[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007066596A1 - Exposure method and exposure device - Google Patents

Exposure method and exposure device Download PDF

Info

Publication number
WO2007066596A1
WO2007066596A1 PCT/JP2006/324083 JP2006324083W WO2007066596A1 WO 2007066596 A1 WO2007066596 A1 WO 2007066596A1 JP 2006324083 W JP2006324083 W JP 2006324083W WO 2007066596 A1 WO2007066596 A1 WO 2007066596A1
Authority
WO
WIPO (PCT)
Prior art keywords
photomask
light energy
irradiated
light
substrate
Prior art date
Application number
PCT/JP2006/324083
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Taniguchi
Shigeyuki Yamada
Taimi Oketani
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007066596A1 publication Critical patent/WO2007066596A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details

Definitions

  • 0001 method and more specifically, it relates to a method of irradiating light onion using an ossk while moving relative to the ossk of onion.
  • Some 000 2 nets have a structure in which a pair of pairs are arranged in a row and face each other at predetermined intervals, and a space is filled between them.
  • elements such as transistors for driving this pole that apply a voltage to, poles for giving a tilt angle, such as chicks, gate line source lines, etc., are formed in a laminated manner.
  • elements such as a racktox, a color of a predetermined color, and a common electrode film are similarly laminated.
  • the Otoglay method includes the steps of applying a distant material to the surface of the, a step of irradiating a fixed area of the woven distant material with light onion, and a method of applying And a step of removing a necessary portion.
  • the process of irradiating a certain area of the surface with scallions is included in the production of sushi. If the location or the enclosure where the green onions are irradiated occurs in the green onion irradiation process, there is a possibility that the nature of the element formed in the wood may be different from the design and may not have the original nature. For example, if the location or the area where the green onions are irradiated is increased to the extent that light is applied to, it may not be possible to give the tat angle as designed to.
  • the objective is to provide a method that can irradiate a predetermined area with precision onion even when there is a dimensional difference between the slab and the transmission line, or when the method changes.
  • the apparatus has a step for adjusting the force difference between the internal and external pressures, and adjusts the disk generated by the force difference between the internal and external pressures.
  • the onion that is radiated to the mantle through the mantle is corrected.
  • the gist is to provide a correction step.
  • the adjustment is performed by adjusting the difference between the surface of the male disc and the green onion, which is caused by the force difference between the internal and external pressures.
  • Ming it is possible to adjust the amount of green onion that is emitted through the formation of the optical disk by touching the surface of the optical disk against the optical onion. Therefore, even if the man-hour disc has a size difference and the method at the time of turning is larger than the design, and even if it is the case, it is possible to irradiate the energy with precision.
  • the degree of adjustment between the surface of the disc and the onion can be adjusted with a simple configuration, You can adjust the law. Also, even if the structure has a tilt structure that corresponds to that of the onion of the otosk, the degree between the surface of the otosk and the onion can be adjusted with a simple structure as described above. You can adjust the law of green onions.
  • 002 is a schematic diagram showing the composition of the part of the device according to Ming-sha, where (a) is the view from the position of the first-state and (b) is the view from it. .
  • Fig. 3 is a diagram that schematically shows the mechanism of correction that reduces the size of the green onion.
  • Figs. (A) shows the state before correction, (b) shows the state of correction, and (c) shows the state before and after correction. Is.
  • FIG. 4A and 4B are plan views schematically showing the correction mechanism for enlarging the law of the onion, in which the state before correction is shown, and the state in () is shown.
  • Fig. 5 is a diagram schematically showing the theory related to or according to the law, where a is the theory for a, (b) is the theory for a character, and (c) is the FIG. 3 is a diagram schematically showing the direction of molecules in FIG.
  • Fig. 6 is a diagram showing the legal relationship with the aisot in Fig. 6 and the tan formed in the ais.
  • Fig. 7 is a diagram showing the legal relationship with the color otosk in Fig. 7 and the tan formed in the color.
  • 024 is a schematic diagram showing the composition of the part related to the Ming dynasty, () is the view from the position based on the first state, and Fig. (B) is the view from it. Is.
  • 002 a which is in the state of light, is equipped with a, a, which irradiates light on 3 and a te 2, which is moved by 3.
  • the symbol a indicates the direction of movement of group 3 on TE 2.
  • 002t a comprises, 2, 2, a second 2, a first 3, a second 4a, 5, a memory 6, and a collation 7. .
  • the 002 disk 2 has a structure in which it is transparent when formed into a predetermined tan on the surface made of quartz glass or the like.
  • Figure 2 shows the appearance of a model of Otosk 2.
  • A indicates the direction of movement of 3.
  • the disk 2 has a configuration in which, for example, a number of 22 is formed in parallel by a predetermined number along the angular direction of the moving direction a.
