WO2007069612A1 - Optical head and optical information device - Google Patents
Optical head and optical information device Download PDFInfo
- Publication number
- WO2007069612A1 WO2007069612A1 PCT/JP2006/324778 JP2006324778W WO2007069612A1 WO 2007069612 A1 WO2007069612 A1 WO 2007069612A1 JP 2006324778 W JP2006324778 W JP 2006324778W WO 2007069612 A1 WO2007069612 A1 WO 2007069612A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- light
- light source
- lens
- optical head
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1395—Beam splitters or combiners
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B2007/0003—Recording, reproducing or erasing systems characterised by the structure or type of the carrier
- G11B2007/0006—Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
Definitions
- the present invention relates to an optical information apparatus that optically records and reproduces information and an optical head used in the optical information apparatus.
- the present invention also relates to an application device equipped with an optical information device. Background art
- Optical discs are widely used as information recording media capable of recording large-capacity information, and optical discs with higher recording density have been developed as technology advances.
- the first popularized optical disc was the compact disc (CD), and then the digital versatile disc (DVD) became popular.
- a DVD can record information at a recording density about 6 times that of a CD, and can record a large amount of data on a single DVD. For this reason, it is used especially for recording video information with a large amount of information.
- next-generation optical discs capable of recording information at higher recording densities such as Blu-ray Disc (BD) and HD-DVD, have been developed, and in particular, they have begun to be used for recording high-definition video. I am.
- DVD uses a light source with a wavelength of 660 nm and an objective lens with a numerical aperture (NA) of 0.6.
- NA numerical aperture
- DVD uses a blue laser with a wavelength of 405 nm and an objective lens of NAO.85, a next-generation optical disc capable of realizing a recording density five times the recording density of the current DVD will be realized.
- the optical disc apparatus supports a plurality of optical discs. Specifically, it is preferable that the optical disc apparatus corresponding to the next generation optical disc can record and reproduce a CD or a DVD.
- the numerical aperture of the objective lens While it is difficult to increase the working distance to be as high as 85, as with an objective lens for DVD or CD, an optical information device capable of recording / reproducing next-generation optical discs has the objective for next-generation optical discs. It would be desirable to have a lens and at least one objective lens used to record and playback CDs or DVDs.
- the objective lens is driven in the focusing direction and the tracking direction by an objective lens actuator configured by a magnetic circuit or the like.
- the objective lens is controlled so as to maintain a predetermined interval of the optical disk force in the focus direction, and is controlled so as to follow the center of the track in the tracking direction.
- Patent Document 1 shows an example of such an optical information device.
- the light beam 61 radiated also by the first light source is converted into approximately parallel light by the collimating lens 62, and is formed into a flat plate-like rising mirror.
- the optical axis is bent so as to be perpendicularly incident on the optical disk 65 having a high recording density.
- the first objective lens 65 converges the light beam 61 on the recording surface of the optical disk 65.
- the light beam 66 radiated by the second light source (not shown) force is converted into approximately parallel light by a collimator lens 67, and an optical disk 70 whose optical axis is low in recording density by a flat rising mirror 68. It is bent so that it may enter perpendicularly to.
- the second objective lens 69 causes the light beam 66 to converge on the recording surface of the optical disc 70.
- the objective lens actuator 71 moves the first objective lens 64 fixed to a movable part (not shown) in the focusing direction F perpendicular to the recording surface of the optical disk 65 having a high recording density and the tracking direction T of the optical disk 65. It can be moved in both directions.
- the objective lens actuator 72 moves the second objective lens 69 fixed to a movable part (not shown) to the focusing direction F and the optical disk 70 that are orthogonal to the recording surface of the optical disk 70 having a low recording density. It can be moved in both directions T.
- the two objective lenses are driven by different objective lens actuators.
- Patent Document 2 discloses an optical information device in which two objective lenses are supported on the same movable part and driven in a focusing direction and a tracking direction by one objective lens actuator.
- Patent Document 3 discloses another example of an optical information device in which two objective lenses are supported on the same movable part and driven in a focusing direction and a tracking direction by one objective lens actuator.
- the optical information device shown in FIG. 13 is compatible with three optical discs having different recording densities, and includes three light sources. Specifically, a semiconductor laser 73, a DVD module 85 in which a semiconductor laser is incorporated, and a CD module 83 are provided.
- the semiconductor laser 73 emits a laser beam of 408 nm and is used when information is recorded / reproduced on / from a high-density optical disk.
- the light beam emitted from the semiconductor laser 73 passes through the collimator 74 and enters the half mirror 75. Part of the light incident on the half mirror 75 is incident on the monitor photodiode 78 and most of the light is incident on the rising mirror 88.
- the rising mirror 88 reflects light toward the objective lens 80.
- the light reflected by the optical disk follows the reverse path, enters the half mirror 75, passes through the cylindrical lens 77, and then enters the photodetector 76.
- the DVD module 85 includes a red semiconductor laser that emits a laser beam of 658 nm and a photodetector, and is used when information is recorded on and reproduced from a DVD.
- the light emitted from the semiconductor laser of the DVD module 85 passes through the DVD collimator 86 and the polarization beam splitter 87 and enters the rising mirror 88.
- the rising mirror 88 reflects light toward the objective lens 81.
- the light reflected by the optical disc follows the reverse path and enters the photodetector of the DVD module 85.
- the CD module 83 includes an infrared semiconductor laser that emits a laser beam of 785 nm and an optical detector, and is used when information is recorded on and reproduced from a CD.
- the light emitted from the semiconductor laser of the CD module 83 passes through the CD collimator 84 and the polarization beam splitter 87 and enters the rising mirror 88.
- the raising mirror 88 reflects light toward the objective lens 81.
- the light reflected on the optical disk follows the reverse path and enters the photodetector of the CD module 83.
- the objective lenses 80 and 81 can be supported by a holding member 79 constituting a movable body, and the holding member 79 is supported by a wire 82 so as to be movable in the focusing direction and the tracking direction.
- Patent Document 1 JP 2002-208173 A
- Patent Document 2 Japanese Patent Application Laid-Open No. 11-120587
- Patent Document 3 Japanese Patent Laid-Open No. 2005-293686
- the optical information device of Patent Document 1 includes two objective lens actuators, the distance between the objective lens 64 and the objective lens 69 cannot be reduced, and the optical head of the optical information device can be reduced. It is difficult to downsize. In order to avoid this problem, if the objective lens actuators 71 and 72 are made small, there is not enough space to attach a coil or magnet to obtain a driving force on the movable part side, and the driving force cannot be obtained sufficiently. was there.
- Patent Document 3 discloses an optical head that can be made thin by launching light emitted from a plurality of light sources using a prism.
- the arrangement of components in the horizontal direction is not taken into consideration, and when the optical head tries to access the innermost circumference of the optical disk, there arises a problem that the spindle motor and the optical head interfere with each other.
- a blue semiconductor laser is used for recording and reproduction of an optical disc having a high recording density such as BD and HD-DVD.
- Blue semiconductor lasers have a higher drive voltage and higher power consumption than light sources used for recording and playback such as DVDs and CDs.
- the heat generated by the blue semiconductor laser deteriorates the signal Z noise ratio of the optical detector in the optical head, making stable recording and reproduction difficult. There was a problem of becoming a problem.
- Patent Documents 1 to 3 do not disclose a method for monitoring an appropriate amount of light in order to perform recording / reproduction on an optical disc having a high recording density, such as BD and HD-DVD.
- the present invention solves at least one of the problems of the prior art as described above, and includes at least one light source for high recording density, and is compatible with a plurality of types of optical discs that are small and excellent in stability.
- the object is to provide a head.
- the optical head of the present invention includes a first light source that emits light of a first wavelength, and a first light that travels in a second direction different from the first direction and the light emitted from the first light source.
- a beam splitter that branches into a first light beam and a second light beam, a first collimating lens that converts a divergence degree of the first light beam, and a first direction lens that changes a traveling direction of the first light beam converted in the divergence degree.
- a mirror a first objective lens for converging the first luminous flux whose traveling direction has changed toward the recording surface of the first optical disc, a movable body for holding the first objective lens, and the first optical dice.
- the optical head further includes a second mirror that changes a traveling direction of the second light beam emitted from the beam splitter, and the second mirror is arranged in the second direction.
- the second mirror is arranged in the second direction.
- the optical axis of the second light beam whose traveling direction is changed by the second mirror and the optical axis of the first light beam whose traveling direction is changed by the first mirror are mutually different. Parallel.
- the second photodetector has an outer shape having a longitudinal direction, and the second detection is performed so that the longitudinal direction is substantially parallel to the optical axis of the first collimating lens. A vessel is placed.
- the second detector has an electrical connection terminal on a side surface located in the longitudinal direction.
- the optical head further comprises a driving device for moving the position of the first collimating lens in a direction parallel to the optical axis of the first collimating lens
- the driving device includes:
- the first optical disc is disposed on the outer peripheral side with respect to the optical axis of the first collimating lens.
- the optical head further includes a concave lens and a diffractive lens formed on the curved surface of the concave lens, and further includes a lens that corrects chromatic aberration of the first objective lens.
- the first light source and the first photodetector are arranged on opposite sides with respect to the optical axis of the first collimating lens.
- the optical head includes a second light source that emits light having a second wavelength longer than the first wavelength, and a second mirror that changes a traveling direction of the light emitted from the second light source force. And a second objective lens that converges the light of the second light source whose traveling direction has been changed by the second mirror toward the recording surface of the second optical disk, and the second objective lens is supported by the movable body Has been.
- the first light source and the second light source are arranged on the outer peripheral side of the first optical disc with respect to the optical axis of the first collimating lens.
- the optical head further includes a drive circuit for driving the first light source and the second light source, and the drive circuit includes the first light source and the second light source. 2 Close to the light source.
- the second wavelength is a wavelength used for DVD recording / reproduction
- the first wavelength is a wavelength used for recording / reproduction of an optical disc having a higher density than the DVD.
- the first objective lens and the second objective lens are arranged along a tangential direction of the first optical disc and the second optical disc.
- the first objective lens is located on a straight line passing through the center of the first optical disc and parallel to the moving direction of the seek operation of the optical head.
- the second objective lens has an edge with a width of 0.16 mm or more and 1 mm or less.
- the surface of the edge of the objective lens is mirror-finished.
- the optical information device of the present invention is obtained from the optical head defined in any one of the above, a spindle motor that rotationally drives the first optical disk, and at least the first photodetector of the optical head. And an electric circuit for controlling the optical head based on the signal.
- a computer of the present invention includes the optical information device.
- An optical disc player of the present invention includes the optical information device.
- An optical disc recorder of the present invention includes the optical information device.
- An optical disk server of the present invention includes the optical information device.
- the condensing lens by providing the condensing lens, it is possible to collect light incident on the second photodetector and reduce the amount of light in a small area of the light detection region. This makes it possible to measure the amount of light emitted from the first light source in a high frequency band and with a high signal Z-noise ratio. Therefore, it is possible to realize an optical head that can keep the emission intensity of the first light source constant and can obtain a high-quality reproduction signal with little jitter.
- the present invention it is possible to reproduce or record an optical disk using an objective lens having a high numerical aperture up to the inner circumference side.
- the temperature rise of the light source can be suppressed and recording / reproduction can be performed stably.
- information can be recorded at high speed on each of a plurality of optical discs having different recording densities.
- the optical head can reach the innermost circumference of the optical disk recording section, and data can be recorded or reproduced.
- an optical head in which a plurality of objective lenses for realizing an optical information apparatus capable of recording and reproducing with respect to a plurality of optical discs having different recording densities is mounted on a movable portion is realized.
- FIG. 1 is a perspective view mainly illustrating a configuration of an optical system in an embodiment of an optical head according to the present invention.
- FIG. 2 is a schematic diagram partially showing FIG. 1 in a plan view and a side view.
- FIG. 3 is a plan view of an embodiment of an optical head.
- FIG. 4 is a side view showing an optical system of light incident on a second photodetector.
- FIG. 5 is a side view showing the structure of a chromatic aberration correcting lens used in the first embodiment.
- FIG. 6 is a cross-sectional view showing the structure of a second objective lens.
- FIG. 7 is a diagram showing a configuration of an embodiment of an optical information device.
- FIG. 8 is a diagram illustrating a configuration of an embodiment of a computer.
- FIG. 9 is a diagram showing a configuration of an embodiment of an optical disc player.
- FIG. 10 is a diagram showing a configuration of an embodiment of an optical disc recorder.
- FIG. 11 is a diagram showing a configuration of an embodiment of an optical disk server.
- FIG. 12 is a side view showing the structure of a conventional optical head.
- FIG. 13 is a perspective view showing the structure of another conventional optical head.
- FIG. 1 is a perspective view mainly illustrating the configuration of an optical system of an optical head according to the present invention
- FIG. 2 is a schematic diagram partially showing FIG. 1 in a plan view and a side view.
- 3 is a plan view of FIG.
- T is the tracking direction
- F is the focusing direction
- Y is a direction perpendicular to the tracking direction. In other words, Y is the direction in which the pit row or track groove extends.
- FIG. 2 the side of the optical head sandwiched between two wavy lines W and W is a side view, that is,
- the optical head can perform at least one of recording and reproduction with respect to the first optical disc 320 having a high recording density such as BD, HD-DVD and the like.
- the optical head includes a first light source 31, a beam splitter 32, a first collimating lens 33, a first mirror 60a, and a first mirror 60a. And a first photodetector 36.
- the first light source 31 is configured by a semiconductor conductor laser or the like, and emits light having a first wavelength, for example, blue light.
- the light 56 emitted from the first light source 31 is branched by the beam splitter 32 into a first light beam 56 ′ ′ and a second light beam 56 ′.
- the second light flux is detected by the photodetector 2 in order to control the intensity of the light emitted from the first light source 31, as will be described in detail below.
- the first light beam enters the first collimating lens 33, and the first collimating lens 33 converts the divergence of the first light flux.
- the first light flux whose divergence has been converted enters the inclined surface 60a of the prism 60 that functions as the first mirror.
- the slope 60a changes the traveling direction of the first light flux. Specifically, as shown in FIGS. 1, 2 and 3, the first light flux traveling in the plane parallel to the first optical disk 35 is directed to the first optical disk 35 by about 90 degrees, and the traveling direction is changed. It is changed and made incident on the first objective lens 34.
- the first objective lens 34 converges the first light beam toward the recording surface of the first optical disc 35.
- the first light beam reflected on the recording surface of the first optical disk 35 follows the original optical path in the reverse direction and is branched by the beam splitter 32 in a direction different from that of the first light source 31.
- the first photodetector 36 receives the first light flux and performs electrical conversion to obtain an information signal and a servo signal (a focus error signal for focusing control and a tracking signal for tracking control). Convert to signal.
- a servo signal a focus error signal for focusing control and a tracking signal for tracking control.
- the optical head is preferably capable of performing at least one of recording and reproduction on the second optical disk 320 having a different recording density in addition to the first optical disk 35.
- the second optical disk 320 is, for example, a DVD.
- the optical head includes an integrated unit 37, a second collimating lens 39, and a second objective lens 41.
- the integrated unit 37 includes a second light source 37a that emits light of a second wavelength (for example, red light) having a wavelength longer than the first wavelength, and a photodetector (not shown).
- the light 57 emitted from the second light source 37a is guided to the second collimating lens 39 by the dichroic mirror 38.
- the second collimating lens 39 converts the divergence of the light emitted from the second light source.
- the light 57 whose divergence has been converted enters the inclined surface 60b of the prism 60.
- the slope 60b changes the traveling direction of the light 57.
- the second optical disk The traveling direction of the light 57 traveling in the plane parallel to 320 is changed to about 90 degrees so as to be directed to the second optical disk 320, and is incident on the second objective lens 41.
- the second objective lens 41 converges the light 57 toward the recording surface of the second optical disk 320.
- the light 57 reflected on the recording surface of the second optical disk 320 follows the original optical path in the opposite direction, is branched in a direction different from the initial direction by a branching means such as a polarization hologram 40, and enters the photodetector 54.
- the photodetector 54 receives the reflected light and converts it into an electrical signal for obtaining an information signal and a servo signal (a focus error signal for focusing control and a tracking signal for tracking control) by photoelectric conversion. .
- a servo signal a focus error signal for focusing control and a tracking signal for tracking control
- the photodetector can be made smaller and thinner, and stability can be obtained.
- the optical head can perform at least one of recording and reproduction on the third optical disk 46 having a different recording density in addition to the first optical disk 35 and the second optical disk 320.
- the third optical disk 46 is a CD, for example.
- the optical head comprises an integrated unit 43 and a photodetector 54.
- the integrated unit 43 includes a third light source 43a that emits light with a third wavelength longer than the second wavelength (for example, infrared light).
- the light 58 emitted from the third light source 43 a passes through the dichroic mirror 38 and enters the second collimating lens 39.
- a relay lens 44 may be provided between the integrated unit 43 and the diced opening mirror 38.
- the light 58 whose divergence has been converted by the second collimating lens 39 enters the inclined surface 60b of the prism 60, and the traveling direction is converted. As a result, the traveling direction of the light 58 traveling in the plane parallel to the third optical disk 46 is changed by about 90 degrees toward the third optical disk 46 and is incident on the second objective lens 41.
- the light 58 reflected on the recording surface of the light 46 follows the original optical path in the reverse direction, and is branched in a direction different from the first by a branching means such as the hologram 43b, so that the light detection in the integrated unit 43 is performed. Incident light.
- the photodetector receives the reflected light and photoelectrically converts it into an electrical signal for obtaining an information signal and a servo signal (a focus error signal for focusing control and a tracking signal for tracking control).
- a servo signal a focus error signal for focusing control and a tracking signal for tracking control.
- the cross section of the rising prism 60 is a triangle, and the two mirrors can be configured by two independent members having the slopes 60a and 60b that function as two mirrors. Good. Further, the apex of the rising prism 60 (ridge line when viewed as a whole prism) may be chamfered to prevent chipping.
- the second light source 37a and the third light source 43a are configured as separate components. Therefore, by using the dichroic mirror 38, light beams emitted from both light sources are used. We are trying to increase usage efficiency.
- the second light source 37a and the third light source 43a may be integrated on a single semiconductor chip. In this case, the dichroic mirror 38 can be omitted.
- the optical head of the present invention has a small outer shape, and has various structural features in order to exhibit stable and excellent optical characteristics.
- features of the optical head according to the present invention will be described in order.
- the first optical disc 35, the second optical disc 320, and the third optical disc 46 are collectively referred to, they may be simply referred to as optical discs.
- the first objective lens 34 and the second objective lens 41 may be collectively referred to simply as an objective lens.
- the first light source 31 emits blue light, and is used to record information on a high recording density optical disk or to reproduce information from a high recording density optical disk.
- an area where pits or marks are formed (recording pit part) and an area where no pits or marks are formed (non-recording part or erasure part) Therefore, it is necessary to keep the emission intensity of the first light source 31 constant.
- the optical head of the present embodiment includes a photodetector 2 that measures the emission intensity of the first light source 31.
- the beam splitter 32 includes a first light flux that travels the light 56 emitted from the first light source 31 in a second direction different from the first direction and the first direction, respectively. Branches to 56 '' and the second luminous flux 56 '.
- the first beam enters the collimating lens 33 described above.
- the second light beam 56 ′ enters the photodetector 2.
- the second light flux 56 ' is in a divergent state, like the first light flux 56''. For this reason, electrical noise In order to obtain a higher signal, the area of the light receiving portion of the photodetector 2 needs to be increased. On the other hand, in order to obtain a signal in a high frequency band, it is preferable to reduce the area of the light receiving portion and to reduce the electric capacitance (capacitance) of the light receiving portion. Thus, there is a trade-off between improving the signal Z-noise ratio (SZN ratio) and increasing the frequency band, and it is difficult to achieve both.
- SZN ratio signal Z-noise ratio
- the optical head of the present embodiment includes a condenser lens 1 that condenses the second light beam 56 ′ branched by the beam splitter 32, as shown in FIGS. .
- the condensing lens 1 may convert the divergent second light beam 56 ′ into a condensing state.
- the second light flux 56 ′ does not necessarily have to be focused on the force disposed with respect to the photodetector 2 so as to form a focal point in the photodetector 2.
- the second light beam 56 ′ emitted from the beam splitter 32 should be condensed so as to be condensed!
