[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007069628A1 - 人工皮革用基材およびその基材を用いた人工皮革 - Google Patents

人工皮革用基材およびその基材を用いた人工皮革 Download PDF

Info

Publication number
WO2007069628A1
WO2007069628A1 PCT/JP2006/324812 JP2006324812W WO2007069628A1 WO 2007069628 A1 WO2007069628 A1 WO 2007069628A1 JP 2006324812 W JP2006324812 W JP 2006324812W WO 2007069628 A1 WO2007069628 A1 WO 2007069628A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial leather
fibers
ultrafine
fiber
cross
Prior art date
Application number
PCT/JP2006/324812
Other languages
English (en)
French (fr)
Inventor
Michinori Fujisawa
Jiro Tanaka
Tsuyoshi Yamasaki
Norio Makiyama
Yoshiyuki Ando
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to US12/097,659 priority Critical patent/US7932192B2/en
Priority to JP2007550189A priority patent/JP4847472B2/ja
Priority to CN2006800465178A priority patent/CN101326323B/zh
Priority to EP20060834567 priority patent/EP1970486B1/en
Priority to KR1020087014143A priority patent/KR101317055B1/ko
Publication of WO2007069628A1 publication Critical patent/WO2007069628A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/105Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/904Artificial leather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/682Needled nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/689Hydroentangled nonwoven fabric

