WO2007072801A1 - Light-reflecting body - Google Patents
Light-reflecting body Download PDFInfo
- Publication number
- WO2007072801A1 WO2007072801A1 PCT/JP2006/325233 JP2006325233W WO2007072801A1 WO 2007072801 A1 WO2007072801 A1 WO 2007072801A1 JP 2006325233 W JP2006325233 W JP 2006325233W WO 2007072801 A1 WO2007072801 A1 WO 2007072801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- light
- light reflector
- lactic acid
- film
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1601—Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
- G06F1/1603—Arrangements to protect the display from incident light, e.g. hoods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1615—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
- G06F1/1616—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
Definitions
- the present invention relates to a light reflector used for a display device such as a personal computer or a television, a lighting fixture, a lighting signboard, and the like, and particularly preferably used as a material of a reflector that constitutes an illumination mechanism built in a liquid crystal display device. It relates to a light reflector.
- An illumination mechanism (backlight mechanism) built in a liquid crystal display device includes a direct type that directly illuminates a liquid crystal display panel with light from a light source, and a light guide made of acrylic resin or the like. There is a sidelight system (also called an edge light system) that illuminates a liquid crystal display panel through a light plate.
- a sidelight system is adopted as the illumination mechanism, and the light from the light source is used.
- a member called “reflector” formed by molding a light reflector formed by stacking a metal and a reflective film is used.
- a reflective film used for this type of light reflector polyethylene terephthalate film (hereinafter referred to as silver-deposited PET film) on which silver is vapor-deposited, white polyester film having reflective performance, and the like are used. And the thickness required for light reflectors.
- Patent Document 1 discloses a reflective film that is a white sheet formed by adding titanium oxide to aromatic polyester-based resin.
- a light reflector When a light reflector is formed and processed like a reflector, a light reflector in which a reflective film is bonded to a metal plate is used.
- Patent Document 2 discloses a reflector in which an adhesive layer is provided on a metal and a polyester reflective film is further laminated thereon.
- Patent Document 3 a reflective film formed by adding a fine powder filler such as titanium oxide to an aliphatic polyester-based resin, and disclosed this (Patent Document 3).
- Patent Document 1 Japanese Patent Application Laid-Open No. 2002-138150
- Patent Document 2 JP-A-10-177805
- Patent Document 3 WO2004104077
- Patent Document 3 not only can realize high reflection performance, but also has a satisfactory force in terms of molding force.
- noise sometimes occurred when the monitor was opened and closed.
- Such a problem is a problem that is likely to occur in televisions and other display devices that cannot be powered by the liquid crystal display devices of notebook computers.
- the present invention solves the problem by generating noise when the monitor unit is opened and closed, for example, when the monitor unit is mounted on a liquid crystal display device such as a notebook computer using a reflector. It is an object of the present invention to provide a light reflector that can be reduced.
- the present invention is a light reflector comprising a structure in which an A layer containing an aliphatic polyester-based resin and a fine powder filler is laminated on one side or both sides of a metal plate.
- a light reflector is proposed in which the coefficient of static friction of at least one surface of the light reflector is 0.49 or less and the coefficient of dynamic friction is 0.42 or less.
- the above-mentioned "single-side surface” may be the surface of the A layer on one side, or may be the surface of another layer laminated on the A layer.
- it may be the surface of the B layer in the case where a B layer formed from a thermosetting resin or ionizing radiation curable resin is laminated on at least the surface side of the A layer on one side.
- the light reflector of the present invention can obtain excellent light reflectivity by refractive scattering due to the refractive index difference between the aliphatic polyester-based resin and the fine powder filler constituting the A layer.
- a light reflector can be processed into a reflector by forming a surface of at least one side with a static friction coefficient of 0.49 or less and a dynamic friction coefficient of 0.42 or less.
- noise generation when the monitor is opened and closed can be reduced. This kind of noise generation problem can also occur when some kind of operation is performed on a display device such as a TV or desktop PC that can be moved with force by opening and closing the monitor of a notebook computer, as well as lighting equipment and lighting signs.
- the light reflector of the present invention can be suitably used as a reflection plate incorporated in, for example, a display device such as a personal computer or a television, a lighting fixture, a lighting signboard, etc., and particularly constitutes a knock light device incorporated in a liquid crystal display device.
- the reflector can be used particularly preferably as a constituent member.
- the A layer constituting the light reflector of the present invention may be in the form of a sheet or film.
- sheet is a thin product as defined by JIS, and generally its thickness is small and flat instead of length and width
- film is generally length and width. It is a thin flat product with a maximum thickness that is arbitrarily limited compared to, and is usually supplied in the form of a roll (Japanese Industrial Standard JISK6900).
- JIS Japanese Industrial Standard JISK6900
- the boundary between the sheet and the film is not fixed, it is not necessary to distinguish the two in terms of the wording. Therefore, in the present invention, even when the term “film” is used, the term “sheet” is included. Even when referring to it, it shall include “film”.
- main component in this specification, unless otherwise stated It includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component.
- the content ratio of the main component is not particularly specified, the main component (in the case where two or more components are main components, the total amount thereof) is usually 50% by mass or more, preferably 70% in the composition. It occupies at least 90% by mass, particularly preferably at least 90% by mass (including 100%).
- the light reflector according to the present embodiment (“the present light reflector” t) is a layer A mainly composed of aliphatic polyester-based resin and fine powder filler on one side or both sides of the metal plate. And a light reflector formed so that the static friction coefficient and the dynamic friction coefficient of the surface of the A layer on at least one side are in a predetermined range.
- the A layer may be provided on one side or both sides of the metal plate. Therefore, for example, the C layer may be interposed between the metal plate and the A layer. So, in the following, following the A layer and the metal plate
- the C layer will be described, and then the configuration, characteristics, manufacturing method, etc. of the light reflector will be described.
- the A layer is a layer that mainly imparts light reflectivity, and is a layer that also has a resin composition A force containing at least an aliphatic polyester-based resin and a fine powder filler as main components.
- a resin composition A force containing at least an aliphatic polyester-based resin and a fine powder filler as main components For example, it can be formed by forming it into a film and laminating it on a metal plate, or forming it as a thin film layer on the metal plate.
- the aliphatic polyester resin does not contain an aromatic ring in the molecular chain, it is possible to prevent ultraviolet absorption by using the aliphatic polyester resin as the base resin of the A layer. Therefore, exposure to ultraviolet light or liquid crystal display It is possible to suppress a decrease in light reflectivity over time, which is not deteriorated or yellowed by receiving ultraviolet rays emitted from a light source such as an apparatus.
- aliphatic polyester-based resin chemically synthesized, fermented and synthesized by microorganisms, or a mixture thereof can be used.
- Examples of the chemically synthesized aliphatic polyester-based resin include poly ⁇ -strength prolatatam obtained by ring-opening polymerization of rataton, polyethylene adipate obtained by polymerizing dibasic acid and diol, polyethylene Azelate, polytetramethylene succinate, cyclohexanedicarboxylic acid ⁇ cyclohexanedimethanol condensation polymer, lactic acid polymer obtained by polymerizing hydroxycarboxylic acid, polyglycol, etc.
- Examples include aliphatic polyesters in which a part of the ester bond of the aliphatic polyester is replaced with, for example, 50% or less of the ester bond by an amide bond, an ether bond, a urethane bond, or the like.
- Examples of the aliphatic polyester-based coconut resin fermented and synthesized by microorganisms include polyhydroxybutyrate, a copolymer of hydroxybutyrate and hydroxyvalerate, and the like.
- an aliphatic polyester-based resin having a refractive index (n) of less than 1.52 is preferable to use as the base resin of the cocoon layer. That is, if a layer comprising an aliphatic polyester-based resin having a refractive index (n) of less than 1.52 and a fine powder filler is provided, refractive scattering at the interface between the base resin and the fine powder filler is performed. The light reflectivity can be realized by using. Since the refractive scattering effect increases as the refractive index of the base resin and the fine filler increases, the base resin preferably has a low refractive index. A lactic acid polymer that is less than 46 (generally around 1.45) is the most suitable example.
- Examples of the lactic acid-based polymer include homopolymers of D-lactic acid or L-lactic acid or copolymers thereof. Specifically, poly (D lactic acid) whose structural unit is D-lactic acid, poly (L lactic acid) whose structural unit is lactic acid, and poly (DL lactic acid) which is a copolymer of L lactic acid and D lactic acid Or a mixture thereof.
- lactic acid includes two types of optical isomers, that is, L lactic acid and D lactic acid, and the crystallinity differs depending on the ratio of these two types of structural units.
- L lactic acid and D lactic acid the glass transition point is 60 ° C where the crystallinity is low. It becomes a transparent, completely amorphous polymer that softens in the vicinity.
- a random copolymer having a ratio of L lactic acid and D lactic acid of about 100: 0 to 80:20, or about 20:80 to 0: 100 has a glass transition point similar to the copolymer described above. Although it is about ° C, it has high crystallinity.
- a lactic acid polymer in which the content ratio of D-lactic acid and L-lactic acid is 100: 0 or 0: 100 exhibits very high crystallinity, and has a high melting point and excellent heat resistance and mechanical properties. Tend. That is, when the film is stretched or heat treated, the resin is crystallized to improve heat resistance and mechanical properties, which is preferable in that respect.
- a lactic acid-based polymer composed of D-lactic acid and L-lactic acid is preferable in that respect because flexibility is imparted and molding stability and stretching stability are improved.
- the lactic acid-based polymer can be produced by a known method such as a condensation polymerization method or a ring-opening polymerization method.
- a condensation polymerization method D-lactic acid, L-lactic acid, or a mixture thereof can be directly subjected to dehydration condensation polymerization to obtain a lactic acid polymer having an arbitrary composition.
- lactide which is a cyclic dimer of lactic acid, is subjected to ring-opening polymerization in the presence of a predetermined catalyst using a polymerization regulator or the like, if necessary.
- a system polymer can be obtained.
- the lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, and DL lactide, which is a dimer of D-lactic acid and L-lactic acid.
- lactic acid polymers having different copolymerization ratios of D lactic acid and L lactic acid may be blended. Yes. In this case, it is preferable to adjust so that the average value of the copolymerization ratios of D lactic acid and L lactic acid of a plurality of lactic acid polymers falls within the range of the DL ratio.
- the lactic acid-based polymer a copolymer of lactic acid and another hydroxycarboxylic acid can be used.
- the “other hydroxycarboxylic acid units” to be copolymerized include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxyn-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3 methyl.
- Examples include bifunctional aliphatic hydroxycarboxylic acids such as butyric acid, 2-methyl lactic acid, and 2-hydroxycaproic acid, and ratatones such as force prolatatanes, butyrolatatanes, and valerolatatanes.
- the lactic acid-based polymer may be a non-aliphatic carboxylic acid such as terephthalic acid and a non-aliphatic diol such as an ethylene oxide adduct of Z or bisphenol A as a small amount copolymerization component.
- Lactic acid and Z or hydroxycarboxylic acid other than lactic acid may be contained.
- the molecular weight of the lactic acid-based polymer is preferably a high molecular weight.
- the weight average molecular weight is preferably 10,000 or more, more preferably 60,000 to 400,000, and even more preferably 100,000. It is particularly preferred to be ⁇ 300,000. If the weight average molecular weight of the lactic acid polymer is less than 50,000, the mechanical properties may be inferior.
- Examples of the fine powder filler in the A layer include organic fine powder and inorganic fine powder.
- the organic fine powder it is preferable to use at least one selected from cellulose-based powders such as wood powder and pulp powder, polymer beads, polymer hollow particles and the like.
- Examples of the inorganic fine powder include calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, alumina, aluminum hydroxide, hydroxyapatite, It is preferable to use at least one selected from silica, my strength, talc, kaolin, clay, glass powder, asbestos powder, zeolite, white clay, etc.
- fine powder fillers that have a large refractive index difference from aliphatic polyester-based rosins and are capable of obtaining excellent reflection performance are preferred.
- inorganic fine powder having a large refractive index is used. It is preferable.
- an acid having a refractive index of 2.5 or more, even though calcium carbonate, barium sulfate, acid titanium or acid zinc is preferred. Tan is particularly preferred.
- barium sulfate that is stable against acids and alkalis is also preferred.
- Titanium oxide has a significantly higher refractive index difference than that of other aliphatic fine powders compared to aliphatic polyester-based resin, so it is more than when other fillers are used. With a small blending amount, high reflection performance and low light transmission can be imparted to the reflector. Further, by using titanium oxide, the present light reflector having high reflection performance, low V, and light transmittance can be obtained even if the light reflector is thin.
- the acid titanium a crystalline acid titanium such as anatase type rutile type is preferred. From the viewpoint of increasing the refractive index difference from the base resin, it is preferable to use an acid titanium with a refractive index of 2.7 or higher. More preferably. The greater the difference in refractive index, the greater the refractive and scattering effect of light at the interface between the base resin and the titanium oxide titanium, and the light reflectivity can be easily imparted.
- the titanium oxide has a small light absorption ability with respect to visible light.
- the amount of coloring elements contained in titanium oxide is small. From this viewpoint, titanium oxide having a niobium content of 50 Oppm or less is used. I like it!
- Titanium oxide produced by the chlorine method process has high purity. According to this production method, titanium oxide having a-job content of 500 ppm or less can be obtained.
- rutile ore containing titanium oxide as a main component is reacted with chlorine gas at a high temperature of about 1000 ° C to form tetra-salt-titanium.
- High purity titanium oxide can be obtained by burning with.
- the titanium oxide used as the fine powder filler is preferably one whose surface is coated with an inert inorganic oxide.
- an inert inorganic oxide By coating the surface of titanium oxide with an inert inorganic oxide, it is possible to suppress the photocatalytic activity of titanium oxide and improve light resistance (durability when irradiated with light). it can.
- Examples of the inert inorganic oxide used for the coating treatment of acid titanium include alumina, silica and It is preferably at least one selected from the group power consisting of zircoyu.
- alumina silica
- It is preferably at least one selected from the group power consisting of zircoyu.
- Surface treatment with at least one selected organic compound is particularly advantageous.
- the average particle diameter of the titanium oxide to be added is preferably 0.2 / ⁇ ⁇ to 0.5 m, more preferably 0.2 ⁇ m.
- the average particle diameter of titanium oxide is 0.1 ⁇ m or more, the dispersibility in the aliphatic polyester-based resin is good and the titanium oxide can be formed uniformly. Further, if the average particle size is 1 m or less, the interface between the aliphatic polyester-based rosin and the acid-titanium is more densely formed, so that excellent light reflectivity can be imparted.
- a silicon compound, a polyhydric alcohol compound, an amine compound, a fatty acid, a fatty acid ester may be used in order to improve dispersibility in the base resin. You may make it surface-treat by.
- the fine powder filler other than titanium oxide has an average particle size of 0.05 ⁇ ! Even though it is preferable to be ⁇ 15 m, 0 .: L m or more or 10 m or less is more preferable. If the average particle size of the fine powder filler is 0.05 m or more, diffused reflection occurs with the roughening of the surface, resulting in a smaller reflection directivity. In addition, if the average particle size of the fine powder filler is 15 m or less, the interface between the aliphatic polyester-based resin and the fine powder filler is more densely formed, so that excellent light reflectivity can be imparted. it can.
- Titanium oxide or a fine powder filler other than titanium oxide is preferably mixed and dispersed in an aliphatic polyester-based resin.
- the content of the fine powder filler is determined in consideration of light reflectivity, mechanical properties, productivity, etc. It is more preferably 10 to 55% by mass of the composition A, but it is more preferably 20 to 45% by mass.
- the content of the fine powder filler is 10% by mass or more, the area of the interface between the base resin and the fine powder filler can be sufficiently secured, so that even higher light reflectivity is imparted. can do. Further, if the content of the fine powder filler is 60% by mass or less, the mechanical properties necessary for the film can be ensured.
- the resin composition A does not interfere with the functions of the aliphatic polyester resin and fine powder filler! / And may contain other additives within the range.
- additives for example, hydrolysis inhibitors, antioxidation agents, light stabilizers, heat stabilizers, lubricants, dispersants, UV absorbers, white pigments, fluorescent brighteners, and other additives can be added. .
- the A layer may have a void. By having the air gap, the reflectance can be further increased.
- the porosity of the A layer (the ratio of voids in the A layer) is preferably 50% or less, particularly preferably in the range of 5 to 50%. Among these, from the viewpoint of improving the reflectance, the porosity is preferably 20% or more, and particularly preferably 30% or more. When the porosity exceeds 50%, it is assumed that the mechanical strength is lowered or the durability such as heat resistance is insufficient during use.
- Such voids in the A layer can be formed by adding a fine powder filler to the resin composition A to form a film and stretching the film.
- niobium titanium oxide having a niobium content of 500 ppm or less as the fine powder filler, it is sufficiently high even if the porosity existing inside is low or there is no void. Light reflectivity can be obtained, and the following effects can also be obtained. That is, when titanium oxide containing 500 ppm or less of niobium is used, the amount of filler used can be reduced, and as a result, the number of voids formed by stretching is reduced, which is high. It is also possible to improve the mechanical properties while maintaining the reflective performance. In addition, dimensional stability can be improved by reducing the number of voids present inside. Furthermore, even thin walls are expensive Reflective performance can be ensured, and it is particularly suitable as a light reflector constituting a knocklight device for a small and thin liquid crystal display such as a notebook personal computer or a mobile phone.
- the A layer composed of the resin composition A having such a composition forms the film of the resin composition A force and is laminated on a metal plate, or formed as a thin film layer on the metal plate.
- At least the surface of the A layer on one side (preferably the surface of the A layer on both sides) has a static friction coefficient of 0.49 or less and a dynamic friction coefficient of 0.42 or less. is important.
- the static friction coefficient of the surface of the layer A on at least one side is 0.49 or less and the dynamic friction coefficient is 0.42 or less, for example, the light reflector is processed into a reflector so that a notebook type bath When incorporated in a liquid crystal display device, the generation of noise when the monitor is opened and closed can be effectively reduced.
- the static friction coefficient of at least the surface of the A layer on one side is 0.46 or less.
- the coefficient of dynamic friction is preferably 0.36 or less.
- a friction modifier is kneaded and mixed with the layer A, or a coating liquid containing the friction modifier is applied to the surface of the layer A. It can be adjusted from what you do.
- Examples of the friction modifier include a surfactant having both a hydrophilic part and a lipophilic part in its molecule, or a substance mainly composed of this surfactant.
- Such surfactants are broadly classified into cationic, anionic, zwitterionic, and nonionic types, and are preferably used or divided according to the processing method and application.
- the ionic surfactants or those containing the same as the main component have versatility and are preferable in terms of the balance between effect and economic efficiency.
- examples of cationic systems that are weak against heat and high in cost but have high antistatic properties include 1) aliphatic amine salts, 2) quaternary ammonium salts, and 3) alkylpyridium salts. It is done.
- amphoteric ion systems with slightly improved heat resistance which is a weak point of the ion system, are as follows: 1) imidazoline derivatives, 2) carboxylic acid ammoniums, 3) sulfate ester ammoniums. 4) Phosphoric ester ammoniums, 5) Sulfonic acid ammoniums, and the like.
- the friction modifier may contain silicone oil or rosin containing silicone.
- This friction modifier is prepared by immersing the surface of the layer A in a liquid containing the friction modifier, spraying a liquid containing the friction modifier on the surface of the layer A, or pre-coating the friction modifier with a resin composition. It can be kneaded into product A and transferred to the surface of layer A.
- the content of the friction modifier in the A layer is preferably 0.001 to 2% by mass. 0.01 to L: 5% by mass More preferably. Within the range of 0.001 to 2% by mass, it is possible to obtain a light reflector having good slipperiness without impairing the reflection performance.
- the metal plate that constitutes the light reflector is preferably selected according to, for example, the type of liquid crystal display device that uses the reflector.
- Examples include a stainless steel plate having a thickness of ⁇ 0.4 mm, an aluminum alloy having a thickness of 0.1 to 0.6 mm, or a brass plate having a thickness of 0.2 to 0.4 mm. However, it is not limited to these.
- the surface on which the light reflecting plate is laminated is preferably subjected to a surface treatment in order to improve the adhesion and adhesion of the light reflecting plate.
- Examples of the surface treatment include chemical treatment, discharge treatment, and electromagnetic wave irradiation treatment.
- Examples of the chemical treatment include silane coupling agent treatment, acid treatment, alkali treatment, ozone treatment, ion treatment and the like.
- Examples of the discharge treatment include treatment methods such as corona discharge treatment, glow discharge treatment, arc discharge treatment, and low temperature plasma treatment.
- Examples of the electromagnetic wave irradiation treatment include ultraviolet ray treatment, X-ray treatment, gamma ray treatment, and laser treatment.
- the silane coupling agent treatment is particularly effective in improving the adhesion between inorganic substances (metal plates) and organic substances (fine powder-containing polyester layer), and corona discharge treatment is effective for adhesion under atmospheric pressure. Can be improved.
- a resin composition A force film is formed, and the film is heat-sealed to a metal plate, or the resin composition A is melted and extruded onto the metal plate to form a film.
- the A layer can be directly laminated on the metal plate, but the C layer may be interposed between the A layer and the metal plate.
- the C layer can be formed with a film force made of, for example, a polyester-based resin.
- the film made of polyester-based resin include, for example, a film made of aromatic polyester-based resin, aliphatic polyester-based resin, or copolymerized polyester-based resin. If a film made of strong polyester-based resin is used as the C layer and interposed between the A layer and the metal plate, it is laminated with the metal plate at a low temperature without impairing the light reflectivity function of the A layer. be able to.
- aromatic polyester-based resin examples include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene) terephthalate, polyethylene 2, 6 naphthalene dicarboxylate, polyethylene naphthalate.
- An aromatic polyester-based resin such as phthalate can be mentioned.
