WO2007072818A1 - Liquid producing apparatus, liquid immersion exposure apparatus, and method for manufacturing device - Google Patents
Liquid producing apparatus, liquid immersion exposure apparatus, and method for manufacturing device Download PDFInfo
- Publication number
- WO2007072818A1 WO2007072818A1 PCT/JP2006/325272 JP2006325272W WO2007072818A1 WO 2007072818 A1 WO2007072818 A1 WO 2007072818A1 JP 2006325272 W JP2006325272 W JP 2006325272W WO 2007072818 A1 WO2007072818 A1 WO 2007072818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- substrate
- exposure
- exposure apparatus
- measurement
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70341—Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
Definitions
- Liquid manufacturing apparatus immersion exposure apparatus, and device manufacturing method
- the present invention relates to a liquid manufacturing apparatus used in an immersion exposure apparatus that exposes a substrate through a liquid.
- the present invention relates to an immersion exposure apparatus that exposes a substrate through a liquid, and a device manufacturing method.
- the present invention relates to a liquid manufacturing apparatus suitable for an immersion exposure apparatus that exposes a substrate through a liquid, an immersion exposure apparatus that can accurately perform exposure processing and measurement processing using the liquid, and the immersion exposure apparatus. It is an object to provide a device manufacturing method using an exposure apparatus.
- the present invention employs the following configuration.
- a liquid manufacturing apparatus that manufactures an exposure liquid supplied to an immersion exposure apparatus that exposes a substrate, the measuring apparatus measuring the state of the exposure liquid. And a liquid manufacturing apparatus that outputs a measurement result of the measurement apparatus to the exposure apparatus.
- the liquid manufacturing apparatus is provided with the measuring device that measures the state of the liquid, and the measurement result is output to the exposure apparatus. Whether or not the force is in a desired state can be determined by the immersion exposure apparatus. If there is an abnormality in the liquid, it is possible to quickly take appropriate measures according to the abnormality. Therefore, the exposure process and the measurement process in the immersion exposure apparatus using the liquid from the liquid manufacturing apparatus can be performed with high accuracy.
- an immersion exposure apparatus for exposing a substrate, the liquid manufacturing apparatus for manufacturing a liquid, and the state of the liquid manufactured by the liquid manufacturing apparatus.
- a liquid production system having an apparatus, a flow path through which the liquid fed from the liquid production system flows, and a valve for opening and closing the flow path, and the liquid production system via the flow path
- An exposure apparatus is provided in which exposure light is irradiated onto the substrate through a liquid supplied onto the substrate.
- the second aspect of the present invention when there is an abnormality in the liquid supplied from the liquid production apparatus, it is possible to quickly perform an appropriate treatment according to the abnormality. Therefore, exposure processing and measurement processing using a liquid can be performed with high accuracy.
- the device can be manufactured in a state where the exposure accuracy and the measurement accuracy are favorably maintained, and thus a device that exhibits desired performance can be manufactured.
- FIG. 1 is a schematic block diagram that shows one embodiment of an exposure apparatus of the present invention.
- FIG. 2 is a schematic configuration diagram showing a pure water production apparatus and a liquid supply unit.
- FIG. 3 is a schematic configuration diagram showing a measurement device.
- FIG. 4 is a flowchart showing an example of a semiconductor device manufacturing process.
- FIG. 1 is a schematic block diagram showing an embodiment of an exposure apparatus according to the present invention.
- the exposure apparatus EX includes a mask stage MST that can move while holding the mask M, a substrate stage PST that can move while holding the substrate P, and a mask stage MST.
- Illumination optical system IL that illuminates the held mask M with exposure light EL
- projection optical system PL that projects the pattern image of mask M illuminated with exposure light EL onto substrate P held on substrate stage PST
- a control device CONT that controls the overall operation of the exposure apparatus EX.
- the control device CONT is connected to a notification device INF that notifies information related to the exposure process.
- the notification device INF includes a display device (display device), an alarm device that issues an alarm (warning) using sound or light, and the like.
- a storage device MRY that stores information relating to the exposure process is connected to the control device CONT.
- the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied, and a liquid supply mechanism 10 that supplies the liquid LQ to the image plane side of the projection optical system PL, and collects the liquid LQ. And a first liquid recovery mechanism 20. While at least the pattern image of the mask M is projected onto the substrate P, the exposure apparatus EX uses a liquid LQ supplied from the liquid supply mechanism 10 to a part of the substrate P including the projection area AR1 of the projection optical system PL. An immersion area AR2 that is larger than the projection area AR1 and smaller than the substrate P is locally formed.
- the exposure apparatus EX uses a local immersion liquid that fills the liquid LQ between the optical element 2 at the image plane side end of the projection optical system PL and the substrate P surface disposed on the image plane side of the projection optical system PL.
- the method is adopted.
- the substrate P is irradiated with the exposure light EL via the liquid LQ between the projection optical system PL and the substrate P and the projection optical system PL.
- the control device CONT supplies the liquid LQ onto the substrate P using the liquid supply mechanism 10 and recovers the liquid LQ on the substrate P using the first liquid recovery mechanism 20 so that the liquid is supplied onto the substrate P.
- LQ immersion area AR2 is locally formed.
- a first nozzle member 70 which will be described in detail later, is disposed in the vicinity of the image plane of the projection optical system PL.
- the first nozzle member 70 is an annular member provided so as to surround the optical element 2.
- the first nozzle member 70 is disposed above the substrate P (substrate stage PST) and faces at least one force of the substrate P and the substrate stage PST to the lower surface of the first nozzle member 70.
- the first nozzle member 70 constitutes a part of each of the liquid supply mechanism 10 and the first liquid recovery mechanism 20.
- the exposure apparatus EX is a scanning exposure apparatus that exposes the substrate P with an image of a pattern formed on the mask M while moving the mask M and the substrate P in the respective scanning directions synchronously.
- scanning stepper the direction parallel to the optical axis AX of the projection optical system PL is the Z-axis direction
- the synchronous movement direction (scanning direction) of the mask M and the substrate P in the plane perpendicular to the Z-axis direction is the X-axis direction
- the direction perpendicular to the Z-axis direction and X-axis direction (non-scanning direction) is the Y-axis direction.
- the rotation (inclination) directions around the X, Y, and Z axes are the ⁇ , 0 Y, and 0 Z directions, respectively.
- the exposure apparatus EX includes a base BP provided on the floor surface, and a main column 1 installed on the base BP.
- the main column 1 is formed with an upper support portion 7 and a lower support portion 8 that protrude inward.
- the illumination optical system IL is supported by a support frame 3 fixed to the upper part of the main column 1.
- the illumination optical system IL includes an exposure light source, an optical integrator that equalizes the illuminance of the light beam emitted from the exposure light source, a condenser lens that collects the exposure light EL from the optical integrator, a relay lens system, and an exposure It has a variable field stop that sets the illumination area on the mask M with light EL in a slit shape.
- the predetermined illumination area on the mask M is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL.
- Illumination optical system IL force As the exposure light EL emitted, far ultraviolet light (DUV light) such as bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm) are also emitted. , Vacuum ultraviolet light (VUV) such as ArF excimer laser light (wavelength 193nm) and F laser light (wavelength 157nm) Light). In this embodiment, ArF excimer laser light is used.
- DUV light far ultraviolet light
- VUV Vacuum ultraviolet light
- ArF excimer laser light Wavelength 193nm
- F laser light Wavelength 157nm
- pure water is used as the liquid LQ. Pure water transmits not only ArF excimer laser light but also far ultraviolet light (DUV light) such as emission lines (g-line, h-line, i-line) emitted from mercury lamp force and KrF excimer laser light (wavelength 248 nm). Is possible.
- DUV light far ultraviolet light
- Mask stage MST is movable while holding mask M.
- a plurality of gas bearings (air bearings) 45 are provided on the lower surface of the mask stage MST.
- Mask stage MST is supported on the upper surface (guide surface) of mask surface plate 4 by air bearing 45. Openings MK1 and MK2 that allow the pattern image of the mask M to pass through are formed at the center of the mask stage MST and the mask surface plate 4, respectively.
- the mask surface plate 4 is supported on the upper support portion 7 of the main column 1 via a vibration isolator 46.
- the anti-vibration device 46 separates the mask surface plate 4 and the main column 1 so that the vibration of the main column 1 is not transmitted to the mask surface plate 4 that supports the mask stage MST.
- the mask stage MST can be moved two-dimensionally in the XY plane on the mask surface plate 4 and slightly rotated in the ⁇ Z direction by the mask stage drive device MSTD including a linear motor controlled by the control device CONT. Is possible.
- a reflecting mirror 41 is provided on the mask stage MST.
- a laser interferometer 42 is provided at a predetermined position. The position of the mask M on the mask stage MST in the two-dimensional direction and the rotation angles in the 0 X, 0 Y, and 0 Z directions are measured in real time by the laser interferometer 42. The measurement result of the laser interferometer 42 is output to the control device CONT. The control device CONT controls the mask stage driving device MSTD based on the measurement result of the laser interferometer 42, and controls the position of the mask M held by the mask stage MST.
- the reflecting mirror 41 may include not only a plane mirror but also a corner cube (retro reflector). Instead of fixing the reflecting mirror 41 to the mask stage, for example, an end surface (side surface) of the mask stage MST.
- the reflective surface may be formed by mirror finishing.
- the mask stage MST may be configured to be capable of coarse and fine movement disclosed in, for example, Japanese Patent Laid-Open No. 8-130179 (corresponding US Pat. No. 6,721,034).
- Projection optical system PL projects an image of the pattern of mask M onto substrate ⁇ at a predetermined projection magnification ⁇ .
- Projection optical system PL includes a plurality of optical elements including optical element 2 provided at the end thereof. These optical elements are supported by a lens barrel PK.
- the projection optical system PL is a reduction system having a projection magnification j8 of 1Z4, 1/5, or 1Z8, for example, and forms a reduced image of the mask pattern in a projection area conjugate with the illumination area described above.
- the projection optical system PL may be any of a reduction system, a unity magnification system, and an enlargement system.
- the projection optical system PL may not be a refraction element, but may be a reflection system, or may be a catadioptric system including a reflection element and a refraction element. In the present embodiment, only the optical element 2 at the end of the projection optical system PL is in contact with the liquid LQ in the liquid immersion area AR2.
- a flange PF is provided on the outer periphery of the lens barrel PK that holds the projection optical system PL.
- the projection optical system PL is supported by the lens barrel surface plate 5 via the flange PF.
- the lens barrel surface plate 5 is supported on the lower support portion 8 of the main column 1 via a vibration isolator 47. That is, the lens barrel base plate 5 and the main column 1 are separated by the vibration isolator 47 so that the vibration of the main column 1 is not transmitted to the lens barrel base plate 5 that supports the projection optical system PL. .
- the substrate stage PST is movable while supporting a substrate holder PH that holds the substrate P.
- a plurality of gas bearings (air bearings) 48 are provided on the lower surface of the substrate stage PST.
- the substrate stage PST is supported on the upper surface (guide surface) of the substrate surface plate 6 by air bearings 48.
- the substrate surface plate 6 is supported on the base BP via a vibration isolator 49.
- the vibration isolator 49 prevents the vibration force of the base BP (floor) and main column 1 from being transmitted to the substrate surface plate 6 that supports the substrate stage PST.
- BP floor surface
- the substrate stage PST is in the XY plane on the substrate surface plate 6 with the substrate P held by the substrate holder PH by the substrate stage driving device PSTD including a linear motor controlled by the control device CONT. It can be moved two-dimensionally and can be rotated slightly in the ⁇ Z direction. Furthermore, the substrate stage PST can also move in the Z-axis direction, ⁇ X direction, and ⁇ Y direction.
- a reflecting mirror 43 is provided on the substrate stage PST.
- a laser interferometer 44 is provided at a predetermined position. The position and rotation angle of the substrate P on the substrate stage PST in a two-dimensional direction are measured in real time by the laser interferometer 44.
- force exposure equipment EX which is not shown, has positional information on the surface of the substrate P supported by the substrate stage PST. It has a focus / leveling detection system to detect The focus / leveling detection system detects the position information of the substrate P surface in the Z-axis direction and the tilt information of the substrate P in the ⁇ X and ⁇ Y directions.
- the focus' leveling detection system detects the tilt information (rotation angle) in the ⁇ X and ⁇ Y directions of the substrate by measuring the position information in the Z-axis direction of the substrate at each of the multiple measurement points. To do. Furthermore, for example, if the position information of the substrate in the Z-axis, ⁇ X, and ⁇ Y directions can be measured using a laser interferometer, the position information in the z-axis direction can be measured during the substrate exposure operation. There is no need to provide a focus and repelling detection system. At least during exposure operations, the position of the substrate in the Z axis, ⁇ X and ⁇ Y directions may be controlled using the measurement results of the laser interferometer.
- the measurement result of the laser interferometer 44 is output to the control device CONT.
- the detection result of the focus' repelling detection system is also output to the control device CONT.
- the control device CONT controls the substrate stage drive device PSTD based on the detection result of the focus leveling detection system, controls the focus position and tilt angle of the substrate P, and projects the surface of the substrate P to the projection optical system.
- the position of the substrate P in the X-axis direction and the Y-axis direction is controlled based on the measurement result of the laser interferometer 44 while matching with the PL image plane.
- a recess 50 is provided on the substrate stage PST, and a substrate holder PH for holding the substrate P is disposed in the recess 50.
- An upper surface 51 formed around the recess 50 of the substrate stage PST is a flat surface that is substantially the same height (level) as the surface of the substrate P held by the substrate holder PH. There may be a step between the surface of the substrate P held by the substrate holder PH and the upper surface 51 of the substrate stage PST.
- the upper surface 51 of the substrate stage PST may have a height substantially the same as the surface of the substrate P only in a part thereof, for example, a predetermined region surrounding the substrate P.
- the substrate holder PH and the substrate stage PST are configured separately, and the substrate holder PH is fixed to the concave portion of the substrate stage PST by, for example, vacuum suction. It can be integrated with PST.
- the liquid supply mechanism 10 includes a liquid supply unit 11 capable of delivering the liquid LQ, and a supply pipe 13 having one end connected to the liquid supply unit 11. The other end of the supply pipe 13 is connected to the first nozzle member 70.
- the liquid supply mechanism 10 is a liquid LQ. Pure water is supplied, and a pure water production apparatus 16 is connected to the liquid supply unit 11 via a connection pipe 19.
- FIG. 2 is a schematic diagram showing an example of the configuration of the pure water production apparatus 16 and the liquid supply unit 11.
- the pure water production device 16 is produced by a pure water production device 161 that purifies pure water having a predetermined purity by purifying, for example, tap water or pure water containing suspended solids, impurities, etc., and a pure water production device 161.
- a measuring device 60 for measuring the state of pure water (liquid LQ) supplied to the supply unit 11 (at least one of the properties and components of the liquid LQ) is provided.
- the pure water producing device 161 of the pure water producing apparatus 16 is supplied with tap water or pure water via the connecting pipe 18 from the factory.
- the pure water generator 161 includes a liquid reforming member such as an ion exchange membrane and a particle filter, and a liquid reforming device such as an ultraviolet light irradiation device (UV lamp). Adjust the specific resistance value of the liquid, the number of foreign substances (fine particles, bubbles), total organic carbon (TOC), dissolved gas concentration, and the amount of viable bacteria to the desired values within the allowable range. To do.
- the measuring device 60 measures the state of the liquid LQ (including at least one of the properties and components of the liquid LQ) delivered from the pure water producer 161.
- the measurement items of the measuring device 60 are the specific resistance value of the liquid LQ, the total organic carbon in the liquid LQ, the number of particles (including bubbles) in the liquid LQ, the dissolved gas concentration of the liquid LQ (dissolved oxygen concentration (DO: dissolved oxygen), and at least one of Z or dissolved nitrogen concentration (DN: dissolved nitrogen), silica concentration in liquid LQ, metal ion concentration in liquid LQ, etc.
- the measurement items of the measuring device 60 are selected in consideration of the adverse effects on the substrate P to be exposed and the adverse effects on the components (such as the optical element 2) that make up the exposure device EX, in order to measure the selected measurement items.
- the measuring device 60 has at least one measuring instrument.
- the measuring instrument includes a resistivity meter for measuring the resistivity value, a TOC meter for measuring total organic carbon, a particle counter for measuring the number of foreign particles including fine particles and bubbles in the liquid LQ, and dissolution.
- a DO meter for measuring oxygen (dissolved oxygen concentration), a DN meter for measuring dissolved nitrogen (dissolved nitrogen concentration), or a silica meter for measuring silica concentration can be used.
- the measuring device 60 includes a TOC meter 61 for measuring the total organic carbon in the liquid LQ, and a participant for measuring the number of foreign matters including fine particles and bubbles in the liquid LQ.
- Counter 62 dissolved gas concentration meter 63 for measuring dissolved gas concentration in liquid LQ (including dissolved oxygen concentration and Z or dissolved nitrogen concentration), and resistivity meter 64.
- FIG. 3 is a schematic configuration diagram of the measuring device 60.
- the TOC meter 61 of the measuring device 60 is connected to a branch pipe (branch flow path) 61K branched from the middle of the pipe forming the flow path of the liquid LQ sent from the pure water generator 161. It is connected. Part of the liquid LQ sent from the pure water generator 161 flows through the branch pipe 61K and flows into the TOC meter 61.
- the TOC meter 61 measures the total organic carbon (TOC) of the liquid LQ flowing through the branch flow path formed by the branch pipe 61K.