  • the hatched area shows 2 and the uncoated area shows transparency 22.
  • This 2 also shows that 22 has an elongated rectangular shape in the moving direction a, but the shape of 22 can be changed.
  • this manuscript 2 is normally arranged so that its face becomes the base 3 row. Then, it is rotatably and rotatably supported in a plane parallel to. Moreover, this manuscript 2 is located at the mouth of the manuscript, and the manuscript part of this manuscript 2 is held in a substantially dense state.
  • 003 05 can shoot 3 on the te 2. Devices such as CC cameras can be applied to this 5.
  • the 6 can store a reference image for use on the disk of the disk 2.
  • 7 compares the image taken by 5 with the reference image stored by memory 6, and compares the range where 3 is actually irradiated with light and the position where the original light is irradiated. The amount of deviation can be calculated.
  • 003 3 corrects the position and degree of the disk 2 based on the shift amount obtained by the collation 7, and makes it possible to actually irradiate the area with the onion of 3 with light onion. .
  • a device such as an air pump can be applied to 4a.
  • a method of irradiating light on 3 by using a of the above configuration will be simply described.
  • 5 is a given tan formed in 3 such as a gate line or source line.
  • the base 3 is moved to irradiate the green onion, and the element position formed in 3 is calculated based on the captured image and the reference image. Based on the above, the position and frequency of the task 2 will be continuously corrected. As a result, it is possible to irradiate light in a linear or striped pattern on the fixed area of the base 3.
  • the direction normal to the moving direction a is assumed to be greater than the design. Therefore, if this osk 2 is placed parallel to and is irradiated with green onions, the onions will be irradiated beyond the range where the natural onions are irradiated.
  • 004 03 is a schematic showing the operation of correction to reduce the range of irradiation of green onion through 22.
  • 3 c Enlarge and summarize the conditions before and after correction.
  • b in the figure indicates the value of green onion.
  • 22 is projected as is to 3.
  • the surface of the male disc 2 has a predetermined degree with respect to the substrate 3.
  • the 22 projected on the base 3 is smaller than the actual 22. Therefore, the area where the onion is irradiated through 22 of the osk 2 can be set to be larger than that of the 22 formed in the osk 2.
  • Otosk 2 The area that can be irradiated with onion through 22 of Otosk 2 is Otosk 2 It depends on the degree of the surface of and the base 3. It depends on the degree of the shape of Otosk 2 formed by the surface of Otosk 2 and the base 3. The shape of the otosk 2 varies depending on the part of and the outside. Therefore, by adjusting the pressure of each part, it is possible to make a correction to reduce the range where the onion can be irradiated through 22.
  • Otosk 4 shown in 004 4 has a difference
  • this 22 changes depending on the degree of rotation of Otosk 2, by adjusting the degree of Otosk 2, it is possible to correct the range of the onion radiated through 22. By adapting the composition of these, it is possible to enlarge or reduce the size of the onion through 22. Therefore, for example, due to the reduction of the
  • the second 4b can adjust the tilt angle near the end of the disk 2.
  • the process described here is a process for forming a plurality of different regions (hereinafter, this region is referred to as a domain).
  • this region is referred to as a domain.
  • ultraviolet rays are used as the radiation for irradiation.
  • 0056 (a) and (b) are diagrams schematically showing the state of the onion with respect to each of the pair of eye-coloring elements constituting the cell.
  • 5 (a) is formed in the eye and 5 (a) is formed in the 5b color, respectively.
  • 5 c which is a combination of the above, is used in the implementation of 0057 and 3 32 is not particularly limited, but in the case of source line 3 2
  • 3 3 is formed in the area surrounded by the gate line 3 and the transistor 3 4 that drives this 3 3 is formed near the difference point between the source line 3 2 gate line 3 and the source line 3 2 gate line 3.
  • the surface of No. 3 is formed with something like.
  • each area is irradiated with an external line from a direction inclined by a predetermined 0 with respect to the normal line of the surface 3.
  • the projected optical axis is lined up in the source line 32 when projected onto the third surface of the external ray.
  • the direction is 8.
  • 006 (a) shows the composition of the otosk (hereinafter referred to as the iotosk) that is used when light is applied to the eye in this implementation.
  • 6b) shows the relationship with the tan formed in this area.
  • the iotosk 2 has a rectangular shape made of glass, for example. Part. Then, as shown in (), a plurality of 22 through which the outside line can be transmitted is formed in a row at a predetermined position. The pitch P of this 22 is set equal to that of the source line 32 formed on the eye as shown in 6b. In addition, it is set to the modulo 2 of P above. It should be noted that the symbol a indicates the direction of movement of the eye with respect to the eye task 2. Then, using the radio disc 2, the area that is divided into two between the source lines 32 is irradiated with an external ray at a predetermined angle of incidence. To illuminate the outside line at a specified angle of incidence in the above area.