- the condensing lens 1 By providing the condensing lens 1 in this way, it is possible to collect light incident on the photodetector 2 and collect a large amount of light in a small area of the light detection region. As a result, the amount of light emitted from the first light source 31 can be measured in a high frequency band and with a high signal Z noise ratio.
- the optical head includes a smooth mirror (second mirror) 3, and changes the traveling direction of the second light beam 56 'emitted from the beam splitter 32. More specifically, the mirror 3 is disposed with respect to the beam splitter 32 so that the traveling direction of the second light beam 56 ′ emitted from the beam splitter 32 changes substantially at a right angle.
- the mirror 3 when the light emitted from the first light source 31 is arranged so as to travel in the T direction, the mirror 3 causes the optical axis of the second light beam 56 ′ and the slope of the prism 60 to The optical axes of the first light fluxes 56 6 ′ whose traveling directions are changed by 60 a are parallel to each other.
- the photodetector 2 can be arranged in the F direction, not in the T direction, with respect to the optical path of the light 56 emitted from the first light source 31. Therefore, it is possible to prevent the components constituting the optical head from spreading in the T direction, and the optical head and the spindle motor that rotates the optical disc when the optical head moves toward the inner periphery of the optical disc. Interference can be prevented.
- the longitudinal direction is approximately parallel to the optical axis of the first collimating lens 33 , that is, the longitudinal direction is parallel to the Y direction. It is preferable to arrange the photodetector 2 so that Furthermore, it is preferable that the electrical terminal of the photodetector 2 is provided on a side surface located in the longitudinal direction. As a result, the components can be arranged in the optical head without the light detector 36 and the light detector 2 interfering with each other. In addition, it is possible to suppress the components that make up the optical head from spreading in the T direction. Therefore, recording and reproduction can be performed by bringing the optical head closer to the inner circumference side of the optical disk.
- the first objective lens 34 used for recording reproduction of a high recording density optical disc has a numerical aperture (NA) of 0.85 or higher. Due to the large numerical aperture, when recording or playback is performed on the first optical disk 35, spherical aberration is noticeably generated due to the difference in the thickness of the transparent substrate covering the surface of the information recording surface of the first optical disk 35. To do.
- NA numerical aperture
- the divergence and convergence degree of the directional light from the first collimating lens 33 to the first objective lens 34 is achieved.
- the spherical aberration changes when the divergence / convergence of the light incident on the first objective lens 34 changes, this is used to correct the spherical aberration due to the difference in thickness of the base material.
- the optical head includes a driving device 8.
- the drive device 8 can be constituted by, for example, a stepping motor, a brushless motor, or the like and a known mechanical element that converts a rotational driving force into a translational driving force.
- the holder that holds the first collimating lens 33 may be formed integrally with the collimating lens 33 in order to reduce the number of parts.
- the first collimating lens 33 is converted so as to loosen the parallelism, that is, to reduce the divergence.
- the first collimating lens 33 may be composed of a combination of a concave lens and a convex lens. In this case, spherical aberration can be corrected even if either the concave lens or the convex lens is moved in the direction parallel to the optical axis by the driving device 8.
- the first objective lens 34 can be moved to the inner circumference side of the optical disk (radius of about 20mm). In order to achieve this, it is preferable that the optical head does not protrude from the first objective lens 34 as much as possible to the spindle motor 7 side.
- the driving device 8 is located on the opposite side of the spindle motor 7 from the optical axis 33a of the first collimating lens 33 in the plane parallel to the first optical disk 35, that is, As indicated by the arrow 33A, it is preferably arranged on the outer peripheral side of the first optical disc 35. As a result, it is possible to avoid the interference between the driving device 8 of the first collimating lens 33 and the spindle motor 7, and to move the optical head to the inner peripheral side of the optical disk.
- a collimating lens 33 which is a spherical aberration correcting means between the beam splitter 32 and the objective lens 34.
- the collimating lens 33 is moved along the optical axis direction by the power of the driving device 8 to change the divergence and convergence of the light incident on the first objective lens 34, thereby changing the spherical surface. Aberration can be controlled.
- Patent Document 4 discloses disposing a collimating lens 74 between a light source 73 and a beam splitter 75. In this case, even if the collimating lens 74 is moved to correct the spherical aberration, the light reflected by the optical disk and incident on the photodetector 76 does not pass through the collimating lens 74. And the image formation relationship between the optical disc and the photodetector is different. As a result, an accurate focus error signal cannot be detected by the photodetector 76.
- the collimating lens is located between the light source and the optical disc and between the optical disc and the photodetector, so that the imaging relationship between them is maintained. Therefore, spherical aberration can be performed without changing the light convergence state in focus control, and a remarkable effect that both focus control and spherical aberration control can be achieved is obtained.
- the optical head When the optical head is mounted on an optical information device that performs both recording and reproduction, the first light source 31 needs to emit light with a larger output than the output during reproduction. In this case, the wavelength of light emitted from the first light source 31 may vary depending on the output. For this reason, the optical head further includes a lens 49 for correcting chromatic aberration in order to correct chromatic aberration due to a change in wavelength of light emitted from the first light source 31. .
- the lens 49 can be provided between the first objective lens 34 and the prism 60, for example.
- the lens 49 includes, for example, a concave lens 49a and a diffractive lens 49b having the function of a convex lens.
- the diffractive lens 49b is provided on the curved surface 49c of the concave lens 49a.
- the optical head may include the lens 55 and the 1Z4 wavelength plate 48.
- the lens 55 is provided in the vicinity of the first light source 31, has a convex cylindrical surface on the side close to the first light source 31, and has a concave cylindrical surface on the opposite side.
- the intensity distribution of the far-field image in two orthogonal directions in the plane perpendicular to the optical axis of the light emitted from the first light source 31 is not equal, that is, the far-field image of the emitted light beam is elliptical.
- the 1Z4 wavelength can improve the light utilization efficiency in the polarization beam splitter 59.
- a servo signal suitable for control can be obtained from the first photodetector 36.
- the first light source 31 has a driving voltage of about 5V or more. Compared to the drive voltage of the conventional light source for CDs and DVDs, which is about 3V, the first light source 31 needs to be driven at a higher voltage, which increases power consumption and the amount of heat generated from the first light source 31 Also become big. Therefore, it is necessary to fully consider the effects of heat generation.
- the first photodetector 36 receives the light reflected from the first optical disk and converts it into an electrical signal.
- the first photodetector 36 further includes an amplifier for signal amplification.
- the amplifier also generates heat when energized, if the first photodetector 36 is placed close to the first light source 31, the temperature of the first light source 31 rises due to the heat generated by the amplifier of the first photodetector 36, and the first light source 31 increases. 1 light source 31 It is also conceivable that the wavelength of the light emitted from the first light source 31 is shifted or the life of the first light source 31 is shortened.
- the first photodetector 36 and the first light source 31 are in relation to the optical axis of the first collimating lens 33 in a plane parallel to the first optical disk 35. It is preferable to arrange them on opposite sides. As a result, the distance between the first photodetector 36 and the first light source 31 can be increased and the influence of each other's heat can be suppressed. Therefore, an amplifier is integrated in the first photodetector 36 and a high signal is obtained. Obtains Z-noise ratio and prevents temperature rise of the first light source 31
- the first photodetector 36 preferably has an inner peripheral side of the optical disc or a spindle motor as shown by an arrow 33B with respect to the optical axis of the first collimating lens 33. Located on the side. As apparent from FIG. 3, since the spindle motor 7 is located in the vicinity of the first objective lens 34, the arrow 33B indicates the optical axis of the first collimating lens 33 in the vicinity of the first objective lens 34. It is preferable not to arrange the components constituting the optical head on the inner circumference side of the optical disk. As shown in FIG. 3, the optical head base 5 has an arc-shaped recess so as to be accessible to the spindle motor 7, so that the optical head base 5 has a concave portion.
- the first photodetector 36 and the first light source 31 that do not interfere with the spindle motor 7 are mutually connected with respect to the optical axis of the first collimating lens 33. Can be placed on the opposite side to V ⁇ .
- the optical head of this embodiment is intended to record / reproduce a large amount of information using an optical disk.
- it is necessary to increase the recording speed and reproduction speed of the information.
- it is necessary to change the intensity of the emitted light at a high speed to perform recording at a high speed.
- it is necessary to drive the first light source 31 and to modulate the current flowing to emit light at high speed.
- a drive circuit for controlling a current for driving the first light source 31 or a large-scale integrated circuit (LSI) be arranged in the vicinity of the first light source 31.
- the drive circuit that controls the drive current of the first light source 31 has many parts in common with the drive circuit that controls the drive current of the second light source 37a built in the integrated module 37. For this reason, the first light If the drive circuit of the light source 31 and the drive circuit of the second light source 37a are shared, and the first light source 31 and the second light source 37a are driven by a single drive circuit configured by LSI, the optical head can be reduced in size. It can be done.
- the optical head further includes a drive circuit 9 that drives the first light source 31 and the second light source 37a, and the drive circuit 9 includes the first light source 31 and the second light source.
- the drive circuit 9 includes the first light source 31 and the second light source.
- the first light source 31 and the second light source 37a and the drive circuit 9 are connected to the first collimator so that the optical head can be moved to the inner peripheral side of the optical disc and recording / reproduction can be performed on the inner peripheral side of the optical disc.
- the optical axis 33a of the lens 33 is preferably arranged on the outer peripheral side (arrow 33A) of the optical disc.
- the optical head of the present embodiment is configured by two optical systems that use the first objective lens 34 and the second objective lens 41, respectively. Next, the arrangement of the two optical systems will be described.
- the optical axes of the light beam 56 ′ ′ of the first light source 31 and the light beam 57 of the second light source 37a and the light beam 58 of the third light source 43a incident on the prism 60 are parallel to each other.
- the slopes 60a and 60b of the prism 60 are both set perpendicular to the paper surface in FIG. 2, and the angles of incidence on the first objective lens 34 and the second objective lens 41 are set to the respective optical axes. And can be parallel.
- both the inclined surfaces 60a and 60b can be set perpendicular to the paper surface, the rising prism 60 can be efficiently manufactured by cutting a bar that extends long in the vertical direction to the paper surface, for example. 60 manufacturing costs can be reduced.
- the inclined surfaces 60a and 60b of the prism 60 are used for raising the light beam emitted from the light source, the inclined surfaces 60a and 60b are adjusted unlike the case of using two mirrors. Therefore, the optical axes cannot be adjusted independently of each other. For this reason, the first light source 31, the second light source 37a, and the third light source 43a are respectively connected to the base 5 (FIG. 3) with respect to the optical axes of the first light source 31, the second light source 37a, and the third light source 43a. It is preferable to provide a holder that can be slid in a perpendicular direction to adjust the position.
- the optical axis angle of the light passing through the first collimator lens 33 and the second collimator lens 39 can be adjusted. adjust It is preferable.
- the first objective lens 34 and the second objective lens 41 are fixed to the movable body 45a of the objective lens actuator 45.
- the first objective lens 34 and the second objective lens 41 are preferably arranged substantially parallel to the Y direction, that is, the extending direction of the track groove of the first optical disc 35.
- the first objective lens 34 and the second objective lens 41 are arranged in the T direction orthogonal to the Y direction, when the optical head accesses the outermost periphery and the innermost periphery of the optical disk, the objective lens that is not used becomes the spindle motor 7 ( May interfere with Fig. 1 and 2) and may interfere with the exterior of the equipment.
- the optical head By arranging the first objective lens 34 and the second objective lens 41 in the Y direction, the optical head can be prevented from interfering with the spindle motor and the exterior, and recording and reproduction can be performed correctly for any of the different types of optical heads. It becomes possible.
- the second objective lens 41 is disposed on a straight line 7b extending approximately in the direction of movement of the optical head through the seek operation, passing through the center 7c of the optical disk.
- a diffraction grating is formed on a part of the member of the hologram 43b, a sub beam is formed, and tracking signal detection by the three beam method is performed using this.
- signal detection can be performed stably in the reproduction operation using the third light source 43a.
- the tracking error signal can be detected by the one-beam method without using the sub beam in the recording / reproducing operation using the first light source 31. I want it.
- Patent Document 3 it is disclosed that two objective lenses can be integrally coupled.
- coma aberration occurs due to manufacturing errors, which distort the convergent beam. This distortion is different for each objective lens. For this reason, it is preferable to reduce this coma aberration by tilting the two objective lenses at appropriate angles.
- the procedure is as follows. First, when the light beam 56 ′ is converged by the first objective lens 34, the inclination of the entire movable body 45a is adjusted so that the coma aberration is minimized or the convergence spot is the most axially symmetric. . In this state, the inclination of the second objective lens 41 is adjusted with respect to the movable body 45a so that the coma aberration is minimized or the convergence spot is the most axially symmetric.
- the shape of the second objective lens 41 is devised so as to be suitable for adjusting the tilt of the second objective lens 41 in the above-described procedure.
- FIG. 6 schematically shows a cross-sectional shape of the second objective lens 41.
- the second objective lens 41 has a curved surface portion 41h for converging the light beam and a flat portion 41c around the curved surface portion 41h. Since the edge 41c is usually called “flange”, it is hereinafter referred to as the edge 41c.
- the movable body 45a must be lightweight because it needs to operate at a high speed with two objective lenses. From this point of view, the objective lens must also be small, and the edge 41c cannot be increased unnecessarily.
- the optical disk is the fastest and may rotate up to about 10,000 revolutions per minute. In order to realize an objective lens actuator that satisfies the above-mentioned performance, the edge 41c width is preferably lm m or less.
- the lens performance may be abnormal.In such a case, it may be better not to use the objective lens as a defective product. .
- the tilt of the lens can be measured by irradiating the edge 41c of the second object lens 41 with the light B1 and observing the reflection direction thereof as shown in FIG. In order to perform measurement correctly, it is necessary to obtain appropriate reflected light. For this reason, the upper surface 41g of the edge 4lc is preferably flat. Further, the upper surface 41g, which is the surface of the cono lc, is preferably mirror-finished so that the reflected light is not scattered.
- the width of the upper surface is 0.2 mm or more, the reflected light is not scattered and the reflection direction can be measured accurately. From this point of view, the width d of the edge 41c needs to be 0.2 mm or more.
- the outermost portion of the edge 41c has a curved surface portion of about 0.1 mm. Accordingly, the width d of the flat portion is preferably 0.3 mm (0.2 mm + 0.1 mm) or more.
- the second objective lens 41 when the second objective lens 41 is fixed to the movable body 45a, a hole for allowing light to enter the lens is provided. Only the edge 41c can do it.
- the error of the diameter of the objective lens is usually about ⁇ 10 m, and the error of the diameter of the hole provided in the movable body 45a is usually ⁇ 20 / ⁇ ⁇ . Therefore, when these errors are added together, the result is ⁇ 30 / ⁇ ⁇ , and the maximum positioning of the second objective lens 41 and the movable body 45a is 60 ⁇ m.
- the width of the edge 41c is preferably 60 m or more so that the edge 41c can come into contact with the movable body 45a even if an alignment error of 60 ⁇ m occurs.
- the outermost part of the edge 41c has a curved surface of about 0.1 mm. From this point of view, the width d of the edge 41c must be 0.16 mm (0.06 mm + 0.1 mm) or more. preferable.
- the width of the edge 41c is 0.16 mm or more and lmm or less, the inclination of the object lens after adjustment can be measured, so that defective products can be surely excluded. If it is 0.5mm or more and lmm or less, it is easier to adjust the tilt. It turned out to be preferable.
- the second objective lens 41 having an edge with a width in this range it is easy to adjust the tilt of the objective lens by the method described above, and it is possible to adjust with high accuracy. Therefore, a high-performance optical head can be manufactured with high productivity.
- the optical head of the present embodiment since the various characteristic structures described above are adopted, it is compatible with a plurality of optical discs of different standards, has a small outer shape, and is stable and excellent. An optical head that exhibits optical characteristics is realized.
- the optical information device 104 includes an optical head 402, an electric circuit 403, and a motor 404.
- optical disks 407 to 409 are different from each other, and the operator selects one of the forces and places the selected optical disk on the turntable 405.
- the placed optical disk is fixed to the turntable 405 by a clamper 406 and is driven to rotate by a motor 404.
- Optical disks 407 to 409 correspond to the first optical disk 35, the second optical disk 320, and the third optical disk 46 of the first embodiment.
- the optical head 402 the optical head described in the first embodiment can be preferably used.
- the optical head can be moved in the tracking direction by a drive mechanism 401 such as a traverse motor, and can jump to a desired track.
- the optical head 402 outputs a focus error signal and a tracking error signal to the electric circuit 403 in accordance with the positional relationship with the optical discs 407 to 409.
- the electric circuit 403 sends a signal for finely moving the objective lens to the optical head 402.
- the optical head 402 performs focus control and tracking control on the optical disks 407 to 409, and the optical head 104 reproduces information or records information.
- an optical information apparatus that can stably perform recording and reproduction operations of a plurality of optical disks having different recording densities is realized. be able to.
- the computer 105 includes the same optical information device 501 as the optical information device 104 described in the second embodiment.
- the computer 105 further uses an input device 503 such as a keyboard, a mouse, and a touch panel for inputting information, information input from the input device 503, information read from the optical information device 501 and the like.
- a computing unit 502 such as a central processing unit (CPU) that performs computation is provided.
- an output device 504 such as a cathode ray tube, a liquid crystal display device, or a printer that displays information such as a result calculated by the arithmetic device 502 is provided.
- the optical information device 501 that is the same as the optical information device described in the second embodiment is provided. Or read out the information recorded on the optical disc, and process and edit the information.
- the optical disc player 106 includes the same optical information device 601 as the optical information device 104 described in the second embodiment.
- the optical disc player 106 further includes a conversion device 602 such as a decoder that converts an information signal obtained from the optical information device 601 into an image.
- the optical disk player 106 may also be used as a car navigation system.
- a display device 603 such as a liquid crystal monitor may be further provided.
- the optical disc recorder 107 includes the same optical information device 701 as the optical information device 104 described in the second embodiment.
- a conversion device 702 such as an encoder that converts image information into information to be recorded on an optical disk by the optical information device 701 is further provided.
- a decoder 703 for converting an information signal obtained from the optical information device 701 into an image may be further provided.
- an output device 704 such as a cathode ray tube for displaying information, a liquid crystal display device, or a printer may be provided.
- the optical disk server 108 includes the same optical information device 801 as the optical information device 104 described in the second embodiment. Further, the server 108 captures information to be recorded in the optical information device 801 and outputs information read by the optical information device 801 to the outside, such as an input device 805 such as a keyboard, a mouse, and a touch panel for inputting information. Wired or wireless input / output terminal 802 is provided. As a result, it functions as an optical disk server that exchanges information with a network, that is, a plurality of devices such as computers, telephones, and TV tuners, and shares information with the plurality of devices.
- a network that is, a plurality of devices such as computers, telephones, and TV tuners, and shares information with the plurality of devices.
- An output device 804 such as a cathode ray tube, a liquid crystal display device, or a printer that displays information may be further provided. Further, by providing a changer (not shown) for taking a plurality of optical disks into and out of the optical information device 801, a large amount of information can be recorded and accumulated.
- the output device and the input device are shown in the second to sixth embodiments, only the input terminal and the output terminal are provided, and the output device and the input device are the second to sixth embodiments.
- the device of the form may not be provided.
- the present invention is suitably used for an optical information apparatus such as an optical head and an optical disk apparatus that perform at least one of recording and reproduction with respect to various optical disks having different substrate thicknesses, corresponding wavelengths, recording densities, and the like.
- an optical information device such as an optical disk device having a plurality of objective lenses.
- the present invention is suitably used for any system that stores information, such as a computer, an optical disc player, an optical disc recorder, a car navigation system, an editing system, a data server, and an AV component.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Head (AREA)
Abstract
An optical head is provided with a first light source for radiating light having a first wavelength; a beam splitter for splitting the light radiated from the first light source into a first luminous flux and a second luminous flux traveling in a first direction and a second direction different from the first direction, respectively; a first collimating lens for converting exitance of the first luminous flux; a first mirror for changing the traveling direction of the first luminous flux, the exitance of which is converted; a first objective lens for converging the first luminous flux, the traveling direction of which is changed, on a recording plane of a first optical disc; a movable body for holding the first objective lens; a first light detector which receives the first luminous flux reflected on the recording plane of the first optical disc and converts it into electric signals; a light collecting lens for collecting the second luminous flux; and a second light detector which receives the second luminous flux collected by the light collecting lens and converts it into electric signals.