- the particle counter 62, the dissolved gas concentration meter 63, and the specific resistance meter 64 are branched pipes 62K, 63 ⁇ branched from the middle of the pipe forming the flow path of the liquid LQ sent from the pure water generator 161. , 64 ⁇ , and the number of foreign substances (fine particles and bubbles), dissolved gas concentration, and resistivity in the liquid LQ flowing through the branch channel formed by these branch pipes 62 ⁇ , 63 ⁇ , 64 ⁇ , respectively. measure.
- the branch pipes 61K to 64K form independent branch flow paths, and the measuring instruments 61 to 64 are connected to the branch flow paths, respectively.
- the plurality of measuring instruments 61 to 64 are connected in parallel to the flow path of the liquid LQ sent from the pure water producer 161 via the branch pipes 61 to 64.
- one branch channel may be formed for the channel of the liquid LQ sent from the pure water production device 161, and a plurality of measuring instruments may be connected in series to some of the branch channels. That is, the state of the liquid LQ flowing into one branch pipe may be measured by the first measuring instrument, and the liquid LQ that has passed through the first measuring instrument may be measured by the second measuring instrument. Further, the liquid LQ used for measurement by each of the measuring instruments 61 to 64 is recovered through a recovery pipe 23 described later.
- the measuring device 60 since the liquid LQ is constantly supplied to the measuring device 60 while the liquid LQ is being sent from the pure water producer 161, the measuring device 60 is in a state of liquid LQ (property, and ⁇ or component) can be measured at all times, including during and before exposure of the substrate ⁇ . That is, the measuring device 60 can measure the state of the liquid LQ in parallel with the operation performed by the exposure device (for example, the immersion exposure operation for the substrate). The measurement result of the measuring device 60 is output to the control device CONT. The control device CONT of the exposure device IV is based on the measurement result of the measurement device 60, and the state of the liquid LQ delivered from the pure water production device 16 The state (property and Z or component) can be monitored at any time.
- the liquid LQ sent from the pure water production device 16 is sent to the liquid supply unit 11 of the liquid supply mechanism 10 via the connection pipe 19 and supplied to the temperature adjustment device 17 of the liquid supply unit 11.
- the temperature control device 17 is manufactured by the pure water manufacturing device 16 and adjusts the temperature of the liquid (pure water) LQ supplied to the supply pipe 13. One end of the temperature control device 17 is connected to the connection pipe 19, and the other end is connected to the supply pipe 13.
- the temperature controller 17 is provided on the downstream side of the rough temperature controller 171 for roughly adjusting the temperature of the liquid LQ, and controls the amount per unit time of the liquid LQ that flows to the supply pipe 13.
- a flow controller 172 called a mass flow controller, and a degassing device 173 for reducing the dissolved gas concentration (including dissolved oxygen concentration and Z or dissolved nitrogen concentration) in the liquid LQ that has passed through the flow controller 1 72
- the filter 174 removes foreign matter (fine particles, bubbles, etc.) in the liquid LQ deaerated by the degassing device 173, and a fine temperature controller 175 that finely adjusts the temperature of the liquid LQ that has passed through the filter 174. ing.
- the rough temperature controller 171 adjusts the temperature of the liquid LQ sent from the pure water production device 16 via the connection pipe 19 to, for example, about ⁇ 0.1 ° C with respect to the target temperature (for example, 23 ° C). Coarse! Adjust temperature with accuracy.
- the flow controller 172 is arranged between the rough temperature controller 171 and the degassing device 173, and the flow rate per unit time of the liquid LQ degassed by the rough temperature controller 171 to the degassing device 173 side. To control.
- the degassing device 173 is disposed between the rough temperature controller 171 and the fine temperature controller 175, specifically, between the flow controller 172 and the filter 174.
- the delivered liquid LQ is degassed, and the dissolved gas concentration in the liquid LQ is reduced to the desired value.
- the degassing device 173 it is possible to use a device including a degassing filter that separates liquid LQ using a filter such as a hollow fiber membrane filter and removes the separated gas components using a vacuum system. it can.
- the filter 174 is disposed between the rough temperature controller 171 and the fine temperature controller 175, specifically, between the deaerator 173 and the fine temperature controller 175. Removes foreign matter in the delivered liquid LQ. When passing through the flow controller 172 and the deaerator 173, there is a possibility that a slight amount of particles may enter the liquid LQ. Filter downstream of the flow controller 172 and the deaerator 173 174 A foreign object can be removed by the ruta 174. As the filter 174, a known filter such as a hollow fiber membrane filter and Z or particle filter can be used. As the deaeration device 173, for example, a device disclosed in US Patent Publication No. 2005Z0219490 can be used.
- the fine temperature controller 175 is disposed between the rough temperature controller 171 and the supply pipe 13, more specifically between the filter 174 and the supply pipe 13, so that the temperature of the liquid LQ can be accurately determined. Make adjustments. For example, the fine temperature controller 175 sets the temperature (temperature stability, temperature uniformity) of the liquid LQ delivered from the filter 174 with a high accuracy of about ⁇ 0. adjust.
- the liquid LQ whose temperature has been adjusted by the temperature control device 17 is supplied onto the substrate P via the supply pipe 13 and the first nozzle member 70.
- the first liquid recovery mechanism 20 is for recovering the liquid LQ on the image plane side of the projection optical system PL, and includes a first liquid recovery unit 21 capable of recovering the liquid LQ, and a first liquid recovery A recovery pipe 23 having one end connected to the part 21 is provided. The other end of the recovery pipe 23 is connected to the first nozzle member 70.
- the first liquid recovery unit 21 includes, for example, a vacuum system (a suction device) 26 such as a vacuum pump, a gas-liquid separator 27 that separates the recovered liquid LQ and gas, and the like.
- a vacuum system the vacuum system of the factory where the exposure apparatus EX is installed may be used instead of the vacuum pump in the exposure apparatus EX!
- the first nozzle member 70 constituting a part of the liquid supply mechanism 10 and the first liquid recovery mechanism 20 is held by a first nozzle holding member 52, and the first nozzle holding member 52 is the main column 1. Connected to the lower support 8.
- the liquid supply operation of the liquid supply unit 11 is controlled by the control device CONT.
- the control device CONT controls the valve 19B arranged in the connection pipe 19 between the pure water production device 16 and the liquid supply unit 11 so that the pure water production device 16
- the manufactured liquid LQ is sent to the liquid supply unit 11, and the liquid LQ is sent from the liquid supply unit 11 to the supply pipe 13.
- the liquid LQ delivered from the liquid supply unit 11 flows through the supply pipe 13, then flows into one end of the supply flow channel formed inside the first nozzle member 70, and is provided in the first nozzle member 70.
- An optical path space on the image plane side of the projection optical system PL (a space between the optical element 2 and the substrate P in the exposure of the substrate P) is supplied from a supply port (not shown).
- the other end of the recovery pipe 23 is connected to one end of a recovery channel formed inside the first nozzle member 70.
- the other end of the recovery channel formed inside the first nozzle member 70 is connected to a recovery port (not shown) provided in the first nozzle member 70.
- the liquid recovery operation of the first liquid recovery unit 21 is controlled by the control device CONT.
- the control device CONT operates the first liquid recovery part 21 of the first liquid recovery mechanism 20 in order to recover the liquid LQ.
- the operation of the first liquid recovery unit 21 causes the liquid LQ on the substrate P to be recovered from a recovery port (not shown) provided above the substrate P, and the first nozzle member 70. It flows into the recovery pipe 23 through the internal recovery flow path. Thereafter, the liquid LQ is recovered to the first liquid recovery unit 21 via the recovery pipe 23.
- one pure water production apparatus 16 is arranged for one exposure apparatus EX (see FIG. 1), but the present invention is not limited to this.
- One pure water production apparatus 16 can be shared by multiple exposure units EX.
- the pure water production apparatus 16 is arranged on a floor different from the floor on which the exposure apparatus EX is installed (for example, under the floor), the space in the clean room in which the exposure apparatus EX is installed can be used more effectively. That's right.
- the control device CONT starts supplying the liquid LQ to the substrate P by the liquid supply mechanism 10 with the optical element 2 of the projection optical system PL facing at least one of the upper surface 51 of the substrate P and the substrate stage PST. To do. Further, the control device CONT starts the liquid recovery by the first liquid recovery mechanism 20 almost simultaneously with the start of the supply of the liquid LQ by the liquid supply mechanism 10.
- the liquid LQ in the immersion area AR2 formed for immersion exposure of the substrate P is in contact with the lower surface of the optical element 2 and the lower surface of the first nozzle member 70.
- the control device CONT irradiates the substrate P with the exposure light EL in a state where the projection optical system PL and the substrate P face each other, and projects the pattern image of the mask M.
- the substrate P is exposed by projecting onto the substrate P via the system PL and the liquid LQ. Even when the substrate P is exposed, the control device CONT performs the recovery of the liquid LQ by the first liquid recovery mechanism 20 in parallel with the supply of the liquid LQ by the liquid supply mechanism 10.
- the exposure apparatus EX in the present embodiment projects the pattern image of the mask M onto the substrate P while moving the mask M and the substrate P in the X-axis direction (scanning direction).
- a partial pattern image of the mask M is projected into the projection area AR1 through the liquid LQ in the immersion area AR2 and the projection optical system PL, and the mask M is in the X direction (or Synchronously with the movement in the + X direction) at the velocity V, the substrate P moves in the + X direction (or the X direction) at the velocity ⁇ ⁇ ⁇ ( ⁇ is the projection magnification) with respect to the projection area AR1.
- the state (including properties and soot or components) of the liquid LQ supplied from the pure water production device 16 to the liquid supply unit 11 of the liquid supply mechanism 10 is constantly measured (monitored) by the measurement device 60. .
- the measurement result of the measurement device 60 is output to the control device CONT, and the control device CONT stores the measurement result (monitor information) of the measurement device 60 in the storage device MRY.
- control device CONT stores the measurement result of the measurement device 60 in the storage device MRY in association with time.
- information in which the measurement result of the measuring device 60 is stored in association with the passage of time is referred to as “log information” as appropriate.
- the control device CONT determines whether or not the measurement result of the measurement device 60 is abnormal force. Then, the control device CONT controls the exposure operation based on the determination result.
- the measurement result of the measuring device 60 is abnormal if at least one measured value of a plurality of items (specific resistance value, TOC, number of particles, dissolved gas concentration) measured by the measuring device 60 is allowed.
- the specific resistance value of liquid LQ is smaller than the allowable value (for example, 18.2 ⁇ ⁇ 'cm at 25 ° C) (abnormal)
- the specific resistance value of liquid LQ is smaller than the allowable value (for example, 18.2 ⁇ ⁇ 'cm at 25 ° C) (abnormal)
- the specific resistance value of liquid LQ is smaller than the allowable value (for example, 18.2 ⁇ ⁇ 'cm at 25 ° C) (abnormal)
- the allowable value for example, 18.2 ⁇ ⁇ 'cm at 25 ° C
- metal ions such as sodium ions in the liquid LQ. May be included.
- the metal ions of the liquid LQ may adhere to the device pattern (wiring pattern) on the substrate P, causing malfunction of the device. There is sex.
- the value of total organic carbon in the liquid LQ is greater than the allowable value (for example, 5. Oppb, more preferably 1. Oppb)
- the light transmittance of the liquid LQ may be reduced. There is sex. In that case, exposure accuracy via liquid LQ and liquid LQ The measurement accuracy by the optical measuring unit thus deteriorated.
- the dissolved gas concentration in the liquid LQ is greater than the allowable value (for example, 3ppb for dissolved oxygen, more preferably lppb. For dissolved nitrogen, 3ppm for example)
- the allowable value for example, 3ppb for dissolved oxygen, more preferably lppb. For dissolved nitrogen, 3ppm for example
- the control device CONT When it is determined that the measurement result of the measurement device 60 is not abnormal, the control device CONT continues the operation being performed, for example, the immersion exposure operation. On the other hand, when determining that the measurement result of the measurement device 60 is abnormal, the control device CONT stops the operation being performed, for example, the exposure operation.
- the control device CONT controls the valve 19B provided in the connection pipe 19 between the pure water manufacturing device 16 and the liquid supply unit 11 to control the pure water manufacturing device 16 The liquid supply to the liquid supply unit 11 is stopped.
- the temperature regulators 171, 175, degassing device 173, filter 174, etc. that are arranged in the liquid supply unit 11 may be damaged by abnormal liquid LQ, and the life of various replacement parts may be shortened. Can reduce adverse effects.
- the control device CONT issues an alarm (warning) by the notification device INF, and the liquid LQ supplied from the pure water production device 16 is abnormal. This can be notified by the notification device INF.
- the control device CONT can identify a plurality of abnormalities of the liquid LQ, and can notify the countermeasure by the notifying device INF. For example, when it is determined that the specific resistance value of the liquid LQ is abnormal based on the measurement result of the specific resistance meter 64 of the measurement device 60, the control device CONT performs maintenance of the ion exchange membrane of the pure water production apparatus 161. (point Display of the content prompting the “replacement” is displayed (notified) by the notification device INF.
- the control device CONT performs maintenance on the UV lamp of the pure water producer 161 ( The display of the content prompting the inspection (replacement) is displayed (notified) by the notification device INF. If it is determined that the number (amount) of foreign matter (fine particles, bubbles) in the liquid LQ is abnormal based on the measurement result of the particle counter 62 of the measuring device 60, the control device CONT Display (notify) the information that prompts maintenance (inspection / replacement) of the particle filter in the notification device INF.
- the control device CONT removes the degassing device 173 of the temperature adjustment device 17 from the degassing device 173. Increase your ability.
- control device CONT can always notify the measurement result (monitor information) of the measurement device 60 by the notification device IN F, or can notify the measurement result of the measurement device 60 at a predetermined interval by the notification device IN F. It is also possible to notify, and the time change (log information) of the measurement result of the measuring device 60 can be notified by the notifying device INF.
- the control device CONT performs adjustments to continue various operations without stopping the various operations performed by the exposure apparatus EX.
- the light transmittance of the liquid LQ may fluctuate due to the fluctuation of the TOC in the liquid LQ. If the light transmittance of the liquid LQ fluctuates, the exposure amount (integrated exposure amount) on the substrate P will fluctuate, and as a result, the exposure line width of the device pattern formed in the shot area may become abnormal. There is sex.
- the control device CONT stores the stored information and the measurement device 60 (TOC meter). By controlling the exposure amount based on the measurement result of 61), a pattern with a desired line width can be obtained.
- the measurement device 60 for measuring the state of the liquid LQ (including at least one of the properties and components) is provided in the pure water production device 16, and based on the measurement result.
- V whether or not the liquid LQ for forming the immersion area AR2 is in a desired state (it can be determined whether or not it is abnormal. And if the measurement result of the measuring device 60 is abnormal) Preventing deterioration in accuracy of measurement and exposure performed by the exposure system EX by promptly taking appropriate measures to bring the liquid LQ into the desired state and controlling the operation of the exposure system EX It is out.
- the measuring device 60 always measures the state of the liquid LQ delivered from the pure water production device 16, but at predetermined time intervals or at predetermined times (for example, Let's measure the state of liquid LQ at the top of the lot).
- the exposure apparatus EX (for example, between the liquid supply unit 11 and the first nozzle member 70 and between the Z or the first nozzle member 70 and the first liquid recovery unit 21).
- a measuring device similar to the measuring device provided in the pure water producing device 16 may be provided.
- the deterioration of the liquid LQ in the exposure apparatus EX can be detected by comparing the measurement result of the measurement apparatus 60 in the pure water production apparatus 16 with the measurement result of the measurement apparatus in the exposure apparatus EX. it can.
- the control device CONT controls the operation of the exposure apparatus EX based on the measurement result of the measurement apparatus 60 of the pure water production apparatus 16, but the state of the exposure apparatus EX (During exposure, measurement, error occurrence, etc.) is output to the pure water production device 16, and the pure water production device 16 controls the operation of the pure water production device 16 itself based on the information from the exposure device EX. (For example, optimize the pure water production operation).
- the temperature adjustment device 17 of the liquid supply unit 11 includes the filter 174, the deaeration device 173, and the flow rate controller 172. At least one of these may be omitted. Good.
- the pure water (liquid LQ) produced by the pure water production apparatus 16 is supplied to the first nozzle member via the liquid supply unit 11 including the temperature control apparatus 17. Force supplied to 70 The liquid supply unit 11 may be omitted, and pure water (liquid LQ) produced by the pure water production apparatus 16 may be directly sent to the supply pipe 13.
- the liquid LQ in the above-described embodiment is pure water.
- Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing factories and the like, and has no adverse effect on the photoresist, optical elements (lenses), etc. on the substrate P.
- pure water has no negative impact on the environment and the content of impurities is extremely low, so that the surface of the substrate P and the front end surface of the projection optical system PL The effect
- the exposure apparatus EX exposes the substrate P by filling the optical path space on the exit side of the optical element 2 of the projection optical system PL with the liquid LQ.
- the light path space on the incident side of the optical element 2 of the projection optical system PL may be filled with the liquid LQ.
- the liquid manufacturing apparatus pure water manufacturing apparatus
- the liquid LQ pure water supplied to the optical path space on the incident side of the optical element 2 is also provided with a measuring device for measuring the state of the liquid LQ. Is desired.
- the liquid LQ of this embodiment may be a liquid other than pure water that is pure water! /.
- the light source of the exposure light EL is F laser
- the liquid LQ transmits F laser light.
- PFPE perfluorinated polyether
- fluorinated oil etc.
- the liquid LQ may have a refractive index of about 1.6 to 1.8.