  • the ultraviolet ray can be irradiated to each of the above-mentioned areas with one sheet of the optical disk 2.
  • 00667 is formed on the lens and the ostosk (below, referred to as the kerota osque) that is used when light is formed on the surface of the kerato in this embodiment. It shows the relationship between and.
  • the chi P of 22 is set equal to the chi of the side of the rack tox 32 parallel to the edge line. It is also set to 2 of 22 above Ps.
  • a in the figure indicates the direction of movement of the colorator with respect to the colorer disc.
  • the outside line at a predetermined angle of incidence is first applied to the two areas that are formed by dividing the area parallel to the edge line into approximately two parts. Irradiate.
  • the external rays are radiated to the above area at a certain angle. It is the above-mentioned angle of incidence of an external ray with respect to the region.
  • Color Otosk 2 Set the relative position to the color in the angular direction of the movement direction a of the color If only the above two methods are shifted, ultraviolet rays can be irradiated to each of the above areas with one sheet of color otosk.
  • 007 08 shows the relationship between the area 2 of the otosk 2 and that of the area 2 of the otosk 2 when the design method is different.
  • 8 (a indicates that 22 are larger than the design
  • 8 (b) indicates that 22 is larger than the design
  • the space 2 shown in (a) and (b) is the area above.
  • the following shows the relationship when irradiating the outside area with an outside line
  • the function 2 shown in (1) shows the relationship when irradiating the outside area with an outside line.
  • 22 is more than the design, and the boundary line of the above area.
  • the area of the outside line is doubled to the area of the outside line, and this area exists. Then, or there is a disturbance, and there is a risk that the rank will drop.
  • the ultraviolet ray is corrected so that the area can be appropriately irradiated with an external ray.
  • the optical disc 2 rotates the optical disc 2 by a predetermined degree in a plane parallel to the plane, and increase the modulus of 22 and Correct as the value of increases. 22 pairs as shown in 8 (b)
  • the configuration applied to the above process was shown, but the applicable scope is not limited to this process.
  • it can be applied to exposure when forming a colorant, a lactox, or other predetermined element by using the Ottoray method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)

Abstract

It is possible to provide an exposure device and an exposure method capable of accurately applying optical energy into a predetermined range. By adjusting the difference between the inner and the outer air pressure of a case (111), it is possible to adjust the curved deformation amount of a photo mask (2) mounted on the opening of the case (111) caused by the air difference and further adjust the curved deformation amount so as to adjust the angle between the surface of the photo mask (2) and the irradiation plane of the substrate (3), thereby adjusting the dimension of the irradiation arrange of the optical energy applied to the irradiation surface of the substrate (3) via a light transmitting unit (22) formed on the photo mask (2).

Description

明 細 書 Specification
露光方法および露光装置 Exposure method and exposure device
技術分野 Technical field
[0001] 本発明は露光装置および露光方法に関するものであり、詳しくは、フォトマスクを用 い、光エネルギの被照射物とフォトマスクとを相対的に移動させながら被照射物に光 エネルギを照射できる露光装置と露光方法に関するものである。 [0001] The present invention relates to an exposure apparatus and an exposure method. Specifically, the present invention relates to an exposure apparatus and an exposure method, and more specifically, a photomask is used to irradiate the object with light energy while relatively moving the object to be irradiated with light energy and the photomask. This article relates to an exposure apparatus and an exposure method that can be used.
背景技術 Background technology
[0002] 液晶表示パネルには、一対の基板が所定の間隔をおいて略平行に相対向するよう に配置され、その間に液晶が充填されるという構成を有するものがある。この一対の 基板の表面には、液晶に電圧を印加する絵素電極、この絵素電極を駆動する薄膜ト ランジスタなどのスイッチング素子、ゲートバスラインやソースバスラインなどの各種配 線、液晶にプレティルト角を与える配向膜などの要素が積層状に形成される。また他 方の基板には、ブラックマトリックス、所定の色のカラーフィルタ層、共通電極や配向 膜などの要素が同様に積層状に形成される。 [0002] Some liquid crystal display panels have a structure in which a pair of substrates are arranged substantially parallel to each other at a predetermined interval and are filled with liquid crystal. On the surfaces of this pair of substrates are picture element electrodes that apply voltage to the liquid crystal, switching elements such as thin film transistors that drive the picture element electrodes, various wiring such as gate bus lines and source bus lines, and pre-tilt lines for the liquid crystal. Elements such as alignment films that provide corners are formed in a layered manner. On the other substrate, elements such as a black matrix, a color filter layer of a predetermined color, a common electrode, and an alignment film are similarly formed in a laminated manner.