Description
光ヘッドおよび光情報装置 Optical head and optical information device
技術分野 Technical field
[0001] 本発明は、光学的に情報の記録 ·再生を行う光情報装置および光情報装置に用い る光ヘッドに関する。また、本発明は光情報装置を搭載した応用機器にも関する。 背景技術 The present invention relates to an optical information apparatus that optically records and reproduces information and an optical head used in the optical information apparatus. The present invention also relates to an application device equipped with an optical information device. Background art
[0002] 大容量の情報を記録することが可能な情報記録媒体として、光ディスクが広く用い られており、技術の進歩にともなって、より記録密度の高い光ディスクが開発されてき ている。 [0002] Optical discs are widely used as information recording media capable of recording large-capacity information, and optical discs with higher recording density have been developed as technology advances.
[0003] 最初に普及した光ディスクはコンパクトディスク(CD)であり、その後、デジタルバー サタイルディスク (DVD)が普及した。 DVDは CDの約 6倍の記録密度で情報を記録 することができること力 、大容量のデータを一枚の DVDに記録することができる。こ のため、特に、情報量の多い映像情報の記録に用いられている。また、近年、ブルー レイディスク(BD)、 HD— DVDといった、より高記録密度で情報を記録することが可 能な次世代光ディスクが開発され、特に、高精細映像を記録するために用いられ始 めている。 [0003] The first popularized optical disc was the compact disc (CD), and then the digital versatile disc (DVD) became popular. A DVD can record information at a recording density about 6 times that of a CD, and can record a large amount of data on a single DVD. For this reason, it is used especially for recording video information with a large amount of information. In recent years, next-generation optical discs capable of recording information at higher recording densities, such as Blu-ray Disc (BD) and HD-DVD, have been developed, and in particular, they have begun to be used for recording high-definition video. I am.
[0004] 光ディスクの記録密度を高め、大容量を実現するためには、記録再生に用いる光ビ 一ムの光スポットをより小さくする必要がある。これは、光源として用いるレーザ光の波 長をより短くし、かつ、光スポットを形成するための対物レンズの開口数 (NA)を大き くすること〖こよって実現される。たとえば、 DVDでは、波長 660nmの光源と、開口数( NA) 0. 6の対物レンズとが使用される。また、たとえば、波長 405nmの青色レーザと 、 NAO. 85の対物レンズとを使用することによって、現在の DVDの記録密度の 5倍 の記録密度を実現することのできる次世代光ディスクが実現する。 [0004] In order to increase the recording density of an optical disc and realize a large capacity, it is necessary to make the light spot of an optical beam used for recording and reproduction smaller. This is achieved by shortening the wavelength of the laser beam used as the light source and increasing the numerical aperture (NA) of the objective lens for forming the light spot. For example, DVD uses a light source with a wavelength of 660 nm and an objective lens with a numerical aperture (NA) of 0.6. In addition, for example, by using a blue laser with a wavelength of 405 nm and an objective lens of NAO.85, a next-generation optical disc capable of realizing a recording density five times the recording density of the current DVD will be realized.
[0005] 種々の光ディスクが開発されるにつれて、光ディスク装置の互換性が重要となる。ュ 一ザの利便性を考慮すれば、光ディスク装置は複数の光ディスクに対応して 、ること が好ましい。具体的には、次世代光ディスクに対応した光ディスク装置は、 CDまたは DVDも記録再生を行うことができることが好ましい。この場合、対物レンズの開口数を
0. 85に高めながら、作動距離を DVDや CD用の対物レンズのように長くすることは 困難であるため、次世代光ディスクの記録再生が可能な光情報装置では、次世代光 ディスク用の対物レンズと CDまたは DVDを記録再生するのに使われる少なくとも 1 つの対物レンズとを備えることが望ま 、。 [0005] As various optical discs are developed, compatibility of optical disc apparatuses becomes important. In consideration of the convenience of the user, it is preferable that the optical disc apparatus supports a plurality of optical discs. Specifically, it is preferable that the optical disc apparatus corresponding to the next generation optical disc can record and reproduce a CD or a DVD. In this case, the numerical aperture of the objective lens While it is difficult to increase the working distance to be as high as 85, as with an objective lens for DVD or CD, an optical information device capable of recording / reproducing next-generation optical discs has the objective for next-generation optical discs. It would be desirable to have a lens and at least one objective lens used to record and playback CDs or DVDs.
[0006] 対物レンズは、磁気回路などによって構成される対物レンズァクチユエータにより、 フォーカシング方向およびトラッキング方向に駆動される。これにより、対物レンズは、 フォーカス方向において光ディスク力 所定の間隔を維持するように制御され、また、 トラッキング方向にぉ 、てトラックの中心を追随するように制御される。 [0006] The objective lens is driven in the focusing direction and the tracking direction by an objective lens actuator configured by a magnetic circuit or the like. As a result, the objective lens is controlled so as to maintain a predetermined interval of the optical disk force in the focus direction, and is controlled so as to follow the center of the track in the tracking direction.
[0007] このため、記録密度が異なる複数の光ディスクに対応した光情報装置では、複数の 対物レンズが可動部に搭載され、フォーカシング方向及びトラッキング方向に移動可 能に構成されなければならない。特許文献 1は、このような光情報装置の一例を示し ている。図 12に示すように、特許文献 1の光情報装置において、第 1光源(図示せず )力も放射された光ビーム 61はコリメートレンズ 62によっておおよそ平行光に変換さ れ、平板状の立ち上げミラー 63によって、光軸が記録密度の高い光ディスク 65に対 して垂直に入射するように折り曲げられる。第 1対物レンズ 65は光ビーム 61を光ディ スク 65の記録面上に収束させる。 [0007] For this reason, in an optical information device corresponding to a plurality of optical discs having different recording densities, a plurality of objective lenses must be mounted on the movable portion and configured to be movable in the focusing direction and the tracking direction. Patent Document 1 shows an example of such an optical information device. As shown in FIG. 12, in the optical information device of Patent Document 1, the light beam 61 radiated also by the first light source (not shown) is converted into approximately parallel light by the collimating lens 62, and is formed into a flat plate-like rising mirror. 63, the optical axis is bent so as to be perpendicularly incident on the optical disk 65 having a high recording density. The first objective lens 65 converges the light beam 61 on the recording surface of the optical disk 65.
[0008] また、第 2光源(図示せず)力も放射された光ビーム 66はコリメートレンズ 67によって おおよそ平行光に変換され、平板状の立ち上げミラー 68によって、光軸が記録密度 の低い光ディスク 70に対して垂直に入射するように折り曲げられる。第 2対物レンズ 6 9は光ビーム 66を光ディスク 70の記録面上に収束させる。 [0008] In addition, the light beam 66 radiated by the second light source (not shown) force is converted into approximately parallel light by a collimator lens 67, and an optical disk 70 whose optical axis is low in recording density by a flat rising mirror 68. It is bent so that it may enter perpendicularly to. The second objective lens 69 causes the light beam 66 to converge on the recording surface of the optical disc 70.
[0009] 対物レンズァクチユエータ 71は、図示しない可動部に固定された第 1対物レンズ 64 を、記録密度の高い光ディスク 65の記録面と直交するフォーカシング方向 Fおよび 光ディスク 65のトラッキング方向 Tの両方向に移動させることができる。同様に、対物 レンズァクチユエータ 72は、図示しない可動部に固定された第 2対物レンズ 69を、記 録密度の低い光ディスク 70の記録面と直交するフォーカシング方向 Fおよび光デイス ク 70のトラッキング方向 Tの両方向に移動させることができる。このように特許文献 1 の光情報装置では、 2つの対物レンズはそれぞれ別の対物レンズァクチユエータによ り駆動される。
[0010] 特許文献 2は、 2つの対物レンズを同一の可動部に支持させ、 1つの対物レンズァ クチユエータによってフォーカシング方向およびトラッキング方向へ駆動する光情報 装置を開示している。 The objective lens actuator 71 moves the first objective lens 64 fixed to a movable part (not shown) in the focusing direction F perpendicular to the recording surface of the optical disk 65 having a high recording density and the tracking direction T of the optical disk 65. It can be moved in both directions. Similarly, the objective lens actuator 72 moves the second objective lens 69 fixed to a movable part (not shown) to the focusing direction F and the optical disk 70 that are orthogonal to the recording surface of the optical disk 70 having a low recording density. It can be moved in both directions T. As described above, in the optical information device disclosed in Patent Document 1, the two objective lenses are driven by different objective lens actuators. [0010] Patent Document 2 discloses an optical information device in which two objective lenses are supported on the same movable part and driven in a focusing direction and a tracking direction by one objective lens actuator.
[0011] 特許文献 3は、 2つの対物レンズを同一の可動部に支持させ、 1つの対物レンズァ クチユエータによってフォーカシング方向およびトラッキング方向へ駆動する光情報 装置の他の例を開示している。図 13に示す光情報装置は、互いに記録密度が異な る 3つの光ディスクに対応しており、 3つの光源を備えている。具体的には、半導体レ 一ザ 73と、半導体レーザが内蔵された DVD用モジュール 85および CD用モジユー ノレ 83とを備えて ヽる。 Patent Document 3 discloses another example of an optical information device in which two objective lenses are supported on the same movable part and driven in a focusing direction and a tracking direction by one objective lens actuator. The optical information device shown in FIG. 13 is compatible with three optical discs having different recording densities, and includes three light sources. Specifically, a semiconductor laser 73, a DVD module 85 in which a semiconductor laser is incorporated, and a CD module 83 are provided.
[0012] 半導体レーザ 73は、 408nmのレーザ光束を出射し、高密度光ディスクに対して情 報の記録再生を行う場合に用いられる。半導体レーザ 73から出射した光束はコリメ ータ 74を透過し、ハーフミラー 75に入射する。ハーフミラー 75に入射した光の一部 はモニターフォトダイオード 78へ入射し、大部分は立上げミラー 88へ入射する。立ち 上げミラー 88は対物レンズ 80に向けて光を反射する。光ディスクにおいて反射した 光は、逆の経路をたどり、ハーフミラー 75に入射し、シリンドリカルレンズ 77を透過し た後、光検出器 76に入射する。 The semiconductor laser 73 emits a laser beam of 408 nm and is used when information is recorded / reproduced on / from a high-density optical disk. The light beam emitted from the semiconductor laser 73 passes through the collimator 74 and enters the half mirror 75. Part of the light incident on the half mirror 75 is incident on the monitor photodiode 78 and most of the light is incident on the rising mirror 88. The rising mirror 88 reflects light toward the objective lens 80. The light reflected by the optical disk follows the reverse path, enters the half mirror 75, passes through the cylindrical lens 77, and then enters the photodetector 76.
[0013] DVD用モジュール 85は、 658nmのレーザ光束を出射する赤色半導体レーザと光 検出器とを含み、 DVDに対して情報の記録再生を行う場合に用いられる。 DVD用 モジュール 85の半導体レーザから出射した光は、 DVD用コリメータ 86および偏光ビ 一ムスプリッタ 87を透過し、立ち上げミラー 88に入射する。立ち上げミラー 88は対物 レンズ 81に向けて光を反射する。光ディスクにおいて反射した光は、逆の経路をたど り、 DVD用モジュール 85の光検出器に入射する。 [0013] The DVD module 85 includes a red semiconductor laser that emits a laser beam of 658 nm and a photodetector, and is used when information is recorded on and reproduced from a DVD. The light emitted from the semiconductor laser of the DVD module 85 passes through the DVD collimator 86 and the polarization beam splitter 87 and enters the rising mirror 88. The rising mirror 88 reflects light toward the objective lens 81. The light reflected by the optical disc follows the reverse path and enters the photodetector of the DVD module 85.
[0014] CD用モジュール 83は、 785nmのレーザ光束を出射する赤外半導体レーザと光検 出器とを含み、 CDに対して情報の記録再生を行う場合に用いられる。 CD用モジュ ール 83の半導体レーザから出射した光は、 CD用コリメータ 84および偏光ビームスプ リツタ 87を透過し、立ち上げミラー 88に入射する。立ち上げミラー 88は対物レンズ 81 に向けて光を反射する。光ディスクにおいて反射した光は、逆の経路をたどり、 CD用 モジュール 83の光検出器に入射する。
[0015] 対物レンズ 80および 81は、可動体を構成する保持部材 79に支持されえおり、保持 部材 79は、フォーカシング方向およびトラッキング方向に移動可能なようにワイヤ 82 によって支持されている。 [0014] The CD module 83 includes an infrared semiconductor laser that emits a laser beam of 785 nm and an optical detector, and is used when information is recorded on and reproduced from a CD. The light emitted from the semiconductor laser of the CD module 83 passes through the CD collimator 84 and the polarization beam splitter 87 and enters the rising mirror 88. The raising mirror 88 reflects light toward the objective lens 81. The light reflected on the optical disk follows the reverse path and enters the photodetector of the CD module 83. The objective lenses 80 and 81 can be supported by a holding member 79 constituting a movable body, and the holding member 79 is supported by a wire 82 so as to be movable in the focusing direction and the tracking direction.
特許文献 1 :特開 2002— 208173号公報 Patent Document 1: JP 2002-208173 A
特許文献 2:特開平 11— 120587号公報 Patent Document 2: Japanese Patent Application Laid-Open No. 11-120587
特許文献 3:特開 2005 - 293686号公報 Patent Document 3: Japanese Patent Laid-Open No. 2005-293686
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0016] しかし、特許文献 1の光情報装置では、対物レンズァクチユエータを 2個備えている ため、対物レンズ 64と対物レンズ 69との間隔を小さくできず、光情報装置の光ヘッド を小型化するのが困難である。この課題を回避するために、対物レンズァクチユエ一 タ 71および 72を小さくすると、駆動力を得るためのコイルや磁石を可動部側につけ るスペースが不足し、駆動力を十分に得ることができないという課題があった。 However, since the optical information device of Patent Document 1 includes two objective lens actuators, the distance between the objective lens 64 and the objective lens 69 cannot be reduced, and the optical head of the optical information device can be reduced. It is difficult to downsize. In order to avoid this problem, if the objective lens actuators 71 and 72 are made small, there is not enough space to attach a coil or magnet to obtain a driving force on the movable part side, and the driving force cannot be obtained sufficiently. was there.
[0017] 特許文献 2の光情報装置では、 2つの対物レンズのうち一方へ入射する光軸は、光 源から一直線に対物レンズへ伸びている。このため、光ヘッドの光ディスク面に垂直 な方向の厚みが極端に大きくなるという課題があった。 [0017] In the optical information device of Patent Document 2, the optical axis incident on one of the two objective lenses extends from the light source to the objective lens in a straight line. For this reason, there has been a problem that the thickness of the optical head in the direction perpendicular to the optical disk surface becomes extremely large.
[0018] 特許文献 3は、プリズムを用いて複数の光源から出射する光を立ち上げることによ つて、薄型化が可能な光ヘッドを開示している。しかし、特に、水平方向における部 品の配置が考慮されておらず、光ヘッドが光ディスクの最内周をアクセスしょうとする とスピンドルモータと光ヘッドとが干渉するという問題が生じる。 [0018] Patent Document 3 discloses an optical head that can be made thin by launching light emitted from a plurality of light sources using a prism. However, in particular, the arrangement of components in the horizontal direction is not taken into consideration, and when the optical head tries to access the innermost circumference of the optical disk, there arises a problem that the spindle motor and the optical head interfere with each other.
[0019] また BDや HD— DVDといった記録密度の高い光ディスクの記録再生には、青色 半導体レーザが用いられる。青色半導体レーザは、 DVDや CDなどの記録再生に用 いられる光源に比べて駆動電圧が高ぐ消費電力が大きい。本願発明者の検討によ れば、光ヘッドを小型化した場合、青色半導体レーザの発熱が、光ヘッド内の光検 出器などの信号 Z雑音の比を悪化させ、安定な記録再生が困難になるという問題が あることが分力つた。 [0019] A blue semiconductor laser is used for recording and reproduction of an optical disc having a high recording density such as BD and HD-DVD. Blue semiconductor lasers have a higher drive voltage and higher power consumption than light sources used for recording and playback such as DVDs and CDs. According to the study of the present inventor, when the optical head is downsized, the heat generated by the blue semiconductor laser deteriorates the signal Z noise ratio of the optical detector in the optical head, making stable recording and reproduction difficult. There was a problem of becoming a problem.
[0020] また、記録密度の高!ヽ光ディスクに記録を行う場合、記録マークやピットを正確に光 ディスクの情報記録面に形成する必要があり、このために、光源から出射する光の光
量をモニタする必要がある。特に、記録密度が高くなると、記録マークやピットも小さく なるため、光源から出射する光の光量を、より高い信号 Z雑音の比で、かつ、より高 い周波数でモニタする必要がある。特許文献 1から 3は、特に BDや HD— DVDとい つた記録密度の高い光ディスクに対して記録再生を行うために適切な光量のモニタ 方法を開示していない。 [0020] Also, when recording on an optical disc with high recording density, it is necessary to accurately form recording marks and pits on the information recording surface of the optical disc. For this reason, the light emitted from the light source The amount needs to be monitored. In particular, as the recording density increases, the recording marks and pits also become smaller. Therefore, it is necessary to monitor the amount of light emitted from the light source at a higher signal Z noise ratio and at a higher frequency. Patent Documents 1 to 3 do not disclose a method for monitoring an appropriate amount of light in order to perform recording / reproduction on an optical disc having a high recording density, such as BD and HD-DVD.
[0021] また、高い NAの対物レンズによって光を収束させ、高密度光ディスクに対して記録 再生を行う場合、光ディスクの光の入射面カゝら光ディスクの情報記録面までの距離、 すなわち、基材厚さの誤差によって、波面が大きく乱れる。この乱れを球面収差と呼 ぶ。球面収差はほぼ NAの 4乗に比例する。したがって、高い NAの対物レンズを用 いる場合、球面収差による補正手段が必要である。特許文献 1から 3は従来技術の 光学系において、最小の部品点数で効率的に球面収差を補正する具体的な構成を 開示していない。 [0021] When the light is converged by a high NA objective lens and recording / reproducing is performed on a high-density optical disc, the distance from the light incident surface of the optical disc to the information recording surface of the optical disc, that is, the base material The wavefront is greatly disturbed by the thickness error. This disturbance is called spherical aberration. Spherical aberration is almost proportional to the fourth power of NA. Therefore, when using an objective lens with a high NA, correction means using spherical aberration is necessary. Patent Documents 1 to 3 do not disclose a specific configuration for efficiently correcting spherical aberration with the minimum number of parts in the optical system of the prior art.
[0022] 本発明はこのような従来技術の課題の少なくとも 1つを解決し、高記録密度用の光 源を少なくとも 1つ備え、小型で、安定性に優れた複数種の光ディスクに対応した光 ヘッドを提供することを目的とする。 [0022] The present invention solves at least one of the problems of the prior art as described above, and includes at least one light source for high recording density, and is compatible with a plurality of types of optical discs that are small and excellent in stability. The object is to provide a head.
課題を解決するための手段 Means for solving the problem
[0023] 本発明の光ヘッドは、第 1波長の光を出射する第 1光源と、前記第 1光源から出射 した光を第 1方向および第 1方向とは異なる第 2方向にそれぞれ進行する第 1光束お よび第 2光束に分岐するビームスプリッタと、前記第 1光束の発散度を変換する第 1コ リメ一トレンズと、前記発散度を変換された前記第 1光束の進行方向を変化させる第 1 ミラーと、前記進行方向が変化した第 1光束を、第 1光ディスクの記録面に向けて収 束させる第 1対物レンズと、前記第 1対物レンズを保持する可動体と、前記第 1光ディ スクの記録面において反射した前記第 1光束を受け取り、電気信号に変換する第 1 光検出器と、前記第 2光束を集光させる集光レンズと、前記集光レンズによって集光 した第 2光束を受け取り、電気信号に変換する第 2光検出器とを備える。 [0023] The optical head of the present invention includes a first light source that emits light of a first wavelength, and a first light that travels in a second direction different from the first direction and the light emitted from the first light source. A beam splitter that branches into a first light beam and a second light beam, a first collimating lens that converts a divergence degree of the first light beam, and a first direction lens that changes a traveling direction of the first light beam converted in the divergence degree. 1 a mirror, a first objective lens for converging the first luminous flux whose traveling direction has changed toward the recording surface of the first optical disc, a movable body for holding the first objective lens, and the first optical dice. Receiving the first light beam reflected on the recording surface of the disk and converting it into an electrical signal; a condensing lens for condensing the second light beam; and a second light beam condensed by the condensing lens And a second photodetector that converts it into an electrical signal That.