- Examples of the aliphatic polyester-based resin include the chemically synthesized aliphatic polyester-based resin exemplified above, the aliphatic polyester-based resin synthesized by fermentation using microorganisms, and mixtures thereof. Can be used.
- Examples of the copolyester-based resin include those composed of one or more acid components and one or more polyhydric alcohol components of an ester repeating unit force. One or two or more acid components and one or two or more polyhydric alcohol components.
- phthalic acid As the repeating unit of the ester in the copolyester resin, phthalic acid, One or two or more acids selected from among taric acid, terephthalic acid, naphthalene acid, oxalic acid, succinic acid, dartaric acid, adipic acid, pimelic acid, spellic acid, azelaic acid, sebacic acid, dodecadioic acid, etc. Selected from ethylene glycol, diethylene glycol, triethylene glycol, 1,4 cyclohexane dimethanol, 1,2 propylene glycol, 1,4 butanediol, 1,5 pentadiol, 1,6 hexadiol, etc.
- One or two or more types of copolyester-based resin having a polyhydric alcohol power can be mentioned.
- isophthalic acid and terephthalic acid as the acid component
- a copolymer containing ethylene glycol and 1,4-cyclohexanedimethanol as the polyhydric alcohol.
- the aromatic polyester-based resin, the aliphatic polyester-based resin or the copolymerized polyester-based resin as the base resin of the C layer is not limited to those exemplified above.
- polyethylene terephthalate polyethylene isophthalate
- lactic acid polymers are particularly preferable.
- the polyester resin constituting the C layer is preferably a resin having a melting point in the range of 80 ° C to 270 ° C, and is preferably in the range of 150 ° C to 250 ° C. More preferred. If the melting point is 80 ° C to 270 ° C, sufficient adhesion to the metal plate can be secured without using an adhesive, and the effect of heat when laminating on the metal plate can be suppressed, and light It is possible to prevent the reflection performance of the reflector from deteriorating.
- the melting point here is a value measured by differential scanning calorimetry (DSC).
- the heat of fusion of the polyester resin constituting the C layer is preferably smaller than the heat of fusion of the aliphatic polyester resin constituting the A layer. If the heat of fusion of the polyester-based resin of the C layer is low, the A layer and the metal plate can be laminated at a low temperature. By interposing the C layer between the A layer and the metal plate, the adhesion of each layer The force can be improved and the mechanical strength of the light reflector can be improved.
- the heat of fusion of the lactic acid-based polymer constituting the C layer is the aliphatic polyester-based resin constituting the A layer. It is preferable that it is smaller than the heat of fusion of fat.
- Lactic acid polymers have a melting point in the range of 80 ° C to 270 ° C regardless of the composition ratio of D-lactic acid and L-lactic acid. Therefore, the lactic acid polymer has a desired composition ratio of D-lactic acid and L-lactic acid. System polymers can be used.
- a lactic acid polymer that is a copolymer is more preferable because the lactic acid polymer has low crystallinity and low heat of fusion.
- the heat of fusion is a value measured by differential scanning calorimetry (DSC).
- the C layer may contain components other than those described above as long as the effects of the polyester-based resin are not impaired.
- fine powder fillers for example, fine powder fillers, lubricants, hydrolysis inhibitors, anti-oxidation agents, light stabilizers, heat stabilizers, dispersants, UV absorbers, white pigments, optical brighteners, and other additives. Contain, okay.
- the C layer contains the fine powder filler described in the A layer, also from the refractive scattering due to the refractive index difference between the polyester-based resin constituting the C layer and the fine powder filler. Reflective performance can be obtained, and the reflective performance of the light reflector can be further improved.
- the adhesion between the A layer, the C layer, and the C layer and the metal plate can be further improved.
- lubricant so-called internal lubricants and external lubricants can be used.
- examples thereof include internal lubricants such as fatty acid lubricants, alcohol lubricants, aliphatic amide lubricants and ester lubricants, and external lubricants such as acrylic lubricants and hydrocarbon lubricants, preferably acrylic lubricants and hydrocarbon lubricants.
- a lubricant may be added.
- the exemplified lubricants may be used in any combination.
- the content of the lubricant is from 0.05 to 100 parts by mass of the aliphatic polyester-based resin constituting the C layer. More preferably, it is at most part by mass.
- the C layer can also be formed as a layer having two or more different types of multi-layer constituent forces.
- the adhesion and lamination conditions between the A layer and the C layer and the adhesion and lamination conditions between the C layer and the metal plate can be adjusted appropriately, and the light reflector Dense as a whole It is possible to design the wearability, reflection performance, mechanical strength, and the like within a preferable range.
- the C layer may have voids inside. If it has air gaps, it is possible to obtain reflection performance due to the refractive scattering power due to the refractive index difference between the polyester-based resin constituting the C layer and the air gap (air), further improving the reflection performance of the light reflector. Can be made.
- the light reflector can be configured by directly laminating the A layer on one or both surfaces of the metal plate, or by interposing the C layer between the A layer and the metal plate. You can also.
- a two-layer configuration consisting of A layer Z metal plate, A layer Z metal plate ZA layer, or A layer ZC layer three layer configuration consisting of Z metal plate, A layer ZC layer Z metal plate consisting of ZA layer It can be formed as a four-layer structure, A layer ZC layer Z metal plate ZC layer ZA layer, or more multilayer structure. Further, it can be formed as a laminated structure including layers other than the A layer and the C layer.
- the thickness of each A layer is preferably 50 ⁇ m to 250 ⁇ m, and more preferably 50 m to: LOO / z m.
- the thickness of the C layer is preferably 5 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m.
- the thickness of the entire light reflector varies depending on the desired application and the metal plate to be used, and is not particularly limited. However, in view of the use of a reflector incorporated in a small and thin display device, etc. 0.05 mm: Even though it is preferable to use Lmm, 0.1 mm to 0.7 mm is more preferable.
- the reflectance measured from the reflective use surface side with respect to light having a wavelength of 550 nm is preferably 95% or more, more preferably 97% or more. If the reflectance is 95% or more, good reflection characteristics are exhibited and sufficient brightness can be given to a screen such as a liquid crystal display.
- the thermal shrinkage rate when it is left at 120 ° C. for 5 minutes is 10% or less, more preferably 5% or less. preferable.
- the thermal contraction rate when left at 120 ° C for 5 minutes as described above is 10% or less, dimensional stability that can maintain the flatness of the A layer and the C layer is secured, and the metal plate is peeled off. This is preferable because it is not necessary.
- the present light reflector has both high reflection performance, high heat resistance, and is suitable as a reflector for displays such as a television, a lighting fixture, and a lighting signboard.
- a reflector for displays such as a television, a lighting fixture, and a lighting signboard.
- it can be suitably used as a member called a reflector that is formed by molding a light reflector.
- the manufacturing method of the light reflector of this invention is not limited to the following manufacturing method.
- the resin composition A is melted and directly formed on a metal plate, and if necessary, a friction modifier is applied, or a C layer is laminated on the metal plate.
- a method of forming the A layer and the C layer in the form of a film and laminating them on a metal plate will be described.
- layer A for example, aliphatic polyester-based resin, fine powder filler, friction modifier and other components as necessary are mixed to obtain resin composition A, which is melt-formed.
- the film A may be obtained by stretching as necessary. Details will be described below.
- a resin composition A is prepared by blending an aliphatic polyester-based resin with a fine powder filler and, if necessary, other additives such as a hydrolysis inhibitor.
- the friction modifier is added here. Specifically, a fine powder filler, friction modifier, hydrolysis inhibitor, etc. are mixed with an aliphatic polyester resin, mixed with a ribbon blender, tumbler, Henschel mixer, etc., and then a Banbury mixer. Using a single or twin screw extruder, etc., the temperature above the melting point of the resin (for example, in the case of a lactic acid-based polymer, the kneaded composition A is obtained by kneading at 170 ° C. to 230 ° C.).
- a resin composition A is obtained by adding a predetermined amount of an aliphatic polyester-based resin and a fine powder filler, a friction modifier, a hydrolysis inhibitor, etc. using separate feeders and the like. You can also.
- a so-called master batch in which a fine powder filler, an anti-hydrolysis agent, etc. are blended in high concentration in an aliphatic polyester-based resin is prepared in advance, and this master notch and the aliphatic polyester-based resin are mixed.
- a desired concentration of rosin composition A is obtained by adding a predetermined amount of an aliphatic polyester-based resin and a fine powder filler, a friction modifier, a hydrolysis inhibitor, etc. using separate feeders and the like. You can also.
- a so-called master batch in which a fine powder filler, an anti-hydrolysis agent, etc. are blended in high concentration in an aliphatic polyester-based resin is prepared in advance, and this master notch and the aliphatic polyester-based resin are mixed.
- the resin composition A is dried, supplied to an extruder, heated to a temperature equal to or higher than the melting point of the resin, and melted.
- the rosin composition A may be supplied to the extruder without drying, but if not dried, it is preferable to use a vacuum vent during melt extrusion.
- Conditions such as the extrusion temperature must be set in consideration of a decrease in molecular weight due to decomposition.
- the extrusion temperature used a lactic acid-based polymer as an aliphatic polyester-based resin. If this is the case, a range of 170 ° C to 230 ° C is preferred! /.
- the melted rosin composition A is extruded into a slit-shaped discharge loci of a T die, and is closely adhered to a cooling roll to form a cast sheet (unstretched state) to obtain a film A.
- a water-soluble coating solution containing a friction modifier may be applied to the film A and dried.
- Application methods include spray coating, air knife method, reverse coating method, kiss coating method, gravure coating method, metal ring bar method, roll brush method, dip coating method, calendar coating method, skies coating method, phanten coating method.
- a coat or the like can be applied.
- an aqueous coating solution may be applied to an unstretched film formed using an extruder equipped with a T die, and then dried in a drying furnace. You may blow directly on the film.
- the film A (cast sheet) obtained as described above can be stretched 1.1 times or more in at least a uniaxial direction.
- the fine powder filler is cored inside the film by stretching.
- the interface between the resin and the void and the interface between the void and the fine filler are formed, and the effect of refraction and scattering generated at the interface is increased. That's right.
- the stretching temperature at the time of stretching is preferably within the predetermined temperature range (Tg to Tg + 50 ° C) from the glass transition temperature (Tg) of the aliphatic polyester-based resin.
- Tg glass transition temperature
- the temperature is preferably 50 to 90 ° C. If the stretching temperature is within this range, the stretching can be performed stably without breaking during stretching, and the stretching orientation becomes high. As a result, the porosity becomes large. Can be easily obtained.
- Film A is more preferably biaxially stretched than uniaxially stretched.
- biaxial stretching By biaxial stretching, the porosity is further increased, and the light reflectivity of the A layer can be further enhanced.
- the stretching order of the biaxial stretching is not particularly limited. For example, simultaneous biaxial stretching or sequential stretching may be used.
- the film may be melt-formed using a stretching facility, then stretched to MD by roll stretching, and then stretched to TD by tenter stretching, or by tubular stretching or the like. Biaxial stretching may be performed.
- the stretching ratio in the case of uniaxial stretching or biaxial stretching may be appropriately determined according to the composition of layer A, the stretching means, the stretching temperature, and the target product form. It is preferable to stretch. It is more preferable to stretch the film by 7 times or more. If the cast sheet is stretched so that the area magnification is 5 times or more, a porosity of 5% or more can be realized in layer A, and a porosity of 20% or more can be realized by stretching it 7 times or more. By stretching to 7.5 times or more, a porosity of 30% or more can be realized, and the reflectance can be further increased.
- the heat treatment temperature of the film-like A layer is preferably 90 to 160 ° C, more preferably 110 to 140 ° C.
- the treatment time required for the heat treatment is preferably 1 second to 5 minutes.
- tenter stretching that can be heat-set after stretching.
- Examples of the laminating method in this case include a method in which a film B and a film A are stacked in this order on a metal plate, and in this state, supplied to a heating and pressing roll and thermally fused.
- the temperature for heat-sealing is preferably in the temperature range of 140 ° C. to 280 ° C., more preferably in the temperature range of 150 ° C. to 210 ° C. from the viewpoint of adhesion.
- the surface temperature of the metal plate can be heated so as to be about the melting point of the resin constituting the A layer and the C layer, and can be heat-sealed with a rubber roll.
- the light reflector according to this embodiment (“the present light reflector” t) is formed by laminating an A layer mainly composed of an aliphatic polyester-based resin and fine powder filler on one or both surfaces of a metal plate.
- B layer formed from thermosetting resin or ionizing radiation curable resin is laminated on the surface side of layer A on at least one side, and the static friction coefficient and dynamic friction coefficient of the surface of the B layer are within a predetermined range. It is a light reflector formed so that
- the A layer may be provided on one side or both sides of the metal plate.
- a C layer may be interposed between the metal plate and the A layer.
- the A layer, the metal plate, and the C layer are the same as those in the first embodiment. Therefore, here, the B layer will be described, and then the configuration and characteristics of the light reflector are described. The manufacturing method will be described.
- the B layer can be formed from a thermosetting resin or an ionizing radiation curable resin. Among them, it is preferable to form from ionizing radiation curable resin from the viewpoint of work environment and productivity.
- the ionizing radiation curable resin may be any resin that is cured by irradiation with ionizing radiation such as ultraviolet rays or electron beams. Examples thereof include a resin having at least one radically polymerizable double bond capable of undergoing a polymerization crosslinking reaction by irradiation with ionizing radiation, and appropriately containing a prepolymer, an oligomer and Z or a monomer. In the case of ultraviolet curable resin, it is common to contain a photopolymerization initiator.
- the ionizing radiation curable resin may contain an additive such as a sensitizer, a non-reactive resin, a leveling agent, and a solvent as necessary. Moreover, you may contain the silicone oil and the resin containing silicone.
- Examples of the prepolymers and oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, polyol acrylates, silicone acrylates and other acrylates, polyester metatalates, and urethane metatalates. And metatalates such as epoxy metatalylate, polyether metatalylate, polyol metatalylate, and silicone metatalylate.
- the refractive index of the B layer is not particularly limited. However, in order not to impair the high reflection performance of the A layer, the refractive index is about 1.4 to 1.8, particularly about 1.4 to 1.6. It is preferable to select the fat to form the B layer.
- the B layer may contain a fine particulate filler.
- a fine particle filler the same force as the fine particle filler in the above-described A layer can be used. Curability of the B layer, adhesion with the A layer, and reflection as a light reflector Considering setting the static friction coefficient and dynamic friction coefficient on the surface of layer B within the specified ranges without impairing performance, etc., a fine filler with an average particle size of 0.3 m or less is particularly preferred. Siri force of 0.2 m or less is superior.
- the layer B surface preferably has a static friction coefficient of 0.49 or less and a dynamic friction coefficient of 0.42 or less.
- the reflector is processed into a reflector and incorporated in a liquid crystal display of a notebook computer. In this case, it is possible to effectively reduce the generation of noise when the monitor unit is opened and closed.
- the static friction coefficient of the surface of the B layer is more preferably 0.46 or less, and still more preferably 0.43 or less. Further, the coefficient of dynamic friction is more preferably 0.36 or less, and still more preferably 0.33 or less.
- the light reflector can be configured by directly laminating the A layer on one or both surfaces of the metal plate, or by interposing the C layer between the A layer and the metal plate.
- It can also be formed as a laminated structure including other layers (such as an adhesive layer) other than the A layer, the B layer, and the C layer.
- each layer is not particularly limited.
- the layer is laminated with the metal plate, and after the A layer is laminated on the metal plate, B A layer may be laminated on the surface side of the A layer.
- the thickness of the A layer is preferably 50 m to 250 m.
- the thickness of the B layer is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 7 ⁇ m, and particularly preferably 2 m to 5 ⁇ m! / ⁇ .
- the thickness of the C layer is preferably 5 ⁇ m to 100 ⁇ m.
- the thickness of the entire light reflector varies depending on the desired application and the metal plate to be used.
- the thickness is set to 0.1 to 0.7 mm, even though it is preferable to set the thickness to 0.05 mm to lmm. That's right.
- the reflectance measured from the reflective use surface side with respect to light having a wavelength of 550 nm is preferably 95% or more, more preferably 97% or more. If the reflectance is 95% or more, good reflection characteristics are exhibited and sufficient brightness can be given to a screen such as a liquid crystal display.
- this light reflector has both high reflection performance, high heat resistance, and is suitable as a reflector for displays such as TVs, lighting fixtures, and lighting signs.
- it can be suitably used as a member called a reflector that is formed by molding a light reflector.
- the manufacturing method of the light reflector of this invention is not limited to the following manufacturing method.
- a film A was prepared in the same manner as in the first embodiment, and then a thermosetting or ionizing radiation curable resin coating solution was prepared and applied onto the film A. After removing the solvent by drying, it can be cured by heating or irradiation with ionizing radiation to form layer B.
- the film A for forming the B layer may be a film that has not been stretched or heat-treated! /, But is preferably a stretched or heat-treated film.
- a method of forming an outline on the stretched or heat-treated film A may be employed, or an unstretched cast film may be used. It is possible to adopt a method (so-called in-line coating) in which the B layer is applied in-line in the film forming process, followed by stretching or heat treatment.
- thermosetting resin or ionizing radiation curable resin examples include well-known coaters such as bar coaters, blade coaters, ronore coaters, gravure coaters, spin coaters, spray coaters, The coating can be formed by a known coating method such as dip coating.
- the layer B can also be formed by a known printing method such as gravure printing, offset printing, or screen printing.
- the adhesion on the surface of the A layer may be enhanced by a surface treatment method such as a corona discharge treatment (the same means as the surface treatment of the metal plate described above). Can be used). Further, an anchor coat layer, an adhesive layer or the like may be interposed between both layers.
- the film A having the B layer produced as described above is laminated on a metal plate via the film C made of polyester-based resin constituting the C layer, and this light reflector is formed. It can be manufactured.
- film A having film C and layer B on a metal plate is used as a method of laminating at this time.
- a method of supplying the heat and pressure roll and heat-sealing in this state can be mentioned.
- the temperature for heat-sealing is preferably in the temperature range of 140 ° C. to 280 ° C., more preferably in the temperature range of 150 ° C. to 210 ° C. from the viewpoint of adhesion.
- the surface temperature of the metal plate can be heated to about the melting point of the resin constituting the A layer and the C layer, and heat fusion can be performed with a rubber roll.
- the measured values and evaluations shown in the examples were performed as follows.
- the film take-off (flow) direction is indicated by MD, and its orthogonal direction is indicated by TD.
- An integrating sphere is attached to a spectrophotometer ("U-4000", manufactured by Hitachi, Ltd.), and the reflectance with respect to light with a wavelength of 550 nm is measured. A value of less than 1% (less than 0.5%) was evaluated as ⁇ , and a value showing a decrease in reflectivity (over 0.5%) was determined as X. Before the measurement, the photometer was set so that the reflectance of the alumina white plate was 100%.
- the melt was allowed to cool in the state of being put in a crucible, and then 100 ml of warm water and 50 ml of hydrochloric acid were added to the melt to dissolve it, and water was added to make up to 250 ml. .
- This solution was measured with an ICP emission spectrophotometer to determine the niobium content. However, the measurement wavelength was 309.42 nm.
- a mixture of 30 parts by weight of a resin composition was set at 220 ° C Melt with an extruder, extrude, cool with a cast roll, where a solution of Electro Stripper AC (; trade name, manufactured by Kao, composition: linear alkyl benzene sulfonic acid series) as a friction modifier, thickness after drying Is applied to the cast surface to a thickness of 0.1 ⁇ m, stretched biaxially 2.5 times to MD and 2.8 times to TD at a temperature of 65 ° C, and then heat-treated at 140 ° C.
- Electro Stripper AC (trade name,
- a cast sheet having a thickness of 75 ⁇ m was obtained.
- a 15 ⁇ m-thick film composed of a terephthalic acid-isophthalic acid polyester copolymer (copolymerized PET) is interposed between the cast sheet and a stainless steel plate (thickness: 0.1 mm, SUS304). And heat-sealed at 180 ° C. to obtain a light reflector having a thickness of about 190 m.
- This light reflector was evaluated for static friction coefficient, dynamic friction coefficient, adhesion, reflectivity, and noise noise, and the results are shown in Table 1.
- Example 1 except for using Riquemar A (; trade name, manufactured by Riken Vitamin Co., Ltd., composition: sucrose fatty acid ester system) instead of Electrostopper AC used as a friction modifier, Example 1 A light reflector was obtained in the same manner as described above, and the static friction coefficient, dynamic friction coefficient, adhesion, reflectance, and noise sound were evaluated, and the results are shown in Table 1.
- Riquemar A trade name, manufactured by Riken Vitamin Co., Ltd., composition: sucrose fatty acid ester system
- Titanium oxide of 25 rutile type, niobium concentration: 430 ppm; surface treatment with silica,
- a 15 ⁇ m thick film made of terephthalic acid-isophthalic acid polyester copolymer (copolymerized PET) is interposed between the cast sheet and the stainless steel plate (thickness: 0.1 mm, SUS304). And heat-sealed at 180 ° C. to obtain a light reflector having a thickness of about 190 m.
- This light reflector was evaluated for static friction coefficient, dynamic friction coefficient, adhesion, reflectivity, and noise noise, and the results are shown in Table 1.
- Example 1 Electric stripper AC 100. 2 0. 46 0. 36 ⁇ ⁇
- Example 2 Riquemar A 100. 2 0. 44 0. 35 ⁇ ⁇ Comparative example 1 None 100. 2 0. 51 0. 45 X ⁇ [0160] [Example 3]
- a mixture of 30 parts by weight of a resin composition was set at 220 ° C Melted with an extruder, extruded, cooled with a cast roll, and biaxially stretched 2.5 times to MD and 2. 8 times to MD at a temperature of 65 ° C, then heat treated at 140 ° C to a thickness of 75 An m film (A layer) was obtained.