- liquid Q include, for example, isopropanol having a refractive index of about 1.50, daricerol (glycerin) t having a refractive index of about 1.61, a C—H bond, and a predetermined liquid having an O—H bond, Specific liquids (organic solvents) such as hexane, heptane, decane, etc., and predetermined liquids such as decalin, bicyclohexyl, etc. Alternatively, any two or more of these predetermined liquids may be mixed, or pure water may be added (mixed) with the predetermined liquid. Alternatively, as the liquid LQ, in pure water, H +, Cs +, K +, Cl_, SO 2_,
- a base or acid such as PO 2_ may be added (mixed). Furthermore, A1 acid in pure water
- liquid LQs can transmit ArF excimer laser light.
- a photosensitive material or a protective film (topcoat film) or a coating film coated on the surface of the projection optical systems PL and Z or the substrate P having a small light absorption coefficient and a small temperature dependency. It is preferably stable with respect to an antireflection film or the like.
- the optical element 2 can be made of, for example, quartz (silica). Alternatively, it may be formed of a single crystal material of a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, sodium fluoride, and BaLiF. In addition, the final optics
- the element may be formed of lutetium aluminum garnet (LuAG). And a single crystal material of a fluoride compound such as sodium fluoride.
- At least one optical element of the projection optical system may be formed of a material having a refractive index higher than that of quartz and Z or fluorite (for example, 1.6 or more).
- a refractive index higher than that of quartz and Z or fluorite for example, 1.6 or more.
- salt potassium with a refractive index of about 1 75
- the exposure apparatus provided with the projection optical system having a plurality of optical elements has been described as an example.
- a projection optical system constituted by one optical element may be used.
- the present invention can be applied to an exposure apparatus and an exposure method that do not use a projection optical system. Even when the projection optical system is not used, the exposure light is irradiated onto the substrate through an optical member such as a mask or a lens, and an immersion region is formed in a predetermined space between the optical member and the substrate.
- the position information of the mask stage and the substrate stage is measured using the interferometer system.
- the present invention is not limited to this, and for example, a scale (diffraction grating) provided on the upper surface of the substrate stage is detected.
- the hybrid system includes both the interferometer system and the encoder system, and the measurement result of the encoder system is calibrated (calibrated) using the measurement result of the interferometer system.
- the position of the substrate stage may be controlled by switching between the interferometer system and the encoder system or using both.
- the present invention relates to JP-A-10-163099, JP-A-10-214783, JP 2000-505958, US Pat. No. 6,341,007, US Pat. No. 6,400,441.
- the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing semiconductor devices, but also a glass substrate for display devices, a ceramic wafer for thin film magnetic heads, a mask used in an exposure apparatus, or Reticle masters (synthetic quartz, silicon wafers) are applied.
- the substrate is not limited to a circular shape, but a rectangle, etc. Other shapes may be used.
- the exposure apparatus EX in addition to a step-and-scan type scanning exposure apparatus (scanning stepper) that exposes the substrate P while synchronously moving the mask M and the substrate P, mask M and The present invention can also be applied to a static exposure type projection exposure apparatus (stepper) that exposes the pattern of the mask M while the substrate P is stationary.
- stepper static exposure type projection exposure apparatus
- a reduced image of the first pattern is projected with the first pattern and the substrate P substantially stationary, for example, a refractive optical system (for example, including a reflective element at a 1Z8 reduction magnification). It can also be applied to an exposure apparatus that uses a projection optical system) to perform batch exposure on the substrate P. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus. In addition, the stitch type exposure apparatus can also be applied to a step 'and' stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
- the present invention relates to JP-A-10-163099, JP-A-10-214783, JP 2000-505958, US Pat. No. 6,341,007, US Pat. No. 6,400,441. , U.S. Patent 6,549,269, U.S. Patent 6,590,634, U.S. Patent 6,208,407, U.S. Patent 6,262,796, etc. Applicable.
- a substrate stage for holding the substrate P and various measurements are performed.
- the present invention can also be applied to an exposure apparatus that includes a measurement stage equipped with a sensor or the like.
- a force that employs an immersion exposure apparatus in which the surface of the substrate is locally covered with a liquid is provided.
- the present invention provides an exposure as disclosed in JP-A-6-124873.
- the present invention is also applicable to an immersion exposure apparatus in which the entire target substrate surface is covered with a liquid.
- the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on the substrate P, but for manufacturing a liquid crystal display element or a display. It can be widely applied to an exposure apparatus, an exposure apparatus for manufacturing a thin film magnetic head, an imaging device (CCD), a micromachine, a MEMS, a DNA chip, a reticle or a mask, and the like.
- an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on the substrate P but for manufacturing a liquid crystal display element or a display. It can be widely applied to an exposure apparatus, an exposure apparatus for manufacturing a thin film magnetic head, an imaging device (CCD), a micromachine, a MEMS, a DNA chip, a reticle or a mask, and the like.
- the exposure apparatus EX is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
- various optical systems are adjusted to achieve optical accuracy
- various mechanical systems are adjusted to achieve mechanical accuracy
- various electrical systems are thus, adjustments are made to achieve electrical accuracy.
- the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection, and the like between the various subsystems. It is a matter of course that there is an assembly process for each subsystem before the assembly process for the exposure system. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
- a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, Substrate processing processes such as step 203 for manufacturing a substrate as a base material, a step of exposing the substrate by the exposure apparatus EX of the above-described embodiment, a step of developing the exposed substrate, heating (curing) of the developed substrate, and an etching step Including step 204, device assembly step (including dicing process, bonding process, and packaging process) 205, inspection step 206, and the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Disclosed is a liquid producing apparatus (16) which comprises measuring devices (61K and the like) for measuring the state of a liquid (LQ) to be supplied into an exposure apparatus (EX). The liquid producing apparatus (16) outputs the measured results obtained by the measuring devices (61K and the like) to the exposure apparatus (EX).
Description
明 細 書 Specification
液体製造装置、液浸露光装置、及びデバイス製造方法 Liquid manufacturing apparatus, immersion exposure apparatus, and device manufacturing method
技術分野 Technical field
[0001] 本発明は、液体を介して基板を露光する液浸露光装置に用いられる液体製造装置 The present invention relates to a liquid manufacturing apparatus used in an immersion exposure apparatus that exposes a substrate through a liquid.
、液体を介して基板を露光する液浸露光装置、及びデバイス製造方法に関するもの である。 The present invention relates to an immersion exposure apparatus that exposes a substrate through a liquid, and a device manufacturing method.
本願は、 2005年 12月 19日に出願された特願 2005— 365626号に基づき優先権 を主張し、その内容をここに援用する。 This application claims priority based on Japanese Patent Application No. 2005-365626 filed on December 19, 2005, the contents of which are incorporated herein by reference.
背景技術 Background art
[0002] 半導体デバイス、液晶表示デバイス等は、感光性の基板を露光して、基板上にパ ターンを形成する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソ グラフイエ程で使用される露光装置として、例えば下記特許文献 1に開示されている 液浸露光装置が提案されている。この液浸露光装置は、水、有機溶媒等の液体で基 板上に液浸領域を形成し、その液体を介して基板に露光光を照射するものである。 特許文献 1:国際公開第 99Z49504号パンフレット [0002] Semiconductor devices, liquid crystal display devices, and the like are manufactured by a so-called photolithography technique in which a photosensitive substrate is exposed to form a pattern on the substrate. As an exposure apparatus used in this photolithography process, for example, an immersion exposure apparatus disclosed in Patent Document 1 below has been proposed. This immersion exposure apparatus forms an immersion area on a substrate with a liquid such as water or an organic solvent, and irradiates the substrate with exposure light through the liquid. Patent Document 1: Pamphlet of International Publication No. 99Z49504
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0003] 液浸露光装置においては、液体を介して露光処理及び計測処理を精度良く行うた めに、液体を所望状態に維持することが重要である。そのため、液体に異常がある場 合には、その異常に応じた適切な処置を迅速に施すことが重要である。 In an immersion exposure apparatus, it is important to maintain a liquid in a desired state in order to accurately perform exposure processing and measurement processing via the liquid. For this reason, when there is an abnormality in the liquid, it is important to take appropriate measures promptly according to the abnormality.
[0004] 本発明は、液体を介して基板を露光する液浸露光装置に好適な液体製造装置、 液体を用いる露光処理及び計測処理を精度良く行うことができる液浸露光装置、及 びその液浸露光装置を用いるデバイス製造方法を提供することを目的とする。 The present invention relates to a liquid manufacturing apparatus suitable for an immersion exposure apparatus that exposes a substrate through a liquid, an immersion exposure apparatus that can accurately perform exposure processing and measurement processing using the liquid, and the immersion exposure apparatus. It is an object to provide a device manufacturing method using an exposure apparatus.
課題を解決するための手段 Means for solving the problem
[0005] 本発明は以下の構成を採用している。 The present invention employs the following configuration.
本発明の第 1の態様によれば、基板を露光する液浸露光装置へ供給される露光用 液体を製造する液体製造装置であって、露光用の液体の状態を計測する計測装置
を備え、計測装置の計測結果を露光装置に出力する液体製造装置が提供される。 According to the first aspect of the present invention, there is provided a liquid manufacturing apparatus that manufactures an exposure liquid supplied to an immersion exposure apparatus that exposes a substrate, the measuring apparatus measuring the state of the exposure liquid. And a liquid manufacturing apparatus that outputs a measurement result of the measurement apparatus to the exposure apparatus.
[0006] 本発明の第 1の態様によれば、液体製造装置に液体の状態を計測する計測装置を 設けて、その計測結果を露光装置に出力するので、その計測結果に基づいて、液体 が所望状態である力否かを液浸露光装置で判別することができる。そして、液体に異 常がある場合には、その異常に応じた適切な処置を迅速に施すことができる。したが つて、液体製造装置からの液体を用いる液浸露光装置での露光処理及び計測処理 を精度良く行うことができる。 [0006] According to the first aspect of the present invention, the liquid manufacturing apparatus is provided with the measuring device that measures the state of the liquid, and the measurement result is output to the exposure apparatus. Whether or not the force is in a desired state can be determined by the immersion exposure apparatus. If there is an abnormality in the liquid, it is possible to quickly take appropriate measures according to the abnormality. Therefore, the exposure process and the measurement process in the immersion exposure apparatus using the liquid from the liquid manufacturing apparatus can be performed with high accuracy.
[0007] 本発明の第 2の態様によれば、基板を露光する液浸露光装置であって、液体を製 造する液体製造装置及び前記液体製造装置で製造された液体の状態を計測する 計測装置を有する液体製造システムと、前記液体製造システムからの送出された液 体が流れる流路と、前記流路の開閉を行うバルブとを備え、前記液体製造システム カゝら前記流路を介して前記基板上に供給された液体を介して前記基板に露光光が 照射される露光装置が提供される。 [0007] According to the second aspect of the present invention, there is provided an immersion exposure apparatus for exposing a substrate, the liquid manufacturing apparatus for manufacturing a liquid, and the state of the liquid manufactured by the liquid manufacturing apparatus. A liquid production system having an apparatus, a flow path through which the liquid fed from the liquid production system flows, and a valve for opening and closing the flow path, and the liquid production system via the flow path An exposure apparatus is provided in which exposure light is irradiated onto the substrate through a liquid supplied onto the substrate.
[0008] 本発明の第 2の態様によれば、液体製造装置から供給される液体に異常がある場 合には、その異常に応じた適切な処置を迅速に施すことができる。したがって、液体 を用いる露光処理及び計測処理を精度良く行うことができる。 [0008] According to the second aspect of the present invention, when there is an abnormality in the liquid supplied from the liquid production apparatus, it is possible to quickly perform an appropriate treatment according to the abnormality. Therefore, exposure processing and measurement processing using a liquid can be performed with high accuracy.
[0009] 本発明の第 3の態様によれば、上記記載の露光装置を用いるデバイス製造方法が 提供される。本発明の第 3の態様によれば、露光精度及び計測精度を良好に維持し た状態でデバイスを製造できるので、所望の性能を発揮するデバイスを製造できる。 発明の効果 [0009] According to a third aspect of the present invention, there is provided a device manufacturing method using the exposure apparatus described above. According to the third aspect of the present invention, the device can be manufactured in a state where the exposure accuracy and the measurement accuracy are favorably maintained, and thus a device that exhibits desired performance can be manufactured. The invention's effect
[0010] 本発明によれば、液浸露光装置にお!、て露光処理及び計測処理を精度良く行うこ とができ、その液浸露光装置を用いて所望性能のデバイスを製造することができる。 図面の簡単な説明 [0010] According to the present invention, it is possible to perform exposure processing and measurement processing with high precision in an immersion exposure apparatus, and a device having desired performance can be manufactured using the immersion exposure apparatus. . Brief Description of Drawings
[0011] [図 1]本発明の露光装置の一実施形態を示す概略構成図である。 FIG. 1 is a schematic block diagram that shows one embodiment of an exposure apparatus of the present invention.
[図 2]純水製造装置、及び液体供給部を示す概略構成図である。 FIG. 2 is a schematic configuration diagram showing a pure water production apparatus and a liquid supply unit.
[図 3]計測装置を示す概略構成図である。 FIG. 3 is a schematic configuration diagram showing a measurement device.
[図 4]半導体デバイスの製造工程の一例を示すフローチャート図である。 FIG. 4 is a flowchart showing an example of a semiconductor device manufacturing process.
符号の説明
[0012] 2…光学素子、 10· ··液体供給機構、 11· ··液体供給部、 16· ··純水製造装置、 17— 温調装置、 20…第 1液体回収機構、 21· ··第 1液体回収部、 60· ··計測装置、 61〜6 4…計測器、 61K〜64K…分岐管、 70…第 1ノズル部材、 161…純水製造器、 173 …脱気装置、 174· "フィルタ、 AR1…投影領域、 AR2 液浸領域、 EX…露光装置 、 INF…報知装置、 MRY…記憶装置、 LQ…液体、 P…基板、 PL…投影光学系、 P ST…基板ステージ Explanation of symbols [0012] 2 ... Optical element, 10 ... Liquid supply mechanism, 11 ... Liquid supply unit, 16 ... Pure water production device, 17- Temperature control device, 20 ... First liquid recovery mechanism, 21 ... · 1st liquid recovery unit, 60 ··· Measurement device, 61 to 6 4 ··· Measurement device, 61K to 64K ··· Branch pipe, 70 ··· First nozzle member, 161 ··· Pure water production device, 173 ··· Deaeration device · “Filter, AR1… Projection area, AR2 Immersion area, EX… Exposure device, INF… Notification device, MRY… Storage device, LQ… Liquid, P… Substrate, PL… Projection optical system, PST… Substrate stage
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明について図面を参照しながら説明する。なお、本発明は以下の実施 形態に限定されない。 Hereinafter, the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiment.
図 1は本発明に係る露光装置の一実施形態を示す概略構成図である。 FIG. 1 is a schematic block diagram showing an embodiment of an exposure apparatus according to the present invention.
[0014] 図 1にお!/、て、露光装置 EXは、マスク Mを保持して移動可能なマスクステージ MS Tと、基板 Pを保持して移動可能な基板ステージ PSTと、マスクステージ MSTに保持 されているマスク Mを露光光 ELで照明する照明光学系 ILと、露光光 ELで照明され たマスク Mのパターン像を基板ステージ PSTに保持されている基板 Pに投影する投 影光学系 PLと、露光装置 EX全体の動作を統括制御する制御装置 CONTとを備え ている。制御装置 CONTには、露光処理に関する情報を報知する報知装置 INFが 接続されている。報知装置 INFは、ディスプレイ装置 (表示装置)、音又は光を使って 警報 (警告)を発する警報装置等を含む。更に、制御装置 CONTには、露光処理に 関する情報を記憶する記憶装置 MRYが接続されている。 [0014] In FIG. 1, the exposure apparatus EX includes a mask stage MST that can move while holding the mask M, a substrate stage PST that can move while holding the substrate P, and a mask stage MST. Illumination optical system IL that illuminates the held mask M with exposure light EL, and projection optical system PL that projects the pattern image of mask M illuminated with exposure light EL onto substrate P held on substrate stage PST And a control device CONT that controls the overall operation of the exposure apparatus EX. The control device CONT is connected to a notification device INF that notifies information related to the exposure process. The notification device INF includes a display device (display device), an alarm device that issues an alarm (warning) using sound or light, and the like. Further, a storage device MRY that stores information relating to the exposure process is connected to the control device CONT.
[0015] 本実施形態の露光装置 EXは、液浸法を適用した液浸露光装置であり、投影光学 系 PLの像面側に液体 LQを供給する液体供給機構 10と、液体 LQを回収する第 1液 体回収機構 20とを備えている。露光装置 EXは、少なくともマスク Mのパターン像を 基板 P上に投影している間、液体供給機構 10から供給した液体 LQにより投影光学 系 PLの投影領域 AR1を含む基板 P上の一部に、投影領域 AR1よりも大きく且つ基 板 Pよりも小さい液浸領域 AR2を局所的に形成する。すなわち、露光装置 EXは、投 影光学系 PLの像面側端部の光学素子 2と、投影光学系 PLの像面側に配置された 基板 P表面との間に液体 LQを満たす局所液浸方式を採用している。投影光学系 PL と基板 Pとの間の液体 LQ及び投影光学系 PLを介して露光光 ELを基板 Pに照射す
ることによって基板 Pが露光される。制御装置 CONTは、液体供給機構 10を使って 基板 P上に液体 LQを供給するとともに、第 1液体回収機構 20を使って基板 P上の液 体 LQを回収することで、基板 P上に液体 LQの液浸領域 AR2を局所的に形成する。 The exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied, and a liquid supply mechanism 10 that supplies the liquid LQ to the image plane side of the projection optical system PL, and collects the liquid LQ. And a first liquid recovery mechanism 20. While at least the pattern image of the mask M is projected onto the substrate P, the exposure apparatus EX uses a liquid LQ supplied from the liquid supply mechanism 10 to a part of the substrate P including the projection area AR1 of the projection optical system PL. An immersion area AR2 that is larger than the projection area AR1 and smaller than the substrate P is locally formed. That is, the exposure apparatus EX uses a local immersion liquid that fills the liquid LQ between the optical element 2 at the image plane side end of the projection optical system PL and the substrate P surface disposed on the image plane side of the projection optical system PL. The method is adopted. The substrate P is irradiated with the exposure light EL via the liquid LQ between the projection optical system PL and the substrate P and the projection optical system PL. As a result, the substrate P is exposed. The control device CONT supplies the liquid LQ onto the substrate P using the liquid supply mechanism 10 and recovers the liquid LQ on the substrate P using the first liquid recovery mechanism 20 so that the liquid is supplied onto the substrate P. LQ immersion area AR2 is locally formed.