[0024] ある好ま 、実施形態にぉ 、て、光ヘッドは、前記ビームスプリッタから出射した第 2光束の進行方向を変化させる第 2ミラーをさらに備え、前記第 2ミラーは、前記第 2 方向に進行する光束を前記第 2方向と直交する方向に進行方向を変化させるように
前記ビームスプリッタに対し配置されて 、る。 Preferably, according to an embodiment, the optical head further includes a second mirror that changes a traveling direction of the second light beam emitted from the beam splitter, and the second mirror is arranged in the second direction. To change the traveling direction of the traveling light flux in a direction perpendicular to the second direction Arranged relative to the beam splitter.
[0025] ある好ましい実施形態において、前記第 2ミラーによって進行方向が変化させられ た第 2光束の光軸、および、前記第 1ミラーによって進行方向が変化させられた第 1 光束の光軸は互いに平行である。 In a preferred embodiment, the optical axis of the second light beam whose traveling direction is changed by the second mirror and the optical axis of the first light beam whose traveling direction is changed by the first mirror are mutually different. Parallel.
[0026] ある好ましい実施形態において、前記第 2光検出器は長手方向を有する外形を備 え、前記長手方向が、前記第 1コリメートレンズの光軸とおおよそ平行となるように前 記第 2検出器が配置されて 、る。 In a preferred embodiment, the second photodetector has an outer shape having a longitudinal direction, and the second detection is performed so that the longitudinal direction is substantially parallel to the optical axis of the first collimating lens. A vessel is placed.
[0027] ある好ま 、実施形態にお!、て、前記第 2検出器は、前記長手方向に位置する側 面に電気的接続端子を有する。 In one preferred embodiment, the second detector has an electrical connection terminal on a side surface located in the longitudinal direction.
[0028] ある好ましい実施形態において、光ヘッドは、前記第 1コリメートレンズの位置を前 記第 1コリメートレンズの光軸と平行な方向へ移動させるための駆動装置をさらに備 え、前記駆動装置は、前記第 1コリメートレンズの光軸に対して、前記第 1光ディスク の外周側に配置されている。 [0028] In a preferred embodiment, the optical head further comprises a driving device for moving the position of the first collimating lens in a direction parallel to the optical axis of the first collimating lens, and the driving device includes: The first optical disc is disposed on the outer peripheral side with respect to the optical axis of the first collimating lens.
[0029] ある好ま 、実施形態にぉ 、て、光ヘッドは、凹レンズおよび凹レンズの曲面に形 成された回折レンズを含み、前記第 1対物レンズの色収差を補正するレンズをさらに 備える。 [0029] In one preferred embodiment, the optical head further includes a concave lens and a diffractive lens formed on the curved surface of the concave lens, and further includes a lens that corrects chromatic aberration of the first objective lens.
[0030] ある好ましい実施形態において、前記第 1光源と前記第 1光検出器とは、前記第 1 コリメートレンズの光軸に対して、互いに反対側に配置されて 、る。 [0030] In a preferred embodiment, the first light source and the first photodetector are arranged on opposite sides with respect to the optical axis of the first collimating lens.
[0031] ある好ましい実施形態において、光ヘッドは、前記第 1波長より長い第 2波長の光を 出射する第 2光源と、前記第 2光源力 出射する光の進行方向を変化させる第 2ミラ 一と、前記第 2ミラーにより進行方向が変化した第 2光源の光を、第 2光ディスクの記 録面に向けて収束させる第 2対物レンズとを備え、前記第 2対物レンズは前記可動体 に支持されている。 [0031] In a preferred embodiment, the optical head includes a second light source that emits light having a second wavelength longer than the first wavelength, and a second mirror that changes a traveling direction of the light emitted from the second light source force. And a second objective lens that converges the light of the second light source whose traveling direction has been changed by the second mirror toward the recording surface of the second optical disk, and the second objective lens is supported by the movable body Has been.
[0032] ある好ましい実施形態において、前記第 1光源および前記第 2光源は、前記第 1コ リメ一トレンズの光軸に対して、前記第 1光ディスクの外周側に配置されている。 [0032] In a preferred embodiment, the first light source and the second light source are arranged on the outer peripheral side of the first optical disc with respect to the optical axis of the first collimating lens.
[0033] ある好ま ヽ実施形態にお!ヽて、光ヘッドは、前記第 1光源および前記第 2光源を 駆動するための駆動回路をさらに備え、前記駆動回路は、前記第 1光源および前記 第 2光源に近接して配置されて 、る。
[0034] ある好ましい実施形態において、前記第 2波長は DVDの記録再生に用いる波長で あり、前記第 1波長は、前記 DVDより高密度の光ディスクの記録再生に用いる波長 である。 [0033] In one preferred embodiment, the optical head further includes a drive circuit for driving the first light source and the second light source, and the drive circuit includes the first light source and the second light source. 2 Close to the light source. [0034] In a preferred embodiment, the second wavelength is a wavelength used for DVD recording / reproduction, and the first wavelength is a wavelength used for recording / reproduction of an optical disc having a higher density than the DVD.
[0035] ある好ま 、実施形態にぉ 、て、前記第 1対物レンズおよび第 2対物レンズは、前 記第 1光ディスクおよび第 2光ディスクの接線方向に沿って配列されて 、る。 In one preferred embodiment, the first objective lens and the second objective lens are arranged along a tangential direction of the first optical disc and the second optical disc.
[0036] ある好ましい実施形態において、前記第 1対物レンズは前記第 1光ディスクの中心 を通り、前記光ヘッドのシーク動作の移動方向と平行な直線上に位置して 、る。 [0036] In a preferred embodiment, the first objective lens is located on a straight line passing through the center of the first optical disc and parallel to the moving direction of the seek operation of the optical head.
[0037] ある好ましい実施形態において、前記第 2対物レンズは、 0. 16mm以上 lmm以下 の幅のコバを有する。 [0037] In a preferred embodiment, the second objective lens has an edge with a width of 0.16 mm or more and 1 mm or less.
[0038] ある好ましい実施形態において、前記対物レンズのコバの表面は鏡面仕上げされ ている。 [0038] In a preferred embodiment, the surface of the edge of the objective lens is mirror-finished.
[0039] 本発明の光情報装置は、上記いずれかに規定される光ヘッドと、前記第 1光デイス クを回転駆動させるスピンドルモータと、前記光ヘッドの少なくとも前記第 1光検出器 から得られる信号に基づき、前記光ヘッドを制御するための電気回路とを備える。 The optical information device of the present invention is obtained from the optical head defined in any one of the above, a spindle motor that rotationally drives the first optical disk, and at least the first photodetector of the optical head. And an electric circuit for controlling the optical head based on the signal.
[0040] 本発明のコンピュータは上記光情報装置を備える。 [0040] A computer of the present invention includes the optical information device.
[0041] 本発明の光ディスクプレーヤは上記光情報装置を備える。 [0041] An optical disc player of the present invention includes the optical information device.
[0042] 本発明の光ディスクレコーダは上記光情報装置を備える。 [0042] An optical disc recorder of the present invention includes the optical information device.
[0043] 本発明の光ディスクサーバは上記光情報装置を備える。 [0043] An optical disk server of the present invention includes the optical information device.
発明の効果 The invention's effect
[0044] 本発明によれば、集光レンズを備えることによって、第 2光検出器に入射する光を 集め、小さな面積の光検出領域内に多くの光量^^めることができる。これによつて、 高い周波数帯域で、かつ、高い信号 Z雑音比で、第 1光源から出射する光の光量を 測定できる。したがって、第 1光源の発光強度を一定に保つことができ、ジッターなど が少ない高品位な再生信号を得ることが可能な光ヘッドが実現する。 [0044] According to the present invention, by providing the condensing lens, it is possible to collect light incident on the second photodetector and reduce the amount of light in a small area of the light detection region. This makes it possible to measure the amount of light emitted from the first light source in a high frequency band and with a high signal Z-noise ratio. Therefore, it is possible to realize an optical head that can keep the emission intensity of the first light source constant and can obtain a high-quality reproduction signal with little jitter.
[0045] また、本発明によれば、高い開口数の対物レンズを用いる光ディスクの再生または 記録を内周側まで行うことができる。また、光源の温度上昇を抑え、安定に記録再生 を行うことができる。また、複数の異なる記録密度の光ディスクに対して、それぞれ、 高速に情報の記録を行うことができる。
[0046] さらに、光学部品を限られた空間に納めることができるので、光ディスク記録部の最 内周まで光ヘッドを到達させてデータの記録あるいは再生を行うことができる。 [0045] Further, according to the present invention, it is possible to reproduce or record an optical disk using an objective lens having a high numerical aperture up to the inner circumference side. In addition, the temperature rise of the light source can be suppressed and recording / reproduction can be performed stably. In addition, information can be recorded at high speed on each of a plurality of optical discs having different recording densities. [0046] Furthermore, since the optical component can be stored in a limited space, the optical head can reach the innermost circumference of the optical disk recording section, and data can be recorded or reproduced.
[0047] よって、記録密度が互いに異なる複数の光ディスクに対して記録再生が可能な光 情報装置を実現するための複数の対物レンズを可動部に搭載した光ヘッドが実現す る。 [0047] Therefore, an optical head in which a plurality of objective lenses for realizing an optical information apparatus capable of recording and reproducing with respect to a plurality of optical discs having different recording densities is mounted on a movable portion is realized.
図面の簡単な説明 Brief Description of Drawings
[0048] [図 1]本発明による光ヘッドの実施形態の主として光学系の構成を説明する斜視図で ある。 FIG. 1 is a perspective view mainly illustrating a configuration of an optical system in an embodiment of an optical head according to the present invention.
[図 2]図 1を部分的に平面図および側面図で表した模式図である。 FIG. 2 is a schematic diagram partially showing FIG. 1 in a plan view and a side view.
[図 3]光ヘッドの実施形態の平面図である。 FIG. 3 is a plan view of an embodiment of an optical head.
[図 4]第 2光検出器に入射する光の光学系を示す側面図である。 FIG. 4 is a side view showing an optical system of light incident on a second photodetector.
[図 5]第 1の実施形態で用いられる色収差補正レンズの構造を示す側面図である。 FIG. 5 is a side view showing the structure of a chromatic aberration correcting lens used in the first embodiment.
[図 6]第 2対物レンズの構造を示す断面図である。 FIG. 6 is a cross-sectional view showing the structure of a second objective lens.
[図 7]光情報装置の実施形態の構成を示す図である。 FIG. 7 is a diagram showing a configuration of an embodiment of an optical information device.
[図 8]コンピュータの実施形態の構成を示す図である。 FIG. 8 is a diagram illustrating a configuration of an embodiment of a computer.
[図 9]光ディスクプレーヤの実施形態の構成を示す図である。 FIG. 9 is a diagram showing a configuration of an embodiment of an optical disc player.
[図 10]光ディスクレコーダの実施形態の構成を示す図である。 FIG. 10 is a diagram showing a configuration of an embodiment of an optical disc recorder.
[図 11]光ディスクサーバの実施形態の構成を示す図である。 FIG. 11 is a diagram showing a configuration of an embodiment of an optical disk server.
[図 12]従来の光ヘッドの構造を示す側面図である。 FIG. 12 is a side view showing the structure of a conventional optical head.
[図 13]従来の他の光ヘッドの構造を示す斜視図である。 FIG. 13 is a perspective view showing the structure of another conventional optical head.
符号の説明 Explanation of symbols
[0049] 31 第 1光源 [0049] 31 First light source
56, 57, 58 光束 56, 57, 58 Luminous flux
33 第 1コリメートレンズ 33 1st collimating lens
39 第 2コリメートレンズ 39 Second collimating lens
60 プリズム 60 prism
60a、 b 斜面 60a, b slope
35 第 1光ディスク
46 第 3光ディスク 35 First optical disc 46 3rd optical disc
34 第 1対物レンズ 34 First objective
41 第 2対物レンズ 41 Second objective lens
59 偏光ビームスプリッタ 59 Polarizing beam splitter
36 第 1光検出器 36 First photodetector
37a 第 2光源 37a Second light source
40 偏光ホログラム 40 polarization hologram
37、 43 集積ユニット 37, 43 Integrated unit
43a 第 3光源 43a Third light source
43b ホログラム 43b hologram
45 対物レンズァクチユエータ 45 Objective lens actuator
320 第 2光ディスク 320 2nd optical disc
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0050] (第 1の実施形態) [0050] (First embodiment)
以下、本発明による光ヘッドの実施形態を説明する。 Hereinafter, embodiments of the optical head according to the present invention will be described.
[0051] 図 1は、本発明による光ヘッドの主として光学系の構成を説明する斜視図であり、図 2は、図 1を部分的に平面図および側面図で表した模式図である。図 3は、図 1の平 面図である。これらの図において、 Tはトラッキング方向であり Fはフォーカシング方向 である。 Yはトラッキング方向に垂直な方向である。言い換えると、 Yはピット列あるい はトラック溝の延びる方向である。 FIG. 1 is a perspective view mainly illustrating the configuration of an optical system of an optical head according to the present invention, and FIG. 2 is a schematic diagram partially showing FIG. 1 in a plan view and a side view. 3 is a plan view of FIG. In these figures, T is the tracking direction and F is the focusing direction. Y is a direction perpendicular to the tracking direction. In other words, Y is the direction in which the pit row or track groove extends.
[0052] 図 2において、光ヘッドの 2つの波線 W、 Wで挟まれる部分では側面図、つまり、 [0052] In FIG. 2, the side of the optical head sandwiched between two wavy lines W and W is a side view, that is,
1 2 1 2
方向 Fおよび方向 Yに平行な面における構造が示されており、 2つの波線 W、 Wの The structure in a plane parallel to direction F and direction Y is shown, with two wavy lines W and W
1 2 外側では、平面図、つまり方向 Tおよび方向 Yに平行な面における構造が示されて いる。 1 2 On the outside, the plan view, ie the structure in the plane parallel to direction T and direction Y, is shown.
[0053] 光ヘッドは、 BD、 HD— DVDなどの高記録密度の第 1光ディスク 320に対して記 録および再生のうちの少なくとも一方を行うことが可能である。 The optical head can perform at least one of recording and reproduction with respect to the first optical disc 320 having a high recording density such as BD, HD-DVD and the like.
[0054] 光ヘッドは、第 1光ディスク 35に対し記録および再生のうちの少なくとも一方を行う ために、第 1光源 31、ビームスプリッタ 32、第 1コリメートレンズ 33、第 1ミラー 60aおよ
び第 1光検出器 36を備える。 [0054] In order to perform at least one of recording and reproduction with respect to the first optical disc 35, the optical head includes a first light source 31, a beam splitter 32, a first collimating lens 33, a first mirror 60a, and a first mirror 60a. And a first photodetector 36.
[0055] 第 1光源 31は、半導体導体レーザなどによって構成され、第 1波長の光、たとえば 、青色の光を出射する。第 1光源 31から出射した光 56は、ビームスプリッタ 32により、 第 1光束 56 ' 'および第 2光束 56 'に分岐する。第 2光束は以下において詳細に説明 するように第 1光源 31から出射する光の強度を制御するために光検出器 2で検出さ れる。 The first light source 31 is configured by a semiconductor conductor laser or the like, and emits light having a first wavelength, for example, blue light. The light 56 emitted from the first light source 31 is branched by the beam splitter 32 into a first light beam 56 ′ ′ and a second light beam 56 ′. The second light flux is detected by the photodetector 2 in order to control the intensity of the light emitted from the first light source 31, as will be described in detail below.
[0056] 第 1光束は、第 1コリメートレンズ 33に入射し、第 1コリメートレンズ 33により、第 1光 束の発散度が変換される。発散度が変換された第 1光束は、第 1ミラーとして機能す るプリズム 60の斜面 60aに入射する。斜面 60aは、第 1光束の進行方向を変換する。 具体的には、図 1、 2および 3に示すように、第 1光ディスク 35と平行な面内を進行し ていた第 1光束を第 1光ディスク 35に向力 ように約 90度、進行方向を変化させ、第 1対物レンズ 34へ入射させる。 The first light beam enters the first collimating lens 33, and the first collimating lens 33 converts the divergence of the first light flux. The first light flux whose divergence has been converted enters the inclined surface 60a of the prism 60 that functions as the first mirror. The slope 60a changes the traveling direction of the first light flux. Specifically, as shown in FIGS. 1, 2 and 3, the first light flux traveling in the plane parallel to the first optical disk 35 is directed to the first optical disk 35 by about 90 degrees, and the traveling direction is changed. It is changed and made incident on the first objective lens 34.
[0057] 第 1対物レンズ 34は、第 1光束を第 1光ディスク 35の記録面に向けて収束する。第 1光ディスク 35の記録面において反射された第 1光束は元の光路を逆にたどり、ビー ムスプリッタ 32によって、第 1光源 31とは別の方向に分岐される。 The first objective lens 34 converges the first light beam toward the recording surface of the first optical disc 35. The first light beam reflected on the recording surface of the first optical disk 35 follows the original optical path in the reverse direction and is branched by the beam splitter 32 in a direction different from that of the first light source 31.
[0058] 第 1光検出器 36はこの第 1光束を受け取り、光電変換によって、情報信号、サーボ 信号 (フォーカシング制御のためのフォーカスエラー信号や、トラッキング制御のため のトラッキング信号)を得るための電気信号に変換する。 [0058] The first photodetector 36 receives the first light flux and performs electrical conversion to obtain an information signal and a servo signal (a focus error signal for focusing control and a tracking signal for tracking control). Convert to signal.
[0059] 光ヘッドは、好ましくは、第 1光ディスク 35に加えて、記録密度が異なる第 2光デイス ク 320に対しても記録および再生のうちの少なくとも一方を行うことができる。本実施 形態では、第 2光ディスク 320は、たとえば DVDである。このために光ヘッドは、集積 ユニット 37、第 2コリメートレンズ 39および第 2対物レンズ 41を備える。 The optical head is preferably capable of performing at least one of recording and reproduction on the second optical disk 320 having a different recording density in addition to the first optical disk 35. In the present embodiment, the second optical disk 320 is, for example, a DVD. For this purpose, the optical head includes an integrated unit 37, a second collimating lens 39, and a second objective lens 41.
[0060] 集積ユニット 37は、第 1波長より波長の長い第 2波長の光 (例えば赤色光)を出射 する第 2光源 37aと図示しな 、光検出器とを含む。第 2光源 37aから出射した光 57は 、ダイクロイツクミラー 38によって第 2コリメートレンズ 39に導かれる。第 2コリメートレン ズ 39は第 2光源力も出射した光の発散度を変換する。 [0060] The integrated unit 37 includes a second light source 37a that emits light of a second wavelength (for example, red light) having a wavelength longer than the first wavelength, and a photodetector (not shown). The light 57 emitted from the second light source 37a is guided to the second collimating lens 39 by the dichroic mirror 38. The second collimating lens 39 converts the divergence of the light emitted from the second light source.
[0061] 発散度が変換された光 57は、プリズム 60の斜面 60bに入射する。斜面 60bは、光 5 7の進行方向を変換する。具体的には、図 1、 2および 3に示すように、第 2光ディスク
320と平行な面内を進行していた光 57を第 2光ディスク 320に向力うように約 90度、 進行方向を変化させ、第 2対物レンズ 41へ入射させる。 The light 57 whose divergence has been converted enters the inclined surface 60b of the prism 60. The slope 60b changes the traveling direction of the light 57. Specifically, as shown in FIGS. 1, 2 and 3, the second optical disk The traveling direction of the light 57 traveling in the plane parallel to 320 is changed to about 90 degrees so as to be directed to the second optical disk 320, and is incident on the second objective lens 41.