- a 15 ⁇ m-thick fiber made of terephthalic acid isophthalic acid polyester copolymer (copolymerized PET) is formed between the B layer ZA layer and a stainless steel plate (thickness: 0.1 mm, SUS304). Lum was interposed and heat-sealed at 180 ° C to obtain a light reflector with a thickness of about 192 m.
- a mixture of 30 parts by weight of a resin composition was set at 220 ° C Melted with an extruder, extruded, cooled with a cast roll, and biaxially stretched 2.5 times to MD and 2. 8 times to MD at a temperature of 65 ° C, then heat treated at 140 ° C to a thickness of 75 An m film (A layer) was obtained.
- Example 3 As is apparent from Table 2, the light reflector of Example 3 provided with a B layer made of ionizing radiation curable resin on the surface was compared with the light reflector of Comparative Example 2 having no B layer on the surface. Noise noise could be reduced without impairing adhesion and reflectivity.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Optical Elements Other Than Lenses (AREA)
- Laminated Bodies (AREA)
- Liquid Crystal (AREA)
Abstract
Disclosed is a light-reflecting body which enables to reduce generation of noise during opening and closing of a monitor portion when it is processed into a reflector and incorporated in a liquid crystal display of a laptop PC and the like. Specifically disclosed is a light-reflecting body having a structure wherein a layer A containing an aliphatic polyester resin and a finely powdered filler is arranged on one or both sides of a metal plate. This light-reflecting body is characterized in that the surface of the layer A at least on one side has a coefficient of static friction of not more than 0.49 and a coefficient of kinetic friction of not more than 0.42. Consequently, the light-reflecting body enables to reduce generation of noise.
Description
明 細 書 Specification
光反射体 Light reflector
技術分野 Technical field
[0001] 本発明は、パソコンやテレビなどの表示装置、照明器具、照明看板等に用いる光 反射体に関し、特に液晶表示装置に内蔵される照明機構を構成するリフレタターの 材料として好適に用いることができる光反射体に関する。 TECHNICAL FIELD [0001] The present invention relates to a light reflector used for a display device such as a personal computer or a television, a lighting fixture, a lighting signboard, and the like, and particularly preferably used as a material of a reflector that constitutes an illumination mechanism built in a liquid crystal display device. It relates to a light reflector.
背景技術 Background art
[0002] 液晶表示装置に内蔵される照明機構 (バックライト機構)には、光源からの光を直接 液晶表示パネルに照明させる直下方式のものと、光源からの光をアクリル榭脂等から なる導光板を介して液晶表示パネルに照明させるサイドライト方式 (エツヂライト方式 とも言う)のものとが存在する。 [0002] An illumination mechanism (backlight mechanism) built in a liquid crystal display device includes a direct type that directly illuminates a liquid crystal display panel with light from a light source, and a light guide made of acrylic resin or the like. There is a sidelight system (also called an edge light system) that illuminates a liquid crystal display panel through a light plate.
[0003] 液晶表示装置において、モニターや小型液晶テレビ、ノート型パソコンなどのように 薄型であることが要求される用途では、上記照明機構としてサイドライト方式が採用さ れており、光源からの光を効率よく導光板に伝えるために、金属と反射フィルムとが積 層してなる光反射体を成形加工してなる「リフレタター」と呼ばれる部材が使用されて いる。 [0003] In a liquid crystal display device, such as a monitor, a small liquid crystal television, and a notebook personal computer, a sidelight system is adopted as the illumination mechanism, and the light from the light source is used. In order to efficiently transmit the light to the light guide plate, a member called “reflector” formed by molding a light reflector formed by stacking a metal and a reflective film is used.
[0004] 近年、表示性能の高度化が進み、少しでも多くの光を液晶に供給してバックライト ユニットの性能を向上させるため、反射体乃至反射フィルムに対してより一層高度な 反射性能が求められている。 [0004] In recent years, the display performance has been advanced, and in order to improve the performance of the backlight unit by supplying as much light as possible to the liquid crystal, more sophisticated reflection performance is required for the reflector or the reflection film. It has been.
[0005] この種の光反射体に用いる反射フィルムとしては、銀を蒸着したポリエチレンテレフ タレートフィルム(以下、銀蒸着 PETフィルム)や、反射性能を有する白色ポリエステ ルフィルム等が用いられており、コストや光反射体に要求される厚さ等を考慮して使 い分けられている。 [0005] As a reflective film used for this type of light reflector, polyethylene terephthalate film (hereinafter referred to as silver-deposited PET film) on which silver is vapor-deposited, white polyester film having reflective performance, and the like are used. And the thickness required for light reflectors.
[0006] 例えば、特許文献 1には、芳香族ポリエステル系榭脂に酸ィ匕チタンを添加して形成 された白色シートである反射フィルムが開示されている。また、リフレタターのように光 反射体を成形加工する場合は、金属板に反射フィルムを接着した光反射体が使用さ れる。光反射体を成形加工する際、折り曲げた時の形状を保持する形状保持性が求
められるため、例えば、特許文献 2には、金属に接着剤層を設け、その上にさらにポ リエステル反射フィルムを積層してなる反射体が開示されている。 [0006] For example, Patent Document 1 discloses a reflective film that is a white sheet formed by adding titanium oxide to aromatic polyester-based resin. When a light reflector is formed and processed like a reflector, a light reflector in which a reflective film is bonded to a metal plate is used. When molding a light reflector, shape retention is required to retain the shape when bent. Therefore, for example, Patent Document 2 discloses a reflector in which an adhesive layer is provided on a metal and a polyester reflective film is further laminated thereon.
[0007] しかし、従来の反射体は、最近の液晶表示装置にぉ 、て要求される高 、反射性能 を実現することが困難であり、さらに、フィルムを形成する芳香族ポリエステル系榭脂 の分子鎖中に含まれる芳香環が紫外線を吸収するため、液晶表示装置等の光源か ら発せられる紫外線によってフィルムが劣化、黄変して、反射フィルムの光反射性が 低下すると 、う課題も抱えて ヽた。 [0007] However, it is difficult for conventional reflectors to realize the high and reflective performance required for recent liquid crystal display devices, and furthermore, molecules of an aromatic polyester-based resin forming a film. Since the aromatic ring contained in the chain absorbs ultraviolet rays, the film deteriorates and yellows due to ultraviolet rays emitted from a light source such as a liquid crystal display device, and the light reflectivity of the reflective film is lowered. I was jealous.
[0008] そこで、本発明者らは脂肪族ポリエステル系榭脂に酸化チタン等の微粉状充填剤 を添加して形成した反射フィルムを開発し、これを開示した (特許文献 3)。 [0008] Therefore, the present inventors have developed a reflective film formed by adding a fine powder filler such as titanium oxide to an aliphatic polyester-based resin, and disclosed this (Patent Document 3).
[0009] 特許文献 1 :特開 2002— 138150号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2002-138150
特許文献 2 :特開平 10— 177805号公報 Patent Document 2: JP-A-10-177805
特許文献 3 :WO2004104077号 Patent Document 3: WO2004104077
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0010] 特許文献 3において開示された反射フィルムは、高い反射性能を実現することがで きるばかりか、成形力卩ェの面においても満足するものであった力 この光反射フィル ムを金属板に積層してリフレタターを形成し、これをノート型パソコンの液晶表示装置 に組み込んだ場合、モニター部を開閉した際にノイズが発生することがあった。このよ うな問題は、ノート型パソコンの液晶表示装置ば力りではなぐテレビやその他の表示 装置においても発生が懸念される問題である。 [0010] The reflective film disclosed in Patent Document 3 not only can realize high reflection performance, but also has a satisfactory force in terms of molding force. When a reflector was formed by laminating it on a liquid crystal display device of a notebook personal computer, noise sometimes occurred when the monitor was opened and closed. Such a problem is a problem that is likely to occur in televisions and other display devices that cannot be powered by the liquid crystal display devices of notebook computers.
[0011] このノイズの発生原因を調査した結果、導光板とリフレタター (反射体)との摩擦に 由来する可能性があることを究明することができた。 [0011] As a result of investigating the cause of the occurrence of this noise, it has been found that there is a possibility that it may be caused by friction between the light guide plate and the reflector (reflector).
[0012] そこで本発明は、力かる課題解決のため、例えばリフレタターにカ卩ェしてノート型パ ソコン等の液晶表示装置内に組み込んだ場合に、モニター部を開閉した際のノイズ の発生を低減することができる光反射体を提供せんとするものである。 [0012] Therefore, the present invention solves the problem by generating noise when the monitor unit is opened and closed, for example, when the monitor unit is mounted on a liquid crystal display device such as a notebook computer using a reflector. It is an object of the present invention to provide a light reflector that can be reduced.
課題を解決するための手段 Means for solving the problem
[0013] 本発明は、脂肪族ポリエステル系榭脂及び微粉状充填剤を含有してなる A層が、 金属板の片面側若しくは両面側に積層されてなる構成を備えた光反射体であって、
少なくとも光反射体の片面側の表面の静摩擦係数が 0. 49以下であり、且つ、動摩 擦係数が 0. 42以下である光反射体を提案する。 [0013] The present invention is a light reflector comprising a structure in which an A layer containing an aliphatic polyester-based resin and a fine powder filler is laminated on one side or both sides of a metal plate. , A light reflector is proposed in which the coefficient of static friction of at least one surface of the light reflector is 0.49 or less and the coefficient of dynamic friction is 0.42 or less.
[0014] なお、上記の「片面側の表面」は、片面側の A層の表面であってもよ ヽし、又、 A層 に積層された他の層の表面であってもよい。例えば、少なくとも片面側の A層の表面 側に、熱硬化型榭脂または電離放射線硬化型榭脂から形成された B層が積層され た場合の B層の表面であってもよ 、。 [0014] The above-mentioned "single-side surface" may be the surface of the A layer on one side, or may be the surface of another layer laminated on the A layer. For example, it may be the surface of the B layer in the case where a B layer formed from a thermosetting resin or ionizing radiation curable resin is laminated on at least the surface side of the A layer on one side.
[0015] 本発明の光反射体は、 A層を構成する脂肪族ポリエステル系榭脂と微粉状充填剤 との屈折率差による屈折散乱によって優れた光反射性を得ることができる。し力も、少 なくとも片面側の表面を、静摩擦係数が 0. 49以下であり、且つ、動摩擦係数が 0. 4 2以下に形成することにより、例えば、光反射体をリフレタターに加工してノート型パソ コンの液晶表示装置内に組み込んだ場合、モニター部を開閉した際のノイズの発生 を低減することができる。このようなノイズ発生の問題は、ノート型パソコンのモニター 部を開閉した場合ば力りでなぐテレビやデスクトップパソコンなどの表示装置、さらに は照明器具、照明看板等において何らかの動作をさせた場合にも懸念される問題で ある。したがって、本発明の光反射体は、例えばパソコンやテレビなどのディスプレイ 装置、照明器具、照明看板等に組み込まれる反射板として好適に用いることができ、 中でも液晶表示装置に組み込まれるノ ックライト装置を構成するリフレタターの構成 部材として特に好適に用いることができる。 [0015] The light reflector of the present invention can obtain excellent light reflectivity by refractive scattering due to the refractive index difference between the aliphatic polyester-based resin and the fine powder filler constituting the A layer. For example, a light reflector can be processed into a reflector by forming a surface of at least one side with a static friction coefficient of 0.49 or less and a dynamic friction coefficient of 0.42 or less. When incorporated in a liquid crystal display device of a personal computer, noise generation when the monitor is opened and closed can be reduced. This kind of noise generation problem can also occur when some kind of operation is performed on a display device such as a TV or desktop PC that can be moved with force by opening and closing the monitor of a notebook computer, as well as lighting equipment and lighting signs. This is a matter of concern. Therefore, the light reflector of the present invention can be suitably used as a reflection plate incorporated in, for example, a display device such as a personal computer or a television, a lighting fixture, a lighting signboard, etc., and particularly constitutes a knock light device incorporated in a liquid crystal display device. The reflector can be used particularly preferably as a constituent member.
[0016] なお、本発明の光反射体を構成する A層は、シート状或いはフィルム状であっても よい。ただし、本発明では、シートとフィルムとを区別するものではない。一般的に「シ ート」とは、 JISにおける定義上、薄ぐ一般にその厚さが長さと幅のわりには小さく平 らな製品を示し、一般的に「フィルム」とは、長さ及び幅に比べて厚さが極めて小さぐ 最大厚さが任意に限定されている薄い平らな製品で、通常、ロールの形で供給され るものを示す(日本工業規格 JISK6900)。し力し、シートとフィルムの境界は定かで なぐ本発明において文言上両者を区別する必要がないので、本発明においては、「 フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィル ム」を含むものとする。 [0016] The A layer constituting the light reflector of the present invention may be in the form of a sheet or film. However, the present invention does not distinguish between a sheet and a film. In general, “sheet” is a thin product as defined by JIS, and generally its thickness is small and flat instead of length and width, and “film” is generally length and width. It is a thin flat product with a maximum thickness that is arbitrarily limited compared to, and is usually supplied in the form of a roll (Japanese Industrial Standard JISK6900). However, in the present invention in which the boundary between the sheet and the film is not fixed, it is not necessary to distinguish the two in terms of the wording. Therefore, in the present invention, even when the term “film” is used, the term “sheet” is included. Even when referring to it, it shall include “film”.
[0017] また、本明細書において「主成分」と表現した場合には、特に記載しない限り、当該
主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含するも のである。特に当該主成分の含有割合を特定するものではないが、通常は主成分(2 成分以上が主成分である場合には、これらの合計量)は組成物中の 50質量%以上、 好ましくは 70質量%以上、特に好ましくは 90質量%以上(100%含む)を占めるもの である。 [0017] In addition, when expressed as "main component" in this specification, unless otherwise stated It includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component. Although the content ratio of the main component is not particularly specified, the main component (in the case where two or more components are main components, the total amount thereof) is usually 50% by mass or more, preferably 70% in the composition. It occupies at least 90% by mass, particularly preferably at least 90% by mass (including 100%).
[0018] また、本明細書にぉ 、て、「X〜Y」 (X, Υは任意の数字)と記載した場合、特にこと わらない限り「X以上 Υ以下」の意味と共に、「好ましくは Xより大きく Υより小さい」の意 味を包含する。 [0018] Further, in the present specification, when "X to Y" (X and Υ are arbitrary numbers) is described, with the meaning of "X or more and Υ or less" unless otherwise specified, "preferably Includes the meaning of “greater than X and less than Υ”.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明の実施形態の一例について詳しく説明する。 Hereinafter, an example of an embodiment of the present invention will be described in detail.
[0020] [第 1の実施形態] [0020] [First embodiment]
本実施形態に係る光反射体(「本光反射体」 t 、う)は、金属板の片面側若しくは両 面側に、脂肪族ポリエステル系榭脂及び微粉状充填剤を主成分とする A層を積層す るとともに、少なくとも片面側の A層の表面の静摩擦係数並びに動摩擦係数が所定 範囲となるに形成してなる光反射体である。 The light reflector according to the present embodiment (“the present light reflector” t) is a layer A mainly composed of aliphatic polyester-based resin and fine powder filler on one side or both sides of the metal plate. And a light reflector formed so that the static friction coefficient and the dynamic friction coefficient of the surface of the A layer on at least one side are in a predetermined range.
[0021] なお、金属板の片面側若しくは両面側に A層を備えて 、ればよ 、から、例えば金属 板と A層の間に C層が介在してもよい。そこで、以下では、 A層及び金属板に続いて[0021] It should be noted that the A layer may be provided on one side or both sides of the metal plate. Therefore, for example, the C layer may be interposed between the metal plate and the A layer. So, in the following, following the A layer and the metal plate
C層について説明し、その後、本光反射体の構成、特性及び製造方法等について説 明する。 The C layer will be described, and then the configuration, characteristics, manufacturing method, etc. of the light reflector will be described.
[0022] <A層〉 [0022] <A layer>
A層は、主に光反射性を付与する層であって、少なくとも脂肪族ポリエステル系榭 脂と微粉状充填剤とを主成分として含有する榭脂組成物 A力もなる層である。例えば 、フィルム状に形成して金属板に積層したり、或いは、金属板に薄膜状の層として製 膜したりして形成することができる。 The A layer is a layer that mainly imparts light reflectivity, and is a layer that also has a resin composition A force containing at least an aliphatic polyester-based resin and a fine powder filler as main components. For example, it can be formed by forming it into a film and laminating it on a metal plate, or forming it as a thin film layer on the metal plate.
[0023] (A層の脂肪族ポリエステル系榭脂) [0023] (A-layer aliphatic polyester-based resin)
脂肪族ポリエステル系榭脂は、分子鎖中に芳香環を含まないので、 A層のベース 榭脂として脂肪族ポリエステル系榭脂を用いることにより、紫外線吸収を起こさないよ うにすることができる。したがって、紫外線に晒されることによって、或いは、液晶表示
装置等の光源から発せられる紫外線を受光することによって劣化したり、黄変したり することがなぐ光反射性が経時的に低下するのを抑えることができる。 Since the aliphatic polyester resin does not contain an aromatic ring in the molecular chain, it is possible to prevent ultraviolet absorption by using the aliphatic polyester resin as the base resin of the A layer. Therefore, exposure to ultraviolet light or liquid crystal display It is possible to suppress a decrease in light reflectivity over time, which is not deteriorated or yellowed by receiving ultraviolet rays emitted from a light source such as an apparatus.
[0024] 脂肪族ポリエステル系榭脂としては、化学合成されたもの、微生物により発酵合成 されたもの、或いは、これらの混合物を用いることができる。 [0024] As the aliphatic polyester-based resin, chemically synthesized, fermented and synthesized by microorganisms, or a mixture thereof can be used.
[0025] 化学合成された脂肪族ポリエステル系榭脂としては、ラタトンを開環重合して得られ るポリ ε一力プロラタタム等や、二塩基酸とジオールとを重合して得られるポリエチレ ンアジペート、ポリエチレンァゼレート、ポリテトラメチレンサクシネート、シクロへキサ ンジカルボン酸 Ζシクロへキサンジメタノール縮合重合体等、ヒドロキシカルボン酸を 重合して得られる乳酸系重合体ゃポリグリコール等、或 、は前記脂肪族ポリエステル のエステル結合の一部を、例えばエステル結合の 50%以下をアミド結合、エーテル 結合、ウレタン結合等に置き換えられた脂肪族ポリエステル等が挙げられる。 [0025] Examples of the chemically synthesized aliphatic polyester-based resin include poly ε-strength prolatatam obtained by ring-opening polymerization of rataton, polyethylene adipate obtained by polymerizing dibasic acid and diol, polyethylene Azelate, polytetramethylene succinate, cyclohexanedicarboxylic acid Ζ cyclohexanedimethanol condensation polymer, lactic acid polymer obtained by polymerizing hydroxycarboxylic acid, polyglycol, etc. Examples include aliphatic polyesters in which a part of the ester bond of the aliphatic polyester is replaced with, for example, 50% or less of the ester bond by an amide bond, an ether bond, a urethane bond, or the like.
[0026] 微生物により発酵合成された脂肪族ポリエステル系榭脂としては、ポリヒドロキシブ チレート、ヒドロキシブチレートとヒドロキシバリレートとの共重合体等が挙げられる。 [0026] Examples of the aliphatic polyester-based coconut resin fermented and synthesized by microorganisms include polyhydroxybutyrate, a copolymer of hydroxybutyrate and hydroxyvalerate, and the like.
[0027] 上記脂肪族ポリエステル系榭脂の中でも、 Α層のベース榭脂としては、屈折率 (n) が 1. 52未満の脂肪族ポリエステル系榭脂を用いるのが好ましい。すなわち、屈折率 (n)が 1. 52未満の脂肪族ポリエステル系榭脂と微粉状充填剤を含有してなる層を 備えていれば、ベース榭脂と微粉状充填剤との界面における屈折散乱を利用して光 反射性を実現することができる。この屈折散乱効果は、ベース榭脂と微粉状充填剤と の屈折率が大きくなるにしたがって大きくなるため、ベース榭脂としては屈折率が小さ い方が好ましぐこの観点から、屈折率が 1. 46未満 (一般的には 1. 45程度)である 乳酸系重合体は最も好適な一例である。 [0027] Among the above-described aliphatic polyester-based resins, it is preferable to use an aliphatic polyester-based resin having a refractive index (n) of less than 1.52 as the base resin of the cocoon layer. That is, if a layer comprising an aliphatic polyester-based resin having a refractive index (n) of less than 1.52 and a fine powder filler is provided, refractive scattering at the interface between the base resin and the fine powder filler is performed. The light reflectivity can be realized by using. Since the refractive scattering effect increases as the refractive index of the base resin and the fine filler increases, the base resin preferably has a low refractive index. A lactic acid polymer that is less than 46 (generally around 1.45) is the most suitable example.
[0028] 乳酸系重合体としては、例えば D 乳酸または L 乳酸の単独重合体またはそれ らの共重合体を挙げることができる。具体的には、構造単位が D 乳酸であるポリ(D 乳酸)、構造単位カ^ー乳酸であるポリ(L 乳酸)、更には L 乳酸と D 乳酸の 共重合体であるポリ(DL 乳酸)、或いはこれらの混合体を挙げることができる。 [0028] Examples of the lactic acid-based polymer include homopolymers of D-lactic acid or L-lactic acid or copolymers thereof. Specifically, poly (D lactic acid) whose structural unit is D-lactic acid, poly (L lactic acid) whose structural unit is lactic acid, and poly (DL lactic acid) which is a copolymer of L lactic acid and D lactic acid Or a mixture thereof.