Definitions

  • the present invention relates to a base material for artificial leather.
  • this artificial leather base material it has a very fine and elegant navy-toned appearance and excellent color development, but also has excellent surface wear durability such as pilling resistance, and is soft.
  • Silver surface-like artificial leather can be manufactured. Background art
  • napped artificial leathers such as suede artificial leather and nubuck artificial leather in which napped fibers having a fiber bundle force are formed on the surface of a substrate composed of a fiber bundle and a polymer elastic body are known.
  • Napped-toned artificial leather is required in terms of sensibility such as appearance (surface feel closer to that of natural leather), texture (combination of flexibility and moderate swelling), color development (color clarity and density) It is required to satisfy all the requirements in terms of physical properties such as light resistance, pilling resistance, and wear resistance, and various proposals have been made to solve this. .
  • a method of making the fibers constituting the artificial leather into ultrafine fibers is generally used.
  • a method of manufacturing artificial leather made of ultrafine fibers a method of splitting composite fibers such as sea-island type and multilayer bonded type, or transforming them into ultrafine fiber bundles by decomposing or extracting and removing one component is widely adopted.
  • Speak. Napped-toned artificial leather and silver-faced artificial leather using a base material for artificial leather containing a polymer elastic body in a non-woven fabric composed of ultrafine fiber bundles obtained from the composite fibers are highly evaluated in terms of appearance and texture. Have gained. However, as the fineness is reduced, the color developability deteriorates and the sharpness and density are significantly inferior. Satisfying quality requirements.
  • a spun fiber is cut into a length of 100 mm or less to form staple fibers, which are used for a card method or a papermaking method.
  • the most common method is a non-woven web having a desired basis weight, and a plurality of the non-woven webs are stacked as necessary, and then the fibers are entangled by a needle punch method or a spun lace method.
  • a base material for artificial leather is manufactured from a nonwoven fabric structure having a desired bulkiness and entanglement degree manufactured by these methods.
  • the napped-tone artificial leather and the silver-tone artificial leather using such a base material for artificial leather are particularly highly evaluated in terms of texture.
  • the stable fibers constituting the nonwoven fabric structure are fixed in the base material by the entanglement between the fibers and the contained polymer elastic body.
  • the fiber length is short, so the tendency of the nonwoven fabric structure to be pulled out or fall off is relatively inevitable. This tendency reduces important surface properties such as the friction durability of the raised surface and the adhesive peel strength of the silver layer.
  • a general method is to increase the degree of entanglement of the nonwoven fabric structure, to bond the fibers together, or to contain a large amount of polymer elastic body to strongly restrain the fibers. Has been adopted.
  • the degree of entanglement is increased or the content of the elastic polymer is increased, on the other hand, the texture of the artificial leather is remarkably deteriorated, and the appearance, texture and surface properties can be satisfied at the same time. It was difficult.
  • Umishima type fiber cartridges that generate ultrafine fiber bundles composed of ultrafine fibers of 0.8 denier or less are described.
  • the one-punch punched nonwoven fabric is immersed in an aqueous solution of polybulualcohol (PVA) and dried to temporarily fix the shape of the nonwoven fabric; an organic solvent that dissolves the sea components of sea-island fibers The sea component is extracted and removed; a polyurethane dimethylformamide (hereinafter abbreviated as DMF) solution is impregnated and solidified; and then the suede-like artificial leather obtained by raising the surface is proposed.
  • PVA polybulualcohol
  • DMF polyurethane dimethylformamide
  • Patent Document 2 a leather-like base material obtained by impregnating and solidifying a DMF solution of polyurethane in a one-dollar punch entangled nonwoven fabric comprising a sea-island fiber knitted fabric, and then extracting and removing sea components in Suede-like artificial leather is manufactured by raising.
  • Fiber constituting the base material The bundle consists of fine fibers (A) of 0.02 to 0.2 denier and ultrafine fibers (B) with a fineness of 1Z5 or less and an average fineness of fine fibers (A) of less than 0.02 denier. B) is 2Zl ⁇ 2Z3.
  • the fiber bundle contains substantially no polymer elastic body, and the ratio (AZB) of the number of fine fibers (A) to ultrafine fibers (B) in the napped fibers is 3Z1 or more.
  • Patent Document 4 in order to obtain a long-fiber non-woven fabric that can be converted into a nubuck-like artificial leather with a fine surface touch, long fibers are actively cut when entangled with a needle punch. It has been proposed that the cut ends of 5 ⁇ : LOO Zmm 2 fibers are developed on the surface of the nonwoven fabric to eliminate the distortion caused by the characteristic entanglement treatment in the long fiber nonwoven fabric.
  • fiber bundles are present in the range of 5 to 70 per lcm width (that is, oriented in the thickness direction by the needle punch in any cross section parallel to the thickness direction of the nonwoven fabric. The total area occupied by the fiber bundle is 5 to 70% of the cross-sectional area in any cross section perpendicular to the thickness direction of the nonwoven fabric. Propose to be in the range.
  • Patent Document 5 is composed of long fibers that can be converted into ultrafine fibers of 0.5 de or less, the degree of crimp of the long fibers is 10% or less, and the fiber density of the nonwoven fabric is 0.25-0. Propose a 50gZcm 3 long fiber entangled nonwoven fabric!
  • the cut end is expressed so as not to reduce the physical properties to the target level or less.
  • the entanglement treatment of Patent Document 4 is performed by uniformly cutting the long fibers on the surface that are not necessary for entanglement of the long fibers with each other from the surface of the long fiber nonwoven fabric to the inside and further to the opposite surface.
  • the fibers that are entangled to obtain a long-fiber nonwoven fabric structure are very thick fibers of 2.8 deniers as in the case of conventional short fibers, so the long fibers cannot be sufficiently entangled and densified. It is difficult to obtain a high-quality nubuck-like artificial leather as intended by the present invention.
  • Patent Document 1 JP-A-53-34903 (pages 3-4)
  • Patent Document 2 JP-A-7-173778 (Pages 1 and 2)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 57-154468 (pages 1 and 2)
  • Patent Document 4 JP 2000-273769 A (pages 3-5)
  • Patent Document 5 Japanese Patent Laid-Open No. 11 200219 (pages 2 to 3)
  • the present invention is an artificial leather base material that has both the sensitivity performance and the physical property performance that have been recognized as contradictory performance in the past, with a V-thickness deviation at a high level. It is to provide a base material for leather. By using the base material of the present invention, it becomes possible to obtain an artificial leather that has both high quality and high V physical properties that have not existed before.
  • the artificial leather obtained by the present invention has the above properties at a high level, it is used for clothing represented by jackets, skirts, shirts and coats, and for footwear represented by sports shoes and men's shoes.
  • clothing such as belts
  • bags represented by handbags and school bags for furniture represented by sofas and office chairs, and for vehicle seats and interior materials represented by passenger cars and trains
  • sports gloves such as golf gloves, batting gloves, baseball gloves, driving gloves, and various hand bags represented by work gloves.
  • the present invention relates to a non-woven fabric structure composed of ultrafine fiber bundles and a base material for artificial leather composed of a polymer elastic body contained therein, (1) to (4) below:
  • the ultrafine fiber bundle is formed by an average of 6 to 150 bundled ultrafine fibers!
  • the cross-sectional area of the ultra-fine fibers forming the ultra-fine fiber bundle is 27 m 2 or less, and the cross-sectional area of the ultra-fine fibers of 80% or more is in the range of 0.9 to 25 ⁇ m 2.
  • the average cross-sectional area of the ultrafine fiber bundles is in a range of 15 ⁇ 150 m 2
  • the cross-section of the ultrafine fiber bundle exists in an average range of 1000 to 3000 Zmm 2 ! /
  • the present invention further includes the following steps (a), (b), (c) and (d), or (a), (b), (d) and And (c) in order, and relates to a method for producing a base material for artificial leather.
  • (d) A step of transforming the sea-island fibers into ultrafine fiber bundles by extracting or decomposing sea component polymers from the sea-island fibers constituting the nonwoven fabric structure.
  • the ultrafine fiber bundles are gathered in an unconventional dense state, so that a surface state excellent in smoothness with extremely high denseness can be obtained.
  • the base material for human leather of the present invention has a smooth and elegant appearance that is not inferior to that of natural leather, and also has excellent surface friction durability such as coloring, swelling texture, and pilling resistance. Excellent napped-tone artificial leather can be obtained.
  • the artificial leather substrate of the present invention includes, for example, the following steps (a), (b), (c) and (d), or (a), (b), (d) and It can be obtained by performing in the order of (c).
  • the sea component polymer and island component polymer are extruded through a composite spinneret, and the sea-island fiber is melt spun.
  • the nozzle for composite spinning has nozzle holes capable of forming a cross-sectional state in which any number of island component polymers is dispersed in the range of 6 to 150 on average in the sea component polymer.
  • a structure in which a plurality of lines arranged in a straight line are arranged in parallel is preferable.
  • the average cross-sectional area of the sea-island fiber obtained is 30% when discharged from the die in a molten state at a temperature condition such that the die temperature is any temperature in the temperature range of 180 to 350 ° C while adjusting the amount or supply pressure.
  • the long fiber is a fiber having a fiber length longer than that of a short fiber having a fiber length of usually about 3 to 80 mm and is not intentionally cut like a short fiber.
  • the length of long fibers before ultra-thinning is 100 mm or more, and it can be manufactured technically, and it is several meters, hundreds of meters, several km or more unless it is physically cut. The fiber length is also included.
  • the melt-spun sea-island fiber is accumulated in a collection surface such as a net in a random orientation state without being cut to produce a long fiber web having a desired basis weight (preferably 10 to: LOOOgZm 2 ).
  • the long fiber web is laminated with a plurality of layers in the thickness direction using a cross wrapper if necessary, and then at least one parb penetrates from both sides simultaneously or alternately under the condition of one dollar punch
  • the fibers are three-dimensionally entangled with each other, and sea-island type fibers are present at an average density of 600 to 4000 Zmm 2 in a cross section parallel to the thickness direction.
  • An assembled nonwoven fabric structure is obtained.
  • the long fiber web may be provided with an oil agent at any stage after its manufacture and until the entanglement!
  • the entangled state may be made denser by shrinking treatment such as introduction into warm water set to any temperature in the temperature range of 70 to 150 ° C.
  • shrinking treatment such as introduction into warm water set to any temperature in the temperature range of 70 to 150 ° C.
  • the heat press treatment allows the fibers to gather together more densely, fixing the form of the nonwoven structure. Please do it.
  • the average apparent density of the nonwoven fabric structure is preferably any value in the range of 0.1 to 0.6 g / cm 3 .
  • the average apparent density is determined by a method that does not apply a load such as compression, for example, a method based on cross-sectional observation with an electron microscope or the like.
  • the basis weight of the non-woven structure is usually 100 to 2000gZm 2 ! /.
  • a non-woven fabric structure in which sea-island fibers are gathered very densely to a predetermined level is impregnated with a polymer elastic body solution, and the polymer elastic body is solidified by a wet method.
  • the sea component polymer is extracted or decomposed from the sea-island fiber constituting the nonwoven structure to remove it, and the sea-island fiber is transformed into an ultrafine fiber bundle.
  • a step of forming napped fibers such as ultrafine fibers on at least one surface is a step of forming napped fibers such as ultrafine fibers on at least one surface.
  • the obtained artificial leather base material is further subjected to step (h) and then (i) as necessary to obtain a silver-tone artificial leather having the effects of the present invention. Obtainable.
  • the sea-island fiber constituting the nonwoven fabric structure of the present invention is a multicomponent composite fiber composed of at least two kinds of polymers, and is a sea component polymer mainly constituting the outer periphery of the fiber in the fiber cross section.
  • it is a fiber with a cross-sectional shape in which different types of island component polymers are distributed.
  • the island component polymer is normally distributed in a circular shape or a shape close to that due to the effect of surface tension. Of course, depending on the ratio of the sea component polymer to the island component polymer, it may be distributed in a polygonal shape.
  • This sea-island fiber is formed by extracting or decomposing and removing the remaining sea component polymer at an appropriate stage after it is formed into a nonwoven structure and before or after impregnation with the polymer elastic body.
  • Such a sea-island type fiber can be obtained using a spinning method of a multicomponent composite fiber represented by a conventionally known chip blend (mixed spinning) method or a composite spinning method.
  • the sea-island type fiber has V in the fiber cross section, and the sea component polymer mainly forms the outer periphery of the fiber!
  • a composite fiber having a finer fineness can be employed as a constituent fiber of the nonwoven fabric structure, and the degree of densification due to the entanglement can be further increased.
  • Use to manufacture Compared to exfoliated split-type composite fibers, sea-island fibers have a cross-sectional shape that is closer to a circle, resulting in less anisotropy of fiber bundles, and the fineness of individual ultrafine fibers, i.e., breakage. An ultrafine fiber bundle with high area uniformity can be obtained.
  • the use of sea-island type fibers provides a feeling of flexibility and swelling. A unique texture with a sense of fulfillment can be obtained.
  • the polymer constituting the island component of the sea-island fiber is not particularly limited in the present invention, but is polyethylene terephthalate (hereinafter referred to as PET), polytrimethylene te- ter.
  • Nylon 6, Nylon 66, Nylon 610, Nylon 12 Polyester resin such as phthalate (hereinafter referred to as PTT), polybutylene terephthalate (hereinafter referred to as PBT), polyester elastomer and the like;
  • Polyamide resins such as aromatic polyamides, semi-aromatic polyamides, polyamide elastomers, etc., or modified products thereof; polyolefins such as polypropylene, S, polyurethanes such as polyester, polyurethane;
  • Various polymers having the ability to form are suitable.
  • polyester-based resin such as PET, PTT, cocoon, and modified polyesters such as these are shrunk by heat treatment and the texture and wear resistance, light resistance, or form stability of artificial leather products processed immediately It is particularly preferable in that practical performance such as property is good.
  • polyamide-based fats such as nylon 6, nylon 66, etc. are hygroscopic and supple ultrafine fibers compared to polyester-based fats, so that the processed artificial leather products have a soft and smooth texture.
  • the point power that has a good practical performance such as the napped-toned appearance and antistatic performance.
  • These island component polymers are preferably fiber-forming crystalline resin having a melting point of 180 to 330 ° C, preferably having a melting point of 160 ° C or higher.
  • the melting point of the island component polymer is less than 160 ° C, the shape stability of the obtained ultrafine fiber cannot reach the target level of the present invention, and the practical performance of the artificial leather product is particularly poor. It is not preferable from the point.
  • the melting point is increased from room temperature to 300 to 350 ° C. depending on the type of polymer using a differential scanning calorimeter (hereinafter referred to as DSC) at a temperature rising rate of 10 ° C. Z under a nitrogen atmosphere.
  • DSC differential scanning calorimeter
  • the polymer constituting the ultrafine fiber may be added with a colorant, an ultraviolet absorber, a heat stabilizer, a deodorant, a fungicide, an antibacterial agent and other various stabilizers at the spinning stage.
  • the polymer that constitutes the sea component of sea-island type fibers needs to transform the sea-island type fibers into ultrafine fiber bundles, it must be different in solubility or decomposability in the solvent or decomposing agent from the island component polymer used.
  • This is a polymer that has a low affinity with the island component polymer from the viewpoint of spinning stability, and has a smaller melt viscosity than the island component polymer under the spinning conditions, or a surface tension that is smaller than that of the island component polymer. Polymer It is preferable.
  • the sea component polymer is not particularly limited in the present invention, but preferred specific examples include polyethylene, polypropylene, polystyrene, ethylene propylene copolymer, and ethylene acetate butyl copolymer. Body, styrene ethylene copolymer, styrene acrylic copolymer, polybulal alcohol-based resin, and the like.
  • the ratio of the sea component polymer in the sea-island fiber is preferably set to any ratio in the range of 5 to 70% as an average area ratio in the fiber cross section, more preferably 8 to 60%. Particularly preferred is 12 to 50%.
  • the proportion of the sea component polymer in the sea-island fiber is smaller than 5%, the spinning stability of the sea-island fiber is lowered, so that the industrial productivity is inferior.
  • there are few sea components to be removed there is not enough space to be formed between the ultrafine fiber bundle and the polymer elastic body when the artificial leather base material is manufactured. As a result, it can be used for napped artificial leather or silver artificial leather!
  • a composite spinning die is used for spinning the sea-island type fibers.
  • An island component polymer flow path in which any number in the range of 6 to 150 per nozzle hole is disposed on average, and a sea disposed so as to surround the island component polymer flow path
  • a large number of nozzle holes with component polymer flow paths are arranged in a straight line or a circular shape at equal intervals, and in a straight line, they are arranged in parallel, and in a circular shape, they are arranged in multiple rows concentrically.
  • Molten sea-island type composite fiber consisting of sea component polymer and island component polymer force is continuously ejected from each nozzle hole force.
  • the force directly below the nozzle hole is increased by using a suction device such as an air jet nozzle while cooling and solidifying with cooling air at any stage between the suction device and the suction device described later.
  • a rapid air current is applied to uniformly pull the composite fiber so that it has the desired fineness.
  • the high-speed air current is applied so that the average spinning speed corresponding to the mechanical take-up speed in normal spinning is any speed in the range of 1000 to 6000 mZ.
  • the composite fiber is sucked from the opposite side of the net onto the collection surface of a conveyor belt-shaped mobile net, etc., while the composite fiber is opened by a collision plate or airflow according to the texture of the resulting fiber web.
  • a long fiber web is formed by collecting and depositing.
  • one nozzle suction device is generally used for one base. For this reason, a large number of sea-island fibers converge at the center point of the concentric circle during suction.
  • a plurality of bases are arranged in a straight line to obtain a desired spinning amount, there are almost no fibers between the bundles of sea-island fibers discharged from adjacent bases. Therefore, it is important to open the fiber web in order to obtain a uniform texture. If the compound spinning bases are arranged in parallel, a straight slit-like suction device facing the base is used.
  • the sea-island type fibers from between the rows arranged in parallel are converged at the time of suction, so that a fiber web having a more uniform texture can be obtained as compared with the case of using the concentric arrangement of the bases.
  • the parallel arrangement is preferred over the concentric arrangement.
  • the obtained long fiber web is subjected to pressure bonding while being partially heated or cooled by a press, embossing, or the like, depending on the required form stability in the subsequent process.
  • the melt viscosity of the sea component polymer is smaller than that of the island component polymer, heating or cooling at any temperature in the temperature range of about 60 to 120 ° C without applying a high temperature up to the melting temperature.
  • the texture of the long-fiber web that does not significantly impair the cross-sectional shape of the sea-island fibers constituting the long-fiber web can be sufficiently maintained in the subsequent steps.
  • the form stability of the long fiber web can be improved to a level that allows handling such as winding.
  • a method of making a short fiber into a fiber web by a card machine which has been generally adopted by conventional artificial leather, is provided with an oil agent suitable for passing through the card machine and only by a card machine, crimping, and predetermined fibers.
  • a series of large-scale equipment is required for cutting to long, transporting raw cotton after opening, and opening, and there are problems in terms of production speed, stable production, and cost.
  • short fiber There is a papermaking method as another method. The production of the fiber web by this method has the same problem because it requires equipment such as cutting and other unique equipment.
  • the production method of the present invention is carried out as a single step in which the fiber web formation is not interrupted from spinning, and the equipment is very compact and simple. The cost is excellent. In addition, since it is difficult for a complex problem to occur due to a combination of various processes and facilities as in the past, it is excellent in stable productivity. Furthermore, compared to conventional nonwoven fabric structures using short fibers, which rely only on entanglement between fibers and restraint by polymer elastic bodies, nonwoven fabric structures obtained from long fibers, and artificial leather using the same Artificial leather is excellent in physical properties such as form stability, that is, mechanical strength, surface friction durability, and adhesion / peeling strength of the silver surface.
  • the manufacturing method of the present invention it is possible to stably manufacture a non-woven fabric structure having a very small fiber diameter, which has been difficult with a method using a conventional card machine, and will be described later.
  • the fiber diameter is 200 ⁇ m 2 or more, nylon 6
  • an average fineness of about 2 dtex or more was required.
  • any average cross-sectional area in the range of 300-600 / ⁇ ⁇ 2 in the case of nylon 6 and polyethylene combination, any average fineness in the range of 3-6 dtex Is generally adopted.
  • the fiber cross-sectional area is not substantially restricted by the equipment, the spinning stability of the fiber, the required texture of the fiber web, the required bulkiness of the nonwoven structure, If the production rate of the entire nonwoven fabric structure manufacturing process is within an acceptable range, it is extremely fine and even fibers can be used.
  • the average cross-sectional area is 30 m 2 or more.
  • the average fineness is preferably about 0.3 dtex or more.
  • An average cross-sectional area of 50 / zm 2 or more is more preferable.
  • 80 m 2 or more force S is more preferable.
  • the average fineness is roughly 0 In the range of 8dtex or more, sufficiently stable industrial production is easily possible.
  • the cross-sectional force of the fibers approximately perpendicular to the cross section in the arbitrary cross section parallel to the thickness direction of the obtained fiber web is in the range of 80 to 700 Zmm 2 .
  • Any force value, preferably 100-600 pieces Zmm 2 , more preferably 150-500 pieces Zmm 2 in the range of the average number density is obtained, the final by entanglement in the subsequent process, etc.
  • the dense nonwoven fabric structure of the present invention can be obtained.
  • the average cross-sectional area of the ultrafine fiber bundle formed from the sea-island fibers is preferably 150 m 2 or less, and when the ultrafine fiber component is nylon 6, the average fineness of the ultrafine fiber bundle is preferably approximately 1.7 dtex or less. In order to obtain extremely high-quality raised artificial leather, the average cross-sectional area is preferably 120 / zm 2 or less.
  • the fine fiber component is 110 m 2 or less, more preferably 100 m 2 or less, and the ultra fine fiber component is nylon. In the case of 6, the average fineness is about 1.2 dtex or less.
  • the lower limit of the average cross-sectional area of the ultrafine fiber bundle does not affect the properties of the base material for artificial leather as much as the upper limit, but if it is too thin, the strength and surface friction durability of the artificial leather may decrease significantly. Therefore, in order to ensure practical physical properties in the intended use of the present invention, the average cross-sectional area of the ultrafine fiber bundle needs to be at least 15 m 2 or more, and 30 ⁇ m 2 or more. More preferably, it is 40 ⁇ m 2 or more.
  • the average cross-sectional area of the ultrafine fiber bundle By setting the average cross-sectional area of the ultrafine fiber bundle to 150 m 2 or less as described above, in the base material for artificial leather after the non-woven fabric structure contains the polymer elastic body, In any parallel cross section, an extremely dense structure can be obtained as in the conventional case where the average cross section of the ultrafine fiber bundle substantially perpendicular to the cross section is 1000 to 3000 Zmm 2 .
  • the number density of extremely large instrument microfine fiber bundle cross-section the average cross-sectional area of the microfine fiber bundle itself is generally at about 300 to 600 m 2 at most an average It was about 200 to 600 Zmm 2 and at most 750 Zmm 2 .
  • the fiber bundle itself is damaged, or the cross-sectional shape of the fiber bundle is greatly deformed, and the fiber Bundle is also very It will be in a state of being stuck. Therefore, the fiber bundle has almost no degree of freedom, and the nonwoven fabric structure is very hard. For example, it has a texture like a wooden board and cannot be obtained. It is completely different from the base material for use.
  • the cross-sectional area of the ultrafine fiber bundle is extremely small and the ultrafine fiber bundle has an extremely dense structure with a very high number density, and the ground and the joint itself are mechanically controlled.
  • a nonwoven structure is formed from the fibrous web. Therefore, the thickness of the polymer elastic body for restraining the ultrafine fiber bundle can be reduced, and the cells surrounded by the polymer elastic body can be made smaller and more uniformly distributed. Therefore, it is possible to suppress the occurrence of remarkable coarse and dense spots such as large voids inside the base material for artificial leather.
  • the conventional nonwoven fabric structure in order to obtain a denser structure, it is only possible to achieve high density, high compression, high compression, etc.
  • the nonwoven fabric structure of the present invention can realize an unprecedented ultra-dense structure without increasing the apparent density. Accordingly, in the present invention, it is possible to obtain a surface layer with extremely high fiber density without deteriorating the texture as a base material for artificial leather.
  • the average cross-sectional area of the microfine fiber bundle is more than 0.99 m 2, as a method of improving the denseness of the surface layer of the artificial leather base material, the average cross-sectional area of the ultrafine fibers constituting the ultrafine fiber bundles 0.
  • the ultrafine fiber component is nylon 6, the average fineness of about 0.009 dtex or less
  • a method for making the cross-sectional shape of the ultrafine fiber bundle, and thus the surface layer of the nonwoven fabric structure, more easily deformed by making it thinner is proposed and actually used.
  • the ultrafine fibers are too thin, the shape stability of the nonwoven fabric structure is inferior, and it is easy to deform in the length and width directions, and it is easy to crush in the thickness direction.
  • the color development during the production of artificial leather is insufficient, and the preferred method is ena.
  • the average number of ultrafine fibers constituting one ultrafine fiber bundle is 6 or more from the viewpoint of easy deformability and bendability of the fiber bundle itself.
  • the points such as the relationship between the upper limit of the area and the lower limit of the average cross-sectional area of the ultrafine fibers and the spinning stability of the sea-island fibers are also less than 150.
  • the number is preferably 90 or less, more preferably 50 or less, and most preferably in the range of 10 to 40.
  • the average number of ultrafine fibers is 5 or less, the above-mentioned fiber bundles are not easy to deform and bend easily, and the ultrafine fibers are arranged on the outermost periphery of the ultrafine fiber bundles and are contained in the base material for artificial leather.
  • the number of ultra-thin fibers that are restrained by contact or adhesion to the polymer elastic body is increased. As a result, the restraint state of the ultrafine fiber bundle becomes excessive, and it becomes difficult to obtain a base material for artificial leather having an excellent texture as intended by the present invention.
  • the average number of ultrafine fibers exceeds 150, conversely, the restrained state by the polymer elastic body becomes too small.
  • the present invention 80% or more from the viewpoint of the form stability of the nonwoven fabric structure described above, the surface physical properties such as the pilling resistance of the base material for artificial leather or artificial leather, and the coloring property of ultrafine fibers. It is necessary that the cross-sectional area of the ultrafine fiber is 0.9 to 25 / ⁇ ⁇ 2 and that the ultrafine fiber having a cross-sectional area exceeding 27 m 2 does not exist in the ultrafine fiber bundle. When the cross-sectional area of the ultrafine fibers of 80% or more is less than 0.9 m 2 , as described above, the object of the present invention can be achieved in the form stability of the nonwoven fabric structure and the coloring property of the napped artificial leather. Can not.
  • the cross-sectional area of more than 80% ultrafine fibers is 25 / zm 2, greater and when there is a microfine long fibers of more than 27 / zm 2 in microfine fiber bundles, such as clarity and color development of the standing hair finished artificial leather tends to be better.
  • the basis weight or thickness of the obtained long fiber web is insufficient, wrapping is performed so that the desired basis weight and thickness are obtained (one long fiber web is orthogonal to the flow direction of the process.
  • Directional force Supplying force to fold in the width direction, folding the web supplied from the direction parallel to the flow direction of the process in its length direction) and stacking (stacking multiple long fiber webs) To adjust. Needle punch method, etc. when the shape stability of the nonwoven fabric structure composed of sea-island fibers and the denseness of the fibers are insufficient, or when adjusting the thickness direction of the sea-island fibers of the nonwoven fabric structure Mechanical entanglement is performed by the known method.
  • the fibers constituting the long fiber web in particular, the fibers in the adjacent layers of the layered long fiber webs that are wrapped or stacked are three-dimensionally entangled.
  • the type of needle needle shape and count, barb shape and depth, number and position of parbs, etc.
  • number of needle punches needed to needle board- The density of one dollar and the board acting per unit area of the long fiber web multiplied by the number of strokes—one dollar punching density per unit area), the punch depth of the needle (for a long fiber web—one dollar
  • Various processing conditions such as the depth of the action are selected as appropriate.
  • the type of needle a force similar to that used in the production of conventional artificial leather using short fibers can be used as appropriate.
  • the depth and number of pubs are particularly important, and it is preferable to use mainly the kind of dollars as described below.
  • the needle count is a factor that affects the density and surface quality obtained after processing, and at least the size of the blade part (the part where the needle tip perb is formed) is No. 30 (the cross-sectional shape is If it is a regular triangle, the height must be smaller, and if it is a circle, the diameter must be smaller (thin) about 0.73 to 0.75 mm), preferably No. 32 (about 0.68 to 0.70 mm).
  • the size of the blade is larger than No. 30 (thick) needles are preferred for the strength and durability of a dollar that allows more flexibility in the shape and depth of the bur U, but on the other hand, the surface of the nonwoven structure Therefore, it is difficult to obtain a dense fiber assembly state and surface quality intended by the present invention. Further, since the frictional resistance between the fibers in the long fiber web and the dollar becomes too large, it is not preferable because it is necessary to apply an excessive amount of oil for needle punch treatment. On the other hand, a needle with a size smaller than No. 6 in the blade part has a strength and durability!
  • the cross-sectional shape of the blade portion is preferably an equilateral triangle in the present invention from the viewpoint of easy catching of fibers and small frictional resistance.
  • the pub depth is the height from the deepest part of the pub to the tip of the pub.
  • the nove depth needs to be at least the diameter of the sea-island fiber, and is preferably 120 m or less. If the depth of the pub is less than the diameter of the sea-island fiber, it is not preferable because the sea-island fiber is extremely difficult to be caught by the perb.
  • the depth of the pub is preferably any multiple of 1.7 to 10.2 times the diameter of the sea-island fiber, more preferably 2.0 to 7.0 times. It is a multiple selected from the above. If the depth of the pub is less than 1.7 times, it is difficult for the sea-island type fibers to get caught on the burb. It may not be possible. On the other hand, if it exceeds 10.2 times, rather than improving the ease of catching of the sea-island fibers, damage to the sea-island fibers, such as cutting and cracking, increases, which is not preferable.
  • the number of perbs in the present invention may be appropriately selected so as to obtain a desired entanglement effect in the range of 1 to 9, but the needle mainly used for needle punch entanglement processing, that is, the number of punches described later. Used for punching at least 50% or more—one dollar is preferred to obtain a non-woven structure with a dense structure with a number of valves in the range of 1-6. Also, in the present invention, the number of barbs used for needle punch entanglement processing is not necessarily one, for example, 1 and 9 pieces, 1 and 6 pieces, 3 and 9 pieces, etc. Different dollar numbers of different pubs may be combined as appropriate and used in any order.
  • each parb can be located at different distances from the needle tip, or it can have several parbs at the same distance.
  • One example of the latter is a dollar with a cross-sectional shape of the blade part having an equilateral triangle and one perb at each of the three apex angles at the same distance from the tip.
  • the former dollar is mainly used as the dollar for the entanglement process. This has multiple parbs at the same distance-one dollar has the effect that the needle blade is apparently thicker and the depth of the perb is greater, so the entanglement effect is higher, but the blade It is also the force that causes the inconvenience that appears when the part is thick and the perb is too deep.
  • the initial stage force of entanglement process is performed with the latter one dollar to the extent that it does not impede the dense structure of the target, and then the first one dollar is used to achieve the target. It can be a dense structure.
  • Total punch number of the needle more preferably one value preferred tool in a range of 300 to 4000 punches ZCM 2 is in the range of 500 to 3500 punches / cm 2. With several parbs at the same distance as described above—when using one dollar, it is about 300 punch / cm 2 or less, preferably about 10 to 250 punch / cm 2 .