[0062] 第 2対物レンズ 41は、光 57を第 2光ディスク 320の記録面に向けて収束する。第 2 光ディスク 320の記録面において反射された光 57は元の光路を逆にたどり、偏光ホ ログラム 40などの分岐手段によってはじめとは別の方向に分岐され、光検出器 54に 入射する。光検出器 54は、反射光を受け取って光電変換によって、情報信号、サー ボ信号 (フォーカシング制御のためのフォーカスエラー信号や、トラッキング制御のた めのトラッキング信号)を得るための電気信号に変換する。光検出器は、例えば光源 と光検出器の集積ユニット 37に光検出器を内蔵することにより、光ヘッドの小型、薄 型化を実現でき、安定性を得ることができる。 The second objective lens 41 converges the light 57 toward the recording surface of the second optical disk 320. The light 57 reflected on the recording surface of the second optical disk 320 follows the original optical path in the opposite direction, is branched in a direction different from the initial direction by a branching means such as a polarization hologram 40, and enters the photodetector 54. The photodetector 54 receives the reflected light and converts it into an electrical signal for obtaining an information signal and a servo signal (a focus error signal for focusing control and a tracking signal for tracking control) by photoelectric conversion. . For example, by incorporating the photodetector in the integrated unit 37 of the light source and the photodetector, the photodetector can be made smaller and thinner, and stability can be obtained.
[0063] 光ヘッドは、さらに好ましくは、第 1光ディスク 35および第 2光ディスク 320にカ卩えて 、記録密度が異なる第 3光ディスク 46に対しても記録および再生のうちの少なくとも 一方を行うことができる。本実施形態では、第 3光ディスク 46は、たとえば CDである。 このために光ヘッドは、集積ユニット 43および光検出器 54を備える。 [0063] More preferably, the optical head can perform at least one of recording and reproduction on the third optical disk 46 having a different recording density in addition to the first optical disk 35 and the second optical disk 320. . In the present embodiment, the third optical disk 46 is a CD, for example. For this purpose, the optical head comprises an integrated unit 43 and a photodetector 54.
[0064] 集積ユ ット 43は、第 2波長より波長の長い第 3波長の光 (例えば赤外光)を出射 する第 3光源 43aを含む。第 3光源 43aから出射した光 58は、ダイクロイツクミラー 38 を透過し第 2コリメートレンズ 39に入射する。リレーレンズ 44を集積ユニット 43とダイク 口イツクミラー 38との間に設けてもよい。第 2コリメートレンズ 39により発散度が変換さ れた光 58は、プリズム 60の斜面 60bに入射し、進行方向が変換される。これにより、 第 3光ディスク 46と平行な面内を進行していた光 58を第 3光ディスク 46に向力 よう に約 90度、進行方向を変化させ、第 2対物レンズ 41へ入射させる。 [0064] The integrated unit 43 includes a third light source 43a that emits light with a third wavelength longer than the second wavelength (for example, infrared light). The light 58 emitted from the third light source 43 a passes through the dichroic mirror 38 and enters the second collimating lens 39. A relay lens 44 may be provided between the integrated unit 43 and the diced opening mirror 38. The light 58 whose divergence has been converted by the second collimating lens 39 enters the inclined surface 60b of the prism 60, and the traveling direction is converted. As a result, the traveling direction of the light 58 traveling in the plane parallel to the third optical disk 46 is changed by about 90 degrees toward the third optical disk 46 and is incident on the second objective lens 41.
[0065] 光 46の記録面において反射された光 58は、元の光路を逆にたどり、ホログラム 43 bなどの分岐手段によってはじめとは別の方向に分岐され、集積ユニット 43内の光検 出器に入射する。光検出器は、反射光を受け取って光電変換によって、情報信号、 サーボ信号 (フォーカシング制御のためのフォーカスエラー信号や、トラッキング制御 のためのトラッキング信号)を得るための電気信号に変換する。光検出器は、例えば 光源とともに集積ユニット 37に内蔵することにより、光ヘッドの小型、薄型化を実現で き、安定性を得ることができる。
[0066] 本実施形態では、立ち上げプリズム 60の断面は 3角形であり、 2つのミラーとして機 能する斜面 60aおよび 60bを備えている力 独立した 2つの部材によって 2つのミラー を構成してもよい。また、立ち上げプリズム 60の頂点(プリズム全体としてみれば稜線 )を面取りして、チッビング (欠け)を防止してもよい。 [0065] The light 58 reflected on the recording surface of the light 46 follows the original optical path in the reverse direction, and is branched in a direction different from the first by a branching means such as the hologram 43b, so that the light detection in the integrated unit 43 is performed. Incident light. The photodetector receives the reflected light and photoelectrically converts it into an electrical signal for obtaining an information signal and a servo signal (a focus error signal for focusing control and a tracking signal for tracking control). By incorporating the photodetector in the integrated unit 37 together with the light source, for example, the optical head can be reduced in size and thickness, and stability can be obtained. [0066] In the present embodiment, the cross section of the rising prism 60 is a triangle, and the two mirrors can be configured by two independent members having the slopes 60a and 60b that function as two mirrors. Good. Further, the apex of the rising prism 60 (ridge line when viewed as a whole prism) may be chamfered to prevent chipping.
[0067] なお、本実施形態では、第 2光源 37aと第 3光源 43aとを別個の部品で構成してい るため、ダイクロイツクミラー 38を用いることによって、両光源から出射される光ビーム の光利用効率を高めるようにしている。しかし、第 2光源 37aと第 3光源 43aとは単一 の半導体チップに集積ィ匕してもよい。この場合、ダイクロイツクミラー 38を省略すること ができる。 [0067] In the present embodiment, the second light source 37a and the third light source 43a are configured as separate components. Therefore, by using the dichroic mirror 38, light beams emitted from both light sources are used. We are trying to increase usage efficiency. However, the second light source 37a and the third light source 43a may be integrated on a single semiconductor chip. In this case, the dichroic mirror 38 can be omitted.
[0068] 本発明の光ヘッドは、小さな外形を有し、安定で優れた光学的特性を発揮するた めに、種々の構造的特徴を備える。以下、本発明による光ヘッドの特徴を順に説明 する。以下、第 1光ディスク 35、第 2光ディスク 320および第 3光ディスク 46を総称す る場合には、単に光ディスクと呼ぶ場合がある。同様に第 1対物レンズ 34および第 2 対物レンズ 41を総称して、単に対物レンズと呼ぶ場合がある。 [0068] The optical head of the present invention has a small outer shape, and has various structural features in order to exhibit stable and excellent optical characteristics. Hereinafter, features of the optical head according to the present invention will be described in order. Hereinafter, when the first optical disc 35, the second optical disc 320, and the third optical disc 46 are collectively referred to, they may be simply referred to as optical discs. Similarly, the first objective lens 34 and the second objective lens 41 may be collectively referred to simply as an objective lens.
[0069] まず、本発明の光ヘッドにおいて、高記録密度用の光学系に関する特徴を説明す る。 BDや HD—DVDなどの高記録密度の光ディスクに対して記録再生を行う場合、 波長の短い光源を用いる必要がある。本実施形態では、第 1光源 31は青色の光を 出射し、高記録密度の光ディスクへ情報を記録したり、高記録密度の光ディスクから 情報を再生したりするために用いられる。第 1光源 31による情報の記録を安定に行う ためには、ピットやマークが形成された領域 (記録ピット部)と、ピットやマークが形成さ れていない領域 (非記録部または消去部)とで、第 1光源 31の発光強度を一定に保 つ必要がある。 First, characteristics of the optical system for high recording density in the optical head of the present invention will be described. When recording / playback on high-density optical disks such as BD and HD-DVD, it is necessary to use a light source with a short wavelength. In the present embodiment, the first light source 31 emits blue light, and is used to record information on a high recording density optical disk or to reproduce information from a high recording density optical disk. In order to stably record information by the first light source 31, an area where pits or marks are formed (recording pit part) and an area where no pits or marks are formed (non-recording part or erasure part) Therefore, it is necessary to keep the emission intensity of the first light source 31 constant.
[0070] このために、図 1に示すように、本実施形態の光ヘッドは、第 1光源 31の発光強度 を測定する光検出器 2を備えている。また、光検出器 2へ光を導くため、ビームスプリ ッタ 32は、第 1光源 31から出射した光 56を第 1方向および第 1方向とは異なる第 2方 向にそれぞれ進行する第 1光束 56' 'および第 2光束 56'に分岐する。第 1光束は前 述したコリメートレンズ 33に入射する。第 2光束 56'は光検出器 2に入射する。 For this purpose, as shown in FIG. 1, the optical head of the present embodiment includes a photodetector 2 that measures the emission intensity of the first light source 31. In addition, in order to guide the light to the photodetector 2, the beam splitter 32 includes a first light flux that travels the light 56 emitted from the first light source 31 in a second direction different from the first direction and the first direction, respectively. Branches to 56 '' and the second luminous flux 56 '. The first beam enters the collimating lens 33 described above. The second light beam 56 ′ enters the photodetector 2.
[0071] 第 2光束 56'は、第 1光束 56' 'と同様、発散状態にある。このため、電気的雑音に
比べて高い信号を得るためには、光検出器 2の受光部の面積を大きくする必要があ る。一方、高い周波数帯域で信号を得るためには受光部の面積を小さくし、受光部 の電気的容量 (キャパシタンス)を小さくすることが好ましい。このように、信号 Z雑音 比(SZN比)の向上と周波数帯域を高めることとは、トレードオフの関係にあり、両立 が困難である。 [0071] The second light flux 56 'is in a divergent state, like the first light flux 56''. For this reason, electrical noise In order to obtain a higher signal, the area of the light receiving portion of the photodetector 2 needs to be increased. On the other hand, in order to obtain a signal in a high frequency band, it is preferable to reduce the area of the light receiving portion and to reduce the electric capacitance (capacitance) of the light receiving portion. Thus, there is a trade-off between improving the signal Z-noise ratio (SZN ratio) and increasing the frequency band, and it is difficult to achieve both.
[0072] 本実施形態の光ヘッドはこの課題を解決するために、図 1および図 4に示すように、 ビームスプリッタ 32によって分岐された第 2光束 56'を集光する集光レンズ 1を備える 。集光レンズ 1は、発散状態の第 2光束 56'を集光状態に変換すればよい。図 4では 、第 2光束 56'は、光検出器 2において焦点を形成するように光検出器 2に対して配 置されている力 必ずしも焦点を形成しなくてもよい。ビームスプリッタ 32から出射す る第 2光束 56 'が集光状態になるように集光されて 、ればよ!/、。 In order to solve this problem, the optical head of the present embodiment includes a condenser lens 1 that condenses the second light beam 56 ′ branched by the beam splitter 32, as shown in FIGS. . The condensing lens 1 may convert the divergent second light beam 56 ′ into a condensing state. In FIG. 4, the second light flux 56 ′ does not necessarily have to be focused on the force disposed with respect to the photodetector 2 so as to form a focal point in the photodetector 2. The second light beam 56 ′ emitted from the beam splitter 32 should be condensed so as to be condensed!
[0073] このように集光レンズ 1を備えることによって、光検出器 2に入射する光を集め、小さ な面積の光検出領域内に多くの光量を集めることができる。これによつて、高い周波 数帯域で、かつ、高い信号 Z雑音比で、第 1光源 31から出射する光の光量を測定で きる。 [0073] By providing the condensing lens 1 in this way, it is possible to collect light incident on the photodetector 2 and collect a large amount of light in a small area of the light detection region. As a result, the amount of light emitted from the first light source 31 can be measured in a high frequency band and with a high signal Z noise ratio.
[0074] 好ましくは、光ヘッドはさら〖こミラー(第 2ミラー) 3を備え、ビームスプリッタ 32から出 射した第 2光束 56'の進行方向を変化させる。より具体的には、ミラー 3は、ビームス プリッタ 32から出射した第 2光束 56'の進行方向がほぼ直角に変化するようにビーム スプリッタ 32に対して配置される。これにより、図 1および図 4に示すように、第 1光源 31から出射する光が T方向に進行するように配置した場合、ミラー 3によって第 2光束 56 'の光軸と、プリズム 60の斜面 60aによって進行方向が変化させられた第 1光束 5 6' 'の光軸とは互いに平行になる。その結果、光検出器 2を第 1光源 31から出射する 光 56の光路に対して T方向ではなぐ F方向に配置することができる。したがって、光 ヘッドを構成する部品が T方向へ広がって配置するのを抑制することができ、光へッ ドが光ディスクの内周側へ移動する際に光ヘッドと光ディスクを回転させるスピンドル モータとの干渉を防止することができる。 [0074] Preferably, the optical head includes a smooth mirror (second mirror) 3, and changes the traveling direction of the second light beam 56 'emitted from the beam splitter 32. More specifically, the mirror 3 is disposed with respect to the beam splitter 32 so that the traveling direction of the second light beam 56 ′ emitted from the beam splitter 32 changes substantially at a right angle. Thus, as shown in FIGS. 1 and 4, when the light emitted from the first light source 31 is arranged so as to travel in the T direction, the mirror 3 causes the optical axis of the second light beam 56 ′ and the slope of the prism 60 to The optical axes of the first light fluxes 56 6 ′ whose traveling directions are changed by 60 a are parallel to each other. As a result, the photodetector 2 can be arranged in the F direction, not in the T direction, with respect to the optical path of the light 56 emitted from the first light source 31. Therefore, it is possible to prevent the components constituting the optical head from spreading in the T direction, and the optical head and the spindle motor that rotates the optical disc when the optical head moves toward the inner periphery of the optical disc. Interference can be prevented.
[0075] 本実施形態では、第 2光束 56 'は第 1対物レンズ 34側に進行するようにミラー 3によ つて第 2光束 56'の進行方向が変えられている力 第 1対物レンズ 34と反対側に進
行するように進行方向を変えてもょ ヽ。 In the present embodiment, the force by which the traveling direction of the second light beam 56 ′ is changed by the mirror 3 so that the second light beam 56 ′ travels toward the first objective lens 34 side. Go to the other side Change the direction of travel as you go.
[0076] さらに、光検出器 2が長手方向を有する直方体の外形を有する場合、長手方向が、 第 1コリメートレンズ 33の光軸とおおよそ平行となるように、つまり長手方向が Y方向と 平行となるように光検出器 2を配置することが好ましい。また、さらに、光検出器 2の電 気的端子は、長手方向に位置する側面に設けられていることが好ましい。これにより 、光検出器 36と光検出器 2とが干渉することなく光ヘッド内において部品を配置する ことができる。また、光ヘッドを構成する部品が T方向へ広がって配置するのを抑制 することができる。したがって、光ヘッドを光ディスクのより内周側に接近させて、記録 や再生を行うことが可能になる。 [0076] Furthermore, when the photodetector 2 has a rectangular parallelepiped shape having a longitudinal direction, the longitudinal direction is approximately parallel to the optical axis of the first collimating lens 33 , that is, the longitudinal direction is parallel to the Y direction. It is preferable to arrange the photodetector 2 so that Furthermore, it is preferable that the electrical terminal of the photodetector 2 is provided on a side surface located in the longitudinal direction. As a result, the components can be arranged in the optical head without the light detector 36 and the light detector 2 interfering with each other. In addition, it is possible to suppress the components that make up the optical head from spreading in the T direction. Therefore, recording and reproduction can be performed by bringing the optical head closer to the inner circumference side of the optical disk.
[0077] 次に第 1コリメートレンズ 33について説明する。高記録密度の光ディスクの記録再 生に用いられる第 1対物レンズ 34は、 0. 85またはそれより大きな開口数 (NA)を有 する。開口数が大きいので、第 1光ディスク 35に対して記録または再生を行う場合、 第 1光ディスク 35の情報記録面の表面を覆っている透明基材の厚さの差異により、 球面収差が顕著に発生する。 Next, the first collimating lens 33 will be described. The first objective lens 34 used for recording reproduction of a high recording density optical disc has a numerical aperture (NA) of 0.85 or higher. Due to the large numerical aperture, when recording or playback is performed on the first optical disk 35, spherical aberration is noticeably generated due to the difference in the thickness of the transparent substrate covering the surface of the information recording surface of the first optical disk 35. To do.
[0078] 本実施形態では、第 1コリメートレンズ 33を第 1コリメートレンズ 33の光軸方向へ移 動させることにより、第 1コリメートレンズ 33から第 1対物レンズ 34へと向力 光の発散 収束度を変化させる。第 1対物レンズ 34に入射する光の発散収束度が変化すると球 面収差が変化するのでこれを利用して基材厚差に起因する球面収差を補正する。 In this embodiment, by moving the first collimating lens 33 in the optical axis direction of the first collimating lens 33, the divergence and convergence degree of the directional light from the first collimating lens 33 to the first objective lens 34 is achieved. To change. Since the spherical aberration changes when the divergence / convergence of the light incident on the first objective lens 34 changes, this is used to correct the spherical aberration due to the difference in thickness of the base material.
[0079] このために光ヘッドは、駆動装置 8を備える。駆動装置 8は、たとえば、ステッピング モーターやブラシレスモーターなどと、回転駆動力を併進駆動力に変換する公知の 機械要素とによって構成することができる。 For this purpose, the optical head includes a driving device 8. The drive device 8 can be constituted by, for example, a stepping motor, a brushless motor, or the like and a known mechanical element that converts a rotational driving force into a translational driving force.
[0080] 第 1コリメートレンズ 33を保持するホルダは、部品点数の削減を図るため、コリメート レンズ 33と一体的に成形してもよい。第 1コリメートレンズ 33は平行度を緩くする、す なわち、発散度を緩和するように変換する。第 1コリメートレンズ 33は、凹レンズおよ び凸レンズの組み合わせより構成してもよい。この場合、凹レンズまたは凸レンズのい ずれか一方を駆動装置 8によって光軸と平行な方向に移動させても、球面収差を補 正することができる。 The holder that holds the first collimating lens 33 may be formed integrally with the collimating lens 33 in order to reduce the number of parts. The first collimating lens 33 is converted so as to loosen the parallelism, that is, to reduce the divergence. The first collimating lens 33 may be composed of a combination of a concave lens and a convex lens. In this case, spherical aberration can be corrected even if either the concave lens or the convex lens is moved in the direction parallel to the optical axis by the driving device 8.
[0081] ここで、第 1対物レンズ 34を光ディスクの内周側(半径 20mm程度)まで移動可能
にするためには、スピンドルモータ 7側に光ヘッドが第 1対物レンズ 34よりもできるだ け突出しないほうが好ましい。このため、図 3に示すように、駆動装置 8は、第 1光ディ スク 35と平行な面内において、第 1コリメートレンズ 33の光軸 33aに対して、スピンド ルモータ 7とは反対側、つまり、矢印 33Aで示すように、第 1光ディスク 35の外周側に 配置することが好ましい。これにより、第 1コリメートレンズ 33の駆動装置 8とスピンドル モータ 7との干渉を避け、光ヘッドを光ディスクの内周側まで移動させることが可能と なる。 [0081] Here, the first objective lens 34 can be moved to the inner circumference side of the optical disk (radius of about 20mm). In order to achieve this, it is preferable that the optical head does not protrude from the first objective lens 34 as much as possible to the spindle motor 7 side. For this reason, as shown in FIG. 3, the driving device 8 is located on the opposite side of the spindle motor 7 from the optical axis 33a of the first collimating lens 33 in the plane parallel to the first optical disk 35, that is, As indicated by the arrow 33A, it is preferably arranged on the outer peripheral side of the first optical disc 35. As a result, it is possible to avoid the interference between the driving device 8 of the first collimating lens 33 and the spindle motor 7, and to move the optical head to the inner peripheral side of the optical disk.
[0082] 図 1から図 3に示したように、ビームスプリッタ 32と対物レンズ 34の間に球面収差補 正手段であるコリメートレンズ 33を配置することが好ましい。先に述べたように、コリメ 一トレンズ 33をその光軸方向に沿って駆動装置 8の動力によって移動させることによ つて、第 1対物レンズ 34へ入射する光の発散、収束度を変え、球面収差を制御でき る。 As shown in FIGS. 1 to 3, it is preferable to arrange a collimating lens 33 which is a spherical aberration correcting means between the beam splitter 32 and the objective lens 34. As described above, the collimating lens 33 is moved along the optical axis direction by the power of the driving device 8 to change the divergence and convergence of the light incident on the first objective lens 34, thereby changing the spherical surface. Aberration can be controlled.