[0003] 前記各基板に形成される配向膜には、液晶を所定の向きに配向させるための配向 処理が施される。従来はこの配向処理として繊維材料などによるラビングが用いられ て 、たが、最近ではこれに代わる配向処理として光配向処理が用いられるようになつ てきている。光配向処理は、配向膜の表面に所定の照射角で光エネルギを照射する ことによって、配向膜の表面に所定の配向特性を与える処理である。 [0003] The alignment film formed on each of the substrates is subjected to alignment treatment to align the liquid crystal in a predetermined direction. Conventionally, rubbing with a fiber material or the like has been used as this orientation treatment, but recently, photo-alignment treatment has come to be used as an alternative orientation treatment. Photo-alignment treatment is a process that imparts predetermined alignment characteristics to the surface of an alignment film by irradiating the surface of the alignment film with light energy at a predetermined irradiation angle.
[0004] また、前記スイッチング素子、各種配線、ブラックマトリックスやカラーフィルタ層など の要素には、フォトリソグラフィ法を用いて形成されるものがある。フォトリソグラフィ法 には、基板の表面にフォトレジスト材料を塗布する工程と、塗布したフォトレジスト材料 の所定のパターン領域に光エネルギを照射する工程と、光エネルギの照射パターン にしたがってフォトレジスト材料の不要な部分を除去する工程とが含まれる。 [0004] Furthermore, some of the switching elements, various wirings, black matrices, color filter layers, and other elements are formed using photolithography. The photolithography method involves a process of applying photoresist material to the surface of a substrate, a process of irradiating light energy to a predetermined pattern area of the applied photoresist material, and a process of removing the need for photoresist material according to the irradiation pattern of the light energy. This includes a step of removing a portion that is
[0005] たとえばカラーフィルタ層は、基板の表面に所定の色を有するフォトレジスト材料を 塗布する工程と、フォトマスクを通じてこのフォトレジスト材料の所定のパターン領域 に光エネルギを照射する工程と、フォトレジスト材料の不要な部分 (たとえば、光エネ ルギが照射されなカゝつた部分)を除去する工程とを経て形成される。 [0005] For example, a color filter layer consists of a process of applying a photoresist material having a predetermined color onto the surface of a substrate, a process of irradiating light energy to a predetermined pattern area of the photoresist material through a photomask, and a process of applying photoresist material having a predetermined color to the surface of a substrate. Unwanted parts of the material (e.g. It is formed through a step of removing the unirradiated portions.
[0006] なお、本発明に関連する先行文献として、特開 2005— 024649号公報および特 開平 11— 133429号公報が挙げられる。 [0006] Prior documents related to the present invention include JP-A No. 2005-024649 and JP-A No. 11-133429.
発明の開示 Disclosure of invention
発明が解決しょうとする課題 Problems that the invention seeks to solve
[0007] このように液晶表示パネルの製造においては、基板の表面の所定のパターン領域 に対して光エネルギを照射する工程が含まれる。光エネルギを照射する工程にぉ ヽ て光エネルギを照射する位置や範囲にズレが生じると、液晶の配向や基板に形成さ れる各要素の特性が設計と相違し、本来の配向や特性を有さなくなるおそれがある。 たとえば配向膜に光配向処理を施す工程にぉ 、て、光エネルギを照射する位置や 範囲にズレが生じると、液晶に対して設計どおりにプレティルト角を与えられなくなる おそれがある。 [0007] As described above, manufacturing a liquid crystal display panel includes a step of irradiating light energy onto a predetermined pattern area on the surface of a substrate. If a deviation occurs in the position or range of light energy irradiation during the process of irradiating light energy, the orientation of the liquid crystal and the characteristics of each element formed on the substrate will differ from the design, resulting in the original orientation and characteristics. There is a risk that it will not work. For example, in the process of photo-aligning an alignment film, if a deviation occurs in the position or range of irradiation with light energy, there is a risk that the pretilt angle cannot be given to the liquid crystal as designed.
[0008] フォトマスクを用いて基板の被照射面に光エネルギを照射する場合、光エネルギを 照射する位置や範囲の精度は、フォトマスクに形成される遮光部と透光部のパターン の寸法精度に大きく影響を受ける。このためフォトマスクの遮光部と透光部のパター ンを極めて高!、寸法精度で形成する必要がある。し力しながらフォトマスクの遮光部 と透光部のパターンの寸法精度を高くすると、フォトマスクの製造コストが上昇する。 またフォトマスクの伸縮によって、遮光部と透光部の寸法が変化する場合もある。 [0008] When using a photomask to irradiate the irradiated surface of a substrate with light energy, the accuracy of the position and range to which the light energy is irradiated depends on the dimensional accuracy of the patterns of the light-shielding parts and transparent parts formed on the photomask. greatly influenced by. For this reason, it is necessary to form the patterns of the light-shielding and transparent parts of the photomask with extremely high dimensional accuracy. However, if the dimensional accuracy of the pattern of the light-shielding part and the light-transmitting part of the photomask is increased, the manufacturing cost of the photomask will increase. Furthermore, the dimensions of the light-shielding portion and the light-transmitting portion may change due to expansion and contraction of the photomask.