[0016] 投影光学系 PLの像面近傍には、後に詳述する第 1ノズル部材 70が配置されてい る。第 1ノズル部材 70は、光学素子 2の周りを囲むように設けられた環状部材である。 基板 Pの露光中、第 1ノズル部材 70は、基板 P (基板ステージ PST)の上方に配置さ れ、基板 P及び基板ステージ PSTの少なくとも一方力 第 1ノズル部材 70の下面と対 向する。本実施形態において、第 1ノズル部材 70は液体供給機構 10及び第 1液体 回収機構 20それぞれの一部を構成して 、る。 [0016] A first nozzle member 70, which will be described in detail later, is disposed in the vicinity of the image plane of the projection optical system PL. The first nozzle member 70 is an annular member provided so as to surround the optical element 2. During the exposure of the substrate P, the first nozzle member 70 is disposed above the substrate P (substrate stage PST) and faces at least one force of the substrate P and the substrate stage PST to the lower surface of the first nozzle member 70. In the present embodiment, the first nozzle member 70 constitutes a part of each of the liquid supply mechanism 10 and the first liquid recovery mechanism 20.
[0017] 本実施形態では、露光装置 EXは、マスク Mと基板 Pとをそれぞれの走査方向に同 期移動しつつマスク Mに形成されたパターンの像で基板 Pを露光する走査型露光装 置 (所謂スキャニングステツパ)である。以下の説明において、投影光学系 PLの光軸 AXと平行な方向を Z軸方向、 Z軸方向に垂直な平面内でマスク Mと基板 Pとの同期 移動方向(走査方向)を X軸方向、 Z軸方向及び X軸方向に垂直な方向(非走査方 向)を Y軸方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞ れ、 Θ Χ, 0 Y、及び 0 Z方向とする。 In the present embodiment, the exposure apparatus EX is a scanning exposure apparatus that exposes the substrate P with an image of a pattern formed on the mask M while moving the mask M and the substrate P in the respective scanning directions synchronously. (So-called scanning stepper). In the following explanation, the direction parallel to the optical axis AX of the projection optical system PL is the Z-axis direction, the synchronous movement direction (scanning direction) of the mask M and the substrate P in the plane perpendicular to the Z-axis direction is the X-axis direction, The direction perpendicular to the Z-axis direction and X-axis direction (non-scanning direction) is the Y-axis direction. The rotation (inclination) directions around the X, Y, and Z axes are the ΘΘ, 0 Y, and 0 Z directions, respectively.
[0018] 露光装置 EXは、床面上に設けられたベース BPと、そのベース BP上に設置された メインコラム 1とを備えている。メインコラム 1には、内側に向けて突出する上側支持部 7及び下側支持部 8が形成されている。照明光学系 ILは、メインコラム 1の上部に固 定された支持フレーム 3により支持されている。 The exposure apparatus EX includes a base BP provided on the floor surface, and a main column 1 installed on the base BP. The main column 1 is formed with an upper support portion 7 and a lower support portion 8 that protrude inward. The illumination optical system IL is supported by a support frame 3 fixed to the upper part of the main column 1.
[0019] 照明光学系 ILは、露光用光源、露光用光源から射出された光束の照度を均一化 するオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集 光するコンデンサレンズ、リレーレンズ系、及び露光光 ELによるマスク M上の照明領 域をスリット状に設定する可変視野絞り等を有している。マスク M上の所定の照明領 域は照明光学系 ILにより均一な照度分布の露光光 ELで照明される。照明光学系 IL 力 射出される露光光 ELとしては、例えば水銀ランプ力も射出される輝線 (g線、 h線 、 i線)及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)、 ArFェキ シマレーザ光(波長 193nm)及び Fレーザ光(波長 157nm)等の真空紫外光 (VUV
光)などが用いられる。本実施形態においては ArFエキシマレーザ光が用いられる。 [0019] The illumination optical system IL includes an exposure light source, an optical integrator that equalizes the illuminance of the light beam emitted from the exposure light source, a condenser lens that collects the exposure light EL from the optical integrator, a relay lens system, and an exposure It has a variable field stop that sets the illumination area on the mask M with light EL in a slit shape. The predetermined illumination area on the mask M is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL. Illumination optical system IL force As the exposure light EL emitted, far ultraviolet light (DUV light) such as bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm) are also emitted. , Vacuum ultraviolet light (VUV) such as ArF excimer laser light (wavelength 193nm) and F laser light (wavelength 157nm) Light). In this embodiment, ArF excimer laser light is used.
[0020] 本実施形態にぉ 、ては、液体 LQとして純水が用いられる。純水は ArFエキシマレ 一ザ光のみならず、例えば水銀ランプ力 射出される輝線 (g線、 h線、 i線)及び KrF エキシマレーザ光 (波長 248nm)等の遠紫外光 (DUV光)も透過可能である。 In the present embodiment, pure water is used as the liquid LQ. Pure water transmits not only ArF excimer laser light but also far ultraviolet light (DUV light) such as emission lines (g-line, h-line, i-line) emitted from mercury lamp force and KrF excimer laser light (wavelength 248 nm). Is possible.
[0021] マスクステージ MSTは、マスク Mを保持して移動可能である。マスクステージ MST の下面には気体軸受(エアベアリング) 45が複数設けられて!/、る。マスクステージ MS Tは、エアベアリング 45によりマスク定盤 4の上面 (ガイド面)に支持されている。マス クステージ MST及びマスク定盤 4の中央部にはマスク Mのパターン像を通過させる 開口 MK1、 MK2がそれぞれ形成されている。マスク定盤 4は、メインコラム 1の上側 支持部 7に防振装置 46を介して支持されている。防振装置 46によって、メインコラム 1の振動が、マスクステージ MSTを支持するマスク定盤 4に伝わらないように、マスク 定盤 4とメインコラム 1とが分離されて 、る。 Mask stage MST is movable while holding mask M. A plurality of gas bearings (air bearings) 45 are provided on the lower surface of the mask stage MST. Mask stage MST is supported on the upper surface (guide surface) of mask surface plate 4 by air bearing 45. Openings MK1 and MK2 that allow the pattern image of the mask M to pass through are formed at the center of the mask stage MST and the mask surface plate 4, respectively. The mask surface plate 4 is supported on the upper support portion 7 of the main column 1 via a vibration isolator 46. The anti-vibration device 46 separates the mask surface plate 4 and the main column 1 so that the vibration of the main column 1 is not transmitted to the mask surface plate 4 that supports the mask stage MST.
[0022] マスクステージ MSTは、制御装置 CONTにより制御されるリニアモータ等を含むマ スクステージ駆動装置 MSTDにより、マスク定盤 4上において、 XY平面内で 2次元 移動可能及び Θ Z方向に微少回転可能である。 [0022] The mask stage MST can be moved two-dimensionally in the XY plane on the mask surface plate 4 and slightly rotated in the ΘZ direction by the mask stage drive device MSTD including a linear motor controlled by the control device CONT. Is possible.
[0023] マスクステージ MST上には反射鏡 41が設けられている。また、所定位置にはレー ザ干渉計 42が設けられている。マスクステージ MST上のマスク Mの 2次元方向の位 置、及び 0 X方向、 0 Y方向、 0 Z方向の回転角はレーザ干渉計 42によりリアルタイ ムで計測される。レーザ干渉計 42の計測結果は制御装置 CONTに出力される。制 御装置 CONTは、レーザ干渉計 42の計測結果に基づ 、てマスクステージ駆動装置 MSTDを制御し、マスクステージ MSTに保持されて!、るマスク Mの位置制御を行う。 [0023] A reflecting mirror 41 is provided on the mask stage MST. A laser interferometer 42 is provided at a predetermined position. The position of the mask M on the mask stage MST in the two-dimensional direction and the rotation angles in the 0 X, 0 Y, and 0 Z directions are measured in real time by the laser interferometer 42. The measurement result of the laser interferometer 42 is output to the control device CONT. The control device CONT controls the mask stage driving device MSTD based on the measurement result of the laser interferometer 42, and controls the position of the mask M held by the mask stage MST.
[0024] なお、反射鏡 41は平面鏡のみでなくコーナーキューブ (レトロリフレクタ)を含むもの としてもよいし、反射鏡 41をマスクステージに固設する代わりに、例えばマスクステー ジ MSTの端面 (側面)を鏡面加工して反射面を形成してもよい。また、マスクステー ジ MSTは、例えば特開平 8— 130179号公報(対応米国特許第 6, 721, 034号)に 開示される粗微動可能な構成としてもょ ヽ。 [0024] The reflecting mirror 41 may include not only a plane mirror but also a corner cube (retro reflector). Instead of fixing the reflecting mirror 41 to the mask stage, for example, an end surface (side surface) of the mask stage MST. The reflective surface may be formed by mirror finishing. Further, the mask stage MST may be configured to be capable of coarse and fine movement disclosed in, for example, Japanese Patent Laid-Open No. 8-130179 (corresponding US Pat. No. 6,721,034).
[0025] 投影光学系 PLは、マスク Mのパターンの像を所定の投影倍率 βで基板 Ρに投影 する。投影光学系 PLは、その終端に設けられた光学素子 2を含む複数の光学素子
で構成されており、それら光学素子は鏡筒 PKで支持されている。本実施形態におい て、投影光学系 PLは、投影倍率 j8が例えば 1Z4、 1/5,あるいは 1Z8の縮小系で あり、前述の照明領域と共役な投影領域にマスクパターンの縮小像を形成する。な お、投影光学系 PLは縮小系、等倍系及び拡大系のいずれでもよい。また、投影光 学系 PLは屈折素子を含まな 、反射系であってもよ!/ヽし、反射素子と屈折素子とを含 む反射屈折系であってもよい。また、本実施形態においては、投影光学系 PLの終端 の光学素子 2のみが液浸領域 AR2の液体 LQと接触する。 Projection optical system PL projects an image of the pattern of mask M onto substrate で at a predetermined projection magnification β. Projection optical system PL includes a plurality of optical elements including optical element 2 provided at the end thereof. These optical elements are supported by a lens barrel PK. In the present embodiment, the projection optical system PL is a reduction system having a projection magnification j8 of 1Z4, 1/5, or 1Z8, for example, and forms a reduced image of the mask pattern in a projection area conjugate with the illumination area described above. The projection optical system PL may be any of a reduction system, a unity magnification system, and an enlargement system. Further, the projection optical system PL may not be a refraction element, but may be a reflection system, or may be a catadioptric system including a reflection element and a refraction element. In the present embodiment, only the optical element 2 at the end of the projection optical system PL is in contact with the liquid LQ in the liquid immersion area AR2.
[0026] 投影光学系 PLを保持する鏡筒 PKの外周にはフランジ PFが設けられて 、る。投影 光学系 PLはフランジ PFを介して鏡筒定盤 5に支持されている。鏡筒定盤 5は、メイン コラム 1の下側支持部 8に防振装置 47を介して支持されている。すなわち、防振装置 47によって、メインコラム 1の振動が、投影光学系 PLを支持する鏡筒定盤 5に伝わら な 、ように、鏡筒定盤 5とメインコラム 1とが分離されて 、る。 A flange PF is provided on the outer periphery of the lens barrel PK that holds the projection optical system PL. The projection optical system PL is supported by the lens barrel surface plate 5 via the flange PF. The lens barrel surface plate 5 is supported on the lower support portion 8 of the main column 1 via a vibration isolator 47. That is, the lens barrel base plate 5 and the main column 1 are separated by the vibration isolator 47 so that the vibration of the main column 1 is not transmitted to the lens barrel base plate 5 that supports the projection optical system PL. .
[0027] 基板ステージ PSTは、基板 Pを保持する基板ホルダ PHを支持して移動可能である 。基板ステージ PSTの下面には気体軸受(エアベアリング) 48が複数設けられている 。基板ステージ PSTは、エアベアリング 48により基板定盤 6の上面 (ガイド面)に支持 されている。基板定盤 6は、ベース BP上に防振装置 49を介して支持されている。ま た、防振装置 49によって、ベース BP (床面)やメインコラム 1の振動力 基板ステージ PSTを支持する基板定盤 6に伝わらないように、基板定盤 6とメインコラム 1及びべ一 ス BP (床面)とが分離されて 、る。 The substrate stage PST is movable while supporting a substrate holder PH that holds the substrate P. A plurality of gas bearings (air bearings) 48 are provided on the lower surface of the substrate stage PST. The substrate stage PST is supported on the upper surface (guide surface) of the substrate surface plate 6 by air bearings 48. The substrate surface plate 6 is supported on the base BP via a vibration isolator 49. In addition, the vibration isolator 49 prevents the vibration force of the base BP (floor) and main column 1 from being transmitted to the substrate surface plate 6 that supports the substrate stage PST. BP (floor surface) is separated.
[0028] 基板ステージ PSTは、制御装置 CONTにより制御されるリニアモータ等を含む基 板ステージ駆動装置 PSTDにより、基板ホルダ PHに基板 Pを保持した状態で、基板 定盤 6上において、 XY平面内で 2次元移動可能及び θ Z方向に微小回転可能であ る。更に基板ステージ PSTは、 Z軸方向、 Θ X方向、及び Θ Y方向にも移動可能であ る。 [0028] The substrate stage PST is in the XY plane on the substrate surface plate 6 with the substrate P held by the substrate holder PH by the substrate stage driving device PSTD including a linear motor controlled by the control device CONT. It can be moved two-dimensionally and can be rotated slightly in the θZ direction. Furthermore, the substrate stage PST can also move in the Z-axis direction, ΘX direction, and ΘY direction.
[0029] 基板ステージ PST上には反射鏡 43が設けられている。また、所定位置にはレーザ 干渉計 44が設けられている。基板ステージ PST上の基板 Pの 2次元方向の位置、及 び回転角はレーザ干渉計 44によりリアルタイムで計測される。また、不図示ではある 力 露光装置 EXは、基板ステージ PSTに支持されている基板 Pの表面の位置情報
を検出するフォーカス ·レべリング検出系を備えて ヽる。フォーカス ·レべリング検出系 は、基板 P表面の Z軸方向の位置情報、及び基板 Pの Θ X及び Θ Y方向の傾斜情報 を検出する。 [0029] A reflecting mirror 43 is provided on the substrate stage PST. A laser interferometer 44 is provided at a predetermined position. The position and rotation angle of the substrate P on the substrate stage PST in a two-dimensional direction are measured in real time by the laser interferometer 44. In addition, force exposure equipment EX, which is not shown, has positional information on the surface of the substrate P supported by the substrate stage PST. It has a focus / leveling detection system to detect The focus / leveling detection system detects the position information of the substrate P surface in the Z-axis direction and the tilt information of the substrate P in the ΘX and ΘY directions.
[0030] フォーカス'レべリング検出系はその複数の計測点でそれぞれ基板の Z軸方向の位 置情報を計測することで、基板の Θ X及び Θ Y方向の傾斜情報(回転角)を検出する ものである。さらに、例えばレーザ干渉計を使って基板の Z軸、 Θ X及び Θ Y方向の 位置情報を計測可能であるときは、基板の露光動作中にその z軸方向の位置情報が 計測可能となるようにフォーカス'レペリング検出系を設けなくてもよぐ少なくとも露光 動作中はレーザ干渉計の計測結果を用いて Z軸、 Θ X及び Θ Y方向に関する基板の 位置制御を行うようにしてもょ 、。 [0030] The focus' leveling detection system detects the tilt information (rotation angle) in the Θ X and Θ Y directions of the substrate by measuring the position information in the Z-axis direction of the substrate at each of the multiple measurement points. To do. Furthermore, for example, if the position information of the substrate in the Z-axis, ΘX, and ΘY directions can be measured using a laser interferometer, the position information in the z-axis direction can be measured during the substrate exposure operation. There is no need to provide a focus and repelling detection system. At least during exposure operations, the position of the substrate in the Z axis, Θ X and Θ Y directions may be controlled using the measurement results of the laser interferometer.
[0031] レーザ干渉計 44の計測結果は制御装置 CONTに出力される。フォーカス'レペリ ング検出系の検出結果も制御装置 CONTに出力される。制御装置 CONTは、フォ 一カス'レべリング検出系の検出結果に基づいて、基板ステージ駆動装置 PSTDを 制御し、基板 Pのフォーカス位置及び傾斜角を制御して基板 Pの表面を投影光学系 PLの像面に合わせ込むとともに、レーザ干渉計 44の計測結果に基づいて、基板 P の X軸方向及び Y軸方向における位置制御を行う。 [0031] The measurement result of the laser interferometer 44 is output to the control device CONT. The detection result of the focus' repelling detection system is also output to the control device CONT. The control device CONT controls the substrate stage drive device PSTD based on the detection result of the focus leveling detection system, controls the focus position and tilt angle of the substrate P, and projects the surface of the substrate P to the projection optical system. The position of the substrate P in the X-axis direction and the Y-axis direction is controlled based on the measurement result of the laser interferometer 44 while matching with the PL image plane.