  • the fibers will be oriented in the thickness direction, so even if one-dollar punching process, shrinking process, or pressing process is performed thereafter. In addition, it tends to be difficult to increase the number density of the nonwoven fabric structure.
  • the average number density (number per unit area of the cross section of the fiber substantially perpendicular to the cross section in an arbitrary cross section parallel to the thickness direction) required for the nonwoven structure composed of sea-island fibers is 600 to 4000.
  • Zmm 2 preferably 700 to 3800 pieces Zmm 2 , more preferably 800 to 3500 pieces Any value in the range of Zmm 2 .
  • entanglement process and the shrinking process it is also preferable to perform the press process simultaneously with or before or after the process.
  • the density (average number density) required for the nonwoven fabric structure composed of the sea-island fibers described above is obtained. It is preferably 50% or more, more preferably 55 to 130%. For example, if the final target is 2000 pieces Zmm 2 , it is preferable that the average number density is at least 1000 pieces Z mm 2 or more.
  • the preferred needle in order to obtain a densification treatment in due connection very dense nonwoven structure composed mainly of needle punching process, in the range of total punching number force 800 to 4000 punch ZCM 2 More preferably, the range is 1000 to 3500 punches Zcm 2 .
  • the punch number of the needle is less than 800 punch ZCM 2, if densification is insufficient Kalika, strong integrated with a Insufficient tendency of the nonwoven fabric structure according to particular entanglement of fibers in the different layers of the long fiber web On the other hand, if it exceeds 4000 punches / cm 2 , although it depends on the shape of the above-mentioned needle, damage such as cutting and cracking of the fiber by one dollar is conspicuous, and the fiber In particular, when the damage of the nonwoven fabric is severe, when the shape stability of the nonwoven fabric structure is significantly reduced, the density may be lowered.
  • the punch depth of the needle is preferably set to such a depth that the perb at the most distal end of at least one dollar penetrates the entire length of the long fiber web.
  • punching of 50% or more of the number of punches described above must be set to a depth at which the perb penetrates the long fiber web, and punching of 70% or more is required. It is preferred that the depth of the perb penetrate the long fiber web.
  • the punch depth is increased too much, fiber damage due to the perb tends to be noticeable and punching marks tend to remain on the surface of the nonwoven fabric structure. It is necessary to pay attention to these points.
  • the one-dollar punch method is used for the entanglement process, in order to suppress damage to the fiber by the needle, and to suppress charging and heat generation caused by strong friction between the dollar and the fiber.
  • the oil agent is preferably applied at any stage after the continuous fiber web manufacturing process and before the entanglement treatment process.
  • known coating methods such as spray coating method, reverse coating method, kiss roll coating method, lip coating method and the like can be adopted, and in particular, the spray coating method does not contact the long fiber web.
  • a low-viscosity oil that penetrates into the inner layer of the long fiber web in a short time can be used.
  • the oil agent to be applied before the entanglement treatment may be an oil agent having one kind of component power, but preferably, a plurality of types of oil agents having different effects are used, mixed and applied, or sequentially applied.
  • the oil agent used in the present invention is an oil agent having a high sliding effect that relieves friction between the needle and the fiber, that is, friction between the metal and the polymer. Specifically, dimethylsiloxane that is preferred by a polysiloxane-based oil agent is used. The main oil is more preferable.
  • a mineral oil-based oil agent is preferable because an oil agent having a high frictional effect that can suppress the occurrence of the oil is preferred.
  • a surfactant for example, a polyoxyalkylene surfactant as an antistatic agent.
  • the long fiber web, the stack thereof, or the long fiber web after the entanglement treatment is heated so as to have a desired density in warm water, a high temperature atmosphere, or a high temperature and high humidity atmosphere as necessary.
  • Shrink processing For example, when obtaining the density of a non-woven fabric structure with an average number density of 800-: LOOO Zmm 2 or so, it is first densified to about 500-700 Zmm 2 by entanglement treatment, and then the target density is reached. Shrink processing to become.
  • the long fiber web is made of shrinkable sea-island fibers!
  • a shrinkable fiber in addition to the sea-island type fiber, or separately produce a shrinkable web and stack it.
  • a heat-shrinkable polymer may be used for spinning either the sea component polymer, the island component polymer, or both.
  • the heat-shrinkable island component polymer include polyester-based resins, polyamide-based resins such as heterogeneous nylon copolymers, and polyurethane-based resins.
  • the shrinkage treatment conditions are not particularly limited as long as sufficient shrinkage can be obtained, and may be appropriately set according to the shrinkage treatment method to be employed, the amount of processing object to be treated, and the like. For example, when shrinking by introducing into warm water, it is preferable to shrink at any temperature in the temperature range of 70 to 150 ° C.
  • the polymer elastic body is impregnated later.
  • a press treatment As necessary, if the average number density is targeted to be 800-1000 Zmm 2 , the target density is first increased to 600-800 Zmm 2 by entanglement processing. It is sufficient to perform press processing so that In the case of adopting a press treatment, it is preferable to use the heat shrink treatment together with the heat shrink treatment, and immediately press the heat treatment in a state where the heat remains strong.
  • Such processing method By adopting, since densification by press processing proceeds almost simultaneously with shrinkage treatment, it is possible to obtain a uniform densified state rather than simply performing press processing, and excellent production It is also possible to obtain efficiency.
  • the soft temperature of the sea component polymer is 20 ° C or more, preferably 30 ° C or more, lower than the soft temperature of the island component polymer in the sea-island fiber constituting the nonwoven fabric structure.
  • the pressed process is effective by densification.
  • only the sea component polymer in the sea-island fiber is softened by heating for a temperature range from a temperature close to the soft temperature of the sea component polymer to a temperature lower than the soft temperature of the island component polymer.
  • the nonwoven fabric structure When pressed in that state, the nonwoven fabric structure is compressed into a denser state, and if this is cooled to room temperature, a nonwoven fabric structure fixed in a desired dense state can be obtained.
  • Advantages other than densification of the press treatment include the effect that the surface of the nonwoven fabric structure can be fixed in a smoother state.
  • smoothing it is also possible to more effectively obtain an extremely dense aggregate state of the ultrafine fiber bundles, which is the greatest feature of the base material for artificial leather of the present invention. That is, since the surface of the artificial leather base material can be made smoother, it is possible to reduce the amount of grinding in the napped formation process such as puffing in the production of napped-tone artificial leather.
  • silver-tone artificial leather it is possible to stably form a smooth and extremely thin silver surface layer with a thickness of 50 m or less without subjecting the substrate surface to hot pressing or puffing.
  • the dense nonwoven fabric structure having an average number density of 600 to 4000 Zmm 2 obtained in this manner preferably contains a predetermined amount of the elastic polymer before removing the sea component polymer.
  • the method of inclusion include a method in which a solution or dispersion of a polymer elastic body is impregnated and solidified by a conventionally known dry method or wet method. As the impregnation method, after immersing the nonwoven fabric structure in a bath filled with a polymer elastic body fluid, it is squeezed to a predetermined liquid content with a press roll or the like, and the sag treatment is performed once or a plurality of times.
  • any of various conventionally known coating methods such as dip-dip method, bar coating method, knife coating method, roll coating method, comma coating method and spray coating method can be adopted. Even one type of method may be combined.
  • any of various conventionally known coating methods such as dip-dip method, bar coating method, knife coating method, roll coating method, comma coating method and spray coating method can be adopted. Even one type of method may be combined.
  • the polymer elastic body to be contained in the nonwoven fabric structure any of those conventionally used for base materials for artificial leather can be adopted. Specific examples include polyester diol, polyether diol, polyether ester diol, polycarbonate diol and the like. At least one selected polymer polyol having an average molecular weight of 500 to 3000, and 4,4'-dimethanemethane diisocyanate.
  • Various polyurethanes obtained by combining at least one low molecular weight compound having two or more active hydrogen atoms, such as thylene glycol, ethylenediamine, etc., in a predetermined molar ratio and reacting them in one step or multiple steps. can be mentioned.
  • the base material for artificial leather obtained by adopting polyurethane as the main polymer elastic body is excellent in balance of texture and mechanical properties, and also in balance including durability. However, it is excellent in that it is preferable.
  • polyurethane As the polymer elastic body, different types of polyurethane may be mixed and contained, or different types of polyurethane may be contained in multiple times. Besides polyurethane, synthetic rubber, polyester A polymer elastic material such as an elastomer or acrylic resin may be added as a polymer elastic material composition added as necessary.
  • a polymer elastic body fluid such as a solution or dispersion of a polymer elastic body is impregnated in the nonwoven fabric structure, and then the polymer elastic body is solidified by a conventionally known dry method or wet method to obtain a polymer.
  • the elastic body is fixed in the non-woven structure.
  • the dry method herein refers to all methods for fixing a polymer elastic body in a nonwoven fabric structure by removing a solvent or a dispersant by drying or the like.
  • the wet method referred to here is a treatment of a non-woven fabric structure impregnated with a polymer elastic body fluid with a non-solvent or coagulant of the polymer elastic body, or a polymer elastic body fluid added with a heat-sensitive gelling agent.
  • the polymer elastic body fluid may be appropriately mixed with various additives blended in the polymer elastic body fluid contained in the conventional artificial leather substrate such as a colorant, a coagulation regulator, and an antioxidant. .
  • the amount of the polymer elastic body or polymer elastic body composition contained in the nonwoven fabric structure is It may be adjusted as appropriate according to the mechanical properties, durability, texture, etc. required for the intended application, but when the basis weight of the nonwoven fabric structure with ultrafine fiber bundle strength is 100, the polymer elasticity against this
  • the body weight is preferably in the range of 10 to 150% by mass, more preferably in the range of 30 to 120% by mass.
  • the polymer elastic body When the content of the polymer elastic body is less than 10% by mass, the polymer elastic body is interposed between adjacent ultrafine fiber bundles inside the base material for artificial leather, and comes into contact with the ultrafine fiber bundle. The effect of suppressing the movement of the ultrafine fiber bundle in the length direction becomes insufficient. In particular, in the case of napped-toned artificial leather, it is difficult to obtain the effects of the present invention due to surface friction durability such as pilling resistance. On the other hand, when the content of the elastic polymer exceeds 150% by mass, the above-mentioned problems such as adverse effects on pilling resistance do not occur, but rather the surface friction durability tends to be improved. On the other hand, the artificial leather base material, or the texture when it is made into a silver surface artificial leather or napped artificial leather, is remarkably cured, and the rubber feel becomes stronger. This is not preferable because the touch tends to be rough.
  • the conventional artificial leather manufacturing method dissolves polyalcohol alcohol and the like prior to impregnation and solidification of the polymer elastic body fluid.
  • Removable rosin is applied according to the amount of polymer elastic body applied to the nonwoven fabric structure.
  • a non-woven fabric structure in which fibers are densely gathered, which is unprecedented, is employed, and a thin sea-island fiber or ultrafine fiber bundle that is not found in a conventional method for manufacturing a base material for artificial leather is used.
  • the fibers constituting the nonwoven fabric structure are uniformly coated with the resin and the polymer elastic body is covered between the coated fibers. It is difficult to make the voids for containing the water uniformly.
  • the region where the resin is locally hardened and the region where the resin is hardly present are scattered in various places in the nonwoven fabric structure, it is preferably used in the present invention in order to avoid hardening of the texture. It's not possible.
  • the fibers of the nonwoven fabric structure are temporarily fixed to improve the morphological stability and assist the process passability of the polymer elastic body and the like.
  • the resin may be added in a small amount of about 20% or less by mass ratio to the basis weight of the nonwoven fabric structure within the range where the effects of the present invention are not hindered.
  • a non-solvent or a non-decomposing agent for the island component polymer is used as a method for removing the sea component polymer from the sea-island fibers constituting the nonwoven fabric structure before or after the polymer elastic body is contained.
  • a non-solvent or a non-decomposing agent for the island component polymer is used.
  • it is a liquid that is also a non-solvent or non-decomposing agent for the polymer elastic body, and is a solvent or decomposing agent for the sea component polymer.
  • the present invention provides a method for treating a nonwoven structure with a liquid! Adopted for a long time.
  • the island component polymer is a polyamide-based polyester resin suitable for the present invention
  • specific examples of the liquid suitably used for the sea component polymer removal treatment include: Examples include organic solvents such as toluene, trichlorethylene, tetrachloroethylene, etc.
  • the sea component polymer is a polyvinyl alcohol resin that is soluble in warm water, it may be warm water at a soluble temperature.
  • an alkaline decomposing agent such as an aqueous sodium hydroxide solution may be used.
  • the nonwoven structure at the sea component polymer removal treatment stage contains a polymer elastic body, and even in this case, polyurethane, which is a preferred example in the present invention, is contained!
  • any of the above-mentioned liquids can be used as a solvent or a decomposition agent.
  • an organic solvent or an alkaline decomposing agent it is preferable to suppress the deterioration of the polymer elastic body due to the removal treatment by appropriately adjusting the composition of the polymer elastic body to be contained.
  • the sea-island type fibers are transformed into ultrafine fiber bundles having island component polymer strength, and the base material for artificial leather of the present invention having a basis weight of preferably 60 to 1800 gZm 2 is obtained.
  • the artificial leather substrate thus obtained is sliced into a plurality of pieces in the thickness direction, and the back surface is ground as necessary. Adjust the thickness, or treat with a liquid containing a polymer elastic body or a solvent for ultrafine fiber bundles on the back or front side. Thereafter, at least the surface to be surfaced is brushed by a method such as puffing to form a fiber raised surface mainly composed of ultrafine fibers, thereby obtaining a raised leather artificial leather such as suede or nubuck.
  • the surface is made of a polymer elastic body By forming the coating layer, a silver-tone artificial leather can be obtained.
  • any known method such as puffing treatment using sand paper or needle cloth or brushing treatment can be used.
  • a solvent capable of dissolving or swelling the polymer elastic body or the ultrafine fiber bundle for example, dimethylformamide (DMF) or the like is included if the polymer elastic body is polyurethane.
  • the treatment liquid or the ultrafine fiber bundle is a polyamide-based resin
  • a treatment liquid containing a phenol-based compound such as resorcin may be applied to the surface to be brushed. This makes it possible to finely adjust the restraint state of the ultrafine fiber bundle by bonding the polymer elastic body and the ultrafine fiber bundle, the ultrafine fiber nap length of the napped artificial leather, surface friction durability, and the like.
  • a liquid containing the polymer elastic body is directly applied to the surface of the artificial leather base material, or the liquid is once placed on a support base material such as a release paper.
  • a support base material such as a release paper.
  • Any known method such as a method of applying and bonding to a base material for artificial leather can be used.
  • the polymer elastic body used for the coating layer to be formed is the same as the polymer elastic body for inclusion in the non-woven fabric structure described above, such as a polymer known as a coating layer for conventional silver surface artificial leather. Any elastic body can be used.
  • the artificial leather base material of the present invention can be produced with a sufficiently balanced texture S-synthetic leather, and is not particularly limited. .
  • the thickness is Forming a coating layer with a thickness of about 100 m or less, preferably about 80 m or less, and more preferably about 3 to 50 m. It is also possible to obtain a silver-tone artificial leather having a crease or crease.
  • Such napped-tone artificial leather or silver-tone artificial leather may be dyed at any stage after the sea-island type fibers are converted into ultrafine fiber bundles.
  • padders, jiggers, circular dyes using dyes mainly composed of acid dyes, metal complex dyes, disperse dyes, sulfur dyes, sulfur vat dyes, and the like, which are appropriately selected according to the type of fiber Any of the dyeing methods using a known dyeing machine that is usually used for dyeing conventional artificial leather such as Wins. Is available.
  • the cross-sectional area of the ultrafine fiber and the cross-sectional area of the focused number of ultrafine fiber bundles measured by the above method were obtained by calculation.
  • the maximum cross-sectional area and the minimum cross-sectional area were deleted, and the remaining 18 cross-sectional areas were arithmetically averaged to obtain the average cross-sectional area of the ultrafine fiber bundles constituting the base material for artificial leather. If the number of ultrafine fibers is not constant and distributed, the maximum number and the minimum number are also excluded 1
  • the average number of bundles of ultrafine fiber bundles constituting the base material for artificial leather was obtained by arithmetically averaging the number of bundles of eight ultrafine fiber bundles.
  • A It is smooth with no roughness when touched with a hand whose surface is extremely dense.
  • the thickness of the obtained artificial leather is less than 0.8mm, it is sewed on a golf glove. If the thickness is 0.8-1.2mm, it is sewn on a jacket, and the thickness is 1.2mm. If it exceeded, it was sewn on the sofa.
  • the selected panelists evaluated the texture of the napped-toned artificial leather according to the following criteria, and the evaluation results obtained by the most panelists were used as the evaluation results. .
  • A The texture is flexible and swells, but also feels full enough, Good fit.
  • the surface of the obtained napped-tone artificial leather was subjected to abrasion treatment under the conditions of a load of 12 kPa and an abrasion frequency of 50000 times.
  • the mass difference before and after treatment was 50 mg or less, it was judged that the wear resistance was good.
  • the state of pilling occurrence (increase / decrease) on the surface of the raised leather before and after the treatment was visually compared according to the following criteria. Those having good wear resistance and a pilling occurrence state of A or B were evaluated as having excellent surface wear durability.
  • Pilling is clearly increased, and pilling that can be felt by touching with a hand is clearly increased.
  • A The creases that have extremely high surface smoothness have a natural leather tone.
  • the thickness of the resulting artificial leather is less than 0.8mm, it is sewn to a golf glove, and when the thickness is 0.8 to 1.2mm, it is sewn to a jacket and the thickness is 1. If it exceeds 2mm, it was sewn on the sofa.
  • the selected panelists will evaluate the texture of the artificial leather with the following criteria, and the evaluation results obtained by the most panelists will be the result of the evaluation! did.
  • A When it is flexible and swells, it has a sufficient feeling when it is fully solid, and the silver layer and the base material have a good texture, and the fit as a sewn product is good.
  • Three specimens in the length direction were obtained by cutting out 250 mm in the length direction and 25 mm in the width direction from arbitrary portions of the obtained artificial leather. Similarly, 25 mm in the length direction and 250 mm in the width direction were cut out to obtain three test pieces in the width direction.
  • the surface of each test piece was wiped with gauze soaked with methyl ethyl ketone (MEK) to remove the dirt, and then dried at room temperature for 2 to 3 minutes while preventing the dirt from adhering. After lightly puffing one side of the crepe rubber sheet cut out to a length of 150 mm, a width of 27 mm, and a thickness of 5 mm, the dirt on the puffed surface was removed with MEK in the same manner as the test piece and dried.
  • MEK methyl ethyl ketone
  • the unbonded portion of the test piece is folded back so that the unbonded portion of the test piece and the unbonded portion of the rubber sheet are at an angle of approximately 180 °, and then a tensile tester with the rubber sheet facing downward.
  • a tensile tester with the rubber sheet facing downward.
  • Were gripped by the upper and lower chucks (distance between chucks: 150 mm).
  • a 180 ° peel test was performed at a pulling speed of lOOmmZ, and the stress value during peeling was recorded on a chart. If the test piece is too hard and 180 ° peeling is difficult and close to T-type peeling, a metal reinforcing plate with a length of 150 mm, a width of 30 mm, and a thickness of 2 mm is used as the rubber sheet for the measurement piece.
  • the adhesion peel strength value of the specimen It was.
  • the strength values obtained for each of the three test pieces in the length direction and the width direction were arithmetically averaged to obtain the evaluation results of the adhesion peel strength in each of the length direction and the width direction.
  • LDPE Low density polyethylene
  • nylon 6 nylon 6
  • Island component with uniform cross-sectional area in sea component polymer A cross section of 25 component polymers can be formed.
  • the air jet pressure is adjusted so that the average spinning speed is 3600mZ.
  • the air jet 'nozzle-type suction device is used to draw and thin sea-island fibers with an average cross-sectional area of 160 111 2 (about 1.6dtex). This was continuously collected on the net while being sucked from the back side.
  • the average basis weight is 30 gZm 2
  • the average cross-section of the sea-island fiber on the cross section parallel to the thickness direction is 350
  • the above-mentioned long fiber web was formed into a layered long fiber web having an average of 20 layers using a cross wrapper apparatus.
  • Mainly dimethylpolysiloxane slippery oil on the surface of layered long fiber web After spraying an oil mixed with a mineral oil and an antistatic agent, the mixture was entangled by a needle punch method. Needle punch is needle No. 40, barb depth 40 ⁇ m, 1 perb with a regular triangle cross section-1 dollar A, and needle number 4 2, parb depth 40 m, 6 parbs Equilateral triangle cross section-One dollar B is used as an auxiliary, needle A and the punch depth from the tip of needle B all three burbs penetrate in the thickness direction.
  • the total number of punches was 1200 punch Zcm 2 and sea island type fibers were entangled in the thickness direction.
  • a nonwoven fabric structure in which sea-island type fibers are present in an extremely dense manner, with an average of 1200 Zmm 2 was obtained.
  • the obtained nonwoven fabric structure was impregnated with 13 parts of a polyurethane composition mainly composed of polyether polyurethane and 87 parts of dimethylformamide (hereinafter referred to as DMF), and was then immersed in water. Wet solidified. After washing with water to remove DMF, the nylon 6 fiber is extracted and removed with heated toluene, then azeotropically removed from the toluene in a hot water bath, and dried, so that the nylon 6 ultrafine fiber
  • the base material for artificial leather of the present invention having a thickness of about 1.3 mm in which polyurethane was contained inside the nonwoven fabric structure having a bundle of ultrafine fibers.
  • the average cross-sectional area of the ultrafine fiber measured by the above method is 2.6 ⁇ m
  • the number of converging fibers was 25, and ultrafine fibers with an almost uniform cross-sectional area were converging.
  • the average cross-sectional area of microfine fiber bundles is 68 ⁇ m 2
  • ultrafine fibers cross-sectional area in the ultrafine fiber bundles is greater than 27 m 2 is not to have existed.
  • the number of ultrafine fiber bundle cross sections existing per unit area of the cross section parallel to the thickness direction is 1700 Zmm 2 on average, and most ultrafine fiber bundles are bonded to the polymer elastic body! /, State.
  • the base material for artificial leather obtained in Example 1 was divided into two in the thickness direction by slicing. After puffing the divided surface with sandpaper and adjusting the average thickness to 0.62 mm, the other surface is puffed with an emery puffing machine with sandpaper set to raise and trim the surface of the ultrafine fibers. Formed. Irgalan Red 2GL (Ciba Specialty Chemica Is) was dyed at a concentration of 4% owf, and then brushed to adjust the hair finish to obtain a nubuck-like artificial leather. The number of ultrafine fiber bundle cross-sections existing per unit area of the cross-section parallel to the thickness direction measured by the above method is 1500 Zmm 2 , while having an extremely high raised surface, Had no color development. Further, the appearance, texture, and surface wear durability were all very good, and this was a napped artificial leather having the intended effect of the present invention. Table 1 shows the evaluation results.
  • the polymer elastic body liquid impregnated into the nonwoven fabric structure is composed of 18 parts of a polyurethane composition mainly composed of mixed polyurethane having 65% strength of polycarbonate polyurethane and 35% of polyether polyurethane, and 82 parts of DMF.
  • the substrate for artificial leather of the present invention having a thickness of about 1. Omm in which polyurethane is contained inside a non-woven fabric structure having a bundle of ultrafine fibers in which nylon 6 ultrafine fibers are bundled is the same except that the liquid is replaced. The material was obtained.
  • the cross-sectional area of the ultrafine fiber, the number of converging fibers, and the cross-sectional area of the ultrafine fiber bundle measured by the above method are all the same as in Example 1, and the ultrafine fiber whose cross-sectional area exceeds 27 m 2 is contained in the ultrafine fiber bundle was not present in the same manner as in Example 1.
  • the number of microfine fiber bundles sectional present per unit area ⁇ this thickness direction and a cross-section parallel is the average 2200 pieces ZMM 2, the majority of the ultrafine fiber bundles are adhered to the elastic polymer, Do, while there were.
  • Example 2 One side of the base material for artificial leather obtained in Example 2 was puffed with sandpaper, the thickness was adjusted to an average thickness of 0.97 mm, and then the other side was puffed with emery one puff machine set with sandpaper. Then, the hair was raised and trimmed to form an ultrafine fiber raised surface. Furthermore, using Irgalan Red 2GL (Ciba Specialty Chemicals), dyeing was performed at a concentration of 4% owf, followed by brushing to obtain a nubuck-like artificial leather. The number of microfiber bundle cross-sections existing per unit area of the cross-section parallel to the thickness direction measured by the above method is 1950 on average, Zmm 2 , and while having a highly raised surface, Had no color development. The appearance, texture, and surface wear durability were all very good, and this napped-toned artificial leather had the intended effect of the present invention. The evaluation results are shown in Table 1. [0078] Comparative Example 1
  • a base material for artificial leather was prepared under the same conditions as in Example 1 except that for the entanglement treatment by the needle punch-one dollar C having nine parbs instead of one dollar A and B was used.
  • a nubuck-like artificial leather was produced in the same manner as in Example 2 using the obtained artificial leather base material.
  • the resulting nubuck-like artificial leather had good color developability, but other characteristics did not satisfy the target level of the present invention. Table 1 shows the evaluation results.
  • the molten polymer is supplied to a spinneret for composite spinning, in which a large number of nozzle holes are concentrically arranged to form a cross section in which 50 island component polymers having a uniform cross-sectional area are distributed in the sea component polymer. It was discharged from the nozzle hole at a temperature of 290 ° C. By pulling the polymer while it was bundled, the sea-island fiber with an average cross-sectional area of 940 / z m 2 (about 9.8 dtex) was spun.
  • the obtained sea-island fiber was stretched 3.0 times and crimped, and then cut into a fiber length of 5 lmm to obtain a stable.
  • the staple fiber was defibrated with a card and then folded with a cross wrapper to obtain a short fiber web.
  • a base material for artificial leather was prepared in the same manner as in Example 1.
  • a nubuck-like artificial leather was produced in the same manner as in Example 2 using the obtained artificial leather base material.
  • the obtained nubuck-like artificial leather had a suede-like appearance with a relatively rough nap, and was completely different from the napped-like artificial leather of Example 2.
  • nylon 6 as the island component and low density polyethylene as the sea component, they were mixed and melted at a ratio of sea component to island component of 50Z50. Many nozzle holes are the same for molten polymer.
  • the product was supplied to a spinneret arranged in a circular shape and discharged from the nozzle hole at a base temperature of 290 ° C.
  • Sea-island fibers with an average cross-sectional area of 940 m 2 (about 9.5 dtex) were spun by a mixed spinning method in which the discharged polymer was bundled and pulled and thinned.
  • the cross section of the sea-island fiber after spinning was in a state where thousands of island components made of nylon 6 were scattered in the sea component that also had polyethylene power.
  • the obtained sea-island type fiber was stretched 3.0 times and crimped, then cut to a fiber length of 51 mm to form a stable, which was defibrated with a card and then made into a short fiber web with a cross wrap webber.
  • a base material for artificial leather was prepared in the same manner as in Example 1.
  • a nubuck-like artificial leather was prepared in the same manner as in Example 2 using the obtained base material for artificial leather.
  • the surface of the obtained nubuck-like artificial leather was generally good in density, had a knock-like appearance similar to Example 2, and had a paper-like hard texture with poor color development, and other characteristics.
  • Table 1 shows the evaluation results.
  • a base material for artificial leather was prepared under the same conditions as in Example 1 except that the conditions for entanglement by needle punch were changed as follows.
  • the blade tip force is located at the same distance.
  • One burb with a depth of 60 m is installed at each corner of the equilateral triangle section.
  • Using one dollar D it is common with one dollar punching machine.
  • the long fiber web was punched-one dollar.
  • entanglement treatment was performed with 1000 punches Zcm 2 from both sides using the same dollar A with the same dollar punching machine as in Example 1.
  • a nubuck-like leather was produced in the same manner as in Example 2 by using the obtained artificial leather base material.
  • the number of ultrafine fiber bundle cross-sections present per unit area of the cross-section parallel to the thickness direction of the obtained nubuck-like artificial leather was large, and the average was about 800 Zmm 2 in some places, but 15-50
  • the portion of the fiber bundle oriented in the thickness direction that is, the number force of the ultrafine fiber bundle cross-section ⁇ ⁇ 50 pieces Partial force of about Zmm 2 Exists at intervals of about 100 to 500 ⁇ m in the width direction It was. Therefore, the average of the entire cross section was about 450 Zcm 2 .
  • the color development and surface friction durability of the nubuck-like artificial leather was good, but the appearance and texture did not satisfy the target level of the present invention.
  • the evaluation results are shown in Table 1. [Table 1] Examples Comparative examples
  • Example 3 After puffing both sides of the base material for artificial leather obtained in Example 3 with sandpaper to adjust the thickness to 0.90 mm and smoothing the surface, one side was further mirror-rolled at 160 ° C. Smoothly treated. This surface was defined as the surface side in the subsequent process.
  • a 15 m-thick surface coating layer made of a polyurethane composition mainly composed of polycarbonate-based polyurethane and colored brown with a pigment is formed on a release paper with a texture, and a polyurethane-based polyurethane containing a cross-linking agent thereon.
  • An adhesive layer made of an adhesive was prepared. The obtained two- layer film was bonded to the surface side of the artificial leather substrate through an adhesive layer.
  • a base material for artificial leather was prepared under the same conditions as in Example 3 except that the sea-island cross-section was changed to a separation-divided fiber, the entanglement treatment conditions were changed, and the ultrathinning method was changed.
  • Nylon 6 component and polyethylene terephthalate (hereinafter referred to as PET) component are alternately laminated in a petal shape as fibers constituting the long fiber web, and each component is divided into 8 regions of approximately the same cross-sectional area. Exfoliated split-type fibers having an average cross-sectional area of 240 ⁇ m 2 (about 3. Odtex) having a type of cross section were used.
  • Needle A and-One dollar B is replaced with a needle with a depth of 80 ⁇ m, 9 needles E, and a needle that penetrates from the tip of the needle to the third parb in the thickness direction.
  • the double-sided force was 1000 punch Zcm 2 in total.
  • the film was immersed in a 90 ° C water bath for 90 seconds for shrinkage treatment, and then water jet treatment with a water pressure of 150 kgZcm 2 was performed from both sides without pressing.
  • the PET component was reduced by about 10% by treating with an alkaline solution with sodium hydroxide aqueous solution.
  • the average number of bundle cross-sections is 330 Zmm 2 and most of the very few fibers are not divided into ultrafine fibers, and the divided ultrafine fiber bundles are hardly divided. It was adhered to the molecular elastic body. Also, other characteristics did not satisfy the target level of the present invention. Table 2 shows the evaluation results. [0085] [Table 2] Example 5 Comparative Example 5
  • Microfine fiber cross-sectional area ( ⁇ m 2) 2. 6 28. 5
  • the nubuck-like artificial leather obtained from the base material for artificial leather of the present invention has an appearance with a raised feeling like natural nubuck-like leather with extremely high density. In addition, it has excellent color development properties, such as a soft and swelling feel but a feeling of fulfillment, and surface friction durability typified by pilling resistance. Further, the silver-tone artificial leather obtained from the base material for artificial leather according to the present invention has a natural leather-like silver-like appearance that is highly smooth and has a very fine crease. It also has excellent properties that are difficult to combine with each other, such as a sense of unity between the base material and the silver surface layer, a soft and swollen texture, and adhesive peel strength. These artificial leathers can be suitably used for applications such as clothing, shoes, bags, furniture, car seats, and various sports gloves such as golf gloves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