[0009] 上記実情に鑑み本発明が解決しょうとする課題は、フォトマスクに形成される遮光 部と透光部のパターンが寸法誤差を有している場合や寸法が変化した場合であって も、所定の領域に精度よく光エネルギを照射できる露光装置および露光方法を提供 することである。 [0009] In view of the above circumstances, the problem to be solved by the present invention is that even if the pattern of the light-shielding part and the light-transmitting part formed on the photomask has a dimensional error or the dimension has changed, An object of the present invention is to provide an exposure apparatus and an exposure method that can accurately irradiate a predetermined area with light energy.
課題を解決するための手段 Means to solve problems
[0010] 前記課題を解決するため本発明は、光エネルギが透過可能な透光部が形成される とともに光エネルギの被照射面に対して傾斜可能に支持されるフォトマスクと、該フォ トマスクの表面と前記光エネルギの被照射面とのなす角度を調整することにより該フ オトマスクの透光部を通じて前記光エネルギの被照射面に照射する光エネルギの照 射幅を補正する補正手段とを備えることを要旨とする。 [0011] ここで前記補正手段は、内部気圧と外部気圧の圧力差を調整する調圧手段を備え[0010] In order to solve the above-mentioned problems, the present invention provides a photomask in which a light-transmitting part through which light energy can pass is formed and is supported so as to be tiltable with respect to a surface to which light energy is irradiated; and a correction means for correcting the irradiation width of the light energy irradiated onto the surface to be irradiated with the light energy through the transparent portion of the photomask by adjusting the angle formed between the surface and the surface to be irradiated with the light energy. The gist is that. [0011] Here, the correction means includes a pressure regulating means for adjusting the pressure difference between the internal atmospheric pressure and the external atmospheric pressure.
、内部気圧と外部気圧の圧力差によって生じる前記フォトマスクの湾曲変形量を調整 して前記フォトマスクの表面と前記光エネルギの被照射面とのなす角を調整するもの であることが好ましい。 Preferably, the angle formed between the surface of the photomask and the surface to be irradiated with the light energy is adjusted by adjusting the amount of curved deformation of the photomask caused by the pressure difference between internal and external air pressure.
[0012] また前記補正手段は、前記フォトマスクの端部近傍を前記光エネルギの被照射面 に対して傾斜させるティルト機構を有し、前記フォトマスクのティルト角を調整すること により湾曲変形量を調整して前記フォトマスクの表面と前記光エネルギの被照射面と のなす角を調整するものであってもよい。 [0012] Furthermore, the correction means includes a tilt mechanism that tilts the vicinity of the end of the photomask with respect to the surface to be irradiated with the light energy, and adjusts the tilt angle of the photomask to reduce the amount of curvature deformation. The angle between the surface of the photomask and the surface to be irradiated with the light energy may be adjusted by adjusting the angle.
[0013] また、光エネルギが透過可能な透光部が形成されるとともに光エネルギの被照射面 に略平行な面内を回転可能に支持されるフォトマスクと、該フォトマスクの前記光エネ ルギの被照射面に平行な面内における回転角を調整することにより該フォトマスクの 透光部を通じて前記光エネルギの被照射面に照射される光エネルギの照射幅を補 正する補正手段とを備えることを要旨とするものである。 [0013] Further, the photomask includes a photomask in which a light-transmitting part through which light energy can pass is formed and is supported rotatably in a plane substantially parallel to a surface to be irradiated with light energy; and a correction means for correcting the irradiation width of the light energy irradiated onto the surface to be irradiated with the light energy through the transparent portion of the photomask by adjusting the rotation angle in a plane parallel to the surface to be irradiated. The gist of this is that
[0014] 光エネルギが透過可能な透光部が形成されるとともに光エネルギの被照射面に対 して傾斜可能に支持されるフォトマスクと該フォトマスクの表面と前記光エネルギの被 照射面とのなす角度を調整することにより、該フォトマスクの透光部を通じて前記光ェ ネルギの被照射面に照射される光エネルギの照射幅を補正することを要旨とするも のである。 [0014] A photomask in which a transparent part through which light energy can pass is formed and is supported so as to be tiltable with respect to a surface to be irradiated with light energy; a surface of the photomask; and a surface to be irradiated with light energy; The gist of the present invention is to correct the irradiation width of the light energy that is irradiated onto the surface to be irradiated with the light energy through the light-transmitting portion of the photomask by adjusting the angle formed by the photomask.
