WO2007069604A1 - Method for production of modified protein - Google Patents
Method for production of modified protein Download PDFInfo
- Publication number
- WO2007069604A1 WO2007069604A1 PCT/JP2006/324761 JP2006324761W WO2007069604A1 WO 2007069604 A1 WO2007069604 A1 WO 2007069604A1 JP 2006324761 W JP2006324761 W JP 2006324761W WO 2007069604 A1 WO2007069604 A1 WO 2007069604A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- domain
- amino acid
- enzyme
- substrate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
Definitions
- the present invention relates to a method for modifying a protein using a substrate protein and an enzyme protein or a method for producing a modified protein.
- the present invention relates to the above-described modification method or method for producing a modified protein, wherein Z or a chimeric protein to which a protein binding domain capable of increasing the affinity between the substrate protein and the enzyme protein is added as the enzyme protein.
- the present invention also relates to a method of phosphorylating a substrate protein using a kinase (phosphorylating enzyme). More specifically, either the substrate protein or the kinase contains an SH3 domain, and the other is proline. It is characterized in that the SH3 domain binding sequence such as a rich sequence, that is, the protein binding domain contains an amino acid sequence showing affinity, and both molecules associate with each other by the interaction between the SH3 domain and the SH3 domain binding sequence, and the substrate protein.
- the present invention relates to a method for phosphorylating a substrate protein and a method for producing a phosphorylated protein, which effectively carry out phosphorylation reaction.
- the present invention also relates to a method for myristoylating a substrate protein using myristoyltransferase. Furthermore, the present invention relates to a method for dephosphorylating a substrate protein using a protein dephosphorylating enzyme.
- Cell proliferation, differentiation, morphogenesis, and the like are basic processes for the establishment of all multicellular organisms. These processes are accomplished by the recognition of extracellular force signals by receptors on the cell surface, transmitting them to intracellular signaling factors, and processing them appropriately. Signal transmission is triggered by reactions directly under the biological membrane via receptors on the membrane, and the process is controlled by protein-protein interactions. In this process, the control of protein-protein interactions through phosphate and dephosphate plays an important role.
- Non-phosphate protein is prepared in large quantities using Escherichia coli, yeast, and insect cell systems, and has undergone basic research, drug discovery research, and applied research. It was.
- the present invention has an affinity for a protein having an amino acid sequence represented by SH3 domain strength PxxP (P is proline, X is an arbitrary amino acid, hereinafter referred to as Pro Rich Region: PRR).
- PxxP is proline
- X is an arbitrary amino acid, hereinafter referred to as Pro Rich Region: PRR.
- PRR Pro Rich Region
- SH3 domains such as Grb2, Gads, Hbp, and STAM2 are PX [V or I] [D or N] RXXKP
- X is an amino acid sequence containing any amino acid residue
- the SH3 domain of Fyn, Fyb, and Lck is Nef (Non-patent Documents 7, 8, 9)
- RKXXZXXZ (where X is any amino acid residue and Z is K or R)
- Pexl3p SH3 domain is WXXXFXXLE (where X is any amino acid residue) (Non-patent literature 6, 11, 12)
- the SH3 domain of Eps8 is an amino acid sequence containing PXX DY (where X represents any amino acid residue) (non-patent literature 15)
- an amino acid sequence in which these SH3 domains that are protein binding domains show affinity is referred to as an SH3 domain
- Non-Patent Document 1 J Mol Biol., 1999, 289, 439-445
- Non-Patent Document 2 Protein Expr Purif., 2005, 41st pp. 162-169
- Non-Patent Document 3 Cell, 2000, 102, 625-633
- Non-Patent Document 4 Berry et al., (Berry DM, et al.), J. Curr Biol., 2002, 12: 1336-1341
- Non-Patent Document 5 Liu Q "et al., Mol. Cell., 2003, Vol. 11, 471-481
- Non-Patent Document 6 Kami et al. (Kami, K., et al.), EMBO J., 2002, 21st, 4268- 4276
- Non-patent document 7 Lee et al., Cell, 1996, 85-931-942
- Non-patent document 8 Gurz Ziek (Grzesiek S, et al.), Nat. Struct. Biol., 1996, III, 340-345.
- Non-patent document 9 Lee et al. (Lee CH, et al.), EMBO, 1995, pp. 14, 5006-5015
- Non-patent document 10 Kang H, et al., EMBO J., 2000 19th, 2889-2899
- Non-patent literature 11 Barnett P, et al., EMBO, 2000, 19th, 6382-6391
- Non-Patent Document 12 Urquhart AJ, et al., J. Biol. Chem., 2000, 275, 4127-4136
- Non-Patent Document 13 Kato M, et al., J. Biol. Chem., 2000, 275, 37481-37487
- Non-Patent Document 14 Kaneko T, et al., J. Biol. Chem., 2003, 278, 4816 2-48168
- Non-Patent Document 15 Mongiovi AM, et al., EMBO J., 1999, VIII, 5 300-5309
- Patent Document 1 JP 2003-185655 A
- Patent Document 2 Pamphlet of International Publication No. 03/006060
- the present invention includes co-expression of a substrate protein and a kinase having enhanced affinity with each other in a host cell or mixing in vitro, or in vitro mixing. The aim is to provide an efficient method for obtaining proteins.
- the present inventors have used a protein-binding domain and an amino acid sequence in which the protein-binding domain has an affinity, for example, SH3 domain and SH3 domain-binding sequence, and either substrate protein or kinase.
- an affinity for example, SH3 domain and SH3 domain-binding sequence
- substrate protein or kinase By forming a structure with the SH3 domain in the other and the SH3 domain binding sequence in the other, and increasing the affinity between the substrate protein and the kinase, modification reactions such as the phosphorylation reaction can be efficiently performed.
- a method for producing a modified protein comprising modifying a substrate protein with an enzyme protein, wherein the substrate protein and Z or the enzyme protein increases the affinity between the substrate protein and the enzyme protein.
- a method for producing the modified protein, wherein the protein is a chimeric protein to which a protein binding domain is added.
- the substrate protein or enzyme protein that binds to the chimeric protein to which the protein binding domain is added is a chimeric protein to which an amino acid sequence to which the protein binding domain has affinity is added. The manufacturing method as described.
- the SH3 domain is a peptide of the following (a) or (b):
- the SH3 domain is a peptide of the following (c) or (d),
- the enzyme protein is myristoyltransferase A method for producing the modified protein as described.
- FIG. 1 is a diagram showing the domain structure of Abl (SK) composed of an SH2 domain and a kinase domain.
- FIG. 2 is a diagram showing the domain structure and amino acid sequence of Abl (SKPl) composed of SH2 domain, kinase domain, and Proline Rich Region.
- FIG. 3 is a diagram showing the domain structure of CrkII.
- FIG. 4 is a diagram showing the domain structure and amino acid sequence of Abl.
- FIG. 5 shows the procedure for constructing pProEX-Crkll plasmid.
- FIG. 6 is a diagram showing SDS-PAGE of purified Crkll.
- Lane 1 Molecular weight marker
- Lane 2 CrkII before 6 X His tag cleavage
- Lane 3 Crkll after 6 X His tag cleavage
- Lane 4 Fractio n number 8
- Lane 5 Fraction number 16
- Lane 6 Fraction number 17
- Lane 7 Fraction No. 18, Lane 8: Fraction No. 19
- FIG. 7 is a diagram showing a plasmid construction procedure for pET-Duet-SK.
- FIG. 8 is a diagram showing a plasmid construction procedure of pET-Duet-SK-Crkll.
- FIG. 9 is a diagram showing a plasmid construction procedure of pET-Duet-SKP1.
- FIG. 10 is a diagram showing a procedure for constructing a plasmid of pET-Duet-SKPl-Crkll.
- FIG. 11 shows SDS-PAGE of Crkll co-expressed with SKP1.
- Lane 1 Molecular weight marker 1
- Lane 2 CrkII
- Lane 3 0 «1 co-expressed with 31 ⁇ 1.
- FIG. 12 shows immunostaining of CrkII co-expressed with CrkII and SK and Crkll co-expressed with SKPI after a phosphorylation reaction with a commercially available kinase.
- Lane 1 molecular weight marker
- lane 2 CrkII phosphorylated with a commercially available Abl
- lane 3 CrkII co-expressed with SK
- lane 4 Crkll co-expressed with SKP1
- FIG. 13 shows Crkll SDS-PAGE before and after phosphorylation with a commercially available kinase.
- Lane 1 Molecular weight marker
- Lane 2 CrkII before phosphorylation
- Lane 3 Crkll after phosphate-reaction
- FIG. 14 is a view showing immunostaining of Crkll after carrying out a phosphorylation reaction using purified SKP1.
- Lane 1 Molecular weight marker
- Lane 2 Crkll phosphorylated in vitro using purified SKP1
- FIG. 15 shows the domain structure of Crk-Vav (170-375).
- FIG. 16 is a view showing a procedure for constructing a plasmid of pET22-Crk-Vav (170-375).
- FIG. 17 SD showing phosphorylation of Crk-Vav (170-375) and Vav (170-375) by SKP1.
- Lane 1 Molecular weight marker
- Lane 2 Crk before phosphorylation
- FIG. 18 shows the domain structure and amino acid sequence of Vav (170-375).
- FIG. 19 shows the domain structure and amino acid sequence of SK-SLP.
- FIG. 20 is a diagram showing the domain structure of Grb2-CrkII.
- FIG. 21 is a view showing a procedure for constructing a plasmid of pET-Duet-SK-SLP.
- FIG. 22 is a diagram showing a plasmid construction procedure for pET22-Grb2-Crkll.
- FIG. 23 shows SDS-PAGE of Grb2-CrkII phosphorylated by SK-SLP and SK.
- Lane 1 Molecular weight marker
- Lane 2 Grb-Crkll before phosphorylation
- Lane 3 S
- FIG. 25 is a drawing showing an SDS-PAGE of Crk-Vav (170-375) phosphorylated by pTYR-Vav (l 70-375).
- Lane 1 molecular weight marker
- lane 2 Crk-Vav (170-375) before phosphorylation
- lane 3 Crk-Vav (170-375) expressed in pTYR-Vav (170-375).
- FIG. 27 is a diagram showing pSH3-NMT and its partial structure.
- FIG. 28 is a diagram showing pGBl-Myr and its partial structure.
- FIG. 29 is a diagram showing an SDS-PAGE of GBl-Myr that is myristoylated using SH3-NMT.
- Lane 1 shows a 10 ⁇ 1 SH3— 1
- Lane 2 shows a 1 ⁇ 1 SH3— ⁇
- Lane 3 shows a 0 ⁇ 1 SH3— ⁇ .
- FIG. 30 is a diagram showing ⁇ 1 ⁇ -PxxP and its partial structure.
- FIG. 31 is a diagram showing an SDS-PAGE of phosphorylated Crkll dephosphorylated using PTP-1B-PxxP.
- Lane 1 shows 10 ⁇ 1 PTP-IB- ⁇
- Lane 2 shows 1 ⁇ 1 PTP-IB- ⁇
- Lane 3 shows 0 ⁇ 1 PTP-1B-PxxP.
- FIG. 32 shows immunostaining of phosphate Crkll dephosphorylated using PTP-IB-PxxP.
- Lane 1 shows dephosphorylation with 10 ⁇ 1 PTP-IB- ⁇
- Lane 2 with 1 ⁇ 1 PTP-IB- ⁇
- Lane 3 with 0 ⁇ 1 PTP-IB-PxxP.
- the modification of the substrate protein of the present invention will be described using protein phosphorylation as an example, but the modification of the substrate protein in the present invention is not limited to this.
- Dephosphorylation, myristylation, palmitoylation It is effective for post-translational modification of proteins with enzyme proteins, including ubiquitination, ubiquitin-like protein modification, ADP ribosylation, PE formation, and glycosylation. Therefore, the protein binding domain added to the substrate and Z or the enzyme protein is not limited to the SH3 domain and SH3 domain binding sequence, and the combination of the amino acid sequences to which the domain has affinity is not limited to other sequences of calmodulin and calmodulin interaction.
- Any protein-binding domain such as a PDZ domain and a PDZ domain interaction sequence, and an amino acid sequence that exhibits affinity for the domain can be used. It is also possible to use an amino acid sequence that has binding properties to any protein obtained by phage display or the like.
- the present invention also relates to a method for producing a phosphate protein by phosphorylating a substrate protein with a kinase, the SH3 domain and SH3 domain complementary to the substrate protein and Z or kinase.
- a kinase the SH3 domain and SH3 domain complementary to the substrate protein and Z or kinase.
- Substrate protein in the phosphorylation reaction means a protein that is phosphorylated and has a phosphorylation site (Thr, Ser or Tyr). Such proteins may be in any form such as those present in vivo or in cells, or isolated. In addition, such a substrate protein may originally have an SH3 domain or may not have such an SH3 domain. A little.
- Crkll, pl30Cas, etc. can be mentioned as those having an SH3 domain.
- paxillin, AKT, etc. are mentioned as those that do not have the SH3 domain.
- SH3 domain refers to an SH3 domain binding sequence comprising two small
- Proteins containing such SH3 domains include Abl, Tec, Btk, Lyn, Frk, Srms, Blk, Hck, Txk ⁇ Vav, Crk, CrkL ⁇ JNK ⁇ CSK ⁇ CasL, pl30Cas ⁇ p47phox, p40phox, Pexl 3, Grb2, RasGAP ⁇ RhoGAP ⁇ Fyb, Fyn, PLCganmma ⁇ Intersectin, Ctk, ArlGAP, PI 3K ⁇ PSD—95, Yes ⁇ Srk, Fgr, Nck ⁇ Gads ⁇ Zo—1, Zo—2, Zo—3, Spectrin , Drk, Sem-5, etc.
- SH3 domain any functional domain of these proteins can be used.
- SH3 domain examples of the "SH3 domain” that can be used in the present invention are the following peptides (a) or (b).
- SH3 domain Another example of the SH3 domain that can be used in the present invention is the following peptide (c) or (d).
- the SH3 domain usable in the present invention is 60% homologous to the amino acid sequence of SEQ ID NO: 1 or 25, preferably 80% homologous, more preferably 90% homologous, and still more preferably 95% homologous. It may be a peptide having an amino acid sequence ability and having an affinity for the SH3 domain binding sequence.
- each of the above SH3 domains is specifically, Alternatively, it means an amino acid sequence that is commonly recognized and shows affinity.
- the SH3 domain binding sequence may differ depending on the sequence of the SH3 domain, or all SH3 domains may bind in common. Examples of amino acid sequences to which all SH3 domains bind include amino acid sequences of about 10 residues including PxxP (where X represents any amino acid residue). This amino acid sequence binds to 31 "[3 domains with a dissociation constant of 5-100 ⁇ 1.
- This SH3 domain binding sequence is further limited to??, K) X (X represents any amino acid residue, ⁇ is a hydrophobic amino acid residue, and more specifically I, L, V, P It represents one of the following.)
- the SH3 domain binding sequence in which the SH3 domain of a) b) shows affinity is PXXPXZ, ZXXPXXP, or PXXXRXXK (wherein X represents an arbitrary amino acid, and Z represents K or R).
- the SH3 domain binding sequence in which the SH3 domain of c) d) shows affinity is a sequence represented by PX [V or I] [D or N] RXXKP (wherein X represents any amino acid). It is.
- “showing affinity” means the property that a protein binding domain binds to the domain binding sequence with a binding (dissociation) constant that causes a specific interaction between proteins and proteins.
- This affinity can be determined by adding a peptide having an arbitrary amino acid sequence to a peptide having an SH3 domain, for example, nuclear magnetic resonance (NMR) spectrum, fluorescence vector, ultraviolet absorption spectrum, fluorescence polarization method, surface plasmon resonance, A pull-down assay can be examined by measuring the change and the like by measuring with ELISA or the like (Patent Documents 1 and 2) using FRET.
- NMR nuclear magnetic resonance
- Keratinase which is an example of the enzyme protein of the present invention, is an enzyme protein that catalyzes the reaction of adding a phosphate group to the OH group of T (Thr), S (Ser), or Y (Tyr) in the protein. It is. Depending on its specificity, it is classified into two types: SerZThr phosphate enzyme that phosphorylates Ser and Thr, and Tyr phosphate enzyme that phosphorylates Tyr.
- Tyr kinases include Abl, Lyn, Fyn, Hck, Jak, CSK, Flk, Syk, EGFR, VEGFR, ZAP-70, Blk, Ryk, Btk, Tec, Src, Frk, Itk, Lck, Yes Kit, Fes, Mer, Fgr, IGFR, FGFR, FAK, EPHR, Alk, Met, Trk, Eck, Hek, Sek, Mdk, Esk, Htk, Rek, erbB and the like.
- SerZThr phosphorylation enzymes include CK II, nPKC, aPKC, PKC ⁇ PKA, PKB ⁇ ROCK, STE20, CAMK, and MAPK.
- All enzymes are composed of a plurality of functional domains, of which the kinase domain is responsible for the catalytic function, and it is known that the kinase domain alone is active.
- the whole kinase or a domain having phosphate activity can be used, and “kinase” in the present invention means both unless otherwise specified.
- a substrate protein (including a phosphate chain site) that is a chimeric protein in which either the SH3 domain-binding sequence or the SH3 domain is added at the amino acid sequence level, and the SH3 of the substrate protein A kinase, which is a chimeric protein to which an amino acid sequence showing affinity for a domain binding sequence or SH3 domain is added, is used.
- Each chimeric protein has an appropriate amino acid sequence, preferably an amino acid sequence cleavable by a protease capable of recognizing and cleaving a specific amino acid sequence, between the substrate protein or enzyme protein and the amino acid sequence to be added. May be provided. In addition, there is no particular limitation on the order of the substrate protein or enzyme protein and the amino acid sequence to be added, which may be located on the N-terminal side.
- a chimeric protein is prepared by adding the SH3 domain to the substrate protein.
- the SH3 domain may use the endogenous domain of the substrate protein or enzyme protein, but may be a chimeric protein with an SH3 domain derived from another protein.
- a proteolytic enzyme cleavage sequence such as Tev Protease or Thrombin Protease
- the target amino acid can be digested or cleaved with a protein degrading enzyme after the completion of the phosphorylation reaction. It is possible to obtain a phosphoric acid protein in which only the sequence force is composed.
- a chimeric protein having an SH3 domain binding sequence on the C-terminal side of the amino acid sequence of the kinase may be prepared and used to act on a substrate protein, or a vector that expresses this peptide. Etc. may be prepared and expressed or co-expressed in the vicinity of the substrate protein. In the latter case, any vector including pET, pGEX, pPRO, etc. can be used as a vector, and an expression vector should be constructed according to a conventional method.
- a kinase particularly a DNA encoding a peptide in which an SH3 domain-binding sequence is added to the C-terminal side of the kinase at the amino acid level and a DNA encoding a substrate protein containing the SH3 domain.
- Any host including E. coli, yeast, mammalian cells, insect cells and the like can be used, and any promoter including T7, Taq, lac, etc. can be used as the promoter.
- the combination of the kinase containing the SH3 domain and the substrate protein containing the SH3 domain binding sequence may be similarly used. And the affinity of the kinase can be increased.
- the phosphorylated substrate protein can be detected by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
- SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- two negative charges increase at each phosphate site, and the mobility in electrophoresis changes before and after phosphate. Therefore, phosphate can be confirmed by comparing the mobility of non-phosphorylated substrate protein and phosphorylated substrate protein.
- immunostaining with an antibody specific for a phosphorylated target protein or an antibody that specifically recognizes a phosphorylated amino acid is more reliable. It is possible to detect a substrate protein that has been phosphorylated.
- Normal SDS-PAGE detects both phosphorylated and unreacted substrate protein, but immunostaining detects only phosphorylated substrate protein, so to determine the phosphorylation reaction efficiency. It is preferred to do a normal SDS-PAGE.
- myristoyltransferase or protein dephosphorylating enzyme can be used as the enzyme protein.
- Myristoyl candy is one of the protein modification reactions with fatty acids, and myristoyl transferase recognizes common sequences present in proteins that receive myristoy candy, such as G (E, etc.), XX (S, etc.), and Myristoyl CoA To a rearrangement of the myristoyl group to the amino group of the N-terminal glycine of the protein to form an acid amide bond.
- myristoyltransferase an enzyme that catalyzes this myristoy potato, 19 NMTs have been identified and reported from more than 15 eukaryotes including humans.
- NMT1 and NMT2 have been reported in humans, and NMT2 is detected as a single 65 kDa band on SDS-PAGE, while NMT1 exhibits various isoforms.
- Myristoli is considered to be involved in intracellular signal transduction, determination of intracellular localization of protein, particularly targeting of protein to the cell membrane, stabilization of protein three-dimensional structure, and the like. Yes.
- HIV-1 it is suggested that it is an essential modification for the virus protein formation for myristoylation of viral structural protein pi 7gag and viral regulatory protein p27nef.
- NMT is expected to discover a number of molecules that are controlled by Myristoyl sputum in the future as research on the cranial nervous system, which has the highest expression level in the brain and nerves, progresses.
- proteins that receive myristoy buds that is, those having myristoy bud sequences
- the present invention can appropriately use myristoy bud sequences possessed by these proteins.
- the present invention can easily provide not only the phosphorylated substrate protein as described above but also the dephosphorylated substrate protein.
- Protein dephosphorylation works in conjunction with intracellular protein phosphate enzymes, thereby transmitting intracellular information such as cell growth and differentiation, cell shape and movement, cell cycle, metabolism, and transcriptional activity. It is widely known that it is precisely controlled, and it can be applied to gene therapy as a basic technology for controlling both the positive and negative phosphate signals.