[0029] 乳酸には、上記のように 2種類の光学異性体すなわち L 乳酸及び D 乳酸があり 、これら 2種の構造単位の割合で結晶性が異なる。例えば、 L 乳酸と D 乳酸の割 合が約 80: 20-20: 80のランダム共重合体では結晶性が低ぐガラス転移点 60°C
付近で軟ィ匕する透明完非結晶性ポリマーとなる。その一方、 L 乳酸と D 乳酸の割 合が約 100:0〜80:20、又は約 20: 80〜0: 100のランダム共重合体は、ガラス転 移点は前記の共重合体同様に 60°C程度であるが結晶性が高い。 [0029] As described above, lactic acid includes two types of optical isomers, that is, L lactic acid and D lactic acid, and the crystallinity differs depending on the ratio of these two types of structural units. For example, in the case of a random copolymer with a ratio of L lactic acid and D lactic acid of about 80: 20-20: 80, the glass transition point is 60 ° C where the crystallinity is low. It becomes a transparent, completely amorphous polymer that softens in the vicinity. On the other hand, a random copolymer having a ratio of L lactic acid and D lactic acid of about 100: 0 to 80:20, or about 20:80 to 0: 100, has a glass transition point similar to the copolymer described above. Although it is about ° C, it has high crystallinity.
[0030] 本光反射体では、乳酸系重合体における DL比、すなわち D 乳酸と L 乳酸との 含有比率が、 D 乳酸: L 乳酸 =100:0〜85:15である力、または D 乳酸: L— 乳酸 = 0:100〜 15: 85であるのが好まし!/、。さらに好ましくは D 乳酸: L 乳酸 = 99.5:0.5〜95:5である力、、または D—乳酸: L—乳酸 =0.5:99.5〜5:95であ る。 [0030] In this light reflector, the DL ratio in the lactic acid polymer, that is, the content ratio of D lactic acid and L lactic acid is D lactic acid: L lactic acid = 100: 0 to 85:15, or D lactic acid: L—Lactic acid = 0: 100 to 15:85 is preferred! /. More preferably, D-lactic acid: L-lactic acid = 99.5: 0.5 to 95: 5, or D-lactic acid: L-lactic acid = 0.5: 99.5 to 5:95.
[0031] D—乳酸と L—乳酸との含有比率が 100:0もしくは 0: 100である乳酸系重合体は、 非常に高い結晶性を示し、融点が高ぐ耐熱性および機械的物性に優れる傾向があ る。すなわち、フィルムを延伸したり熱処理したりする際に、榭脂が結晶化して耐熱性 及び機械的物性が向上するので、その点で好ましい。その一方、 D 乳酸と L 乳 酸とで構成される乳酸系重合体は、柔軟性が付与され、成形安定性及び延伸安定 性が向上するので、その点で好ましい。得られる光反射体の耐熱性と成形安定性及 び延伸安定性とのバランスを勘案すると、 D 乳酸と L 乳酸との構成比が、 D 乳 酸: L 乳酸 =99.5:0.5〜95:5である力、又は、 D 乳酸: L 乳酸 =0.5:99. 5〜5: 95であるのがより好まし!/、。 [0031] A lactic acid polymer in which the content ratio of D-lactic acid and L-lactic acid is 100: 0 or 0: 100 exhibits very high crystallinity, and has a high melting point and excellent heat resistance and mechanical properties. Tend. That is, when the film is stretched or heat treated, the resin is crystallized to improve heat resistance and mechanical properties, which is preferable in that respect. On the other hand, a lactic acid-based polymer composed of D-lactic acid and L-lactic acid is preferable in that respect because flexibility is imparted and molding stability and stretching stability are improved. Considering the balance between heat resistance, molding stability and stretch stability of the resulting light reflector, the composition ratio of D lactic acid and L lactic acid is: D lactate: L lactate = 99.5: 0.5 to 95: 5 A certain force, or D lactic acid: L lactic acid = 0.5: 99. 5 to 5:95 is more preferable! /.
[0032] 乳酸系重合体は、縮合重合法、開環重合法等の公知の方法で製造することができ る。例えば、縮合重合法では、 D—乳酸、 L—乳酸、または、これらの混合物を直接 脱水縮合重合して任意の組成を有する乳酸系重合体を得ることができる。また、開環 重合法では、乳酸の環状二量体であるラクチドを、必要に応じて重合調整剤等を用 いながら所定の触媒の存在下で開環重合することにより任意の組成を有する乳酸系 重合体を得ることができる。 [0032] The lactic acid-based polymer can be produced by a known method such as a condensation polymerization method or a ring-opening polymerization method. For example, in the condensation polymerization method, D-lactic acid, L-lactic acid, or a mixture thereof can be directly subjected to dehydration condensation polymerization to obtain a lactic acid polymer having an arbitrary composition. In addition, in the ring-opening polymerization method, lactide, which is a cyclic dimer of lactic acid, is subjected to ring-opening polymerization in the presence of a predetermined catalyst using a polymerization regulator or the like, if necessary. A system polymer can be obtained.
[0033] 上記ラクチドには、 L 乳酸の二量体である Lーラクチド、 D 乳酸の二量体である D ラクチド、 D 乳酸と L 乳酸の二量体である DL ラクチドがあり、これらを必要 に応じて混合して重合することにより、任意の組成、結晶性を有する乳酸系重合体を 得ることができる。 [0033] The lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, and DL lactide, which is a dimer of D-lactic acid and L-lactic acid. By mixing and polymerizing accordingly, a lactic acid polymer having an arbitrary composition and crystallinity can be obtained.
[0034] なお、 D 乳酸と L 乳酸との共重合比が異なる乳酸系重合体をブレンドしてもよ
い。この場合、複数の乳酸系重合体の D 乳酸と L 乳酸との共重合比を平均した 値が上記 DL比の範囲内に入るように調整するのが好ま 、。 [0034] Note that lactic acid polymers having different copolymerization ratios of D lactic acid and L lactic acid may be blended. Yes. In this case, it is preferable to adjust so that the average value of the copolymerization ratios of D lactic acid and L lactic acid of a plurality of lactic acid polymers falls within the range of the DL ratio.
[0035] また、乳酸系重合体には、乳酸と他のヒドロキシカルボン酸との共重合体を用いるこ ともできる。この際、共重合される「他のヒドロキシカルボン酸単位」としては、グリコー ル酸、 3 ヒドロキシ酪酸、 4ーヒドロキシ酪酸、 2 ヒドロキシ n—酪酸、 2 ヒドロキ シ—3, 3 ジメチル酪酸、 2 ヒドロキシー3 メチル酪酸、 2 メチル乳酸、 2 ヒド ロキシカプロン酸等の 2官能脂肪族ヒドロキシカルボン酸や力プロラタトン、ブチロラタ トン、バレロラタトン等のラタトン類が挙げられる。 [0035] Further, as the lactic acid-based polymer, a copolymer of lactic acid and another hydroxycarboxylic acid can be used. At this time, the “other hydroxycarboxylic acid units” to be copolymerized include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxyn-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3 methyl. Examples include bifunctional aliphatic hydroxycarboxylic acids such as butyric acid, 2-methyl lactic acid, and 2-hydroxycaproic acid, and ratatones such as force prolatatanes, butyrolatatanes, and valerolatatanes.
[0036] さらに、乳酸系重合体は、必要に応じ、少量共重合成分として、テレフタル酸のよう な非脂肪族カルボン酸及び Z又はビスフエノール Aのエチレンオキサイド付加物のよ うな非脂肪族ジオールや、乳酸及び Z又は乳酸以外のヒドロキシカルボン酸を含ん でいてもよい。 [0036] Furthermore, the lactic acid-based polymer may be a non-aliphatic carboxylic acid such as terephthalic acid and a non-aliphatic diol such as an ethylene oxide adduct of Z or bisphenol A as a small amount copolymerization component. , Lactic acid and Z or hydroxycarboxylic acid other than lactic acid may be contained.
[0037] 乳酸系重合体の分子量は高分子量であるのが好ましぐ例えば、重量平均分子量 力 万以上であるのが好ましぐ 6万〜 40万であるのが更に好ましぐ中でも 10万〜 3 0万であるのが特に好ましい。乳酸系重合体の重量平均分子量が 5万未満であると 機械的物性に劣る場合がある。 [0037] The molecular weight of the lactic acid-based polymer is preferably a high molecular weight. For example, the weight average molecular weight is preferably 10,000 or more, more preferably 60,000 to 400,000, and even more preferably 100,000. It is particularly preferred to be ~ 300,000. If the weight average molecular weight of the lactic acid polymer is less than 50,000, the mechanical properties may be inferior.
[0038] (A層の微粉状充填剤) [0038] (A-layer fine powder filler)
A層における微粉状充填剤としては、有機質微粉体、無機質微粉体等が挙げられ る。 Examples of the fine powder filler in the A layer include organic fine powder and inorganic fine powder.
[0039] 有機質微粉体としては、木粉、パルプ粉等のセルロース系粉末や、ポリマービーズ 、ポリマー中空粒子等力も選ばれた少なくとも 1種を用いるのが好ま 、。 [0039] As the organic fine powder, it is preferable to use at least one selected from cellulose-based powders such as wood powder and pulp powder, polymer beads, polymer hollow particles and the like.
[0040] 無機質微粉体としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸マ グネシゥム、硫酸バリウム、硫酸カルシウム、酸化亜鉛、酸化マグネシウム、酸化カル シゥム、酸化チタン、アルミナ、水酸化アルミニウム、ヒドロキシアパタイト、シリカ、マイ 力、タルク、カオリン、クレー、ガラス粉、アスベスト粉、ゼォライト、珪酸白土等力ゝら選 ばれた少なくとも 1種を用いるのが好ま U、。 [0040] Examples of the inorganic fine powder include calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, alumina, aluminum hydroxide, hydroxyapatite, It is preferable to use at least one selected from silica, my strength, talc, kaolin, clay, glass powder, asbestos powder, zeolite, white clay, etc.
[0041] 中でも、脂肪族ポリエステル系榭脂との屈折率差が大きく優れた反射性能を得られ る微粉状充填剤が好ましぐこの観点から、屈折率の大きい無機質微粉体等を用い
るのが好ましい。具体的には、屈折率が 1. 6以上である、炭酸カルシウム、硫酸バリ ゥム、酸ィ匕チタンまたは酸ィ匕亜鉛が好ましぐ中でも屈折率が 2. 5以上である酸ィ匕チ タンが特に好ましい。なお、長期耐久性を勘案すると、酸やアルカリに対して安定な 硫酸バリウムも好ま ゝと言える。 [0041] Among these, fine powder fillers that have a large refractive index difference from aliphatic polyester-based rosins and are capable of obtaining excellent reflection performance are preferred. From this viewpoint, inorganic fine powder having a large refractive index is used. It is preferable. Specifically, an acid having a refractive index of 2.5 or more, even though calcium carbonate, barium sulfate, acid titanium or acid zinc is preferred. Tan is particularly preferred. Considering long-term durability, barium sulfate that is stable against acids and alkalis is also preferred.
[0042] 酸化チタンは、他の無機質微粉体に比べて屈折率が顕著に高ぐ脂肪族ポリエス テル系榭脂との屈折率差が格別に大きいため、他の充填剤を使用した場合よりも少 な 、配合量で、高 、反射性能と低 、光透過性とを本反射体に付与することができる 。また、酸ィ匕チタンを用いることにより、光反射体の厚みが薄くても高い反射性能と低 V、光透過性とを有する本光反射体を得ることができる。 [0042] Titanium oxide has a significantly higher refractive index difference than that of other aliphatic fine powders compared to aliphatic polyester-based resin, so it is more than when other fillers are used. With a small blending amount, high reflection performance and low light transmission can be imparted to the reflector. Further, by using titanium oxide, the present light reflector having high reflection performance, low V, and light transmittance can be obtained even if the light reflector is thin.
[0043] 酸ィ匕チタンとしては、アナターゼ型ゃルチル型のような結晶形の酸ィ匕チタンが好ま しい。ベース榭脂との屈折率差を大きくするという観点力もは、屈折率が 2. 7以上の 酸ィ匕チタンを用いるのが好ましぐこの観点からルチル型の結晶形の酸ィ匕チタンを用 いるのがより好ましい。屈折率差が大きいほど、ベース榭脂と酸ィ匕チタンとの境界面 で光の屈折散乱作用が大きくなり、光反射性を容易に付与することができる。 [0043] As the acid titanium, a crystalline acid titanium such as anatase type rutile type is preferred. From the viewpoint of increasing the refractive index difference from the base resin, it is preferable to use an acid titanium with a refractive index of 2.7 or higher. More preferably. The greater the difference in refractive index, the greater the refractive and scattering effect of light at the interface between the base resin and the titanium oxide titanium, and the light reflectivity can be easily imparted.
[0044] また、高い光反射性を付与するには、可視光に対する光吸収能が小さい酸化チタ ンであることが望ましい。酸ィ匕チタンの光吸収能を小さくするには、酸化チタンに含有 されている着色元素の量が少ないことが好ましぐこの観点から、ニオブ含有量が 50 Oppm以下の酸化チタンを用いるのが好まし!/、。 [0044] Further, in order to provide high light reflectivity, it is desirable that the titanium oxide has a small light absorption ability with respect to visible light. In order to reduce the light-absorbing ability of titanium oxide, it is preferable that the amount of coloring elements contained in titanium oxide is small. From this viewpoint, titanium oxide having a niobium content of 50 Oppm or less is used. I like it!
[0045] 塩素法プロセスで製造される酸ィ匕チタンは純度が高ぐこの製造法によれば、 -ォ ブ含有量が 500ppm以下の酸化チタンを得ることができる。 [0045] Titanium oxide produced by the chlorine method process has high purity. According to this production method, titanium oxide having a-job content of 500 ppm or less can be obtained.
[0046] 塩素法プロセスでは、酸化チタンを主成分とするルチル鉱を 1000°C程度の高温で 塩素ガスと反応させて四塩ィ匕チタンを生成させた後、この四塩ィ匕チタンを酸素で燃 焼させることにより、高純度の酸ィ匕チタンを得ることができる。 [0046] In the chlorine method process, rutile ore containing titanium oxide as a main component is reacted with chlorine gas at a high temperature of about 1000 ° C to form tetra-salt-titanium. High purity titanium oxide can be obtained by burning with.
[0047] また、微粉状充填剤として用いる酸化チタンは、その表面が不活性無機酸ィ匕物で 被覆処理されたものが好ま ヽ。酸化チタンの表面を不活性無機酸化物で被覆処理 することにより、酸ィ匕チタンの光触媒活性を抑制することができ、しかも耐光性 (光の 照射を受けた際の耐久性)を高めることができる。 [0047] The titanium oxide used as the fine powder filler is preferably one whose surface is coated with an inert inorganic oxide. By coating the surface of titanium oxide with an inert inorganic oxide, it is possible to suppress the photocatalytic activity of titanium oxide and improve light resistance (durability when irradiated with light). it can.
[0048] 酸ィ匕チタンの被覆処理に用いる不活性無機酸ィ匕物としては、アルミナ、シリカ及び
ジルコユアからなる群力 選ばれた少なくとも 1種であるのが好ましい。これらの不活 性無機酸化物で被覆処理すれば、酸化チタンにより得られる高! ヽ反射性能を損なう ことなぐ耐光性を高めることができる。また、前記に挙げた不活性無機酸化物のうち の 2種類以上を組み合わせて併用するのがさらに好ましぐ中でもシリカと他の不活 性無機酸化物(例えばアルミナ及びジルコユア)との組み合わせ力 なる混合物で被 覆するのが特に好ましい。 [0048] Examples of the inert inorganic oxide used for the coating treatment of acid titanium include alumina, silica and It is preferably at least one selected from the group power consisting of zircoyu. By coating with these inert inorganic oxides, it is possible to improve the light resistance without impairing the high reflection performance obtained with titanium oxide. In addition, it is more preferable to use a combination of two or more of the above-mentioned inert inorganic oxides in combination, and the combined force of silica and other inert inorganic oxides (for example, alumina and zircoure) is obtained. It is particularly preferred to cover with a mixture.
[0049] ベース榭脂への分散性を向上させるために、酸ィ匕チタンの表面を、シロキサンィ匕合 物、シランカップリング剤等カゝら選ばれた少なくとも 1種の無機化合物や、ポリオール 、ポリエチレングリコール等力 選ばれた少なくとも 1種の有機化合物で表面処理す るようにしてちょい。 [0049] In order to improve the dispersibility in the base resin, at least one inorganic compound selected from the group consisting of a siloxane compound, a silane coupling agent, a polyol, Polyethylene glycol, etc. Surface treatment with at least one selected organic compound.
[0050] 添カ卩する酸化チタンの平均粒径は、 0. Ι μ ι- ΐ μ mであるのが好ましぐ中でも 0 . 2 /ζ πι〜0. 5 mであるのがより好ましい。 [0050] The average particle diameter of the titanium oxide to be added is preferably 0.2 / ζ πι to 0.5 m, more preferably 0.2 μm.
[0051] 酸化チタンの平均粒径が 0. 1 μ m以上であれば、脂肪族ポリエステル系榭脂への 分散性が良好となり、均質に形成することができる。また、平均粒径が 1 m以下であ れば、脂肪族ポリエステル系榭脂と酸ィ匕チタンとの界面がより緻密に形成されるので 、優れた光反射性を付与することができる。 [0051] If the average particle diameter of titanium oxide is 0.1 µm or more, the dispersibility in the aliphatic polyester-based resin is good and the titanium oxide can be formed uniformly. Further, if the average particle size is 1 m or less, the interface between the aliphatic polyester-based rosin and the acid-titanium is more densely formed, so that excellent light reflectivity can be imparted.
[0052] なお、酸化チタン以外の微粉状充填剤を用いる場合にも、ベース榭脂への分散性 を向上させるために、シリコン系化合物、多価アルコール系化合物、アミン系化合物 、脂肪酸、脂肪酸エステル等で表面処理するようにしてもよい。 [0052] Even when a fine powder filler other than titanium oxide is used, a silicon compound, a polyhydric alcohol compound, an amine compound, a fatty acid, a fatty acid ester may be used in order to improve dispersibility in the base resin. You may make it surface-treat by.
[0053] また、酸化チタン以外の微粉状充填剤の大きさは、平均粒径が 0. 05 π!〜 15 mであるのが好ましぐ中でも 0. : L m以上或いは 10 m以下であるものがより好ま しい。微粉状充填剤の平均粒径が 0. 05 m以上であれば、粗表面化に伴い光散 乱反射が生じるので、得られる反射指向性がより小さくなる。また、微粉状充填剤の 平均粒径が 15 m以下であれば、脂肪族ポリエステル系榭脂と微粉状充填剤との 界面がより緻密に形成されるので優れた光反射性を付与することができる。 [0053] The fine powder filler other than titanium oxide has an average particle size of 0.05 π! Even though it is preferable to be ~ 15 m, 0 .: L m or more or 10 m or less is more preferable. If the average particle size of the fine powder filler is 0.05 m or more, diffused reflection occurs with the roughening of the surface, resulting in a smaller reflection directivity. In addition, if the average particle size of the fine powder filler is 15 m or less, the interface between the aliphatic polyester-based resin and the fine powder filler is more densely formed, so that excellent light reflectivity can be imparted. it can.
[0054] 酸化チタン或いは酸化チタン以外の微粉状充填剤は!、ずれも、脂肪族ポリエステ ル系榭脂に分散配合することが好ましい。 [0054] Titanium oxide or a fine powder filler other than titanium oxide is preferably mixed and dispersed in an aliphatic polyester-based resin.
[0055] 微粉状充填剤の含有量は、光反射性、機械的物性、生産性等を考慮して、 A層を
構成する榭脂組成物 Aの 10〜60質量%であるのが好ましぐ 10〜55質量%である のが特に好ましぐ中でも 20〜45質量%であることがさらに好ましい。 [0055] The content of the fine powder filler is determined in consideration of light reflectivity, mechanical properties, productivity, etc. It is more preferably 10 to 55% by mass of the composition A, but it is more preferably 20 to 45% by mass.
[0056] 微粉状充填剤の含有量が 10質量%以上であれば、ベース榭脂と微粉状充填剤と の界面の面積を充分に確保することができるので、より一層高い光反射性を付与す ることができる。また、微粉状充填剤の含有量が 60質量%以下であれば、フィルムに 必要な機械的性質を確保することができる。 [0056] If the content of the fine powder filler is 10% by mass or more, the area of the interface between the base resin and the fine powder filler can be sufficiently secured, so that even higher light reflectivity is imparted. can do. Further, if the content of the fine powder filler is 60% by mass or less, the mechanical properties necessary for the film can be ensured.
[0057] (A層における他の成分) [0057] (Other components in layer A)
榭脂組成物 Aは、脂肪族ポリエステル系榭脂及び微粉状充填剤の機能を妨げな!/、 範囲で他の榭脂ゃ他の添加物を含んでいてもよい。例えば、加水分解防止剤、酸ィ匕 防止剤、光安定剤、熱安定剤、滑剤、分散剤、紫外線吸収剤、白色顔料、蛍光増白 剤、および、その他の添加剤を添加することができる。 The resin composition A does not interfere with the functions of the aliphatic polyester resin and fine powder filler! / And may contain other additives within the range. For example, hydrolysis inhibitors, antioxidation agents, light stabilizers, heat stabilizers, lubricants, dispersants, UV absorbers, white pigments, fluorescent brighteners, and other additives can be added. .
[0058] (内部空隙) [0058] (Internal void)
なお、 A層は空隙を有していてもよい。空隙を有することによって反射率を更に高め ることがでさる。 The A layer may have a void. By having the air gap, the reflectance can be further increased.
[0059] A層の空隙率 (A層中に空隙が占める割合)は 50%以下であることが好ましぐ特に 5〜50%の範囲内であることが好ましい。中でも、反射率向上の点から、空隙率が 20 %以上であることが好ましぐ特に 30%以上であるのが好ましい。空隙率が 50%を超 えると、機械的強度が低下したり、使用時に耐熱性等の耐久性が不足することが想 定される。 [0059] The porosity of the A layer (the ratio of voids in the A layer) is preferably 50% or less, particularly preferably in the range of 5 to 50%. Among these, from the viewpoint of improving the reflectance, the porosity is preferably 20% or more, and particularly preferably 30% or more. When the porosity exceeds 50%, it is assumed that the mechanical strength is lowered or the durability such as heat resistance is insufficient during use.