[0015] ここで前記フォトマスクの表面と前記光エネルギの被照射面とのなす角度は、内部 気圧と外部気圧の圧力差による前記フォトマスクの湾曲変形量を調整することによつ て調整するものであることが好まし 、。 [0015] Here, the angle formed between the surface of the photomask and the surface to be irradiated with the light energy is adjusted by adjusting the amount of curved deformation of the photomask due to the pressure difference between the internal atmospheric pressure and the external atmospheric pressure. Preferably something.
[0016] また前記フォトマスクの表面と前記光エネルギの被照射面とのなす角度は、前記フ オトマスクの前記光エネルギの被照射面に対するティルト角を調整して前記フォトマス クの湾曲変形量を調整することにより調整するものであってもよい。 [0016] Further, the angle formed between the surface of the photomask and the surface to which the light energy is irradiated can be determined by adjusting the tilt angle of the photomask with respect to the surface to be irradiated with the light energy, so that the amount of curvature deformation of the photomask can be adjusted. It may be adjusted by adjusting.
[0017] 光エネルギが透過可能な透光部が形成されるとともに光エネルギの被照射面に略 平行な面内を回転可能に支持されるフォトマスクの前記光エネルギの被照射面に平 行な面内における回転角を調整して、該フォトマスクの透光部を通じて前記光ェネル ギの被照射面に照射される光エネルギの照射幅を補正することを要旨とするもので ある。 [0017] A photomask is provided with a transparent portion through which light energy can pass, and is supported rotatably in a plane substantially parallel to the surface to be irradiated with the light energy. The gist is to correct the irradiation width of the light energy irradiated onto the surface to be irradiated with the light energy through the light-transmitting part of the photomask by adjusting the rotation angle in the plane. be.
発明の効果 Effect of the invention
[0018] 本発明によれば、フォトマスクの表面を光エネルギの被照射面に対して傾斜させる ことによって、フォトマスクに形成される透光部を通じて照射される光エネルギの照射 幅を調整することができる。したがって、フォトマスクが寸法誤差を有しており、透光部 のパターンの実際の寸法が設計寸法よりも大きい場合や小さい場合であっても、被 照射面に対して精度よく光エネルギを照射することができる。 [0018] According to the present invention, the irradiation width of the light energy irradiated through the transparent portion formed on the photomask can be adjusted by tilting the surface of the photomask with respect to the surface to be irradiated with the light energy. Can be done. Therefore, even if the photomask has dimensional errors and the actual dimensions of the pattern in the transparent part are larger or smaller than the designed dimensions, it is possible to irradiate the irradiated surface with light energy accurately. be able to.
[0019] ここで、露光装置の内部と外部の圧力差によって湾曲変形量を調整する構成であ れば、簡単な構成でフォトマスクの表面と光エネルギの被照射面とのなす角度を調 整し、光エネルギの照射幅寸法を調整できる。また、フォトマスクの端部近傍を前記 光エネルギの被照射面に対して傾斜させるティルト機構を有する構成であっても、前 記同様に簡単な構成でフォトマスクの表面と光エネルギの被照射面とのなす角度を 調整し、光エネルギの照射幅寸法を調整できる。 [0019] Here, if the configuration is such that the amount of curved deformation is adjusted by the pressure difference between the inside and outside of the exposure apparatus, the angle between the surface of the photomask and the surface to be irradiated with light energy can be adjusted with a simple configuration. The irradiation width dimension of the light energy can be adjusted. Furthermore, even if the structure has a tilt mechanism that tilts the vicinity of the end of the photomask with respect to the surface to be irradiated with the light energy, the surface of the photomask and the surface to be irradiated with the light energy can be easily adjusted as described above. The width of the light energy can be adjusted by adjusting the angle between the two.
[0020] 本発明によれば、光エネルギの被照射面に略平行な面内の回転角を調整すること によって、フォトマスクに形成される透光部を通じて照射される光エネルギの照射幅 を補正することができる。したがって、フォトマスクが寸法誤差を有しており、透光部の ノターンの実際の寸法が設計寸法よりも大きい場合や小さい場合であっても、被照 射面に対して精度よく光エネルギを照射することができる。 [0020] According to the present invention, the irradiation width of the light energy irradiated through the transparent part formed on the photomask is corrected by adjusting the rotation angle in a plane substantially parallel to the surface to be irradiated with the light energy. can do. Therefore, even if the photomask has dimensional errors and the actual size of the notarn of the transparent part is larger or smaller than the designed size, it is possible to irradiate light energy accurately onto the irradiated surface. can do.
