報が所属するカテゴリでの再構成誤差と、前記カテゴリ以外のカテゴリにおける再構 成誤差の平均とを用いて帰属度を計算する
請求項 2に記載の特徴抽出装置。
[4] 相関特徴抽出手段は、次元が同じ主情報および副情報の差分を用いて特徴量を 計算する 請求項 1に記載の特徴抽出装置。
[5] データの個体から得られる主情報から個体の特徴を抽出する特徴抽出方法であつ て、
相関特徴抽出手段が、前記主情報と前記主情報とは異なる副情報との相関関係に 基づき、主情報および副情報を用いて、個体の特徴量を計算する
ことを特徴とする特徴抽出方法。
[6] あらかじめカテゴリに分類された各副情報のカテゴリへの帰属度を計算し、帰属度 が所定の基準よりも大きい副情報を選別し、
主情報と副情報との相関関係に基づき、主情報および前記選別された副情報を用 いて、個体の特徴量を計算する
請求項 5に記載の特徴抽出方法。
[7] 副情報の主成分分析を行 、、帰属度の計算対象とした副情報が所属するカテゴリ での再構成誤差と、前記カテゴリ以外のカテゴリにおける再構成誤差の平均とを用い て帰属度を計算する
請求項 6に記載の特徴抽出方法。
[8] 次元が同じ主情報および副情報の差分を用いて特徴量を計算する
請求項 5に記載の特徴抽出方法。
[9] データの個体力 得られる主情報力 個体の特徴を抽出するコンピュータであって 、前記主情報とは異なりあらかじめカテゴリに分類された副情報を記憶する副情報記 憶手段を備えたコンピュータに搭載される特徴抽出プログラムであって、
前記コンピュータに、
主情報と副情報との相関関係に基づき、主情報および副情報を用いて、個体の特 徴量を計算する相関特徴抽出処理
を実行させるための特徴抽出プログラム。
[10] コンピュータに、
各副情報のカテゴリへの帰属度を計算し、帰属度が所定の基準よりも大き 1、副情報 を選別する副情報選別処理を実行させ、
相関特徴抽出処理で、主情報と副情報との相関関係に基づき、主情報および選別 された副情報を用いて、個体の特徴量を計算させる
請求項 9に記載の特徴抽出プログラム。
[11] コンピュータに、
副情報選別処理で、副情報の主成分分析を行わせ、帰属度の計算対象とした副 情報が所属するカテゴリでの再構成誤差と、前記カテゴリ以外のカテゴリにおける再 構成誤差の平均とを用いて帰属度を計算させる
請求項 10に記載の特徴抽出プログラム。
[12] コンピュータに、
相関特徴抽出で、次元が同じ主情報および副情報の差分を用いて特徴量を計算 させる 請求項 9に記載の特徴抽出プログラム。
PCT/JP2006/323695 2005-12-26 2006-11-28 特徴抽出装置、特徴抽出方法、および特徴抽出プログラム WO2007074600A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/086,778 US8374434B2 (en) 2005-12-26 2006-11-28 Feature quantity calculation using sub-information as a feature extraction filter
JP2007551868A JPWO2007074600A1 (ja) 2005-12-26 2006-11-28 特徴抽出装置、特徴抽出方法、および特徴抽出プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005373058 2005-12-26
JP2005-373058 2005-12-26

Publications (1)

Publication Number Publication Date
WO2007074600A1 true WO2007074600A1 (ja) 2007-07-05

Family

ID=38217821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323695 WO2007074600A1 (ja) 2005-12-26 2006-11-28 特徴抽出装置、特徴抽出方法、および特徴抽出プログラム

Country Status (3)