このような A層内の空隙は、榭脂組成物 Aに微粉状充填剤を添加してフィルムを作 成し、これを延伸すること〖こより形成することができる。 Such voids in the A layer can be formed by adding a fine powder filler to the resin composition A to form a film and stretching the film.
[0060] なお、微粉状充填剤として、ニオブ含有量 500ppm以下の酸ィ匕チタンを用いた場 合には、内部に存在する空隙率が低くても或いは空隙が存在しなくても十分に高い 光反射性を得ることができ、次のような効果をも得ることができる。すなわち、ニオブ含 有量が 500ppm以下の酸ィ匕チタンを用いた場合には、充填剤の使用量を少なくする ことができ、その結果、延伸により形成される空隙の数も少なくなるので、高い反射性 能を維持しつつ機械的性質を向上させることもできる。また、内部に存在する空隙の 数を少なくすることで、寸法安定性の向上を図ることもできる。さらに、薄肉でも高い
反射性能を確保することができ、例えばノート型パソコンや携帯電話等の小型、薄型 の液晶ディスプレイ用のノ ックライト装置を構成する光反射体等として特に好適であ る。 [0060] In the case of using niobium titanium oxide having a niobium content of 500 ppm or less as the fine powder filler, it is sufficiently high even if the porosity existing inside is low or there is no void. Light reflectivity can be obtained, and the following effects can also be obtained. That is, when titanium oxide containing 500 ppm or less of niobium is used, the amount of filler used can be reduced, and as a result, the number of voids formed by stretching is reduced, which is high. It is also possible to improve the mechanical properties while maintaining the reflective performance. In addition, dimensional stability can be improved by reducing the number of voids present inside. Furthermore, even thin walls are expensive Reflective performance can be ensured, and it is particularly suitable as a light reflector constituting a knocklight device for a small and thin liquid crystal display such as a notebook personal computer or a mobile phone.
[0061] (A層表面の静摩擦係数並びに動摩擦係数) [0061] (Static friction coefficient and dynamic friction coefficient of surface of layer A)
このような組成を備えた榭脂組成物 Aからなる A層は、榭脂組成物 A力もフィルムを 形成し、これを金属板に積層したり、或いは、金属板に薄膜状の層として製膜したりし て形成することができるが、その際、本光反射体においては、 A層の表面の静摩擦係 数及び動摩擦係数が所定範囲に調整されていることが重要である。 The A layer composed of the resin composition A having such a composition forms the film of the resin composition A force and is laminated on a metal plate, or formed as a thin film layer on the metal plate. However, in this light reflector, it is important that the static friction coefficient and the dynamic friction coefficient of the surface of the layer A are adjusted within a predetermined range.
[0062] すなわち、少なくとも片面側の A層の表面 (好ましくは両面側の A層の表面)は、そ の静摩擦係数が 0. 49以下であり、且つ、動摩擦係数が 0. 42以下であることが重要 である。 [0062] That is, at least the surface of the A layer on one side (preferably the surface of the A layer on both sides) has a static friction coefficient of 0.49 or less and a dynamic friction coefficient of 0.42 or less. is important.
[0063] 少なくとも片面側の A層の表面の静摩擦係数が 0. 49以下であり、且つ、動摩擦係 数が 0. 42以下であれば、例えば本光反射体をリフレタターに加工してノート型バソコ ンの液晶表示装置内に組み込んだ場合に、モニター部を開閉した際のノイズの発生 を効果的に低減することができる。 [0063] If the static friction coefficient of the surface of the layer A on at least one side is 0.49 or less and the dynamic friction coefficient is 0.42 or less, for example, the light reflector is processed into a reflector so that a notebook type bath When incorporated in a liquid crystal display device, the generation of noise when the monitor is opened and closed can be effectively reduced.
[0064] かかる観点から、少なくとも片面側の A層の表面 (好ましくは両面側の A層の表面) は、その静摩擦係数が 0. 46以下であるのが好ましい。また、動摩擦係数は 0. 36以 下であるのが好ましい。 [0064] From this viewpoint, it is preferable that the static friction coefficient of at least the surface of the A layer on one side (preferably the surface of the A layer on both sides) is 0.46 or less. The coefficient of dynamic friction is preferably 0.36 or less.
[0065] A層の表面の静摩擦係数及び動摩擦係数を上記所定範囲に調整するには、摩擦 調整剤を A層に練り混んだり、摩擦調整剤を含有する塗液を A層表面に塗布したり すること〖こより、調整することができる。 [0065] In order to adjust the static friction coefficient and the dynamic friction coefficient of the surface of the layer A to the predetermined ranges, a friction modifier is kneaded and mixed with the layer A, or a coating liquid containing the friction modifier is applied to the surface of the layer A. It can be adjusted from what you do.
[0066] 摩擦調整剤としては、例えば、その分子内に親水性部分と親油性部分とを併せ持 つた界面活性剤或 、はこれを主成分とするものを挙げることができる。かかる界面活 性剤は、カチオン系、ァニオン系、両性イオン系、非イオン系に大別され、加工法や 用途に応じて使 、分けするのが好ま 、。 [0066] Examples of the friction modifier include a surfactant having both a hydrophilic part and a lipophilic part in its molecule, or a substance mainly composed of this surfactant. Such surfactants are broadly classified into cationic, anionic, zwitterionic, and nonionic types, and are preferably used or divided according to the processing method and application.
[0067] 中でも、ァ-オン系界面活性剤或いはこれを主成分とするものは、汎用性があり、 効果と経済性のバランスの点力 好ましい。代表的には、 1)脂肪酸塩類、 2)高級ァ ルコール硫酸エステル塩類、 3)液体脂肪油硫酸エステル塩類、 4)脂肪族ァミンおよ
び脂肪族アミドの硫酸塩類、 5)脂肪族アルコールリン酸エステル塩類、 6)二塩基性 脂肪酸エステル塩類、 7)脂肪酸アミドスルホン酸塩類、 8)アルキルァリールスルホン 酸塩類、 9)ホルマリン縮合のナフタレンスルホン酸塩類等が挙げられる。 [0067] Of these, the ionic surfactants or those containing the same as the main component have versatility and are preferable in terms of the balance between effect and economic efficiency. Typically, 1) fatty acid salts, 2) higher alcohol sulfates, 3) liquid fatty oil sulfates, 4) aliphatic amines and 5) Aliphatic alcohol phosphates, 6) Dibasic fatty acid ester salts, 7) Fatty acid amide sulfonates, 8) Alkylaryl sulfonates, 9) Naphthalene with formalin condensation Examples thereof include sulfonates.
[0068] また、熱に弱く高コストであるが帯電防止性が高いカチオン系として、 1)脂肪族アミ ン塩類、 2)四級アンモ-ゥム塩類、 3)アルキルピリジ-ゥム塩類等が挙げられる。 [0068] In addition, examples of cationic systems that are weak against heat and high in cost but have high antistatic properties include 1) aliphatic amine salts, 2) quaternary ammonium salts, and 3) alkylpyridium salts. It is done.
[0069] また、ァ-オン系の弱点である耐熱性をやや改良した両性イオン系として、 1)イミダ ゾリン誘導体類、 2)カルボン酸アンモ-ゥム類、 3)硫酸エステルアンモ-ゥム類、 4) リン酸エステルアンモ-ゥム類、 5)スルホン酸アンモ-ゥム類等があげられる。 [0069] In addition, amphoteric ion systems with slightly improved heat resistance, which is a weak point of the ion system, are as follows: 1) imidazoline derivatives, 2) carboxylic acid ammoniums, 3) sulfate ester ammoniums. 4) Phosphoric ester ammoniums, 5) Sulfonic acid ammoniums, and the like.
なお、摩擦調整剤は、シリコーンオイルや、シリコーンを含む榭脂を含有してもよい Note that the friction modifier may contain silicone oil or rosin containing silicone.
[0070] この摩擦調整剤は、摩擦調整剤を含有する液に A層表面を浸漬したり、摩擦調整 剤を含有する液を A層表面に吹き付けたり、或いは、摩擦調整剤を予め榭脂組成物 Aに練り込んでおき、 A層表面に移行させたりすることができる。 [0070] This friction modifier is prepared by immersing the surface of the layer A in a liquid containing the friction modifier, spraying a liquid containing the friction modifier on the surface of the layer A, or pre-coating the friction modifier with a resin composition. It can be kneaded into product A and transferred to the surface of layer A.
[0071] 摩擦調整剤を榭脂組成物 Aに練り混む場合、 A層における摩擦調整剤の含有率は 0. 001〜2質量%とするのが好ましぐ 0. 01〜: L 5質量%とするのがさらに好ましい 。 0. 001〜2質量%範囲内であれば、反射性能を損なわず、滑り性の良好な光反射 体を得ることができる。 [0071] When the friction modifier is kneaded and mixed with the resin composition A, the content of the friction modifier in the A layer is preferably 0.001 to 2% by mass. 0.01 to L: 5% by mass More preferably. Within the range of 0.001 to 2% by mass, it is possible to obtain a light reflector having good slipperiness without impairing the reflection performance.
[0072] <金属板> [0072] <Metal plate>
本光反射板を構成する金属板としては、例えばリフレタターを使用する液晶表示装 置の種類などに応じて選択するのが好ましぐ例えば厚さ 0. 05mn!〜 0.4mmのステ ンレス鋼板、厚さ 0.1〜0.6mmのアルミニウム合金、或いは、厚さ 0.2〜0.4mmの黄 銅板などを挙げることができる。ただし、これらに限定されるものではない。 The metal plate that constitutes the light reflector is preferably selected according to, for example, the type of liquid crystal display device that uses the reflector. Examples include a stainless steel plate having a thickness of ˜0.4 mm, an aluminum alloy having a thickness of 0.1 to 0.6 mm, or a brass plate having a thickness of 0.2 to 0.4 mm. However, it is not limited to these.
[0073] 光反射板を積層する側の面は、光反射板の接着性や密着性を向上させるために、 表面処理を施すのが好まし ヽ。 [0073] The surface on which the light reflecting plate is laminated is preferably subjected to a surface treatment in order to improve the adhesion and adhesion of the light reflecting plate.
[0074] 表面処理としては、化学処理、放電処理、電磁波照射処理を挙げることができる。 [0074] Examples of the surface treatment include chemical treatment, discharge treatment, and electromagnetic wave irradiation treatment.
化学処理としては、シランカップリング剤処理、酸処理、アルカリ処理、オゾン処理、ィ オン処理等の処理法を挙げることができる。放電処理としては、コロナ放電処理、グロ 一放電処理、アーク放電処理、低温プラズマ処理等の処理法を挙げることができる。
電磁波照射処理としては、紫外線処理、 X線処理、ガンマ線処理、レーザー処理等 の処理法を挙げることができる。中でも、シランカップリング剤処理は、特に無機物( 金属板)と有機物 (微粉含有ポリエステル層)との接着性を向上させる効果が高ぐま た、コロナ放電処理は、大気圧下で効果的に接着性を向上させることができるため、 好ましい。 Examples of the chemical treatment include silane coupling agent treatment, acid treatment, alkali treatment, ozone treatment, ion treatment and the like. Examples of the discharge treatment include treatment methods such as corona discharge treatment, glow discharge treatment, arc discharge treatment, and low temperature plasma treatment. Examples of the electromagnetic wave irradiation treatment include ultraviolet ray treatment, X-ray treatment, gamma ray treatment, and laser treatment. In particular, the silane coupling agent treatment is particularly effective in improving the adhesion between inorganic substances (metal plates) and organic substances (fine powder-containing polyester layer), and corona discharge treatment is effective for adhesion under atmospheric pressure. Can be improved.
[0075] <じ層> [0075] <Elbow>
本光反射体においては、例えば榭脂組成物 A力 フィルムを形成し、このフィルム を金属板に熱融着させたり、或いは、榭脂組成物 Aを融解させ、金属板上に押出し て製膜させたりして、金属板に A層を直接積層することもできるが、 A層と金属板との 間に C層を介在させるようにしてもょ 、。 In this light reflector, for example, a resin composition A force film is formed, and the film is heat-sealed to a metal plate, or the resin composition A is melted and extruded onto the metal plate to form a film. The A layer can be directly laminated on the metal plate, but the C layer may be interposed between the A layer and the metal plate.
[0076] C層は、例えば、ポリエステル系榭脂からなるフィルム力 形成することができる。 [0076] The C layer can be formed with a film force made of, for example, a polyester-based resin.
ポリエステル系榭脂からなるフィルムの具体例としては、例えば芳香族ポリエステル 系榭脂、脂肪族ポリエステル系榭脂或いは共重合ポリエステル系榭脂からなるフィル ムを挙げることができる。力かるポリエステル系榭脂からなるフィルムを C層として、 A 層と金属板との間に介在させれば、 A層の有する光反射性等の機能を損なわずに、 低温で金属板と積層させることができる。 Specific examples of the film made of polyester-based resin include, for example, a film made of aromatic polyester-based resin, aliphatic polyester-based resin, or copolymerized polyester-based resin. If a film made of strong polyester-based resin is used as the C layer and interposed between the A layer and the metal plate, it is laminated with the metal plate at a low temperature without impairing the light reflectivity function of the A layer. be able to.
[0077] 上記の芳香族ポリエステル系榭脂としては、ポリエチレンテレフタレート、ポリエチレ ンイソフタレート、ポリブチレンテレフタレート、ポリ(1, 4ーシクロへキシレンジメチレン )テレフタレート、ポリエチレン 2, 6 ナフタレンジカルボキシレート、ポリエチレンナ フタレート等の芳香族ポリエステル系榭脂を挙げることができる。 [0077] Examples of the aromatic polyester-based resin include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene) terephthalate, polyethylene 2, 6 naphthalene dicarboxylate, polyethylene naphthalate. An aromatic polyester-based resin such as phthalate can be mentioned.
[0078] 上記の脂肪族ポリエステル系榭脂としては、前記の如く例示した化学合成された脂 肪族ポリエステル系榭脂、微生物により発酵合成された脂肪族ポリエステル系榭脂、 及び、これらの混合物を用いることができる。 [0078] Examples of the aliphatic polyester-based resin include the chemically synthesized aliphatic polyester-based resin exemplified above, the aliphatic polyester-based resin synthesized by fermentation using microorganisms, and mixtures thereof. Can be used.
[0079] また、上記の共重合ポリエステル系榭脂としては、エステルの繰り返し単位力 一種 以上の酸成分と一種以上の多価アルコール成分とからなるものを挙げることができる 。一種、又は二種以上の酸成分と一種、又は二種以上の多価アルコール成分とから なるちのちょい。 [0079] Examples of the copolyester-based resin include those composed of one or more acid components and one or more polyhydric alcohol components of an ester repeating unit force. One or two or more acid components and one or two or more polyhydric alcohol components.
[0080] 共重合ポリエステル系榭脂中のエステルの繰り返し単位としては、フタル酸、イソフ
タル酸、テレフタル酸、ナフタレン酸、シユウ酸、コハク酸、ダルタル酸、アジピン酸、 ピメリン酸、スペリン酸、ァゼライン酸、セバチン酸、ドデカジオン酸等の中から選ばれ る一種、又は二種以上の酸成分と、エチレングリコール、ジエチレングリコール、トリエ チレングリコール、 1, 4 シクロへキサンジメタノール、 1, 2 プロピレングリコール、 1, 4 ブタンジオール、 1, 5 ペンタジオール、 1, 6 へキサジオール等の中から 選ばれる一種、又は二種以上の多価アルコール力 なる共重合ポリエステル系榭脂 を挙げることができる。 [0080] As the repeating unit of the ester in the copolyester resin, phthalic acid, One or two or more acids selected from among taric acid, terephthalic acid, naphthalene acid, oxalic acid, succinic acid, dartaric acid, adipic acid, pimelic acid, spellic acid, azelaic acid, sebacic acid, dodecadioic acid, etc. Selected from ethylene glycol, diethylene glycol, triethylene glycol, 1,4 cyclohexane dimethanol, 1,2 propylene glycol, 1,4 butanediol, 1,5 pentadiol, 1,6 hexadiol, etc. One or two or more types of copolyester-based resin having a polyhydric alcohol power can be mentioned.
[0081] 中でも好ましいのは、酸成分としてはイソフタル酸、テレフタル酸であり、多価アルコ ールではエチレングリコール、 1, 4ーシクロへキサンジメタノールを含有する共重合 体である。 [0081] Among them, preferred are isophthalic acid and terephthalic acid as the acid component, and a copolymer containing ethylene glycol and 1,4-cyclohexanedimethanol as the polyhydric alcohol.
[0082] C層のベース榭脂としての芳香族ポリエステル系榭脂、脂肪族ポリエステル系榭脂 或いは共重合ポリエステル系榭脂は、上記に例示したものに限定されるものではな い。 [0082] The aromatic polyester-based resin, the aliphatic polyester-based resin or the copolymerized polyester-based resin as the base resin of the C layer is not limited to those exemplified above.
上記の中でも特に好ましいのは、ポリエチレンテレフタレート、ポリエチレンイソフタ レート、乳酸系重合体である。 Among these, polyethylene terephthalate, polyethylene isophthalate, and lactic acid polymers are particularly preferable.
[0083] C層を構成するポリエステル榭脂は、融点が 80°C〜270°Cの範囲の榭脂であるの が好ましぐ 150°C〜250°Cの範囲の榭脂であるのがより好ましい。融点が 80°C〜2 70°Cであれば、接着剤を用いることなく金属板との密着性を十分確保することができ るとともに、金属板へ積層する際の熱の影響を抑え、光反射板の反射性能の低下を 防ぐことができる。なお、ここでいう融点は、示差走査熱量測定 (DSC)によって測定 した値である。 [0083] The polyester resin constituting the C layer is preferably a resin having a melting point in the range of 80 ° C to 270 ° C, and is preferably in the range of 150 ° C to 250 ° C. More preferred. If the melting point is 80 ° C to 270 ° C, sufficient adhesion to the metal plate can be secured without using an adhesive, and the effect of heat when laminating on the metal plate can be suppressed, and light It is possible to prevent the reflection performance of the reflector from deteriorating. The melting point here is a value measured by differential scanning calorimetry (DSC).
[0084] また、 C層を構成するポリエステル系榭脂は、その融解熱量が、 A層を構成する脂 肪族ポリエステル系榭脂の融解熱量よりも小さい方が好ましい。 C層のポリエステル 系榭脂の融解熱量が低ければ、 A層と金属板とを低温で積層することができるから、 A層と金属板との間に C層を介在させることによって、各層の密着力を向上させ、光 反射体の機械的強度を向上させることができる。 [0084] The heat of fusion of the polyester resin constituting the C layer is preferably smaller than the heat of fusion of the aliphatic polyester resin constituting the A layer. If the heat of fusion of the polyester-based resin of the C layer is low, the A layer and the metal plate can be laminated at a low temperature. By interposing the C layer between the A layer and the metal plate, the adhesion of each layer The force can be improved and the mechanical strength of the light reflector can be improved.
[0085] 例えば、 C層を構成するポリエステル系榭脂として乳酸系重合体を用いる場合、 C 層を構成する乳酸系重合体の融解熱量が、 A層を構成する脂肪族ポリエステル系榭
脂の融解熱量より小さいと好ましい。乳酸系重合体は、 D—乳酸と L—乳酸との構成 比によらず融点が 80°C〜270°Cの範囲となるため、所望の D—乳酸と L—乳酸との 構成比の乳酸系重合体を用いることができる。中でも、共重合体である乳酸系重合 体であれば、乳酸系重合体の結晶性が低ぐ融解熱量も低いことから、より好ましい。 なお、ここでいう融解熱量は、示差走査熱量測定 (DSC)によって測定した値である [0085] For example, when a lactic acid-based polymer is used as the polyester-based resin constituting the C layer, the heat of fusion of the lactic acid-based polymer constituting the C layer is the aliphatic polyester-based resin constituting the A layer. It is preferable that it is smaller than the heat of fusion of fat. Lactic acid polymers have a melting point in the range of 80 ° C to 270 ° C regardless of the composition ratio of D-lactic acid and L-lactic acid. Therefore, the lactic acid polymer has a desired composition ratio of D-lactic acid and L-lactic acid. System polymers can be used. Among these, a lactic acid polymer that is a copolymer is more preferable because the lactic acid polymer has low crystallinity and low heat of fusion. The heat of fusion here is a value measured by differential scanning calorimetry (DSC).
[0086] (C層における他の成分) [0086] (Other components in layer C)
C層は、上記ポリエステル系榭脂の作用効果を損なわない範囲内で、上記以外の 成分を含有していてもよい。例えば、微粉状充填剤、滑剤、加水分解防止剤、酸ィ匕 防止剤、光安定剤、熱安定剤、分散剤、紫外線吸収剤、白色顔料、蛍光増白剤、及 びその他の添加剤を含有して 、てもよ 、。 The C layer may contain components other than those described above as long as the effects of the polyester-based resin are not impaired. For example, fine powder fillers, lubricants, hydrolysis inhibitors, anti-oxidation agents, light stabilizers, heat stabilizers, dispersants, UV absorbers, white pigments, optical brighteners, and other additives. Contain, okay.
[0087] 例えば、 C層が、 A層で説明した微粉状充填剤を含有して ヽれば、 C層を構成する ポリエステル系榭脂と微粉状充填剤との屈折率差による屈折散乱からも反射性能を 得ることができ、光反射体の反射性能をさらに向上させることができる。 [0087] For example, if the C layer contains the fine powder filler described in the A layer, also from the refractive scattering due to the refractive index difference between the polyester-based resin constituting the C layer and the fine powder filler. Reflective performance can be obtained, and the reflective performance of the light reflector can be further improved.