[0083] 図 13に示すように、特許文献 4はコリメートレンズ 74を光源 73とビームスプリッタ 75 との間に配置することを開示している。この場合、仮に球面収差を補正するためにコ リメ一トレンズ 74を移動させても、光ディスクで反射し、光検出器 76へ入射する光は コリメートレンズ 74を透過しな 、ため、光源と光ディスクとの間および光ディスクと光検 出器との間で結像関係が異なってしまう。その結果、正確なフォーカスエラー信号を 光検出器 76によって検出できない。 As shown in FIG. 13, Patent Document 4 discloses disposing a collimating lens 74 between a light source 73 and a beam splitter 75. In this case, even if the collimating lens 74 is moved to correct the spherical aberration, the light reflected by the optical disk and incident on the photodetector 76 does not pass through the collimating lens 74. And the image formation relationship between the optical disc and the photodetector is different. As a result, an accurate focus error signal cannot be detected by the photodetector 76.
[0084] これに対し、本発明によれば、コリメートレンズは光源と光ディスクとの間および光デ イスクと光検出器との間に位置するため、これらの間における結像関係が保たれる。 したがって、フォーカス制御における光の収束状態を変化させることなく球面収差を 行うことが可能となり、フォーカス制御と球面収差の制御を両立させることができるとい う顕著な効果が得られる。 On the other hand, according to the present invention, the collimating lens is located between the light source and the optical disc and between the optical disc and the photodetector, so that the imaging relationship between them is maintained. Therefore, spherical aberration can be performed without changing the light convergence state in focus control, and a remarkable effect that both focus control and spherical aberration control can be achieved is obtained.
[0085] 次に、色収差の補正について説明する。光ヘッドが記録および再生の両方を行う 光情報装置に搭載される場合、第 1光源 31は、再生時の出力に比べて大きな出力 で光出射する必要がある。この場合、第 1光源 31から出射する光の波長が出力によ つて変動することがある。このため、光ヘッドは、第 1光源 31から出射する光の波長の 変動による色収差を補正するために、色収差補正用のレンズ 49をさらに備えている
。レンズ 49は、たとえば第 1対物レンズ 34とプリズム 60との間に設けることができる。 Next, correction of chromatic aberration will be described. When the optical head is mounted on an optical information device that performs both recording and reproduction, the first light source 31 needs to emit light with a larger output than the output during reproduction. In this case, the wavelength of light emitted from the first light source 31 may vary depending on the output. For this reason, the optical head further includes a lens 49 for correcting chromatic aberration in order to correct chromatic aberration due to a change in wavelength of light emitted from the first light source 31. . The lens 49 can be provided between the first objective lens 34 and the prism 60, for example.
[0086] レンズ 49は、図 5に示すように、たとえば、凹レンズ 49aと、凸レンズの作用を有する 回折レンズ 49bとを含む。好ましくは、回折レンズ 49bは凹レンズ 49aの曲面 49cに設 けられている。回折レンズ 49bを、凹レンズ 49aの曲率を持った曲面 49c上に設ける ことによって、表面で反射した 0次回折光、すなわち、回折レンズの作用を受けなかつ た光が生じたときに、平面で反射して迷光を生じることを防ぐことができる効果がある As shown in FIG. 5, the lens 49 includes, for example, a concave lens 49a and a diffractive lens 49b having the function of a convex lens. Preferably, the diffractive lens 49b is provided on the curved surface 49c of the concave lens 49a. By providing the diffractive lens 49b on the curved surface 49c having the curvature of the concave lens 49a, when the 0th-order diffracted light reflected on the surface, that is, the light not subjected to the action of the diffractive lens is generated, it is reflected on the plane. Has the effect of preventing the generation of stray light
[0087] 光ヘッドはこのほ力、レンズ 55および 1Z4波長板 48を備えていてもよい。レンズ 55 は第 1光源 31に近接して設けられ、第 1光源 31に近接する側に凸のシリンドリカル面 を有し、反対側に凹のシリンドリカル面を有している。これにより、第 1光源 31から出 射する光の光軸に垂直な面内の直交する 2方向における遠視野像の強度部分布が 等しくない、すなわち、出射する光ビームの遠視野像が楕円形の場合において、遠 視野像を円形に近づけて光の利用効率を高めることができる。また、 1Z4波長は、 偏光ビームスプリッタ 59における光利用効率を向上させることができる。さらに、回折 素子 51や、非回転対称形のレンズ 50を設けることにより、第 1光検出器 36から制御 に好適なサーボ信号を得ることができる。 The optical head may include the lens 55 and the 1Z4 wavelength plate 48. The lens 55 is provided in the vicinity of the first light source 31, has a convex cylindrical surface on the side close to the first light source 31, and has a concave cylindrical surface on the opposite side. As a result, the intensity distribution of the far-field image in two orthogonal directions in the plane perpendicular to the optical axis of the light emitted from the first light source 31 is not equal, that is, the far-field image of the emitted light beam is elliptical. In this case, it is possible to increase the efficiency of light utilization by making the far-field image closer to a circle. Further, the 1Z4 wavelength can improve the light utilization efficiency in the polarization beam splitter 59. Furthermore, by providing the diffraction element 51 and the non-rotationally symmetric lens 50, a servo signal suitable for control can be obtained from the first photodetector 36.
[0088] 次に、光ヘッド内における構成部品の配置を説明する。まず、光ヘッド内における 第 1光源 31と第 1光検出器 36の配置を説明する。第 1光源 31は駆動電圧が 5V程度 以上である。従来の CDや DVD用の光源の駆動電圧が 3V程度であるのに比べると 、高い電圧で第 1光源 31を駆動する必要があるため、消費電力が多くなり、第 1光源 31からの発熱量もおおくなる。このため、発熱による影響を十分に考慮する必要があ る。 Next, the arrangement of components in the optical head will be described. First, the arrangement of the first light source 31 and the first photodetector 36 in the optical head will be described. The first light source 31 has a driving voltage of about 5V or more. Compared to the drive voltage of the conventional light source for CDs and DVDs, which is about 3V, the first light source 31 needs to be driven at a higher voltage, which increases power consumption and the amount of heat generated from the first light source 31 Also become big. Therefore, it is necessary to fully consider the effects of heat generation.
[0089] 一方、第 1光検出器 36は、第 1光ディスクから反射した光を受け取り、電機的信号 に変換する。電気的ノイズが信号にのる前に信号を増幅することによって信号 Z雑 音の比率を高くするために、第 1光検出器 36は信号増幅用のアンプをさらに備え、 光検出素子とアンプとを同じチップによって構成することが好ましい。しかし、アンプも 通電により発熱するため、第 1光源 31に近接して第 1光検出器 36を配置すると、第 1 光検出器 36のアンプによる発熱によって第 1光源 31の温度が上昇し、第 1光源 31か
ら出射する光の波長がシフトしたり、第 1光源 31の寿命が短くなることも考えられる。 On the other hand, the first photodetector 36 receives the light reflected from the first optical disk and converts it into an electrical signal. In order to increase the ratio of the signal Z noise by amplifying the signal before the electrical noise is applied to the signal, the first photodetector 36 further includes an amplifier for signal amplification. Are preferably constituted by the same chip. However, since the amplifier also generates heat when energized, if the first photodetector 36 is placed close to the first light source 31, the temperature of the first light source 31 rises due to the heat generated by the amplifier of the first photodetector 36, and the first light source 31 increases. 1 light source 31 It is also conceivable that the wavelength of the light emitted from the first light source 31 is shifted or the life of the first light source 31 is shortened.
[0090] このため、図 1および図 3に示すように、第 1光ディスク 35と平行な面内において、 第 1光検出器 36と第 1光源 31とは第 1コリメートレンズ 33の光軸に対して互いに反対 側に配置することが好ましい。これによつて、第 1光検出器 36と第 1光源 31との距離 を大きくし、互いの熱の影響を抑制することができるため、第 1光検出器 36にアンプ を集積化し、高い信号 Z雑音比を得ると共に、第 1光源 31の温度上昇を防止できる Therefore, as shown in FIGS. 1 and 3, the first photodetector 36 and the first light source 31 are in relation to the optical axis of the first collimating lens 33 in a plane parallel to the first optical disk 35. It is preferable to arrange them on opposite sides. As a result, the distance between the first photodetector 36 and the first light source 31 can be increased and the influence of each other's heat can be suppressed. Therefore, an amplifier is integrated in the first photodetector 36 and a high signal is obtained. Obtains Z-noise ratio and prevents temperature rise of the first light source 31
[0091] 図 3に示すように、第 1光検出器 36は、好ましくは、第 1コリメートレンズ 33の光軸に 対して、矢印 33Bで示すように、光ディスクの内周側、あるいは、スピンドルモータ側 に位置している。図 3から明らかなように、第 1対物レンズ 34近傍にはスピンドルモー タ 7が位置するため、第 1対物レンズ 34近傍においては、第 1コリメートレンズ 33の光 軸に対して、矢印 33Bで示す光ディスクの内周側には光ヘッドを構成する部品を配 置しないほうが好ましい。し力し、光ヘッドの基台 5は、図 3に示すように、スピンドルモ ータ 7に接近可能なように円弧状の凹部を有しているため、光ヘッドの基台 5の凹部 の外側であれば、光ヘッドを構成する部品を配置する空間が確保できる。したがって 、基台 5の凹部の外側の領域を利用することによって、スピンドルモータ 7と干渉する ことなぐ第 1光検出器 36と第 1光源 31とを第 1コリメートレンズ 33の光軸に対して互 Vヽに反対側に配置することができる。 As shown in FIG. 3, the first photodetector 36 preferably has an inner peripheral side of the optical disc or a spindle motor as shown by an arrow 33B with respect to the optical axis of the first collimating lens 33. Located on the side. As apparent from FIG. 3, since the spindle motor 7 is located in the vicinity of the first objective lens 34, the arrow 33B indicates the optical axis of the first collimating lens 33 in the vicinity of the first objective lens 34. It is preferable not to arrange the components constituting the optical head on the inner circumference side of the optical disk. As shown in FIG. 3, the optical head base 5 has an arc-shaped recess so as to be accessible to the spindle motor 7, so that the optical head base 5 has a concave portion. If it is outside, a space for arranging the components constituting the optical head can be secured. Therefore, by utilizing the area outside the concave portion of the base 5, the first photodetector 36 and the first light source 31 that do not interfere with the spindle motor 7 are mutually connected with respect to the optical axis of the first collimating lens 33. Can be placed on the opposite side to V ヽ.
[0092] 本実施形態の光ヘッドは光ディスクを用いて大容量の情報を記録再生することを目 的としている。大容量の情報を扱うためには情報の記録速度や再生速度も速くする 必要があり、特に記録する際には、出射光の強度を高速に変化させて高速に記録を 行う必要がある。すなわち、第 1光源 31を駆動し、発光させるために流す電流を高速 に変調する必要がある。このために、第 1光源 31を駆動する電流を制御する駆動回 路、あるいは、大規模集積回路 (LSI)は第 1光源 31に近接して配置することが好まし い。近接して配置することによって、配線が長くなることによる抵抗の増大、および、そ れにより生じる信号の遅れを防止することができる。 The optical head of this embodiment is intended to record / reproduce a large amount of information using an optical disk. In order to handle a large amount of information, it is necessary to increase the recording speed and reproduction speed of the information. In particular, when recording, it is necessary to change the intensity of the emitted light at a high speed to perform recording at a high speed. In other words, it is necessary to drive the first light source 31 and to modulate the current flowing to emit light at high speed. For this reason, it is preferable that a drive circuit for controlling a current for driving the first light source 31 or a large-scale integrated circuit (LSI) be arranged in the vicinity of the first light source 31. By arranging them close to each other, it is possible to prevent an increase in resistance due to a long wiring and a signal delay caused thereby.
[0093] 第 1光源 31の駆動電流を制御する駆動回路は、集積モジュール 37に内蔵された 第 2光源 37aの駆動電流を制御する駆動回路と共通な部分が多い。このため、第 1光
源 31の駆動回路と第 2光源 37aの駆動回路とを共通にし、 LSIによって構成された 1 つの駆動回路で第 1光源 31と第 2光源 37aとを駆動すれば、光ヘッドの小型化を図 ることがでさる。 The drive circuit that controls the drive current of the first light source 31 has many parts in common with the drive circuit that controls the drive current of the second light source 37a built in the integrated module 37. For this reason, the first light If the drive circuit of the light source 31 and the drive circuit of the second light source 37a are shared, and the first light source 31 and the second light source 37a are driven by a single drive circuit configured by LSI, the optical head can be reduced in size. It can be done.
[0094] これらのこと力 、図 3に示すように光ヘッドは、第 1光源 31および第 2光源 37aを駆 動する駆動回路 9をさらに備え、駆動回路 9は第 1光源 31および第 2光源 37aに近接 して配置することが好まし 、。光ヘッドを光ディスクのより内周側にまで移動可能にし 、光ディスクの内周側で記録再生を可能にするために、第 1光源 31および第 2光源 3 7aと駆動回路 9とは、第 1コリメートレンズ 33の光軸 33aに対して、光ディスクの外周 側 (矢印 33A)へ配置することが好ましい。これにより、第 1光源 31の変調を高速で行 うことが可能となり、また、光ヘッドの外形を小さくすることが可能となる。 As shown in FIG. 3, the optical head further includes a drive circuit 9 that drives the first light source 31 and the second light source 37a, and the drive circuit 9 includes the first light source 31 and the second light source. Preferably placed close to 37a. The first light source 31 and the second light source 37a and the drive circuit 9 are connected to the first collimator so that the optical head can be moved to the inner peripheral side of the optical disc and recording / reproduction can be performed on the inner peripheral side of the optical disc. The optical axis 33a of the lens 33 is preferably arranged on the outer peripheral side (arrow 33A) of the optical disc. As a result, the first light source 31 can be modulated at high speed, and the outer shape of the optical head can be reduced.
[0095] 本実施形態の光ヘッドは、第 1対物レンズ 34と第 2対物レンズ 41とをそれぞれ用い る 2つの光学系によって構成される。次に 2つの光学系の配置を説明する。 The optical head of the present embodiment is configured by two optical systems that use the first objective lens 34 and the second objective lens 41, respectively. Next, the arrangement of the two optical systems will be described.
[0096] 図 2および図 3に示すように、プリズム 60へ入射する第 1光源 31の光束 56 ' 'と第 2 光源 37aの光束 57および第 3光源 43aの光束 58の光軸は互いに平行であることが 好ましい。これによつて、プリズム 60の斜面 60a、 60bをともに図 2において、紙面に 対して垂直に設定し、かつ、第 1対物レンズ 34および第 2対物レンズ 41への入射角 度をそれぞれの光軸と平行にすることができる。また、斜面 60a、 60bをともに紙面に 対して垂直に設定できるので、立ち上げプリズム 60は、たとえば、紙面に垂直方向に 長く伸びるバーを切断することによって、効率よく作製することが可能となり、プリズム 60の製造コストを低減することができる。 As shown in FIGS. 2 and 3, the optical axes of the light beam 56 ′ ′ of the first light source 31 and the light beam 57 of the second light source 37a and the light beam 58 of the third light source 43a incident on the prism 60 are parallel to each other. Preferably it is. As a result, the slopes 60a and 60b of the prism 60 are both set perpendicular to the paper surface in FIG. 2, and the angles of incidence on the first objective lens 34 and the second objective lens 41 are set to the respective optical axes. And can be parallel. In addition, since both the inclined surfaces 60a and 60b can be set perpendicular to the paper surface, the rising prism 60 can be efficiently manufactured by cutting a bar that extends long in the vertical direction to the paper surface, for example. 60 manufacturing costs can be reduced.
[0097] なお、このように、プリズム 60の 2つの斜面 60a、 60bを光源から出射した光束の立 ち上げに用いる場合、ミラーを 2つ用いる場合とは異なり、斜面 60aおよび斜面 60bを 調整することによって、互いに独立して光軸の調整を行うことができない。このため、 第 1光源 31、第 2光源 37aおよび第 3光源 43aをそれぞれ基台 5 (図 3)に対して、第 1 光源 31、第 2光源 37aおよび第 3光源 43aのそれぞれの光軸と直角方向にスライドし て位置を調整できるようなホルダを備えていることが好ましい。第 1光源 31、第 2光源 37aおよび第 3光源 43aをそれぞれの光軸に対して直角方向に移動することによって 、第 1コリメータレンズ 33や第 2コリメートレンズ 39を通った光の光軸角度を調整する
ことが好ましい。 [0097] As described above, when the two inclined surfaces 60a and 60b of the prism 60 are used for raising the light beam emitted from the light source, the inclined surfaces 60a and 60b are adjusted unlike the case of using two mirrors. Therefore, the optical axes cannot be adjusted independently of each other. For this reason, the first light source 31, the second light source 37a, and the third light source 43a are respectively connected to the base 5 (FIG. 3) with respect to the optical axes of the first light source 31, the second light source 37a, and the third light source 43a. It is preferable to provide a holder that can be slid in a perpendicular direction to adjust the position. By moving the first light source 31, the second light source 37a and the third light source 43a in the direction perpendicular to the respective optical axes, the optical axis angle of the light passing through the first collimator lens 33 and the second collimator lens 39 can be adjusted. adjust It is preferable.
[0098] 図 1、図 2および図 3に示すように、第 1対物レンズ 34および第 2対物レンズ 41は、 対物レンズァクチユエータ 45の可動体 45aに固定されている。第 1対物レンズ 34およ び第 2対物レンズ 41は、 Y方向、つまり、第 1光ディスク 35のトラック溝の延伸方向に 略平行に並べることが好ましい。 Y方向と直交する T方向に第 1対物レンズ 34および 第 2対物レンズ 41を並べると、光ディスクの最外周ゃ最内周に光ヘッドがアクセスし たとき、使っていない対物レンズがスピンドルモータ 7 (図 1、 2)と干渉し、機器の外装 と干渉する恐れがある。 Y方向に第 1対物レンズ 34および第 2対物レンズ 41を並べる ことにより、光ヘッドがスピンドルモータや外装に干渉することを防止し、異なる種類の 光ヘッドのいずれに対しても記録再生を正しく行うことが可能となる。 As shown in FIGS. 1, 2, and 3, the first objective lens 34 and the second objective lens 41 are fixed to the movable body 45a of the objective lens actuator 45. The first objective lens 34 and the second objective lens 41 are preferably arranged substantially parallel to the Y direction, that is, the extending direction of the track groove of the first optical disc 35. When the first objective lens 34 and the second objective lens 41 are arranged in the T direction orthogonal to the Y direction, when the optical head accesses the outermost periphery and the innermost periphery of the optical disk, the objective lens that is not used becomes the spindle motor 7 ( May interfere with Fig. 1 and 2) and may interfere with the exterior of the equipment. By arranging the first objective lens 34 and the second objective lens 41 in the Y direction, the optical head can be prevented from interfering with the spindle motor and the exterior, and recording and reproduction can be performed correctly for any of the different types of optical heads. It becomes possible.
[0099] また、図 3に示すように、第 2対物レンズ 41は光ディスクのおおよそ中心 7cを通り、 光ヘッドがシーク動作によって移動する方向に伸びる直線 7b上に配置させることが 望ましい。このように第 2対物レンズ 41を配置することによって、たとえば、ホログラム 4 3bの部材の一部に回折格子を形成し、サブビームを形成し、これを利用して 3ビーム 法によるトラッキング信号検出を行うことが可能となり、特に、第 3光源 43aを用いた再 生動作において、信号検出を安定に行うことができる。また、このとき、第 1対物レンズ 35は線 7b上からはずれることになるので、第 1光源 31を用いた記録再生動作には、 サブビームを用いない 1ビーム法によってトラッキングエラー信号を検出することが望 ましい。 Further, as shown in FIG. 3, it is desirable that the second objective lens 41 is disposed on a straight line 7b extending approximately in the direction of movement of the optical head through the seek operation, passing through the center 7c of the optical disk. By arranging the second objective lens 41 in this way, for example, a diffraction grating is formed on a part of the member of the hologram 43b, a sub beam is formed, and tracking signal detection by the three beam method is performed using this. In particular, signal detection can be performed stably in the reproduction operation using the third light source 43a. At this time, since the first objective lens 35 is displaced from the line 7b, the tracking error signal can be detected by the one-beam method without using the sub beam in the recording / reproducing operation using the first light source 31. I want it.