 極細繊維束からなる不織布構造体およびその内部に含有された高分子弾性体からなる人工皮革用基材。該人工皮革用基材は、(1)前記極細繊維束が、平均6~150本の集束した極細長繊維により形成されていること、(2)前記極細繊維束を形成する極細長繊維の断面積が27μm2以下であり、かつ、80%以上の極細長繊維の断面積が0.9~25μm2の範囲にあること、(3)前記極細繊維束の平均断面積が15~150μm2の範囲にあること、および、(4)不織布構造体の厚さ方向と平行な任意の断面において、極細繊維束の断面が平均1000~3000個/mm2の範囲で存在していることを同時に満たす。該人工皮革用基材から得られる立毛調人工皮革や銀面調人工皮革は、従来兼備することが困難であった特性に優れる。

Description

明 細 書
人工皮革用基材およびその基材を用いた人工皮革
技術分野
[0001] 本発明は、人工皮革用基材に関する。該人工皮革用基材を用いると、緻密性の極 めて高い優美な立毛調の外観を有し、かつ発色性にも優れていながら、耐ピリング性 などの表面磨耗耐久性に優れ、柔らかで膨らみ感のある風合 、とを兼備した立毛調 人工皮革や、平滑性が高くて細カゝな折れ皺の表面を有し、高い接着剥離強力と柔ら かで膨らみ感のある風合いとを兼備した銀面調人工皮革を製造することができる。 背景技術
[0002] 従来、繊維束と高分子弾性体とからなる基材の表面に該繊維束力もなる立毛を形 成したスエード調人工皮革ゃヌバック調人工皮革などの立毛調人工皮革は公知であ る。立毛調人工皮革は、外観 (天然皮革により近い表面感)、風合い (柔軟な手触りと 適度な膨らみ感ゃ充実感の兼備)、発色性 (色の鮮明さや濃度感)等の感性面での 要求だけでなぐ耐光性、耐ピリング性、耐磨耗性等の物性面での要求をすベて高 いレベルで満足することが求められており、これを解決すべく種々の提案がなされて きた。
[0003] 外観や風合いにおける要求を満足させるために、例えば人工皮革を構成する繊維 を極細繊維にする方法が一般に用いられている。極細繊維からなる人工皮革を製造 する一手法として、海島型や多層貼り合わせ型などの複合繊維を分割、または、一 成分を分解または抽出除去することで極細繊維束に変成させる方法が広く採用され て ヽる。該複合繊維から得られる極細繊維束からなる不織布に高分子弾性体を含有 させた人工皮革用基材を用いた立毛調人工皮革や銀面調人工皮革は、外観や風 合いにおいて非常に高い評価を得ている。し力しながら、繊度を細くするにつれて、 発色性が低下して鮮明さや濃度感が顕著に劣ってしまうという欠点を有しており、特 に立毛調人工皮革にぉ 、ては総合的な高品質の要求を満足できて 、な 、。
[0004] 人工皮革用基材に用いる不織布構造体を製造する方法としては、紡糸した繊維を 100mm以下の長さにカットしてステープル繊維とし、これをカード法や抄紙法などに より所望の目付の不織ウェブとし、必要に応じてこの不織ウェブを複数枚積重した後 、ニードルパンチ法やスパンレース法などにより繊維を絡合させる方法が最も一般的 である。これらの方法により製造された所望の嵩高さや絡合度合いを有する不織布 構造体から、人工皮革用基材が製造されている。このような人工皮革用基材を用い た立毛調人工皮革や銀面調人工皮革は、特に風合!、の点にぉ 、て高 、評価を得て いる。しカゝしながら、不織布構造体を構成するステーブル繊維は、繊維間の絡合や 含有された高分子弾性体により基材内に固定されてはいるが、立毛調人工皮革の立 毛面や銀面調人工皮革の銀面層との接着界面においては、繊維長が短いので不織 布構造体力 比較的容易に引き抜かれ、あるいは脱落する傾向は避けられない。こ の傾向により、立毛面の摩擦耐久性や、銀面層の接着剥離強力などの重要な表面 物性が低下する。この問題を解決するために、例えば不織布構造体の絡合度合いを 大きくしたり、繊維同士を接着させ、あるいは繊維同士を強く拘束するために高分子 弾性体を多量に含有させたりする方法が一般的に採用されている。しかし、絡合度 合いを増大させたり、高分子弾性体の含有量を増加すると、一方で人工皮革の風合 いが顕著に悪ィ匕し、外観や風合いと表面物性を同時に満足させることは困難であつ た。
[0005] 立毛調人工皮革における立毛繊維の耐ピリング性に代表される表面摩擦耐久性の 改良については、例えば 0. 8デニール以下の極細繊維からなる極細繊維束を発生 する海島型繊維カゝらなる-一ドルパンチ絡合不織布をポリビュルアルコール (以下、 PVAと略すこともある。)水溶液へ浸漬し、乾燥することで不織布の形状を仮固定し; 海島型繊維の海成分を溶解する有機溶剤で海成分を抽出除去し;ポリウレタンのジ メチルホルムアミド (以下、 DMFと略すこともある。)溶液を含浸し凝固し;次いで表面 を起毛することで得られるスエード調人工皮革が提案されて ヽる (特許文献 1参照)。 該極細繊維中に、繊維径の 4分の 1より大なる径を有し、かつ繊維に対して不活性な 粗大粒子を添加することが提案されて 、る。
[0006] 特許文献 2では、海島型繊維カゝらなる-一ドルパンチ絡合不織布に、ポリウレタン の DMF溶液を含浸し凝固し、次 、で海成分を抽出除去して得られた皮革様基材を 起毛することによりスエード調人工皮革を製造している。該基材を構成している繊維 束は、 0.02〜0.2デニールの細繊維 (A)と、細繊維 (A)の平均繊度の 1Z5以下で かつ 0.02デニール未満の繊度の極細繊維 (B)とからなり、その本数の比 (A/B)は 2Zl〜2Z3である。繊維束内部には実質的に高分子弾性体が含有されておらず、 立毛繊維中の細繊維 (A)と極細繊維 (B)の本数の比 (AZB)は 3Z1以上である。
[0007] また、溶剤で立毛繊維の根元に存在する高分子弾性体の一部を溶解し、立毛繊維 の根元を固定することによりスエード調人工皮革の耐ピリング性を改良する方法が提 案されて!ヽる (特許文献 3参照)。
[0008] 特許文献 4は、きめの細かい表面タツチのヌバック調人工皮革に転換することので きる長繊維不織布を得るために、ニードルパンチによって絡合させる際に長繊維を積 極的に切断して不織布表面に 5〜: LOO個 Zmm2の繊維の切断端を発現させ、長繊 維不織布において特徴的な絡合処理によるひずみを解消することを提案している。 また、不織布の厚み方向と平行な任意の断面において、繊維束が幅 lcm当たり 5〜 70本の範囲で存在(即ち、不織布の厚み方向と平行な任意の断面において、ニード ルパンチによって厚み方向に配向した繊維力 幅 lcm当たり 5〜70本の範囲で存在 )させ、かつ、繊維束の占める総面積が、不織布の厚み方向に直交する任意の断面 にお 、て、該断面積の 5〜70%の範囲にすることを提案して 、る。
[0009] 特許文献 5は、 0. 5de以下の極細繊維に変換可能な長繊維からなり、該長繊維の 捲縮度が 10%以下であり、かつ、不織布の繊維密度が 0. 25-0. 50gZcm3である 長繊維絡合不織布を提案して!/ヽる。
[0010] し力しながら、特許文献 1に記載の方法では、海島型繊維の海成分を抽出除去し た後にポリウレタンの DMF溶液を含浸凝固しているので、極細繊維束の内部へポリ ウレタンが侵入し、風合いの硬化が避けられない。また、繊維中に粗大粒子が添加さ れて 、ることから、柔軟な風合 、や手触りを得ることができな 、。
特許文献 2に記載の方法では、海島型繊維の海成分を抽出除去する前にポリウレ タンの DMF溶液を含浸凝固しているので極細繊維束の外周部および内部にはポリ ウレタンが実質的に存在せず柔軟な風合いや手触りを得ることが可能である。しかし
、極細繊維束がポリウレタンで固定されて 、な 、ので耐ピリング性は不十分であった 特許文献 3に記載の方法では、皮革様基材の最表面に存在する高分子弾性体の 一部を溶解して立毛繊維の根元を固定するのみで、皮革様基材内部の繊維の固定 効果に乏しぐ繊維に対する高分子弾性体の把持能力が低い為、 0. 01デシテックス 以上の繊維に対しては、良好な耐ピリング性の改良効果が得られな 、。
特許文献 4の長繊維不織布構造を得るための方法では、目的とするレベル以下に まで物性を極力低下させないように切断端を発現させている。しかし、実際問題とし て、相当数の長繊維を切断してしまうので、長繊維の利点である繊維の連続性による 不織布強力物性の改善効果を著しく低下させてしま 、、長繊維の特徴を充分に生か すことができない。また、特許文献 4の絡合処理は、長繊維同士を長繊維不織布の 表面から内部、さらには反対面に渡って絡合させるためではなぐ表面の長繊維を満 遍なく切断して 5〜: L00個 Zmm2と 、う極めて多くの切断端を作り出すために行って いる。従って、一般的な絡合で採用されるよりはかなり強い条件で-一ドルパンチす る必要がある。さらに、長繊維不織布構造を得るために絡合する繊維が、従来の短 繊維と同様に 2. 8デニール以上の極めて太い繊維なので、長繊維同士を十分に絡 合させ緻密化することができず、本発明が目的とするような高品位なヌバック調人工 皮革を得ることは困難である。
特許文献 5に記載されている方法では、緻密性は改良できるものの、繊維密度が高 く、柔軟な風合!ヽを有する高分子弾性体含有人工皮革用基材は得られな ヽ。
[0011] 特許文献 1 :特開昭 53— 34903号公報 (第 3〜4頁)
特許文献 2 :特開平 7— 173778号公報 (第 1〜2頁)
特許文献 3:特開昭 57— 154468号公報 (第 1〜2頁)
特許文献 4:特開 2000— 273769号公報 (第 3〜5頁)
特許文献 5:特開平 11 200219号公報 (第 2〜3頁)
発明の開示
[0012] 従来、立毛調人工皮革にぉ 、ては、優美で緻密な立毛感と極細繊維立毛の発色 性;柔らかな膨らみ感と充実感;極細繊維立毛の柔らかな表面タツチと耐ピリング性 で代表される表面摩擦耐久性などを兼備することが困難であった。銀面調人工皮革 においては、銀面部と基材部のノ ランス、例えば、平滑性が高くて緻密な折れシボを 表現しうるハードな性質と柔軟性が高い基材部と一体感を表現しうるソフトな性質の バランス;柔らかな膨らみ感と充実感を有する銀面部と基材部の風合 、;基材部の高 い柔軟性による柔らかな風合いと銀面—基材界面における接着剥離強力で代表さ れる表面機械物性などを兼備することが困難であった。
[0013] 本発明は、人工皮革用基材において、従来は相反する性能であると認識されてき た感性面の性能と物性面での性能とを、 Vヽずれも高 ヽレベルで兼備した人工皮革用 基材を提供することである。本発明の基材を用いることで、従来にない高い品位と高 Vヽ物性を兼備した人工皮革を得ることが可能となる。
[0014] 後ろへ
本発明により得られる人工皮革は、上記の性質を高 、レベルで兼備して 、るので、 ジャケットやスカート、シャツやコートで代表される衣料用、スポーツ靴や紳士婦人靴 で代表される履物用、ベルトで代表される服飾品用、ハンドバッグやランドセルで代 表される鞫用、ソファーやオフィスチェアで代表される家具用、乗用車や列車、航空 機や船舶に代表される乗物のシートや内装材用、ゴルフ手袋やバッティング手袋、野 球グローブなどのスポーツ手袋やドライビング手袋、作業用手袋で代表される各種手 袋用などの用途に好適に使用できる。
[0015] 上記課題を達成すべく本発明者らは鋭意研究を重ねた結果、本発明に至った。す なわち、本発明は、極細繊維束からなる不織布構造体およびその内部に含有された 高分子弾性体からなる人工皮革用基材において、下記(1)〜(4):
( 1 )前記極細繊維束が、平均 6〜 150本の集束した極細長繊維により形成されて!、 ること、
(2)前記極細繊維束を形成する極細長繊維の断面積が 27 m2以下であり、かつ、 8 0%以上の極細長繊維の断面積が 0. 9〜25 μ m2の範囲にあること、
(3)前記極細繊維束の平均断面積が 15〜 150 m2の範囲にあること、および
(4)不織布構造体の厚さ方向と平行な任意の断面において、極細繊維束の断面が 平均 1000〜3000個 Zmm2の範囲で存在して!/、ること
を同時に満足していることを特徴とする人工皮革用基材に関する。
[0016] 本発明はさらに、下記工程を (a)、(b)、(c)および (d)、又は、(a)、(b)、(d)およ び (c)の順に実施することを特徴とする人工皮革用基材の製造方法に関する。
(a)平均島数 6〜150個、海と島の平均断面積比が 5: 95〜70: 30、平均断面積が 3 0〜180 m2の海島型繊維を溶融紡糸し、これをカットすることなくランダムな配向状 態で捕集面上に集積して長繊維ウェブを製造する工程、
(b)前記長繊維ウェブを、必要に応じて複数重ね合わせ、両面から、少なくとも 1っ以 上のパーブが貫通するような条件で-一ドルパンチングして海島型繊維同士を三次 元絡合させ、次いで、必要に応じて収縮処理や熱プレス処理によって緻密化及び Z 又は固定ィ匕して、厚さ方向に並行な断面において海島型繊維の断面が平均 600〜 4000個 Zmm2の範囲で存在する不織布構造体を製造する工程、
(c)前記不織布構造体に高分子弾性体溶液を含浸し、湿式法により高分子弾性体 を凝固させる工程、および
(d)前記不織布構造体を構成する海島型繊維から海成分ポリマーを抽出または分解 することにより除去し、海島型繊維を極細繊維束に変成する工程。
[0017] 本発明の人工皮革用基材では、極細繊維束が従来にない緻密な状態に集合して いるので、緻密性が極めて高ぐ平滑性に優れた表面状態が得られる。本発明の人 ェ皮革用基材を用いると、天然皮革に勝るとも劣らない滑らかで優美な外観ゃタツチ を有すると共に、発色性、膨らみ感のある風合いおよび耐ピリング性などの表面摩擦 耐久性に優れた立毛調人工皮革を得ることができる。また、天然皮革に勝るとも劣ら ない平滑でありながら柔らかで膨らみ感のある風合いおよび接着剥離強力などの表 面強度に優れた銀面調人工皮革を得ることができる。
発明を実施するための最良の形態
[0018] 本発明の人工皮革用基材は、例えば、以下の工程を (a)、(b)、(c)および (d)、又 は、(a)、(b)、(d)および (c)の順に行なうことにより得ることができる。
[0019] 工程(a)
海成分ポリマーと島成分ポリマーを複合紡糸用口金力 押出し、海島型繊維を溶 融紡糸する。
複合紡糸用口金は、海成分ポリマー中に島成分ポリマーが平均すると 6〜150個 の範囲における何れかの個数分散した断面状態を形成することができるノズル孔が 直線状に多数並んだ列が並列状に複数列配置された構造のものが好ましい。
得られる繊維の断面において平均面積比(即ちポリマー体積比)で海 Z島 = 5Z9 5〜70/30の範囲における何れかの比率となるように海成分ポリマーと島成分ポリマ 一の相対的な供給量または供給圧力を調節しつつ口金温度が 180〜350°Cの温度 範囲における何れかの温度となるような温度条件にて溶融状態で口金から吐出する 得られる海島型繊維の平均断面積は 30〜180 μ m2の範囲における何れかの値で あり、平均単繊度は、例えば、島成分ポリマーがナイロン 6、海成分ポリマーがポリエ チレンであれば、複合するポリマーの面積比率にもよる力 0. 3〜1. 8dtexの範囲 における何れかの値が好ましぐより好ましくは 0. 5〜1. 7dtexの範囲における何れ かの値である。本発明において、長繊維とは、繊維長が通常 3〜80mm程度である 短繊維よりも長い繊維長を有する繊維であり、短繊維のように意図的に切断されてい ない繊維をいう。例えば、極細化する前の長繊維の繊維長は 100mm以上が好まし ぐ技術的に製造可能であり、かつ、物理的に切れない限り、数 m、数百 m、数 kmあ るいはそれ以上の繊維長も含まれる。
溶融紡糸された海島型繊維をカットすることなぐランダムな配向状態でネット等の 捕集面状に集積して、所望の目付 (好ましくは 10〜: LOOOgZm2)の長繊維ウェブを 製造する。
工程 (b)
前記長繊維ウェブを、必要に応じてクロスラッパ一等を用 、て厚さ方向に複数層重 ね合わせた後、両面から同時または交互に少なくとも 1つ以上のパーブが貫通する 条件で-一ドルパンチし繊維同士を三次元絡合させ、厚さ方向に並行な断面におい て海島型繊維が平均 600〜4000個 Zmm2の範囲における何れかの密度で存在す る、海島型長繊維が極めて緻密に集合した不織布構造体を得る。長繊維ウェブには その製造後かつ絡合処理までの!/、ずれかの段階で油剤を付与してもよ 、。
必要に応じて、 70〜150°Cの温度範囲における何れかの温度に設定した温水中 へ導入するなどの収縮処理によって、絡合状態がより緻密にしてもよい。また、熱プ レス処理を行なうことで繊維同士をさらに緻密に集合させ、不織布構造体の形態を固 定ィ匕してちょい。
不織布構造体の平均見掛け密度は、例えば、島成分ポリマーがナイロン 6、海成分 ポリマーがポリエチレンであれば、 0. 1〜0. 6g/cm3の範囲における何れかの値で あるのが好ましい。なお、平均見掛け密度は、圧縮させるような荷重を掛けない方法 、例えば電子顕微鏡等での断面観察による方法による。不織布構造体の目付は通 常で 100〜2000gZm2あるのが好まし!/、。
[0021] 工程 (c)
海島型繊維が所定のレベルにまで極めて緻密に集合した状態の不織布構造体に 、高分子弾性体溶液を含浸し、湿式法により高分子弾性体を凝固させる。
[0022] 工程(d)
(d)不織布構造体を構成する海島型繊維から海成分ポリマーを抽出または分解す ることにより除去し、海島型繊維を極細繊維束に変成する。
[0023] 上記のようにして得られた人工皮革用基材について、さらに以下の工程を、(e)お よび (f)、または、(f)および (e)の順序で行なった後、必要に応じて (g)を行なうこと により、本発明の効果を有するスエード調、ヌバック調などの立毛調人工皮革を得る ことができる。
工程 (e)
少なくとも一面に極細繊維カゝらなる立毛を形成させる工程。
工程 (f)
染色する工程。
工程 (g)
極細繊維立毛を整毛する工程。
[0024] また、得られた人工皮革用基材について、さらに工程 (h)を行なった後、必要に応 じて (i)を行なうことにより、本発明の効果を有する銀面調人工皮革を得ることができ る。
工程 (h)
少なくとも一面に高分子弾性体カゝらなる被覆層を形成する工程。
工程。 温度が 60〜140°Cの温度範囲における何れかに設定され、かつ界面活性剤を含 む水中でリラックスさせる工程。
[0025] 以下、本発明を達成するための手段について、より詳しく説明する。
本発明の不織布構造体を構成する海島型繊維とは、少なくとも 2種類のポリマーか らなる多成分系複合繊維であって、繊維断面にお 、て繊維外周部を主として構成す る海成分ポリマー中に、これとは異なる種類の島成分ポリマーが分布した断面形態の 繊維のことである。島成分ポリマーは表面張力の作用によって、通常は円形かそれ に近い形状で分布する力 もちろん海成分ポリマーと島成分ポリマーとの比率によつ ては多角形形状で分布していることもある。この海島型繊維は、不織布構造体に形 成した後、さらに高分子弾性体を含浸させる前または後の適当な段階で海成分ポリ マーを抽出または分解して除去することで、残った島成分ポリマーからなり元の海島 型繊維より細 ヽ複数本の繊維が集束した繊維束を生成する。このような海島型繊維 は、従来公知のチップブレンド (混合紡糸)方式や複合紡糸方式で代表される多成 分系複合繊維の紡糸方法を用いて得ることができる。海島型繊維は、繊維断面にお V、て海成分ポリマーが繊維外周部を主として構成して!/、るので、繊維外周を複数成 分が交互に構成するような花弁形状や重畳形状などの剥離分割型複合繊維に比べ ると、ニードルパンチ処理で代表的される繊維絡合処理時の割れ、折れ、切断など の繊維損傷を極めて少なくすることができる。従って、より細い繊度の複合繊維を不 織布構造体の構成繊維として採用することができる上、その絡合による緻密化度合 いもより高めることができるので、本発明では不織布構造体を海島型繊維を用いて製 造する。海島型繊維は、剥離分割型複合繊維に比べると、得られる極細繊維の断面 形状がより円形に近い形状となり、繊維束の異方性がより少なぐまた、個々の極細 繊維の繊度、即ち断面積の均一性が高い極細繊維束が得られる。非常に多くの繊 維束を従来にない緻密さで集合させた不織布構造体を特徴とする本発明の人工皮 革用基材においては、海島型繊維を用いることにより柔軟で膨らみ感がありながら充 実感をも兼ね備えた独特の風合 ヽが得られる。
[0026] 海島型繊維の島成分を構成するポリマーは、本発明においては特に限定されるも のではないが、ポリエチレンテレフタレート(以下、 PETと称する。)、ポリトリメチレンテ レフタレート(以下、 PTTと称する。)、ポリブチレンテレフタレート(以下、 PBTと称す る。)、ポリエステルエラストマ一等のポリエステル系榭脂またはそれらの変性物;ナイ ロン 6、ナイロン 66、ナイロン 610、ナイロン 12、芳香族ポリアミド、半芳香族ポリアミド 、ポリアミドエラストマ一等のポリアミド系榭脂またはそれらの変性物;ポリプロピレンな どのポリオレフイン系榭 S旨;ポリエステル系ポリウレタンなどのポリウレタン系榭 S旨など、 従来公知の繊維形成能を有する種々のポリマーが好適である。これらの中でも PET 、 PTT、 ΡΒΤ、あるいはこれらの変性ポリエステル等のポリエステル系榭脂は熱処理 により収縮しやすぐ加工した人工皮革製品の充実感のある風合い及び耐磨耗性、 耐光性、あるいは形態安定性などの実用的な性能が良好である点で特に好ましい。 また、ナイロン 6、ナイロン 66等のポリアミド系榭脂はポリエステル系榭脂に比べて吸 湿性があってしなやかな極細繊維が得られるので、加工した人工皮革製品の膨らみ 感のある柔らかな風合い、滑らかなタツチの立毛調外観、帯電防止性能などの実用 的な性能が良好である点力も特に好ましい。これら島成分ポリマーは、融点が 160°C 以上であるのが好ましぐ融点が 180〜330°Cの繊維形成性結晶性榭脂であるのが より好ましい。島成分ポリマーの融点が 160°C未満の場合には、得られた極細繊維 の形態安定性が本発明が目的とするレベルに達することができず、特に人工皮革製 品の実用的な性能の点から好ましくない。本発明において、融点は、示差走査熱量 計 (以下、 DSCと称する。)を用いて、窒素雰囲気下、昇温速度 10°CZ分で室温か らポリマー種類に応じて 300〜350°Cまで昇温後、直ちに室温まで冷却し、再度直 ちに昇温速度 10°CZ分で 300〜350°Cまで昇温したときに観測されるポリマーの吸 熱ピークのピークトップ温度を採用した。本発明において、極細繊維を構成するポリ マーには、紡糸段階で着色剤、紫外線吸収剤、熱安定剤、消臭剤、防かび剤、抗菌 剤その他各種安定剤などが添加されて 、てもよ 、。