Country Link
US (1) US8374434B2 (ja)
JP (1) JPWO2007074600A1 (ja)
WO (1) WO2007074600A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611267B1 (ko) 2014-10-17 2016-04-11 재단법인대구경북과학기술원 객체 인식방법 및 이를 이용한 객체 인식장치
CN115423024A (zh) * 2022-09-14 2022-12-02 中国建设银行股份有限公司 数据处理方法、装置、设备、存储介质及程序产品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160061617A1 (en) * 2014-09-02 2016-03-03 Microsoft Corporation Providing in-navigation search results that reduce route disruption
CN111067508B (zh) * 2019-12-31 2022-09-27 深圳安视睿信息技术股份有限公司 非临床环境下对高血压进行非干预式的监测和评估方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213152A (ja) * 1998-01-21 1999-08-06 Toshiba Corp 画像処理装置
JP2001188906A (ja) * 1999-12-28 2001-07-10 Hitachi Ltd 画像自動分類方法及び画像自動分類装置
JP2003157439A (ja) * 2001-11-20 2003-05-30 National Institute Of Advanced Industrial & Technology 画像のカテゴリー化による画像特徴量の相関抽出方法とその相関抽出装置
JP2004021924A (ja) * 2002-06-20 2004-01-22 Nec Corp 顔特徴抽出方法、装置および情報記憶媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3571796A (en) * 1968-05-28 1971-03-23 Bendix Corp Rotation translation independent feature extraction means
JP2003058889A (ja) * 2001-08-10 2003-02-28 S Stuff:Kk 個人識別方法及び個人識別装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213152A (ja) * 1998-01-21 1999-08-06 Toshiba Corp 画像処理装置
JP2001188906A (ja) * 1999-12-28 2001-07-10 Hitachi Ltd 画像自動分類方法及び画像自動分類装置
JP2003157439A (ja) * 2001-11-20 2003-05-30 National Institute Of Advanced Industrial & Technology 画像のカテゴリー化による画像特徴量の相関抽出方法とその相関抽出装置
JP2004021924A (ja) * 2002-06-20 2004-01-22 Nec Corp 顔特徴抽出方法、装置および情報記憶媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611267B1 (ko) 2014-10-17 2016-04-11 재단법인대구경북과학기술원 객체 인식방법 및 이를 이용한 객체 인식장치
CN115423024A (zh) * 2022-09-14 2022-12-02 中国建设银行股份有限公司 数据处理方法、装置、设备、存储介质及程序产品

Also Published As

Publication number Publication date
JPWO2007074600A1 (ja) 2009-06-04
US8374434B2 (en) 2013-02-12
US20090003710A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
Du et al. Correlation-guided attention for corner detection based visual tracking
Ioannou et al. Difference of normals as a multi-scale operator in unorganized point clouds
US9449431B2 (en) Systems and methods for matching scenes using mutual relations between features
KR101833953B1 (ko) 이미지들을 비교하는 방법 및 시스템
US7587082B1 (en) Object recognition based on 2D images and 3D models
Soo Park et al. 3d point cloud reduction using mixed-integer quadratic programming
US9842279B2 (en) Data processing method for learning discriminator, and data processing apparatus therefor
Humenberger et al. Investigating the role of image retrieval for visual localization: An exhaustive benchmark
CN112801169A (zh) 一种基于改进yolo算法的伪装目标检测方法
US20220165048A1 (en) Person re-identification device and method
CN112115805B (zh) 带双模态难挖掘三元-中心损失的行人重识别方法及系统
CN110222718A (zh) 图像处理的方法及装置
An et al. Hypergraph propagation and community selection for objects retrieval
WO2007074600A1 (ja) 特徴抽出装置、特徴抽出方法、および特徴抽出プログラム
CN110992404A (zh) 目标跟踪方法、装置和系统及存储介质
Dong et al. Robust camera translation estimation via rank enforcement
Li et al. An effective point cloud registration method based on robust removal of outliers
CN116434303A (zh) 基于多尺度特征融合的人脸表情捕捉方法、装置及介质
US20120027310A1 (en) Systems and methods for processing extracted plane features
Kattakinda et al. FOCUS: Familiar objects in common and uncommon settings
JP7143599B2 (ja) メタデータ評価装置、メタデータ評価方法、およびメタデータ評価プログラム
CN110516513A (zh) 一种人脸识别方法及装置
Hagelskjær et al. Bridging the reality gap for pose estimation networks using sensor-based domain randomization
Nair et al. Scalable multi-view stereo using CMA-ES and distance transform-based depth map refinement
CN115205666B (zh) 图像分析方法、装置、服务器、介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007551868

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12086778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833499

Country of ref document: EP

Kind code of ref document: A1