- the method of the present invention combines an enzyme protein that performs a modification reaction of a protein other than phosphorylation, dephosphorylation, and myristoyl koji, and a specific sequence recognized by the enzyme protein. By using it, the modified protein can be easily and efficiently produced.
- Plasmid pProEX-Crkll A plasmid for expressing the substrate protein Crkll (SEQ ID NO: 2).
- Plasmid pET- Duet-SK-Crkll A plasmid containing a DNA fragment (SEQ ID NO: 4) encoding SK that contains the kinase shown in Fig. 1 but does not contain a proline-rich sequence, and Crkll. Are co-expressed.
- Plasmid pET- Duet-SKP1-Crkll A plasmid containing the DNA fragment (SEQ ID NO: 5) encoding SKP1 containing the kinase and proline-rich sequence shown in Fig. 2, and Crkll. To express.
- FIG. 3 shows the domain structure. As shown in FIG. 3, Crkll is composed of one SH2 domain (positions 5 to 120 of SEQ ID NO: 2) followed by two SH3 domains (positions 134 to 191 and 238 to 293 of SEQ ID NO: 2). In the region between these two SH3 domains, there is a phosphate chain (221th Tyr of SEQ ID NO: 2).
- N-terminal SH3 domain of Crkll (134th to 191st of SEQ ID NO: 2) is specific to — PXXPXK— (where X represents any amino acid residue, K may be R ⁇ ) Join.
- FIG. 4 shows the domain structure.
- Abl consists of one SH3 domain (80th to 140th positions in SEQ ID NO: 3), followed by one SH2 domain (141st to 239th positions in SEQ ID NO: 3), and kinase domain (from 247 of SEQ ID NO: 3). 253), SH3 binding sequence (545 to 550, 589 to 594 and 778 to 783 of SEQ ID NO: 3), a DNA binding domain, and an actin binding domain.
- the Crkll N-terminal SH3 domain recognizes and binds to this SH3 domain binding sequence.
- Crkll cDNA was prepared by the method described previously (Mol. Cell. Biol., No. 12, pages 3482-3489, 1992). Crkll cDNA, dNTP 200 ⁇ , magnesium chloride lmM, 2 primers (SEQ ID NOs: 6 and 7), 300 nM each, buffer (1 X) attached to KOD-Plus-, reaction containing KOD-Plus-polymerase 1U PCR reaction was performed with 100 ⁇ l of the solution.
- the obtained DNA fragment was cleaved with Ncol (NEB) and Xhol (NEB) and purified with a PCR purification kit (Quiagen).
- Ncol Ncol
- Xhol Nhol
- Quantification kit Quantification kit
- Both the pProEX Htb vector fragment obtained by cutting pProEXCrkll Htb (Quiagen) with Ncol and Xhol and the PCR fragment containing the Crkll gene (SEQ ID NO: 2) obtained above were combined with Takara DNA Ligation kit (Takara). ), And this vector was used to transform E. coli DH5a. After culturing this, the plasmid (pProEX-Crkll) shown in FIG. 5 was obtained using MiniPrep kit (Quiagen).
- Crkll was expressed in E. coli using the obtained plasmid pProEX-Crkll, and Crkll was purified using the 6 X His tag. It was confirmed by SDS-PAGE that Crkll with a molecular weight of 34 kDa was purified with high purity (Fig. 6).
- Abl cDNA was prepared by the method described previously (Proc. Natl. Acad. Sci. U.S.A., 84, 8200-8204, 1987). Using the Abl cDNA and primers (SEQ ID NOs: 10 and 11), PCR was performed in the same manner, and a PCR fragment containing only the SH2 domain and kinase domain (Fig. 1, SK) was incorporated into pET Duet (Novagen). A plasmid (FIG. 7, pET-Duet-SK) was obtained.
- Escherichia coli BL-21 (DE3) was transformed with the plasmid pET-Duet-SKP1-Crkll. Transformants were selected by spreading the colon bacteria on LB agar medium containing ampicillin and incubating at 37 ° C. One of the colonies formed was planted in 20 ml of LB medium containing 100 g / ml ampicillin and cultured at 37 ° C. This culture solution was transferred to 1 L of 2 XYT medium containing 100 ⁇ g Zml of ampicillin, and the final concentration of 0.5 mM isopropyl- ⁇ -D (—)-thiogalatatopyrano was measured at a turbidity of 600 nm between 0.4 and 1.0.
- the sid was added and further cultured at 25 ° C.
- the culture solution was centrifuged at 3600 ⁇ g at 4 ° C. for 15 minutes to recover the cells.
- the polyacrylamide gel and the PVDF membrane after electrophoresis were immersed in a transfer buffer and shaken for about 5 minutes.
- the transfer buffer used was a mixture of 15.14 g of tris (hydroxymethyl) aminomethane and 72.07 g of glycine dissolved in a total of 1 L of distilled water and 4 L and 1 L of methanol.
- the filter paper is immersed in a transfer buffer solution and placed on a transfer device (Bio-Rad).
- PVDF membrane, gel, and filter paper were stacked in this order, and transfer was performed at a constant voltage of 10V. The voltage was adjusted so that the current at this time was 0.1 to 0.15 A, and transfer was performed for about 1 hour.
- the PVDF membrane after transfer was immersed in a blocking buffer and shaken for about 1 hour. Then, it was washed 3 times with TBS-T buffer. During this time, mouse anti-phosphorylated Crkll antibody (Zymed) was diluted 1000 times with blocking buffer, PVDF membrane was immersed in 5 ml of this solution, shaken for 1 hour, and washed 3 times with TBS-T. During this period, the PVDF membrane was immersed in 5 ml of a secondary antibody solution diluted with a TBS-T buffer 5000 times (anti-mouse antibody), shaken for 1 hour, and washed 3 times with TBS-T buffer. Secondary antibody is Pero xidase Labeled Anti-Mouse Antibody (Santa Cruz) was used. Thereafter, staining was performed using a peroxidase staining DAB kit (Nacalai Testa).
- Phosphorylation was performed at 10 mg / ml CrkIl / 20 mM Tris-HCl / lmM EDTA / 150 mM NaCl (pH 7.5) at 100 / zl, attached lO XAbl buffer at 100 / zl, and ATP at a final concentration of O.lmM. And adjust the volume of the solution to 1 ml with HO, and leave at 25 ° C for 4 days.
- the polyacrylamide gel after electrophoresis was confirmed to be phosphorylated by the same immunostaining as in Example 2. The result is shown in FIG. It was confirmed that no phosphorylated Crkll band was detected.
- Escherichia coli BL-21 (DE3) was transformed with the plasmid pET-Duet-SK-Crkll, and a fraction containing Crkll was obtained in the same manner as in Example 2.
- the polyacrylamide gel after electrophoresis was confirmed to be phosphorylated by the same immunostaining as in Example 2. The result is shown in FIG. It was confirmed that no phosphorylated Crkll band was detected.
- SKP1 (FIG. 2) was expressed in E. coli as a chimeric protein (SEQ ID NO: 14) with a base sequence encoding a 6 X His tag.
- Escherichia coli BL-21 (DE3) was transformed with the plasmid pET-Duet-SKPl (FIG. 9), a fraction containing SKP1 was obtained in the same manner as in Example 2, and SKP1 was further purified. The same volume of glycerol was added to the elution fraction containing purified SKP1.
- the polyacrylamide gel after electrophoresis was confirmed to be phosphorylated by the same immunostaining as in Example 2. The result is shown in FIG. A band in which Crkll was phosphorylated was confirmed.
- Vav (170-375) N-terminal SH3 domain of Crkll and His-tag and precision protease cleavage sequence shown in Fig. 15 and amino acid residues 170-375 of Vav's amino acid sequence ( (Hereinafter referred to as Vav (170-375)) is a plasmid containing the gene (SEQ ID NO: 15) of the chimeric protein that also has the power. In this example, phosphorylation was attempted using Vav (170-375) (SEQ ID NO: 16) as a substrate.
- the Tev protease cleavage site of pProEX Htb is first mutated to the precision protease cleavage site using Quick Change (Quiagene).
- This vector is hereinafter referred to as p ProEX Htb-Pres. Insert a PCR fragment of Vav (170-375) obtained using the following primers into pProEX Htb-Pres.
- the inserted fragment is prepared using the following primers.
- CCGAGCTCATGTCGTACTACCATCACC (F) (SEQ ID NO: 21)
- GCGCTCGAGTCACCTCTTGACCTCGTTCACG (R) (SEQ ID NO: 22)
- Vav cDNA was prepared by the method described previously (Coppola J., Bryant SKoda T., Conway D., Barbacid M .; "Mechanism of activation of the vav protooncogene .; Cell Growt h Differ. 2 pp. 95-105, 1991).
- phosphorylation of Cr k-Vav (170-375) was attempted in a test tube using SKP1 purified by the same method as in Example 3.
- This Crk-Vav (170-375) was prepared in the same manner as in Example 1.
- Phosphate reaction was carried out in the same manner as in Example 3 with SKP1 of 101, 10 mg / ml Crk-Vav (170-375) / 20 mM Tris-HCl / lmM EDTA / 150 mM NaCl (pH 7.5) 100 / zl, lO XAbl buffer used in Comparative Example 1 was added at 100 / zl, and ATP was added to a final concentration of O.lmM, and the volume of the solution was adjusted to HO with HO, 25 ° C Over 4 hours
- Crk-Vav (170-375) subjected to phosphorylation reaction was run on a 15% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.). A change in mobility was observed compared to Crk-Vav (170-375) before the phosphoric acid reaction, and the phosphoric acid of Vav (170-375) was confirmed (Fig. 17).
- Vav (170-375) (FIG. 18) was subjected to phosphorylation by the same method as in Example 4, and was electrophoresed on a 15% polyacrylamide gel using an electrophoresis apparatus (Nihon Aid Co., Ltd.). No change in mobility was observed compared to Vav (170-375) before phosphorylation, confirming that Vav (170-375) was not phosphorylated (Fig. 17).
- Example 5 In this example, the following two types of plasmids were prepared.
- Plasmid pET-Duet-SK-SLP A plasmid containing the kinase shown in FIG. 19 and a DNA fragment (SEQ ID NO: 24) encoding SK-SLP containing SLP76-derived RxxK-containing sequence.
- Plasmid pET22-Grb2—Crkll The Grb2 C-terminal SH3 domain and His-tag shown in Figure 20 and the DNA encoding the precision protease cleavage sequence and Vav (170-375) chimeric protein (SEQ ID NO: 25) Containing plasmid.
- Grb2 C-terminal SH3 domain (SEQ ID NO: 26) binds specifically to PxxxRxxK (where x represents any amino acid) sequence contained in proteins such as SLP76 and Gabl.
- PxxxRxxK where x represents any amino acid sequence contained in proteins such as SLP76 and Gabl.
- An SLP76-derived Pxx xRxxK sequence was included, and the substrate protein side containing the C-terminal SH3 domain of Grb2 was prepared, and phosphorylation was attempted.
- SK-SLP (FIG. 2) was expressed in E. coli as a chimeric protein (SEQ ID NO: 14) with a base sequence encoding a 6 X His tag.
- E. coli BL-21 (DE3) was transformed with the plasmid pET-Duet-SK-SLP, a fraction containing SK-SLP was obtained in the same manner as in Example 2, and SK-SLP was further purified. The same volume of glycerol was added to the elution fraction containing purified SK-SLP.
- a gene fragment encoding the C3 terminal SH3 domain (residue numbers 159-217) of Grb2 was amplified using the following primers.
- PCR was performed using the following primers to amplify the Cr kll gene, which was then incorporated into the vector fragment of pET22-Grb2 treated with SaclZXhoI to obtain plasmid pET22-Grb2-Crkll (FIG. 22).
- the phosphorylation reaction of Grb2-CrkII was attempted in a test tube. Phosphorylation was performed at 100 mg / zl of lOmgZml of Grb2-CrkIlZ20 mM Tris-HCl / lmM EDTA / 150 mM NaCl (pH 7.5), 100 / zl of the lO XAbl buffer used in Comparative Example 1, and ATP at the final concentration. Add O.lmM, add SK-SLP to a final concentration of 0.001 ⁇ , and adjust the volume of the solution to 1 ml with HO. It was done by leaving it to stand for more than an hour.
- Grb2-CrkII was phosphorylated with SK in the same manner as in Example 5. However, SK was added so that the final concentration was 0.1 ⁇ . Electrophoresis was performed on a 15% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.). Compared to Grb2-CrkII before the phosphoric acid reaction, no change in mobility was observed, confirming that Grb2-Crkll was phosphorylated! /! (Fig. 23).
- Plasmid pTYR ( Figure 24): DNA fragment (SEQ ID NO: 5) that encodes SKP1 containing the kinase and proline-rich sequences shown in Figure 2 and Crkll SH3 domain—His tag-precision protease cleavage site Multicloning A plasmid containing a site. It is possible to insert genes encoding arbitrary peptides and proteins into the multicloning site. [0086] (1) Preparation of plasmid pTYR
- the NdelZXhoI fragment of pET22-Crk-Vav (170-375) prepared in Example 4 is incorporated into the vector fragment of pET-Duet-SKP1 prepared in Example 1.
- the Ndel site (CATATG) sequence used for integration was replaced with CAGATG using Quick Change (Quiagene) to eliminate the Ndel site.
- the Ncol site (CCATGG) used when Vav (170-375) is incorporated into pProExHTb-Pres is replaced with ATATGG using Quick Change (Quiagene) to create a new Ndel site.
- This plasmid is hereinafter referred to as pET- Duet SKP1 Crk.
- PCR is performed using the Vav cDNA as a saddle with the following primers, and incorporated into the pTYR vector fragment treated with NdelZXhoI.
- the chimeric protein (SEQ ID NO: 37) of SKP1 and Crkll N-terminal SH3 domain, 6 X His tag, precision protease cleavage site and Vav (170-375) was placed in E. coli. Co-expressed and purified. The purified chimeric protein was electrophoresed on a 15% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.). A difference in mobility was observed with non-phosphate Crk-Vav (170-375) prepared in Example 4, and it was confirmed that phosphate was added (FIG. 25).
- Example 6 pTYR prepared in (1) was digested with (Notl / Xhol), and the fragment containing the Crkll SH3 gene was incorporated into the vector fragment digested with pET-Duet (Notl / Xhol).
- pTYR (—) (Fig. 26) was prepared. This plasmid has a structure converted into a multicloning site derived from the kinase gene of pTYR (SKP1) 3 ⁇ 4 ET-Duet.
- the amplified fragment digested with Ndel / Xhol was incorporated into a vector of pTYR (—) that was also digested with Ndel / Xhol to prepare pSH3-NMT (FIG. 27).
- This plasmid has a 6xHis tag on the N-terminal side of the GB1 domain, a TEV protease digestion site and a myristoylation sequence consisting of 17 amino acid residues (Hantschel 0 et al., Cell, 20 03, 112, No. 6, No. 6, 845-857) and a gene encoding a fusion protein containing a CrkSH3 binding sequence on the C-terminal side.
- E. coli BL-21 (DE3) is transformed with pSH3-NMT prepared in (2), and a fusion protein (SEQ ID NO: 44, NMT1 catalytic domain and Crkll SH3 and 6 X His-tagging force) is also obtained.
- SH3-NMT was expressed in E. coli, and SH3-NMT was purified by the same method as in Example 2 to prepare a glycerol solution of SH3-NMT.
- pGBl-Myr prepared in (3) is used to transform E. coli BL-21 (DE3), which also includes 6 X His tag, TEV protease digestion site, myristylation sequence, GB1 domain, and Crkll SH3 binding sequence.
- the fraction containing the fusion protein expressed in E. coli as a protein (SEQ ID NO: 45) and TEV-digested, the fusion protein in which the modified residue Gly is exposed at the N-terminus (hereinafter referred to as GBl-Myr) was prepared.
- the obtained amplified fragment was treated with Ncol / Xhol and incorporated into pET21-d that was also treated with Ncol / Xhol to prepare plasmid ⁇ -PxxP (FIG. 30).
- This plasmid is a fusion protein containing the Crkll SH3 binding sequence and 6 X His tag on the C-terminal side of the catalytic domain of human PTP-1B ty rosine phosphatase (domain consisting of the 1st to 300th amino acid sequences of PTB-1B). (SEQ ID NO: 48, hereinafter referred to as PTP-1B-PxxP) is expressed.
- E. coli BL-21 (DE3) was transformed with pPTP-lB-PxxP, and PTP-lB-PxxP was purified as a glycerol solution by the same method as in Example 2.
- the present invention is an epoch-making technique for efficiently performing a protein modification reaction by using a common phenomenon called protein-protein interaction. For example, even in the case where the normal method is not fully phosphorylated, the affinity between the two is increased by generating a protein-protein interaction between the substrate protein and the kinase, thereby reducing the amount of the enzyme.
- the substrate protein can be phosphorylated efficiently. Phosphorylation is an important process in intracellular and intercellular signal transduction, and the use of the phosphorylated protein or the induction of a biological reaction is controlled by the method of the present invention capable of efficiently producing phosphorylated protein. be able to.
Landscapes
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Enzymes And Modification Thereof (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Disclosed is a method for production of a modified protein comprising the step of modifying a substrate protein with an enzyme protein. In the method, the substrate protein and/or the enzyme protein is a chimeric protein having a protein-binding domain added thereto, wherein the protein-binding domain is capable of enhancing the affinity between the substrate protein and the enzyme protein. The method enables to achieve a protein-modification reaction with good efficiency by utilizing a protein-protein interaction. In the method, the affinity between a substrate protein and an enzyme can be increased by producing a protein-protein interaction between the substrate protein and the enzyme protein. In this manner, a substrate protein can be modified with a smaller amount of an enzyme with good efficiency.
Description
明 細 書 Specification
修飾蛋白質の製造方法 Method for producing modified protein
技術分野 Technical field
[0001] この発明は、基質タンパク質と酵素タンパク質とを用いてタンパク質を修飾する方法 ないし修飾タンパク質を製造する方法に関し、より詳細には、該基質タンパク質及び [0001] The present invention relates to a method for modifying a protein using a substrate protein and an enzyme protein or a method for producing a modified protein.
Z又は該酵素タンパク質として、基質タンパク質と酵素タンパク質との親和性を高め ることのできる蛋白質結合ドメインが付加されたキメラタンパク質を用いる前記修飾方 法ないし修飾タンパク質の製造方法に関する。 The present invention relates to the above-described modification method or method for producing a modified protein, wherein Z or a chimeric protein to which a protein binding domain capable of increasing the affinity between the substrate protein and the enzyme protein is added as the enzyme protein.
[0002] また本発明は、基質タンパク質をキナーゼ (リン酸化酵素)を用いてリン酸化する方 法に関し、より詳細には、基質タンパク質またはキナーゼのどちらか一方に SH3ドメイ ンを含み、他方にプロリンリッチ配列などの SH3ドメイン結合配列すなわち蛋白質結 合ドメインが親和性を示すアミノ酸配列を含むことを特徴とし、 SH3ドメインと SH3ドメイ ン結合配列との間の相互作用で両分子が会合して基質タンパク質のリン酸化反応を 効果的に行う基質タンパク質のリン酸化方法ならびにリン酸化タンパク質を製造する 方法に関する。また本発明は、基質タンパク質をミリストイルトランスフェラーゼを用い てミリストイルイ匕する方法に関する。さらに本発明は、基質タンパク質をタンパク質脱リ ン酸ィ匕酵素を用いて脱リン酸ィ匕する方法に関する。 [0002] The present invention also relates to a method of phosphorylating a substrate protein using a kinase (phosphorylating enzyme). More specifically, either the substrate protein or the kinase contains an SH3 domain, and the other is proline. It is characterized in that the SH3 domain binding sequence such as a rich sequence, that is, the protein binding domain contains an amino acid sequence showing affinity, and both molecules associate with each other by the interaction between the SH3 domain and the SH3 domain binding sequence, and the substrate protein. The present invention relates to a method for phosphorylating a substrate protein and a method for producing a phosphorylated protein, which effectively carry out phosphorylation reaction. The present invention also relates to a method for myristoylating a substrate protein using myristoyltransferase. Furthermore, the present invention relates to a method for dephosphorylating a substrate protein using a protein dephosphorylating enzyme.
背景技術 Background art
[0003] 細胞の増殖、分化、形態形成などは全ての多細胞生物が成り立つための基本過程 である。それらの過程は細胞外力 シグナルを細胞表面の受容体が認識し、それを 細胞内シグナル伝達因子に伝え、適正に処理されることによりなされる。シグナル伝 達は膜上の受容体を介した生体膜直下の反応を契機として行われるが、その過程の 制御はタンパク質間相互作用によりなされる。その過程においてリン酸ィ匕及び脱リン 酸ィ匕を介したタンパク質間相互作用の制御が重要な役割を果たしている。 [0003] Cell proliferation, differentiation, morphogenesis, and the like are basic processes for the establishment of all multicellular organisms. These processes are accomplished by the recognition of extracellular force signals by receptors on the cell surface, transmitting them to intracellular signaling factors, and processing them appropriately. Signal transmission is triggered by reactions directly under the biological membrane via receptors on the membrane, and the process is controlled by protein-protein interactions. In this process, the control of protein-protein interactions through phosphate and dephosphate plays an important role.