海島型繊維の海成分を構成するポリマーは、海島型繊維を極細繊維束に変成させ る必要があるので、採用した島成分ポリマーとは溶剤または分解剤に対する溶解性 または分解性を異にする必要があり、紡糸安定性の点から島成分ポリマーとは親和 性が小さいポリマーであって、かつ紡糸条件下では溶融粘度が島成分ポリマーより 小さいポリマーである力、あるいは表面張力が島成分ポリマーより小さいポリマーであ ることが好ましい。このような好ましい条件を満たす限り、本発明において海成分ポリ マーは特に限定されるものではないが、好ましい具体例としては、ポリエチレン、ポリ プロピレン、ポリスチレン、エチレンプロピレン共重合体、エチレン酢酸ビュル共重合 体、スチレンエチレン共重合体、スチレンアクリル共重合体、ポリビュルアルコール系 榭脂などが挙げられる。
[0028] 海島型繊維中に占める海成分ポリマーの比率は、繊維断面における平均面積比 率で 5〜70%の範囲の何れかの比率で設定するのが好ましぐより好ましくは 8〜60 %、特に好ましくは 12〜50%である。海島型繊維中の海成分ポリマー比率が 5%よ り小さくなると、海島型繊維の紡糸安定性が低下するので工業的生産性が劣る。また 、除去される海成分が少ないので、人工皮革用基材を製造した場合に極細繊維束と 高分子弾性体との間に形成されるべき空隙が不足する。その結果、立毛調人工皮革 や銀面調人工皮革にお!、て、柔らかで膨らみ感がありかつ充実感をも兼ね備えた天 然皮革に独特の風合 、が得られ難くなつてしまうので好ましくな 、。海成分ポリマー 比率が 70%を超えると、海島型繊維の断面における島成分の形状や分布状態が不 安定になり、品質安定性が劣る。また、除去される海成分を回収するためのエネルギ 一面やコスト面での負荷が増大し、地球環境への負荷も増大するので、そのような比 率は好ましくない。さら〖こは、除去される海成分が多いと、人工皮革用基材の形態安 定性を所望のレベルにするために必要な高分子弾性体の含有量が顕著に増大する ので、本発明が目的とする人工皮革の風合いが得られ難くなるので、そのような比率 は好ましくはない。
[0029] 海島型繊維の紡糸には複合紡糸用口金を用いる。 1つのノズル孔に対して 6〜 15 0個の範囲における何れかの個数が平均的に配された島成分ポリマー用流路と、そ の島成分ポリマー用流路を取り囲むように配された海成分ポリマー用流路とを有する 多数のノズル孔カ 直線状または円形状に等間隔に並び、さらに、直線状であれば 並列状に、また円形状であれば同心円状に複数列配置されている。海成分ポリマー と島成分ポリマー力 なる溶融状態の海島型複合繊維を個々のノズル孔力 連続的 に吐出させる。ノズル孔直下力も後述する吸引装置までの間の何れかの段階で冷却 風により実質的に冷却固化しながら、エアジェット 'ノズルなどの吸引装置を用いて高 速気流を作用させ、複合繊維が目的の繊度にてなるよう均一に牽引細化する。高速 気流は、通常の紡糸における機械的な引取り速度に相当する平均紡糸速度が 1000 〜6000mZ分の範囲における何れかの速度となるように作用させる。さらに、得られ る繊維ウェブの地合いなどに応じて複合繊維を衝突板や気流等により開繊させなが ら、コンペャベルト状の移動式ネットなどの捕集面上に、ネットの反対面側から吸引し ながら、捕集'堆積させることで長繊維ウェブを形成する。
複合紡糸用口金が同心円状配置の場合、一般的には 1つの口金に対して 1つのノ ズル状吸引装置が使用される。このため吸引の際に多数の海島型繊維が同心円の 中心点に集束してしまう。一般的には、複数の口金を直線状に並べて所望の紡糸量 を得ているので、隣接する口金から吐出される海島型繊維の束の間には、繊維が殆 ど存在していない。従って、繊維ウェブの地合いを均一な状態にするためには開繊 することが重要になる。複合紡糸用口金が並列状配置であれば、口金に対向した直 線的なスリット状の吸引装置が使用される。このため、並列に配置された列間からの 海島型繊維が吸引の際に集束するので、同心円状配置の口金を採用した場合に比 ベるとより均一な地合いの繊維ウェブが得られる。この点で、同心円状配置に比べる と並列状配置の方がより好ま 、。
[0030] 得られた長繊維ウェブは、後工程における必要な形態安定性などに応じて、引き続 きプレス、エンボス等により部分的に加熱または冷却しつつ圧着することも好ましい。 海成分ポリマーの溶融粘度が島成分ポリマーより小さい場合には、溶融温度までの 高温を付与せずとも、 60〜 120°C程度の温度範囲における何れかの温度で加熱ま たは冷却することにより、長繊維ウェブを構成する海島型繊維の断面形状を大きく損 なうことなぐ長繊維ウェブの地合いをその後の工程でも十分に保持することができる 。さらに、長繊維ウェブの形態安定性を、巻き取りなどの取り扱いが可能なレベルに まで向上させることも可能である。
[0031] 従来の人工皮革が一般的に採用してきた、短繊維をカード機により繊維ウェブにす る方法は、カード機だけでなぐカード機通過に好適な油剤および捲縮の付与、所定 の繊維長へのカット、カット後の原綿の搬送および開繊などに一連の大型設備を必 要とし、生産速度、安定生産、コストなどの点において問題がある。また、短繊維を経 由する他の方法に抄紙法がある。この方法による繊維ゥヱブ製造においても、カット 等の設備およびその他の固有の設備を必要とするので同様の問題を有する。これら の短繊維を用いる方法に対して、本発明の製造方法は、紡糸から繊維ウェブ形成が 途切れることのないいわば 1つの工程として実施され、設備が非常にコンパクトで簡 潔であり、生産速度やコストに優れるの。また、従来のような種々の工程、設備を組み 合わせることによる複合的な問題が生じ難いので、安定生産性にも優れる。さらに、 従来の繊維間の絡合や高分子弾性体による拘束のみに頼っていた短繊維使用の不 織布構造体に比べると、長繊維から得られる不織布構造体、それを用いた人工皮革 用基材ゃ人工皮革は、形態安定性、即ち機械的強度や表面摩擦耐久性、銀面の接 着剥離強力などの物性面において優れた特性を発揮する。
本発明の製造方法によれば、従来のカード機を採用する方法では困難であった、 繊維径が極めて細い繊維力 不織布構造体を安定的に製造可能であり、これによつ て後述するように、従来の人工皮革では実現不可能であった極めて高い品位の人工 皮革を得ることができる。従来の短繊維を用いた不織布構造体を製造する場合には 、開繊装置やカード機に適した繊維径にする必要があり、一般的には平均断面積が 200 μ m2以上、ナイロン 6とポリエチレンの組み合わせの場合、大凡 2dtex以上の平 均繊度が必要であった。工業的な安定生産性を考慮すると、 300〜600 /ζ πι2の範囲 における何れかの平均断面積、ナイロン 6とポリエチレンの組み合わせの場合には、 大凡 3〜6dtexの範囲における何れかの平均繊度が一般的に採用されて 、た。これ に対して、本発明の製造方法では、繊維断面積は設備により実質的に制約されるこ とはなぐ繊維の紡糸安定性、繊維ウェブの必要な地合い、不織布構造体の必要な 嵩高さ、不織布構造体製造工程全体の生産速度などが許容範囲であれば、極めて 細!、繊維であっても使用可能である。本発明が採用する海島型繊維の紡糸安定性 や、繊維ウェブに要求される地合い、その他最終的な人工皮革用基材ゃ人工皮革 の品位なども考慮すると、平均断面積は 30 m2以上、ナイロン 6とポリエチレンの組 み合わせの場合、平均繊度は大凡 0. 3dtex以上が好ましい。平均断面積は 50 /z m 2以上がより好ましぐ後工程での形態安定性、取り扱い性を考慮すると 80 m2以上 力 Sさらに好ましい。ナイロン 6とポリエチレンの組み合わせの場合、平均繊度は大凡 0 . 8dtex以上の範囲であれば十分に安定的な工業生産が容易に可能である。このよ うな範囲の平均断面積を採用することで、得られた繊維ウェブの厚さ方向と平行な任 意の断面において、断面とほぼ直交する繊維の断面力 80〜700個 Zmm2の範囲 の何れ力の値であり、好ましくは 100〜600個 Zmm2、より好ましくは 150〜500個 Zmm2の範囲の平均数密度で存在する繊維分布状態が得られ、後工程での絡合等 により最終的に本発明の緻密な不織布構造体を得ることが可能となる。
[0033] 本発明では、得られる人工皮革用基材の不織布構造体の緻密性、とりわけ人工皮 革用基材の表層部を構成する不織布構造の緻密性を向上させる必要がある。このた め海島型繊維から形成される極細繊維束の平均断面積は 150 m2以下、極細繊維 成分がナイロン 6の場合、極細繊維束の平均繊度が大凡 1. 7dtex以下であるのが 好ましい。極めて高品位な立毛調人工皮革を得る場合には、平均断面積は 120 /z m 2以下が好ましい。とりわけヌバック調のような極細繊維立毛が短くて緻密な表面感を 有する人工皮革を目的とする場合には 110 m2以下が好ましぐより好ましくは 100 m2以下であり、極細繊維成分がナイロン 6の場合、平均繊度は大凡 1. 2dtex以下 力 り好ましい。極細繊維束の平均断面積の下限値は、上限値ほど人工皮革用基材 の特性に影響しないが、細くし過ぎると人工皮革の強度や表面摩擦耐久性などが顕 著に低下することもあるので、本発明が目的とする用途における実用的な物性を確 保するためには、極細繊維束の平均断面積が少なくとも 15 m2以上である必要が あり、 30 μ m2以上であるのが好ましぐより好ましくは 40 μ m2以上である。
[0034] 上記のように極細繊維束の平均断面積を 150 m2以下とすることで、不織布構造 体に高分子弾性体を含有させた後の人工皮革用基材において、その厚さ方向と平 行な任意の断面において、断面とほぼ直交する極細繊維束の断面が平均 1000〜3 000個 Zmm2も存在する従来にな ヽ極めて緻密構造が得られる。従来の不織布構 造体を採用した人工皮革用基材では、極細繊維束の平均断面積自体が一般的には 300〜600 m2程度で極めて大きぐ極細繊維束断面の数密度は平均で高々 200 〜600個 Zmm2程度、多くても 750個 Zmm2程度であった。仮に、従来の技術にお いて平均数密度が 750個 Zmm2を超える不織布構造体を得ようとした場合には、繊 維束自体の損傷、あるいは繊維束の断面形状が大きく変形し、かつ繊維束間も非常 に詰まった状態になる。従って、繊維束には自由度が殆ど無くなり、不織布構造体が 非常に硬ぐ例えて言うと木製の板のような風合いのものし力得られず、本発明で目 的とするような人工皮革用基材とは全く異なるものである。また、平均数密度が高々 2 00〜600個 Zmm2程度の不織布構造体内に高分子弾性体を含有させた場合には 、含有させる量にもよるが、極細繊維束の数密度が少ないのでその分だけ隣接する 極細繊維束間に厚 ヽ高分子弾性体の連続皮膜を形成してしまう。この厚 ヽ高分子弾 性体皮膜によって、従来の人工皮革用基材では、不織布構造体と高分子弾性体と の複合構造が硬い風合いとなるばかりか、繊維または高分子弾性体が固まって存在 する領域や、繊維も高分子弾性体も殆ど存在しない領域、即ち空隙が処々に点在す るような極めて大きな粗密斑のあるものしか得られな力つた。また、極細繊維束が大き な断面積を有することから、繊維束内部の極細繊維は高分子弾性体による拘束作用 を受け難ぐそのため十分な拘束作用を付与するためにはより多くの高分子弾性体 を必要とする傾向があった。
[0035] これに対して、本発明では、極細繊維束の断面積が極めて小さぐ極細繊維束の 数密度が極めて高い超緻密構造を有し、かつ地、合い自体が機械的に制御された 繊維ウェブから不織布構造体が形成される。従って、極細繊維束を拘束するための 高分子弾性体の厚さを薄くすることができ、また高分子弾性体に囲まれたセルもより 小さくすることができ、より均一に分布させることができるので、人工皮革用基材の内 部に大きな空隙などの顕著な粗密斑が発生するのを抑制することが可能となる。また 、従来の不織布構造体では、より緻密な構造を得るためには高絡合や高圧縮、高収 縮などを適宜組み合わせることで実現するしかなぐ結果として見掛け密度、即ち単 位体積当たりの質量がどうしても高くならざるを得な力つた。本発明の不織布構造体 は、見掛け密度を高くすることなく従来にない超緻密構造を実現することができる。こ れにより、本発明では、人工皮革用基材としての風合いを悪化させることなぐ繊維の 緻密性が極めて高い表面層を得ることが可能となるのである。
[0036] 極細繊維束の平均断面積が 150 m2を超える場合、人工皮革用基材の表面層の 緻密性を向上する方法として、極細繊維束を構成する極細繊維の平均断面積を 0. 以下、極細繊維成分がナイロン 6の場合、大凡 0. 009dtex以下の平均繊度、 に細くすることで、極細繊維束の断面形状、ひいては不織布構造体の表面層をより 変形し易くする方法が提案されており、実際に採用されている。しかし、極細繊維が 細すぎるので不織布構造の形態安定性が劣っており、長さ方向や幅方向に変形し 易い上、厚さ方向にも潰れ易い構造し力、得られないばかりか、立毛調人工皮革製造 時の発色性も不十分であり、好ま 、方法とは 、えな 、。
[0037] 本発明では、 1つの極細繊維束を構成する極細長繊維の平均本数は、繊維束自 体の易変形性、易屈曲性の点から 6本以上であり、極細繊維束の平均断面積の上限 と極細繊維の平均断面積の下限との関係および海島型繊維の紡糸安定性などの点 力も 150本以下である。海島型繊維の海成分をより少なくしたい場合には好ましくは 90本以下であり、さらに好ましくは 50本以下、最も好ましくは 10〜40本の範囲であ る。極細繊維の平均本数が 5本以下であると、前記した繊維束の易変形性や易屈曲 性に劣るばかりか、極細繊維が極細繊維束の最外周に配置され、人工皮革用基材 に含有された高分子弾性体に接触さらには接着して拘束される極細長繊維が多くな る。その結果、極細繊維束の拘束状態が過剰となり、本発明が目的とするような風合 いに優れた人工皮革用基材が得られ難くなる。一方、極細繊維の平均本数が 150本 を超えると、前記とは逆に高分子弾性体による拘束状態が過小となる。風合いのみに 着目すると十二分に優れた人工皮革用基材を得ることも可能であるが、本発明が目 的とする耐ピリング性で代表される表面摩擦耐久性などの物性にも優れた従来にな いような人工皮革用基材を得ることは到底出来なくなってしまう。
[0038] 前記した不織布構造体の形態安定性、人工皮革用基材あるいは立毛調人工皮革 の耐ピリング性などの表面物性、極細長繊維の発色性などの関係から、本発明では 、 80%以上の極細繊維の断面積が 0. 9〜25 /ζ πι2であり、かつ、極細繊維束内に、 27 m2を超える断面積の極細長繊維が存在しないことが必要である。 80%以上の 極細長繊維の断面積が 0. 9 m2に満たない場合、前記したように不織布構造の形 態安定性や立毛調人工皮革の発色性において本発明の目的を達成することができ ない。また、不織布構造体の形態安定性不足から人工皮革用基材に顕著な粗密斑 が見られるようになり、銀面調人工皮革の製造において、銀面層との風合いのバラン スを安定的に調節するのが困難になる。一方、 80%以上の極細繊維の断面積が 25 /z m2を超え、かつ極細繊維束内に 27 /z m2を超える極細長繊維が存在する場合、立 毛調人工皮革の鮮明さや発色性などはより良好となる傾向にある。しかし、極細長繊 維の引張り強度が強よすぎて、表面摩擦時の抵抗により繊維が切断し難くなるので、 不織布構造体力 繊維束を引きずり出してしまい、表面摩擦耐久性の中でも特に耐 ピリング性が顕著に悪ィ匕してしまう傾向が強く表れる。耐ピリング性に代表される表面 摩擦耐久性を向上させるためには、特に表面層部分の高分子弾性体の含有比率を 増加させるのが一般的な対策であるが、当然ながら立毛調人工皮革の風合いや立 毛表面のタツチが硬化してしまうので、結局のところ良好な立毛調人工皮革を得るの は困難である。
[0039] 得られた長繊維ウェブの目付けや厚さが不足している場合は、所望の目付け、厚さ になるようにラッピング(1枚の長繊維ウェブを工程の流れ方向に対して直行する方向 力 供給し、ほぼ幅方向に折り畳む力、工程の流れ方向に対して並行な方向から供 給したウェブをその長さ方向に折り畳むこと)や積重 (複数枚の長繊維ウェブを重ねる こと)を行なって調整する。海島型繊維からなる不織布構造体の形態安定性や繊維 の緻密性が不足している場合や、不織布構造体の海島型繊維の厚さ方向への配向 を調節する場合には、ニードルパンチ法などの公知の方法により機械的な絡合処理 を行う。これにより、長繊維ウェブを構成する繊維同士、特にラッピングや積重した層 状の長繊維ウェブの隣接する層間における繊維同士を三次元絡合させる。ニードル パンチ法により絡合処理する場合は、ニードルの種類 (ニードルの形状や番手、バー ブの形状や深さ、パーブの数や位置など)、ニードルのパンチ数(ニードルボードに 植針された-一ドルの密度と該ボードを長繊維ウェブの単位面積当たりに作用させる ストローク数を掛け合わせた単位面積当たりの-一ドルパンチ処理密度)、ニードル のパンチ深さ (長繊維ウェブに対して-一ドルを作用させる深さ)など各種処理条件 を適宜選択して実施する。
[0040] ニードルの種類は、従来の短繊維を用いた人工皮革製造において用いられるもの と同様のものも適宜用いることが可能である力 本発明の効果を得る上で-一ドルの 番手、パーブの深さ、パーブの数が特に重要であり、後述するような種類の-一ドル を主として用いるのが好まし 、。 [0041] ニードルの番手は、処理後に得られる緻密性や表面品位に影響を与える因子であ つて、少なくともブレード部(ニードル先端のパーブが形成されている部分)のサイズ が 30番(断面形状が正三角形であれば高さが、また円形であれば直径が 0. 73〜0 . 75mm程度)より小さい(細い)必要があり、好ましくは 32番(0. 68〜0. 70mm程 度)力も 46番(0. 33〜0. 35mm程度)の範囲であり、より好ましくは 36番(高さ 0. 5 8〜0. 60mm)力ら 43番(高さ 0. 38〜0. 40mm程度)の範囲である。ブレード部の サイズが 30番より大きい (太い)ニードルは、パーブの形状や深さの自由度が高ぐ二 一ドルの強度や耐久性にぉ 、ても好ま U、反面、不織布構造体の表面に大きな孔 径のニードルパンチ跡が残り、本発明が目的とする緻密な繊維集合状態や表面品位 を得ることが困難である。また、長繊維ウェブ中の繊維と-一ドルとの摩擦抵抗が大き くなり過ぎるので、ニードルパンチ処理用油剤を過剰に付与する必要があるので好ま しくない。一方、ブレード部のサイズ力 6番より小さいニードルは、強度や耐久性に お!、て工業生産に向かないば力りでなぐ本発明にお 、て好適な深さのバーブを設 定することが困難となる。ブレード部の断面形状は、繊維の引っ掛かり易さや摩擦抵 抗の小ささなどの点から、本発明にお 、ては正三角形が好ま 、。
[0042] 本発明におけるパーブ深さとはパーブの最深部からパーブ先端までの高さのこと である。一般的な形状のパーブでは、ニードル側面より外側に突き出したパーブの先 端までの高さ(キックアップと!/、うこともある)と-一ドル側面より内側に形成されたバー ブの最深部までの深さ (スロートデブスということもある)とを合わせた高さを指す。ノ ーブ深さは、少なくとも海島型繊維の直径以上である必要があり、好ましくは 120 m以下である。パーブ深さが海島型繊維の直径未満だと、海島型繊維がパーブに極 めて引っ掛かり難くなるので好ましくない。一方、パーブ深さが 120 /z mを超えると、 繊維は極めて引っ掛力り易い反面、不織布構造体の表面に大きな孔径のニードル パンチ跡が残り易ぐ本発明が目的とする緻密な繊維集合状態や表面品位を得るこ とが困難となる。また、パーブ深さは海島型繊維の直径に対して 1. 7〜10. 2倍の範 囲における何れかの倍数であるのが好ましぐより好ましくは 2. 0〜7. 0倍の範囲か ら選択した倍数である。パーブ深さが 1. 7倍未満だと、海島型繊維がパーブに引つ 掛かり難いためか、後述するパンチ数を増やしても、それに見合った絡合効果が得ら れない場合がある。一方、 10. 2倍を超えても海島型繊維の引っ掛力り易さが向上す るよりは、むしろ海島型繊維の切断や割れなどの損傷が増大する傾向が強くなるの で好ましくない。
本発明におけるパーブの数は、 1〜9個までの範囲で所望の絡合効果が得られるよ うに適宜選択すればよいが、ニードルパンチ絡合処理に主として用いるニードル、即 ち後述するパンチ数の少なくとも 50%以上のパンチングに用いられる-一ドルは、バ ーブ数が 1〜6個の範囲であるの力 緻密な構造の不織布構造体を得るためには好 ましい。また、本発明においては、ニードルパンチ絡合処理に用いる-一ドルのバー ブの数は 1種類である必要はなぐ例えば 1個と 9個、 1個と 6個、 3個と 9個などの異な るパーブ数の-一ドルを適宜組み合わせて、また、任意の順序で使用してもよい。複 数個のパーブを有する-一ドルにおいて、それぞれのパーブの位置は、ニードル先 端側からの距離が全て異なるものと、同じ距離にいくつかのパーブを有するものとが ある。後者の-一ドルとしては、例えばブレード部の断面形状が正三角形であって、 3つの頂角それぞれにパーブが 1個ずつ先端から同じ距離に付いた-一ドルなどが 挙げられる。本発明においては、絡合処理に用いる-一ドルとして、前者の-一ドル を主として用いる。これは、同じ距離に複数のパーブを有する-一ドルは、見かけ上 ニードルのブレード部が太ぐまたパーブ深さが大きい効果を有しているので、絡合 効果は高いものの、その一方でブレード部が太ぐまたパーブが深すぎる場合にみら れる不都合が顕著に現れる力もである。さらには、後者の-一ドルを用いて-一ドル パンチ処理すると、 1箇所で十数本から数十本という多数の繊維が束になって不織 布構造体の厚さ方向に配向し、ニードルパンチ処理をすればするほど、本発明が目 的とするような緻密な構造が得られに《なる傾向もみられる。即ち、不織布構造体の 厚さ方向と平行な任意の断面において、断面とほぼ平行な繊維は多数存在するが、 断面とほぼ直交する繊維の数密度が極端に減少する傾向がある。ただし、少ないパ ンチ数でも強い絡合効果が得られるので、絡合処理の一部に、後者の-一ドルを用 いることも好ましい。例えば、絡合処理の初期段階力 中期段階までの任意の段階 で、 目標の緻密構造を阻害しない程度に後者の-一ドルで絡合処理し、次いで、前 者の-一ドルを用いて目標の緻密構造にしてもよ 、。 [0044] ニードルの合計パンチ数は、 300〜4000パンチ Zcm2の範囲における何れかの 値が好ましぐより好ましくは 500〜3500パンチ/ cm2の範囲である。前記した同じ 距離に 、くつかのパーブを有する-一ドルを用いる場合には、 300パンチ/ cm2程 度以下、好ましくは 10〜250パンチ/ cm2程度の範囲である。 300パンチ/ cm2を超 えるような-一ドルパンチング処理を行うと、繊維が厚さ方向に多く配向してしまうの で、その後の-一ドルパンチング処理や収縮処理、プレス処理を行っても、不織布構 造体の数密度を高くすることが困難になる傾向が強い。