図面の簡単な説明 Brief description of the drawing
[0021] [図 1]本発明の第一実施形態に係る露光装置の要部の構成を示した模式図であり、 ( a)は第一実施形態に係る露光装置を基板の被照射面の上方から見た図、(b)はそ の側方から見た図である。 [0021] [FIG. 1] A schematic diagram showing the configuration of main parts of an exposure apparatus according to a first embodiment of the present invention. The view is from above, and (b) is the view from the side.
[図 2]フォトマスクの構成を模式的に示した外観斜視図である。 [Figure 2] An external perspective view schematically showing the configuration of a photomask.
[図 3]光エネルギの照射範囲を縮小する補正のメカニズムを模式的に示した図であり (a)は補正前の状態を、(b)は補正後の状態を、(c)は補正前後の状態を併せて示し た図である。 [Figure 3] A diagram schematically showing the correction mechanism for reducing the irradiation range of light energy. (a) shows the state before correction, (b) shows the state after correction, and (c) shows the state before and after correction. This figure also shows the state of .
[図 4]光エネルギの照射範囲の寸法を拡大する補正のメカニズムを模式的に示した 平面図であり、(a)は補正前の状態を、(b)は補正後の状態を示す。 [図 5]本発明の実施例に係る露光装置または露光方法による光配向処理を模式的に 示した図であり、(a)はアレイ基板に対する光配向処理を、(b)はカラーフィルタ基板 に対する光配向処理を、(c)は、前記各基板を貼り合わせて構成される液晶パネル の各絵素内における液晶分子の配向方向を模式的に示した図である。 [Figure 4] A plan view schematically showing the correction mechanism for expanding the dimensions of the irradiation range of light energy, with (a) showing the state before correction, and (b) showing the state after correction. [Figure 5] Diagrams schematically showing the photo-alignment process using the exposure apparatus or exposure method according to the embodiment of the present invention, in which (a) shows the photo-alignment process on the array substrate, and (b) shows the photo-alignment process on the color filter substrate. (c) is a diagram schematically showing the orientation direction of liquid crystal molecules in each picture element of a liquid crystal panel constructed by bonding the respective substrates together.
[図 6]前記実施例において用いるアレイ基板用フォトマスクと、アレイ基板に形成され るパターンとの寸法関係を示した図である。 [FIG. 6] A diagram showing the dimensional relationship between the array substrate photomask used in the example and the pattern formed on the array substrate.
[図 7]前記実施例において用いるカラーフィルタ基板用フォトマスクと、カラーフィルタ 基板に形成されるパターンとの寸法関係を示した図である。 FIG. 7 is a diagram showing the dimensional relationship between the color filter substrate photomask used in the embodiment and the pattern formed on the color filter substrate.
[図 8]アレイ基板用フォトマスクの透光部の横幅寸法が設計寸法と異なる場合におけ る、フォトマスクの透光部とアレイ基板に形成される絵素との位置関係を示した平面 模式図であり、(a)は透光部の横幅寸法が設計寸法よりも小さい場合を、(b)は透光 部の横幅寸法が設計寸法よりも大き ヽ場合を示す。 [Figure 8] Planar schematic diagram showing the positional relationship between the light-transmitting part of the photomask and the pixels formed on the array substrate when the width dimension of the light-transmitting part of the photomask for array substrate is different from the design dimension. In the figures, (a) shows the case where the width dimension of the transparent part is smaller than the design dimension, and (b) shows the case where the width dimension of the transparent part is larger than the design dimension.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下に、本発明の各実施形態について図面を参照して詳細に説明する。 [0022] Each embodiment of the present invention will be described in detail below with reference to the drawings.
[0023] 本発明の各実施形態に係る露光装置は、所定のパターンに形成された遮光部と透 光部とを有するフォトマスクを用い、被照射物である基板を移動させながらこの基板 の被照射面または被照射面に形成される所定の要素に対して光エネルギを照射で きるように構成される。すなわち本発明の各実施形態に係る露光装置は、基板の被 照射面に対し、基板の移動にしたがってフォトマスクの透光部を通じて線状またはス トライプ状に光エネルギを照射できる。 [0023] The exposure apparatus according to each embodiment of the present invention uses a photomask having a light-shielding part and a light-transmitting part formed in a predetermined pattern, and uses a photomask to move the substrate, which is an object to be irradiated, while exposing the substrate. It is configured to be able to irradiate light energy to a predetermined element formed on the irradiation surface or the irradiation surface. That is, the exposure apparatus according to each embodiment of the present invention can irradiate the irradiated surface of the substrate with light energy in a linear or striped manner through the transparent portion of the photomask as the substrate moves.