[0004] たとえば細胞の増殖反応や薬物に対する細胞の反応は、ほとんどの場合、細胞内 シグナル伝達機構にぉ 、て、 Gタンパク質などのリン酸ィ匕が細胞のシグナル伝達の 実態であることが知られている。細胞増殖に関して言えば、正常細胞ではリン酸ィ匕の
制御は厳密に行われているが癌細胞ではタンパク質リン酸ィ匕が亢進して、制御が効 かなくなつている。このことからも、細胞内リン酸化を制御することは、細胞の恒常性の 維持や疾患の治療につながることが期待できる。しかしながら、基質タンパク質を効 率的にリン酸ィ匕するための人為的操作や制御分子の利用は、実質的はほとんど実 現しておらず、もつばらキナーゼのタイピングや反応機構の研究が主体である。 [0004] For example, in most cases, cell proliferation and cell responses to drugs are related to intracellular signal transduction mechanisms, and G protein and other phosphates are the actual state of cell signal transduction. It has been. In terms of cell proliferation, normal cells Although regulation is strictly performed, protein phosphate is increased in cancer cells, and the regulation becomes ineffective. For this reason, controlling intracellular phosphorylation can be expected to lead to maintenance of cell homeostasis and treatment of diseases. However, artificial manipulation and efficient use of regulatory molecules for the efficient phosphorylation of substrate proteins have hardly been realized, and the main focus is on tangle kinase typing and reaction mechanisms. .
[0005] 非リン酸ィ匕状態のタンパク質に関しては大腸菌や酵母や昆虫細胞系を用いて大量 に調製され、基礎研究、創薬研究、応用研究がなされ、実際に医薬品等にも利用さ れてきた。 [0005] Non-phosphate protein is prepared in large quantities using Escherichia coli, yeast, and insect cell systems, and has undergone basic research, drug discovery research, and applied research. It was.
[0006] し力しリン酸ィ匕状態のタンパク質に関してはその大量調製の困難さが研究及び利 用の妨げとなってきた。 [0006] With regard to a protein in a phosphoric acid state, the difficulty of large-scale preparation has hindered research and utilization.
[0007] 従来、試料を大量 (数 mgから)に用いる研究を行う場合にはリン酸ィ匕部位周辺のみ 力も構成される 10残基程度のペプチドをィ匕学的に合成したものがモデルとして用い られてきたが (非特許文献 1等)、リン酸ィ匕ペプチドの化学合成は通常のペプチドの 化学合成に比べて高額であり、また、多くのシグナル伝達タンパク質は複数の機能ド メイン力 構成され、それらを介したシグナル伝達の制御機構を明らかにするにはぺ プチドを用いた研究は不十分であった。 [0007] Conventionally, in the case of conducting research using a large amount of sample (from several mg), a model that is a chemically synthesized peptide of about 10 residues that also consists of force only around the phosphate moiety is used as a model. Although it has been used (Non-patent Document 1, etc.), the chemical synthesis of phosphate peptides is more expensive than the chemical synthesis of ordinary peptides, and many signal transduction proteins are composed of multiple functional domains. However, studies using peptides have not been sufficient to elucidate the control mechanism of signal transduction through them.
[0008] また、ホスト内で両者を共発現させることでリン酸ィ匕タンパク質を大量に得る試みは なされてきたが (非特許文献 2等)、リン酸ィ匕の効率が低ぐ更にリン酸化タンパク質と 非リン酸化タンパク質を分離する必要があった。また、試験管内でキナーゼと基質タ ンパク質を反応させることでリン酸ィ匕タンパク質を得る方法も試みられては 、るが(非 特許文献 3等)、リン酸ィ匕の効率が低 、ために大量の高価なキナーゼを必要として!/ヽ た。 [0008] Although attempts have been made to obtain a large amount of phosphate protein by co-expressing both in a host (Non-patent Document 2, etc.), phosphorylation is less efficient and further phosphorylation is performed. It was necessary to separate the protein from the non-phosphorylated protein. Although attempts have been made to obtain a phosphate protein by reacting a kinase and a substrate protein in a test tube (Non-patent Document 3, etc.), the efficiency of phosphate is low. Requires a large amount of expensive kinase!
[0009] また、本発明で利用可能な SH3ドメイン力 PxxPで表されるアミノ酸配列(Pはプロリ ン、 Xは任意のアミノ酸を表し、以下 Pro Rich Region : PRRとする)を有するタンパク質 に親和性を示すことに関してはよく知られている(特許文献 1、 2等)。なお、本明細書 では、アミノ酸を適宜 1文字又は 3文字表記で示すこととする。また例外的に、一部の SH3ドメインは PRR以外のアミノ酸配列に親和性を示すことが報告されて 、る。例えば Grb2、 Gads, Hbp、 STAM2などの SH3ドメインは、 PX[V又は I] [D又は N]RXXKP (た
だし Xは任意のアミノ酸残基である)を含むアミノ酸配列に (非特許文献 4、 5、 6、 13、 14)、 Fyn、 Fyb、 Lckの SH3ドメインは Nef (非特許文献 7、 8、 9)および RKXXZXXZ (た だし Xは任意のアミノ酸残基であり、 Zは Kまたは Rである)を含むアミノ酸配列に(非 特許文献 10)、 Pexl3pの SH3ドメインは WXXXFXXLE (ただし Xは任意のアミノ酸残 基である)を含むアミノ酸配列に(非特許文献 6、 11、 12)、 Eps8の SH3ドメインは PXX DY (ただし Xは任意のアミノ酸残基を示す)を含むアミノ酸配列に (非特許文献 15)、 それぞれ親和性を示す。本発明では、蛋白質結合ドメインであるこれら SH3ドメインが 親和性を示すアミノ酸配列を、 SH3ドメイン結合配列とする。 [0009] Further, the present invention has an affinity for a protein having an amino acid sequence represented by SH3 domain strength PxxP (P is proline, X is an arbitrary amino acid, hereinafter referred to as Pro Rich Region: PRR). Is well known (see Patent Documents 1, 2, etc.). In this specification, amino acids are indicated by one letter or three letters as appropriate. Exceptionally, some SH3 domains have been reported to show affinity for amino acid sequences other than PRR. For example, SH3 domains such as Grb2, Gads, Hbp, and STAM2 are PX [V or I] [D or N] RXXKP However, X is an amino acid sequence containing any amino acid residue (Non-patent Documents 4, 5, 6, 13, 14), and the SH3 domain of Fyn, Fyb, and Lck is Nef (Non-patent Documents 7, 8, 9) ) And RKXXZXXZ (where X is any amino acid residue and Z is K or R) (Non-Patent Document 10), Pexl3p SH3 domain is WXXXFXXLE (where X is any amino acid residue) (Non-patent literature 6, 11, 12), and the SH3 domain of Eps8 is an amino acid sequence containing PXX DY (where X represents any amino acid residue) (non-patent literature 15) Each shows affinity. In the present invention, an amino acid sequence in which these SH3 domains that are protein binding domains show affinity is referred to as an SH3 domain binding sequence.
非特許文献 1 :J Mol Biol., 1999年、第 289卷、 439— 445頁 Non-Patent Document 1: J Mol Biol., 1999, 289, 439-445
非特許文献 2 : Protein Expr Purif.、 2005年、第 41卷、 162— 169頁 Non-Patent Document 2: Protein Expr Purif., 2005, 41st pp. 162-169
非特許文献 3 : Cell、 2000年、第 102卷、 625— 633頁 Non-Patent Document 3: Cell, 2000, 102, 625-633
非特許文献 4:ベリーら、 (Berry DM, et al.)、 J. Curr Biol.、 2002年、第 12卷、 1336— 1341頁 Non-Patent Document 4: Berry et al., (Berry DM, et al.), J. Curr Biol., 2002, 12: 1336-1341
非特許文献 5 :リウら(Liu Q" et al.)、 Mol. Cell.、 2003年、第 11卷、 471— 481頁 非特許文献 6 :カミら(Kami, K., et al.)、 EMBO J.、 2002年、第 21卷、 4268— 4276頁 非特許文献 7 :リーら(Lee CH, et al.)、 Cell、 1996年、第 85卷、 931— 942頁 非特許文献 8 :グルツヱジークら(Grzesiek S, et al.) , Nat. Struct. Biol.、 1996年、第 3 卷、 340— 345頁 Non-Patent Document 5: Liu Q "et al., Mol. Cell., 2003, Vol. 11, 471-481 Non-Patent Document 6: Kami et al. (Kami, K., et al.), EMBO J., 2002, 21st, 4268- 4276 Non-patent document 7: Lee et al., Cell, 1996, 85-931-942 Non-patent document 8: Gurz Ziek (Grzesiek S, et al.), Nat. Struct. Biol., 1996, III, 340-345.
非特許文献 9 :リーら(Lee CH, et al.)、 EMBO 、 1995年、第 14卷、 5006— 5015頁 非特許文献 10 :カンら(Kang H, et al.) , EMBO J.、 2000年、第 19卷、 2889— 2899頁 非特許文献 11 :バーネットら(Barnett P, et al.)、 EMBO 、 2000年、第 19卷、 6382— 6391頁 Non-patent document 9: Lee et al. (Lee CH, et al.), EMBO, 1995, pp. 14, 5006-5015 Non-patent document 10: Kang H, et al., EMBO J., 2000 19th, 2889-2899 Non-patent literature 11: Barnett P, et al., EMBO, 2000, 19th, 6382-6391
非特許文献 12 :ウルクハルトら(Urquhart AJ, et al.)、 J. Biol. Chem.、 2000年、第 275 卷、 4127— 4136頁 Non-Patent Document 12: Urquhart AJ, et al., J. Biol. Chem., 2000, 275, 4127-4136
非特許文献 13 :力トウら(Kato M, et al.)、 J. Biol. Chem.、 2000年、第 275卷、 37481— 37487頁 Non-Patent Document 13: Kato M, et al., J. Biol. Chem., 2000, 275, 37481-37487
非特許文献 14:カネコら(Kaneko T, et al.)、 J. Biol. Chem.、 2003年、第 278卷、 4816 2— 48168頁
非特許文献 15 :モンジォービら(Mongiovi AM, et al.)、 EMBO J.、 1999年、第 18卷、 5 300— 5309頁 Non-Patent Document 14: Kaneko T, et al., J. Biol. Chem., 2003, 278, 4816 2-48168 Non-Patent Document 15: Mongiovi AM, et al., EMBO J., 1999, VIII, 5 300-5309
特許文献 1:特開 2003— 185655 Patent Document 1: JP 2003-185655 A
特許文献 2:国際公開第 03/006060号パンフレット Patent Document 2: Pamphlet of International Publication No. 03/006060
発明の開示 Disclosure of the invention
[0010] 従来のリン酸ィ匕タンパク質を得るための方法は、主にリン酸化反応の効率が低いた め、大量のキナーゼを用いて行なわれていた。本発明は、このような問題を解決する ために、互いの親和性を高めた基質タンパク質とキナーゼを、宿主細胞中で共発現 させたりあるいはインビトロで混合したりすることを含む、リン酸ィ匕タンパク質を得るた めの効率的な手法を提供することを目的とする。 [0010] Conventional methods for obtaining a phosphate protein have been carried out using a large amount of kinase because the efficiency of the phosphorylation reaction is mainly low. In order to solve such a problem, the present invention includes co-expression of a substrate protein and a kinase having enhanced affinity with each other in a host cell or mixing in vitro, or in vitro mixing. The aim is to provide an efficient method for obtaining proteins.
[0011] 本発明者等は、蛋白質結合ドメインと該蛋白質結合ドメインが親和性を示すアミノ 酸配列、例として SH3ドメインと SH3ドメイン結合配列を利用して、基質タンパク質ある いはキナーゼのどちらか一方に SH3ドメインを保有させ、他方に SH3ドメイン結合配列 を保有させた構造を形成して、基質タンパク質とキナーゼの親和性を高めることによ り、リン酸ィ匕反応などの修飾反応を効率的に行うことができることを見出し、下記の各 発明を完成した。 [0011] The present inventors have used a protein-binding domain and an amino acid sequence in which the protein-binding domain has an affinity, for example, SH3 domain and SH3 domain-binding sequence, and either substrate protein or kinase. By forming a structure with the SH3 domain in the other and the SH3 domain binding sequence in the other, and increasing the affinity between the substrate protein and the kinase, modification reactions such as the phosphorylation reaction can be efficiently performed. We found out what we could do and completed the following inventions.
[0012] (1)基質タンパク質を酵素タンパク質によって修飾することからなる修飾タンパク質の 製造方法であって、該基質タンパク質及び Z又は該酵素タンパク質が、基質タンパク 質と酵素タンパク質との親和性を高めることのできる蛋白質結合ドメインが付加された キメラタンパク質である、前記修飾タンパク質の製造方法。 [0012] (1) A method for producing a modified protein comprising modifying a substrate protein with an enzyme protein, wherein the substrate protein and Z or the enzyme protein increases the affinity between the substrate protein and the enzyme protein. A method for producing the modified protein, wherein the protein is a chimeric protein to which a protein binding domain is added.
[0013] (2)蛋白質結合ドメインが付加されたキメラタンパク質と結合する基質タンパク質又は 酵素タンパク質が、該蛋白質結合ドメインが親和性を示すアミノ酸配列が付加された キメラタンパク質である、前記(1)に記載の製造方法。 [0013] (2) In the above (1), the substrate protein or enzyme protein that binds to the chimeric protein to which the protein binding domain is added is a chimeric protein to which an amino acid sequence to which the protein binding domain has affinity is added. The manufacturing method as described.
[0014] (3)蛋白質結合ドメイン及び Z又は該蛋白質結合ドメインが親和性を示すアミノ酸配 列が、酵素的に若しくは化学的に切断可能なアミノ酸配列を介して基質タンパク質及 び Z又は酵素タンパク質に付加されている、前記(1)または(2)に記載の製造方法。 [0014] (3) The protein-binding domain and Z or the amino acid sequence to which the protein-binding domain has an affinity to the substrate protein and Z or the enzyme protein via an amino acid sequence that can be cleaved enzymatically or chemically The production method according to (1) or (2), which is added.
[0015] (4)酵素タンパク質がキナーゼである、前記(1)〜(3)のいずれかに記載の修飾タン パク質の製造方法。
[0016] (5)蛋白質結合ドメイン力 H3ドメインである、前記(1)〜 (4)のいずれかに記載の修 飾タンパク質の製造方法。 [0015] (4) The method for producing a modified protein according to any one of (1) to (3), wherein the enzyme protein is a kinase. [0016] (5) The method for producing a modified protein according to any one of (1) to (4) above, wherein the protein binding domain is an H3 domain.
[0017] (6)前記 SH3ドメインが以下(a)又は (b)のペプチドであり、 (6) The SH3 domain is a peptide of the following (a) or (b):
(a)配列番号 1のアミノ酸配列からなるペプチド (a) a peptide consisting of the amino acid sequence of SEQ ID NO: 1
(b)配列番号 1のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しく は付加されたアミノ酸配列から成り、かつ SH3ドメイン結合配列への親和性を有する ペプチドであって、前記 SH3ドメイン結合配列は PXXPXZあるいは ZXXPXXPある!/、は PXXXRXXK (式中、 Xは任意のアミノ酸を表し、 Zは K又は Rを表す。)で表されるプロ リンリッチ配列を有する、前記(5)に記載の製造方法。 (b) a peptide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1 and having affinity for an SH3 domain binding sequence, wherein the SH3 The domain binding sequence is PXXPXZ or ZXXPXXP! /, Has a proline-rich sequence represented by PXXXRXXK (wherein X represents any amino acid and Z represents K or R), as described in (5) above Manufacturing method.
[0018] (7)前記 SH3ドメインが以下(c)又は(d)のペプチドであり、 [7] (7) The SH3 domain is a peptide of the following (c) or (d),
(c)配列番号 26のアミノ酸配列力もなるペプチド (c) Peptide having the amino acid sequence of SEQ ID NO: 26
(d)配列番号 26のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しく は付加されたアミノ酸配列から成り、かつ SH3ドメイン結合配列への親和性を有する ペプチドであって、前記 SH3ドメイン結合配列は PX[V又は I] [D又は N]RXXKP (式 中、 Xは任意のアミノ酸を表す)で表される配列を有する、前記(5)に記載の製造方 法。 (d) a peptide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 26, and having affinity for an SH3 domain binding sequence, wherein the SH3 The production method according to (5), wherein the domain binding sequence has a sequence represented by PX [V or I] [D or N] RXXKP (wherein X represents an arbitrary amino acid).
[0019] (8)前記基質タンパク質が SH3ドメインを有し、前記キナーゼが SH3ドメイン結合配列 を有する、前記(6)又は(7)の 、ずれかに記載の製造方法。 [0019] (8) The production method according to any one of (6) and (7), wherein the substrate protein has an SH3 domain, and the kinase has an SH3 domain binding sequence.
[0020] (9)前記基質タンパク質が SH3ドメイン結合配列を有し、前記キナーゼが SH3ドメイン を有する、前記(6)又は(7)の 、ずれかに記載の製造方法。 [0020] (9) The production method of any one of (6) or (7), wherein the substrate protein has an SH3 domain binding sequence, and the kinase has an SH3 domain.
[0021] (10)基質タンパク質と酵素タンパク質との反応後に酵素的に若しくは化学的に切断 可能なアミノ酸配列を切断して修飾タンパク質を回収する段階を含む、前記(3)に記 載の製造方法。 [0021] (10) The production method according to (3), further comprising the step of recovering the modified protein by cleaving an amino acid sequence that can be cleaved enzymatically or chemically after the reaction between the substrate protein and the enzyme protein .
[0022] (11)キメラタンパク質である基質タンパク質及び Z又は酵素タンパク質と該キメラタン ノ^質が結合する基質タンパク質又は酵素タンパク質とを発現するベクターを用いて 宿主を形質転換し、基質タンパク質と酵素タンパク質とを宿主細胞内で共発現させる ことからなる、前記(1)〜(3)の 、ずれかに記載の製造方法。 [0022] (11) Transforming a host using a vector that expresses a substrate protein and Z or enzyme protein that is a chimeric protein and the substrate protein or enzyme protein to which the chimeric protein binds, and the substrate protein and the enzyme protein The production method according to any one of the above (1) to (3), which comprises co-expressing and in a host cell.
[0023] (12)酵素タンパク質がミリストイルトランスフェラーゼである、(1)〜(3)のいずれかに
記載の修飾タンパク質の製造方法。 [0023] (12) In any one of (1) to (3), the enzyme protein is myristoyltransferase A method for producing the modified protein as described.
[0024] (13)酵素タンパク質がタンパク質脱リン酸ィ匕酵素である、(1)〜(3)のいずれかに記 載の修飾タンパク質の製造方法。 [0024] (13) The method for producing a modified protein according to any one of (1) to (3), wherein the enzyme protein is a protein dephosphorylating enzyme.
図面の簡単な説明 Brief Description of Drawings
[0025] [図 1]SH2ドメインとキナーゼドメインより構成される Abl (SK)のドメイン構造を示す図で ある。 [0025] FIG. 1 is a diagram showing the domain structure of Abl (SK) composed of an SH2 domain and a kinase domain.
[図 2]SH2ドメインとキナーゼドメインと Proline Rich Regionより構成される Abl (SKPl)の ドメイン構造及びアミノ酸配列を示す図である。 FIG. 2 is a diagram showing the domain structure and amino acid sequence of Abl (SKPl) composed of SH2 domain, kinase domain, and Proline Rich Region.
[図 3]CrkIIのドメイン構造を示す図である。 FIG. 3 is a diagram showing the domain structure of CrkII.
[図 4]Ablのドメイン構造及びアミノ酸配列を示す図である。 FIG. 4 is a diagram showing the domain structure and amino acid sequence of Abl.
[図 5]pProEX- Crkllのプラスミド構築手順を示す図である。 FIG. 5 shows the procedure for constructing pProEX-Crkll plasmid.
[図 6]精製した Crkllの SDS-PAGEを示す図である。レーン 1:分子量マーカー、レーン 2: 6 X Hisタグ切断前の CrkII、レーン 3: 6 X Hisタグ切断後の Crkll、レーン 4: Fractio n番号 8、レーン 5 : Fraction番号 16、レーン 6 : Fraction番号 17、レーン 7 : Fraction番 号 18、レーン 8 : Fraction番号 19 FIG. 6 is a diagram showing SDS-PAGE of purified Crkll. Lane 1: Molecular weight marker, Lane 2: CrkII before 6 X His tag cleavage, Lane 3: Crkll after 6 X His tag cleavage, Lane 4: Fractio n number 8, Lane 5: Fraction number 16, Lane 6: Fraction number 17, Lane 7: Fraction No. 18, Lane 8: Fraction No. 19
[図7] pET- Duet- SKのプラスミド構築手順を示す図である。 FIG. 7 is a diagram showing a plasmid construction procedure for pET-Duet-SK.
[図 8]pET- Duet- SK- Crkllのプラスミド構築手順を示す図である。 FIG. 8 is a diagram showing a plasmid construction procedure of pET-Duet-SK-Crkll.
[図 9]pET- Duet- SKP1のプラスミド構築手順を示す図である。 FIG. 9 is a diagram showing a plasmid construction procedure of pET-Duet-SKP1.
[図 10]pET- Duet- SKPl- Crkllのプラスミド構築手順を示す図である。 FIG. 10 is a diagram showing a procedure for constructing a plasmid of pET-Duet-SKPl-Crkll.
[図 11]SKP1と共発現した Crkllの SDS-PAGEを示す図である。レーン 1:分子量マーカ 一、レーン 2 : CrkII、レーン 3 : 31^1と共発現した0«1。 FIG. 11 shows SDS-PAGE of Crkll co-expressed with SKP1. Lane 1: Molecular weight marker 1, Lane 2: CrkII, Lane 3: 0 «1 co-expressed with 31 ^ 1.