[0045] 海島型繊維からなる不織布構造体に必要な平均数密度 (厚さ方向と平行な任意の 断面における、断面とほぼ直交する繊維の断面の単位面積当たりの個数)は、 600 〜4000個 Zmm2、好ましくは 700〜3800個 Zmm2、より好ましくは 800〜3500個 Zmm2の範囲における何れかの値である。このような平均数密度の範囲を有するよう な緻密な構造を得るために、ニードルパンチ処理などの絡合処理だけでなぐ熱風、 温水、スチームなどによる熱収縮処理を併用するのも好ましぐこれらの処理を 1種類 または複数組み合わせることで、最終的には本発明が目的とする緻密な構造を得る ことができる。もちろん、絡合処理や収縮処理に加えて、プレス処理を該処理と同時 またはその前後に行うことも好ましい。
[0046] ニードルパンチによる絡合処理後、ニードルパンチによる絡合処理および熱収縮 処理後、あるいは熱収縮処理後、上記した海島型繊維からなる不織布構造体に必要 な緻密さ(平均数密度)の 50%以上にするのが好ましぐ 55〜130%にするのがより 好ましい。例えば、最終的な目標が 2000個 Zmm2であれば、少なくとも 1000個 Z mm2以上の平均数密度にするのが好ましい。
[0047] 前記好ましいニードルを使用し、ニードルパンチ処理を主体とする緻密化処理によ つて極めて緻密な不織布構造体を得るためには、合計パンチ数力 800〜4000パ ンチ Zcm2の範囲であるのが好ましぐより好ましくは 1000〜3500パンチ Zcm2の範 囲である。ニードルのパンチ数が 800パンチ Zcm2未満では、緻密化が不充分なば かりか、特に長繊維ウェブの異層間での繊維同士の絡合による不織布構造体の一体 化が不充分な傾向が強くなり、一方、 4000パンチ/ cm2を超えると、前記したニード ルの形状にもよるが、繊維の-一ドルによる切断や割れなどの損傷が目立ち、繊維 の損傷が特にひどい場合には、不織布構造体の形態安定性が大幅に低下すると共 にむしろ緻密さが低下してしまうこともある。
[0048] 得られる不織布構造体および人工皮革用基材の形態安定性や引裂き強力などの 力学的物性、厚さ方向における繊維の配向性などの観点からは、長繊維ウェブの厚 さ全体に渡って-一ドルのパーブがより多く作用するのが好ましい。従って、ニードル のパンチ深さは、少なくとも-一ドルの最も先端側にあるパーブが長繊維ウェブの厚 さ全体を貫通するような深さに設定するのが好ましい。また、従来にない緻密な構造 を実現させるためにも、前記のパンチ数の 50%以上のパンチングは、パーブが長繊 維ウェブを貫通する深さに設定する必要があり、 70%以上のパンチングをパーブが 長繊維ウェブを貫通する深さで行うのが好ましい。但し、パンチ深さを大きくし過ぎる と、パーブによる繊維の損傷が顕著になる傾向や、パンチング跡が不織布構造体の 表面に残り易くなる傾向などがみられるので、ニードル条件を設定する際にはこれら の点にも留意する必要がある。
[0049] 絡合処理に-一ドルパンチ法を採用する場合には、ニードルによる繊維の損傷を 抑制し、また-一ドルと繊維との強 ヽ摩擦により生じる帯電や発熱などを抑制するた めに、長繊維ウェブ製造工程以降、絡合処理工程以前の何れかの段階で油剤を付 与するのが好ましい。付与する方法としては、スプレーコーティング法、リバースコー ティング法、キスロールコーティング法、リップコーティング法などの公知のコーティン グ法が採用可能であり、中でもスプレーコーティング法が長繊維ウェブに対して非接 触であり、かつ、長繊維ウェブ内層に短時間で浸透する低粘度の油剤が使用可能な ので最も好ましい。尚、ここでいう長繊維ウェブ製造工程以降とは、海島型繊維を溶 融紡糸して移動式ネットなどの捕集面上に捕集'堆積させた段階以降のことを指す。 本発明において絡合処理前に付与する油剤は 1種類の成分力 なる油剤でもよいが 、好ましくは異なる効果を有する複数種の油剤を用い、それらを混合して付与するか 、順次付与するのが好ましい。本発明において使用される油剤は、ニードルと繊維と の摩擦、即ち金属とポリマーとの摩擦を緩和させる滑り効果の高い油剤であり、具体 的にはポリシロキサン系の油剤が好ましぐジメチルシロキサンを主体とする油剤がよ り好ましい。この滑り効果の高い油剤に組み合わせて使用する油剤としては、滑り効 果が強すぎてパーブへの引っ掛力りによる絡合効果が局所的に顕著に低下してしま つたり、特に、繊維同士の摩擦係数が顕著に低下することで絡合状態の維持が困難 になってしまったりするのを抑制しうるような摩擦効果の高い油剤が好ましぐ具体的 には鉱物油系の油剤が好ましい。その他にも、摩擦による帯電が顕著な場合には、 界面活性剤、例えばポリオキシアルキレン系界面活性剤などを帯電防止剤として併 用するのも好ましい。
[0050] 長繊維ウェブ、その積重体、あるいは絡合処理後の長繊維ウェブを、必要に応じて 、温水中、高温雰囲気中、あるいは高温高湿雰囲気中で所望の緻密さになるように 熱収縮処理する。例えば、平均数密度が 800〜: LOOO個 Zmm2程度の不織布構造 体の緻密さを得る場合、まず絡合処理により 500〜700個 Zmm2程度まで緻密化さ せた後で目標とする緻密さになるよう収縮処理する。熱収縮処理のためには、長繊 維ウェブが収縮性の海島型繊維で形成されて!、るか、海島型繊維以外に収縮性の 繊維を併用して長繊維ウェブを製造するか、あるいは、収縮性のウェブを別途製造し てこれを積重するのが好ましい。収縮性の海島型繊維を得るためには、海成分ポリマ 一、島成分ポリマーの何れか、または両方に、熱収縮性のポリマーを採用して紡糸す ればよい。熱収縮性の島成分ポリマーとしては、例えば、ポリエステル系榭脂、異種 ナイロンの共重合体などのポリアミド系榭脂、ポリウレタン系榭脂が挙げられる。収縮 処理条件は、十分な収縮が得られる温度であれば特に限定されず、採用する収縮 処理方法や処理対象物の処理量などに応じて適宜設定すればょ、。例えば温水中 へ導入して収縮処理する場合には、 70〜 150°Cの温度範囲における何れかの温度 で収縮処理するのが好まし 、。
[0051] 前記の-一ドルパンチによる絡合処理や熱収縮処理の他に、海島型繊維からなる 不織布構造体を目的とする緻密さにするために、後述する高分子弾性体の含浸処 理に先立って、必要に応じて、プレス処理を採用するのも好ましい。例えば、平均数 密度が 800〜1000個 Zmm2程度の緻密さを目標とする場合には、まず絡合処理に より 600〜800個 Zmm2程度まで緻密化させた後で目標とする緻密さになるようプレ ス処理すればよい。プレス処理を採用する場合には、前記の熱収縮処理と併用し、 熱が力かったままの状態で直ちにプレス処理するのが好まし 、。このような処理方法 を採用することで、収縮処理にカ卩えてプレス処理による緻密化がほぼ同時に進むの で、単にプレス処理のみを実施するよりは均一な緻密化状態を得ることが可能であり 、また優れた生産効率を得ることも可能である。不織布構造体を構成する海島型繊 維において、海成分ポリマーの軟ィ匕温度が島成分ポリマーの軟ィ匕温度より 20°C以上 、好ましくは 30°C以上低い場合に、熱収縮処理と併用したプレス処理が緻密化によ り有効である。この場合、海成分ポリマーの軟ィ匕温度に近い温度から島成分ポリマー の軟ィ匕温度より低い温度までの温度範隨こ加熱することによって、海島型繊維中の 海成分ポリマーのみが軟ィ匕またはそれに近い状態になる。その状態でプレスすると、 不織布構造体がより緻密な状態に圧縮され、これを室温にまで冷却すれば所望の緻 密な状態で固定された不織布構造体を得ることができる。プレス処理の緻密化以外 の利点としては、不織布構造体の表面をより平滑ィ匕した状態で固定できる効果が挙 げられる。平滑ィ匕することにより、本発明の人工皮革用基材における最大の特徴であ る極細繊維束の極めて緻密な集合状態を、より効果的に得ることも可能である。即ち 、人工皮革用基材の表面をより平滑にすることができるので、立毛調人工皮革の製 造において、パフイング等の立毛形成処理での研削量をより少なくすることが可能と なり、また、銀面調人工皮革の製造においては、基材表面を加熱プレスやパフイング 等を行うことなぐ平滑で厚さが 50 m以下の極めて薄い銀面層を安定的に形成す ることが可能となる。
このようにして得られた平均数密度が 600〜4000個 Zmm2の範囲である緻密な不 織布構造体に、好ましくは海成分ポリマーを除去する前に、所定量の高分子弾性体 を含有させる。含有させる方法としては、高分子弾性体の溶液または分散液を含浸し 、従来公知の乾式法または湿式法により凝固させる方法が挙げられる。含浸方法とし ては、不織布構造体を高分子弾性体液で満たされた浴中へ浸した後、プレスロール 等で所定の含液状態になるように絞ると 、う処理を 1回または複数回行なう、 V、わゆる ディップ-ップ法や、バーコーティング法、ナイフコーティング法、ロールコーティング 法、コンマコーティング法、スプレーコーティング法など従来公知の種々のコーティン グ法などが何れも採用可能である。 1種類の方法であっても複数種類の方法を組み 合わせてもよい。 [0053] 不織布構造体に含有させる高分子弾性体は、人工皮革用基材に従来用いられて いるものであれば何れも採用可能である。具体例としては、ポリエステルジオール、ポ リエーテルジオール、ポリエーテルエステルジオール、ポリカーボネートジオールなど 力 選ばれた少なくとも 1種類の平均分子量 500〜3000のポリマーポリオールと、 4 , 4'ージフエ-ルメタンジイソシァネート、イソホロンジイソシァネート、へキサメチレン ジイソシァネートなどの、芳香族系、脂環族系、脂肪族系のジイソシァネートなどから 選ばれた少なくとも 1種のポリイソシァネートとを主成分として組み合わせ、さらにェチ レンダリコール、エチレンジァミン等の 2個以上の活性水素原子を有する少なくとも 1 種の低分子化合物を所定のモル比で組み合わせて、これらを 1段階、あるいは多段 階で反応させて得た各種のポリウレタンが挙げられる。主体となる高分子弾性体とし てポリウレタンを採用して得られた人工皮革用基材は、風合いや力学的物性のバラ ンスにお 、て優れており、さらには耐久性を含めたバランスにお 、ても優れて 、る点 で好ましい。高分子弾性体としては、異なる種類のポリウレタンを混合して含有させた り、異なる種類のポリウレタンを複数回に分けて含有させたりしてもよぐまた、ポリウレ タン以外にも、合成ゴム、ポリエステルエラストマ一、アクリル系榭脂などの高分子弹 性体を必要に応じて添加した高分子弾性体組成物として含有させてもよい。
[0054] 高分子弾性体の溶液あるいは分散液などの高分子弾性体液を不織布構造体に含 浸し、次 、で高分子弾性体を従来公知の乾式法または湿式法により凝固させること で、高分子弾性体を不織布構造体内に固定する。ここでいう乾式法とは、溶剤あるい は分散剤を乾燥等により除去することで高分子弾性体を不織布構造体内に固定させ る方法全般を指す。また、ここでいう湿式法とは、高分子弾性体液を含浸した不織布 構造体を高分子弾性体の非溶剤や凝固剤で処理したり、感熱ゲル化剤などを添カロ した高分子弾性体液を採用して含浸後の不織布構造体を加熱処理したりすること〖こ より、溶剤あるいは分散剤を除去するに先立って不織布構造体内に高分子弾性体を 仮に固定するか完全に固定させる方法全般を指す。
[0055] 高分子弾性体液には、着色剤、凝固調節剤、酸化防止剤等の従来の人工皮革用 基材に含有させる高分子弾性体液に配合される各種添加剤を適宜配合してもよい。 不織布構造体に含有させる高分子弾性体あるいは高分子弾性体組成物の量は、目 的とする用途において必要とされる力学的物性、耐久性、風合いなどに応じて適宜 調節すればよいが、極細繊維束力もなる不織布構造体の目付けを 100としたとき、こ れに対する高分子弾性体の目付けとして 10〜150質量%の範囲が好ましぐ 30〜1 20質量%の範囲がより好ましい。高分子弾性体の含有量が 10質量%に満たない場 合は、人工皮革用基材内部において、隣接する極細繊維束同士の間に高分子弾性 体が介在して、極細繊維束と接触したり接着したりすることで極細繊維束の長さ方向 の移動を抑制する効果が不十分になる。特に、立毛調人工皮革とした場合には耐ピ リング性などの表面摩擦耐久性にぉ ヽて本発明の効果を得ることが困難である。一 方、高分子弾性体の含有量が 150質量%を超える場合は、前記のような耐ピリング 性への悪影響等の問題点は生じず、むしろ表面摩擦耐久性が向上する傾向にある 力 その反面、人工皮革用基材、あるいはこれを銀面調人工皮革や立毛調人工皮 革としたときの風合いが顕著に硬化して、ゴム感も強くなる上、特に立毛調人工皮革 では立毛表面の手触りが粗いものになる傾向があるので好ましくない。
高分子弾性体の含有による風合い硬化の度合いを抑制するための対策として、従 来の人工皮革製造方法では、高分子弾性体液を含浸、凝固するのに先立って、ポリ ビュルアルコール榭脂等の溶解除去可能な榭脂を不織布構造体への高分子弾性 体の付与量に応じて付与することが行われている。高分子弾性体を付与した際に、 不織布構造体を構成する繊維と高分子弾性体との間にポリビュルアルコール榭脂が 介在するので、該榭脂を除去した後、繊維と高分子弾性体とが接触あるいは接着し 難くなる。し力しながら、本発明では、従来にない極めて緻密に繊維が密集した不織 布構造体を採用し、また、従来の人工皮革用基材製造方法にない細い海島型繊維 または極細繊維束を使用して ヽるので、単にポリビニルアルコール榭脂等を付与して も不織布構造体を構成する繊維を該榭脂により均一に被覆し、かつ、被覆された繊 維同士の間に高分子弾性体を含有させるための空隙を均一に存在させることは困難 である。また、不織布構造体内で局所的に該榭脂が固まった領域と該榭脂が殆ど存 在しない領域が処々に点在する状態になるので、風合いの硬化を避けるために本発 明で好ましく採用できる方法ではない。但し、例えば不織布構造体の繊維間を仮固 定して形態安定性を向上させ、高分子弾性体の付与工程などの工程通過性を補助 的に向上させることなどを目的として、本発明の効果が阻害されない範囲で、該榭脂 を不織布構造体の目付けに対して質量比で 20%以下程度の少量を付与してもよ 、
[0057] 高分子弾性体を含有させる前または含有させた後の不織布構造体を構成する海 島型繊維から海成分ポリマーを除去する方法としては、島成分ポリマーの非溶剤ま たは非分解剤であり、高分子弾性体を含有させた後に除去する場合には、高分子弾 性体の非溶剤または非分解剤でもある液体であって、かつ海成分ポリマーの溶剤ま たは分解剤である液体で不織布構造体を処理する方法が本発明にお!ヽては好まし く採用される。島成分ポリマーが本発明において好適なポリアミド系榭脂ゃポリエステ ル系榭脂である場合に、海成分ポリマー除去処理に好適に用いられる液体の具体 例としては、海成分ポリマーがポリエチレンであれば、トルエン、トリクロロエチレン、テ トラクロ口エチレンなどの有機溶剤が挙げられ、海成分ポリマーが温水に対して可溶 なポリビニルアルコール榭脂であれば、可溶な温度の温水が挙げられ、また、海成分 ポリマーが易アルカリ分解性の変性ポリエステルであれば、水酸化ナトリウム水溶液 などのアルカリ性分解剤が挙げられる。海成分ポリマー除去処理段階の不織布構造 体に高分子弾性体が含有されて 、な 、場合であっても、本発明にお 、て好適な例 であるポリウレタンが含有されて!ヽる場合であっても、溶剤または分解剤として前記し た液体の何れも採用可能である。特に、有機溶剤やアルカリ性分解剤を採用する場 合には、含有させる高分子弾性体の組成を適宜調節して、除去処理による高分子弾 性体の劣化を抑制するのが好ましい。このような海成分ポリマー除去処理により、海 島型繊維が島成分ポリマー力もなる極細繊維束に変成し、好ましくは 60〜 1800gZ m2の目付を有する本発明の人工皮革用基材が得られる。
[0058] このようにして得られた人工皮革用基材を、従来の人工皮革製造と同様に、必要に より、厚さ方向に複数枚にスライスし、裏面となる面を研削するなどして厚さを調節し たり、裏面となる面や表面となる面に高分子弾性体や極細繊維束の溶剤を含む液体 で処理する。その後、少なくとも表面となる面をパフイング処理などの方法により起毛 処理して極細繊維を主体とした繊維立毛面を形成させることで、スエード調やヌバッ ク調などの立毛調人工皮革が得られる。また、表面となる面に高分子弾性体からなる 被覆層を形成させることで銀面調人工皮革が得られる。
[0059] 繊維立毛面の形成には、サンドペーパーや針布などによるパフイング処理や、ブラ ッシング処理などの公知の方法を何れも用いることができる。また、このような起毛処 理の前あるいは後に、高分子弾性体または極細繊維束を溶解または膨潤させること のできる溶剤、例えば、高分子弾性体がポリウレタンであればジメチルホルムアミド( DMF)などを含む処理液、また極細繊維束がポリアミド系榭脂であればレゾルシンな どのフエノール系化合物を含む処理液を起毛処理する表面に塗布してもよ ヽ。これ により、高分子弾性体や極細繊維束の接着による極細繊維束の拘束状態、立毛調 人工皮革の極細繊維立毛長、表面摩擦耐久性などを微調節することができる。
[0060] 高分子弾性体からなる被覆層の形成には、高分子弾性体を含む液体を人工皮革 用基材の表面に直接付与する方法や、一旦離型紙などの支持基材上に該液体を塗 布して力 人工皮革用基材に貼り合わせる方法などの公知の方法を何れも用いるこ とができる。形成する被覆層に用いられる高分子弾性体としては、前記した不織布構 造体に含有させるための高分子弾性体と同様のものなど、従来の銀面調人工皮革 の被覆層として公知の高分子弾性体であれば何れも採用可能である。形成する被覆 層の厚さは、 300 m以下程度であれば本発明の人工皮革用基材と十分に風合い 力 Sバランスした銀面調人工皮革を製造可能なので、特に限定されるものではな 、。 本発明の人工皮革用基材の最大の特徴である極細繊維束による緻密な集合状態に より得られる極めて平滑で均一な表面層を有する銀面調人工皮革を製造する場合に は、厚さが 100 m以下程度、好ましくは 80 m以下程度、より好ましくは 3〜50 m程度の範囲で被覆層を形成するとよぐこのような厚さの被覆層を形成することで、 極めて細かな天然皮革調の折れシボを有する銀面調人工皮革を得ることも可能とな る。
[0061] このような立毛調人工皮革や銀面調人工皮革は、海島型繊維を極細繊維束に変 成した後の何れの段階で染色してもよい。本発明においては、繊維の種類に応じて 適宜選択される酸性染料、金属錯塩染料、分散染料、硫化染料、硫化建染染料など を主体とした染料を用いた、パッダ一、ジッガー、サーキユラ一、ゥインスなどの従来 の人工皮革の染色に通常用いられる公知の染色機を使用した染色方法が何れも採 用可能である。また、染色以外にも、必要に応じて、ドライ状態での機械的もみ処理、 染色機や洗濯機などを使用したウエット状態でのリラックス処理、柔軟剤処理、防燃 剤や抗菌剤、消臭剤、撥水撥油剤などの機能性付与処理、シリコーン系榭脂ゃシル クプロテイン含有処理剤、グリップ性付与榭脂などの触感改質剤付与処理、着色剤 やエナメル調用コーティング榭脂などの前記した以外の榭脂を塗布する意匠性付与 処理などの仕上げ処理を行なうことも好ましい。本発明の人工皮革用基材は、極細 繊維束が非常に緻密に集合した構造をとつているので、ウエット状態でのリラックス処 理ゃ柔軟剤処理は、風合いを著しく改善するので、取り分け銀面調人工皮革におい て好ましく採用される処理である。例えばリラックス処理であれば 60〜140°C程度の 温度範囲で界面活性剤を含むような水中で処理することで、天然皮革に勝るとも劣ら な 、柔軟で膨らみ感がありながら、緻密構造自体がもつ充実感が損なわれて!/、な!、 人工皮革を得ることも可能である。
実施例
[0062] 次に、本発明の実施態様を具体的な実施例で説明するが、本発明はこれら実施例 に限定されるものではない。なお、実施例中の部および%は、ことわりのない限り質 量に関するものである。
[0063] (1)極細繊維の断面積、極細繊維束の平均断面積並びに極細繊維束における平均 集束本数
人工皮革用基材の厚さ方向と並行な任意の断面を走査型電子顕微鏡(100〜30 0倍程度)で観察した。観察視野力 断面に対してほぼ垂直に配向した極細繊維束 を 20個、万遍なぐかつ、無作為に選び出した。次いで選び出した個々の極細繊維 束の断面を 1000〜3000倍程度の倍率に拡大して、極細繊維の断面積および極細 繊維束における集束本数を求めた。
また、選び出した 20個の極細繊維束について、前記の方法により測定した極細繊 維の断面積および集束本数力 極細繊維束の断面積を計算により求めた。最大の 断面積および最小の断面積を削除し、残った 18個の断面積を算術平均することで、 人工皮革用基材を構成する極細繊維束の平均断面積を求めた。また、極細繊維の 集束本数が一定でなく分布している場合は、同様に最大本数、最小本数を除いた 1 8個の極細繊維束の集束本数を算術平均することで、人工皮革用基材を構成する極 細繊維束の平均集束本数を求めた。
[0064] (2)平均数密度 (厚さ方向と平行な断面の単位面積当りに存在する極細繊維束断面 の個数)
人工皮革用基材の厚さ方向と平行な任意の断面を走査型電子顕微鏡(100〜30 0倍程度)で観察した。合計観察面積が 0. 5mm2以上となるように 3〜10箇所を観察 して、それぞれの観察視野において、極細繊維束の長さ方向に対してほぼ垂直であ ると判断される断面の個数を数えた。その合計個数を合計観察面積で割ることにより lmm2当たりに存在する極細繊維束断面の個数を求めた。全観察視野における lm m2当たりの極細繊維束断面の個数を算術平均することで、人工皮革用基材の平均 数密度を求めた。
[0065] (3)立毛調人工皮革の外観の評価
人工皮革分野の当業者力 選出された 5人のパネリストが、立毛調人工皮革の外 観を目視により以下の基準で評価し、最も多くのパネリストが付けた評価を外観の評 価結果とした。
A:立毛表面の緻密性が全体的に極めて高ぐ手で触ったときにざらつきが全く無く て滑らかである。