[0032] 基板ステージ PST上には凹部 50が設けられており、基板 Pを保持するための基板 ホルダ PHは凹部 50に配置されている。そして、基板ステージ PSTの凹部 50の周囲 に形成された上面 51は、基板ホルダ PHに保持された基板 Pの表面とほぼ同じ高さ( 面一)の平坦面となっている。なお、基板ホルダ PHに保持された基板 Pの表面と基 板ステージ PSTの上面 51との間に段差があってもよい。なお、基板ステージ PSTの 上面 51はその一部、例えば基板 Pを囲む所定領域のみ、基板 Pの表面とほぼ同じ高 さとしてもよい。また、本実施形態では基板ホルダ PHと基板ステージ PSTとを別々に 構成し、例えば真空吸着などによって基板ホルダ PHを基板ステージ PSTの凹部に 固定して!/ヽるが、基板ホルダ PHを基板ステージ PSTと一体に形成してもよ 、。 A recess 50 is provided on the substrate stage PST, and a substrate holder PH for holding the substrate P is disposed in the recess 50. An upper surface 51 formed around the recess 50 of the substrate stage PST is a flat surface that is substantially the same height (level) as the surface of the substrate P held by the substrate holder PH. There may be a step between the surface of the substrate P held by the substrate holder PH and the upper surface 51 of the substrate stage PST. Note that the upper surface 51 of the substrate stage PST may have a height substantially the same as the surface of the substrate P only in a part thereof, for example, a predetermined region surrounding the substrate P. In this embodiment, the substrate holder PH and the substrate stage PST are configured separately, and the substrate holder PH is fixed to the concave portion of the substrate stage PST by, for example, vacuum suction. It can be integrated with PST.
[0033] 液体供給機構 10は、液体 LQを送出可能な液体供給部 11と、液体供給部 11にそ の一端部が接続された供給管 13とを備えている。供給管 13の他端部は第 1ノズル部 材 70に接続されている。本実施形態においては、液体供給機構 10は液体 LQとして
純水を供給するもので、液体供給部 11には、接続管 19を介して純水製造装置 16が 接続されている。 The liquid supply mechanism 10 includes a liquid supply unit 11 capable of delivering the liquid LQ, and a supply pipe 13 having one end connected to the liquid supply unit 11. The other end of the supply pipe 13 is connected to the first nozzle member 70. In this embodiment, the liquid supply mechanism 10 is a liquid LQ. Pure water is supplied, and a pure water production apparatus 16 is connected to the liquid supply unit 11 via a connection pipe 19.
[0034] 図 2は純水製造装置 16、及び液体供給部 11の構成の一例を示す概略図である。 FIG. 2 is a schematic diagram showing an example of the configuration of the pure water production apparatus 16 and the liquid supply unit 11.
純水製造装置 16は、例えば浮遊物、不純物などを含む水道水あるいは純水を精製 して所定の純度の純水を製造する純水製造器 161と、純水製造器 161で製造され、 液体供給部 11へ供給される純水 (液体 LQ)の状態 (液体 LQの性質及び成分のうち 少なくとも一方)を計測する計測装置 60を備えている。 The pure water production device 16 is produced by a pure water production device 161 that purifies pure water having a predetermined purity by purifying, for example, tap water or pure water containing suspended solids, impurities, etc., and a pure water production device 161. A measuring device 60 for measuring the state of pure water (liquid LQ) supplied to the supply unit 11 (at least one of the properties and components of the liquid LQ) is provided.
[0035] 純水製造装置 16の純水製造器 161には、工場など力も水道水あるいは純水が接 続管 18を介して供給される。純水製造器 161は、イオン交換膜、パーティクルフィル タ等の液体改質部材、及び紫外光照射装置 (UVランプ)等の液体改質装置を備え ており、これら液体改質部材及び液体改質装置により、液体の比抵抗値、異物 (微粒 子、気泡)の数、全有機体炭素 (TOC : total organic carbon)、溶存気体濃度、及び 生菌の量等を許容範囲内の所望値に調整する。 [0035] The pure water producing device 161 of the pure water producing apparatus 16 is supplied with tap water or pure water via the connecting pipe 18 from the factory. The pure water generator 161 includes a liquid reforming member such as an ion exchange membrane and a particle filter, and a liquid reforming device such as an ultraviolet light irradiation device (UV lamp). Adjust the specific resistance value of the liquid, the number of foreign substances (fine particles, bubbles), total organic carbon (TOC), dissolved gas concentration, and the amount of viable bacteria to the desired values within the allowable range. To do.
[0036] 計測装置 60は、純水製造器 161から送出される液体 LQの状態 (液体 LQの性質、 成分の少なくとも一方を含む)を計測する。計測装置 60の計測項目は、液体 LQの比 抵抗値、液体 LQ中の全有機体炭素、液体 LQ中のパーティクル (気泡を含む)の数 、液体 LQの溶存気体濃度 (溶存酸素濃度 (DO: dissolved oxygen)、及び Zまたは 溶存窒素濃度 (DN : dissolved nitrogen)を含む)、液体 LQ中のシリカ濃度、液体 LQ 中の金属イオン濃度などの少なくとも 1つを含む。計測装置 60の計測項目は、露光さ れる基板 Pへの悪影響、露光装置 EXを構成する部材 (光学素子 2など)への悪影響 などを考慮して選択され、選択された計測項目を計測するために、計測装置 60は少 なくとも 1つの計測器を備えている。計測器としては、比抵抗値を計測するための比 抵抗計、全有機体炭素を計測するための TOC計、液体 LQ中の微粒子及び気泡を 含む異物の数を計測するためのパーティクルカウンタ、溶存酸素 (溶存酸素濃度)を 計測するための DO計、溶存窒素 (溶存窒素濃度)を計測するための DN計、シリカ 濃度を計測するためのシリカ計等を用いることができる。 [0036] The measuring device 60 measures the state of the liquid LQ (including at least one of the properties and components of the liquid LQ) delivered from the pure water producer 161. The measurement items of the measuring device 60 are the specific resistance value of the liquid LQ, the total organic carbon in the liquid LQ, the number of particles (including bubbles) in the liquid LQ, the dissolved gas concentration of the liquid LQ (dissolved oxygen concentration (DO: dissolved oxygen), and at least one of Z or dissolved nitrogen concentration (DN: dissolved nitrogen), silica concentration in liquid LQ, metal ion concentration in liquid LQ, etc. The measurement items of the measuring device 60 are selected in consideration of the adverse effects on the substrate P to be exposed and the adverse effects on the components (such as the optical element 2) that make up the exposure device EX, in order to measure the selected measurement items. In addition, the measuring device 60 has at least one measuring instrument. The measuring instrument includes a resistivity meter for measuring the resistivity value, a TOC meter for measuring total organic carbon, a particle counter for measuring the number of foreign particles including fine particles and bubbles in the liquid LQ, and dissolution. A DO meter for measuring oxygen (dissolved oxygen concentration), a DN meter for measuring dissolved nitrogen (dissolved nitrogen concentration), or a silica meter for measuring silica concentration can be used.
[0037] 本実施形態では、計測装置 60は、液体 LQ中の全有機炭素を計測するための TO C計 61、液体 LQ中の微粒子及び気泡を含む異物の数を計測するためのパーテイク
ルカウンタ 62、液体 LQ中の溶存気体濃度 (溶存酸素濃度、及び Zまたは溶存窒素 濃度を含む)を計測するための溶存気体濃度計 63、及び比抵抗計 64を含む。 [0037] In the present embodiment, the measuring device 60 includes a TOC meter 61 for measuring the total organic carbon in the liquid LQ, and a participant for measuring the number of foreign matters including fine particles and bubbles in the liquid LQ. Counter 62, dissolved gas concentration meter 63 for measuring dissolved gas concentration in liquid LQ (including dissolved oxygen concentration and Z or dissolved nitrogen concentration), and resistivity meter 64.
[0038] 図 3は計測装置 60の概略構成図である。図 3に示すように、計測装置 60の TOC計 61は、純水製造器 161から送出された液体 LQの流路を形成する配管の途中から分 岐された分岐管 (分岐流路) 61Kに接続されている。純水製造器 161より送出された 液体 LQの一部は分岐管 61Kを流れて TOC計 61に流入する。 TOC計 61は、分岐 管 61Kによって形成された分岐流路を流れる液体 LQの全有機体炭素 (TOC)を計 測する。同様に、パーティクルカウンタ 62、溶存気体濃度計 63、及び比抵抗計 64は 、純水製造器 161から送出された液体 LQの流路を形成する配管の途中から分岐さ れた分岐管 62K、 63Κ、 64Κのそれぞれに接続されており、それら分岐管 62Κ、 63 Κ、 64Κによって形成された分岐流路を流れる液体 LQ中の異物 (微粒子及び気泡) の数、溶存気体濃度、比抵抗値をそれぞれ計測する。 FIG. 3 is a schematic configuration diagram of the measuring device 60. As shown in Fig. 3, the TOC meter 61 of the measuring device 60 is connected to a branch pipe (branch flow path) 61K branched from the middle of the pipe forming the flow path of the liquid LQ sent from the pure water generator 161. It is connected. Part of the liquid LQ sent from the pure water generator 161 flows through the branch pipe 61K and flows into the TOC meter 61. The TOC meter 61 measures the total organic carbon (TOC) of the liquid LQ flowing through the branch flow path formed by the branch pipe 61K. Similarly, the particle counter 62, the dissolved gas concentration meter 63, and the specific resistance meter 64 are branched pipes 62K, 63Κ branched from the middle of the pipe forming the flow path of the liquid LQ sent from the pure water generator 161. , 64Κ, and the number of foreign substances (fine particles and bubbles), dissolved gas concentration, and resistivity in the liquid LQ flowing through the branch channel formed by these branch pipes 62Κ, 63Κ, 64Κ, respectively. measure.
[0039] 本実施形態においては、分岐管 61K〜64Kはそれぞれ独立した分岐流路を形成 し、分岐流路のそれぞれに、各計測器 61〜64が接続されている。すなわち、複数の 計測器 61〜64は、純水製造器 161から送出された液体 LQの流路に対して分岐管 61Κ〜64Κを介して並列に接続されている。なお、純水製造器 161から送出された 液体 LQの流路に対して一つの分岐流路を形成し、その一部の分岐流路に複数の 計測器を直列に接続してもよい。すなわち、 1つの分岐管に流入した液体 LQの状態 を第 1の計測器で計測し、その第 1の計測器を通過した液体 LQを第 2の計測器で計 測するようにしてもよい。また、各計測器 61〜64での計測に使用された液体 LQは、 後述の回収管 23を介して回収される。 In the present embodiment, the branch pipes 61K to 64K form independent branch flow paths, and the measuring instruments 61 to 64 are connected to the branch flow paths, respectively. In other words, the plurality of measuring instruments 61 to 64 are connected in parallel to the flow path of the liquid LQ sent from the pure water producer 161 via the branch pipes 61 to 64. Note that one branch channel may be formed for the channel of the liquid LQ sent from the pure water production device 161, and a plurality of measuring instruments may be connected in series to some of the branch channels. That is, the state of the liquid LQ flowing into one branch pipe may be measured by the first measuring instrument, and the liquid LQ that has passed through the first measuring instrument may be measured by the second measuring instrument. Further, the liquid LQ used for measurement by each of the measuring instruments 61 to 64 is recovered through a recovery pipe 23 described later.
[0040] 本実施形態においては、純水製造器 161から液体 LQが送出されている間、計測 装置 60には液体 LQが常時供給されるため、計測装置 60は液体 LQの状態 (性質、 及び Ζ又は成分)を、基板 Ρの露光中及び露光前後を含めて、常時計測することが できる。すなわち、計測装置 60は、露光装置 ΕΧで行われる動作 (例えば、基板 Ρ〖こ 対する液浸露光動作)と並行して、液体 LQの状態を計測可能である。計測装置 60 の計測結果は制御装置 CONTに出力される。露光装置 ΕΧの制御装置 CONTは、 計測装置 60の計測結果に基づいて、純水製造装置 16から送出される液体 LQの状
態 (性質、及び Z又は成分)を常時モニタ可能である。 In the present embodiment, since the liquid LQ is constantly supplied to the measuring device 60 while the liquid LQ is being sent from the pure water producer 161, the measuring device 60 is in a state of liquid LQ (property, and Ζ or component) can be measured at all times, including during and before exposure of the substrate Ρ. That is, the measuring device 60 can measure the state of the liquid LQ in parallel with the operation performed by the exposure device (for example, the immersion exposure operation for the substrate). The measurement result of the measuring device 60 is output to the control device CONT. The control device CONT of the exposure device IV is based on the measurement result of the measurement device 60, and the state of the liquid LQ delivered from the pure water production device 16 The state (property and Z or component) can be monitored at any time.
[0041] 純水製造装置 16から送出された液体 LQは、接続管 19を介して液体供給機構 10 の液体供給部 11に送出され、液体供給部 11の温調装置 17に供給される。 The liquid LQ sent from the pure water production device 16 is sent to the liquid supply unit 11 of the liquid supply mechanism 10 via the connection pipe 19 and supplied to the temperature adjustment device 17 of the liquid supply unit 11.
温調装置 17は、純水製造装置 16で製造され、供給管 13に供給される液体 (純水) LQの温度調整を行う。温調装置 17の一端は接続管 19に接続され、他端は供給管 1 3に接続されている。温調装置 17は、液体 LQの温度を粗く調整するラフ温調器 171 と、ラフ温調器 171の下流側に設けられ、供給管 13に流す液体 LQの単位時間当た りの量を制御するマスフローコントローラと呼ばれる流量制御器 172と、流量制御器 1 72を通過した液体 LQ中の溶存気体濃度 (溶存酸素濃度、及び Zまたは溶存窒素 濃度を含む)を低下させるための脱気装置 173と、脱気装置 173で脱気された液体 L Q中の異物(微粒子、気泡など)を取り除くフィルタ 174と、フィルタ 174を通過した液 体 LQの温度の微調整を行うファイン温調器 175とを備えている。 The temperature control device 17 is manufactured by the pure water manufacturing device 16 and adjusts the temperature of the liquid (pure water) LQ supplied to the supply pipe 13. One end of the temperature control device 17 is connected to the connection pipe 19, and the other end is connected to the supply pipe 13. The temperature controller 17 is provided on the downstream side of the rough temperature controller 171 for roughly adjusting the temperature of the liquid LQ, and controls the amount per unit time of the liquid LQ that flows to the supply pipe 13. A flow controller 172 called a mass flow controller, and a degassing device 173 for reducing the dissolved gas concentration (including dissolved oxygen concentration and Z or dissolved nitrogen concentration) in the liquid LQ that has passed through the flow controller 1 72 The filter 174 removes foreign matter (fine particles, bubbles, etc.) in the liquid LQ deaerated by the degassing device 173, and a fine temperature controller 175 that finely adjusts the temperature of the liquid LQ that has passed through the filter 174. ing.
[0042] ラフ温調器 171は、純水製造装置 16から接続管 19を介して送出された液体 LQの 温度を目標温度 (例えば 23°C)に対して例えば ±0. 1°C程度の粗!、精度で温度調 整する。流量制御器 172は、ラフ温調器 171と脱気装置 173との間に配置されており 、ラフ温調器 171で温度調整された液体 LQの脱気装置 173側に対する単位時間当 たりの流量を制御する。 [0042] The rough temperature controller 171 adjusts the temperature of the liquid LQ sent from the pure water production device 16 via the connection pipe 19 to, for example, about ± 0.1 ° C with respect to the target temperature (for example, 23 ° C). Coarse! Adjust temperature with accuracy. The flow controller 172 is arranged between the rough temperature controller 171 and the degassing device 173, and the flow rate per unit time of the liquid LQ degassed by the rough temperature controller 171 to the degassing device 173 side. To control.
[0043] 脱気装置 173は、ラフ温調器 171とファイン温調器 175との間、具体的には流量制 御器 172とフィルタ 174との間に配置されており、流量制御器 172から送出された液 体 LQを脱気して、液体 LQ中の溶存気体濃度を所望値まで低下させる。脱気装置 1 73としては、中空糸膜フィルタ等のフィルタを用いて液体 LQを気液分離し、分離さ れた気体成分を真空系を使って除く脱気フィルタを含む装置などを用いることができ る。 [0043] The degassing device 173 is disposed between the rough temperature controller 171 and the fine temperature controller 175, specifically, between the flow controller 172 and the filter 174. The delivered liquid LQ is degassed, and the dissolved gas concentration in the liquid LQ is reduced to the desired value. As the degassing device 173, it is possible to use a device including a degassing filter that separates liquid LQ using a filter such as a hollow fiber membrane filter and removes the separated gas components using a vacuum system. it can.
[0044] フィルタ 174は、ラフ温調器 171とファイン温調器 175との間、具体的には脱気装置 173とファイン温調器 175との間に配置されており、脱気装置 173から送出された液 体 LQ中の異物を取り除くものである。流量制御器 172、及び脱気装置 173を通過す るときに、液体 LQ中に僅かに異物 (particle)が混入する可能性が考えられる力 流 量制御器 172及び脱気装置 173の下流にフィルタ 174を設けたことにより、そのフィ
ルタ 174によって異物を取り除くことができる。フィルタ 174としては、中空糸膜フィル タ及び Z又はパーティクルフィルタなど公知のフィルタを用いることができる。なお、 脱気装置 173は、例えば米国特許公開第 2005Z0219490号公報に開示されてい る装置を用いることができる。 [0044] The filter 174 is disposed between the rough temperature controller 171 and the fine temperature controller 175, specifically, between the deaerator 173 and the fine temperature controller 175. Removes foreign matter in the delivered liquid LQ. When passing through the flow controller 172 and the deaerator 173, there is a possibility that a slight amount of particles may enter the liquid LQ. Filter downstream of the flow controller 172 and the deaerator 173 174 A foreign object can be removed by the ruta 174. As the filter 174, a known filter such as a hollow fiber membrane filter and Z or particle filter can be used. As the deaeration device 173, for example, a device disclosed in US Patent Publication No. 2005Z0219490 can be used.