[0100] 次に、第 1対物レンズ 34および第 2対物レンズ 41の可動体 45aにおける傾きの調 整について説明する。 [0100] Next, adjustment of the tilt of the first objective lens 34 and the second objective lens 41 in the movable body 45a will be described.
[0101] 特許文献 3によれば、 2個の対物レンズを一体に結合して製造できると開示されて いる。しかし、一般に、対物レンズ製造時には、製造誤差によりコマ収差が生じ、収束 ビームを歪ませる。この歪みは、対物レンズごとに異なる。このため、 2個の対物レン ズはそれぞれ適した角度に傾けることによって、このコマ収差を低減することが好まし い。 [0101] According to Patent Document 3, it is disclosed that two objective lenses can be integrally coupled. However, in general, when manufacturing an objective lens, coma aberration occurs due to manufacturing errors, which distort the convergent beam. This distortion is different for each objective lens. For this reason, it is preferable to reduce this coma aberration by tilting the two objective lenses at appropriate angles.
[0102] 図 1に示すように、まず、第 1対物レンズ 34を可動体 45aへ接着後、可動体 45aの 傾きを調整し、第 1対物レンズ 34による収束光の収差を低減する。その後、第 2対物
レンズ 41の傾きを可動体 45aに対して調整して、第 2対物レンズによる収束光の収差 を低減する。 [0102] As shown in FIG. 1, first, after the first objective lens 34 is bonded to the movable body 45a, the inclination of the movable body 45a is adjusted, and the aberration of the convergent light by the first objective lens 34 is reduced. Then the second objective By adjusting the tilt of the lens 41 with respect to the movable body 45a, the aberration of the convergent light due to the second objective lens is reduced.
[0103] その手順は下記の通りである。まず、光ビーム 56 ',が第 1対物レンズ 34で収束され たときに、コマ収差が最小になるように、あるいは、収束スポットが最も軸対称となるよ う、可動体 45a全体の傾き調整する。そして、その状態で第 2対物レンズ 41の傾きを 可動体 45aに対して調整し、コマ収差が最小になるように、あるいは、収束スポットが 最も軸対称になるようにする。 [0103] The procedure is as follows. First, when the light beam 56 ′ is converged by the first objective lens 34, the inclination of the entire movable body 45a is adjusted so that the coma aberration is minimized or the convergence spot is the most axially symmetric. . In this state, the inclination of the second objective lens 41 is adjusted with respect to the movable body 45a so that the coma aberration is minimized or the convergence spot is the most axially symmetric.
[0104] 第 2対物レンズ 41をまず、可動体 45aに対して固定し、次に、第 1対物レンズ 34の 傾きを可動体 45aに対して調整することも考えられる力 この手順は好ましくない点が ある。 NAの大きなレンズほど、レンズ表面と光ディスク表面の間隔、すなわちヮーキ ングディスタンス(WD)力 、さくなる。このため、第 1対物レンズ 34の傾きを可動体 45 aに対して調整する際、狭い間隔力も第 1対物レンズ 34の傾きを変えるためのピンセ ットのような治具を挿入する必要があり、傾きの調整が困難となる力 である。 [0104] Force that may be considered to fix the second objective lens 41 to the movable body 45a first, and then to adjust the tilt of the first objective lens 34 relative to the movable body 45a. There is. The larger the NA, the smaller the distance between the lens surface and the optical disk surface, that is, the working distance (WD) force. Therefore, when adjusting the tilt of the first objective lens 34 with respect to the movable body 45a, it is necessary to insert a jig such as a pin set for changing the tilt of the first objective lens 34 even with a narrow spacing force. This is the force that makes it difficult to adjust the tilt.
[0105] 本実施形態の光ヘッドでは、上述の手順で第 2対物レンズ 41の傾きを調整するの に好適なように、第 2対物レンズ 41の形状に工夫している。 In the optical head of the present embodiment, the shape of the second objective lens 41 is devised so as to be suitable for adjusting the tilt of the second objective lens 41 in the above-described procedure.
[0106] 図 6は、第 2対物レンズ 41の断面形状を模式的に表している。第 2対物レンズ 41は 、光ビームを収束させるための曲面部 41hと、その周辺の平坦な部分 41cを有する。 コバ 41cは通常「コバ(flange)」と呼ばれるため、以下、コバ 41cと呼ぶ。 FIG. 6 schematically shows a cross-sectional shape of the second objective lens 41. The second objective lens 41 has a curved surface portion 41h for converging the light beam and a flat portion 41c around the curved surface portion 41h. Since the edge 41c is usually called “flange”, it is hereinafter referred to as the edge 41c.
[0107] 第 2対物レンズ 41の傾きを変えるためにはピンセットのような治具を可動体 45aと対 物レンズの間に挿入する必要がある。このピンセットのような道具は、傾きを変える際 に曲がらないことが好ましい。実際に治具を試作し調整を行ったところ、治具の太さ が 0. 5mm以上あれば、治具が曲がらず、また、調整が容易であることが分力つた。 その際に、光ビームを集光する面に傷を付けると、対物レンズの集光性能が低下す るため、治具を接触させることができるのはコバ 41cだけである。したがって、コバ 41c の幅 dは、 0. 5mm以上であることが好ましい。なお、可動体 45aは 2個の対物レンズ を搭載する力 高速の動作をする必要があるので軽量にしなければならない。この観 点から対物レンズも小型である必要があり、コバ 41cもむやみに大きくはできない。光 ディスクは最速で、毎分 10000回転程度まで回転させる場合があり、このときのサー
ボ性能を満足する対物レンズァクチユエータを実現するためには、コバ 41c幅は lm m以下が好ましい。 [0107] In order to change the tilt of the second objective lens 41, it is necessary to insert a jig such as tweezers between the movable body 45a and the object lens. Tools such as tweezers should preferably not bend when changing tilt. When the jig was actually made and adjusted, it was found that if the jig thickness was 0.5 mm or more, the jig would not bend and adjustment would be easy. At that time, if the surface that condenses the light beam is scratched, the condensing performance of the objective lens deteriorates, so that only the edge 41c can contact the jig. Therefore, the width d of the edge 41c is preferably 0.5 mm or more. The movable body 45a must be lightweight because it needs to operate at a high speed with two objective lenses. From this point of view, the objective lens must also be small, and the edge 41c cannot be increased unnecessarily. The optical disk is the fastest and may rotate up to about 10,000 revolutions per minute. In order to realize an objective lens actuator that satisfies the above-mentioned performance, the edge 41c width is preferably lm m or less.
[0108] また、第 2対物レンズ 41の傾きを調整した後、どれだけ対物レンズが傾 、て 、るか を測定することが好ましい。計測の結果、傾きが大きい場合には、レンズの性能が異 常であることも考えられ、そのような場合には、不良品としてその対物レンズを使用し ないほうがよいことも考えられるからである。レンズの傾きは、図 6に示すように第 2対 物レンズ 41のコバ 41cに光 B1を照射し、その反射方向を観測することによって測定 できる。正しく測定を行うためには、適切な反射光を得る必要があり、このため、コバ 4 lcの上面 41gは平坦であることが好ましい。また、反射光が散乱しないよう、コノ lc の表面である上面 41gは鏡面仕上げが施されていることが好ましい。本願発明者が 検討した結果、上面の幅が 0. 2mm以上あれば反射光が散乱されず、正確に反射 方向を測定できることが分かった。この観点からは、コバ 41cの幅 dは 0. 2mm以上必 要である。 [0108] It is preferable to measure how much the objective lens is tilted after adjusting the tilt of the second objective lens 41. If the inclination is large as a result of measurement, the lens performance may be abnormal.In such a case, it may be better not to use the objective lens as a defective product. . The tilt of the lens can be measured by irradiating the edge 41c of the second object lens 41 with the light B1 and observing the reflection direction thereof as shown in FIG. In order to perform measurement correctly, it is necessary to obtain appropriate reflected light. For this reason, the upper surface 41g of the edge 4lc is preferably flat. Further, the upper surface 41g, which is the surface of the cono lc, is preferably mirror-finished so that the reflected light is not scattered. As a result of examination by the inventors of the present application, it was found that if the width of the upper surface is 0.2 mm or more, the reflected light is not scattered and the reflection direction can be measured accurately. From this point of view, the width d of the edge 41c needs to be 0.2 mm or more.
[0109] 通常、コバ 41cの最も外側は曲面になる部分が 0. 1mm程度ある。したがって、平 坦部の幅 dは 0. 3mm (0. 2mm+0. 1mm)以上あることが好ましい。 [0109] Normally, the outermost portion of the edge 41c has a curved surface portion of about 0.1 mm. Accordingly, the width d of the flat portion is preferably 0.3 mm (0.2 mm + 0.1 mm) or more.
[0110] さらに、可動体 45aに第 2対物レンズ 41を固定する場合、レンズに光を入射させる 孔が設けられるため、第 2対物レンズ 41を可動体 45aに固定するために接触させるこ とができるのは、コバ 41cだけである。対物レンズの直径の誤差は通常 ± 10 m程 度あり、可動体 45aに設けられた孔の直径の誤差は、通常 ± 20 /ζ πιである。このた め、これらの誤差を足し合わせると、 ± 30 /ζ πιとなり、第 2対物レンズ 41と可動体 45a との位置づけは最大で 60 μ mとなる。 [0110] Furthermore, when the second objective lens 41 is fixed to the movable body 45a, a hole for allowing light to enter the lens is provided. Only the edge 41c can do it. The error of the diameter of the objective lens is usually about ± 10 m, and the error of the diameter of the hole provided in the movable body 45a is usually ± 20 / ζ πι. Therefore, when these errors are added together, the result is ± 30 / ζ πι, and the maximum positioning of the second objective lens 41 and the movable body 45a is 60 μm.
[0111] 60 μ mの位置あわせ誤差が生じてもコバ 41cが可動体 45aと接触可能なためには 、コバ 41cの幅は、 60 m以上であることが好ましい。通常、コバ 41cの最も外側は 曲面になる部分が 0. 1mm程度あるため、この観点からは、コバ 41cの幅 dは、 0. 16 mm (0. 06mm+0. 1mm)以上であることが好ましい。 [0111] The width of the edge 41c is preferably 60 m or more so that the edge 41c can come into contact with the movable body 45a even if an alignment error of 60 μm occurs. Normally, the outermost part of the edge 41c has a curved surface of about 0.1 mm. From this point of view, the width d of the edge 41c must be 0.16 mm (0.06 mm + 0.1 mm) or more. preferable.
[0112] 以上のことから、コバ 41cの幅は、 0. 16mm以上 lmm以下であれば、調整後の対 物レンズの傾きが測定できるため、不良品を確実に除外することができるという点で 好ましぐ 0. 5mm以上 lmm以下であれば、傾きの調整も容易であるという点でより
好ましいことが分かった。この範囲の幅のコバを有する第 2対物レンズ 41を用いること によって、上述した方法により対物レンズの傾きの調整が容易であり、かつ、精度の 高い調整が可能となる。したがって、高性能の光ヘッドを高い生産性で製造すること が可能となる。 [0112] From the above, if the width of the edge 41c is 0.16 mm or more and lmm or less, the inclination of the object lens after adjustment can be measured, so that defective products can be surely excluded. If it is 0.5mm or more and lmm or less, it is easier to adjust the tilt. It turned out to be preferable. By using the second objective lens 41 having an edge with a width in this range, it is easy to adjust the tilt of the objective lens by the method described above, and it is possible to adjust with high accuracy. Therefore, a high-performance optical head can be manufactured with high productivity.
[0113] このように本実施形態の光ヘッドによれば、上述した種々の特徴的な構造を採用し ているため、複数の異なる規格の光ディスクに対応し、外形が小さぐ安定して優れ た光学的特性を発揮する光ヘッドが実現する。 As described above, according to the optical head of the present embodiment, since the various characteristic structures described above are adopted, it is compatible with a plurality of optical discs of different standards, has a small outer shape, and is stable and excellent. An optical head that exhibits optical characteristics is realized.
[0114] (第 2の実施形態) [0114] (Second Embodiment)
図 7を参照しながら、本発明による光情報装置の実施形態を説明する。 An embodiment of the optical information device according to the present invention will be described with reference to FIG.
[0115] 光情報装置 104は、光ヘッド 402と電気回路 403とモータ 404とを備えている。 The optical information device 104 includes an optical head 402, an electric circuit 403, and a motor 404.
[0116] 光ディスク 407〜409は記録密度が互いに異なっており、いずれ力 1つを操作者が 選択して、選択した光ディスクをターンテーブル 405に載置する。載置された光ディ スクは、クランパ 406によって、ターンテーブル 405に固定されモータ 404によって回 転駆動される。光ディスク 407〜409は第 1の実施形態の第 1光ディスク 35、第 2光 ディスク 320および第 3光ディスク 46に対応している。 [0116] The recording densities of the optical disks 407 to 409 are different from each other, and the operator selects one of the forces and places the selected optical disk on the turntable 405. The placed optical disk is fixed to the turntable 405 by a clamper 406 and is driven to rotate by a motor 404. Optical disks 407 to 409 correspond to the first optical disk 35, the second optical disk 320, and the third optical disk 46 of the first embodiment.
[0117] 光ヘッド 402には、第 1の実施形態で説明した光ヘッドを好適に用 ヽることができる 。光ヘッドはトラバースモータなどの駆動機構 401によってトラッキング方向に移動す ることができ、所望のトラックへジャンプすることができる。 [0117] As the optical head 402, the optical head described in the first embodiment can be preferably used. The optical head can be moved in the tracking direction by a drive mechanism 401 such as a traverse motor, and can jump to a desired track.
[0118] 光ヘッド 402は、光ディスク 407〜409との位置関係に対応して、フォーカスエラー 信号やトラッキングエラー信号を電気回路 403へ出力する。電気回路 403はこの信 号に対応して、光ヘッド 402へ、対物レンズを微動させるための信号を送る。この信 号によって、光ヘッド 402は、光ディスク 407〜409に対してフォーカス制御およびト ラッキング制御を行い、光ヘッド 104によって、情報の再生または情報の記録を行う。 The optical head 402 outputs a focus error signal and a tracking error signal to the electric circuit 403 in accordance with the positional relationship with the optical discs 407 to 409. In response to this signal, the electric circuit 403 sends a signal for finely moving the objective lens to the optical head 402. With this signal, the optical head 402 performs focus control and tracking control on the optical disks 407 to 409, and the optical head 104 reproduces information or records information.
[0119] 本実施形態によれば、第 1の実施形態の光ヘッドを備えているため、記録密度の異 なる複数の光ディスクの記録再生動作を安定して行うことのできる光情報装置を実現 することができる。 [0119] According to the present embodiment, since the optical head of the first embodiment is provided, an optical information apparatus that can stably perform recording and reproduction operations of a plurality of optical disks having different recording densities is realized. be able to.
[0120] (第 3の実施形態) [0120] (Third embodiment)
図 8を参照しながら、本発明によるコンピュータの実施形態を説明する。
[0121] コンピュータ 105は、第 2の実施形態で説明した光情報装置 104と同じ光情報装置 501を備える。コンピュータ 105は、さらに情報の入力を行うためのキーボード、マウ ス、タツチパネルなどの入力装置 503と、入力装置 503から入力された情報や、光情 報装置 501から読み出した情報などに基づ 、て演算を行う中央演算装置 (CPU)な どの演算装置 502を備える。 With reference to FIG. 8, an embodiment of a computer according to the present invention will be described. [0121] The computer 105 includes the same optical information device 501 as the optical information device 104 described in the second embodiment. The computer 105 further uses an input device 503 such as a keyboard, a mouse, and a touch panel for inputting information, information input from the input device 503, information read from the optical information device 501 and the like. A computing unit 502 such as a central processing unit (CPU) that performs computation is provided.
[0122] また、演算装置 502によって演算された結果などの情報を表示するブラウン管や液 晶表示装置、プリンターなどの出力装置 504を備える。 [0122] Further, an output device 504 such as a cathode ray tube, a liquid crystal display device, or a printer that displays information such as a result calculated by the arithmetic device 502 is provided.
[0123] コンピュータ 105によれば、第 2の実施形態で説明した光情報装置と同じ光情報装 置 501を備えるので、用途に応じて、異なる規格の光ディスクに映像情報、音声情報 あるいはデータを記録したり、光ディスクに記録されたこれらの情報を読み出し、情報 の加工、編集を行うことができる。 [0123] According to the computer 105, the optical information device 501 that is the same as the optical information device described in the second embodiment is provided. Or read out the information recorded on the optical disc, and process and edit the information.
[0124] (第 4の実施形態) [0124] (Fourth embodiment)
図 9を参照しながら、本発明による光ディスクプレーヤの実施形態を説明する。 An embodiment of the optical disc player according to the present invention will be described with reference to FIG.
[0125] 光ディスクプレーヤ 106は、第 2の実施形態で説明した光情報装置 104と同じ光情 報装置 601を備える。光ディスクプレーヤ 106は、光情報装置 601から得られる情報 信号を画像に変換するデコーダなどの変換装置 602をさらに備える。光ディスクプレ ーャ 106はカーナビゲーシヨンシステムとしても利用してもよい。また、液晶モニタな どの表示装置 603をさらに備えて 、てもよ 、。 The optical disc player 106 includes the same optical information device 601 as the optical information device 104 described in the second embodiment. The optical disc player 106 further includes a conversion device 602 such as a decoder that converts an information signal obtained from the optical information device 601 into an image. The optical disk player 106 may also be used as a car navigation system. Further, a display device 603 such as a liquid crystal monitor may be further provided.
[0126] (第 5の実施形態) [0126] (Fifth embodiment)
図 10を参照しながら、本発明による光ディスクレコーダの実施形態を説明する。 An embodiment of an optical disk recorder according to the present invention will be described with reference to FIG.
[0127] 光ディスクレコーダ 107は、第 2の実施形態で説明した光情報装置 104と同じ光情 報装置 701を備える。また、画像情報を、光情報装置 701によって光ディスクへ記録 する情報へ変換するエンコーダなどの変換装置 702をさらに備える。光情報装置 70 1から得られる情報信号を画像に変換するデコーダ 703をさらに備えていてもよい。 また、情報を表示するブラウン管や液晶表示装置、プリンターなどの出力装置 704を 備えてもよい。 The optical disc recorder 107 includes the same optical information device 701 as the optical information device 104 described in the second embodiment. In addition, a conversion device 702 such as an encoder that converts image information into information to be recorded on an optical disk by the optical information device 701 is further provided. A decoder 703 for converting an information signal obtained from the optical information device 701 into an image may be further provided. Further, an output device 704 such as a cathode ray tube for displaying information, a liquid crystal display device, or a printer may be provided.
[0128] (第 6の実施形態) [0128] (Sixth embodiment)
図 11を参照しながら、本発明による光ディスクサーバの実施形態を説明する。
[0129] 光ディスクサーバ 108は、第 2の実施形態で説明した光情報装置 104と同じ光情報 装置 801を備える。さらに、サーバ 108は、情報の入力を行うためのキーボード、マウ ス、タツチパネルなどの入力装置 805と、光情報装置 801に記録する情報を取り込ん だり、光情報装置 801によって読み出した情報を外部に出力する有線または無線の 入出力端子 802を備える。これによつて、ネットワーク、すなわち、複数の機器、例え ば、コンピュータ、電話、テレビチューナなどと情報をやりとりし、これら複数の機器と 情報を共有する光ディスクサーバとして機能する。情報を表示するブラウン管や液晶 表示装置、プリンターなどの出力装置 804をさらに備えてもよい。また、複数の光ディ スクを光情報装置 801に出し入れするチェンジャー(図示せず)を設けることによって 、多くの情報を記録 '蓄積することができる。 An embodiment of an optical disk server according to the present invention will be described with reference to FIG. The optical disk server 108 includes the same optical information device 801 as the optical information device 104 described in the second embodiment. Further, the server 108 captures information to be recorded in the optical information device 801 and outputs information read by the optical information device 801 to the outside, such as an input device 805 such as a keyboard, a mouse, and a touch panel for inputting information. Wired or wireless input / output terminal 802 is provided. As a result, it functions as an optical disk server that exchanges information with a network, that is, a plurality of devices such as computers, telephones, and TV tuners, and shares information with the plurality of devices. An output device 804 such as a cathode ray tube, a liquid crystal display device, or a printer that displays information may be further provided. Further, by providing a changer (not shown) for taking a plurality of optical disks into and out of the optical information device 801, a large amount of information can be recorded and accumulated.