B:立毛表面の緻密性が全体的に僅かに粗いか、又は、全体的に比較的高いもの の部分的に緻密性が明らかに低くて粗い部分が散在し、手で触ったときにややざら つきがある。
C:全体的に粗 、立毛表面であり、手で触ったときにかなりのざらつきがある。
[0066] (4)立毛調人工皮革の風合 、の評価
得られた立毛調人工皮革の厚さが 0. 8mm未満の場合にはゴルフ手袋に縫製し、 厚さが 0. 8〜1. 2mmの場合にはジャケットに縫製し、厚さが 1. 2mmを超える場合 にはソファーに縫製した。人工皮革分野の当業者力 選出された 5人のパネリストが 着用により、立毛調人工皮革の風合いを以下の基準で評価し、最も多くのパネリスト が付けた評価を風合!、の評価結果とした。
A:柔軟で膨らみ感がありながら十分な充実感も感じられる風合いであり、縫製品の フィット感が良好である。
B:柔軟さ、膨らみ感、充実感の何れかに欠けていてやや物足りない風合いであり、 縫製品のフィット感が不足して 、る(風合 、やフィット感にお 、て、従来の一般的な立 毛調人工皮革と同程度である)。
C :柔軟さ、膨らみ感、充実感の何れかが大幅に劣っている力、又は、何れも大幅 に劣った風合いであり、縫製品のフィット感が不良である(風合いやフィット感におい て、従来の一般的な立毛調人工皮革に劣っている)。
[0067] (5)立毛調人工皮革の表面摩耗耐久性の評価
JIS L1096に規定されているマーチンデール磨耗試験測定方法に準じ、荷重 12 kPa、磨耗回数 50000回の条件で、得られた立毛調人工皮革の表面を磨耗処理し た。処理前後の質量差 (磨耗減量)が 50mg以下の場合を耐磨耗性が良好であると 判定した。また、処理前後の立毛調人工皮革表面のピリング発生状態 (増減)を目視 により以下の基準で比較した。耐磨耗性が良好であり、かつピリング発生状態が Aま たは Bであるものを、表面磨耗耐久性に優れて 、ると評価した。
A:ピリングの増加は見られない(立毛の切断などによるピリングの減少は見られても よい)
B:ピリングの僅かな増加が見られるものの、手で触れて硬さが感じられるピリングは 殆ど増加していない
C :ピリングが明らかに増加しており、手で触れて硬さが感じられるピリングが明らか に増加している
[0068] (6)銀面調人工皮革の外観の評価
人工皮革分野の当業者力 選出された 5人のパネリストが、銀面調人工皮革の外 観を以下の基準で評価し、最も多くのパネリストが付けた評価を外観の評価結果とし た。
A:表面の平滑性が極めて高ぐ折れシボが細力べて天然皮革調である。
B:表面の平滑性が明確に劣る箇所が散在するか、又は、全体的な平滑性が僅か ながら劣っており、折れシボにおいても明確に粗い箇所が散在する力、又は、全体的 に少し粗い。 C:表面の平滑性が明確に劣っており、折れシボが全体的に粗!、。
[0069] (7)銀面調人工皮革の風合いの評価
得られた銀面調人工皮革の厚さが 0. 8mm未満の場合にはゴルフ手袋に縫製し、 厚さが 0. 8〜1. 2mmの場合にはジャケットに縫製し、厚さが 1. 2mmを超える場合 にはソファーに縫製した。人工皮革分野の当業者力 選出された 5人のパネリストが 着用により、銀面調人工皮革の風合いを以下の基準で評価し、最も多くのパネリスト が付けた評価を風合!、の評価結果とした。
A:柔軟で膨らみ感がありながら十分な充実感ゃ銀面層と基材との一体感も良好な 風合いであり、縫製品としてのフィット感が良好である。
B:柔軟さ、膨らみ感、充実感、一体感の何れかに欠けていてやや物足りない風合 いであり、縫製品としてのフィット感が不足している(風合いやフィット感において、従 来の一般的な銀面調人工皮革と同程度である)。
C :柔軟さ、膨らみ感、充実感、一体感の何れかが大幅に劣っている力 又は、何れ も大幅に劣った風合いであり、縫製品としてのフィット感が不良である(風合いゃフィ ット感にお 、て、従来の一般的な銀面調人工皮革に劣って 、る)。
[0070] (8)銀面調人工皮革の接着剥離強力の評価
得られた銀面調人工皮革の任意の箇所からを長さ方向に 250mm、幅方向に 25m m切り出して 3個の長さ方向の試験片を得た。同様に、長さ方向に 25mm、幅方向に 250mm切り出して 3個の幅方向の試験片を得た。各試験片の表面をメチルェチル ケトン (MEK)を染み込ませたガーゼで拭 、て汚れを除去した後、汚れが付着しな!ヽ ようにしつつ室温で 2〜3分程度乾燥した。長さ 150mm、幅 27mm、厚さ 5mmに切 り出したクレープゴムシートの片面を軽くパフイングした後、パフイングした面の汚れを 試験片と同様に MEKで除去して乾燥した。市販の靴用ポリウレタン接着剤(固形分 濃度 20%)に硬化剤を 5%添加して十分に混合し、試験片およびゴムシートそれぞ れの長手方向の一端から 90mm程度の領域に前記混合物の 0. 1〜0. 2gを直ちに 均一な厚さに塗布した。塗布後の試験片およびゴムシートを 2〜3分室温で乾燥させ 、さらに 100〜120°Cの乾燥機中で 3分程度加熱することで硬化反応を開始させた。 次いで、試験片とゴムシートの接着剤塗布面同士を貼りあわて均一に圧着し、最後 に 60〜80°Cの乾燥機中で 1時間程度加熱することで硬化反応を促進させて十分に 接着した測定片を得た。
[0071] 試験片の未接着部分を折り返して、試験片の未接着部分とゴムシートの未接着部 分がほぼ 180° の角度になるようにした後、ゴムシートを下側にして引張り試験機の 上下のチャック(チャック間距離: 150mm)に把持した。引張り速度 lOOmmZ分にて 、 180° 剥離試験を行い、剥離中の応力値をチャートに記録した。尚、試験片が硬 すぎて 180° 剥離が困難で、 T形剥離に近い状態になるようであれば、長さ 150mm 、幅 30mm、厚さ 2mm程度の金属製補強板を測定片のゴムシート裏面側に重ねた ままチャックに把持して、 T形剥離の状態にならないようにしてもよい。チャートに記録 された応力値から、剥離開始時の極大値とその直後の極小値を除外し、それ以外の 部分の応力曲線から目視により判断した平均的な応力値を試験片の接着剥離強力 値とした。長さ方向、幅方向それぞれ 3個ずつの試験片について得られた強力値を 算術平均して、長さ方向、幅方向それぞれの接着剥離強力の評価結果とした。
[0072] 実施例 1
海成分ポリマーとして低密度ポリエチレン (LDPE)、島成分ポリマーとしてナイロン 6 (Ny6)を、それぞれを個別に溶融させた。海成分ポリマー中に均一な断面積の島 成分ポリマーが 25個分布した断面を形成できる、多数のノズル孔が並列状に配置さ れた複合紡糸用口金に、該溶融ポリマーを断面における海成分ポリマーと島成分ポ リマーの平均面積比が海 Z島 = 50Z50となるような圧力バランスで供給し、口金温 度 290°Cでノズル孔より吐出させた。平均紡糸速度が 3600mZ分となるように気流 の圧力を調節したエアジェット 'ノズル型の吸引装置で牽引細化させ、平均断面積が 160 1112 (約1. 6dtex)の海島型繊維を紡糸し、これを裏面側から吸引しつつネット 上に連続的に捕集した。ネットの移動速度を調節して堆積量を調節し、さらに 80°Cに 保温したエンボスロールで軽く押さえ、平均目付けが 30gZm2、厚さ方向に並行な 断面上に海島型繊維の断面が平均 350個 Zmm2存在し、巻き取りが可能な程度に まで形態が安定化された長繊維ゥヱブを得た。
[0073] 上記の長繊維ウェブをクロスラッパ一装置を用いて、平均 20層の層状長繊維ウェブ にした。層状長繊維ウェブの表面に、ジメチルポリシロキサン系の滑り性油剤を主体 とし、鉱物油系の油剤および帯電防止剤を混合した油剤をスプレー付与した後に、 ニードルパンチ法により絡合処理した。ニードルパンチは、ニードル番手 40番、バー ブ深さ 40 μ m、パーブ数 1個で正三角形断面の-一ドル A、および、ニードル番手 4 2番、パーブ深さ 40 m、パーブ数 6個で正三角形断面の-一ドル Bを補助的に用 い、ニードル Aのパーブ、及び、ニードル Bの先端から 3個のパーブが何れも厚さ方 向に貫通するパンチ深さにて、両面側から合計で 1200パンチ Zcm2のパンチ数で 行い、海島型繊維同士を厚さ方向に絡合させた。次いで雰囲気温度 150°Cで熱収 縮処理した後、さらに 10°Cに保温した金属ロールでプレス処理することにより、平均 目付けが 650gZm2で厚さ方向に並行な断面上に海島型繊維の断面が平均 1200 個 Zmm2存在する、海島型繊維が極めて緻密に集合した不織布構造体を得た。
[0074] 得られた不織布構造体に、ポリエーテル系ポリウレタンを主体とするポリウレタン組 成物 13部、ジメチルホルムアミド(以下 DMFと称す) 87部カゝらなる高分子弾性体液 を含浸し、水中で湿式凝固させた。水洗して DMFを除去した後、海島型繊維中の低 密度ポリエチレンを加熱したトルエンで抽出除去し、次いで熱水浴中でトルエンを共 沸除去し、乾燥することで、ナイロン 6の極細長繊維が集束した極細繊維束力 なる 不織布構造体の内部にポリウレタンが含有された厚さ約 1. 3mmの本発明の人工皮 革用基材を得た。
上記方法により測定した極細繊維の平均断面積は 2. 6 μ
Figure imgf000034_0001
集束本数は 25本で ほぼ均一な断面積の極細繊維が集束して 、て 、た。極細繊維束の平均断面積は 68 μ m2であり、極細繊維束中には断面積が 27 m2を超える極細繊維は存在しなかつ た。厚さ方向と平行な断面の単位面積当りに存在する極細繊維束断面の個数は平 均 1700個 Zmm2であり、大半の極細繊維束は高分子弾性体とは接着して!/、な!/、状 態であった。
[0075] 実施例 2
実施例 1により得た人工皮革用基材をスライスにより厚さ方向に二分割した。分割 面をサンドペーパーでパフイング処理して平均厚さ 0. 62mmに厚みを合わせた後、 他の面をサンドペーパーをセットしたエメリーパフ機でパフイング処理して起毛および 整毛し、極細繊維立毛面を形成した。さらに Irgalan Red 2GL(Ciba Specialty Chemica Is)を用いて、 4%owfの濃度で染色した後、ブラッシングして整毛仕上げをしてヌバッ ク調人工皮革を得た。上記方法により測定した厚さ方向と平行な断面の単位面積当 りに存在する極細繊維束断面の個数は 1500個 Zmm2であり、緻密性が極めて高い 立毛調表面を有していながら、従来にない発色性を兼備していた。また、外観、風合 い、表面磨耗耐久性の何れもが極めて良好であり、本発明が目的とする効果を有す る立毛調人工皮革であった。評価結果を表 1に示す。
[0076] 実施例 3
実施例 1にお 、て、不織布構造体に含浸する高分子弾性体液をポリカーボネート 系ポリウレタン 65%とポリエーテル系ポリウレタン 35%力もなる混合ポリウレタンを主 体とするポリウレタン組成物 18部、 DMF82部からなる液に代えた以外は同様にして 、ナイロン 6の極細長繊維が集束した極細繊維束力 なる不織布構造体の内部にポ リウレタンが含有された厚さ約 1. Ommの本発明の人工皮革用基材を得た。
上記方法により測定した極細繊維の断面積、集束本数、極細繊維束の断面積は何 れも実施例 1と同様であり、極細繊維束中には断面積が 27 m2を超えるような極細 繊維は実施例 1と同様に存在しなカゝつた。厚さ方向と平行な断面の単位面積当り〖こ 存在する極細繊維束断面の個数は平均 2200個 Zmm2であり、大半の極細繊維束 は高分子弾性体とは接着して 、な 、状態であった。
[0077] 実施例 4
実施例 2により得た人工皮革用基材の片面をサンドペーパーでパフイング処理して 平均厚さ 0. 97mmに厚みを合わせた後、他の面をサンドペーパーをセットしたェメリ 一パフ機でパフイング処理して起毛および整毛し、極細繊維立毛面を形成した。さら に Irgalan Red 2GL(Ciba Specialty Chemicals)を用いて、 4%owfの濃度で染色した 後、ブラッシングして整毛仕上げをしてヌバック調人工皮革を得た。上記方法により 測定した厚さ方向と平行な断面の単位面積当りに存在する極細繊維束断面の個数 は平均 1950個 Zmm2であり、緻密性が極めて高い立毛調表面を有していながら、 従来にない発色性を兼備していた。外観、風合い、表面磨耗耐久性の何れもが極め て良好であり、本発明が目的とする効果を有する立毛調人工皮革であった。評価結 果を表 1に示す。 [0078] 比較例 1
実施例 1にお!ヽて、長繊維ウェブを構成する海島型繊維の海成分ポリマーと島成 分ポリマーの面積比を海 Z島 = 25Z75に変更すると共に、平均断面積を 175 /z m2 とし、ニードルパンチによる絡合処理に-一ドル Aと Bの代わりにパーブ数が 9個の- 一ドル Cを使用した以外は、実施例 1と同条件で人工皮革用基材を作成した。次い で、得られた人工皮革用基材を使用して、実施例 2と同様にしてヌバック調人工皮革 を作成した。得られたヌバック調人工皮革の発色性は良好であつたが、その他の特 性において本発明の目的とするレベルを満たしていないものであった。評価結果を 表 1に示す。
[0079] 比較例 2
島成分としてナイロン 6を 65部と海成分として低密度ポリエチレンを 35部とをそれぞ れ別のエタストルーダーで溶融させた。該溶融ポリマーを、海成分ポリマー中に均一 な断面積の島成分ポリマーが 50個分布した断面を形成できる、多数のノズル孔が同 心円状に配置された複合紡糸用口金に供給し、口金温度 290°Cでノズル孔より吐出 させた。吐出ポリマー^^束させつつ牽引細化させることで、平均断面積が 940 /z m 2 (約 9. 8dtex)の海島型繊維を紡糸した。得られた海島型繊維を 3. 0倍に延伸し、 捲縮した後、繊維長 5 lmmに切断してステーブルとした。ステープノレをカードで解繊 した後、クロスラッパ一で折り畳み短繊維ウェブを得た。得られた短繊維ウェブをさら に積重する工程以降は、実施例 1と同様にして人工皮革用基材を作成した。次いで 、得られた人工皮革用基材を使用して、実施例 2と同様にしてヌバック調人工皮革を 作成した。得られたヌバック調人工皮革は、比較的立毛感の粗いスエード調外観を 有するものであって実施例 2の立毛調人工皮革とは全く異なるものであった。また、 発色性は良好であつたが、表面の緻密性が不足してライティング効果に乏しぐ風合 いの硬いものであり、耐ピリング性も低ぐその他の特性においても本発明の目的と するレベルを満たして 、な 、ものであった。評価結果を表 1に示す。
[0080] 比較例 3
島成分としてナイロン 6、海成分として低密度ポリエチレンを使用して、海成分と島 成分の比率 50Z50にて混合して溶融させた。溶融ポリマーを多数のノズル孔が同 心円状に配置された紡糸口金へ供給し、口金温度 290°Cでノズル孔より吐出させた 。吐出ポリマー^^束させつつ牽引細化させる混合紡糸方法で、平均断面積が 940 m2 (約 9. 5dtex)の海島型繊維を紡糸した。紡糸後の海島型繊維断面は、ポリエ チレン力もなる海成分中にナイロン 6からなる数千個の島成分が散在した状態であつ た。得られた海島型繊維を 3. 0倍に延伸し、捲縮した後、繊維長 51mmに切断して ステーブルとし、これをカードで解繊した後、クロスラップウェバーで短繊維ウェブとし た。得られた短繊維ゥヱブをさらに積重する工程以降は、実施例 1と同様にして人工 皮革用基材を作成した。次いで、得られた人工皮革用基材を使用して、実施例 2と同 様にしてヌバック調人工皮革を作成した。得られたヌバック調人工皮革表面の緻密性 はおおむね良好で、実施例 2に近いヌノ ック調の外観を有していた力 発色性に乏 しぐペーパーライクな硬い風合いであり、その他の特性においても本発明の目的と するレベルを満たして 、な 、ものであった。評価結果を表 1に示す。
比較例 4
ニードルパンチによる絡合処理条件を下記のように変更した以外は実施例 1と同条 件で人工皮革用基材を作成した。
ブレード部先端力も等距離に位置する、パーブ深さ 60 mのパーブを正三角形断 面のそれぞれの角に 1個ずつ有する-一ドル Dを用い、一般的な-一ドルパンチン グ機での絡合処理に先立って、長繊維ウェブを-一ドルパンチした。長繊維ウェブを ブラシ状ベルトで搬送しながら、 3個のパーブが厚さ方向に貫通するパンチ深さにて 、ブラシ状ベルトとは反対側から 500パンチ/ cm2のパンチ数にて海島型繊維同士 を厚さ方向に強く絡合させた。次いで、実施例 1と同様の-一ドルパンチング機で- 一ドル Aを用いて両面側から 1000パンチ Zcm2で絡合処理した。
次いで、得られた人工皮革用基材を使用して、実施例 2と同様にしてヌバック調人 ェ皮革を作成した。得られたヌバック調人工皮革の厚さ方向と平行な断面の単位面 積当りに存在する極細繊維束断面の個数は、多 、箇所では平均 800個 Zmm2程度 であったが、 15〜50本の繊維束が厚さ方向に配向した部分、即ち、極細繊維束断 面の個数力^〜 50個 Zmm2程度の部分力 幅方向に 100〜500 μ m程度の間隔で 全体的に存在していた。従って、断面全体で平均すると 450個 Zcm2程度であった。 ヌバック調人工皮革の発色性や表面摩擦耐久性は良好であつたが、外観や風合 、 は本発明の目的とするレベルを満たしていないものであった。評価結果を表 1に示す [表 1] 実施例 比較例
2 4 1 2 3 4 極細繊維の種類 長繊維 長繊維 長繊維 短繊維 短繊維 長繊維 極細繊維の断面積 (ii m 2 ) 2. 6 2. 6 5. 3 4. 5 0. 062 2. 6 極細繊維束の断面積 (/ m 2 ) 68 68 142 234 181 68 極細繊維束断面の個数 (個/ mm 2 ) 1500 1950 900 350 650 450 発色性 A A A A C A 外観 A A C C B C 風合い A A B C C C 表面摩擦耐久性 A A A C A A 磨耗減量 (m g ) 2 1 14 65 47 1 ピリング状態 A A B C A A 実施例 5
実施例 3により得た人工皮革用基材の両面をサンドペーパーでパフイング処理して 0. 90mmに厚みを合わせると共に表面の平滑ィ匕処理を行なった後、片面を 160°C の鏡面ロールでさらに平滑ィ匕処理した。この面を後工程における表面側とした。別途 、ポリカーボネート系ポリウレタンを主体とし顔料により茶色に着色したポリウレタン組 成物からなる厚さ 15 mの表面被覆層をシボ付きの離型紙上に作成し、さらにその 上に架橋剤を含有するポリウレタン系接着剤からなる接着層を作成した。得られた2 層フィルムを前記人工皮革用基材の表面側に接着層を介して貼り合わせた。 65°C 雰囲気中で 3日間エージング処理した後、離型紙を剥離した。次いで、ウォッシャー を使用して、界面活性剤と柔軟処理剤を含有する 70°Cの温水浴中で 30分間リラック ス処理し、本発明の銀面調人工皮革を得た。得られた銀面調人工皮革の厚さ方向と 平行な基材断面の単位面積当りに存在する極細繊維束断面の個数は平均 1840個 Zmm2であって緻密性が極めて高カゝつた。外観、風合い、接着剥離強力の何れも極 めて良好であり、本発明が目的とする効果を有する銀面調人工皮革であった。評価 結果を表 2に示す。
比較例 5
海島型断面を剥離分割型繊維に変更し、絡合処理条件を変更し、かつ、極細化方 法を変更した以外は実施例 3と同条件で人工皮革用基材を作成した。
長繊維ウェブを構成する繊維として、ナイロン 6成分とポリエチレンテレフタレート( 以下 PETと称す)成分とが交互に花弁状に貼り合わされ、各成分が 8つのほぼ同じ 断面積からなる領域に分割された 16分割タイプの断面を有する平均断面積が 240 μ m2 (約 3. Odtex)の剥離分割型繊維を用いた。
ニードル Aと-一ドル Bの代わりにパーブ深さが 80 μ m、パーブの数 9個のニード ル Eを使用し、ニードルの先端から 3番目のパーブまでを厚さ方向に貫通させるような パンチ深さ(約 8mm)にて、両面側力も合計で 1000パンチ Zcm2のパンチ数にて- 一ドルパンチング処理した。水温 90°Cの温浴中へ 90秒間浸漬して収縮処理を行な い、次いで、プレス処理を行なうことなく両面側から水圧 150kgZcm2のウォータージ エツト処理を行なった。
海成分を抽出除去する代わりに、水酸ィ匕ナトリウム水溶液でアルカリ液処理して PE T成分を 10%程度減量させた。
得られた人工皮革用基材の表面及び厚さ方向と平行な断面を電子顕微鏡で観察 すると、表面は長繊維不織布ベースであつたが、切断した繊維が 5〜10個 Zmm2と いう極めて多い密度で存在しており、また、断面には、 15〜70本の厚さ方向に配向 した繊維束が幅方向に 0. 6〜1. 3mm程度の間隔で全体的に存在していた。次い で、得られた人工皮革用基材を使用して、実施例 5と同様にして銀面調人工皮革を 作成した。得られた銀面調人工皮革は、一見すると実施例 5で得られたものと同様の 外観を備えてヽたが、基材の厚さ方向と平行な断面の単位面積当りに存在する極細 繊維束断面の個数は平均 330個 Zmm2であって極めて少なぐ大半の繊維が分割 極細繊維化されておらず、また、分割された極細繊維束もほとんど分割されていない 極細繊維束も処々で高分子弾性体に接着していた。また、その他の特性においても 本発明の目的とするレベルを全く満たしていないものであった。評価結果を表 2に示 す。 [0085] [表 2] 実施例 5 比較例 5
極細繊維束の断面形状 海島状 花弁状
極細繊維 断面積 ( μ m 2 ) 2. 6 28. 5
極細繊維束の断面積 ( μ m 2 ) 68 232
極細繊維束断面の個数 (個/ m m 2 ) 1840 330
外観 A B
風合い A C
接着剥離強力 A C
長さ方向 (k g / c π l) 4. 2 2. 1
幅方向 (k g / c m) 4. 4 1. 8 産業上の利用可能性
[0086] 本発明の人工皮革用基材カゝら得られるヌバック調人工皮革は、緻密性が極めて高 い天然ヌバック調皮革様の立毛感のある外観を有する。また、発色性に優れ、柔軟 で膨らみ感がありながら充実感も有する風合い、および、耐ピリング性に代表される 表面摩擦耐久性など、従来兼備することが難し力つた特性においても優れている。ま た、本発明の人工皮革用基材から得られる銀面調人工皮革は、平滑性が高くて折れ シボが極めて細かい天然皮革様の銀面感のある外観を有する。また、基材と銀面層 との一体感、柔軟で膨らみ感のある風合いおよび接着剥離強力など、従来兼備する ことが難し力つた特性おいても優れている。これらの人工皮革は、衣料用、靴用、袋 物用、家具用、カーシート用、ゴルフ手袋等の各種スポーツ手袋用などの用途にお いて好適に利用できる。