[図 12]市販のキナーゼでリン酸ィ匕反応を行った後の CrkII、 SKと共発現した CrkII、 SK PIと共発現した Crkllの免疫染色を示す図である。レーン 1 :分子量マーカー、レーン 2:市販の Ablを用いて試験管内でリン酸ィ匕反応を行った CrkII、レーン 3: SKと共発現 した CrkII、レーン 4: SKP1と共発現した Crkll FIG. 12 shows immunostaining of CrkII co-expressed with CrkII and SK and Crkll co-expressed with SKPI after a phosphorylation reaction with a commercially available kinase. Lane 1: molecular weight marker, lane 2: CrkII phosphorylated with a commercially available Abl, lane 3: CrkII co-expressed with SK, lane 4: Crkll co-expressed with SKP1
[図 13]市販のキナーゼでリン酸化反応を行う前と行った後の Crkllの SDS-PAGEを示 す図である。レーン 1 :分子量マーカー、レーン 2 :リン酸化反応前の CrkII、レーン 3 : リン酸ィ匕反応後の Crkll
[図 14]精製した SKP1を用いてリン酸ィ匕反応を行った後の Crkllの免疫染色を示す図 である。レーン 1 :分子量マーカー、レーン 2 :精製した SKP1を用いて試験管内でリン 酸化反応を行った Crkll FIG. 13 shows Crkll SDS-PAGE before and after phosphorylation with a commercially available kinase. Lane 1: Molecular weight marker, Lane 2: CrkII before phosphorylation, Lane 3: Crkll after phosphate-reaction FIG. 14 is a view showing immunostaining of Crkll after carrying out a phosphorylation reaction using purified SKP1. Lane 1: Molecular weight marker, Lane 2: Crkll phosphorylated in vitro using purified SKP1
[図 15]Crk-Vav ( 170— 375)のドメイン構造を示す図である。 FIG. 15 shows the domain structure of Crk-Vav (170-375).
[図 16]pET22-Crk-Vav(170-375)のプラスミド構築手順を示す図である。 FIG. 16 is a view showing a procedure for constructing a plasmid of pET22-Crk-Vav (170-375).
[図 17]Crk-Vav(170— 375)ならびに Vav(170— 375)の SKP1によるリン酸化を示す SD [Fig. 17] SD showing phosphorylation of Crk-Vav (170-375) and Vav (170-375) by SKP1.
S-PAGEを示す図である。レーン 1 :分子量マーカー、レーン 2 :リン酸化反応前の CrkIt is a figure which shows S-PAGE. Lane 1: Molecular weight marker, Lane 2: Crk before phosphorylation
- Vav(170— 375)、レーン 3 :リン酸化反応後の Crk- Vav(170— 375)、レーン 4 :リン酸 化反応前の Vav(170— 375)、レーン 5 :リン酸化反応後の Vav(170— 375) -Vav (170-375), Lane 3: Crk-Vav (170-375) after phosphorylation, Lane 4: Vav before phosphorylation (170-375), Lane 5: Vav after phosphorylation (170- 375)
[図 18]Vav (170-375)のドメイン構造とアミノ酸配列を示す図である。 FIG. 18 shows the domain structure and amino acid sequence of Vav (170-375).
[図 19]SK- SLPのドメイン構造とアミノ酸配列を示す図である。 FIG. 19 shows the domain structure and amino acid sequence of SK-SLP.
[図 20]Grb2-CrkIIのドメイン構造を示す図である。 FIG. 20 is a diagram showing the domain structure of Grb2-CrkII.
[図 21]pET- Duet- SK- SLPのプラスミド構築手順を示す図である。 FIG. 21 is a view showing a procedure for constructing a plasmid of pET-Duet-SK-SLP.
[図 22]pET22-Grb2- Crkllのプラスミド構築手順を示す図である。 FIG. 22 is a diagram showing a plasmid construction procedure for pET22-Grb2-Crkll.
[図 23]SK-SLP及び SKによりリン酸化した Grb2-CrkIIの SDS-PAGEを示す図である。 図左 レーン 1:分子量マーカー、レーン 2:リン酸化反応前の Grb- Crkll、レーン 3: S FIG. 23 shows SDS-PAGE of Grb2-CrkII phosphorylated by SK-SLP and SK. Left figure Lane 1: Molecular weight marker, Lane 2: Grb-Crkll before phosphorylation, Lane 3: S
K-SLPでリン酸化した Grb- CrkII、図右 レーン 1:分子量マーカー、レーン 2:リン酸 化反応前の Grb-CrkII、レーン 3: SKでリン酸化した Grb- Crkll Grb-CrkII phosphorylated with K-SLP, right side Lane 1: Molecular weight marker, Lane 2: Grb-CrkII before phosphorylation, Lane 3: Grb-Crkll phosphorylated with SK
圆 24]プラスミド pTYRとその部分構造を示す図である。 [24] Plasmid pTYR and its partial structure.
[図 25]pTYR- Vav(l 70-375)によりリン酸化した Crk- Vav (170— 375)の SDS- PAGEを示 す図面である。レーン 1 :分子量マーカー、レーン 2 :リン酸化反応前の Crk-Vav(170 -375)、レーン3 :pTYR-Vav(170-375)で発現させたCrk-Vav(170— 375)。 FIG. 25 is a drawing showing an SDS-PAGE of Crk-Vav (170-375) phosphorylated by pTYR-Vav (l 70-375). Lane 1: molecular weight marker, lane 2: Crk-Vav (170-375) before phosphorylation, lane 3: Crk-Vav (170-375) expressed in pTYR-Vav (170-375).
圆 26]pTYR ( -)とその部分構造を示す図である。。 [26] It is a diagram showing pTYR (-) and its partial structure. .
[図 27]pSH3-NMTとその部分構造を示す図である。 FIG. 27 is a diagram showing pSH3-NMT and its partial structure.
[図 28]pGBl-Myrとその部分構造を示す図である。 FIG. 28 is a diagram showing pGBl-Myr and its partial structure.
[図 29]SH3- NMTを用いてミリストイル化した GBl- Myrの SDS- PAGEを示す図である。 レーン 1は 10 μ 1の SH3— ΝΜΤ、レーン 2は 1 μ 1の SH3— ΝΜΤ、レーン 3は 0 μ 1の SH3— Ν ΜΤによるミリストイルイ匕を示す。
[図 30]ρΡΤΡ1Β- PxxPとその部分構造を示す図である。 FIG. 29 is a diagram showing an SDS-PAGE of GBl-Myr that is myristoylated using SH3-NMT. Lane 1 shows a 10 μ 1 SH3— 1, Lane 2 shows a 1 μ 1 SH3—ΝΜΤ, and Lane 3 shows a 0 μ1 SH3—ΝΜΤ. FIG. 30 is a diagram showing ρΡΤΡ1Β-PxxP and its partial structure.
[図 31]PTP-1B- PxxPを用いて脱リン酸化したリン酸化 Crkllの SDS-PAGEを示す図で ある。レーン 1は 10 μ 1の PTP- IB- ΡχχΡ、レーン 2は 1 μ 1の PTP- IB- ΡχχΡ、レーン 3は 0 μ 1の PTP-1B- PxxPによる脱リン酸化を示す。 FIG. 31 is a diagram showing an SDS-PAGE of phosphorylated Crkll dephosphorylated using PTP-1B-PxxP. Lane 1 shows 10 µ 1 PTP-IB-ΡχχΡ, Lane 2 shows 1 µ 1 PTP-IB-ΡχχΡ, and Lane 3 shows 0 µ 1 PTP-1B-PxxP.
[図 32]PTP- IB- PxxPを用いて脱リン酸ィ匕したリン酸ィ匕 Crkllの免疫染色を示す図であ る。レーン 1は 10 μ 1の PTP- IB- ΡχχΡ、レーン 2は 1 μ 1の PTP- IB- ΡχχΡ、レーン 3は 0 μ 1の PTP- IB- PxxPによる脱リン酸化を示す。 FIG. 32 shows immunostaining of phosphate Crkll dephosphorylated using PTP-IB-PxxP. Lane 1 shows dephosphorylation with 10 μ 1 PTP-IB-ΡχχΡ, Lane 2 with 1 μ1 PTP-IB-ΡχχΡ, and Lane 3 with 0 μ1 PTP-IB-PxxP.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明の基質タンパク質の修飾を、タンパク質リン酸化反応を例示として説 明するが、本発明における基質タンパク質の修飾はこれに限られるものではなぐ脱 リン酸化、ミリスチル化、パルミトイル化、ュビキチン化、ュビキチン様タンパク質修飾 、 ADPリボシル化、 PE化、糖鎖付加を含めた、酵素タンパク質によるタンパク質翻訳 後修飾に有効である。従って、基質及び Z又は酵素タンパク質に付加する蛋白質結 合ドメインゃ該ドメインが親和性を示すアミノ酸配列の組み合わせも SH3ドメインと SH3 ドメイン結合配列に限定されるものではなぐその他カルモジュリンとカルモジュリン相 互作用配列、 PDZドメインと PDZドメイン相互作用配列など、あらゆる蛋白質結合ドメ インと該ドメインが親和性を示すアミノ酸配列を利用することができる。また、ファージ ディスプレイ等によって得た任意のタンパク質に対して結合性を有するアミノ酸配列 の使用も可能である。 [0026] Hereinafter, the modification of the substrate protein of the present invention will be described using protein phosphorylation as an example, but the modification of the substrate protein in the present invention is not limited to this. Dephosphorylation, myristylation, palmitoylation It is effective for post-translational modification of proteins with enzyme proteins, including ubiquitination, ubiquitin-like protein modification, ADP ribosylation, PE formation, and glycosylation. Therefore, the protein binding domain added to the substrate and Z or the enzyme protein is not limited to the SH3 domain and SH3 domain binding sequence, and the combination of the amino acid sequences to which the domain has affinity is not limited to other sequences of calmodulin and calmodulin interaction. Any protein-binding domain, such as a PDZ domain and a PDZ domain interaction sequence, and an amino acid sequence that exhibits affinity for the domain can be used. It is also possible to use an amino acid sequence that has binding properties to any protein obtained by phage display or the like.
[0027] また本発明は、基質タンパク質をキナーゼによりリン酸ィ匕して、リン酸ィ匕タンパク質を 製造する方法であって、該基質タンパク質及び Zまたはキナーゼに相補的な SH3ドメ イン及び SH3ドメイン結合配列を持たせることにより、両分子の親和性を高め、効率的 にリン酸ィ匕反応を行わせることよりなる。 [0027] The present invention also relates to a method for producing a phosphate protein by phosphorylating a substrate protein with a kinase, the SH3 domain and SH3 domain complementary to the substrate protein and Z or kinase. By having a binding sequence, the affinity of both molecules is increased and the phosphorylation reaction is efficiently performed.
[0028] リン酸化反応における「基質タンパク質」は、リン酸ィ匕されるタンパク質であって、リン 酸化部位 (Thr、 Ser又は Tyr)を有するタンパク質を意味する。このようなタンパク質は 、生体内や細胞内の存在するもの、又は単離されたもの等如何なる形態のものであ つてもよい。またこのような基質タンパク質としては、それ自身がもともと SH3ドメインを 有するものであっても、あるいはその様な SH3ドメインをもともと有しないものであって
ちょい。 [0028] "Substrate protein" in the phosphorylation reaction means a protein that is phosphorylated and has a phosphorylation site (Thr, Ser or Tyr). Such proteins may be in any form such as those present in vivo or in cells, or isolated. In addition, such a substrate protein may originally have an SH3 domain or may not have such an SH3 domain. A little.
[0029] 自身がもともと SH3ドメインを有するものとしては、 Crkllや pl30Cas等が挙げられる。 [0029] Crkll, pl30Cas, etc. can be mentioned as those having an SH3 domain.
また SH3ドメインをもともと有しないものとしては、パキシリンや AKT等が挙げられる。 Moreover, paxillin, AKT, etc. are mentioned as those that do not have the SH3 domain.
[0030] 本発明における「SH3ドメイン」とは、 50〜70程度のアミノ酸残基より構成され、ほぼ 直角で互いに詰め込まれた 2つの小さい |8シートを有する、 SH3ドメイン結合配列に 親和性を示す機能性ドメインを意味する。 [0030] In the present invention, the "SH3 domain" refers to an SH3 domain binding sequence comprising two small | 8 sheets composed of about 50 to 70 amino acid residues and packed into each other at almost right angles. Means functional domain.
[0031] このような SH3ドメインを含むタンパク質として、 Abl、 Tec、 Btk、 Lyn、 Frk、 Srms、 Blk 、 Hck、 Txkゝ Vav、 Crk、 CrkLゝ JNKゝ CSKゝ CasL、 pl30Casゝ p47phox、 p40phox、 Pexl 3、 Grb2、 RasGAPゝ RhoGAPゝ Fyb、 Fyn、 PLCganmmaゝ Intersectin、 Ctk、 ArlGAP、 PI 3Kゝ PSD— 95、 Yesゝ Srk、 Fgr、 Nckゝ Gadsゝ Zo— 1、 Zo— 2、 Zo— 3、 Spectrin, Drk、 Sem— 5 等が挙げられる。本発明の「SH3ドメイン」はこれらのタンパク質のいずれかの機能性 ドメインを用いることができる。 [0031] Proteins containing such SH3 domains include Abl, Tec, Btk, Lyn, Frk, Srms, Blk, Hck, Txk ゝ Vav, Crk, CrkL ゝ JNK ゝ CSK ゝ CasL, pl30Cas ゝ p47phox, p40phox, Pexl 3, Grb2, RasGAP ゝ RhoGAP ゝ Fyb, Fyn, PLCganmma ゝ Intersectin, Ctk, ArlGAP, PI 3K ゝ PSD—95, Yes ゝ Srk, Fgr, Nck ゝ Gads ゝ Zo—1, Zo—2, Zo—3, Spectrin , Drk, Sem-5, etc. As the “SH3 domain” of the present invention, any functional domain of these proteins can be used.
[0032] 本願発明で利用可能な「SH3ドメイン」の例は、以下 (a)又は (b)のペプチドである。 [0032] Examples of the "SH3 domain" that can be used in the present invention are the following peptides (a) or (b).
[0033] (a)配列番号 1のアミノ酸配列からなるペプチド [0033] (a) a peptide comprising the amino acid sequence of SEQ ID NO: 1
(b)配列番号 1のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しく は付加されたアミノ酸配列力もなり、かつ SH3ドメイン結合配列への親和性を示すぺ プチド。 (b) A peptide having an amino acid sequence ability in which one or several amino acids have been deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1 and exhibiting affinity for the SH3 domain binding sequence.
[0034] また本発明で利用可能な SH3ドメインの別の例は、以下 (c)又は (d)のペプチドで ある。 [0034] Another example of the SH3 domain that can be used in the present invention is the following peptide (c) or (d).
[0035] (c)配列番号 26のアミノ酸配列力もなるペプチド [0035] (c) a peptide having the amino acid sequence ability of SEQ ID NO: 26
(d)配列番号 26のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しく は付加されたアミノ酸配列力もなり、かつ SH3ドメイン結合配列への親和性を示すぺ プチド。 (d) A peptide having an amino acid sequence ability in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 26, and exhibiting affinity for the SH3 domain binding sequence.
[0036] また、本発明で利用可能な SH3ドメインとしては、配列番号 1または 25のアミノ酸配 列に 60%相同、好ましくは 80%相同、より好ましくは 90%相同、更に好ましくは 95%相 同のアミノ酸配列力 なり、かつ SH3ドメイン結合配列に親和性を示すペプチドであつ てもよい。 [0036] The SH3 domain usable in the present invention is 60% homologous to the amino acid sequence of SEQ ID NO: 1 or 25, preferably 80% homologous, more preferably 90% homologous, and still more preferably 95% homologous. It may be a peptide having an amino acid sequence ability and having an affinity for the SH3 domain binding sequence.
[0037] 本発明における SH3ドメイン結合配列は、上記の SH3ドメインがそれぞれ特異的に、
あるいは共通して認識し、親和性を示すアミノ酸配列を意味する。 SH3ドメイン結合配 列は SH3ドメインの配列により異なる場合もあれば、あらゆる SH3ドメインが共通して結 合する場合もある。あらゆる SH3ドメインが結合するアミノ酸配列の例としては、 PxxP( ただし Xは任意のアミノ酸残基を示す)を含む 10残基程度のアミノ酸配列が挙げられ る。このアミノ酸配列は、 5〜100 \1の解離定数で31"[3ドメィンに結合する。 [0037] In the SH3 domain binding sequence in the present invention, each of the above SH3 domains is specifically, Alternatively, it means an amino acid sequence that is commonly recognized and shows affinity. The SH3 domain binding sequence may differ depending on the sequence of the SH3 domain, or all SH3 domains may bind in common. Examples of amino acid sequences to which all SH3 domains bind include amino acid sequences of about 10 residues including PxxP (where X represents any amino acid residue). This amino acid sequence binds to 31 "[3 domains with a dissociation constant of 5-100 \ 1.
[0038] この SH3ドメイン結合配列は、さらに限定すると ? ? , K)X(Xは任意のァ ミノ酸残基を表し、 Φは疎水性アミノ酸残基、さらに限定すると I、 L、 V、 Pのいずれか を表す。)で表される。 [0038] This SH3 domain binding sequence is further limited to??, K) X (X represents any amino acid residue, Φ is a hydrophobic amino acid residue, and more specifically I, L, V, P It represents one of the following.)
[0039] 例えば、上記 a) b)の SH3ドメインが親和性を示す SH3ドメイン結合配列は、 PXXPXZ あるいは ZXXPXXPあるいは PXXXRXXK (式中、 Xは任意のアミノ酸を表し、 Zは K又 は Rを表す。)で表されるアミノ酸配列である。また、上記 c) d)の SH3ドメインが親和性 を示す SH3ドメイン結合配列は、 PX[V又は I] [D又は N]RXXKP (式中、 Xは任意の アミノ酸を表す)で表される配列である。 [0039] For example, the SH3 domain binding sequence in which the SH3 domain of a) b) shows affinity is PXXPXZ, ZXXPXXP, or PXXXRXXK (wherein X represents an arbitrary amino acid, and Z represents K or R). ). In addition, the SH3 domain binding sequence in which the SH3 domain of c) d) shows affinity is a sequence represented by PX [V or I] [D or N] RXXKP (wherein X represents any amino acid). It is.
[0040] 本発明に言う「親和性を示す」とは、蛋白質 蛋白質間の特異的な相互作用を発 揮させる程度の結合 (解離)定数をもって、蛋白質結合ドメインが該ドメイン結合配列 に結合する性質をいう。この親和性は、例えば SH3ドメインを有するペプチドに任意 のアミノ酸配列を有するペプチドを添カ卩して、核磁気共鳴 (NMR)スペクトル、蛍光ス ベクトル、紫外吸収スペクトル、蛍光偏光法、表面プラズモン共鳴、プルダウンアツセ ィゃ ELISAなど、また FRETを用いる方法 (特許文献 1および 2)等で測定しその変化 等を測定することにより、調べることができる。 [0040] In the present invention, "showing affinity" means the property that a protein binding domain binds to the domain binding sequence with a binding (dissociation) constant that causes a specific interaction between proteins and proteins. Say. This affinity can be determined by adding a peptide having an arbitrary amino acid sequence to a peptide having an SH3 domain, for example, nuclear magnetic resonance (NMR) spectrum, fluorescence vector, ultraviolet absorption spectrum, fluorescence polarization method, surface plasmon resonance, A pull-down assay can be examined by measuring the change and the like by measuring with ELISA or the like (Patent Documents 1 and 2) using FRET.
[0041] 本発明の酵素タンパク質の例である「キナーゼ」は、タンパク質中の T(Thr)、 S (Ser )又は Y(Tyr)の OH基にリン酸基を付加する反応を触媒する酵素タンパク質である。 その特異性により、 Ser及び Thrをリン酸ィ匕する SerZThrリン酸ィ匕酵素と Tyrをリン酸ィ匕 する Tyrリン酸ィ匕酵素の 2種類に分類される。 Tyrリン酸化酵素としては、 Abl、 Lyn、 Fy n、 Hck、 Jak、 CSK、 Flk、 Syk、 EGFR、 VEGFR、 ZAP- 70、 Blk、 Ryk、 Btk、 Tec、 Src、 Fr k、 Itk、 Lck、 Yes、 Kit, Fes、 Mer、 Fgr、 IGFR、 FGFR、 FAK、 EPHR、 Alk、 Met, Trk、 E ck、 Hek、 Sek、 Mdk、 Esk、 Htk、 Rek、 erbB等が挙げられる。また SerZThrリン酸化酵 素としては、 CK II、 nPKC、 aPKC、 PKCゝ PKA、 PKBゝ ROCK, STE20、 CAMK、 MAPK
、アーク、 Cdkゝ Chkゝ Drp、 Zipゝ MAPKK, MAPKKK, JNKゝ MEKK、 MLCK、 KIN, YA K、 SAT4、 PAK等が挙げられる。いずれの酵素も複数の機能ドメインにより構成され、 そのうちのキナーゼドメインが触媒機能を担 ヽ、キナーゼドメインのみでも活性を示す ことが知られている。本発明においては、キナーゼ全体でも、リン酸ィ匕活性を有するド メインでも利用することが出来、また本発明にいう「キナーゼ」は、特に断らない限り両 者を意味するものとする。 [0041] "Kinase", which is an example of the enzyme protein of the present invention, is an enzyme protein that catalyzes the reaction of adding a phosphate group to the OH group of T (Thr), S (Ser), or Y (Tyr) in the protein. It is. Depending on its specificity, it is classified into two types: SerZThr phosphate enzyme that phosphorylates Ser and Thr, and Tyr phosphate enzyme that phosphorylates Tyr. Tyr kinases include Abl, Lyn, Fyn, Hck, Jak, CSK, Flk, Syk, EGFR, VEGFR, ZAP-70, Blk, Ryk, Btk, Tec, Src, Frk, Itk, Lck, Yes Kit, Fes, Mer, Fgr, IGFR, FGFR, FAK, EPHR, Alk, Met, Trk, Eck, Hek, Sek, Mdk, Esk, Htk, Rek, erbB and the like. SerZThr phosphorylation enzymes include CK II, nPKC, aPKC, PKC ゝ PKA, PKB ゝ ROCK, STE20, CAMK, and MAPK. , Ark, Cdk ゝ Chk ゝ Drp, Zip ゝ MAPKK, MAPKKK, JNK ゝ MEKK, MLCK, KIN, YAK, SAT4, PAK, etc. All enzymes are composed of a plurality of functional domains, of which the kinase domain is responsible for the catalytic function, and it is known that the kinase domain alone is active. In the present invention, the whole kinase or a domain having phosphate activity can be used, and “kinase” in the present invention means both unless otherwise specified.