[0088] また、 C層が滑剤を含有していれば、 A層、 C層間、並びに、 C層、金属板間の密着 力をより一層向上させることができる。 [0088] If the C layer contains a lubricant, the adhesion between the A layer, the C layer, and the C layer and the metal plate can be further improved.
[0089] 滑剤としては、いわゆる内部滑剤、外部滑剤を用いることができる。例えば、脂肪酸 系滑剤、アルコール系滑剤、脂肪族アマイド系滑剤、エステル系滑剤等の内部滑剤 や、アクリル系滑剤、炭化水素系滑剤等の外部滑剤が挙げられ、好ましくはアクリル 系滑剤、炭化水素系滑剤を添加するとよい。また、例示した滑剤を任意に組み合わ せて用いてもよい。 [0089] As the lubricant, so-called internal lubricants and external lubricants can be used. Examples thereof include internal lubricants such as fatty acid lubricants, alcohol lubricants, aliphatic amide lubricants and ester lubricants, and external lubricants such as acrylic lubricants and hydrocarbon lubricants, preferably acrylic lubricants and hydrocarbon lubricants. A lubricant may be added. Further, the exemplified lubricants may be used in any combination.
[0090] 滑剤の含有量は、 C層を構成する脂肪族ポリエステル系榭脂 100質量部に対して 0 . 05〜: LO質量部であることが好ましぐ中でも 0. 1質量部以上或いは 5質量部以下 であるのがさらに好ましい。 [0090] The content of the lubricant is from 0.05 to 100 parts by mass of the aliphatic polyester-based resin constituting the C layer. More preferably, it is at most part by mass.
[0091] (C層の構成) [0091] (Configuration of layer C)
C層は、異なる二種以上の多層の構成力もなる層として形成することもできる。 C層 を多層構成とすることによって、 A層、 C層間の密着性や積層条件等と、 C層、金属板 間の密着性や積層条件等とを適切に調整することができ、光反射体全体としての密
着性や反射性能、機械的強度等を好ましい範囲に設計することが可能となる。 The C layer can also be formed as a layer having two or more different types of multi-layer constituent forces. By making the C layer a multi-layer structure, the adhesion and lamination conditions between the A layer and the C layer and the adhesion and lamination conditions between the C layer and the metal plate can be adjusted appropriately, and the light reflector Dense as a whole It is possible to design the wearability, reflection performance, mechanical strength, and the like within a preferable range.
[0092] なお、 C層は、内部に空隙を有していてもよい。空隙を有していれば、 C層を構成す るポリエステル系榭脂と空隙 (空気)との屈折率差による屈折散乱力もも反射性能を 得ることができ、光反射体の反射性能をさらに向上させることができる。 [0092] The C layer may have voids inside. If it has air gaps, it is possible to obtain reflection performance due to the refractive scattering power due to the refractive index difference between the polyester-based resin constituting the C layer and the air gap (air), further improving the reflection performance of the light reflector. Can be made.
[0093] <光反射体の構成 > [0093] <Configuration of light reflector>
本光反射体は、上述のように、 A層を金属板の片面若しくは両面に直接積層して構 成することも、また、 A層と金属板との間に C層を介在させて構成することもできる。よ つて、例えば A層 Z金属板カゝらなる 2層構成、 A層 Z金属板 ZA層、又は A層 ZC層 Z金属板からなる 3層構成、 A層 ZC層 Z金属板 ZA層からなる 4層構成、 A層 ZC 層 Z金属板 ZC層 ZA層、或いはそれ以上の多層構成として形成することができる。 また、 A層及び C層以外の他の層を備えた積層構成としても形成することができる。 As described above, the light reflector can be configured by directly laminating the A layer on one or both surfaces of the metal plate, or by interposing the C layer between the A layer and the metal plate. You can also. Thus, for example, a two-layer configuration consisting of A layer Z metal plate, A layer Z metal plate ZA layer, or A layer ZC layer three layer configuration consisting of Z metal plate, A layer ZC layer Z metal plate consisting of ZA layer It can be formed as a four-layer structure, A layer ZC layer Z metal plate ZC layer ZA layer, or more multilayer structure. Further, it can be formed as a laminated structure including layers other than the A layer and the C layer.
[0094] このような構成において、各 A層の厚さは、 50 μ m〜250 μ mであることが好ましく 、特に 50 m〜: LOO /z mであるのがより好ましい。 In such a configuration, the thickness of each A layer is preferably 50 μm to 250 μm, and more preferably 50 m to: LOO / z m.
C層の厚さは、 5 μ m〜100 μ mであることが好ましぐ特に 5 μ m〜20 μ mである のがより好ましい。 The thickness of the C layer is preferably 5 μm to 100 μm, more preferably 5 μm to 20 μm.
[0095] また、光反射体全体の厚さとしては、所望の用途や使用する金属板によって異なり 、特に限定されないが、小型、薄型の表示装置内に組み込まれるリフレクタ一等の用 途を鑑みると、 0. 05mm〜: Lmmとするのが好ましぐ中でも 0. lmm〜0. 7mmとす るのがより好ましい。 [0095] The thickness of the entire light reflector varies depending on the desired application and the metal plate to be used, and is not particularly limited. However, in view of the use of a reflector incorporated in a small and thin display device, etc. 0.05 mm: Even though it is preferable to use Lmm, 0.1 mm to 0.7 mm is more preferable.
[0096] <光反射体の特性 > [0096] <Characteristics of light reflector>
(反射率) (Reflectance)
本光反射板は、波長 550nmの光に対する反射使用面側から測定した反射率が 95 %以上であることが好ましぐ 97%以上であることがさらに好ましい。反射率が 95% 以上であれば、良好な反射特性を示し、液晶ディスプレイ等の画面に充分な明るさを 与えることができる。 In the present light reflecting plate, the reflectance measured from the reflective use surface side with respect to light having a wavelength of 550 nm is preferably 95% or more, more preferably 97% or more. If the reflectance is 95% or more, good reflection characteristics are exhibited and sufficient brightness can be given to a screen such as a liquid crystal display.
[0097] (熱的特性) [0097] (Thermal characteristics)
本光反射板を構成する A層及び C層の熱的特性は、 120°Cで 5分間放置したとき の熱収縮率が 10%以下であることが好ましぐ 5%以下であることが更に好ましい。
[0098] 例えば、自動車用カーナビゲーシヨンシステムや車載用小型テレビ等の反射板とし て組み込まれる場合、夏場の炎天下の車内温度を鑑みると、耐熱性、加熱環境下で の寸法安定性が要求される。したがって、前記の如ぐ 120°Cで 5分間放置したときの 熱収縮率が 10%以下であれば、 A層及び C層の平面性を維持し得る寸法安定性を 確保し、金属板と剥離することもないため好ましい。 Regarding the thermal characteristics of the A layer and C layer constituting the light reflector, it is preferable that the thermal shrinkage rate when it is left at 120 ° C. for 5 minutes is 10% or less, more preferably 5% or less. preferable. [0098] For example, when it is incorporated as a reflector for a car navigation system for an automobile or a small vehicle-mounted television, in view of the temperature inside the car under the hot sun in summer, heat resistance and dimensional stability under a heating environment are required. The Therefore, if the thermal contraction rate when left at 120 ° C for 5 minutes as described above is 10% or less, dimensional stability that can maintain the flatness of the A layer and the C layer is secured, and the metal plate is peeled off. This is preferable because it is not necessary.
[0099] <用途 > [0099] <Application>
本光反射体は、以上のように高度な反射性能と高 、耐熱性を兼ね備えて 、ることか ら、ノ ソコンゃテレビなどのディスプレイ、照明器具、照明看板等の反射板として好適 であるばかりか、光反射体を成形加工してなるリフレタターと呼ばれる部材としても好 適に用いることができる。 As described above, the present light reflector has both high reflection performance, high heat resistance, and is suitable as a reflector for displays such as a television, a lighting fixture, and a lighting signboard. Alternatively, it can be suitably used as a member called a reflector that is formed by molding a light reflector.
[0100] <製造方法 > [0100] <Production method>
以下、本光反射体の製造方法の例について説明するが、本発明の光反射体の製 造方法が次の製造方法に限定されるものではない。 Hereinafter, although the example of the manufacturing method of this light reflector is demonstrated, the manufacturing method of the light reflector of this invention is not limited to the following manufacturing method.
[0101] 本光反射板は、榭脂組成物 Aを溶融し、金属板上に直接製膜させ、必要に応じて 摩擦調整剤を塗布するようにしたり、金属板上に C層を積層させておき、この C層上 に、溶融させた榭脂組成物 Aを製膜させ、必要に応じて摩擦調整剤を塗布するよう にしたりして形成することもできる力 ここでは、予め、 A層、或いは A層及び C層をそ れぞれフィルム状に形成しておき、これを金属板上に積層して形成する方法にっ ヽ て説明する。 [0101] In the present light reflecting plate, the resin composition A is melted and directly formed on a metal plate, and if necessary, a friction modifier is applied, or a C layer is laminated on the metal plate. The force that can be formed by forming a melted resin composition A on this C layer and applying a friction modifier as necessary. Alternatively, a method of forming the A layer and the C layer in the form of a film and laminating them on a metal plate will be described.
[0102] A層に関しては、例えば脂肪族ポリエステル系榭脂、微粉状充填剤、摩擦調整剤 及び必要に応じてその他の成分を混合して榭脂組成物 Aを得、それを溶融製膜し、 必要に応じて延伸してフィルム Aを得るようにすればよい。以下、詳細に説明する。 [0102] For layer A, for example, aliphatic polyester-based resin, fine powder filler, friction modifier and other components as necessary are mixed to obtain resin composition A, which is melt-formed. The film A may be obtained by stretching as necessary. Details will be described below.
[0103] 先ず、脂肪族ポリエステル系榭脂に、微粉状充填剤、必要に応じて加水分解防止 剤等その他の添加剤を配合して榭脂組成物 Aを作製する。 [0103] First, a resin composition A is prepared by blending an aliphatic polyester-based resin with a fine powder filler and, if necessary, other additives such as a hydrolysis inhibitor.
[0104] 練り込み型の摩擦調整剤を使用する場合には、ここで摩擦調整剤を添加する。具 体的には、脂肪族ポリエステル系榭脂に微粉状充填剤、摩擦調整剤及び加水分解 防止剤等をカ卩えて、リボンプレンダー、タンブラ一、ヘンシェルミキサー等で混合した 後、バンバリ一ミキサー、一軸又は二軸押出機等を用いて、榭脂の融点以上の温度(
例えば、乳酸系重合体の場合には 170°C〜230°C)で混練することにより榭脂組成 物 Aを得る。 [0104] When a kneading-type friction modifier is used, the friction modifier is added here. Specifically, a fine powder filler, friction modifier, hydrolysis inhibitor, etc. are mixed with an aliphatic polyester resin, mixed with a ribbon blender, tumbler, Henschel mixer, etc., and then a Banbury mixer. Using a single or twin screw extruder, etc., the temperature above the melting point of the resin ( For example, in the case of a lactic acid-based polymer, the kneaded composition A is obtained by kneading at 170 ° C. to 230 ° C.).
[0105] なお、脂肪族ポリエステル系榭脂と、微粉状充填剤、摩擦調整剤、加水分解防止 剤等とを別々のフィーダ一等により所定量を添加することによって榭脂組成物 Aを得 ることもできる。また、予め、脂肪族ポリエステル系榭脂に微粉状充填剤、加水分解 防止剤等を高濃度に配合した、いわゆるマスターバッチを作っておき、このマスター ノ ツチと脂肪族ポリエステル系榭脂を混合して所望の濃度の榭脂組成物 Aとすること ちでさる。 [0105] A resin composition A is obtained by adding a predetermined amount of an aliphatic polyester-based resin and a fine powder filler, a friction modifier, a hydrolysis inhibitor, etc. using separate feeders and the like. You can also. In addition, a so-called master batch in which a fine powder filler, an anti-hydrolysis agent, etc. are blended in high concentration in an aliphatic polyester-based resin is prepared in advance, and this master notch and the aliphatic polyester-based resin are mixed. Thus, it is possible to obtain a desired concentration of rosin composition A.
[0106] 次に、このようにして得られた榭脂組成物 Aを溶融し、フィルム Aに形成する。 [0106] Next, the resin composition A thus obtained is melted and formed into a film A.
例えば、榭脂組成物 Aを乾燥させ、押出機に供給し、榭脂の融点以上の温度に加 熱して溶融する。この際、榭脂組成物 Aを乾燥させずに押出機に供給してもよいが、 乾燥させな 、場合には溶融押出する際に真空ベントを用いるのが好ま 、。 For example, the resin composition A is dried, supplied to an extruder, heated to a temperature equal to or higher than the melting point of the resin, and melted. At this time, the rosin composition A may be supplied to the extruder without drying, but if not dried, it is preferable to use a vacuum vent during melt extrusion.
[0107] 押出温度等の条件は、分解によって分子量が低下すること等を考慮して設定する ことが必要であり、例えば、押出温度は、脂肪族ポリエステル系榭脂として乳酸系重 合体を用いた場合であれば、 170°C〜230°Cの範囲が好まし!/、。 [0107] Conditions such as the extrusion temperature must be set in consideration of a decrease in molecular weight due to decomposition. For example, the extrusion temperature used a lactic acid-based polymer as an aliphatic polyester-based resin. If this is the case, a range of 170 ° C to 230 ° C is preferred! /.
そして、溶融させた榭脂組成物 Aを Tダイのスリット状の吐出ロカ 押し出し、冷却 ロールに密着固化させてキャストシート (未延伸状態)を形成し、フィルム Aを得るよう にすればよい。 Then, the melted rosin composition A is extruded into a slit-shaped discharge loci of a T die, and is closely adhered to a cooling roll to form a cast sheet (unstretched state) to obtain a film A.
[0108] 他方、塗布型の摩擦調整剤の場合は、摩擦調整剤を含む水溶性塗工液をフィルム Aに塗布乾燥すればよい。 On the other hand, in the case of a coating type friction modifier, a water-soluble coating solution containing a friction modifier may be applied to the film A and dried.
[0109] 塗布方法としては、スプレーコート法、エアナイフ法、リバースコート法、キスコート法 、グラビアコート法、メタリングバー法、ロールブラッシュ法、ディップコート法、カレン ダーコート法、スキーズコート法、ファンテンコート等が適用できる。 [0109] Application methods include spray coating, air knife method, reverse coating method, kiss coating method, gravure coating method, metal ring bar method, roll brush method, dip coating method, calendar coating method, skies coating method, phanten coating method. A coat or the like can be applied.
[0110] 例えば未延伸フィルムの場合には、 Tダイを装着した押出機を用いて成形した未延 伸フィルムに、水性塗工液を塗布して、乾燥炉に入れて乾燥させればよい。フィルム に直接送風してもよい。 [0110] For example, in the case of an unstretched film, an aqueous coating solution may be applied to an unstretched film formed using an extruder equipped with a T die, and then dried in a drying furnace. You may blow directly on the film.
[0111] 上記のようにして得られたフィルム A (キャストシート)は、少なくとも一軸方向に 1. 1 倍以上延伸することができる。延伸することにより、フィルム内部に微粉状充填剤を核
とした空隙が形成されて、榭脂と空隙の界面、及び空隙と微粉状充填剤との界面が 形成され、界面で生じる屈折散乱の効果が増えるから、 A層の光反射性をさらに高め ることがでさる。 [0111] The film A (cast sheet) obtained as described above can be stretched 1.1 times or more in at least a uniaxial direction. The fine powder filler is cored inside the film by stretching. As a result, the interface between the resin and the void and the interface between the void and the fine filler are formed, and the effect of refraction and scattering generated at the interface is increased. That's right.
[0112] 延伸する際の延伸温度は、脂肪族ポリエステル系榭脂のガラス転移温度 (Tg)から 所定の温度範囲 (Tg〜Tg + 50°C)内とするのが好ましぐ例えば、乳酸系重合体の 場合には 50〜90°Cであることが好ましい。延伸温度がこの範囲であれば、延伸時に 破断することなく安定して延伸を行うことができ、また延伸配向が高くなり、その結果、 空隙率が大きくなるので、高い反射率を有する A層を容易に得ることができる。 [0112] The stretching temperature at the time of stretching is preferably within the predetermined temperature range (Tg to Tg + 50 ° C) from the glass transition temperature (Tg) of the aliphatic polyester-based resin. In the case of a polymer, the temperature is preferably 50 to 90 ° C. If the stretching temperature is within this range, the stretching can be performed stably without breaking during stretching, and the stretching orientation becomes high. As a result, the porosity becomes large. Can be easily obtained.
[0113] フィルム Aは、一軸延伸よりも、二軸延伸するのがより一層好ましい。二軸延伸する ことによって、空隙率がさらに高くなり、 A層の光反射性を更に高めることができる。二 軸延伸の延伸順序は特に制限されることはなぐ例えば、同時二軸延伸でも逐次延 伸でも構わない。 [0113] Film A is more preferably biaxially stretched than uniaxially stretched. By biaxial stretching, the porosity is further increased, and the light reflectivity of the A layer can be further enhanced. The stretching order of the biaxial stretching is not particularly limited. For example, simultaneous biaxial stretching or sequential stretching may be used.
[0114] 具体的には、例えば延伸設備を用いて、溶融製膜した後、ロール延伸によって MD に延伸した後、テンター延伸によって TDに延伸してもよいし、また、チューブラ一延 伸等によって二軸延伸を行ってもよい。 [0114] Specifically, for example, the film may be melt-formed using a stretching facility, then stretched to MD by roll stretching, and then stretched to TD by tenter stretching, or by tubular stretching or the like. Biaxial stretching may be performed.
[0115] 一軸延伸又は二軸延伸する場合の延伸倍率は、 A層の組成、延伸手段、延伸温 度、目的の製品形態に応じて適宜決定すればよいが、面積倍率として 5倍以上に延 伸することが好ましぐ 7倍以上に延伸することが更に好ましい。面積倍率が 5倍以上 になるようにキャストシートを延伸すれば、 A層中に 5%以上の空隙率を実現すること ができ、 7倍以上に延伸することにより 20%以上の空隙率を実現することができ、 7. 5倍以上に延伸することにより、 30%以上の空隙率も実現することができ、反射率を さらに高めることができる。 [0115] The stretching ratio in the case of uniaxial stretching or biaxial stretching may be appropriately determined according to the composition of layer A, the stretching means, the stretching temperature, and the target product form. It is preferable to stretch. It is more preferable to stretch the film by 7 times or more. If the cast sheet is stretched so that the area magnification is 5 times or more, a porosity of 5% or more can be realized in layer A, and a porosity of 20% or more can be realized by stretching it 7 times or more. By stretching to 7.5 times or more, a porosity of 30% or more can be realized, and the reflectance can be further increased.
[0116] また、得られたフィルム Aに耐熱性及び寸法安定性を付与するために、熱処理する のが好ましい。 [0116] In order to impart heat resistance and dimensional stability to the obtained film A, heat treatment is preferably performed.
[0117] フィルム状の A層の熱処理温度は 90〜160°Cであることが好ましぐ 110〜140°C であることがさらに好ましい。熱処理に要する処理時間は、好ましくは 1秒〜 5分であ る。また、延伸設備等については特に限定はないが、延伸後に熱固定処理を行うこと ができるテンター延伸を行うことが好ましい。
[0118] 次に、上記の如く作製したフィルム Aを、 C層を構成するポリエステル系榭脂からな るフィルム Bを介して、金属板上に積層して光反射体を製造すればよ!、。 [0117] The heat treatment temperature of the film-like A layer is preferably 90 to 160 ° C, more preferably 110 to 140 ° C. The treatment time required for the heat treatment is preferably 1 second to 5 minutes. There are no particular limitations on the stretching equipment and the like, but it is preferable to perform tenter stretching that can be heat-set after stretching. [0118] Next, the film A produced as described above may be laminated on a metal plate via a film B made of polyester-based resin constituting the C layer to produce a light reflector! .
[0119] この際の積層方法としては、金属板上にフィルム B、フィルム Aの順に重ね、この状 況で加熱加圧ロールに供給して熱融着する方法を挙げることができる。熱融着する 温度は、密着力の点から、 140°C〜280°Cの温度範囲で行うことが好ましぐ 150°C 〜210°Cの温度範囲がさらに好ましい。なお、金属板の表面温度が、 A層及び C層 を構成する榭脂の融点程度となるように加熱し、ゴムロールにより熱融着することもで きる。 [0119] Examples of the laminating method in this case include a method in which a film B and a film A are stacked in this order on a metal plate, and in this state, supplied to a heating and pressing roll and thermally fused. The temperature for heat-sealing is preferably in the temperature range of 140 ° C. to 280 ° C., more preferably in the temperature range of 150 ° C. to 210 ° C. from the viewpoint of adhesion. The surface temperature of the metal plate can be heated so as to be about the melting point of the resin constituting the A layer and the C layer, and can be heat-sealed with a rubber roll.
[0120] [第 2の実施形態] [0120] [Second Embodiment]
本実施形態に係る光反射体(「本光反射体」 t 、う)は、金属板の片面若しくは両面 に、脂肪族ポリエステル系榭脂と微粉状充填剤を主成分とする A層を積層し、少なく とも片面側の A層の表面側に、熱硬化型榭脂または電離放射線硬化型榭脂から形 成された B層を積層し、該 B層の表面の静摩擦係数並びに動摩擦係数が所定範囲と なるように形成してなる光反射体である。 The light reflector according to this embodiment (“the present light reflector” t) is formed by laminating an A layer mainly composed of an aliphatic polyester-based resin and fine powder filler on one or both surfaces of a metal plate. B layer formed from thermosetting resin or ionizing radiation curable resin is laminated on the surface side of layer A on at least one side, and the static friction coefficient and dynamic friction coefficient of the surface of the B layer are within a predetermined range. It is a light reflector formed so that
なお、金属板の片面側もしくは両面側に A層を備えていればよいから、例えば金属 板と A層の間に C層が介在してもよ ヽ。 Note that the A layer may be provided on one side or both sides of the metal plate. For example, a C layer may be interposed between the metal plate and the A layer.