[0045] ファイン温調器 175は、ラフ温調器 171と供給管 13との間、具体的にはフィルタ 17 4と供給管 13との間に配置されており、高精度に液体 LQの温度調整を行う。例えば ファイン温調器 175は、フィルタ 174から送出された液体 LQの温度 (温度安定性、温 度均一性)を目標温度に対して ±0. o e〜士 0. 001°C程度の高い精度で調整す る。温調装置 17で温度調整された液体 LQは供給管 13、第 1ノズル部材 70を介して 基板 P上に供給される。 [0045] The fine temperature controller 175 is disposed between the rough temperature controller 171 and the supply pipe 13, more specifically between the filter 174 and the supply pipe 13, so that the temperature of the liquid LQ can be accurately determined. Make adjustments. For example, the fine temperature controller 175 sets the temperature (temperature stability, temperature uniformity) of the liquid LQ delivered from the filter 174 with a high accuracy of about ± 0. adjust. The liquid LQ whose temperature has been adjusted by the temperature control device 17 is supplied onto the substrate P via the supply pipe 13 and the first nozzle member 70.
[0046] 第 1液体回収機構 20は、投影光学系 PLの像面側の液体 LQを回収するためのも のであって、液体 LQを回収可能な第 1液体回収部 21と、第 1液体回収部 21にその 一端部が接続された回収管 23とを備えている。回収管 23の他端部は第 1ノズル部 材 70に接続されている。第 1液体回収部 21は例えば真空ポンプ等の真空系(吸引 装置) 26、及び回収された液体 LQと気体とを分離する気液分離器 27等を備えてい る。なお真空系として、露光装置 EXに真空ポンプを設けずに、露光装置 EXが配置 される工場の真空系を用いるようにしてもよ!、。 [0046] The first liquid recovery mechanism 20 is for recovering the liquid LQ on the image plane side of the projection optical system PL, and includes a first liquid recovery unit 21 capable of recovering the liquid LQ, and a first liquid recovery A recovery pipe 23 having one end connected to the part 21 is provided. The other end of the recovery pipe 23 is connected to the first nozzle member 70. The first liquid recovery unit 21 includes, for example, a vacuum system (a suction device) 26 such as a vacuum pump, a gas-liquid separator 27 that separates the recovered liquid LQ and gas, and the like. As a vacuum system, the vacuum system of the factory where the exposure apparatus EX is installed may be used instead of the vacuum pump in the exposure apparatus EX!
[0047] 液体供給機構 10及び第 1液体回収機構 20の一部を構成する第 1ノズル部材 70は 第 1ノズル保持部材 52に保持されており、その第 1ノズル保持部材 52はメインコラム 1の下側支持部 8に接続されている。 The first nozzle member 70 constituting a part of the liquid supply mechanism 10 and the first liquid recovery mechanism 20 is held by a first nozzle holding member 52, and the first nozzle holding member 52 is the main column 1. Connected to the lower support 8.
[0048] 液体供給部 11の液体供給動作は制御装置 CONTにより制御される。液浸領域 A R2を形成するために、制御装置 CONTは、純水製造装置 16と液体供給部 11との 間の接続管 19に配置されたバルブ 19Bを制御して、純水製造装置 16で製造された 液体 LQを液体供給部 11に送出するとともに、液体供給部 11より液体 LQを供給管 1 3に送出する。液体供給部 11より送出された液体 LQは、供給管 13を流れた後、第 1 ノズル部材 70の内部に形成された供給流路の一端部に流入し、第 1ノズル部材 70 に設けられた不図示の供給口より、投影光学系 PLの像面側の光路空間 (基板 Pの露 光中においては、光学素子 2と基板 Pとの間の空間)に供給される。
[0049] 回収管 23の他端部は、第 1ノズル部材 70の内部に形成された回収流路の一端部 に接続されている。一方、第 1ノズル部材 70の内部に形成された回収流路の他端は 、第 1ノズル部材 70に設けられた不図示の回収口に接続されている。 [0048] The liquid supply operation of the liquid supply unit 11 is controlled by the control device CONT. In order to form the liquid immersion area A R2, the control device CONT controls the valve 19B arranged in the connection pipe 19 between the pure water production device 16 and the liquid supply unit 11 so that the pure water production device 16 The manufactured liquid LQ is sent to the liquid supply unit 11, and the liquid LQ is sent from the liquid supply unit 11 to the supply pipe 13. The liquid LQ delivered from the liquid supply unit 11 flows through the supply pipe 13, then flows into one end of the supply flow channel formed inside the first nozzle member 70, and is provided in the first nozzle member 70. An optical path space on the image plane side of the projection optical system PL (a space between the optical element 2 and the substrate P in the exposure of the substrate P) is supplied from a supply port (not shown). [0049] The other end of the recovery pipe 23 is connected to one end of a recovery channel formed inside the first nozzle member 70. On the other hand, the other end of the recovery channel formed inside the first nozzle member 70 is connected to a recovery port (not shown) provided in the first nozzle member 70.
[0050] 第 1液体回収部 21の液体回収動作は制御装置 CONTに制御される。制御装置 C ONTは、液体 LQを回収するために、第 1液体回収機構 20の第 1液体回収部 21を 動作させる。例えば、基板 Pの露光中、第 1液体回収部 21の動作により、基板 P上の 液体 LQは、その基板 Pの上方に設けられている不図示の回収口から回収され、第 1 ノズル部材 70内部の回収流路を介して回収管 23に流れ込む。その後、液体 LQは、 回収管 23を介して第 1液体回収部 21に回収される。 [0050] The liquid recovery operation of the first liquid recovery unit 21 is controlled by the control device CONT. The control device CONT operates the first liquid recovery part 21 of the first liquid recovery mechanism 20 in order to recover the liquid LQ. For example, during the exposure of the substrate P, the operation of the first liquid recovery unit 21 causes the liquid LQ on the substrate P to be recovered from a recovery port (not shown) provided above the substrate P, and the first nozzle member 70. It flows into the recovery pipe 23 through the internal recovery flow path. Thereafter, the liquid LQ is recovered to the first liquid recovery unit 21 via the recovery pipe 23.
[0051] なお、本実施形態においては、 1台の露光装置 EXに対して純水製造装置 16を 1 台配置している(図 1参照)がこれに限られず、 1台の純水製造装置 16を複数台の露 光装置 EXで共用しても構わな 、。 [0051] In the present embodiment, one pure water production apparatus 16 is arranged for one exposure apparatus EX (see FIG. 1), but the present invention is not limited to this. One pure water production apparatus 16 can be shared by multiple exposure units EX.
[0052] 更に純水製造装置 16を、露光装置 EXが設置された床とは異なる床 (たとえば、床 下)に配置すれば、露光装置 EXが設置されるクリーンルームの空間をより有効に用 いることがでさる。 [0052] Further, if the pure water production apparatus 16 is arranged on a floor different from the floor on which the exposure apparatus EX is installed (for example, under the floor), the space in the clean room in which the exposure apparatus EX is installed can be used more effectively. That's right.
[0053] 次に、上述した構成を有する露光装置 EXを用いてマスク Mのパターン像を基板 P に投影して、基板 Pを露光する方法について図を参照しながら説明する。 Next, a method for exposing the substrate P by projecting the pattern image of the mask M onto the substrate P using the exposure apparatus EX having the above-described configuration will be described with reference to the drawings.
制御装置 CONTは、投影光学系 PLの光学素子 2と基板 P、基板ステージ PSTの 上面 51の少なくとも一方とが対向した状態で、液体供給機構 10による基板 P上に対 する液体 LQの供給を開始する。また、制御装置 CONTは、液体供給機構 10による 液体 LQの供給の開始とほぼ同時に、第 1液体回収機構 20による液体回収を開始す る。基板 Pを液浸露光するために形成された液浸領域 AR2の液体 LQは、光学素子 2の下面及び第 1ノズル部材 70の下面に接触する。 The control device CONT starts supplying the liquid LQ to the substrate P by the liquid supply mechanism 10 with the optical element 2 of the projection optical system PL facing at least one of the upper surface 51 of the substrate P and the substrate stage PST. To do. Further, the control device CONT starts the liquid recovery by the first liquid recovery mechanism 20 almost simultaneously with the start of the supply of the liquid LQ by the liquid supply mechanism 10. The liquid LQ in the immersion area AR2 formed for immersion exposure of the substrate P is in contact with the lower surface of the optical element 2 and the lower surface of the first nozzle member 70.
[0054] 液浸領域 AR2を形成した後、制御装置 CONTは、投影光学系 PLと基板 Pとを対 向した状態で、基板 Pに露光光 ELを照射し、マスク Mのパターン像を投影光学系 PL と液体 LQとを介して基板 P上に投影して、基板 Pを露光する。基板 Pを露光するとき も、制御装置 CONTは、液体供給機構 10による液体 LQの供給と並行して、第 1液 体回収機構 20による液体 LQの回収を行う。また基板 Pを露光するときは、基板 Pを
支持する基板ステージ PSTを X軸方向(走査方向)に移動しながら、マスク Mのパタ 一ン像を投影光学系 PLと液体 LQとを介して基板 P上に投影する。 [0054] After forming the liquid immersion area AR2, the control device CONT irradiates the substrate P with the exposure light EL in a state where the projection optical system PL and the substrate P face each other, and projects the pattern image of the mask M. The substrate P is exposed by projecting onto the substrate P via the system PL and the liquid LQ. Even when the substrate P is exposed, the control device CONT performs the recovery of the liquid LQ by the first liquid recovery mechanism 20 in parallel with the supply of the liquid LQ by the liquid supply mechanism 10. When exposing substrate P, remove substrate P. While moving the supporting substrate stage PST in the X-axis direction (scanning direction), the pattern image of the mask M is projected onto the substrate P via the projection optical system PL and the liquid LQ.
[0055] 本実施形態における露光装置 EXは、マスク Mと基板 Pとを X軸方向(走査方向)に 移動しながらマスク Mのパターン像を基板 Pに投影するものであって、基板上の各シ ヨット領域の走査露光中に、液浸領域 AR2の液体 LQ及び投影光学系 PLを介してマ スク Mの一部のパターン像が投影領域 AR1内に投影され、マスク Mがー X方向(又 は +X方向)に速度 Vで移動するのに同期して、基板 Pが投影領域 AR1に対して + X方向(又は— X方向)に速度 β ·ν ( βは投影倍率)で移動する。 The exposure apparatus EX in the present embodiment projects the pattern image of the mask M onto the substrate P while moving the mask M and the substrate P in the X-axis direction (scanning direction). During the scanning exposure of the shutter area, a partial pattern image of the mask M is projected into the projection area AR1 through the liquid LQ in the immersion area AR2 and the projection optical system PL, and the mask M is in the X direction (or Synchronously with the movement in the + X direction) at the velocity V, the substrate P moves in the + X direction (or the X direction) at the velocity β · ν (β is the projection magnification) with respect to the projection area AR1.
[0056] 純水製造装置 16から液体供給機構 10の液体供給部 11に供給される液体 LQの 状態 (性質、及び Ζ又は成分を含む)は、計測装置 60により常時計測 (モニタ)され ている。計測装置 60の計測結果は制御装置 CONTに出力され、制御装置 CONT は、計測装置 60の計測結果 (モニタ情報)を記憶装置 MRYに記憶する。 [0056] The state (including properties and soot or components) of the liquid LQ supplied from the pure water production device 16 to the liquid supply unit 11 of the liquid supply mechanism 10 is constantly measured (monitored) by the measurement device 60. . The measurement result of the measurement device 60 is output to the control device CONT, and the control device CONT stores the measurement result (monitor information) of the measurement device 60 in the storage device MRY.
[0057] 本実施形態にぉ 、ては、制御装置 CONTは、計測装置 60の計測結果を時間に対 応付けて記憶装置 MRYに記憶する。以下の説明においては、計測装置 60の計測 結果を時間経過に対応付けて記憶した情報を適宜「ログ情報」と称する。 In the present embodiment, the control device CONT stores the measurement result of the measurement device 60 in the storage device MRY in association with time. In the following description, information in which the measurement result of the measuring device 60 is stored in association with the passage of time is referred to as “log information” as appropriate.
[0058] 制御装置 CONTは、計測装置 60の計測結果が異常力否かを判別する。そして、 制御装置 CONTは、前記判別結果に基づいて、露光動作を制御する。 [0058] The control device CONT determines whether or not the measurement result of the measurement device 60 is abnormal force. Then, the control device CONT controls the exposure operation based on the determination result.
ここで、計測装置 60の計測結果が異常であるとは、計測装置 60で計測される複数 の項目(比抵抗値、 TOC、パーティクルの数、溶存気体濃度)の少なくとも一つの計 測値が許容範囲外となり、液体 LQを介した露光処理及び計測処理を所望状態で行 うことができない状況である場合を指す。例えば、液体 LQの比抵抗値が許容値 (一 例として、 25°Cにおいて 18. 2Μ Ω 'cm)よりも小さい場合 (異常である場合)、液体 L Q中にナトリウムイオン等の金属イオンが多く含まれて 、る可能性がある。その金属ィ オンを多く含んだ液体 LQで基板 P上に液浸領域 AR2を形成すると、液体 LQの金属 イオンが基板 P上のデバイスパターン (配線パターン)に付着し、デバイスの動作不良 を引き起こす可能性がある。また、液体 LQ中の全有機体炭素の値が許容値 (一例と して、 5. Oppb、より好ましくは 1. Oppb)よりも大きい場合、液体 LQの光透過率が低 下している可能性がある。その場合、液体 LQを介した露光精度及び、液体 LQを介
した光計測部による計測精度が劣化する。具体的には、液体 LQの光透過率が下が ると基板 P上での露光量が変動し、基板 P上に形成される露光線幅にばらつきが生じ てしまう。また光透過率の低下により、液体 LQは光透過率低下分だけ多くの光エネ ルギーを吸収していることになるので、液体温度が上昇する。この温度上昇に起因し て、投影光学系 PLと液体 LQを介して形成されるパターン像が劣化する可能性もあ る。また、液体 LQ中の微粒子及び Z又は気泡を含む異物の量が許容値 (一例として 、大きさが 0. 以上のものが lml中に 0. 1個、より好ましくは 0. 01個)よりも多 い場合、液体 LQを介して基板 P上に転写されるパターンに欠陥が生じる可能性が高 くなる。また、液体 LQ中の溶存気体濃度の値が許容値 (一例として、溶存酸素の場 合、 3ppb、より好ましくは lppb。溶存窒素の場合、一例として 3ppm)よりも大きい場 合、液体 LQ中に気泡が生成される可能性が高くなる。液体 LQ中に気泡が生成され ると、上述同様、基板 P上に転写されるパターンに欠陥が生じる可能性が高くなる。 Here, the measurement result of the measuring device 60 is abnormal if at least one measured value of a plurality of items (specific resistance value, TOC, number of particles, dissolved gas concentration) measured by the measuring device 60 is allowed. This refers to the situation where the exposure process and measurement process via the liquid LQ cannot be performed in the desired state because it is out of range. For example, when the specific resistance value of liquid LQ is smaller than the allowable value (for example, 18.2Μ Ω 'cm at 25 ° C) (abnormal), there are many metal ions such as sodium ions in the liquid LQ. May be included. If the immersion area AR2 is formed on the substrate P with the liquid LQ containing a lot of metal ions, the metal ions of the liquid LQ may adhere to the device pattern (wiring pattern) on the substrate P, causing malfunction of the device. There is sex. In addition, if the value of total organic carbon in the liquid LQ is greater than the allowable value (for example, 5. Oppb, more preferably 1. Oppb), the light transmittance of the liquid LQ may be reduced. There is sex. In that case, exposure accuracy via liquid LQ and liquid LQ The measurement accuracy by the optical measuring unit thus deteriorated. Specifically, when the light transmittance of the liquid LQ decreases, the exposure amount on the substrate P varies, and the exposure line width formed on the substrate P varies. In addition, the liquid temperature rises because the liquid LQ absorbs as much light energy as the light transmittance decreases due to the decrease in light transmittance. Due to this temperature rise, the pattern image formed through the projection optical system PL and the liquid LQ may be deteriorated. Also, the amount of foreign matter including fine particles and Z or bubbles in the liquid LQ is more than the allowable value (for example, 0.1 or more in lml, more preferably 0.01). In many cases, there is a high possibility that a pattern transferred onto the substrate P via the liquid LQ will be defective. Also, if the dissolved gas concentration in the liquid LQ is greater than the allowable value (for example, 3ppb for dissolved oxygen, more preferably lppb. For dissolved nitrogen, 3ppm for example) The possibility that bubbles are generated is increased. If bubbles are generated in the liquid LQ, the pattern transferred onto the substrate P is likely to be defective as described above.