[0042] 本発明の一態様では、 SH3ドメイン結合配列又は SH3ドメインのいずれかをアミノ酸 配列レベルで付加させたキメラタンパク質である基質タンパク質 (リン酸ィ匕部位を含む )と、該基質タンパク質の SH3ドメイン結合配列又は SH3ドメインに親和性を示すアミノ 酸配列を付加させたキメラタンパク質であるキナーゼを使用する。好ましくは、 SH3ドメ インを基質タンパク質に、 SH3ドメイン結合配列をキナーゼに、それぞれアミノ酸レべ ルで付加させたキメラタンパク質を使用する。それぞれのキメラタンパク質は、適当な アミノ酸配列、好ましくは特定のアミノ酸配列を認識して切断することの出来るプロテ ァーゼで切断可能なアミノ酸配列を、基質タンパク質または酵素タンパク質と付加さ れるアミノ酸配列との間に設けてもよい。また、基質タンパク質または酵素タンパク質 と付加されるアミノ酸配列との順序には特に制限はなぐいずれが N末端側に位置し ていてもよい。 [0042] In one embodiment of the present invention, a substrate protein (including a phosphate chain site) that is a chimeric protein in which either the SH3 domain-binding sequence or the SH3 domain is added at the amino acid sequence level, and the SH3 of the substrate protein A kinase, which is a chimeric protein to which an amino acid sequence showing affinity for a domain binding sequence or SH3 domain is added, is used. Preferably, a chimeric protein in which the SH3 domain is added to the substrate protein and the SH3 domain binding sequence is added to the kinase at the amino acid level, respectively. Each chimeric protein has an appropriate amino acid sequence, preferably an amino acid sequence cleavable by a protease capable of recognizing and cleaving a specific amino acid sequence, between the substrate protein or enzyme protein and the amino acid sequence to be added. May be provided. In addition, there is no particular limitation on the order of the substrate protein or enzyme protein and the amino acid sequence to be added, which may be located on the N-terminal side.
[0043] 本発明の方法を用いてリン酸ィ匕を行なう方法に特に制限はないが、以下の方法が 例示される: [0043] There is no particular limitation on the method of performing phosphoric acid using the method of the present invention, but the following methods are exemplified:
(1)基質タンパク質に SH3ドメインを付加してキメラタンパク質を用意する。 SH3ドメイ ンは基質タンパク質又は酵素タンパク質の内在性のドメインを利用してもよいが、他 のタンパク質由来の SH3ドメインとのキメラタンパク質としても良い。その場合、前述の 通り、 目的とする基質タンパク質のアミノ酸配列と SH3ドメインのアミノ酸配列との間に 、プロテアーゼなどの酵素的方法により、又は CNBrなどの化学的手法により切断す ることのできるアミノ酸配列、例えば Tev Proteaseや Thrombin Proteaseなどのタンパク 質分解酵素の切断配列を挿入すれば、リン酸ィ匕反応終了後に該切断配列をタンパ ク質分解酵素などで消化ないし切断することで、 目的とするアミノ酸配列のみ力も構 成されるリン酸ィ匕タンパク質を得ることができる。
[0044] 一方、キナーゼのアミノ酸配列の C端側に SH3ドメイン結合配列を有するキメラタン ノ ク質を用意し、これを基質タンパク質に作用させてもよいし、またこのペプチドを発 現するようなベクター等を用意して、基質タンパク質の近傍で発現ないし共発現させ てもよい。後者の場合、ベクターとして pET系、 pGEX系、 pPRO系等を含むあらゆるべ クタ一を用いることができ、常法に従って発現ベクターを構成すればょ 、。 (1) A chimeric protein is prepared by adding the SH3 domain to the substrate protein. The SH3 domain may use the endogenous domain of the substrate protein or enzyme protein, but may be a chimeric protein with an SH3 domain derived from another protein. In this case, as described above, the amino acid sequence that can be cleaved between the amino acid sequence of the target substrate protein and the amino acid sequence of the SH3 domain by an enzymatic method such as a protease or a chemical method such as CNBr. For example, if a proteolytic enzyme cleavage sequence such as Tev Protease or Thrombin Protease is inserted, the target amino acid can be digested or cleaved with a protein degrading enzyme after the completion of the phosphorylation reaction. It is possible to obtain a phosphoric acid protein in which only the sequence force is composed. [0044] On the other hand, a chimeric protein having an SH3 domain binding sequence on the C-terminal side of the amino acid sequence of the kinase may be prepared and used to act on a substrate protein, or a vector that expresses this peptide. Etc. may be prepared and expressed or co-expressed in the vicinity of the substrate protein. In the latter case, any vector including pET, pGEX, pPRO, etc. can be used as a vector, and an expression vector should be constructed according to a conventional method.
[0045] (2)基質タンパク質がもともと SH3ドメインを有している場合には、上記と同様にしてキ ナーゼに SH3ドメイン結合配列をアミノ酸レベルで付加させたキメラタンパク質を基質 タンパク質に作用させればよい。 [0045] (2) When the substrate protein originally has an SH3 domain, a chimeric protein in which an SH3 domain binding sequence is added to the kinase at the amino acid level is allowed to act on the substrate protein in the same manner as described above. Good.
[0046] (3)キナーゼ、特にキナーゼの C末端側に SH3ドメイン結合配列をアミノ酸レベルで 付加させたペプチドをコードする DNAと SH3ドメインを含んだ基質タンパク質をコード する DNAを導入した形質転換体を用いて、これらを共発現させる。大腸菌、酵母、哺 乳細胞、昆虫細胞等を含むあらゆる宿主を用いることができ、プロモーターとしては T 7、 Taq、 lac等を含むあらゆるプロモーターを用いることができる。 [0046] (3) A transformant in which a kinase, particularly a DNA encoding a peptide in which an SH3 domain-binding sequence is added to the C-terminal side of the kinase at the amino acid level and a DNA encoding a substrate protein containing the SH3 domain, are introduced. To co-express them. Any host including E. coli, yeast, mammalian cells, insect cells and the like can be used, and any promoter including T7, Taq, lac, etc. can be used as the promoter.
[0047] 上記の SH3ドメインを含む基質タンパク質と SH3ドメイン結合配列を含むキナーゼの 組み合わせのほかに、逆に SH3ドメインを含むキナーゼと SH3ドメイン結合配列を含 む基質タンパク質の組み合わせでも、同様に基質タンパク質とキナーゼの親和性を 高めることができる。 [0047] In addition to the combination of the substrate protein containing the SH3 domain and the kinase containing the SH3 domain binding sequence, the combination of the kinase containing the SH3 domain and the substrate protein containing the SH3 domain binding sequence may be similarly used. And the affinity of the kinase can be increased.
[0048] リン酸化された基質タンパク質の検出は、ドデシル硫酸ナトリウム—ポリアクリルアミ ドゲル電気泳動(SDS-PAGE)を用いて行うことができる。基質タンパク質がリン酸化さ れるとリン酸ィ匕部位 1箇所あたり負電荷が 2個増えることになり、リン酸ィ匕の前後で電 気泳動における移動度が変化する。そのため、リン酸化されていない基質タンパク質 とリン酸化された基質タンパク質の移動度を比較することで、リン酸ィ匕を確認できる。 また、 SDS-PAGEを行った後に、リン酸化された標的タンパク質に特異的な抗体、又 はリン酸ィ匕されたアミノ酸を特異的に認識する抗体を用いた免疫染色を用いることで 、より確実にリン酸ィ匕された基質タンパク質を検出できる。通常の SDS-PAGEではリン 酸化された基質タンパク質と未反応の基質タンパク質の両方が検出されるが、免疫 染色ではリン酸化された基質タンパク質しか検出されないため、リン酸化の反応効率 を決定するためには、通常の SDS-PAGEを行うことが好まし 、。
[0049] また、本発明は実施例に示すように、酵素タンパク質として、ミリストイルトランスフエ ラーゼゃタンパク質脱リン酸ィ匕酵素を利用することもできる。ミリストイルイ匕は、脂肪酸 によるタンパク質の修飾反応の一つであり、ミリストイルトランスフェラーゼがミリストイ ルイ匕を受けるタンパク質に存在する共通配列、例えば G(Eなど) XX(Sなど) Pを認識し、 ミリストイル CoAから当該タンパク質の N末端グリシンのァミノ基にミリストイル基を転位 して酸アミド結合を形成する反応である。このミリストイルイ匕を触媒する酵素であるミリ ストィルトランスフェラーゼ(NMT)は、ヒトを含む 15種以上の真核生物から 19の NMT が同定、報告されている。ヒトには NMT1と NMT2の存在が報告されており、 NMT2は S DS-PAGEで単一の 65 kDaのバンドとして検出される一方、 NMT1は多様な isoformを 示す。本発明では、これらの NMTを適宜利用することができる力 ヒト NMT1又は NM T2の利用が好ましい。 [0048] The phosphorylated substrate protein can be detected by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). When the substrate protein is phosphorylated, two negative charges increase at each phosphate site, and the mobility in electrophoresis changes before and after phosphate. Therefore, phosphate can be confirmed by comparing the mobility of non-phosphorylated substrate protein and phosphorylated substrate protein. Furthermore, after SDS-PAGE, immunostaining with an antibody specific for a phosphorylated target protein or an antibody that specifically recognizes a phosphorylated amino acid is more reliable. It is possible to detect a substrate protein that has been phosphorylated. Normal SDS-PAGE detects both phosphorylated and unreacted substrate protein, but immunostaining detects only phosphorylated substrate protein, so to determine the phosphorylation reaction efficiency. It is preferred to do a normal SDS-PAGE. [0049] In addition, as shown in the Examples of the present invention, myristoyltransferase or protein dephosphorylating enzyme can be used as the enzyme protein. Myristoyl candy is one of the protein modification reactions with fatty acids, and myristoyl transferase recognizes common sequences present in proteins that receive myristoy candy, such as G (E, etc.), XX (S, etc.), and Myristoyl CoA To a rearrangement of the myristoyl group to the amino group of the N-terminal glycine of the protein to form an acid amide bond. As for myristoyltransferase (NMT), an enzyme that catalyzes this myristoy potato, 19 NMTs have been identified and reported from more than 15 eukaryotes including humans. The presence of NMT1 and NMT2 has been reported in humans, and NMT2 is detected as a single 65 kDa band on SDS-PAGE, while NMT1 exhibits various isoforms. In the present invention, it is preferable to use human NMT1 or NMT2 which can appropriately use these NMTs.
[0050] ミリストイルイ匕は、細胞内シグナル伝達、タンパク質の細胞内局在性の決定、特にタ ンパク質の細胞膜へのターゲティング、タンパク質の立体構造の安定化等に関与し ていると考えられている。また HIV-1においては、ウィルス構造タンパク質 pi 7gag及び ウィルス性調節タンパク質 p27nefのミリストイル化力 ウィルス粒子形成のためのァセ ンプリに必須の修飾であることが示唆されている。特に、 NMTは脳、神経で最も発現 レベルが高ぐ脳神経系の研究の進展によってミリストイルイ匕による制御を受ける分子 が今後多数発見されることが期待される。この様に、ミリストイルイ匕を受ける、すなわち ミリストイルイ匕配列を有するタンパク質は多岐にわたっており、本発明はそれらのタン ノ ク質が有するミリストイルイ匕配列を適宜使用することができる。 [0050] Myristoli is considered to be involved in intracellular signal transduction, determination of intracellular localization of protein, particularly targeting of protein to the cell membrane, stabilization of protein three-dimensional structure, and the like. Yes. In addition, in HIV-1, it is suggested that it is an essential modification for the virus protein formation for myristoylation of viral structural protein pi 7gag and viral regulatory protein p27nef. In particular, NMT is expected to discover a number of molecules that are controlled by Myristoyl sputum in the future as research on the cranial nervous system, which has the highest expression level in the brain and nerves, progresses. Thus, there are a wide variety of proteins that receive myristoy buds, that is, those having myristoy bud sequences, and the present invention can appropriately use myristoy bud sequences possessed by these proteins.
[0051] また、本発明は、前記の様にリン酸化された基質タンパク質のみならず、脱リン酸化 された基質タンパク質を簡便に提供することもできる。タンパクの脱リン酸化反応は、 細胞内のタンパク質リン酸ィ匕酵素と共役して働くことで、細胞増殖と分化、細胞の形 態と運動、細胞周期、代謝、転写活性など、細胞内情報伝達を精密にコントロールし ていることが広く知られており、リン酸ィ匕シグナルを正、負の両方に制御するための基 本技術として、遺伝子治療等へも応用することも可能である。 [0051] Further, the present invention can easily provide not only the phosphorylated substrate protein as described above but also the dephosphorylated substrate protein. Protein dephosphorylation works in conjunction with intracellular protein phosphate enzymes, thereby transmitting intracellular information such as cell growth and differentiation, cell shape and movement, cell cycle, metabolism, and transcriptional activity. It is widely known that it is precisely controlled, and it can be applied to gene therapy as a basic technology for controlling both the positive and negative phosphate signals.
[0052] また本発明の方法は、リン酸化、脱リン酸化、ミリストイルイ匕以外のタンパク質の修飾 反応を行う酵素タンパク質と、該酵素タンパク質が認識する特的な配列を組み合わ
せて使用することで、修飾されたタンパク質を簡便且つ効率的に製造することができ る。 [0052] In addition, the method of the present invention combines an enzyme protein that performs a modification reaction of a protein other than phosphorylation, dephosphorylation, and myristoyl koji, and a specific sequence recognized by the enzyme protein. By using it, the modified protein can be easily and efficiently produced.
以下、実施例にて本発明を例証するが、本発明を限定することを意図するものでは ない。 The following examples illustrate the invention, but are not intended to limit the invention.
実施例 1 Example 1
[0053] 本実施例では以下の 3種のプラスミドを用意した。 [0053] In this example, the following three plasmids were prepared.
1.プラスミド pProEX-Crkll:基質タンパク質である Crkll (配列番号 2)を発現させる ためのプラスミドである。 1. Plasmid pProEX-Crkll: A plasmid for expressing the substrate protein Crkll (SEQ ID NO: 2).
2.プラスミド pET- Duet- SK- Crkll:図 1に示すキナーゼを含むがプロリンリッチ配列 を含まない SKをコードする DNA断片(配列番号 4)と Crkllとを含むプラスミドであり、 Cr kllと SKとを共発現させる。 2. Plasmid pET- Duet-SK-Crkll: A plasmid containing a DNA fragment (SEQ ID NO: 4) encoding SK that contains the kinase shown in Fig. 1 but does not contain a proline-rich sequence, and Crkll. Are co-expressed.
3.プラスミド pET- Duet- SKP1- Crkll :図 2に示すキナーゼとプロリンリッチ配列を含 む SKP1をコードする DNA断片(配列番号 5)と Crkllとを含むプラスミドであり、 Crkllと S KP1とを共発現させる。 3. Plasmid pET- Duet-SKP1-Crkll: A plasmid containing the DNA fragment (SEQ ID NO: 5) encoding SKP1 containing the kinase and proline-rich sequence shown in Fig. 2, and Crkll. To express.
[0054] 本実施例においては、リン酸ィ匕の基質としてヒトの Crkll (配列番号 2)を用いた。図 3 にそのドメイン構造を示す。図 3に示すように Crkllは 1つの SH2ドメイン(配列番号 2の 5〜120番目)とそれに続く 2つの SH3ドメイン(配列番号 2の 134〜191番目及び 238〜 293番目)により構成される。この 2つの SH3ドメインに挟まれた領域にリン酸ィ匕部位( 配列番号 2の 221番目の Tyr)がある。 [0054] In this example, human Crkll (SEQ ID NO: 2) was used as a phosphate substrate. Figure 3 shows the domain structure. As shown in FIG. 3, Crkll is composed of one SH2 domain (positions 5 to 120 of SEQ ID NO: 2) followed by two SH3 domains (positions 134 to 191 and 238 to 293 of SEQ ID NO: 2). In the region between these two SH3 domains, there is a phosphate chain (221th Tyr of SEQ ID NO: 2).
[0055] Crkllの N端側の SH3ドメイン(配列番号 2の 134〜191番目)は— PXXPXK—(ただし Xは任意のアミノ酸残基を表す。 Kは Rでもよ ヽ)に対して特異的に結合する。 [0055] The N-terminal SH3 domain of Crkll (134th to 191st of SEQ ID NO: 2) is specific to — PXXPXK— (where X represents any amino acid residue, K may be R ヽ) Join.
[0056] 一方、本実施例においては、キナーゼとしてヒトの Abl (配列番号 3)を用いた。図 4 にそのドメイン構造を示す。図 4に示すように、 Ablは 1つの SH3ドメイン(配列番号 3の 80〜140番目)とそれに続く 1つの SH2ドメイン(配列番号 3の 141〜239番目)、キナー ゼドメイン(配列番号 3の 247〜253番目)、 SH3結合配列(配列番号 3の 545〜550、 58 9〜594および 778〜783番目 )、 DNA結合ドメイン、及びァクチン結合ドメインにより構 成される。上記 Crkllの N端側 SH3ドメインはこの SH3ドメイン結合配列を認識して結合 する。
[0057] ( 1)プラスミド pProEX- Crkllの調製 On the other hand, in this example, human Abl (SEQ ID NO: 3) was used as the kinase. Figure 4 shows the domain structure. As shown in Fig. 4, Abl consists of one SH3 domain (80th to 140th positions in SEQ ID NO: 3), followed by one SH2 domain (141st to 239th positions in SEQ ID NO: 3), and kinase domain (from 247 of SEQ ID NO: 3). 253), SH3 binding sequence (545 to 550, 589 to 594 and 778 to 783 of SEQ ID NO: 3), a DNA binding domain, and an actin binding domain. The Crkll N-terminal SH3 domain recognizes and binds to this SH3 domain binding sequence. [0057] (1) Preparation of plasmid pProEX-Crkll
Crkllの cDNAは既報記載の方法により調製した (Mol. Cell. Biol.、第 12卷、第 3482- 3489頁、 1992年)。 Crkllの cDNA、 dNTP 200 Μ、塩化マグネシウム lmM、 2種のプ ライマー(配列番号 6、 7)それぞれ 300nM、 KOD-Plus-に添付されたバッファー(1 X )、 KOD- Plus- polymerase 1Uを含む反応溶液 100 μ 1で PCR反応を行った。 Crkll cDNA was prepared by the method described previously (Mol. Cell. Biol., No. 12, pages 3482-3489, 1992). Crkll cDNA, dNTP 200 Μ, magnesium chloride lmM, 2 primers (SEQ ID NOs: 6 and 7), 300 nM each, buffer (1 X) attached to KOD-Plus-, reaction containing KOD-Plus-polymerase 1U PCR reaction was performed with 100 μl of the solution.
[0058] 得られた DNA断片を Ncol (NEB社)及び Xhol (NEB社)により切断し、 PCR purificatio n kit (Quiagen社)により精製した。 pProEXCrkll Htb(Quiagen社)を Ncol及び Xholで切 断処理して得た pProEX Htbのベクター断片と、上記で得た Crkll遺伝子 (配列番号 2 )を含む PCR断片の両者を Takara DNA Ligation kit (タカラ社)を用いて連結し、この ベクターを用いて大腸菌 DH5 aを形質転換した。これを培養した後、 MiniPrep kit (Q uiagen社)を用いて、図 5に示すプラスミド(pProEX- Crkll)を得た。 [0058] The obtained DNA fragment was cleaved with Ncol (NEB) and Xhol (NEB) and purified with a PCR purification kit (Quiagen). Both the pProEX Htb vector fragment obtained by cutting pProEXCrkll Htb (Quiagen) with Ncol and Xhol and the PCR fragment containing the Crkll gene (SEQ ID NO: 2) obtained above were combined with Takara DNA Ligation kit (Takara). ), And this vector was used to transform E. coli DH5a. After culturing this, the plasmid (pProEX-Crkll) shown in FIG. 5 was obtained using MiniPrep kit (Quiagen).
[0059] 得られたプラスミド pProEX- Crkllを用いて Crkllを大腸菌で発現させ、 6 X Hisタグを 利用して、 Crkllを精製した。これを SDS-PAGEにより分子量 34kDaの Crkllが純度高く 精製されて ヽることを確認した(図 6)。 [0059] Crkll was expressed in E. coli using the obtained plasmid pProEX-Crkll, and Crkll was purified using the 6 X His tag. It was confirmed by SDS-PAGE that Crkll with a molecular weight of 34 kDa was purified with high purity (Fig. 6).