[0121] 本実施形態においても、 A層、金属板及び C層については、第 1の実施形態と同様 であるから、ここでは、 B層について説明し、その後、本光反射体の構成、特性及び 製造方法について説明する。 [0121] Also in this embodiment, the A layer, the metal plate, and the C layer are the same as those in the first embodiment. Therefore, here, the B layer will be described, and then the configuration and characteristics of the light reflector are described. The manufacturing method will be described.
[0122] < 層> [0122] <layer>
B層は、熱硬化型榭脂または電離放射線硬化型榭脂から形成することができる。中 でも作業環境性、生産性の点で、電離放射線硬化型榭脂から形成することが好まし い。 The B layer can be formed from a thermosetting resin or an ionizing radiation curable resin. Among them, it is preferable to form from ionizing radiation curable resin from the viewpoint of work environment and productivity.
[0123] 上記の電離放射線硬化型榭脂は、紫外線又は電子線等の電離放射線の照射によ り硬化される榭脂であればよい。例えば、電離放射線の照射によって重合架橋反応 可能なラジカル重合性二重結合を分子中に少なくとも一つ有する、プレボリマー、ォ リゴマー及び Z又はモノマーを適宜含有してなる榭脂を挙げることができる。紫外線 硬化型榭脂の場合には光重合開始剤を含有することが一般的である。
[0124] また、電離放射線硬化型榭脂は、必要に応じて増感剤、非反応性榭脂、レべリング 剤等の添加剤、溶剤を含有してもよい。また、シリコーンオイルや、シリコーンを含む 榭脂を含有してもよい。 [0123] The ionizing radiation curable resin may be any resin that is cured by irradiation with ionizing radiation such as ultraviolet rays or electron beams. Examples thereof include a resin having at least one radically polymerizable double bond capable of undergoing a polymerization crosslinking reaction by irradiation with ionizing radiation, and appropriately containing a prepolymer, an oligomer and Z or a monomer. In the case of ultraviolet curable resin, it is common to contain a photopolymerization initiator. [0124] Further, the ionizing radiation curable resin may contain an additive such as a sensitizer, a non-reactive resin, a leveling agent, and a solvent as necessary. Moreover, you may contain the silicone oil and the resin containing silicone.
[0125] 上記プレボリマー、オリゴマーとしては、ポリエステルアタリレート、ウレタンアタリレー ト、エポキシアタリレート、ポリエーテルアタリレート、ポリオールアタリレート、シリコーン アタリレート等のアタリレート類、ポリエステルメタタリレート、ウレタンメタタリレート、ェ ポキシメタタリレート、ポリエーテルメタタリレート、ポリオールメタタリレート、シリコーン メタタリレート等のメタタリレート類があげられる。 [0125] Examples of the prepolymers and oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, polyol acrylates, silicone acrylates and other acrylates, polyester metatalates, and urethane metatalates. And metatalates such as epoxy metatalylate, polyether metatalylate, polyol metatalylate, and silicone metatalylate.
[0126] B層の屈折率は特に限定するものではないが、 A層の高い反射性能を損なわない ため、屈折率 1. 4〜1. 8程度、中でも 1. 4〜1. 6程度の榭脂を選択して B層を形成 するのが好ましい。 [0126] The refractive index of the B layer is not particularly limited. However, in order not to impair the high reflection performance of the A layer, the refractive index is about 1.4 to 1.8, particularly about 1.4 to 1.6. It is preferable to select the fat to form the B layer.
[0127] また、 B層に微粒状充填剤を含有させることもできる。このような微粒状充填剤として は、上述の A層における微粒状充填剤と同様のものが使用することができる力 B層 の硬化性、 A層との密着性、および光反射体としての反射性能等を損なわないで、 かつ、 B層表面の静摩擦係数及び動摩擦係数を所定範囲に設定することを考慮す ると、平均粒径が 0. 3 m以下の微粒状充填剤が好ましぐ特に 0. 2 m以下のシリ 力が優位である。 [0127] The B layer may contain a fine particulate filler. As such a fine particle filler, the same force as the fine particle filler in the above-described A layer can be used. Curability of the B layer, adhesion with the A layer, and reflection as a light reflector Considering setting the static friction coefficient and dynamic friction coefficient on the surface of layer B within the specified ranges without impairing performance, etc., a fine filler with an average particle size of 0.3 m or less is particularly preferred. Siri force of 0.2 m or less is superior.
[0128] (B層表面の静摩擦係数及び動摩擦係数) [0128] (Static friction coefficient and dynamic friction coefficient on the surface of layer B)
B層表面は、静摩擦係数が 0. 49以下であり、かつ、動摩擦係数が 0. 42以下であ ることが好ましい。 The layer B surface preferably has a static friction coefficient of 0.49 or less and a dynamic friction coefficient of 0.42 or less.
[0129] B層表面の静摩擦係数が 0. 49以下であり、かつ、動摩擦係数が 0. 42以下であれ ば、例えば本反射体をリフレタターに加工してノート型パソコンの液晶表示内に組み 込んだ場合に、モニター部を開閉した際のノイズの発生を効果的に低減することがで きる。 [0129] If the static friction coefficient on the surface of layer B is 0.49 or less and the dynamic friction coefficient is 0.42 or less, for example, the reflector is processed into a reflector and incorporated in a liquid crystal display of a notebook computer. In this case, it is possible to effectively reduce the generation of noise when the monitor unit is opened and closed.
[0130] かかる観点から、 B層の表面の静摩擦係数は 0. 46以下であるのがさらに好ましぐ 0. 43以下あるのがより一層好ましい。また、動摩擦係数は、 0. 36以下であるのがさ らに好ましぐ 0. 33以下であるのがより一層好ましい。 [0130] From this point of view, the static friction coefficient of the surface of the B layer is more preferably 0.46 or less, and still more preferably 0.43 or less. Further, the coefficient of dynamic friction is more preferably 0.36 or less, and still more preferably 0.33 or less.
[0131] <光反射体の構成 >
本光反射体は、 A層を金属板の片面もしくは両面に直接積層して構成することも、 また、 A層と金属板との間に C層を介在させて構成することもできる。よって、例えば B 層 ZA層 Z金属板からなる 3層構成、 B層 ZA層 Z金属板 ZA層、又は B層 ZA層 ZC層 Z金属板からなる 4層構成、 B層 ZA層 ZC層 Z金属板 ZA層からなる 5層構 成、 B層 ZA層 ZC層 Z金属板 ZA層 ZB層、 B層 ZA層 ZC層 Z金属板 ZC層 Z A層、 B層 ZA層 ZC層 Z金属板 ZC層 ZA層 ZB層、あるいはそれ以上の多層構 成として成型することができる。 [0131] <Structure of light reflector> The light reflector can be configured by directly laminating the A layer on one or both surfaces of the metal plate, or by interposing the C layer between the A layer and the metal plate. Thus, for example, B layer, ZA layer, Z metal plate, 3 layer configuration, B layer, ZA layer, Z metal plate, ZA layer, or B layer, ZA layer, ZC layer, 4 layer configuration, consisting of Z metal plate, B layer, ZA layer, ZC layer, Z metal Plate 5 layers consisting of ZA layer, B layer ZA layer ZC layer Z metal plate ZA layer ZB layer, B layer ZA layer ZC layer Z metal plate ZC layer ZA layer, B layer ZA layer ZC layer Z metal plate ZC layer ZA Layer ZB layer or higher multi-layer structure.
また、 A層、 B層および C層以外の他の層(接着層等)を備えた積層構成としても形 成することができる。 It can also be formed as a laminated structure including other layers (such as an adhesive layer) other than the A layer, the B layer, and the C layer.
[0132] なお、各層の形成順としては特に限定はなぐ例えば、 A層上に B層を形成させた 後に金属板と積層してもょ ヽし、 A層を金属板に積層させた後に B層を A層の表面側 に積層させてもよい。 [0132] The order of formation of each layer is not particularly limited. For example, after forming the B layer on the A layer, the layer is laminated with the metal plate, and after the A layer is laminated on the metal plate, B A layer may be laminated on the surface side of the A layer.
[0133] このような構成において、 A層の厚さは、 50 m〜250 mであることが好ましい。 [0133] In such a configuration, the thickness of the A layer is preferably 50 m to 250 m.
[0134] また、 B層の厚さは、 1 μ m〜10 μ mが好ましぐさらに、 1 μ m〜7 μ mが好ましく、 特に 2 m〜5 μ mが好まし!/ヽ。 [0134] The thickness of the B layer is preferably 1 μm to 10 μm, more preferably 1 μm to 7 μm, and particularly preferably 2 m to 5 μm! / ヽ.
また、 C層の厚さは、 5 μ m〜100 μ mであることが好ましい。 The thickness of the C layer is preferably 5 μm to 100 μm.
[0135] また、光反射体全体の厚さとしては、所望の用途や使用する金属板によって異なり[0135] The thickness of the entire light reflector varies depending on the desired application and the metal plate to be used.
、特に限定されないが、小型、薄型の反射板用途の光反射体としての用途を鑑みる と、 0. 05mm〜lmmとするのが好ましぐ中でも 0. 1〜0. 7mmとするのがより好ま しい。 Although not particularly limited, considering the use as a light reflector for small and thin reflectors, it is more preferable to set the thickness to 0.1 to 0.7 mm, even though it is preferable to set the thickness to 0.05 mm to lmm. That's right.
[0136] <光反射板の反射特性 > [0136] <Reflection characteristics of light reflector>
本光反射板は、波長 550nmの光に対する反射使用面側から測定した反射率が 95 %以上であることが好ましぐ 97%以上であることがさらに好ましい。反射率が 95% 以上であれば、良好な反射特性を示し、液晶ディスプレイ等の画面に充分な明るさを 与えることができる。 In the present light reflecting plate, the reflectance measured from the reflective use surface side with respect to light having a wavelength of 550 nm is preferably 95% or more, more preferably 97% or more. If the reflectance is 95% or more, good reflection characteristics are exhibited and sufficient brightness can be given to a screen such as a liquid crystal display.
[0137] <用途 > [0137] <Application>
本光反射体は、以上のように高度な反射性能と高 、耐熱性を兼ね備えて 、ることか ら、ノ ソコンゃテレビなどのディスプレイ、照明器具、照明看板等の反射板として好適
であるばかりか、光反射体を成形加工してなるリフレタターと呼ばれる部材としても好 適に用いることができる。 As described above, this light reflector has both high reflection performance, high heat resistance, and is suitable as a reflector for displays such as TVs, lighting fixtures, and lighting signs. In addition, it can be suitably used as a member called a reflector that is formed by molding a light reflector.
[0138] <製造方法 > [0138] <Production method>
以下、本光反射体の製造方法の例について説明するが、本発明の光反射体の製 造方法が次の製造方法に限定されるものではない。 Hereinafter, although the example of the manufacturing method of this light reflector is demonstrated, the manufacturing method of the light reflector of this invention is not limited to the following manufacturing method.
[0139] 本光反射体は、第 1の実施形態と同様にフィルム Aを作製した後、熱硬化型榭脂又 は電離放射線硬化型榭脂の塗布液を調製し、前記フィルム A上に塗工し、乾燥させ て溶剤を除去した後、加熱又は電離放射線の照射によって硬化させて B層を形成す ることがでさる。 [0139] In the present light reflector, a film A was prepared in the same manner as in the first embodiment, and then a thermosetting or ionizing radiation curable resin coating solution was prepared and applied onto the film A. After removing the solvent by drying, it can be cured by heating or irradiation with ionizing radiation to form layer B.
[0140] なお、 B層を形成する上記のフィルム Aは、延伸或いは熱処理してな!/、フィルムであ つてもよいが、延伸済、さらには熱処理済のフィルムであるのが好ましい。具体的には 、フィルム A上に塗工によって B層を形成する場合、延伸や熱処理済のフィルム A上 にアウトラインで塗工形成する方法を採用してもよいし、又、未延伸状態のキャストフ イルムを製膜する工程においてインラインで B層を塗工し、その後、延伸や熱処理を 行う方法 (所謂インラインコーティング)を採用してもょ 、。 [0140] The film A for forming the B layer may be a film that has not been stretched or heat-treated! /, But is preferably a stretched or heat-treated film. Specifically, when forming the B layer on the film A by coating, a method of forming an outline on the stretched or heat-treated film A may be employed, or an unstretched cast film may be used. It is possible to adopt a method (so-called in-line coating) in which the B layer is applied in-line in the film forming process, followed by stretching or heat treatment.
[0141] 熱硬化型榭脂又は電離放射線硬化型榭脂の塗工方法としては、例えばバーコ一 ター、ブレードコーター、ローノレコーター、グラビアコーター、スピンコーター等の周知 のコーター、また、スプレーコートやディップコート等の周知のコーティング方法によつ て塗布形成できる。 [0141] Examples of the coating method for thermosetting resin or ionizing radiation curable resin include well-known coaters such as bar coaters, blade coaters, ronore coaters, gravure coaters, spin coaters, spray coaters, The coating can be formed by a known coating method such as dip coating.
[0142] また、グラビア印刷、オフセット印刷、スクリーン印刷等の周知の印刷方法によって B 層を形成することもできる。 [0142] The layer B can also be formed by a known printing method such as gravure printing, offset printing, or screen printing.
[0143] なお、 A層上に B層を形成する際、 A層表面上をコロナ放電処理等の表面処理手 段によって接着性を高めてもよい (前述した金属板の表面処理と同様の手段を使用 できる)。また、両層間にアンカーコート層、接着層等が介在していても構わない。 [0143] When the B layer is formed on the A layer, the adhesion on the surface of the A layer may be enhanced by a surface treatment method such as a corona discharge treatment (the same means as the surface treatment of the metal plate described above). Can be used). Further, an anchor coat layer, an adhesive layer or the like may be interposed between both layers.
[0144] 次に、上記の如く作製した、 B層を備えたフィルム Aを、 C層を構成するポリエステル 系榭脂からなるフィルム Cを介して、金属板上に積層して本光反射体を製造すれば よい。 [0144] Next, the film A having the B layer produced as described above is laminated on a metal plate via the film C made of polyester-based resin constituting the C layer, and this light reflector is formed. It can be manufactured.
[0145] この際の積層する方法としては、金属板上に、フィルム C、 B層を備えたフィルム A
の順に重ね、この状態で加熱加圧ロールに供給し熱融着する方法を挙げることがで きる。 [0145] As a method of laminating at this time, film A having film C and layer B on a metal plate is used. In this state, a method of supplying the heat and pressure roll and heat-sealing in this state can be mentioned.
熱融着する温度は、密着力の点から、 140°C〜280°Cの温度範囲で行うことが好ま しぐ 150°C〜210°Cの温度範囲がさらに好ましい。 The temperature for heat-sealing is preferably in the temperature range of 140 ° C. to 280 ° C., more preferably in the temperature range of 150 ° C. to 210 ° C. from the viewpoint of adhesion.
なお、金属板の表面温度が、 A層及び C層を構成する榭脂の融点程度となるように 加熱し、ゴムロールにより熱融着することもできる。 The surface temperature of the metal plate can be heated to about the melting point of the resin constituting the A layer and the C layer, and heat fusion can be performed with a rubber roll.
実施例 Example
[0146] 以下、実施例及び比較例に基づいて、本発明をより具体的に説明するが、本発明 の範囲が実施例に限定されるものではなぐ本発明の技術的思想を逸脱しない範囲 内で種々の応用が可能である。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples. However, the scope of the present invention is not limited to the examples, and does not depart from the technical idea of the present invention. Various applications are possible.
[0147] なお、実施例に示す測定値及び評価は以下に示すようにして行った。また、フィル ムの引取り(流れ)方向を MD、その直交方向を TDと示した。 [0147] The measured values and evaluations shown in the examples were performed as follows. The film take-off (flow) direction is indicated by MD, and its orthogonal direction is indicated by TD.
[0148] <測定及び評価方法 > [0148] <Measurement and evaluation method>
(1)静摩擦係数'動摩擦係数 (1) Static friction coefficient 'Dynamic friction coefficient
JIS K 7125に基づき、 A層表面の静摩擦係数及び動摩擦係数を測定した。この 際、 n= 5で測定し、その平均値を表 1に示した。 Based on JIS K 7125, the static friction coefficient and dynamic friction coefficient of the surface of the A layer were measured. In this case, measurement was performed at n = 5 and the average value is shown in Table 1.
[0149] (2)密着性 [0149] (2) Adhesion
JIS Z 2247に準拠した描画エリクセン試験機により、 4mm押出した際に金属薄 板力 フィルムの剥離が認められるか否かを目視観察する方法で、フィルムの剥離が 認められないものを〇、実用上問題が無い程度のものを△、フィルムの剥離が認めら れるものを Xと判定した。 A method of visually observing whether or not peeling of a metal sheet is permitted when extruding 4 mm using a drawing Eriksen tester compliant with JIS Z 2247. Those having no problem were judged as △, and those with film peeling were judged as X.
[0150] (3)反射率 [0150] (3) Reflectance
分光光度計(「U— 4000」、(株)日立製作所製)に積分球を取付け、波長 550nm の光に対する反射率を測定し、反射率の低下が認められないものを〇、実用上問題 が無い程度(一 0. 5%未満)のものを△、反射率の低下が認められる(一 0. 5%超) ものを Xと判定した。なお、測定前に、アルミナ白板の反射率が 100%になるように 光度計を設定した。 An integrating sphere is attached to a spectrophotometer ("U-4000", manufactured by Hitachi, Ltd.), and the reflectance with respect to light with a wavelength of 550 nm is measured. A value of less than 1% (less than 0.5%) was evaluated as △, and a value showing a decrease in reflectivity (over 0.5%) was determined as X. Before the measurement, the photometer was set so that the reflectance of the alumina white plate was 100%.
[0151] (4)ノイズ音評価
光反射体を 17インチノート用リフレタターに加工して、実際のノート PCに組み込み んで開閉した時の音を評価した。 [0151] (4) Noise sound evaluation The light reflector was processed into a 17-inch notebook reflector and incorporated into an actual notebook PC to evaluate the sound when it was opened and closed.
〇· · ·音がならない ○ No sound
△ · · ·音がかすかにする △ · · · Sound is faint
X · · ·音がする X · · · Sound
[0152] (5)平均粒径 [0152] (5) Average particle size
(株)島津製作所製の型式「SS— 100」の粉体比表面測定器 (透過法)を用い、断 面積 2cm2、高さ lcmの試料筒に試料 3gを充填して、 500mm水柱で 20ccの空気透 過の時間より、平均粒径を算出した。 Using a powder specific surface measuring instrument (transmission method) of model “SS-100” manufactured by Shimadzu Corporation, fill a sample tube with a cross-sectional area of 2 cm 2 and a height of 1 cm with 3 g of sample and 20 cc with a 500 mm water column. The average particle size was calculated from the air permeation time.
[0153] (6)酸ィ匕チタン中のニオブ濃度 (ppm) [0153] ( 6 ) Niobium concentration in acid 匕 titanium (ppm)
JIS M— 8321「チタン鉱石 ニオブ定量方法」に基づいてニオブ含有量を測定し た。すなわち、試料を 0. 5gはかり取り、この試料を、融解合剤 [水酸化ナトリウム:過 酸化ナトリウム = 1 : 2 (質量比)] 5gが入れられたニッケル製るつぼに移し入れ、かき 混ぜた後、その試料の表面を約 2gの無水炭酸ナトリウムで覆い、るつぼ内で試料を 加熱融解して融成物を形成した。この融成物を、るつぼ内に入れたままの状態で放 冷した後、融成物に温水 100ml及び塩酸 50mlを少量ずつ加えて溶解させて、さら に水をカ卩えて 250mlにメスアップした。この溶液を、 ICP発光分光装置で測定し、二 ォブ含有量を求めた。ただし、測定波長は 309. 42nmとした。 The niobium content was measured based on JIS M-8321 “Ti ore and niobium determination method”. That is, 0.5 g of a sample is weighed, and this sample is transferred to a nickel crucible containing 5 g of a molten mixture [sodium hydroxide: sodium peroxide = 1: 2 (mass ratio)] and stirred. The surface of the sample was covered with about 2 g of anhydrous sodium carbonate, and the sample was heated and melted in a crucible to form a melt. The melt was allowed to cool in the state of being put in a crucible, and then 100 ml of warm water and 50 ml of hydrochloric acid were added to the melt to dissolve it, and water was added to make up to 250 ml. . This solution was measured with an ICP emission spectrophotometer to determine the niobium content. However, the measurement wavelength was 309.42 nm.