[0130] なお、第 2から第 6の実施形態において、出力装置や入力装置を示しているが、入 力端子や出力端子のみを備え、出力装置や入力装置は、第 2から第 6の実施形態の 機器が備えていなくてもよい。 [0130] Although the output device and the input device are shown in the second to sixth embodiments, only the input terminal and the output terminal are provided, and the output device and the input device are the second to sixth embodiments. The device of the form may not be provided.
産業上の利用可能性 Industrial applicability
[0131] 本発明は、基材厚ゃ対応波長、記録密度などが異なる種々の光ディスクに対して 記録および再生の少なくとも一方を行う光ヘッドおよび光ディスク装置などの光情報 装置に好適に用いられる。特に、複数の対物レンズを備える光ディスク装置などの光 情報装置に好適に用いられる。 The present invention is suitably used for an optical information apparatus such as an optical head and an optical disk apparatus that perform at least one of recording and reproduction with respect to various optical disks having different substrate thicknesses, corresponding wavelengths, recording densities, and the like. In particular, it is suitably used for an optical information device such as an optical disk device having a plurality of objective lenses.
[0132] したがって、コンピュータ、光ディスクプレーヤ、光ディスクレコーダ、カーナビゲー シヨンシステム、編集システム、データサーバー、 AVコンポーネントなど、情報を蓄え るあらゆるシステムに好適に用いられる。
[0132] Therefore, the present invention is suitably used for any system that stores information, such as a computer, an optical disc player, an optical disc recorder, a car navigation system, an editing system, a data server, and an AV component.
Claims
[1] 第 1波長の光を出射する第 1光源と、 [1] a first light source that emits light of a first wavelength;
前記第 1光源から出射した光を第 1方向および第 1方向とは異なる第 2方向にそれ ぞれ進行する第 1光束および第 2光束に分岐するビームスプリッタと、 A beam splitter for branching the light emitted from the first light source into a first light beam and a second light beam respectively traveling in a second direction different from the first direction and the first direction;
前記第 1光束の発散度を変換する第 1コリメートレンズと、 A first collimating lens for converting the divergence of the first light beam;
前記発散度を変換された前記第 1光束の進行方向を変化させる第 1ミラーと、 前記進行方向が変化した第 1光束を、第 1光ディスクの記録面に向けて収束させる 第 1対物レンズと、 A first mirror that changes a traveling direction of the first light flux whose divergence has been converted; a first objective lens that converges the first light flux whose traveling direction has changed toward a recording surface of a first optical disc;
前記第 1対物レンズを保持する可動体と、 A movable body holding the first objective lens;
前記第 1光ディスクの記録面において反射した前記第 1光束を受け取り、電気信号 に変換する第 1光検出器と、 A first photodetector for receiving the first light flux reflected on the recording surface of the first optical disc and converting it into an electrical signal;
前記第 2光束を集光させる集光レンズと、 A condensing lens for condensing the second light flux;
前記集光レンズによって集光した第 2光束を受け取り、電気信号に変換する第 2光 検出器と、 A second photodetector for receiving the second light beam collected by the condenser lens and converting it into an electrical signal;
を備えた光ヘッド。 With optical head.
[2] 前記ビームスプリツタカも出射した第 2光束の進行方向を変化させる第 2ミラーをさ らに備え、 [2] The beam splitter Taka is further provided with a second mirror for changing the traveling direction of the emitted second light beam,
前記第 2ミラーは、前記第 2方向に進行する光束を前記第 2方向と直交する方向に 進行方向を変化させるように前記ビームスプリッタに対し配置されて 、る請求項 1に 記載の光ヘッド。 2. The optical head according to claim 1, wherein the second mirror is disposed with respect to the beam splitter so as to change a traveling direction of a light beam traveling in the second direction in a direction orthogonal to the second direction.
[3] 前記第 2ミラーによって進行方向が変化させられた第 2光束の光軸、および、前記 第 1ミラーによって進行方向が変化させられた第 1光束の光軸は互いに平行である請 求項 2に記載の光ヘッド。 [3] The optical axis of the second light flux whose traveling direction is changed by the second mirror and the optical axis of the first light flux whose traveling direction is changed by the first mirror are parallel to each other. 2. The optical head according to 2.
[4] 前記第 2光検出器は長手方向を有する外形を備え、前記長手方向が、前記第 1コリ メートレンズの光軸とおおよそ平行となるように前記第 2検出器が配置されている請求 項 3に記載の光ヘッド。 [4] The second photodetector has an outer shape having a longitudinal direction, and the second detector is disposed so that the longitudinal direction is substantially parallel to the optical axis of the first collimating lens. Item 4. The optical head according to Item 3.
[5] 前記第 2検出器は、前記長手方向に位置する側面に電気的接続端子を有する請 求項 4に記載の光ヘッド。
[5] The optical head according to claim 4, wherein the second detector has an electrical connection terminal on a side surface located in the longitudinal direction.
[6] 前記第 1コリメートレンズの位置を前記第 1コリメートレンズの光軸と平行な方向へ移 動させるための駆動装置をさらに備え、 [6] The apparatus further comprises a driving device for moving the position of the first collimating lens in a direction parallel to the optical axis of the first collimating lens,
前記駆動装置は、前記第 1コリメートレンズの光軸に対して、前記第 1光ディスクの 外周側に配置されている請求項 5に記載の光ヘッド。 6. The optical head according to claim 5, wherein the driving device is disposed on the outer peripheral side of the first optical disc with respect to the optical axis of the first collimating lens.
[7] 凹レンズおよび凹レンズの曲面に形成された回折レンズを含み、前記第 1対物レン ズの色収差を補正するレンズをさらに備える請求項 6に記載の光ヘッド。 7. The optical head according to claim 6, further comprising a lens that includes a concave lens and a diffractive lens formed on a curved surface of the concave lens, and that corrects chromatic aberration of the first objective lens.
[8] 前記第 1光源と前記第 1光検出器とは、前記第 1コリメートレンズの光軸に対して、 互いに反対側に配置されて ヽる請求項 7に記載の光ヘッド。 [8] The optical head according to [7], wherein the first light source and the first photodetector are arranged on opposite sides with respect to an optical axis of the first collimating lens.
[9] 前記第 1波長より長い第 2波長の光を出射する第 2光源と、 [9] a second light source that emits light having a second wavelength longer than the first wavelength;
前記第 2光源力 出射する光の進行方向を変化させる第 2ミラーと、 A second mirror that changes the traveling direction of the emitted light,
前記第 2ミラーにより進行方向が変化した第 2光源の光を、第 2光ディスクの記録面 に向けて収束させる第 2対物レンズと、 A second objective lens that converges the light of the second light source whose traveling direction has been changed by the second mirror toward the recording surface of the second optical disc;
を備え、前記第 2対物レンズは前記可動体に支持されている請求項 8に記載の光へ ッド、。 9. The optical head according to claim 8, wherein the second objective lens is supported by the movable body.
[10] 前記第 1光源および前記第 2光源は、前記第 1コリメートレンズの光軸に対して、前 記第 1光ディスクの外周側に配置されている請求項 8に記載の光ヘッド。 10. The optical head according to claim 8, wherein the first light source and the second light source are arranged on the outer peripheral side of the first optical disc with respect to the optical axis of the first collimating lens.
[11] 前記第 1光源および前記第 2光源を駆動するための駆動回路をさらに備え、 [11] It further comprises a drive circuit for driving the first light source and the second light source,
前記駆動回路は、前記第 1光源および前記第 2光源に近接して配置されている請求 項 9に記載の光ヘッド。 10. The optical head according to claim 9, wherein the drive circuit is disposed in proximity to the first light source and the second light source.
[12] 前記第 2波長は DVDの記録再生に用いる波長であり、前記第 1波長は、前記 DV Dより高密度の光ディスクの記録再生に用いる波長である請求項 11に記載の光へッ ド、。 12. The optical head according to claim 11, wherein the second wavelength is a wavelength used for DVD recording / reproduction, and the first wavelength is a wavelength used for recording / reproduction of an optical disc having a higher density than the DVD. ,.
[13] 前記第 1対物レンズおよび第 2対物レンズは、前記第 1光ディスクおよび第 2光ディ スクの接線方向に沿って配列されている請求項 12に記載の光ヘッド。 13. The optical head according to claim 12, wherein the first objective lens and the second objective lens are arranged along a tangential direction of the first optical disc and the second optical disc.
[14] 前記第 1対物レンズは前記第 1光ディスクの中心を通り、前記光ヘッドのシーク動作 の移動方向と平行な直線上に位置して 、る請求項 13に記載の光ヘッド。 14. The optical head according to claim 13, wherein the first objective lens is located on a straight line passing through a center of the first optical disc and parallel to a moving direction of the seek operation of the optical head.
[15] 前記第 2対物レンズは、 0. 16mm以上 lmm以下の幅のコバを有する請求項 14に 記載の光ヘッド。
15. The optical head according to claim 14, wherein the second objective lens has an edge having a width of 0.16 mm or more and 1 mm or less.
[16] 前記対物レンズのコバの表面は鏡面仕上げされている請求項 15に記載の光ヘッド 16. The optical head according to claim 15, wherein a surface of the edge of the objective lens is mirror-finished.
[17] 請求項 1に規定される光ヘッドと、 [17] An optical head as defined in claim 1,
前記第 1光ディスクを回転駆動させるスピンドルモータと、 A spindle motor for rotating the first optical disk;
前記光ヘッドの少なくとも前記第 1光検出器から得られる信号に基づき、前記光へ ッドを制御するための電気回路と、 An electric circuit for controlling the optical head based on a signal obtained from at least the first photodetector of the optical head;
を備えた光情報装置。 An optical information device.
[18] 請求項 17に規定される光情報装置を備えるコンピュータ。 18. A computer comprising the optical information device as defined in claim 17.
[19] 請求項 17に規定される光情報装置を備える光ディスクプレーヤ。 19. An optical disc player comprising the optical information device as defined in claim 17.
[20] 請求項 17に規定される光情報装置を備える光ディスクレコーダ。 20. An optical disc recorder comprising the optical information device defined in claim 17.
[21] 請求項 17に規定される光情報装置を備える光ディスクサーバ。
21. An optical disc server comprising the optical information device defined in claim 17.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/096,807 US8144564B2 (en) | 2005-12-14 | 2006-12-12 | Optical head and optical information device |
JP2007550181A JPWO2007069612A1 (en) | 2005-12-14 | 2006-12-12 | Optical head and optical information device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-359942 | 2005-12-14 | ||
JP2005359942 | 2005-12-14 | ||
JP2006-022024 | 2006-01-31 | ||
JP2006022024 | 2006-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007069612A1 true WO2007069612A1 (en) | 2007-06-21 |
Family
ID=38162920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/324778 WO2007069612A1 (en) | 2005-12-14 | 2006-12-12 | Optical head and optical information device |
Country Status (3)
Country | Link |
---|---|
US (1) | US8144564B2 (en) |
JP (1) | JPWO2007069612A1 (en) |
WO (1) | WO2007069612A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011099329A1 (en) * | 2010-02-12 | 2011-08-18 | コニカミノルタオプト株式会社 | Objective lens of optical pickup device and optical pickup device |
WO2012111554A1 (en) * | 2011-02-17 | 2012-08-23 | コニカミノルタオプト株式会社 | Object lens and optical pickup device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011141937A (en) * | 2010-01-08 | 2011-07-21 | Sanyo Electric Co Ltd | Light emitting device, optical pickup device and method for manufacturing the same |
CN105445824B (en) * | 2014-08-20 | 2017-02-22 | 清华大学 | LED optical communication receiving lens and LED optical communication system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02158927A (en) * | 1988-11-09 | 1990-06-19 | Matsushita Graphic Commun Syst Inc | Optical deck objective lens |
JPH0659172A (en) * | 1992-08-05 | 1994-03-04 | Ricoh Co Ltd | Objective lens, method for adjusting inclination of objective lens and device for manufacturing objective lens |
JP2001296472A (en) * | 2000-04-14 | 2001-10-26 | Asahi Optical Co Ltd | Objective optical system for optical head |
JP2002208173A (en) * | 2001-01-11 | 2002-07-26 | Matsushita Electric Ind Co Ltd | Optical head |
JP2003045068A (en) * | 2001-07-27 | 2003-02-14 | Toshiba Corp | Optical head |
JP2003151159A (en) * | 2001-11-08 | 2003-05-23 | Toshiba Corp | Optical pickup and optical disk device |
JP2004071134A (en) * | 2002-06-10 | 2004-03-04 | Matsushita Electric Ind Co Ltd | Compound objective lens, optical head device, optical information device, computer, optical disk player, car navigation system, optical disk recorder, optical disk server |
JP2004295983A (en) * | 2003-03-26 | 2004-10-21 | Tdk Corp | Optical head, and optical recording/reproducing device using the same |
JP2005092979A (en) * | 2003-09-17 | 2005-04-07 | Sankyo Seiki Mfg Co Ltd | Optical head device |
JP2005100513A (en) * | 2003-09-24 | 2005-04-14 | Matsushita Electric Ind Co Ltd | Optical pickup device and optical disk device |
JP2005293707A (en) * | 2004-03-31 | 2005-10-20 | Konica Minolta Opto Inc | Optical pickup device |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3508005B2 (en) | 1996-06-26 | 2004-03-22 | シャープ株式会社 | Optical disc apparatus and method for adjusting tilt of objective lens thereof |
JP3199650B2 (en) * | 1996-11-21 | 2001-08-20 | 松下電器産業株式会社 | Optical pickup |
US6081496A (en) * | 1996-12-26 | 2000-06-27 | Kabushiki Kaisha Toshiba | Objective lens and optical disk driving apparatus using the same |
JPH11120587A (en) | 1997-10-17 | 1999-04-30 | Sony Corp | Optical pickup device |
JP2001160229A (en) | 1999-12-02 | 2001-06-12 | Sankyo Seiki Mfg Co Ltd | Optical head device and method for regulating inclination angle of its objective lens |
JP3881146B2 (en) | 2000-02-08 | 2007-02-14 | パイオニア株式会社 | Pickup and optical axis adjustment method of pickup |
US6515955B2 (en) | 2000-04-14 | 2003-02-04 | Pentax Corporation | Objective optical system for optical pick-up |
US7245407B2 (en) | 2002-06-10 | 2007-07-17 | Matsushita Electric Industrial Co., Ltd. | Complex objective lens compatible with information media of different thicknesses |
TWI346952B (en) | 2003-07-07 | 2011-08-11 | Panasonic Corp | Objective lens, optical pick-up device, and optical disk device |
JP2005293686A (en) | 2004-03-31 | 2005-10-20 | Konica Minolta Opto Inc | Optical pickup device |
JP2005310331A (en) | 2004-04-26 | 2005-11-04 | Konica Minolta Opto Inc | Method for assembling optical pickup device, and optical pickup device |
JP4412085B2 (en) * | 2004-07-09 | 2010-02-10 | ソニー株式会社 | Optical pickup device, recording and / or reproducing device |
TWI268503B (en) * | 2004-09-22 | 2006-12-11 | Sony Corp | Optical pickup and optical disk apparatus |
JP2006127714A (en) * | 2004-11-01 | 2006-05-18 | Konica Minolta Opto Inc | Objective optical system and optical pickup apparatus |
JPWO2006064735A1 (en) * | 2004-12-16 | 2008-06-12 | ソニー株式会社 | OPTICAL PICKUP DEVICE, OPTICAL DISK DEVICE USING THE OPTICAL PICKUP DEVICE, AND CONTROL METHOD THEREOF |
-
2006
- 2006-12-12 JP JP2007550181A patent/JPWO2007069612A1/en active Pending
- 2006-12-12 WO PCT/JP2006/324778 patent/WO2007069612A1/en active Application Filing
- 2006-12-12 US US12/096,807 patent/US8144564B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02158927A (en) * | 1988-11-09 | 1990-06-19 | Matsushita Graphic Commun Syst Inc | Optical deck objective lens |
JPH0659172A (en) * | 1992-08-05 | 1994-03-04 | Ricoh Co Ltd | Objective lens, method for adjusting inclination of objective lens and device for manufacturing objective lens |
JP2001296472A (en) * | 2000-04-14 | 2001-10-26 | Asahi Optical Co Ltd | Objective optical system for optical head |
JP2002208173A (en) * | 2001-01-11 | 2002-07-26 | Matsushita Electric Ind Co Ltd | Optical head |
JP2003045068A (en) * | 2001-07-27 | 2003-02-14 | Toshiba Corp | Optical head |
JP2003151159A (en) * | 2001-11-08 | 2003-05-23 | Toshiba Corp | Optical pickup and optical disk device |
JP2004071134A (en) * | 2002-06-10 | 2004-03-04 | Matsushita Electric Ind Co Ltd | Compound objective lens, optical head device, optical information device, computer, optical disk player, car navigation system, optical disk recorder, optical disk server |
JP2004295983A (en) * | 2003-03-26 | 2004-10-21 | Tdk Corp | Optical head, and optical recording/reproducing device using the same |
JP2005092979A (en) * | 2003-09-17 | 2005-04-07 | Sankyo Seiki Mfg Co Ltd | Optical head device |
JP2005100513A (en) * | 2003-09-24 | 2005-04-14 | Matsushita Electric Ind Co Ltd | Optical pickup device and optical disk device |
JP2005293707A (en) * | 2004-03-31 | 2005-10-20 | Konica Minolta Opto Inc | Optical pickup device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011099329A1 (en) * | 2010-02-12 | 2011-08-18 | コニカミノルタオプト株式会社 | Objective lens of optical pickup device and optical pickup device |
WO2012111554A1 (en) * | 2011-02-17 | 2012-08-23 | コニカミノルタオプト株式会社 | Object lens and optical pickup device |
Also Published As
Publication number | Publication date |
---|---|
US20090310465A1 (en) | 2009-12-17 |
JPWO2007069612A1 (en) | 2009-05-21 |
US8144564B2 (en) | 2012-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000171346A (en) | Aberration detecting device and optical pickup device | |
JPWO2008081859A1 (en) | Optical pickup, optical disk device, composite coupling lens, composite prism, and optical information device | |
JP3943071B2 (en) | Compatible optical pickup device, optical recording / reproducing device employing the same, and actuator for compatible optical pickup device | |
WO2008010506A1 (en) | Optical head device, optical information device, computer, disc player, car navigation system, optical disc recorder, and vehicle | |
JP3662382B2 (en) | Optical pickup device | |
US8064320B2 (en) | Optical pickup and optical disc apparatus using the same | |
WO2007069612A1 (en) | Optical head and optical information device | |
JPWO2007099947A1 (en) | Optical head device, optical information device, optical disc player, car navigation system, optical disc recorder, and optical disc server | |
WO2004036566A1 (en) | Optical pickup and disk drive unit | |
JPWO2006064735A1 (en) | OPTICAL PICKUP DEVICE, OPTICAL DISK DEVICE USING THE OPTICAL PICKUP DEVICE, AND CONTROL METHOD THEREOF | |
JP2007280467A (en) | Objective lens holding device and optical pickup device | |
JP3787099B2 (en) | Focus error detection device | |
JP2009080916A (en) | Optical pickup head and optical recording and reproducing device | |
JP4537628B2 (en) | Optical pickup device and optical disk device | |
JP2005116142A (en) | Optical recording medium tilt compensating device, tilt compensation method, and optical information processor using the method | |
JP4254850B2 (en) | Aberration correction device | |
JP4569166B2 (en) | Optical pickup and optical disk apparatus | |
JP3545360B2 (en) | Optical pickup device | |
JP3810055B2 (en) | Optical disk device | |
JP2006172610A (en) | Optical pickup apparatus | |
WO2003105143A1 (en) | Inclination detector, optical head, optical information processor computer, video recorder, video reproducer, and car navigation system | |
JP2005063572A (en) | Optical pickup and optical disk playback device | |
JP2006120216A (en) | Optical pickup and disk driving device equipped with same | |
JP2006236472A (en) | Lens drive device and optical pickup device | |
JP2006294151A (en) | Spherical aberration detector and optical pickup and optical information processor provided with it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007550181 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12096807 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06834533 Country of ref document: EP Kind code of ref document: A1 |