[0059] 計測装置 60の計測結果が異常でな 、と判断したとき、制御装置 CONTは、実施し ている動作、例えば液浸露光動作を継続する。一方、計測装置 60の計測結果が異 常であると判断したとき、制御装置 CONTは、実施中の動作、例えば露光動作を停 止する。計測装置 60の計測結果が異常の場合、制御装置 CONTは、純水製造装 置 16と液体供給部 11との間の接続管 19に設けられたバルブ 19Bを制御して、純水 製造装置 16から液体供給部 11への液体の供給を停止する。これにより、液体供給 部 11内に配置されている、温調器 171, 175、脱気装置 173、及びフィルタ 174など 力 異常な液体 LQによってダメージを受けたり、各種交換部品の寿命が短くなつたり する、悪影響を抑えることができる。 [0059] When it is determined that the measurement result of the measurement device 60 is not abnormal, the control device CONT continues the operation being performed, for example, the immersion exposure operation. On the other hand, when determining that the measurement result of the measurement device 60 is abnormal, the control device CONT stops the operation being performed, for example, the exposure operation. When the measurement result of the measuring device 60 is abnormal, the control device CONT controls the valve 19B provided in the connection pipe 19 between the pure water manufacturing device 16 and the liquid supply unit 11 to control the pure water manufacturing device 16 The liquid supply to the liquid supply unit 11 is stopped. As a result, the temperature regulators 171, 175, degassing device 173, filter 174, etc. that are arranged in the liquid supply unit 11 may be damaged by abnormal liquid LQ, and the life of various replacement parts may be shortened. Can reduce adverse effects.
[0060] また、計測装置 60の計測結果が異常であると判断したとき、制御装置 CONTは、 報知装置 INFで警報 (警告)を発するなど、純水製造装置 16から供給される液体 LQ が異常である旨を報知装置 INFで報知することができる。 [0060] When the measurement result of the measurement device 60 is determined to be abnormal, the control device CONT issues an alarm (warning) by the notification device INF, and the liquid LQ supplied from the pure water production device 16 is abnormal. This can be notified by the notification device INF.
[0061] また、制御装置 CONTは、計測装置 60の計測結果に基づ 、て、液体 LQ複数の異 常を特定し、その対応策を報知装置 INFで報知することができる。例えば、計測装置 60の比抵抗計 64の計測結果に基づ 、て、液体 LQの比抵抗値が異常であると判断 した場合、制御装置 CONTは、純水製造器 161のイオン交換膜のメンテナンス(点
検 '交換)を促す内容の表示を報知装置 INFで表示 (報知)する。また、計測装置 60 の TOC計 61の計測結果に基づ 、て、液体 LQの全有機体炭素が異常であると判断 した場合、制御装置 CONTは、純水製造器 161の UVランプのメンテナンス(点検' 交換)を促す内容の表示を報知装置 INFで表示 (報知)する。また、計測装置 60の パーティクルカウンタ 62の計測結果に基づいて、液体 LQ中の異物 (微粒子、気泡) の数 (量)が異常であると判断した場合、制御装置 CONTは、純水製造器 161のパ 一ティクルフィルタのメンテナンス (点検 ·交換)を促す内容の表示を報知装置 INFで 表示 (報知)する。また、計測装置 60の溶存気体濃度計 63の計測結果に基づいて、 液体 LQ中の溶存気体濃度が異常であると判断した場合、制御装置 CONTは、温調 装置 17の脱気装置 173の脱気能力を上げる。 [0061] Further, based on the measurement result of the measuring device 60, the control device CONT can identify a plurality of abnormalities of the liquid LQ, and can notify the countermeasure by the notifying device INF. For example, when it is determined that the specific resistance value of the liquid LQ is abnormal based on the measurement result of the specific resistance meter 64 of the measurement device 60, the control device CONT performs maintenance of the ion exchange membrane of the pure water production apparatus 161. (point Display of the content prompting the “replacement” is displayed (notified) by the notification device INF. If it is determined that the total organic carbon in the liquid LQ is abnormal based on the measurement result of the TOC meter 61 of the measuring device 60, the control device CONT performs maintenance on the UV lamp of the pure water producer 161 ( The display of the content prompting the inspection (replacement) is displayed (notified) by the notification device INF. If it is determined that the number (amount) of foreign matter (fine particles, bubbles) in the liquid LQ is abnormal based on the measurement result of the particle counter 62 of the measuring device 60, the control device CONT Display (notify) the information that prompts maintenance (inspection / replacement) of the particle filter in the notification device INF. In addition, when it is determined that the dissolved gas concentration in the liquid LQ is abnormal based on the measurement result of the dissolved gas concentration meter 63 of the measuring device 60, the control device CONT removes the degassing device 173 of the temperature adjustment device 17 from the degassing device 173. Increase your ability.
[0062] なお、制御装置 CONTは、計測装置 60の計測結果 (モニタ情報)を、報知装置 IN Fで常時報知することもできるし、計測装置 60の計測結果を所定間隔で報知装置 IN Fで報知することも可能であるし、計測装置 60の計測結果の時間変化 (ログ情報)を 報知装置 INFで報知することもできる。 Note that the control device CONT can always notify the measurement result (monitor information) of the measurement device 60 by the notification device IN F, or can notify the measurement result of the measurement device 60 at a predetermined interval by the notification device IN F. It is also possible to notify, and the time change (log information) of the measurement result of the measuring device 60 can be notified by the notifying device INF.
[0063] また、制御装置 CONTは、計測装置 60の計測結果が異常の場合に、露光装置 E Xで実施されて!ヽる各種動作を停止させずに、各種動作を継続するための調整を行 うこともできる。例えば、基板 Pの露光中に、液体 LQ中の TOCが変動することに起因 して、液体 LQの光透過率が変動する可能性がある。液体 LQの光透過率が変動す ると、基板 P上での露光量 (積算露光量)に変動が生じ、その結果、ショット領域に形 成されるデバイスパターンの露光線幅に異常が生じる可能性がある。そこで、液体し Q中の TOCとそのときの液体 LQの光透過率との関係を予め求めて記憶装置 MRY に記憶しておき、制御装置 CONTは、前記記憶情報と、計測装置 60 (TOC計 61) の計測結果とに基づいて、露光量を制御することで、所望線幅のパターンを得ること ができる。 [0063] In addition, when the measurement result of the measurement device 60 is abnormal, the control device CONT performs adjustments to continue various operations without stopping the various operations performed by the exposure apparatus EX. You can also. For example, during the exposure of the substrate P, the light transmittance of the liquid LQ may fluctuate due to the fluctuation of the TOC in the liquid LQ. If the light transmittance of the liquid LQ fluctuates, the exposure amount (integrated exposure amount) on the substrate P will fluctuate, and as a result, the exposure line width of the device pattern formed in the shot area may become abnormal. There is sex. Therefore, the relationship between the TOC in the liquid Q and the light transmittance of the liquid LQ at that time is obtained in advance and stored in the storage device MRY, and the control device CONT stores the stored information and the measurement device 60 (TOC meter). By controlling the exposure amount based on the measurement result of 61), a pattern with a desired line width can be obtained.
[0064] 以上説明したように、純水製造装置 16に液体 LQの状態 (性質及び成分のうち少な くとも一方を含む)を計測する計測装置 60を設けたことにより、その計測結果に基づ Vヽて、液浸領域 AR2を形成するための液体 LQが所望状態であるか否か (異常か否 力 を判別することができる。そして、計測装置 60の計測結果が異常である場合には
、液体 LQを所望状態にするための適切な処置を迅速に施したり、露光装置 EXの動 作を制御することで、露光装置 EXで実行される計測、露光などの精度劣化を防止す ることがでさる。 [0064] As described above, the measurement device 60 for measuring the state of the liquid LQ (including at least one of the properties and components) is provided in the pure water production device 16, and based on the measurement result. V, whether or not the liquid LQ for forming the immersion area AR2 is in a desired state (it can be determined whether or not it is abnormal. And if the measurement result of the measuring device 60 is abnormal) Preventing deterioration in accuracy of measurement and exposure performed by the exposure system EX by promptly taking appropriate measures to bring the liquid LQ into the desired state and controlling the operation of the exposure system EX It is out.
[0065] なお、上述の実施形態においては、計測装置 60は純水製造装置 16から送出され る液体 LQの状態を常時計測しているが、所定の時間間隔ごと、あるいは所定のタイ ミング (例えばロット先頭)で液体 LQの状態を計測するようにしてもょ 、。 [0065] In the above-described embodiment, the measuring device 60 always measures the state of the liquid LQ delivered from the pure water production device 16, but at predetermined time intervals or at predetermined times (for example, Let's measure the state of liquid LQ at the top of the lot).
[0066] なお、上述の実施形態において、露光装置 EX内(例えば、液体供給部 11と第 1ノ ズル部材 70との間、及び Zまたは第 1ノズル部材 70と第 1液体回収部 21との間)に、 純水製造装置 16内に設けられている計測装置と同様の計測装置を設けてもよい。こ の場合、純水製造装置 16内の計測装置 60の計測結果と露光装置 EX内の計測装 置の計測結果とを比較することによって、露光装置 EX内における液体 LQの劣化を 検知することができる。 In the above-described embodiment, the exposure apparatus EX (for example, between the liquid supply unit 11 and the first nozzle member 70 and between the Z or the first nozzle member 70 and the first liquid recovery unit 21). In the meantime, a measuring device similar to the measuring device provided in the pure water producing device 16 may be provided. In this case, the deterioration of the liquid LQ in the exposure apparatus EX can be detected by comparing the measurement result of the measurement apparatus 60 in the pure water production apparatus 16 with the measurement result of the measurement apparatus in the exposure apparatus EX. it can.
[0067] また上述の実施形態においては、純水製造装置 16の計測装置 60の計測結果に 基づ 、て制御装置 CONTが露光装置 EXの動作を制御して 、るが、露光装置 EXの 状態 (露光中、計測中、エラー発生中など)を純水製造装置 16に出力し、純水製造 装置 16が、露光装置 EXからの情報に基づいて、純水製造装置 16自身の動作を制 御(例えば、純水製造動作を最適化)するようにしてもょ 、。 [0067] In the above-described embodiment, the control device CONT controls the operation of the exposure apparatus EX based on the measurement result of the measurement apparatus 60 of the pure water production apparatus 16, but the state of the exposure apparatus EX (During exposure, measurement, error occurrence, etc.) is output to the pure water production device 16, and the pure water production device 16 controls the operation of the pure water production device 16 itself based on the information from the exposure device EX. (For example, optimize the pure water production operation).
[0068] また、上述の実施形態においては、液体供給部 11の温調装置 17は、フィルタ 174 と脱気装置 173と流量制御器 172を備えている力 これらの少なくとも一つを省略し てもよい。 [0068] In the above-described embodiment, the temperature adjustment device 17 of the liquid supply unit 11 includes the filter 174, the deaeration device 173, and the flow rate controller 172. At least one of these may be omitted. Good.
[0069] また、上述の実施形態にお!ヽては、純水製造装置 16で製造された純水 (液体 LQ) は、温調装置 17を含む液体供給部 11を介して第 1ノズル部材 70に供給されて ヽる 力 液体供給部 11を省いて、純水製造装置 16で製造された純水 (液体 LQ)を供給 管 13に直接送出するようにしてもよい。 [0069] In the above-described embodiment, the pure water (liquid LQ) produced by the pure water production apparatus 16 is supplied to the first nozzle member via the liquid supply unit 11 including the temperature control apparatus 17. Force supplied to 70 The liquid supply unit 11 may be omitted, and pure water (liquid LQ) produced by the pure water production apparatus 16 may be directly sent to the supply pipe 13.
[0070] 上述した実施形態における液体 LQは純水である。純水は、半導体製造工場等で 容易に大量に入手できるとともに、基板 P上のフォトレジストや光学素子(レンズ)等に 対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、 不純物の含有量が極めて低いため、基板 Pの表面、及び投影光学系 PLの先端面に
設けられている光学素子の表面を洗浄する作用も期待できる。 [0070] The liquid LQ in the above-described embodiment is pure water. Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing factories and the like, and has no adverse effect on the photoresist, optical elements (lenses), etc. on the substrate P. In addition, pure water has no negative impact on the environment and the content of impurities is extremely low, so that the surface of the substrate P and the front end surface of the projection optical system PL The effect | action which wash | cleans the surface of the provided optical element is also expectable.
[0071] 上述の各実施形態にお!、ては、露光装置 EXは、投影光学系 PLの光学素子 2の 射出側の光路空間を液体 LQで満たして基板 Pを露光しているが、国際公開第 2004 Z019128号に開示されているように、投影光学系 PLの光学素子 2の入射側の光路 空間も液体 LQで満たすようにしてもよい。この場合において、光学素子 2の入射側 の光路空間に供給される液体 LQ (純水)を製造する液体製造装置 (純水製造装置) にも、液体 LQの状態を計測する計測装置を設けることが望ま 、。 In each of the above embodiments, the exposure apparatus EX exposes the substrate P by filling the optical path space on the exit side of the optical element 2 of the projection optical system PL with the liquid LQ. As disclosed in Publication No. 2004 Z019128, the light path space on the incident side of the optical element 2 of the projection optical system PL may be filled with the liquid LQ. In this case, the liquid manufacturing apparatus (pure water manufacturing apparatus) for manufacturing the liquid LQ (pure water) supplied to the optical path space on the incident side of the optical element 2 is also provided with a measuring device for measuring the state of the liquid LQ. Is desired.
[0072] なお、本実施形態の液体 LQは純水である力 純水以外の液体であってもよ!/、。例 えば、露光光 ELの光源が Fレーザである場合、液体 LQとしては Fレーザ光を透過 [0072] It should be noted that the liquid LQ of this embodiment may be a liquid other than pure water that is pure water! /. For example, if the light source of the exposure light EL is F laser, the liquid LQ transmits F laser light.
2 2 twenty two
可能な、過フッ化ポリエーテル (PFPE)、フッ素系オイル等を用いることができる。 Possible perfluorinated polyether (PFPE), fluorinated oil, etc. can be used.
[0073] また、液体 LQとしては、屈折率が 1. 6〜1. 8程度のものを使用してもよい。液体し Qとしては、例えば、屈折率が約 1. 50のイソプロパノール、屈折率が約 1. 61のダリ セロール (グリセリン) t 、つた C— H結合ある 、は O—H結合を持つ所定液体、へキ サン、ヘプタン、デカン等の所定液体 (有機溶剤)、デカリン、バイサイクロへクシル等 の所定液体が挙げられる。あるいは、これら所定液体のうち任意の 2種類以上の液体 が混合されたものであってもょ ヽし、純水に上記所定液体が添カ卩(混合)されたもの であってもよい。あるいは、液体 LQとしては、純水に、 H+、 Cs+、 K+、 Cl_、 SO 2_、 [0073] The liquid LQ may have a refractive index of about 1.6 to 1.8. Examples of liquid Q include, for example, isopropanol having a refractive index of about 1.50, daricerol (glycerin) t having a refractive index of about 1.61, a C—H bond, and a predetermined liquid having an O—H bond, Specific liquids (organic solvents) such as hexane, heptane, decane, etc., and predetermined liquids such as decalin, bicyclohexyl, etc. Alternatively, any two or more of these predetermined liquids may be mixed, or pure water may be added (mixed) with the predetermined liquid. Alternatively, as the liquid LQ, in pure water, H +, Cs +, K +, Cl_, SO 2_,
4 Four
PO 2_等の塩基又は酸を添加(混合)したものであってもよい。更には、純水に A1酸A base or acid such as PO 2_ may be added (mixed). Furthermore, A1 acid in pure water
4 Four
化物等の微粒子を添加(混合)したものであってもよい。これら液体 LQは、 ArFェキ シマレーザ光を透過可能である。また、液体 LQとしては、光の吸収係数が小さぐ温 度依存性が少なぐ投影光学系 PL及び Z又は基板 Pの表面に塗布されて 、る感光 材 (又は保護膜 (トップコート膜)あるいは反射防止膜など)に対して安定なものである ことが好ましい。 It may be one obtained by adding (mixing) fine particles such as chemical compounds. These liquid LQs can transmit ArF excimer laser light. In addition, as the liquid LQ, a photosensitive material (or a protective film (topcoat film) or a coating film) coated on the surface of the projection optical systems PL and Z or the substrate P having a small light absorption coefficient and a small temperature dependency. It is preferably stable with respect to an antireflection film or the like.
[0074] 光学素子 2は、例えば石英 (シリカ)で形成することができる。あるいは、フッ化カル シゥム(蛍石)、フッ化バリウム、フッ化ストロンチウム、フッ化リチウム、フッ化ナトリウム 、及び BaLiF等のフッ化化合物の単結晶材料で形成されてもよい。更に、最終光学 The optical element 2 can be made of, for example, quartz (silica). Alternatively, it may be formed of a single crystal material of a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, sodium fluoride, and BaLiF. In addition, the final optics
3 Three
素子は、ルテチウムアルミニウムガーネット (LuAG)で形成されてもよい。及びフッ化 ナトリウム等のフッ化化合物の単結晶材料で形成されてもよい。
[0075] 投影光学系の少なくとも 1つの光学素子を、石英及び Z又は蛍石よりも屈折率が高 い(例えば 1. 6以上)材料で形成してもよい。例えば、国際公開第 2005Z059617 号パンフレットに開示されているような、サファイア、二酸ィ匕ゲルマニウム等、あるいは 、国際公開第 2005Z059618号パンフレットに開示されているような、塩ィ匕カリウム( 屈折率約 1. 75)等を用いることができる。 The element may be formed of lutetium aluminum garnet (LuAG). And a single crystal material of a fluoride compound such as sodium fluoride. [0075] At least one optical element of the projection optical system may be formed of a material having a refractive index higher than that of quartz and Z or fluorite (for example, 1.6 or more). For example, as disclosed in WO 2005Z059617 pamphlet, sapphire, diacid germanium, etc., or as disclosed in WO 2005Z059618 pamphlet, salt potassium (with a refractive index of about 1 75) etc. can be used.