[0060] (2)プラスミド pET- Duet- SK- Crkllの調製 [0060] (2) Preparation of plasmid pET- Duet-SK-Crkll
Ablの cDNAは既報記載の方法により調製した(Proc. Natl. Acad. Sci. U.S.A.、第 84 卷、第 8200-8204頁、 1987年)。 Ablの cDNAとプライマー(配列番号 10、 11)を用いて 、同様にして PCR反応を行い、 SH2ドメイン及びキナーゼドメインのみを含む PCR断片 (図 1、 SK)を pET Duet (Novagen社)に組み込んだプラスミド(図 7、 pET- Duet- SK)を 得た。このプラスミド (pET- Duet- SK)に、プライマー(配列番号 8、 9)を用いた PCRに より得た Crkllを同様に挿入して、プラスミド(pET- Duet- SK- Crkll)を得た(図 8)。 Abl cDNA was prepared by the method described previously (Proc. Natl. Acad. Sci. U.S.A., 84, 8200-8204, 1987). Using the Abl cDNA and primers (SEQ ID NOs: 10 and 11), PCR was performed in the same manner, and a PCR fragment containing only the SH2 domain and kinase domain (Fig. 1, SK) was incorporated into pET Duet (Novagen). A plasmid (FIG. 7, pET-Duet-SK) was obtained. Crkll obtained by PCR using primers (SEQ ID NOs: 8 and 9) was similarly inserted into this plasmid (pET-Duet-SK) to obtain a plasmid (pET-Duet-SK-Crkll) (Fig. 8).
[0061] (3)プラスミド pET- Duet- SKP1- Crkllの調製 [0061] (3) Preparation of plasmid pET- Duet-SKP1-Crkll
Ablの cDNAとプライマー(配列番号 12、 13)を用いて、同様にして PCR反応を行い 、 SH2ドメイン、キナーゼドメイン及び最も N末端側にある SH3ドメイン結合配列のみを 含む PCR断片(図 2、 SKP1)を pET Duet (Novagen社)に組み込んだプラスミド(pET-D uet-SKPl)を得た(図 9)。このプラスミドに、プライマー(配列番号 8、 9)を用いた PCR により得た Crkllを同様にして挿入して、プラスミド(pET- Duet- SKP1- Crkll)を得た(図 10)。
実施例 2 Using the Abl cDNA and primers (SEQ ID NOs: 12 and 13), a PCR reaction was carried out in the same manner, and a PCR fragment containing only the SH2 domain, kinase domain and the most SH3 domain binding sequence at the N-terminal side (Figure 2, SKP1 ) Was incorporated into pET Duet (Novagen) to obtain a plasmid (pET-Duet-SKPl) (FIG. 9). Crkll obtained by PCR using primers (SEQ ID NOs: 8 and 9) was similarly inserted into this plasmid to obtain a plasmid (pET-Duet-SKP1-Crkll) (FIG. 10). Example 2
[0062] 本実施例では、大腸菌内で CrkllZAblを共発現させ、 Crkllのリン酸ィ匕を観察した。 [0062] In this example, CrkllZAbl was co-expressed in E. coli, and Crkll phosphate was observed.
プラスミド pET- Duet- SKP1- Crkllで大腸菌 BL- 21 (DE3)を形質転換した。この大腸 菌を、アンピシリン含有 LB寒天培地に広げ、ー晚 37°Cでインキュベートすることで形 質転換体を選択した。形成されたコロニーの一つを 100 g/mlのアンピシリンを含ん だ LB培地 20mlに植え 37°Cでー晚培養した。この培養液を 100 μ gZmlのアンピシリン を含んだ 2 XYT培地 1Lに植え継ぎし、 600nmの濁度が 0.4〜1.0の間で終濃度 0.5m Mイソプロピル- β -D(—)-チォガラタトピラノシドを添カ卩し、さらに 25°Cでー晚培養した 。培養液を 3600 X g、 4°Cで 15分遠心分離し、菌体を回収した。菌体を PBS緩衝液 (N aCl 8g、 KC1 0.2g、 Na HPO - 12H O 14.5gゝ KH PO lgを合計 1Lの蒸留水中に溶 Escherichia coli BL-21 (DE3) was transformed with the plasmid pET-Duet-SKP1-Crkll. Transformants were selected by spreading the colon bacteria on LB agar medium containing ampicillin and incubating at 37 ° C. One of the colonies formed was planted in 20 ml of LB medium containing 100 g / ml ampicillin and cultured at 37 ° C. This culture solution was transferred to 1 L of 2 XYT medium containing 100 μg Zml of ampicillin, and the final concentration of 0.5 mM isopropyl-β-D (—)-thiogalatatopyrano was measured at a turbidity of 600 nm between 0.4 and 1.0. The sid was added and further cultured at 25 ° C. The culture solution was centrifuged at 3600 × g at 4 ° C. for 15 minutes to recover the cells. Dissolve the cells in PBS buffer solution (NaCl 8g, KC1 0.2g, Na HPO-12H O 14.5g ゝ KH PO lg in 1L of distilled water in total.
2 4 2 2 4 2 4 2 2 4
解させたもの)に縣濁し、氷中で超音波破砕した。これを 11900 X g、 4°Cで 60分遠心 分離し、可溶性画分と不溶性画分に分離した。 And was sonicated in ice. This was centrifuged at 11900 Xg and 4 ° C for 60 minutes to separate into soluble and insoluble fractions.
[0063] これを電気泳動装置(日本エイド一社)を用いて 15%ポリアクリルアミドゲルで泳動し た。その結果を図 11に示す。対照として泳動を行った Crkllに比べてバンドが高分子 量側にシフトしており、リン酸ィ匕反応が行われたことが確認できる。また、非リン酸化 C rkllの分子量のところにはバンドが見られず、発現した Crkllはほとんど全てがリン酸 化されて!/ヽることが確認された。 [0063] This was electrophoresed on a 15% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.). The results are shown in Fig. 11. As a control, the band was shifted to the higher molecular weight side compared to Crkll, which was run as a control, confirming that the phosphorylation reaction was performed. In addition, no band was observed at the molecular weight of non-phosphorylated Crkll, and it was confirmed that almost all expressed Crkll was phosphorylated!
[0064] 次に、泳動後のポリアクリルアミドゲルと PVDF膜を転写用緩衝液に浸して 5分ほど 振盪した。転写用緩衝液はトリス(ヒドロキシメチル)ァミノメタン 15.14g、グリシン 72.07 gを合計 1Lの蒸留水中に溶解させたものを 4Lとメタノール 1Lを混合したものを用い た。次に、ろ紙を転写用緩衝液に浸し、転写装置(Bio-Rad社)にのせる。次に、 PVD F膜、ゲル、ろ紙の順に重ね、定電圧 10Vで転写を行った。このときの電流は 0.1〜0. 15Aになるように電圧を調節し、約 1時間転写を行った。次に、転写後の PVDF膜をブ ロッキング用緩衝液に浸し、 1時間ほど振盪した。その後、 TBS-T緩衝液で 3回洗浄 した。この間にマウス抗リン酸化 Crkll抗体(Zymed社)をブロッキング用緩衝液で 1000 倍に希釈し、この溶液 5mlに PVDF膜を浸し、 1時間振盪し、 TBS-Tで 3回洗浄した。 この間に 2次抗体を TBS-T緩衝液で 5000倍 (anti-mouse抗体)に希釈した 2次抗体液 5mlに PVDF膜を浸して 1時間振盪し、 TBS-T緩衝液で 3回洗浄した。 2次抗体は Pero
xidase Labeled Anti-Mouse Antibody (Santa Cruz社)を用いた。その後、ペルォキシ ダーゼ染色 DABキット (ナカライテスタ社)を用いて染色を行った。 [0064] Next, the polyacrylamide gel and the PVDF membrane after electrophoresis were immersed in a transfer buffer and shaken for about 5 minutes. The transfer buffer used was a mixture of 15.14 g of tris (hydroxymethyl) aminomethane and 72.07 g of glycine dissolved in a total of 1 L of distilled water and 4 L and 1 L of methanol. Next, the filter paper is immersed in a transfer buffer solution and placed on a transfer device (Bio-Rad). Next, PVDF membrane, gel, and filter paper were stacked in this order, and transfer was performed at a constant voltage of 10V. The voltage was adjusted so that the current at this time was 0.1 to 0.15 A, and transfer was performed for about 1 hour. Next, the PVDF membrane after transfer was immersed in a blocking buffer and shaken for about 1 hour. Then, it was washed 3 times with TBS-T buffer. During this time, mouse anti-phosphorylated Crkll antibody (Zymed) was diluted 1000 times with blocking buffer, PVDF membrane was immersed in 5 ml of this solution, shaken for 1 hour, and washed 3 times with TBS-T. During this period, the PVDF membrane was immersed in 5 ml of a secondary antibody solution diluted with a TBS-T buffer 5000 times (anti-mouse antibody), shaken for 1 hour, and washed 3 times with TBS-T buffer. Secondary antibody is Pero xidase Labeled Anti-Mouse Antibody (Santa Cruz) was used. Thereafter, staining was performed using a peroxidase staining DAB kit (Nacalai Testa).
[0065] その結果、図 12に示すように、 Crkllがリン酸ィ匕されたバンドが確認された。 As a result, as shown in FIG. 12, a band in which Crkll was phosphorylated was confirmed.
[0066] 比較例 1 [0066] Comparative Example 1
市販の Abl (New England Biolabs社、 SH2ドメインとキナーゼドメインの領域のみを有 する)を用いて、 Crkllのリン酸ィ匕反応を試みた。 Using a commercially available Abl (New England Biolabs, which has only the SH2 domain and kinase domain), Crkll's phosphorylation reaction was attempted.
リン酸化反応は、 10mg/ml CrkIl/20mM Tris- HCl/lmM EDTA/150mM NaCl (p H7.5)を 100 /z l、添付の lO XAbl緩衝液を 100 /z l、 ATPを終濃度 O.lmMになるように 添加し、溶液の体積を lmlになるように H Oで調製し、 25°Cで 4日間静置することで Phosphorylation was performed at 10 mg / ml CrkIl / 20 mM Tris-HCl / lmM EDTA / 150 mM NaCl (pH 7.5) at 100 / zl, attached lO XAbl buffer at 100 / zl, and ATP at a final concentration of O.lmM. And adjust the volume of the solution to 1 ml with HO, and leave at 25 ° C for 4 days.
2 2
行った。これを電気泳動装置(日本エイド一社)を用いて 15%ポリアクリルアミドゲルで 泳動した。その結果、図 13より、対照として泳動を行った Crkllとバンドの位置が同じ であり、リン酸ィ匕反応がほとんど行われていないことが確認された。 went. This was electrophoresed on a 15% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.). As a result, it was confirmed from FIG. 13 that the position of the band was the same as that of Crkll subjected to electrophoresis as a control, and that the phosphorylation reaction was hardly performed.
泳動後のポリアクリルアミドゲルについて、実施例 2と同様の免疫染色によりリン酸 化の確認を行なった。その結果を図 12に示す。リン酸化 Crkllのバンドが検出されな いことを確認した。 The polyacrylamide gel after electrophoresis was confirmed to be phosphorylated by the same immunostaining as in Example 2. The result is shown in FIG. It was confirmed that no phosphorylated Crkll band was detected.
[0067] 比較例 2 [0067] Comparative Example 2
プラスミド pET- Duet- SK- Crkllで大腸菌 BL- 21 (DE3)を形質転換し、実施例 2と同 様の方法により Crkllを含む画分を得た。 Escherichia coli BL-21 (DE3) was transformed with the plasmid pET-Duet-SK-Crkll, and a fraction containing Crkll was obtained in the same manner as in Example 2.
泳動後のポリアクリルアミドゲルについて、実施例 2と同様の免疫染色によりリン酸 化の確認を行なった。その結果を図 12に示す。リン酸化 Crkllのバンドが検出されな いことを確認した。 The polyacrylamide gel after electrophoresis was confirmed to be phosphorylated by the same immunostaining as in Example 2. The result is shown in FIG. It was confirmed that no phosphorylated Crkll band was detected.
実施例 3 Example 3
[0068] 本実施例では、 SKP1 (図 2)を 6 X Hisタグをコードする塩基配列とのキメラタンパク 質 (配列番号 14)として大腸菌体内に発現させた。プラスミド pET-Duet-SKPl (図 9) で大腸菌 BL-21 (DE3)を形質転換し、実施例 2と同様の方法により SKP1を含む画分 を得、さらに SKP1を精製した。精製した SKP1を含む溶出画分に同体積のグリセロー ルを加えた。 In this example, SKP1 (FIG. 2) was expressed in E. coli as a chimeric protein (SEQ ID NO: 14) with a base sequence encoding a 6 X His tag. Escherichia coli BL-21 (DE3) was transformed with the plasmid pET-Duet-SKPl (FIG. 9), a fraction containing SKP1 was obtained in the same manner as in Example 2, and SKP1 was further purified. The same volume of glycerol was added to the elution fraction containing purified SKP1.
[0069] この様にして得られた SKP1を用いて、試験管内で Crkllのリン酸ィ匕反応を試みた。こ
の Crkllには実施例 1で得た Crkllを用いた。 lOmgZml CrkIl/20mM Tris-HCl/lm M EDTA/150mM NaCl (pH7.5)を 100 /z 1、比較例 1にて用いた lO XAbl緩衝液を 10 0 1、 ATPを終濃度 O.lmMになるように添カ卩し、溶液の体積を lmlになるように H Oで [0069] Using SKP1 obtained in this way, Crkll's phosphate reaction was attempted in a test tube. This The Crkll obtained in Example 1 was used as the Crkll. lOmgZml CrkIl / 20mM Tris-HCl / lm M EDTA / 150mM NaCl (pH7.5) 100 / z 1, lO XAbl buffer used in Comparative Example 1 is 10 01, ATP is final concentration O.lmM Add HO so that the volume of the solution is lml.
2 調製し、 25°Cで 6時間以上静置することで行った。 2 Prepared and allowed to stand at 25 ° C for 6 hours or more.
[0070] リン酸ィ匕反応を行った Crkllを電気泳動装置(日本エイド一社)を用いて 15%ポリアク リルアミドゲルで泳動した。 [0070] Crkll subjected to the phosphorylation reaction was electrophoresed on a 15% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.).
泳動後のポリアクリルアミドゲルについて、実施例 2と同様の免疫染色によりリン酸 化の確認を行なった。その結果を図 14に示す。 Crkllがリン酸ィ匕されたバンドが確認 された。 The polyacrylamide gel after electrophoresis was confirmed to be phosphorylated by the same immunostaining as in Example 2. The result is shown in FIG. A band in which Crkll was phosphorylated was confirmed.
実施例 4 Example 4
[0071] 本実施例では以下のプラスミドを用意した。 [0071] In this example, the following plasmids were prepared.
1.プラスミド pET22- Crk- Vav(170- 375) :図 15に示す Crkllの N末端側 SH3ドメインと His-タグおよびプレシジョンプロテアーゼ切断配列と Vavのアミノ酸配列の 170番目〜 375番目のアミノ酸残基 (以下、 Vav (170-375)とする)力もなるキメラタンパク質の遺伝 子 (配列番号 15)を含むプラスミドである。本実施例では Vav (170-375) (配列番号 1 6)を基質としてリン酸化を試みた。 1.Plasmid pET22-Crk-Vav (170-375): N-terminal SH3 domain of Crkll and His-tag and precision protease cleavage sequence shown in Fig. 15 and amino acid residues 170-375 of Vav's amino acid sequence ( (Hereinafter referred to as Vav (170-375)) is a plasmid containing the gene (SEQ ID NO: 15) of the chimeric protein that also has the power. In this example, phosphorylation was attempted using Vav (170-375) (SEQ ID NO: 16) as a substrate.
[0072] (1) プラスミド pET22- Crk- Vav(170- 375)の調製 [0072] (1) Preparation of plasmid pET22- Crk-Vav (170-375)
以下のプライマーを用いて得た Crkllの N端側 SH3ドメイン (残基番号 130— 198)の P CR断片を実施例 1と同様の方法により pET22に挿入する。 The PCR fragment of the N-terminal SH3 domain of Crkll (residue numbers 130-198) obtained using the following primers is inserted into pET22 in the same manner as in Example 1.
CCTCTAGACATATGAGGCAGGAGGAGGCGGAG (F) (配列番号 17) CCTCTAGACATATGAGGCAGGAGGAGGCGGAG (F) (SEQ ID NO: 17)
CCCTCGAGGAGCTCCGATACTGAGGCGGAGGC (R) (配列番号 18) CCCTCGAGGAGCTCCGATACTGAGGCGGAGGC (R) (SEQ ID NO: 18)
pProEX Htbの Tevプロテアーゼ切断サイトを Quick Change (Quiagene)を用いてあ らカじめプレシジョンプロテアーゼ切断サイトに変異させておく。このベクターを以下 p ProEX Htb- Presと呼ぶ。 pProEX Htb- Presに対して以下のプライマーを用いて得た V av(170- 375)の PCR断片を挿入する。 The Tev protease cleavage site of pProEX Htb is first mutated to the precision protease cleavage site using Quick Change (Quiagene). This vector is hereinafter referred to as p ProEX Htb-Pres. Insert a PCR fragment of Vav (170-375) obtained using the following primers into pProEX Htb-Pres.
[0073] GCGCCATGGGGGACGAGATCTACGAGG (F) (配列番号 19) [0073] GCGCCATGGGGGACGAGATCTACGAGG (F) (SEQ ID NO: 19)
GCGCTCGAGTCACCTCTTGACCTCGTTCACG (R) (配列番号 20) GCGCTCGAGTCACCTCTTGACCTCGTTCACG (R) (SEQ ID NO: 20)
挿入したものを以下のプライマーを用いて断片を調製する。
CCGAGCTCATGTCGTACTACCATCACC (F) (配列番号 21) GCGCTCGAGTCACCTCTTGACCTCGTTCACG (R) (配列番号 22) The inserted fragment is prepared using the following primers. CCGAGCTCATGTCGTACTACCATCACC (F) (SEQ ID NO: 21) GCGCTCGAGTCACCTCTTGACCTCGTTCACG (R) (SEQ ID NO: 22)
これ〖こより、 pProEX Htb- Pres由来の His タグ、プレシジョンプロテアーゼ切断サイ トが付カ卩した Vav (170-375)をコードする DNA断片(配列番号 23)が得られる。 From this, a DNA fragment (SEQ ID NO: 23) encoding Vav (170-375) with a His tag derived from pProEX Htb-Pres and a precision protease cleavage site is obtained.
[0074] 上記で作成した Crkll SH3ドメインをコードする DNA断片を挿入された pET22に対し て得られた His タグ、プレシジョンプロテアーゼ切断サイトが付カ卩した Vavの DNA断 片を揷入することで Crkll SH3 - His -タグ プレシジョンプロテアーゼ切断サイト一 Vav (170-375)のキメラタンパク質 Crk-Vav( 170-375)をコードするプラスミド pET-22- Crk-Vav(l 70-375) (図 16)が構築される。 [0074] By inserting the Vav DNA fragment attached with the His tag and precision protease cleavage site obtained for pET22 into which the DNA fragment encoding the Crkll SH3 domain created above was inserted, Crkll Construction of plasmid pET-22- Crk-Vav (l 70-375) (Fig. 16) encoding chimeric protein Crk-Vav (170-375) of SH3-His-tag precision protease cleavage site Vav (170-375) Is done.
[0075] Vavの cDNAは既報記載の方法により調製した (Coppola J., Bryant SKoda T., Conw ay D., Barbacid M.; "Mechanism of activation of the vav protooncogene. ; Cell Growt h Differ.、第 2卷、第 95- 105頁、 1991年)。 [0075] Vav cDNA was prepared by the method described previously (Coppola J., Bryant SKoda T., Conway D., Barbacid M .; "Mechanism of activation of the vav protooncogene .; Cell Growt h Differ. 2 pp. 95-105, 1991).
[0076] 本実施例では、実施例 3と同様の方法により精製した SKP1を用いて試験管内で Cr k-Vav( 170-375)のリン酸化反応を試みた。この Crk-Vav( 170-375)は実施例 1と同様 の方法で調製した。リン酸ィ匕反応は実施例 3と同様の方法により精製した SKP1を 10 1、 10mg/ml Crk-Vav (170-375) /20mM Tris-HCl/lmM EDTA/150mM NaCl ( pH7.5)を 100 /z l、比較例 1にて用いた lO XAbl緩衝液を 100 /z l、 ATPを終濃度 O.lmM になるように添加し、溶液の体積を lmlになるように H Oで調製し、 25°Cで 4時間以上 In this example, phosphorylation of Cr k-Vav (170-375) was attempted in a test tube using SKP1 purified by the same method as in Example 3. This Crk-Vav (170-375) was prepared in the same manner as in Example 1. Phosphate reaction was carried out in the same manner as in Example 3 with SKP1 of 101, 10 mg / ml Crk-Vav (170-375) / 20 mM Tris-HCl / lmM EDTA / 150 mM NaCl (pH 7.5) 100 / zl, lO XAbl buffer used in Comparative Example 1 was added at 100 / zl, and ATP was added to a final concentration of O.lmM, and the volume of the solution was adjusted to HO with HO, 25 ° C Over 4 hours
2 2
静置することで行った。 It was done by leaving still.
リン酸ィ匕反応を行った Crk-Vav (170-375)を電気泳動装置(日本エイド一社)を用い て 15%ポリアクリルアミドゲルで泳動した。リン酸ィ匕反応前の Crk-Vav (170-375)と比 較して移動度の変化が見られ、 Vav (170-375)のリン酸ィ匕が確認された(図 17)。 Crk-Vav (170-375) subjected to phosphorylation reaction was run on a 15% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.). A change in mobility was observed compared to Crk-Vav (170-375) before the phosphoric acid reaction, and the phosphoric acid of Vav (170-375) was confirmed (Fig. 17).