[0154] [実施例 1] [0154] [Example 1]
重量平均分子量 20万の乳酸系重合体(NW4032D:カーギルダウポリマー社製、 L体: D体 = 98. 5 : 1. 5、ガラス転移温度 65°C) 70質量部に、平均粒径 0. 25 の酸化チタン(ルチル型、ニオブ濃度 430ppm;シリカ、アルミナおよびジルコユアに よる表面処理あり、塩素法プロセスにより製造) 30質量部の割合で混合した榭脂組成 物を、 220°Cに設定された押出機で溶融し、押出し、キャストロールで冷却し、ここで 摩擦調整剤として、エレクトロストリッパー AC (;商品名、花王製、組成:直鎖アルキル ベンゼンスルホン酸系)の溶液を、乾燥後の厚みが 0. 1 μ mとなるようにキャスト面に 塗布し、温度 65°Cで MDに 2. 5倍、 TDに 2. 8倍に 2軸延伸した後、 140°Cで熱処 理して厚さ 75 μ mのキャストシートを得た。
[0155] 次いで、該キャストシートとステンレス鋼板(厚さ 0. lmm、 SUS304)との間に、テレ フタル酸ーイソフタル酸ポリエステル共重合体(共重合 PET)からなる厚さ 15 μ mの フィルムを介在させ、 180°Cで熱融着し、厚さ約 190 mの光反射体を得た。 Lactic acid-based polymer having a weight average molecular weight of 200,000 (NW4032D: manufactured by Cargill Dow Polymer Co., Ltd., L-form: D-form = 98.5: 1.5, glass transition temperature 65 ° C) Titanium oxide of 25 (rutile type, niobium concentration 430ppm; surface treatment with silica, alumina and zircoure, manufactured by chlorine process) A mixture of 30 parts by weight of a resin composition was set at 220 ° C Melt with an extruder, extrude, cool with a cast roll, where a solution of Electro Stripper AC (; trade name, manufactured by Kao, composition: linear alkyl benzene sulfonic acid series) as a friction modifier, thickness after drying Is applied to the cast surface to a thickness of 0.1 μm, stretched biaxially 2.5 times to MD and 2.8 times to TD at a temperature of 65 ° C, and then heat-treated at 140 ° C. A cast sheet having a thickness of 75 μm was obtained. [0155] Next, a 15 μm-thick film composed of a terephthalic acid-isophthalic acid polyester copolymer (copolymerized PET) is interposed between the cast sheet and a stainless steel plate (thickness: 0.1 mm, SUS304). And heat-sealed at 180 ° C. to obtain a light reflector having a thickness of about 190 m.
この光反射体について、静摩擦係数、動摩擦係数、密着性、反射率及びノイズ音 評価を行い、その結果を表 1に示した。 This light reflector was evaluated for static friction coefficient, dynamic friction coefficient, adhesion, reflectivity, and noise noise, and the results are shown in Table 1.
[0156] [実施例 2] [0156] [Example 2]
実施例 1にお 、て摩擦調整剤として使用したエレクトロストッパ ACの代わりに、リケ マール A (;商品名、理研ビタミン製、組成:ショ糖脂肪酸エステル系)を用いた以外 は、全て実施例 1と同様に光反射体を得、静摩擦係数、動摩擦係数、密着性、反射 率及びノイズ音評価を行 ヽ、その結果を表 1に示した。 In Example 1, except for using Riquemar A (; trade name, manufactured by Riken Vitamin Co., Ltd., composition: sucrose fatty acid ester system) instead of Electrostopper AC used as a friction modifier, Example 1 A light reflector was obtained in the same manner as described above, and the static friction coefficient, dynamic friction coefficient, adhesion, reflectance, and noise sound were evaluated, and the results are shown in Table 1.
[0157] [比較例 1] [0157] [Comparative Example 1]
重量平均分子量 20万の乳酸系重合体(NW4032D:カーギルダウポリマー社製、 L体: D体 = 98. 5 : 1. 5、ガラス転移温度 65°C) 70質量部に、平均粒径 0. 25 の酸化チタン(ルチル型、ニオブ濃度 430ppm;シリカ、アルミナおよびジルコユアに よる表面処理あり、塩素法プロセスにより製造) 30質量部の割合で混合した榭脂組成 物を、 220°Cに設定された押出機で溶融し、押出し、キャストロールで冷却し、摩擦 調整剤を塗布しないで、温度 65°Cで MDに 2. 5倍、 TDに 2. 8倍に 2軸延伸した後、 140°Cで熱処理して、厚さ 75 μ mのキャストシートを得た。 Lactic acid-based polymer having a weight average molecular weight of 200,000 (NW4032D: manufactured by Cargill Dow Polymer Co., Ltd., L-form: D-form = 98.5: 1.5, glass transition temperature 65 ° C) Titanium oxide of 25 (rutile type, niobium concentration: 430 ppm; surface treatment with silica, alumina and zircoure, manufactured by chlorine process) Melt with an extruder, extrude, cool with a cast roll, and without applying a friction modifier, at a temperature of 65 ° C, biaxially stretched 2.5 times to MD and 2.8 times to TD, then 140 ° C And a cast sheet having a thickness of 75 μm was obtained.
[0158] 次いで、該キャストシートとステンレス鋼板(厚さ 0. lmm、 SUS304)との間に、テレ フタル酸ーイソフタル酸ポリエステル共重合体(共重合 PET)からなる厚さ 15 μ mの フィルムを介在させ、 180°Cで熱融着し、厚さ約 190 mの光反射体を得た。 [0158] Next, a 15 μm thick film made of terephthalic acid-isophthalic acid polyester copolymer (copolymerized PET) is interposed between the cast sheet and the stainless steel plate (thickness: 0.1 mm, SUS304). And heat-sealed at 180 ° C. to obtain a light reflector having a thickness of about 190 m.
この光反射体について、静摩擦係数、動摩擦係数、密着性、反射率及びノイズ音 評価を行い、その結果を表 1に示した。 This light reflector was evaluated for static friction coefficient, dynamic friction coefficient, adhesion, reflectivity, and noise noise, and the results are shown in Table 1.
[0159] [表 1] 摩擦係数 [0159] [Table 1] Friction coefficient
摩擦調整剤 反射率 ノィズ音 密着性 Friction modifier Reflectance Noise Noise Adhesion
静摩擦係数 動摩擦係数 Coefficient of static friction Coefficient of dynamic friction
実施例 1 エレク トロス トリッパ A C 100. 2 0. 46 0. 36 〇 〇 実施例 2 リケマール A 100. 2 0. 44 0. 35 〇 〇 比較例 1 なし 100. 2 0. 51 0. 45 X 〇
[0160] [実施例 3] Example 1 Electric stripper AC 100. 2 0. 46 0. 36 ○ ○ Example 2 Riquemar A 100. 2 0. 44 0. 35 ○ ○ Comparative example 1 None 100. 2 0. 51 0. 45 X ○ [0160] [Example 3]
重量平均分子量 20万の乳酸系重合体(NW4032D:カーギルダウポリマー社製、 L体: D体 = 98. 5 : 1. 5、ガラス転移温度 65°C) 70質量部に、平均粒径 0. 25 の酸化チタン(ルチル型、ニオブ濃度 430ppm;シリカ、アルミナおよびジルコユアに よる表面処理あり、塩素法プロセスにより製造) 30質量部の割合で混合した榭脂組成 物を、 220°Cに設定された押出機で溶融し、押出し、キャストロールで冷却し、温度 6 5°Cで MDに 2. 5倍、 TD〖こ 2. 8倍に 2軸延伸したあと、 140°Cで熱処理し厚さ 75 mのフィルム(A層)を得た。 Lactic acid-based polymer having a weight average molecular weight of 200,000 (NW4032D: manufactured by Cargill Dow Polymer Co., Ltd., L-form: D-form = 98.5: 1.5, glass transition temperature 65 ° C) Titanium oxide of 25 (rutile type, niobium concentration 430ppm; surface treatment with silica, alumina and zircoure, manufactured by chlorine process) A mixture of 30 parts by weight of a resin composition was set at 220 ° C Melted with an extruder, extruded, cooled with a cast roll, and biaxially stretched 2.5 times to MD and 2. 8 times to MD at a temperature of 65 ° C, then heat treated at 140 ° C to a thickness of 75 An m film (A layer) was obtained.
[0161] 次いで、この A層の反射使用面側に 6官能アタリレートモノマ 50質量部、表面をァク リレートイ匕した平均粒径 20nmのシリカ微粒子 30質量部、光重合開始剤 5質量部、メ チルェチルケトン 15質量部を混合し、ロールコーターにて乾燥後膜厚 2 mになるよ うに塗工し、溶剤乾燥後、高圧水銀灯により紫外線を 300miZcm2照射して B層を形 成した。 Next, 50 parts by mass of a hexafunctional acrylate monomer on the reflective use surface side of this A layer, 30 parts by mass of silica fine particles having an average particle diameter of 20 nm with the surface being transparent, 5 parts by mass of a photopolymerization initiator, 15 parts by mass of tilethyl ketone was mixed, dried with a roll coater and coated to a thickness of 2 m, dried with a solvent, and irradiated with 300 miZcm 2 of ultraviolet light with a high-pressure mercury lamp to form layer B.
[0162] 次いで、該 B層 ZA層とステンレス鋼板(厚さ 0. lmm、 SUS304)との間に、テレフ タル酸 イソフタル酸ポリエステル共重合体(共重合 PET)からなる厚さ 15 μ mのフィ ルムを介在させ、 180°Cで熱融着し、厚さ約 192 mの光反射体を得た。 [0162] Next, a 15 μm-thick fiber made of terephthalic acid isophthalic acid polyester copolymer (copolymerized PET) is formed between the B layer ZA layer and a stainless steel plate (thickness: 0.1 mm, SUS304). Lum was interposed and heat-sealed at 180 ° C to obtain a light reflector with a thickness of about 192 m.
[0163] この光反射体にっ 、て、上記の滑り性、密着性、反射率評価、ノイズ音評価を行つ た。評価結果を表 2に示す。 [0163] This light reflector was subjected to the above-described slipperiness, adhesion, reflectance evaluation, and noise sound evaluation. Table 2 shows the evaluation results.
[0164] [比較例 2] [0164] [Comparative Example 2]
重量平均分子量 20万の乳酸系重合体(NW4032D:カーギルダウポリマー社製、 L体: D体 = 98. 5 : 1. 5、ガラス転移温度 65°C) 70質量部に、平均粒径 0. 25 の酸化チタン(ルチル型、ニオブ濃度 430ppm;シリカ、アルミナおよびジルコユアに よる表面処理あり、塩素法プロセスにより製造) 30質量部の割合で混合した榭脂組成 物を、 220°Cに設定された押出機で溶融し、押出し、キャストロールで冷却し、温度 6 5°Cで MDに 2. 5倍、 TD〖こ 2. 8倍に 2軸延伸したあと、 140°Cで熱処理し厚さ 75 mのフィルム(A層)を得た。 Lactic acid-based polymer having a weight average molecular weight of 200,000 (NW4032D: manufactured by Cargill Dow Polymer Co., Ltd., L-form: D-form = 98.5: 1.5, glass transition temperature 65 ° C) Titanium oxide of 25 (rutile type, niobium concentration 430ppm; surface treatment with silica, alumina and zircoure, manufactured by chlorine process) A mixture of 30 parts by weight of a resin composition was set at 220 ° C Melted with an extruder, extruded, cooled with a cast roll, and biaxially stretched 2.5 times to MD and 2. 8 times to MD at a temperature of 65 ° C, then heat treated at 140 ° C to a thickness of 75 An m film (A layer) was obtained.
[0165] 次いで、 A層の反射使用面側に、実施例 1における B層を塗布せずに、 A層とステ ンレス鋼板(厚さ 0. lmm、 SUS304)との間に、テレフタル酸一イソフタル酸ポリエス
テル共重合体(共重合 PET)力もなる厚さ 15 mのフィルムを介在させ、 180°Cで熱 融着し、厚さ約 190 mの光反射体を得た。 [0165] Next, without applying the B layer in Example 1 on the reflective use surface side of the A layer, between the A layer and the stainless steel plate (thickness: 0.1 mm, SUS304), monoisophthalate terephthalate. Acid polyester A 15 m thick film with a tercopolymer (copolymerized PET) force was interposed and heat-sealed at 180 ° C to obtain a light reflector with a thickness of about 190 m.
[0166] この光反射体にっ 、て、上記の滑り性、密着性、反射率評価、ノイズ音評価を行つ た。評価結果を表 2に示す。 [0166] This light reflector was subjected to the above-mentioned slipperiness, adhesion, reflectance evaluation, and noise sound evaluation. Table 2 shows the evaluation results.
表 2から明らかなように、表面に電離放射線硬化型榭脂からなる B層を備えた実施 例 3の光反射体は、表面に B層を有しない比較例 2の光反射体に比べて、密着性お よび反射率を損なうことなくノイズ音を低下することができた。
As is apparent from Table 2, the light reflector of Example 3 provided with a B layer made of ionizing radiation curable resin on the surface was compared with the light reflector of Comparative Example 2 having no B layer on the surface. Noise noise could be reduced without impairing adhesion and reflectivity.
Claims
[1] 脂肪族ポリエステル系榭脂及び微粉状充填剤を含有してなる A層が、金属板の片 面側若しくは両面側に積層されてなる構成を備えた光反射体であって、少なくとも光 反射体の片面側の表面の静摩擦係数が 0. 49以下であり、且つ、動摩擦係数が 0. [1] A light reflector having a configuration in which an A layer containing an aliphatic polyester-based resin and a fine powder filler is laminated on one side or both sides of a metal plate, and includes at least light The static friction coefficient of the surface on one side of the reflector is 0.49 or less, and the dynamic friction coefficient is 0.
42以下である光反射体。 A light reflector that is 42 or less.
[2] 少なくとも片面側の A層の表面の静摩擦係数が 0. 49以下であり、且つ、動摩擦係 数が 0. 42以下である請求項 1に記載の光反射体。 2. The light reflector according to claim 1, wherein the static friction coefficient of the surface of the A layer on at least one side is 0.49 or less and the dynamic friction coefficient is 0.42 or less.
[3] 少なくとも片面側の A層の表面側に、熱硬化型榭脂または電離放射線硬化型榭脂 から形成された B層を備え、該 B層の表面の静摩擦係数が 0. 49以下であり、且つ、 動摩擦係数が 0. 42以下である請求項 1に記載の光反射体。 [3] A layer B formed of thermosetting resin or ionizing radiation curable resin is provided on the surface side of layer A on at least one side, and the coefficient of static friction of the surface of layer B is 0.49 or less. The light reflector according to claim 1, wherein the coefficient of dynamic friction is 0.42 or less.
[4] A層の脂肪族ポリエステル系榭脂が、乳酸系重合体であることを特徴とする請求項[4] The aliphatic polyester-based resin of layer A is a lactic acid-based polymer.
1乃至 3の何れかに記載の光反射体。 The light reflector according to any one of 1 to 3.
[5] A層が含有する微粉状充填剤は、 A層全体に対して 10質量%〜60質量%の割合 で含有されることを特徴とする請求項 1乃至 4の何れかに記載の光反射体。 [5] The light according to any one of claims 1 to 4, wherein the fine powder filler contained in the A layer is contained in a proportion of 10% by mass to 60% by mass with respect to the entire A layer. Reflector.
[6] A層が含有する微粉状充填剤は、酸ィ匕チタンであることを特徴とする請求項 1乃至[6] The fine powder filler contained in the A layer is titanium oxide.
5の何れかに記載の光反射体。 6. The light reflector according to any one of 5.
[7] A層が含有する微粉状充填剤は、ニオブ含有量が 500ppm以下の酸ィ匕チタンであ ることを特徴とする請求項 1乃至 6の何れかに記載の光反射体。 [7] The light reflector according to any one of [1] to [6], wherein the fine powder filler contained in the A layer is titanium oxide with a niobium content of 500 ppm or less.
[8] A層が含有する微粉状充填剤は、酸ィ匕チタンであり、その表面がシリカ、アルミナ、 及びジルコユアの群カゝら選ばれる少なくとも 1種類の不活性無機酸ィ匕物で被覆され たものであることを特徴とする請求項 1乃至 7の何れかに記載の光反射体。 [8] The fine powder filler contained in the A layer is titanium oxide, and the surface thereof is coated with at least one inert inorganic acid selected from the group consisting of silica, alumina, and zirconium oxide. The light reflector according to claim 1, wherein the light reflector is a light reflector.
[9] 請求項 1乃至 8の何れかに記載の光反射体を用いた液晶表示装置用バックライト 装置。
[9] A backlight device for a liquid crystal display device using the light reflector according to any one of claims 1 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007533798A JP4769812B2 (en) | 2005-12-22 | 2006-12-19 | Light reflector |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-369692 | 2005-12-22 | ||
JP2005369692 | 2005-12-22 | ||
JP2006023197 | 2006-01-31 | ||
JP2006-023197 | 2006-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007072801A1 true WO2007072801A1 (en) | 2007-06-28 |
Family
ID=38188579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/325233 WO2007072801A1 (en) | 2005-12-22 | 2006-12-19 | Light-reflecting body |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP4769812B2 (en) |
TW (1) | TW200732142A (en) |
WO (1) | WO2007072801A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009053604A (en) * | 2007-08-29 | 2009-03-12 | Teijin Dupont Films Japan Ltd | White polyester film for reflection plate |
WO2012036061A1 (en) * | 2010-09-15 | 2012-03-22 | シャープ株式会社 | Illumination device, display device, and television receiver |
WO2012132895A1 (en) * | 2011-03-29 | 2012-10-04 | 東レ株式会社 | White-colored reflection film for edge-light type backlight, and liquid crystal display backlight using same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000249815A (en) * | 1999-03-03 | 2000-09-14 | Mitsui Chemicals Inc | Reflector and its processing method and reflection member using the same |
WO2003002337A1 (en) * | 2001-06-27 | 2003-01-09 | Zeon Corporation | Laminate and light-reflecting sheet |
JP2004012921A (en) * | 2002-06-07 | 2004-01-15 | Mitsui Chemicals Inc | Reflector, side light type back light device using it, and liquid crystal display |
WO2004104077A1 (en) * | 2003-05-20 | 2004-12-02 | Mitsubishi Plastics, Inc. | Aliphatic polyester based resin reflection film and reflection plate |
JP2005154566A (en) * | 2003-11-26 | 2005-06-16 | Mitsubishi Polyester Film Copp | Polyester film for vapor deposition |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3732641B2 (en) * | 1998-01-19 | 2006-01-05 | 三菱樹脂株式会社 | Light reflector with excellent press workability |
JP2001130179A (en) * | 1999-11-01 | 2001-05-15 | Konica Corp | Image recording body and method for manufacturing the same |
EP1679183A4 (en) * | 2003-10-27 | 2008-11-05 | Mitsubishi Plastics Inc | Reflective film |
-
2006
- 2006-12-19 WO PCT/JP2006/325233 patent/WO2007072801A1/en active Application Filing
- 2006-12-19 JP JP2007533798A patent/JP4769812B2/en not_active Expired - Fee Related
- 2006-12-22 TW TW095148364A patent/TW200732142A/en not_active IP Right Cessation
-
2011
- 2011-01-25 JP JP2011013031A patent/JP2011150348A/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000249815A (en) * | 1999-03-03 | 2000-09-14 | Mitsui Chemicals Inc | Reflector and its processing method and reflection member using the same |
WO2003002337A1 (en) * | 2001-06-27 | 2003-01-09 | Zeon Corporation | Laminate and light-reflecting sheet |
JP2004012921A (en) * | 2002-06-07 | 2004-01-15 | Mitsui Chemicals Inc | Reflector, side light type back light device using it, and liquid crystal display |
WO2004104077A1 (en) * | 2003-05-20 | 2004-12-02 | Mitsubishi Plastics, Inc. | Aliphatic polyester based resin reflection film and reflection plate |
JP2005154566A (en) * | 2003-11-26 | 2005-06-16 | Mitsubishi Polyester Film Copp | Polyester film for vapor deposition |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009053604A (en) * | 2007-08-29 | 2009-03-12 | Teijin Dupont Films Japan Ltd | White polyester film for reflection plate |
WO2012036061A1 (en) * | 2010-09-15 | 2012-03-22 | シャープ株式会社 | Illumination device, display device, and television receiver |
WO2012132895A1 (en) * | 2011-03-29 | 2012-10-04 | 東レ株式会社 | White-colored reflection film for edge-light type backlight, and liquid crystal display backlight using same |
JP5218931B2 (en) * | 2011-03-29 | 2013-06-26 | 東レ株式会社 | White reflective film for edge light type backlight and backlight for liquid crystal display using the same |
CN103443529A (en) * | 2011-03-29 | 2013-12-11 | 东丽株式会社 | White-colored reflection film for edge-ight type backlight, and liquid crystal display backlight using same |
US9625120B2 (en) | 2011-03-29 | 2017-04-18 | Toray Industries, Inc. | White reflective film for edge-light type backlight, and liquid crystal display backlight using same |
Also Published As
Publication number | Publication date |
---|---|
JP2011150348A (en) | 2011-08-04 |
JP4769812B2 (en) | 2011-09-07 |
TWI356768B (en) | 2012-01-21 |
TW200732142A (en) | 2007-09-01 |
JPWO2007072801A1 (en) | 2009-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5363206B2 (en) | Optical polyester film | |
TWI424201B (en) | Reflective film | |
JP2009042421A (en) | White polyester film for liquid crystal display reflector | |
WO2006054626A1 (en) | Light reflector and process for producing the same | |
JPWO2005039872A1 (en) | Reflective film | |
JPWO2007069541A1 (en) | Reflective film | |
JP4913476B2 (en) | Reflective film and reflector using the same | |
JP3986920B2 (en) | Polyester film and light diffuser | |
JP4769812B2 (en) | Light reflector | |
JP2005181648A (en) | Light scattering polyester film for prism sheet | |
JP6862829B2 (en) | White reflective film | |
WO2006009135A1 (en) | Reflecting film of aliphatic polyester resin and reflector | |
JP4791028B2 (en) | Light reflector and light reflector manufacturing method | |
JP2007030284A (en) | Reflective aliphatic polyester resin film | |
JP4791609B2 (en) | Light reflecting plate and method of manufacturing light reflecting plate | |
JP2009214356A (en) | Biaxially oriented laminated polyester film | |
JP2006145568A (en) | Aliphatic polyester resin reflection film and reflecting plate | |
JP4630642B2 (en) | Aliphatic polyester resin reflective film and reflector | |
JP2007186561A (en) | Light reflecting white polyester film | |
JP2007033738A (en) | Aliphatic polyester resin reflecting film | |
JP2009241575A (en) | Biaxially oriented laminated polyester film | |
JP5607520B2 (en) | Optical polyester film | |
JP2006051712A (en) | Coextrusion-laminated polyesther film | |
JP4695024B2 (en) | Light reflector | |
JP2006145917A (en) | Light reflecting body and manufacturing method of light reflecting body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2007533798 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06834943 Country of ref document: EP Kind code of ref document: A1 |