[0076] 上記各実施形態では複数の光学素子を有する投影光学系を備えた露光装置を例 に挙げて説明してきたが、一つの光学素子で構成された投影光学系を用いてもよい 。あるいは、投影光学系を用いない露光装置及び露光方法に本発明を適用すること ができる。投影光学系を用いない場合であっても、露光光はマスク又はレンズなどの 光学部材を介して基板に照射され、そのような光学部材と基板との間の所定空間に 液浸領域が形成される。 In each of the above embodiments, the exposure apparatus provided with the projection optical system having a plurality of optical elements has been described as an example. However, a projection optical system constituted by one optical element may be used. Alternatively, the present invention can be applied to an exposure apparatus and an exposure method that do not use a projection optical system. Even when the projection optical system is not used, the exposure light is irradiated onto the substrate through an optical member such as a mask or a lens, and an immersion region is formed in a predetermined space between the optical member and the substrate. The
[0077] 上記各実施形態では干渉計システムを用いてマスクステージ及び基板ステージの 位置情報を計測するものとしたが、これに限らず、例えば基板ステージの上面に設け られるスケール(回折格子)を検出するエンコーダシステムを用いてもよ!、。この場合 、干渉計システムとエンコーダシステムの両方を備えるハイブリッドシステムとし、干渉 計システムの計測結果を用いてエンコーダシステムの計測結果の較正 (キヤリブレー シヨン)を行うことが好ましい。また、干渉計システムとエンコーダシステムとを切り替え て用いる、あるいはその両方を用いて、基板ステージの位置制御を行うようにしてもよ い。 In each of the above embodiments, the position information of the mask stage and the substrate stage is measured using the interferometer system. However, the present invention is not limited to this, and for example, a scale (diffraction grating) provided on the upper surface of the substrate stage is detected. You can use an encoder system! In this case, it is preferable that the hybrid system includes both the interferometer system and the encoder system, and the measurement result of the encoder system is calibrated (calibrated) using the measurement result of the interferometer system. Further, the position of the substrate stage may be controlled by switching between the interferometer system and the encoder system or using both.
[0078] また、本発明は、特開平 10— 163099号公報、特開平 10— 214783号公報、特表 2000— 505958号公報、米国特許 6, 341, 007号、米国特許 6, 400, 441号、米 国特許 6, 549, 269号、及び米国特許 6, 590,634号、米国特許 6, 208, 407号、 米国特許 6, 262, 796号などに開示されているような複数の基板ステージを備えた マルチステージ型の露光装置にも適用できる。 [0078] Further, the present invention relates to JP-A-10-163099, JP-A-10-214783, JP 2000-505958, US Pat. No. 6,341,007, US Pat. No. 6,400,441. , U.S. Patent 6,549,269, U.S. Patent 6,590,634, U.S. Patent 6,208,407, U.S. Patent 6,262,796, etc. It can also be applied to a multi-stage type exposure apparatus.
[0079] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)等が適用される。基板はその形状が円形に限られるものでなぐ矩形など
他の形状でもよい。 Note that the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing semiconductor devices, but also a glass substrate for display devices, a ceramic wafer for thin film magnetic heads, a mask used in an exposure apparatus, or Reticle masters (synthetic quartz, silicon wafers) are applied. The substrate is not limited to a circular shape, but a rectangle, etc. Other shapes may be used.
[0080] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動しながら基板 Pを露光するス テツプ ·アンド ·スキャン方式の走査型露光装置 (スキャニングステツパ)の他に、マス ク Mと基板 Pとを静止した状態でマスク Mのパターンを露光する静止露光型の投影 露光装置 (ステツパ)にも適用することができる。 [0080] As the exposure apparatus EX, in addition to a step-and-scan type scanning exposure apparatus (scanning stepper) that exposes the substrate P while synchronously moving the mask M and the substrate P, mask M and The present invention can also be applied to a static exposure type projection exposure apparatus (stepper) that exposes the pattern of the mask M while the substrate P is stationary.
[0081] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。 [0081] Further, as the exposure apparatus EX, a reduced image of the first pattern is projected with the first pattern and the substrate P substantially stationary, for example, a refractive optical system (for example, including a reflective element at a 1Z8 reduction magnification). It can also be applied to an exposure apparatus that uses a projection optical system) to perform batch exposure on the substrate P. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus. In addition, the stitch type exposure apparatus can also be applied to a step 'and' stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
[0082] また、本発明は、特開平 10— 163099号公報、特開平 10— 214783号公報、特表 2000— 505958号公報、米国特許 6, 341, 007号、米国特許 6, 400, 441号、米 国特許 6, 549, 269号、及び米国特許 6, 590,634号、米国特許 6, 208, 407号、 米国特許 6, 262, 796号などに開示されているツインステージ型の露光装置にも適 用できる。 [0082] Further, the present invention relates to JP-A-10-163099, JP-A-10-214783, JP 2000-505958, US Pat. No. 6,341,007, US Pat. No. 6,400,441. , U.S. Patent 6,549,269, U.S. Patent 6,590,634, U.S. Patent 6,208,407, U.S. Patent 6,262,796, etc. Applicable.
[0083] また、特開平 11 135400号公報、特開 2000— 164504号公報、米国特許 6, 8 97, 963号などに開示されているように、基板 Pを保持する基板ステージと、各種計 測センサなどを搭載した計測ステージとを備えた露光装置にも本発明を適用すること ができる。 [0083] Further, as disclosed in JP-A-11 135400, JP-A-2000-164504, US Pat. No. 6,897,963, and the like, a substrate stage for holding the substrate P and various measurements are performed. The present invention can also be applied to an exposure apparatus that includes a measurement stage equipped with a sensor or the like.
また、上述の実施形態においては、基板の表面が局所的に液体で覆われる液浸露 光装置を採用している力 本発明は、特開平 6— 124873号公報に開示されている ような露光対象の基板表面の全体が液体で覆われる液浸露光装置にも適用可能で ある。 Further, in the above-described embodiment, a force that employs an immersion exposure apparatus in which the surface of the substrate is locally covered with a liquid. The present invention provides an exposure as disclosed in JP-A-6-124873. The present invention is also applicable to an immersion exposure apparatus in which the entire target substrate surface is covered with a liquid.
[0084] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の
露光装置や、薄膜磁気ヘッド、撮像素子 (CCD)、マイクロマシン、 MEMS, DNAチ ップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用 できる。 [0084] The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on the substrate P, but for manufacturing a liquid crystal display element or a display. It can be widely applied to an exposure apparatus, an exposure apparatus for manufacturing a thin film magnetic head, an imaging device (CCD), a micromachine, a MEMS, a DNA chip, a reticle or a mask, and the like.
[0085] なお、本国際出願で指定又は選択された国の法令で許容される限りにおいて、上 記各実施形態及び変形例で引用した露光装置などに関する全ての公開公報及び 米国特許の開示を援用して本文の記載の一部とする。 [0085] It should be noted that as long as it is permitted by the laws and regulations of the country designated or selected in this international application, the disclosures of all published publications and US patents related to the exposure apparatus and the like cited in the above embodiments and modifications are incorporated. As a part of the description of the text.
[0086] 露光装置 EXは、各構成要素を含む各種サブシステムを、所定の機械的精度、電 気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度 を確保するために、この組み立ての前後には、各種光学系については光学的精度を 達成するための調整、各種機械系については機械的精度を達成するための調整、 各種電気系につ 、ては電気的精度を達成するための調整が行われる。 The exposure apparatus EX is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Thus, adjustments are made to achieve electrical accuracy.
[0087] 各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、 機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種 サブシステム力 露光装置への組み立て工程の前に、各サブシステム個々の組み立 て工程があることは 、うまでもな 、。各種サブシステムの露光装置への組み立て工程 が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。 なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行う ことが望ましい。 The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection, and the like between the various subsystems. It is a matter of course that there is an assembly process for each subsystem before the assembly process for the exposure system. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
[0088] 半導体デバイス等のマイクロデバイスは、図 4に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXにより基板を露光する工程、露光した基板を現像する工程 、現像した基板の加熱 (キュア)及びエッチング工程などの基板処理プロセスを含む ステップ 204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケ ージ工程を含む) 205、検査ステップ 206等を経て製造される。
[0088] As shown in FIG. 4, a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, Substrate processing processes such as step 203 for manufacturing a substrate as a base material, a step of exposing the substrate by the exposure apparatus EX of the above-described embodiment, a step of developing the exposed substrate, heating (curing) of the developed substrate, and an etching step Including step 204, device assembly step (including dicing process, bonding process, and packaging process) 205, inspection step 206, and the like.
Claims
請求の範囲 The scope of the claims
[I] 基板を露光する液浸露光装置に供給される露光用の液体を製造する液体製造装 置であって、 [I] A liquid production apparatus for producing an exposure liquid supplied to an immersion exposure apparatus for exposing a substrate,
前記露光用の液体の状態を計測する計測装置を備え、該計測装置の計測結果を 前記露光装置に出力する液体製造装置。 A liquid manufacturing apparatus comprising a measuring device for measuring the state of the exposure liquid, and outputting a measurement result of the measuring device to the exposure device.
[2] 前記液体は純水である請求項 1記載の液体製造装置。 2. The liquid manufacturing apparatus according to claim 1, wherein the liquid is pure water.
[3] 前記計測装置は、前記液体の性質、及び成分の少なくとも一方を計測する請求項 [3] The measurement device measures at least one of a property and a component of the liquid.
1又は 2記載の液体製造装置。 The liquid production apparatus according to 1 or 2.
[4] 前記計測装置は、前記液体中のパーティクルの数、前記液体中の溶存気体濃度、 前記液体の比抵抗値、前記液体中の全有機炭素、前記液体中のシリカ濃度の少な くとも一つを計測する請求項 1〜3のいずれか一項記載の液体製造装置。 [4] The measuring device includes at least one of the number of particles in the liquid, the dissolved gas concentration in the liquid, the specific resistance value of the liquid, the total organic carbon in the liquid, and the silica concentration in the liquid. The liquid manufacturing apparatus according to any one of claims 1 to 3, wherein one of them is measured.
[5] 基板を露光する液浸露光装置であって、 [5] An immersion exposure apparatus for exposing a substrate,
液体を製造する液体製造装置と、前記液体製造装置で製造された液体の状態を 計測する計測装置とを有する液体製造システムと、 A liquid production system comprising: a liquid production apparatus for producing a liquid; and a measurement device for measuring a state of the liquid produced by the liquid production apparatus;
前記液体製造システムからの送出された液体が流れる流路と、 A flow path through which the liquid delivered from the liquid production system flows;
前記流路の開閉を行うバルブとを備え、 A valve for opening and closing the flow path,
前記液体製造システムから前記流路を介して前記基板上に供給された液体を介し て前記基板に露光光が照射される露光装置。 An exposure apparatus that irradiates the substrate with exposure light through the liquid supplied from the liquid manufacturing system to the substrate through the flow path.
[6] 前記計測装置の計測結果を記憶する記憶装置を備える請求項 5の露光装置。 6. The exposure apparatus according to claim 5, further comprising a storage device that stores a measurement result of the measurement apparatus.
[7] 前記記憶装置は、前記計測結果を時間に対応付けて記憶する請求項 6記載の露 光装置。 7. The exposure apparatus according to claim 6, wherein the storage device stores the measurement result in association with time.
[8] 前記計測装置の計測結果に基づ!、て、露光動作を制御する制御装置を備えたこと を特徴とする請求項 5〜7のいずれか一項記載の露光装置。 8. The exposure apparatus according to any one of claims 5 to 7, further comprising a control device that controls an exposure operation based on a measurement result of the measurement apparatus.
[9] 前記液体は純水である請求項 5〜8の!、ずれか一項記載の露光装置。 [9] The liquid according to claims 5 to 8, wherein the liquid is pure water! The exposure apparatus according to claim 1,
[10] 前記計測装置は、前記液体の性質、及び成分の少なくとも一方を計測する請求項[10] The measurement device measures at least one of a property and a component of the liquid.
5〜9の 、ずれか一項記載の露光装置。 The exposure apparatus according to any one of 5-9.
[II] 前記計測装置は、液体中のパーティクルの数、液体中の溶存気体濃度、液体の比 抵抗値、液体中の全有機炭素、液体中のシリカ濃度の少なくとも一つを計測する請
求項 5〜: LOのいずれか一項記載の露光装置。 [II] The measurement device is a device that measures at least one of the number of particles in a liquid, the concentration of dissolved gas in the liquid, the specific resistance value of the liquid, the total organic carbon in the liquid, and the concentration of silica in the liquid. Claim 5 ~: The exposure apparatus according to any one of LO.
[12] 前記計測装置の計測結果に基づいて、前記バルブを用いて前記流路の開閉が制 御される請求項 5〜: L 1の 、ずれか一項記載の露光装置。 12. The exposure apparatus according to claim 5, wherein opening and closing of the flow path is controlled using the valve based on a measurement result of the measurement apparatus.
[13] 前記液体製造装置から供給される液体の温度調整を行う液体調整装置をさらに備 え、 [13] The apparatus further includes a liquid adjusting device that adjusts the temperature of the liquid supplied from the liquid manufacturing device,
前記バルブは、前記液体製造装置と前記液体調整装置との間に配置される請求 項 12記載の露光装置。 13. The exposure apparatus according to claim 12, wherein the valve is disposed between the liquid manufacturing apparatus and the liquid adjustment apparatus.
[14] 前記液体調整装置は、脱気装置を有する請求項 13記載の露光装置。 14. The exposure apparatus according to claim 13, wherein the liquid adjusting device has a deaeration device.
[15] 請求項 5〜14のいずれか一項記載の露光装置を用いて基板を露光することと、 該露光された基板を現像することと、 [15] Exposing the substrate using the exposure apparatus according to any one of claims 5 to 14, and developing the exposed substrate;
を含むデバイス製造方法。
A device manufacturing method including:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007551096A JPWO2007072818A1 (en) | 2005-12-19 | 2006-12-19 | Liquid manufacturing apparatus, immersion exposure apparatus, and device manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-365626 | 2005-12-19 | ||
JP2005365626 | 2005-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007072818A1 true WO2007072818A1 (en) | 2007-06-28 |
Family
ID=38188596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/325272 WO2007072818A1 (en) | 2005-12-19 | 2006-12-19 | Liquid producing apparatus, liquid immersion exposure apparatus, and method for manufacturing device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2007072818A1 (en) |
TW (1) | TW200725196A (en) |
WO (1) | WO2007072818A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010147466A (en) * | 2008-12-22 | 2010-07-01 | Asml Netherlands Bv | Fluid handling structure, table, lithography device, immersion lithography device, and device manufacturing method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005079584A (en) * | 2003-08-29 | 2005-03-24 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP2005136326A (en) * | 2003-10-31 | 2005-05-26 | Nikon Corp | System for predicting equipment condition and its method, and exposure equipment management system |
JP2005136374A (en) * | 2003-10-06 | 2005-05-26 | Matsushita Electric Ind Co Ltd | Semiconductor manufacturing apparatus and pattern formation method using the same |
JP2005183693A (en) * | 2003-12-19 | 2005-07-07 | Canon Inc | Exposing device |
JP2005268742A (en) * | 2003-07-28 | 2005-09-29 | Nikon Corp | Exposure device and device manufacturing method, and controlling method of its exposure device |
-
2006
- 2006-12-19 JP JP2007551096A patent/JPWO2007072818A1/en active Pending
- 2006-12-19 WO PCT/JP2006/325272 patent/WO2007072818A1/en active Application Filing
- 2006-12-19 TW TW095147611A patent/TW200725196A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005268742A (en) * | 2003-07-28 | 2005-09-29 | Nikon Corp | Exposure device and device manufacturing method, and controlling method of its exposure device |
JP2005079584A (en) * | 2003-08-29 | 2005-03-24 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP2005136374A (en) * | 2003-10-06 | 2005-05-26 | Matsushita Electric Ind Co Ltd | Semiconductor manufacturing apparatus and pattern formation method using the same |
JP2005136326A (en) * | 2003-10-31 | 2005-05-26 | Nikon Corp | System for predicting equipment condition and its method, and exposure equipment management system |
JP2005183693A (en) * | 2003-12-19 | 2005-07-07 | Canon Inc | Exposing device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010147466A (en) * | 2008-12-22 | 2010-07-01 | Asml Netherlands Bv | Fluid handling structure, table, lithography device, immersion lithography device, and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007072818A1 (en) | 2009-05-28 |
TW200725196A (en) | 2007-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6308316B2 (en) | Exposure apparatus, device manufacturing method, and exposure method | |
JP4319189B2 (en) | Exposure apparatus and device manufacturing method | |
WO2005119742A1 (en) | Exposure apparatus, exposure method, and device producing method | |
JP2009105414A (en) | Exposure method, and device manufacturing method | |
WO2006062188A1 (en) | Exposure apparatus, exposure method and device manufacturing method | |
US20090021709A1 (en) | Exposure apparatus, exposure method, and method for producing device | |
WO2006106832A1 (en) | Method for determining exposure conditions, exposure method, exposure device, and apparatus for producing device | |
WO2005038888A1 (en) | Exposure apparatus, exposure method, and method for manufacturing device | |
US20080212056A1 (en) | Exposure Method, Exposure Apparatus, Method for Producing Device, and Method for Evaluating Exposure Apparatus | |
KR101449055B1 (en) | Exposure apparatus, exposure method, and device manufacturing method | |
WO2007072818A1 (en) | Liquid producing apparatus, liquid immersion exposure apparatus, and method for manufacturing device | |
JP2006190971A (en) | Exposure apparatus, exposure method, and device manufacturing method | |
TWI416266B (en) | An exposure apparatus, an exposure method, an element manufacturing method, and a maintenance method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007551096 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06842876 Country of ref document: EP Kind code of ref document: A1 |