[0077] 比較例 4 [0077] Comparative Example 4
実施例 4と同じ方法で Vav(170-375) (図 18)のリン酸ィ匕を行い、電気泳動装置(日 本エイド一社)を用いて 15%ポリアクリルアミドゲルで泳動した。リン酸化反応前の Vav (170-375)と比較して移動度の変化が見られず、 Vav (170-375)のリン酸化されてい な!、ことが確認された(図 17)。 Vav (170-375) (FIG. 18) was subjected to phosphorylation by the same method as in Example 4, and was electrophoresed on a 15% polyacrylamide gel using an electrophoresis apparatus (Nihon Aid Co., Ltd.). No change in mobility was observed compared to Vav (170-375) before phosphorylation, confirming that Vav (170-375) was not phosphorylated (Fig. 17).
実施例 5
[0078] 本実施例では以下の 2種のプラスミドを用意した。 Example 5 In this example, the following two types of plasmids were prepared.
1.プラスミド pET - Duet - SK-SLP:図 19に示すキナーゼと SLP76由来の RxxK含有 配列を含む SK-SLPをコードする DNA断片(配列番号 24)を含むプラスミドである。 1. Plasmid pET-Duet-SK-SLP: A plasmid containing the kinase shown in FIG. 19 and a DNA fragment (SEQ ID NO: 24) encoding SK-SLP containing SLP76-derived RxxK-containing sequence.
2.プラスミド pET22- Grb2— Crkll :図 20に示す Grb2の C末端側 SH3ドメインと His— タグ、およびプレシジョンプロテアーゼ切断配列と Vav (170-375)のキメラタンパク質を コードする DNA (配列番号 25)を含むプラスミドである。 2. Plasmid pET22-Grb2—Crkll: The Grb2 C-terminal SH3 domain and His-tag shown in Figure 20 and the DNA encoding the precision protease cleavage sequence and Vav (170-375) chimeric protein (SEQ ID NO: 25) Containing plasmid.
[0079] 本実施例では Crkllを基質としてリン酸ィ匕を試みた。また、 Grb2の C末端側 SH3ドメイ ン(配列番号 26)が SLP76や Gablなどのタンパク質に含まれる PxxxRxxK (ただし xは 任意のアミノ酸を示す)配列と特異的に結合することを利用し、 SKに SLP76由来の Pxx xRxxK配列を含ませ、基質タンパク質側に Grb2の C末端側 SH3ドメインを含ませたも のを作成し、リン酸化を試みた。 [0079] In this example, phosphoric acid was tried using Crkll as a substrate. Furthermore, Grb2 C-terminal SH3 domain (SEQ ID NO: 26) binds specifically to PxxxRxxK (where x represents any amino acid) sequence contained in proteins such as SLP76 and Gabl. An SLP76-derived Pxx xRxxK sequence was included, and the substrate protein side containing the C-terminal SH3 domain of Grb2 was prepared, and phosphorylation was attempted.
[0080] (1)プラスミド pET— Duet— SK- SLPの調製 [0080] (1) Preparation of plasmid pET— Duet— SK- SLP
Ablの cDNAと以下のプライマーを用いて、同様にして PCR反応を行い、 SH2ドメイン 、キナーゼドメイン及び SLP76由来配列を含む SK-SLPをコードする PCR断片(図 19) を pET Duet (Novagen社)に組み込んだプラスミド(図 21、 pET- Duet- SK- SLP)を得た Using the Abl cDNA and the following primers, perform a PCR reaction in the same way, and add the PCR fragment (Fig. 19) encoding SK-SLP containing the SH2 domain, kinase domain and SLP76-derived sequence to pET Duet (Novagen). The integrated plasmid (Fig. 21, pET-Duet-SK-SLP) was obtained.
CCGGATCCGAACAGCCTGGAGAAACATTCC (F) (配列番号 27) CCGGATCCGAACAGCCTGGAGAAACATTCC (F) (SEQ ID NO: 27)
CCTGCAGC (R) (配列番号 28) CCTGCAGC (R) (SEQ ID NO: 28)
本実施例では、 SK-SLP (図 2)を 6 X Hisタグをコードする塩基配列とのキメラタンパ ク質 (配列番号 14)として大腸菌体内に発現させた。プラスミド pET-Duet-SK-SLPで 大腸菌 BL-21 (DE3)を形質転換し、実施例 2と同様の方法により SK-SLPを含む画分 を得、さらに SK-SLPを精製した。精製した SK-SLPを含む溶出画分に同体積のグリセ ロールを加えた。 In this example, SK-SLP (FIG. 2) was expressed in E. coli as a chimeric protein (SEQ ID NO: 14) with a base sequence encoding a 6 X His tag. E. coli BL-21 (DE3) was transformed with the plasmid pET-Duet-SK-SLP, a fraction containing SK-SLP was obtained in the same manner as in Example 2, and SK-SLP was further purified. The same volume of glycerol was added to the elution fraction containing purified SK-SLP.
[0081] (2)プラスミド pET22-Grb2— Crkllの調製 [0081] (2) Preparation of plasmid pET22-Grb2-—Crkll
以下のプライマーを用いて Grb2の C末端側 SH3ドメイン (残基番号 159— 217)をコー ドする遺伝子断片を増幅した。 A gene fragment encoding the C3 terminal SH3 domain (residue numbers 159-217) of Grb2 was amplified using the following primers.
CCTCTAGACATATGACATACGTCCAGGCC (F) (配列番号 29)
GGGAGCTCGACGTTCCGGTTCACGGGGG (R) (配列番号 30) pET22を NdelZSacIで切断したベクター断片に対して上記で調製した Grb2の C末 端側 SH3ドメインの DNA断片を NdelZSacIで切断したものを実施例 1と同様の方法に より挿入し、 pET22-Grb2を作成した。次に、以下のプライマーを用いて PCRを行い Cr kllの遺伝子を増幅し、 SaclZXhoIで処理した pET22-Grb2のベクター断片に組み込 み、プラスミド pET22- Grb2- Crkllを得た(図 22)。 CCTCTAGACATATGACATACGTCCAGGCC (F) (SEQ ID NO: 29) GGGAGCTCGACGTTCCGGTTCACGGGGG (R) (SEQ ID NO: 30) For the vector fragment obtained by cleaving pET22 with NdelZSacI, the DNA fragment of the Grb2 C-terminal SH3 domain prepared above was digested with NdelZSacI in the same manner as in Example 1. To insert pET22-Grb2. Next, PCR was performed using the following primers to amplify the Cr kll gene, which was then incorporated into the vector fragment of pET22-Grb2 treated with SaclZXhoI to obtain plasmid pET22-Grb2-Crkll (FIG. 22).
[0082] CCGAGCTCATGTCGTACTACCATCACC (F) (配列番号 31) [0082] CCGAGCTCATGTCGTACTACCATCACC (F) (SEQ ID NO: 31)
GGGCTCGAGTCAGCTGAAGTCCTCTTCGGG (R) (配列番号 32) GGGCTCGAGTCAGCTGAAGTCCTCTTCGGG (R) (SEQ ID NO: 32)
得られた SK-SLPを用いて試験管内で Grb2-CrkIIのリン酸ィ匕反応を試みた。リン酸 化反応は lOmgZmlの Grb2- CrkIlZ20mM Tris-HCl/lmM EDTA/150mM NaCl (p H7.5)を 100 /z l、比較例 1にて用いた lO XAbl緩衝液を 100 /z l、 ATPを終濃度 O.lmM になるように添カ卩し、 SK- SLPを終濃度が 0.001 μ Μになるように添カ卩し、溶液の体積を lmlになるように H Oで調製し、 25°Cで 6時間以上静置することで行った。 Using the obtained SK-SLP, the phosphorylation reaction of Grb2-CrkII was attempted in a test tube. Phosphorylation was performed at 100 mg / zl of lOmgZml of Grb2-CrkIlZ20 mM Tris-HCl / lmM EDTA / 150 mM NaCl (pH 7.5), 100 / zl of the lO XAbl buffer used in Comparative Example 1, and ATP at the final concentration. Add O.lmM, add SK-SLP to a final concentration of 0.001 μΜ, and adjust the volume of the solution to 1 ml with HO. It was done by leaving it to stand for more than an hour.
2 2
[0083] リン酸ィ匕反応を行った Grb2-CrkIIを電気泳動装置(日本エイド一社)を用いて 15% ポリアクリルアミドゲルで泳動した。リン酸ィ匕反応前の Grb2-CrkIIとの比較より移動度 の変化が見られ、リン酸化が確認された(図 23)。 [0083] Grb2-CrkII that had undergone the phosphorylation reaction was electrophoresed on a 15% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.). Compared with Grb2-CrkII before the phosphoric acid reaction, a change in mobility was observed, confirming phosphorylation (Fig. 23).
[0084] 比較例 5 [0084] Comparative Example 5
実施例 5と同じ方法で SKを用いて Grb2-CrkIIのリン酸ィ匕を行った。ただし、 SKは終 濃度が 0.1 μ Μになるように添加した。電気泳動装置(日本エイド一社)を用いて 15% ポリアクリルアミドゲルで泳動した。リン酸ィ匕反応前の Grb2-CrkIIと比較して移動度の 変化が見られず、 Grb2- Crkllのリン酸化されて!/ヽな 、ことが確認された(図 23)。 実施例 6 Grb2-CrkII was phosphorylated with SK in the same manner as in Example 5. However, SK was added so that the final concentration was 0.1 μΜ. Electrophoresis was performed on a 15% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.). Compared to Grb2-CrkII before the phosphoric acid reaction, no change in mobility was observed, confirming that Grb2-Crkll was phosphorylated! /! (Fig. 23). Example 6
[0085] 本実施例では以下のプラスミドを用意した。 In this example, the following plasmids were prepared.
1.プラスミド pTYR (図 24):図 2に示すキナーゼとプロリンリッチ配列を含む SKP1をコ ードする DNA断片(配列番号 5)と Crkllの SH3ドメイン—His タグープレシジョンプロ テアーゼ切断サイト マルチクローユングサイトを含むプラスミドである。マルチクロー ユングサイトには任意のペプチドおよびタンパク質をコードする遺伝子を挿入すること が可能である。
[0086] (1)プラスミド pTYRの調製 1. Plasmid pTYR (Figure 24): DNA fragment (SEQ ID NO: 5) that encodes SKP1 containing the kinase and proline-rich sequences shown in Figure 2 and Crkll SH3 domain—His tag-precision protease cleavage site Multicloning A plasmid containing a site. It is possible to insert genes encoding arbitrary peptides and proteins into the multicloning site. [0086] (1) Preparation of plasmid pTYR
実施例 1にて作成した pET - Duet - SKP1のベクター断片に実施例 4で作成した pE T22- Crk- Vav(170- 375)の NdelZXhoI断片を組み込む。 Quick Change (Quiagene) を用いて組み込みに用いた Ndelサイト(CATATG)の配列を CAGATGに置換し、 Ndel サイトを消失させた。次にVav(170— 375)を pProExHTb-Presに組み込む際に用いた Ncolサイト(CCATGG)を Quick Change (Quiagene)を用いて ATATGGに置換し、新た に Ndelサイトを作成する。このプラスミドを pET— Duet SKP1 Crkと以下呼ぶことと する。 The NdelZXhoI fragment of pET22-Crk-Vav (170-375) prepared in Example 4 is incorporated into the vector fragment of pET-Duet-SKP1 prepared in Example 1. The Ndel site (CATATG) sequence used for integration was replaced with CAGATG using Quick Change (Quiagene) to eliminate the Ndel site. Next, the Ncol site (CCATGG) used when Vav (170-375) is incorporated into pProExHTb-Pres is replaced with ATATGG using Quick Change (Quiagene) to create a new Ndel site. This plasmid is hereinafter referred to as pET- Duet SKP1 Crk.
[0087] 次に以下のマルチクローニングサイトより構成される合成遺伝子をリン酸ィ匕した後に 混合して 2本鎖 DNA断片を調製する。 号 33) 番号 34) [0087] Next, a synthetic gene composed of the following multicloning sites is phosphorylated and mixed to prepare a double-stranded DNA fragment. No. 33) Number 34)
pET Duet SKP1 Crkを NdelZXhoIで処理したベクター断片に 2本鎖化したマ ルチクローニングサイト断片を挿入する。 Insert a double-stranded multicloning site fragment into the vector fragment of pET Duet SKP1 Crk treated with NdelZXhoI.
[0088] (2)プラスミド pTYR Vav(170- 375)の調製 [0088] (2) Preparation of plasmid pTYR Vav (170-375)
Vavの cDNAを铸型として以下のプライマーを用いて PCRを行 、、 NdelZXhoIで処 理した pTYRのベクター断片に組み込む。 PCR is performed using the Vav cDNA as a saddle with the following primers, and incorporated into the pTYR vector fragment treated with NdelZXhoI.
GCCATATGGGGGACGAGATCTACGAGG (F) (配列番号 35) GCCATATGGGGGACGAGATCTACGAGG (F) (SEQ ID NO: 35)
GCGCTCGAGTCACCTCTTGACCTCGTTCACG (R) (配列番号 36) GCGCTCGAGTCACCTCTTGACCTCGTTCACG (R) (SEQ ID NO: 36)
実施例 2と同様の方法で SKP1と Crkllの N端側 SH3ドメイン、 6 X Hisタグ、プレシジョ ンプロテアーゼ切断サイトと Vav(170— 375)とのキメラタンパク質 (配列番号 37)を大 腸菌内に共発現させ、精製した。精製したキメラタンパク質を電気泳動装置 (日本ェ イド一社)を用いて 15%ポリアクリルアミドゲルで泳動した。実施例 4にて調製した非リ ン酸ィ匕 Crk-Vav( 170-375)との間に移動度の差が見られ、リン酸ィ匕されていることが 確認された(図 25)。 In the same manner as in Example 2, the chimeric protein (SEQ ID NO: 37) of SKP1 and Crkll N-terminal SH3 domain, 6 X His tag, precision protease cleavage site and Vav (170-375) was placed in E. coli. Co-expressed and purified. The purified chimeric protein was electrophoresed on a 15% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.). A difference in mobility was observed with non-phosphate Crk-Vav (170-375) prepared in Example 4, and it was confirmed that phosphate was added (FIG. 25).
実施例 7
[0089] (1)プラスミド pTYR (—)の作製 Example 7 [0089] (1) Construction of plasmid pTYR (—)
実施例 6 (1)で作成した pTYRを (Notl/Xhol)で消化し、 Crkll SH3の遺伝子を含む 側の断片を、 pET-Duetを (Notl/Xhol)で消化したベクター断片に組み込み、プラスミ ド pTYR (—)(図 26)を作製した。このプラスミドは、 pTYRのキナーゼ遺伝子 (SKP1) 力 ¾ET-Duet由来のマルチクローユングサイトへと変換された構造を有する。 Example 6 pTYR prepared in (1) was digested with (Notl / Xhol), and the fragment containing the Crkll SH3 gene was incorporated into the vector fragment digested with pET-Duet (Notl / Xhol). pTYR (—) (Fig. 26) was prepared. This plasmid has a structure converted into a multicloning site derived from the kinase gene of pTYR (SKP1) ¾ ET-Duet.
[0090] (2)プラスミド pSH3- NMTの作製 [0090] (2) Construction of plasmid pSH3-NMT
Gloverら (Glover . J. Human N— myristoyltransferase amino— terminal domain inv olved in targeting the enzyme to the ribosomal subcellular fraction. ";J. Biol. Chem. 、第 272卷、第 28680- 28689頁、 1997年)の方法に従って NMT1 (N- myristoyltransfera se)をコードする CDNAを調製した。この cDNAを铸型とし、下記のプライマーを用いて PCRを行い、 NMT1の触媒ドメイン(NMT1の 81番目—496番目のアミノ酸配列からな るドメイン)をコードする DNAを増幅断片として得た。 Glover et al. (Glover. J. Human N—myristoyltransferase amino—terminal domain involved in targeting the enzyme to the ribosomal subcellular fraction. "; J. Biol. Chem., 272, 28680-28689, 1997). was prepared C DNA encoding NMT1 (N- myristoyltransfera s e) according to the method. the cDNA and铸型, PCR was performed using the following primers, 81 th -496 th amino acids of the catalytic domain (NMT1 of NMT1 A DNA encoding a sequence domain) was obtained as an amplified fragment.
GGTCTAGACATATG AACTCTTTGCCAGCAGAGAGG (F) (配列番号 38) CGCCTCGAGTCATTGTAGCACCAGTCCAACC (R) (配列番号 39) GGTCTAGACATATG AACTCTTTGCCAGCAGAGAGG (F) (SEQ ID NO: 38) CGCCTCGAGTCATTGTAGCACCAGTCCAACC (R) (SEQ ID NO: 39)
Ndel/Xholで消化した増幅断片を、同じく Ndel/Xholで消化した pTYR (—)のべクタ 一に組み込んで、 pSH3-NMT (図 27)を作製した。 The amplified fragment digested with Ndel / Xhol was incorporated into a vector of pTYR (—) that was also digested with Ndel / Xhol to prepare pSH3-NMT (FIG. 27).
[0091] (3)プラスミド pGBl- Myrの作製 [0091] (3) Construction of plasmid pGBl-Myr
プフス^ト pDE¾ -532、geneservice社、 nttp://www.geneservice.co.uK/) 铸型とし、 下記のプライマーを用いて PCRを行い、該プラスミドにある Streptococcal proteinGの B1ドメイン (GB1ドメイン)をコードする DNAを増幅断片として得た。 PDE¾-532, geneservice, nttp: //www.geneservice.co.uK/) Use the following primers to perform PCR, and use the B1 domain (GB1 domain) of Streptococcal protein G in the plasmid DNA encoding was obtained as an amplified fragment.
GACCCATGGAGTACAAACTGATCC (F) (配列番号 40) GACCCATGGAGTACAAACTGATCC (F) (SEQ ID NO: 40)
GAAGG (R) (配列番号 41) GAAGG (R) (SEQ ID NO: 41)
また、下記の合成 DNAを混合して 2本鎖 DNA断片を調製した。 In addition, the following synthetic DNA was mixed to prepare a double-stranded DNA fragment.
CAACGACCGAAAACCTGTATTTTCAG GGGCAGCAGCCTGGAAAAGTTCTTG GGGACCAAAGAAGGCCTAGTTTGGCCATGGCAC (F) (配列番号 42)
GTGATGGTGATGGTAGTACGACATATGTCTAGA (R) (配列番号 43) 前記増幅断片を Ncol/Xholで、 2本鎖 DNA断片を Ndel/Ncolでそれぞれ処理した両 断片を、 Ndel/Xholで処理した pET22- bに組み込んで、プラスミド pGBl- Myr (図 28) を作製した。このプラスミドは、 GB1ドメインの N末端側に 6xHisタグ、 TEVプロテア一 ゼ消化サイト及び 17アミノ酸残基からなるミリストイル化配列(Hantschel 0ら、 Cell, 20 03年、第 112卷、第 6号、第 845-857頁)を含み、 C末端側に CrkSH3の結合配列を含 む融合タンパク質をコードする遺伝子を含む。 CAACGACCGAAAACCTGTATTTTCAG GGGCAGCAGCCTGGAAAAGTTCTTG GGGACCAAAGAAGGCCTAGTTTGGCCATGGCAC (F) (SEQ ID NO: 42) GTGATGGTGATGGTAGTACGACATATGTCTAGA (R) (SEQ ID NO: 43) Both fragments obtained by treating the amplified fragment with Ncol / Xhol and the double-stranded DNA fragment with Ndel / Ncol were incorporated into pET22-b treated with Ndel / Xhol, and plasmid pGBl -Myr (Fig. 28) was created. This plasmid has a 6xHis tag on the N-terminal side of the GB1 domain, a TEV protease digestion site and a myristoylation sequence consisting of 17 amino acid residues (Hantschel 0 et al., Cell, 20 03, 112, No. 6, No. 6, 845-857) and a gene encoding a fusion protein containing a CrkSH3 binding sequence on the C-terminal side.
[0092] (4) (2)で作製した pSH3-NMTで大腸菌 BL-21(DE3)を形質転換し、 NMT1の触媒ドメ インと Crkll SH3および 6 X Hisタグ力もなる融合タンパク質(配列番号 44、以下、 SH3 - NMTと表す)を大腸菌体内に発現させ、実施例 2と同様の方法により SH3-NMTを精 製し、 SH3-NMTのグリセロール溶液を調製した。また、(3)で作製した pGBl-Myrで 大腸菌 BL- 21(DE3)を形質転換し、 6 X Hisタグ、 TEVプロテアーゼ消化部位、ミリスト ィル化配列、 GB1ドメイン、 Crkll SH3結合配列力もなる融合タンパク質 (配列番号 45 )として大腸菌体内に発現させ、回収した融合タンパク質を含む画分を TEV消化して 、修飾残基である Glyが N末端に露出した融合タンパク質 (以下、 GBl-Myrと表す)を 調製した。 [0092] (4) E. coli BL-21 (DE3) is transformed with pSH3-NMT prepared in (2), and a fusion protein (SEQ ID NO: 44, NMT1 catalytic domain and Crkll SH3 and 6 X His-tagging force) is also obtained. Hereinafter, SH3-NMT) was expressed in E. coli, and SH3-NMT was purified by the same method as in Example 2 to prepare a glycerol solution of SH3-NMT. In addition, pGBl-Myr prepared in (3) is used to transform E. coli BL-21 (DE3), which also includes 6 X His tag, TEV protease digestion site, myristylation sequence, GB1 domain, and Crkll SH3 binding sequence. The fraction containing the fusion protein expressed in E. coli as a protein (SEQ ID NO: 45) and TEV-digested, the fusion protein in which the modified residue Gly is exposed at the N-terminus (hereinafter referred to as GBl-Myr) Was prepared.