Claims

請求の範囲 [1] 極細繊維束からなる不織布構造体およびその内部に含有された高分子弾性体から なる人工皮革用基材において、下記(1)〜(4):
( 1 )前記極細繊維束が、平均 6〜 150本の集束した極細長繊維により形成されて!、 ること、
(2)前記極細繊維束を形成する極細長繊維の断面積が 27 m2以下であり、かつ、 8 0%以上の極細長繊維の断面積が 0. 9〜25 μ m2の範囲にあること、
(3)前記極細繊維束の平均断面積が 15〜 150 m2の範囲にあること、および
(4)不織布構造体の厚さ方向と平行な任意の断面において、極細繊維束の断面が 平均 1000〜3000個 Zmm2の範囲で存在して!/、ること
を同時に満足していることを特徴とする人工皮革用基材。
[2] 極細繊維束が、平均 6〜90本の集束した極細長繊維により形成されている請求項 1 記載の人工皮革用基材。
[3] 高分子弾性体が極細繊維束と接着することなく含有されている請求項 1または 2記載 の人工皮革用基材。
[4] 請求項 1〜3のいずれかに記載の人工皮革用基材の少なくとも片面に、極細繊維か らなる立毛が形成された立毛調人工皮革。
[5] 請求項 1〜3のいずれかに記載の人工皮革用基材の少なくとも片面に、高分子弾性 体からなる被覆層が形成された銀面調人工皮革。
[6] 下記工程を (a)、 (b)、 (c)および (d)、又は、 (a)、 (b)、 (d)および (c)の順に実施す ることを特徴とする人工皮革用基材の製造方法。
(a)平均島数 6〜150個、海と島の平均断面積比が 5: 95〜70: 30、平均断面積が 3 0〜180 m2の海島型繊維を溶融紡糸し、これをカットすることなくランダムな配向状 態で捕集面上に集積して長繊維ウェブを製造する工程、
(b)前記長繊維ウェブを、必要に応じて複数重ね合わせ、両面から、少なくとも 1っ以 上のパーブが貫通するような条件で-一ドルパンチングして海島型繊維同士を三次 元絡合させ、次いで、必要に応じて収縮処理や熱プレス処理によって緻密化及び Z 又は固定ィ匕して、厚さ方向に並行な断面において海島型繊維の断面が平均 600〜 4000個 Zmm2の範囲で存在する不織布構造体を製造する工程、
(c)前記不織布構造体に高分子弾性体溶液を含浸し、湿式法により高分子弾性体 を凝固させる工程、および
(d)前記不織布構造体を構成する海島型長繊維から海成分ポリマーを抽出または分 解することにより除去し、海島型長繊維を極細長繊維束に変成する工程。
PCT/JP2006/324812 2005-12-14 2006-12-13 人工皮革用基材およびその基材を用いた人工皮革 WO2007069628A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/097,659 US7932192B2 (en) 2005-12-14 2006-12-13 Base for synthetic leather and synthetic leathers made by using the same
JP2007550189A JP4847472B2 (ja) 2005-12-14 2006-12-13 人工皮革用基材およびその基材を用いた人工皮革
CN2006800465178A CN101326323B (zh) 2005-12-14 2006-12-13 人造皮革用基材以及使用该基材的人造皮革
EP20060834567 EP1970486B1 (en) 2005-12-14 2006-12-13 Base for synthetic leather and synthetic leathers made by using the same
KR1020087014143A KR101317055B1 (ko) 2005-12-14 2006-12-13 인공 피혁용 기재 및 그 기재를 사용한 인공 피혁

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005360884 2005-12-14
JP2005-360884 2005-12-14

Publications (1)

Publication Number Publication Date
WO2007069628A1 true WO2007069628A1 (ja) 2007-06-21

Family

ID=38162935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324812 WO2007069628A1 (ja) 2005-12-14 2006-12-13 人工皮革用基材およびその基材を用いた人工皮革

Country Status (7)

Country Link
US (1) US7932192B2 (ja)
EP (1) EP1970486B1 (ja)
JP (1) JP4847472B2 (ja)
KR (1) KR101317055B1 (ja)
CN (1) CN101326323B (ja)
TW (1) TWI386530B (ja)
WO (1) WO2007069628A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028610A1 (ja) 2007-08-28 2009-03-05 Kuraray Co., Ltd. 皮革様シートおよびその製造方法
WO2010098364A1 (ja) * 2009-02-27 2010-09-02 株式会社クラレ 人工皮革、長繊維絡合ウェブおよびそれらの製造方法
JP2010222770A (ja) * 2009-02-27 2010-10-07 Kuraray Co Ltd 人工皮革およびその製造方法
JP2010235858A (ja) * 2009-03-31 2010-10-21 Kuraray Co Ltd 加飾成形用シート、加飾成形体、加飾成形用シート構成体、及び、加飾成形体の製造方法
US20110039055A1 (en) * 2008-06-25 2011-02-17 Kuraray Co., Ltd. Base material for artificial leather and process for producing the same
JPWO2015045367A1 (ja) * 2013-09-30 2017-03-09 株式会社クラレ 立毛調人工皮革及びその製造方法
JP2020037241A (ja) * 2018-09-06 2020-03-12 日本バイリーン株式会社 表皮材

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US8513147B2 (en) * 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
WO2005124002A1 (ja) * 2004-06-17 2005-12-29 Kuraray Co., Ltd. 極細長繊維絡合シートの製造方法
CN101652515B (zh) * 2007-03-30 2015-04-15 可乐丽股份有限公司 粒面仿皮革片材及其制备方法
US8512519B2 (en) * 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
JP6022161B2 (ja) * 2011-03-23 2016-11-09 株式会社クラレ 人工皮革用基材
CN102433686A (zh) * 2011-10-10 2012-05-02 浙江梅盛实业股份有限公司 针刺无纺基布
US8882963B2 (en) 2012-01-31 2014-11-11 Eastman Chemical Company Processes to produce short cut microfibers
JP6087073B2 (ja) * 2012-06-22 2017-03-01 株式会社クラレ 銀付調人工皮革及びその製造方法
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
KR101943989B1 (ko) 2015-06-05 2019-01-30 삼성전자주식회사 데이터를 송수신하는 방법, 서버 및 단말기
CN105019235B (zh) * 2015-06-30 2017-03-08 辽宁腾达集团股份有限公司 一种制造超高密度化针织面料的方法
WO2018049297A1 (en) 2016-09-09 2018-03-15 Sorrels Kevin M Protective gloves and method of making protective gloves
IT201700008269A1 (it) * 2017-01-26 2018-07-26 Alcantara Spa Materiale composito multistrato microfibroso per applicazioni nell’automotive
KR102620337B1 (ko) * 2017-09-22 2024-01-02 주식회사 쿠라레 입모 인공 피혁
JP7095967B2 (ja) * 2017-09-27 2022-07-05 宇部エクシモ株式会社 複合繊維及び成形体
CN111441123A (zh) * 2020-04-20 2020-07-24 徐州荣盛达纤维制品科技有限公司 一种吸湿排汗细旦涤纶面料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334903A (en) 1976-09-13 1978-03-31 Toray Industries Antipilling suede like sheet article
JPS57154468A (en) 1981-03-10 1982-09-24 Kuraray Co Raised porous sheet like article and production thereof
JPH07173778A (ja) 1993-10-29 1995-07-11 Kuraray Co Ltd スエード調人工皮革
JPH11200219A (ja) 1998-01-20 1999-07-27 Teijin Ltd 人工皮革用基布、および柔軟で伸び止め感の改善された人工皮革の製造方法
JP2000110060A (ja) * 1998-10-02 2000-04-18 Teijin Ltd 不織布およびそれから得られる人工皮革
JP2000273769A (ja) 1999-03-25 2000-10-03 Teijin Ltd 長繊維不織布およびそれを含む人工皮革
JP2002275748A (ja) * 2001-03-19 2002-09-25 Teijin Ltd 極細繊維不織布の製造方法
JP2003328276A (ja) * 2002-05-09 2003-11-19 Kuraray Co Ltd 極細長繊維不織布からなる人工皮革およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69424918T2 (de) * 1993-10-29 2000-10-12 Kuraray Co., Ltd Rauhlederartiges Kunstleder
US6716776B2 (en) * 1999-05-13 2004-04-06 Teijin Limited Nonwoven fabric made from filaments and artificial leather containing it
TWI230216B (en) * 2002-03-11 2005-04-01 San Fang Chemical Industry Co Manufacture method for artificial leather composite reinforced with ultra-fine fiber non-woven fabric
US20060008631A1 (en) * 2002-08-22 2006-01-12 Naohiko Takeyama Leather-like sheet and process for production thereof
US20050118394A1 (en) * 2003-11-25 2005-06-02 Kuraray Co., Ltd. Artificial leather sheet substrate and production method thereof
JP4464119B2 (ja) * 2003-12-12 2010-05-19 株式会社クラレ 人工皮革用基材、これをベースとする各種人工皮革、および人工皮革用基材の製造方法
KR101166273B1 (ko) * 2004-04-28 2012-07-17 가부시키가이샤 구라레 은 부조 인공 피혁
KR101298892B1 (ko) * 2005-09-30 2013-08-21 가부시키가이샤 구라레 피혁형 시트 및 그 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334903A (en) 1976-09-13 1978-03-31 Toray Industries Antipilling suede like sheet article
JPS57154468A (en) 1981-03-10 1982-09-24 Kuraray Co Raised porous sheet like article and production thereof
JPH07173778A (ja) 1993-10-29 1995-07-11 Kuraray Co Ltd スエード調人工皮革
JPH11200219A (ja) 1998-01-20 1999-07-27 Teijin Ltd 人工皮革用基布、および柔軟で伸び止め感の改善された人工皮革の製造方法
JP2000110060A (ja) * 1998-10-02 2000-04-18 Teijin Ltd 不織布およびそれから得られる人工皮革
JP2000273769A (ja) 1999-03-25 2000-10-03 Teijin Ltd 長繊維不織布およびそれを含む人工皮革
JP2002275748A (ja) * 2001-03-19 2002-09-25 Teijin Ltd 極細繊維不織布の製造方法
JP2003328276A (ja) * 2002-05-09 2003-11-19 Kuraray Co Ltd 極細長繊維不織布からなる人工皮革およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1970486A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467074B (zh) * 2007-08-28 2015-01-01 Kuraray Co 仿皮革片材及其製法
EP2184400A1 (en) * 2007-08-28 2010-05-12 Kuraray Co., Ltd. Leather-like sheet and process for producing the same
WO2009028610A1 (ja) 2007-08-28 2009-03-05 Kuraray Co., Ltd. 皮革様シートおよびその製造方法
US9334609B2 (en) 2007-08-28 2016-05-10 Kuraray Co., Ltd. Leather-like sheet and process for producing the same
EP2184400A4 (en) * 2007-08-28 2014-10-22 Kuraray Co LEATHER-LIKE SHEET AND METHOD FOR PRODUCING THE SAME
US9752260B2 (en) * 2008-06-25 2017-09-05 Kuraray Co., Ltd. Base material for artificial leather and process for producing the same
KR101655054B1 (ko) * 2008-06-25 2016-09-06 주식회사 쿠라레 인공 피혁용 기재 및 그 제조 방법
US20110039055A1 (en) * 2008-06-25 2011-02-17 Kuraray Co., Ltd. Base material for artificial leather and process for producing the same
KR20150056868A (ko) * 2008-06-25 2015-05-27 가부시키가이샤 구라레 인공 피혁용 기재 및 그 제조 방법
KR101644209B1 (ko) 2009-02-27 2016-07-29 주식회사 쿠라레 인공 피혁, 필라멘트 낙합 웹 및 그들의 제조 방법
US20120028008A1 (en) * 2009-02-27 2012-02-02 Kuraray Co., Ltd. Artificial leather, entangled web of filaments, and process for producing these
KR20110128828A (ko) * 2009-02-27 2011-11-30 가부시키가이샤 구라레 인공 피혁, 필라멘트 낙합 웹 및 그들의 제조 방법
JP2010222770A (ja) * 2009-02-27 2010-10-07 Kuraray Co Ltd 人工皮革およびその製造方法
WO2010098364A1 (ja) * 2009-02-27 2010-09-02 株式会社クラレ 人工皮革、長繊維絡合ウェブおよびそれらの製造方法
US10465337B2 (en) 2009-02-27 2019-11-05 Kuraray Co., Ltd. Artificial leather, entangled web of filaments, and process for producing these
JP2010235858A (ja) * 2009-03-31 2010-10-21 Kuraray Co Ltd 加飾成形用シート、加飾成形体、加飾成形用シート構成体、及び、加飾成形体の製造方法
JPWO2015045367A1 (ja) * 2013-09-30 2017-03-09 株式会社クラレ 立毛調人工皮革及びその製造方法
JP2020037241A (ja) * 2018-09-06 2020-03-12 日本バイリーン株式会社 表皮材
JP7220036B2 (ja) 2018-09-06 2023-02-09 日本バイリーン株式会社 表皮材

Also Published As

Publication number Publication date
CN101326323A (zh) 2008-12-17
CN101326323B (zh) 2012-05-02
JP4847472B2 (ja) 2011-12-28
US7932192B2 (en) 2011-04-26
EP1970486B1 (en) 2012-11-14
EP1970486A4 (en) 2009-11-25
KR101317055B1 (ko) 2013-10-18
US20090053948A1 (en) 2009-02-26
TW200736452A (en) 2007-10-01
KR20080075872A (ko) 2008-08-19
TWI386530B (zh) 2013-02-21
EP1970486A1 (en) 2008-09-17
JPWO2007069628A1 (ja) 2009-05-21

Similar Documents

Publication Publication Date Title
JP4847472B2 (ja) 人工皮革用基材およびその基材を用いた人工皮革
KR101712209B1 (ko) 인공 피혁용 기재 및 그 제조 방법
KR102332011B1 (ko) 입모풍 인공 피혁 및 그 제조 방법
JP5593379B2 (ja) 皮革様シート
JP3176592B2 (ja) 長繊維不織布およびそれを含む人工皮革
JP4913678B2 (ja) 人工皮革用基材およびその製造方法
JP6745078B2 (ja) 立毛調人工皮革
KR100648871B1 (ko) 피혁 모양 시트 형상물 및 이의 제조방법
JP4116215B2 (ja) 皮革様シート状物およびその製造方法
JP2000110060A (ja) 不織布およびそれから得られる人工皮革
JP2002180380A (ja) スエード調人工皮革及びその製造方法
JP2013067917A (ja) 皮革様シート
JP2012017541A (ja) 銀付調人工皮革
JPWO2020137168A1 (ja) 立毛人工皮革及びその製造方法
JP2011058108A (ja) 人工皮革用基材およびその製造方法
JP2011058107A (ja) 人工皮革用基材およびその製造方法
JP2011058109A (ja) 人工皮革用基材およびその製造方法
KR100368622B1 (ko) 필라멘트로부터 만들어진 부직포 및 그것을 함유하는 인공피혁
JPH11124777A (ja) ヌバック調人工皮革
JP2018193659A (ja) 皮革様シート及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046517.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007550189

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087014143

Country of ref document: KR

Ref document number: 2006834567

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12097659

Country of ref document: US