[0093] 10mg/mlの GB1- Myrを含む 20mM Tris- HCl/lmM EDTA/150mM NaCl (pH 7.5)10 0 1と比較例 1で用いた lOxAbl緩衝液 100 1を混合し、これにミリストイル— CoA (シ グマ社)を終濃度 O.lmMになるように添カ卩し、 SH3-NMT/グリセロール溶液を 10 μ 1も しくは 1 μ 1もしくは Ο /ζ 1カ卩え、溶液の体積を lmlになるように水で調製し、 25°Cで 2時 間インキュベートした。反応後のサンプルを電気泳動装置(日本エイド一社)を用いて 18.8%ポリアクリルアミドゲルで泳動した(図 29)。その結果、 SH3-NMTを 10 1カ卩えた ものではミリストイルイ匕に伴うバンドの変化が観測され、 SH3- NMTを 1 μ 1カ卩えたもので はミリストイル化された GBl-Myrと未反応の GBl-Myrに由来する 2本のバンドが観察 された。また、 SH3- NMTを 10 1カ卩えたものと SH3- NMTをカ卩えていないものの 2種類 のサンプノレにつ!、て Applied Biosystem社製の MASスぺクトロメーター Voeagerにて 質量分析を行ったところ、 SH3-NMTを 10 1カ卩えたものでは分子量 210の増大が見ら
れ、 GBl-Myr (理論分子量 9036.7、実測分子量 9038.1625)力ミリストイル化されてい る(理論分子量 9246.7、実測分子量 9248.4779)ことが確認された。 [0093] 20 mM Tris-HCl / lmM EDTA / 150 mM NaCl (pH 7.5) 10 0 1 containing 10 mg / ml GB1-Myr was mixed with lOxAbl buffer solution 100 1 used in Comparative Example 1, and this was mixed with myristoyl-CoA. (Sigma) is added to a final concentration of O.lmM. Add 10 μl or 1 μl of SH3-NMT / glycerol solution or 1 μl of ζ / ζ and the volume of the solution to 1 ml. Was prepared with water and incubated at 25 ° C for 2 hours. The sample after the reaction was run on a 18.8% polyacrylamide gel using an electrophoresis apparatus (Nippon Aid Co., Ltd.) (FIG. 29). As a result, the change in the band associated with myristoyl was observed in the sample with SH3-NMT of 101, while the sample with SH3-NMT of 1 μ1 had not reacted with myristoylated GBl-Myr. Two bands originating from GBl-Myr were observed. In addition, two types of sampnore, one with SH3-NMT and one without SH3-NMT, were subjected to mass spectrometry using the MAS spectrometer Voeager from Applied Biosystem. The increase in the molecular weight of 210 was observed with the addition of SH3-NMT. It was confirmed that GBl-Myr (theoretical molecular weight 9036.7, measured molecular weight 9038.1625) was force myristoylated (theoretical molecular weight 9246.7, measured molecular weight 9248.4779).
実施例 8 Example 8
[0094] Chernofifeの方法(Chernoff J., Schievella A.R., Jost C.A., Erikson R丄., Neel B.G. ;〃 Cloning of a cDNA for a major human protein- tyrosine- phosphatase. ; roc. Natl. Acad. Sci. U.S.A. 87:2735—2739(1990))に従って、ヒト PTB— IB (human protein— tyrosi ne-phosphatase)をコードする cDNAを調製した。この cDNAを铸型とし、下記のプライ マーを用いて PCRを行い、 PTP-1Bの phosphataseドメインをコードする DNAを、増幅 断片として得た。 [0094] Chernofife method (Chernoff J., Schievella AR, Jost CA, Erikson R 丄., Neel BG; 〃 Cloning of a cDNA for a major human protein- tyrosine-phosphatase .; roc. Natl. Acad. Sci. USA 87: 2735-2739 (1990)), cDNA encoding human PTB-IB (human protein-tyrosine-phosphatase) was prepared. Using this cDNA as a saddle, PCR was performed using the following primers, and DNA encoding the phosphatase domain of PTP-1B was obtained as an amplified fragment.
GCGCCATGGAGATGGAAAAGGAGTTCGAGCAGATC (F) (配列番号 46) (R) (配列番号 47) GCGCCATGGAGATGGAAAAGGAGTTCGAGCAGATC (F) (SEQ ID NO: 46) (R) (SEQ ID NO: 47)
得られた増幅断片を Ncol/Xholで処理し、同じく Ncol/Xhol処理した pET21-dに組み 込んで、プラスミド ρΡΤΡΙΒ- PxxP (図 30)を作製した。このプラスミドは、ヒト PTP-1B ty rosine phosphataseの触媒ドメイン(PTB-1Bの 1— 300番目のアミノ酸配列からなるドメ イン)の C末端側に Crkll SH3の結合配列および 6 X Hisタグを含む融合タンパク質( 配列番号 48、以下、 PTP-1B- PxxPと表す)を発現する。 The obtained amplified fragment was treated with Ncol / Xhol and incorporated into pET21-d that was also treated with Ncol / Xhol to prepare plasmid ρΡΤΡΙΒ-PxxP (FIG. 30). This plasmid is a fusion protein containing the Crkll SH3 binding sequence and 6 X His tag on the C-terminal side of the catalytic domain of human PTP-1B ty rosine phosphatase (domain consisting of the 1st to 300th amino acid sequences of PTB-1B). (SEQ ID NO: 48, hereinafter referred to as PTP-1B-PxxP) is expressed.
[0095] pPTP-lB- PxxPで大腸菌 BL-21(DE3)を形質転換し、実施例 2と同様の方法により P TP-lB-PxxPをグリセロール溶液として精製した。実施例 2の方法により調製したリン 酸化 Crkllを 10mg/ml含む 20mM Tris- HCl/lmM EDTA/150mM NaCl (pH 7.5)100 μ 1と、比較例 1で用いた lO XAbl緩衝液 100 /z lとを混合し、これに PTP-1B- PxxP/グリセ ロール溶液を 10 1もしくは 1 μ 1もしくは 0 1カ卩え、溶液の体積を lmlになるように水で 調製し、 25°Cで 2時間インキュベーションした。反応後のサンプルを電気泳動装置(日 本エイド一社)を用いて 15%ポリアクリルアミドゲルで泳動した(図 31)。その結果、 PT P-lB-PxxPを 10 1カ卩えたものでは脱リン酸化に伴うバンドの変化が観測され、 PTP-1 B-PxxPを 1 μ 1カ卩えたものでは脱リン酸化されたリン酸化 Crkllと未反応のリン酸化 Crk IIに由来する 2本のバンドが観察された。また、実施例 2と同様の免疫染色によりリン 酸化の確認を行なった(図 32)。その結果、 PTP-1B- PxxPを 10 /z l加えたものではリン
酸化された Crkllのバンドの消失が確認され、 PTP-1B- PxxPを 1 μ 1カ卩えたものではバ ンドが薄くなつているのが確認され、脱リン酸ィ匕が確認された。 E. coli BL-21 (DE3) was transformed with pPTP-lB-PxxP, and PTP-lB-PxxP was purified as a glycerol solution by the same method as in Example 2. 20 μM Tris-HCl / lmM EDTA / 150 mM NaCl (pH 7.5) 100 μl containing 10 mg / ml of phosphorylated Crkll prepared by the method of Example 2 and lO XAbl buffer solution 100 / zl used in Comparative Example 1 Mix, add PTP-1B-PxxP / glycerol solution to 10 1 or 1 μ 1 or 01, adjust the volume to 1 ml with water, and incubate at 25 ° C for 2 hours . The sample after the reaction was run on a 15% polyacrylamide gel using an electrophoresis apparatus (Nihon Aid Co., Ltd.) (FIG. 31). As a result, a change in the band accompanying dephosphorylation was observed in 101 PPT-lB-PxxP, and dephosphorylated phosphorous was observed in 1 P1 of PTP-1 B-PxxP. Two bands derived from oxidized Crkll and unreacted phosphorylated Crk II were observed. In addition, phosphorylation was confirmed by immunostaining similar to Example 2 (FIG. 32). As a result, phosphorous was not obtained with 10 / zl of PTP-1B-PxxP. The disappearance of the oxidized Crkll band was confirmed. When 1 μl of PTP-1B-PxxP was added, it was confirmed that the band was thin, and dephosphorylation was confirmed.
産業上の利用可能性 Industrial applicability
本発明は、タンパク質間相互作用というごくありふれた現象を用いることでタンパク 質の修飾反応を効率的に行う上で画期的な手法である。例えば、通常の方法では全 くリン酸ィ匕されな力つたケースにおいても、基質タンパク質とキナーゼの間にタンパク 質間相互作用を発生させることで両者の親和性を高め、それにより少ない酵素量で 効率的に基質タンパク質をリン酸化することができる。リン酸化は細胞内及び細胞間 のシグナル伝達において重要な過程であり、リン酸化タンパク質を効率的に生産する ことのできる本発明の方法により、リン酸化タンパク質の利用促進あるいは生体反応 の誘導を制御することができる。 The present invention is an epoch-making technique for efficiently performing a protein modification reaction by using a common phenomenon called protein-protein interaction. For example, even in the case where the normal method is not fully phosphorylated, the affinity between the two is increased by generating a protein-protein interaction between the substrate protein and the kinase, thereby reducing the amount of the enzyme. The substrate protein can be phosphorylated efficiently. Phosphorylation is an important process in intracellular and intercellular signal transduction, and the use of the phosphorylated protein or the induction of a biological reaction is controlled by the method of the present invention capable of efficiently producing phosphorylated protein. be able to.
すなわち、細胞内にキナーゼ又は基質タンパク質を導入し、細胞内で効率的にリン 酸ィ匕を行うことでリン酸ィ匕を介したシグナル伝達の人為的な制御を可能ならしめる遺 伝子治療や、リン酸化反応の制御薬のスクリーニング、医療や産業上有用なリン酸化 タンパク質の効率的生産等への応用も期待できる。
In other words, gene therapy that enables artificial control of signal transduction via phosphates by introducing kinases or substrate proteins into cells and efficiently performing phosphorylation in cells. Application to screening of phosphorylation regulators, efficient production of phosphoproteins useful in medicine and industry is also expected.
Claims
[1] 基質タンパク質を酵素タンパク質によって修飾することからなる修飾タンパク質の製 造方法であって、該基質タンパク質及び Z又は該酵素タンパク質が、基質タンパク質 と酵素タンパク質との親和性を高めることのできる蛋白質結合ドメインが付加されたキ メラタンパク質である、前記修飾タンパク質の製造方法。 [1] A method for producing a modified protein comprising modifying a substrate protein with an enzyme protein, wherein the substrate protein and Z or the enzyme protein can increase the affinity between the substrate protein and the enzyme protein. The method for producing a modified protein, which is a chimeric protein to which a binding domain is added.
[2] 蛋白質結合ドメインが付加されたキメラタンパク質と結合する基質タンパク質又は酵 素タンパク質が、該蛋白質結合ドメインが親和性を示すアミノ酸配列が付加されたキ メラタンパク質である、請求項 1に記載の製造方法。 [2] The substrate protein or enzyme protein that binds to a chimeric protein to which a protein binding domain has been added is a chimeric protein to which an amino acid sequence to which the protein binding domain has affinity has been added. Production method.
[3] 蛋白質結合ドメイン及び Z又は該蛋白質結合ドメインが親和性を示すアミノ酸配列 力 酵素的に若しくは化学的に切断可能なアミノ酸配列を介して基質タンパク質及び Z又は酵素タンパク質に付加されている、請求項 1または 2に記載の製造方法。 [3] Protein-binding domain and Z, or an amino acid sequence in which the protein-binding domain shows affinity. Force Attached to substrate protein and Z or enzyme protein via an amino acid sequence that can be cleaved enzymatically or chemically. Item 3. The manufacturing method according to Item 1 or 2.
[4] 酵素タンパク質がキナーゼである、請求項 1〜3のいずれかに記載の修飾タンパク質 の製造方法。 [4] The method for producing a modified protein according to any one of claims 1 to 3, wherein the enzyme protein is a kinase.
[5] 蛋白質結合ドメインが SH3ドメインである、請求項 1〜4のいずれかに記載の修飾タ ンパク質の製造方法。 [5] The method for producing a modified protein according to any one of claims 1 to 4, wherein the protein binding domain is an SH3 domain.
[6] 前記 SH3ドメインが以下 (a)又は (b)のペプチドであり、 [6] The SH3 domain is the following peptide (a) or (b):
(a)配列番号 1のアミノ酸配列からなるペプチド (a) a peptide consisting of the amino acid sequence of SEQ ID NO: 1
(b)配列番号 1のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しく は付加されたアミノ酸配列から成り、かつ SH3ドメイン結合配列への親和性を有する ペプチドであって、前記 SH3ドメイン結合配列は PXXPXZある!/、は ZXXPXXPある いは PXXXRXXK (式中、 Xは任意のアミノ酸を表し、 Zは K又は Rを表す。)で表され るプロリンリッチ配列を有する、請求項 5に記載の製造方法。 (b) a peptide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1 and having affinity for an SH3 domain binding sequence, wherein the SH3 The domain binding sequence is PXXPXZ! /, ZXXPXXP or PXXXRXXK (wherein X represents an arbitrary amino acid, Z represents K or R), and has a proline-rich sequence represented by claim 5. The manufacturing method as described.
[7] 前記 SH3ドメインが以下 (c)又は (d)のペプチドであり、 [7] The SH3 domain is a peptide of (c) or (d) below:
(c)配列番号 26のアミノ酸配列力もなるペプチド (c) Peptide having the amino acid sequence of SEQ ID NO: 26
(d)配列番号 26のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しく は付加されたアミノ酸配列から成り、かつ SH3ドメイン結合配列への親和性を有する ペプチドであって、前記 SH3ドメイン結合配列は PX[V又は I] [D又は N]RXXKP ( 式中、 Xは任意のアミノ酸を表す)で表される配列を有する、請求項 5に記載の製造
方法。 (d) a peptide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 26, and having affinity for an SH3 domain binding sequence, wherein the SH3 6. The production according to claim 5, wherein the domain binding sequence has a sequence represented by PX [V or I] [D or N] RXXKP (wherein X represents any amino acid). Method.
[8] 前記基質タンパク質が SH3ドメインを有し、前記キナーゼが SH3ドメイン結合配列を 有する、請求項 6又は 7のいずれかに記載の製造方法。 8. The production method according to claim 6, wherein the substrate protein has an SH3 domain, and the kinase has an SH3 domain binding sequence.
[9] 前記基質タンパク質が SH3ドメイン結合配列を有し、前記キナーゼが SH3ドメインを 有する、請求項 6又は 7のいずれかに記載の製造方法。 [9] The production method according to any one of [6] and [7], wherein the substrate protein has an SH3 domain binding sequence, and the kinase has an SH3 domain.
[10] 基質タンパク質と酵素タンパク質との反応後に酵素的に若しくは化学的に切断可能 なアミノ酸配列を切断して修飾タンパク質を回収する段階を含む、請求項 3に記載の 製造方法。 [10] The production method according to claim 3, comprising a step of cleaving an amino acid sequence that can be cleaved enzymatically or chemically after the reaction between the substrate protein and the enzyme protein to recover the modified protein.
[11] キメラタンパク質である基質タンパク質及び Z又は酵素タンパク質と該キメラタンパク 質が結合する基質タンパク質又は酵素タンパク質とを発現するベクターを用いて宿 主を形質転換し、基質タンパク質と酵素タンパク質とを宿主細胞内で共発現させるこ と力もなる、請求項 1〜3のいずれかに記載の製造方法。 [11] The host protein is transformed using a vector that expresses the substrate protein and Z or enzyme protein that is a chimeric protein and the substrate protein or enzyme protein to which the chimeric protein binds, and the substrate protein and enzyme protein are transformed into the host. 4. The production method according to any one of claims 1 to 3, which is also capable of co-expression in cells.
[12] 酵素タンパク質がミリストイルトランスフェラーゼである、請求項 1〜3のいずれかに記 載の修飾タンパク質の製造方法。 [12] The method for producing a modified protein according to any one of claims 1 to 3, wherein the enzyme protein is myristoyltransferase.
[13] 酵素タンパク質がタンパク質脱リン酸ィ匕酵素である、請求項 1〜3のいずれかに記載 の修飾タンパク質の製造方法。
[13] The method for producing a modified protein according to any one of claims 1 to 3, wherein the enzyme protein is a protein dephosphorylating enzyme.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007550178A JPWO2007069604A1 (en) | 2005-12-14 | 2006-12-12 | Method for producing modified protein |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-359966 | 2005-12-14 | ||
JP2005359966 | 2005-12-14 | ||
JP2006043310 | 2006-02-21 | ||
JP2006-043310 | 2006-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007069604A1 true WO2007069604A1 (en) | 2007-06-21 |
Family
ID=38162912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/324761 WO2007069604A1 (en) | 2005-12-14 | 2006-12-12 | Method for production of modified protein |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2007069604A1 (en) |
WO (1) | WO2007069604A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05503430A (en) * | 1990-02-15 | 1993-06-10 | ザ ユニバーシティー オブ ノースカロライナ アット チャペル ヒル | Fully synthetic affinity reagent |
JPH0882624A (en) * | 1984-10-29 | 1996-03-26 | Microgenics Corp | Method with regard to test of protein-bonded enzyme complementality |
JP2003185655A (en) * | 2001-07-30 | 2003-07-03 | Warner Lambert Co Llc | Method of screening compounds that inhibit interaction between proline-rich peptide and sh-3 domain-containing peptide |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006527590A (en) * | 2003-06-18 | 2006-12-07 | ディレボ・ビオテク・アーゲー | Novel biological entities and their use |
-
2006
- 2006-12-12 WO PCT/JP2006/324761 patent/WO2007069604A1/en active Application Filing
- 2006-12-12 JP JP2007550178A patent/JPWO2007069604A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0882624A (en) * | 1984-10-29 | 1996-03-26 | Microgenics Corp | Method with regard to test of protein-bonded enzyme complementality |
JPH05503430A (en) * | 1990-02-15 | 1993-06-10 | ザ ユニバーシティー オブ ノースカロライナ アット チャペル ヒル | Fully synthetic affinity reagent |
JP2003185655A (en) * | 2001-07-30 | 2003-07-03 | Warner Lambert Co Llc | Method of screening compounds that inhibit interaction between proline-rich peptide and sh-3 domain-containing peptide |
Non-Patent Citations (2)
Title |
---|
AGHAZADEH B. ET AL.: "Structural basis for relief of autoinhibition of the Db1 homology domain of proto-oncogene Vavby tyrosine phosphorylation", CELL, vol. 102, 2000, pages 625 - 633, XP003014111 * |
KLEIN S. ET AL.: "Expression and purification of active PKB kinase from Escherichia coli", PROTEIN EXPR. PURIF., vol. 41, May 2005 (2005-05-01), pages 162 - 169, XP003014500 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007069604A1 (en) | 2009-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cory et al. | Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP | |
Rottensteiner et al. | Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals | |
US7759475B2 (en) | Enzyme expression methods and compositions | |
Kuret et al. | Casein kinase 1 is tightly associated with paired‐helical filaments isolated from Alzheimer's disease brain | |
Liu et al. | A Cell‐Free Platform Based on Nisin Biosynthesis for Discovering Novel Lanthipeptides and Guiding their Overproduction In Vivo | |
US10538773B2 (en) | Site-specific incorporation of phosphoserine into proteins in Escherichia coli | |
Wilson et al. | Substrate targeting of the yeast cyclin-dependent kinase Pho85p by the cyclin Pcl10p | |
Smolinsky et al. | Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis | |
KR20090058404A (en) | Method for large scale preparation of the active domain of human protein tyrosine phosphatase without fusion protein | |
CN114829591A (en) | Adapter system for non-ribosomal peptide synthetases and polyketide synthetases | |
Kern et al. | UBXD1 binds p97 through two independent binding sites | |
Li et al. | In vivo analysis of the roles of conserved aspartate and histidine residues within a complex response regulator | |
EP2714727A1 (en) | High affinity sumo traps | |
US20230407274A1 (en) | Compositions and methods involving engineered p27 | |
Healy et al. | Nonenzymatic biotinylation of histone H2A | |
Kim et al. | An S-locus receptor-like kinase in plasma membrane interacts with calmodulin in Arabidopsis | |
Nadeau et al. | Evidence for the location of the allosteric activation switch in the multisubunit phosphorylase kinase complex from mass spectrometric identification of chemically crosslinked peptides | |
WO2007069604A1 (en) | Method for production of modified protein | |
Feeney et al. | Novel protein purification system utilizing an N-terminal fusion protein and a caspase-3 cleavable linker | |
Farmery et al. | Binding of GTP and GDP induces a significant conformational change in the GTPase domain of Ffh, a bacterial homologue of the SRP 54 kDa subunit | |
KR100752683B1 (en) | A valiolone synthase its gene and primer for valienamine biosynthesis and method for producing the same | |
Oehme et al. | Osmotic stress-dependent serine phosphorylation of the histidine kinase homologue DokA | |
Sunami et al. | Balance between DNA‐binding affinity and specificity enables selective recognition of longer target sequences in vivo | |
Zieliński et al. | Fip1—an essential component of the Saccharomyces cerevisiae polyadenylation machinery is phosophorylated by protein kinase CK2 | |
Surapureddi et al. | Interaction of Human Leukotriene C4Synthase and Microsomal Glutathione Transferasein Vivo |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007550178 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06834516 Country of ref document: EP Kind code of ref document: A1 |