[0024] 図 1は、本発明の第一実施形態に係る露光装置の要部の構成を示した模式図であ り、図 1 (a)は第一実施形態に係る露光装置を基板の被照射面の上方から見た図、 図 1 (b)はその側方から見た図である。 [0024] FIG. 1 is a schematic diagram showing the configuration of main parts of an exposure apparatus according to a first embodiment of the present invention, and FIG. Figure 1 (b) shows the view from above the irradiated surface, and Figure 1 (b) shows the view from the side.
[0025] 本発明の第一実施形態に係る露光装置 laは、基板 3の被照射面に光エネルギを 照射する照射ユニット 11aと、基板 3を載置して移動させるテーブル 12とを備える。図 中の矢印 aは、テーブル 12上の基板 3の移動方向を示す。 [0025] The exposure apparatus la according to the first embodiment of the present invention includes an irradiation unit 11a that irradiates the irradiated surface of the substrate 3 with light energy, and a table 12 on which the substrate 3 is placed and moved. Arrow a in the figure indicates the direction of movement of the substrate 3 on the table 12.
[0026] 照射ユニット 11aは、筐体 111と、光源 112と、フォトマスク 2と、第一補正手段 113 と、第二補正手段 114aと、撮像手段 115と、記憶手段 116と、照合手段 117とを備え る。 [0026] The irradiation unit 11a includes a housing 111, a light source 112, a photomask 2, a first correction means 113, a second correction means 114a, an imaging means 115, a storage means 116, and a collation means 117. equipped with Ru.
[0027] 光源 112には、所定の波長帯域の光エネルギを発することができる公知の各種光 源が適用でき、照射目的や被照射物の種類などに応じて適宜選択される。たとえば 基板 3の被照射面に紫外線を照射する場合には、紫外線光源が適用される。 [0027] Various known light sources capable of emitting light energy in a predetermined wavelength band can be applied to the light source 112, and are appropriately selected depending on the purpose of irradiation, the type of object to be irradiated, and the like. For example, when irradiating the irradiated surface of the substrate 3 with ultraviolet rays, an ultraviolet light source is used.
[0028] フォトマスク 2は石英ガラスなど力もなる透明基板の表面に、所定のパターンに形成 される遮光部と透光部を有する構成を有する。図 2は、フォトマスク 2の構成の例を模 式的に示した外観斜視図である。図中の矢印 aは基板 3の移動方向を示す。このフォ トマスク 2は、たとえば複数の透光部 22が、基板の移動方向 aの直角方向に沿って所 定のピッチで並列して形成される構成を備える。図においては、ノ、ツチングを施した 領域が遮光部 21を示し、施していない領域が透光部 22を示す。またこの図 2は、透 光部 22が基板の移動方向 aに細長い略長方形を有する構成を示す力 透光部 22の 形状や寸法は適宜変更できる。 [0028] The photomask 2 has a structure in which a light-shielding part and a light-transmitting part are formed in a predetermined pattern on the surface of a transparent substrate such as quartz glass that has a high strength. FIG. 2 is an external perspective view schematically showing an example of the configuration of the photomask 2. FIG. Arrow a in the figure indicates the direction of movement of the substrate 3. This photomask 2 has a configuration in which, for example, a plurality of transparent parts 22 are formed in parallel at a predetermined pitch along a direction perpendicular to the moving direction a of the substrate. In the figure, the area where the tucking is applied indicates the light-shielding part 21, and the area where no tucking is applied is the light-transmitting part 22. Further, FIG. 2 shows a configuration in which the light-transmitting portion 22 has a substantially rectangular shape elongated in the moving direction a of the substrate.The shape and dimensions of the light-transmitting portion 22 can be changed as appropriate.
[0029] 図 1に戻って説明すると、このフォトマスク 2は、常態においてはその表面が基板 3 の被照射面に略平行となるように配置される。そして基板 3の被照射面に平行な面内 を回転および平行移動可能に支持される。またこのフォトマスク 2は筐体 111の開口 部近傍に配置されており、このフォトマスク 2によって筐体 111の内部がほぼ気密状 態に維持される。 [0029]Returning to FIG. 1, the photomask 2 is normally arranged so that its surface is substantially parallel to the irradiated surface of the substrate 3. It is supported so as to be rotatable and translatable in a plane parallel to the irradiated surface of the substrate 3. Further, this photomask 2 is placed near the opening of the housing 111, and the photomask 2 maintains the interior of the housing 111 in a substantially airtight state.
[0030] 撮像手段 115は、テーブル 12上に載置された基板 3の被照射面を撮影できる。こ の撮像手段 115には、たとえば CCDカメラなどの各種公知の撮像装置が適用できる 。記憶手段 116は、フォトマスク 2の位置合わせに用いる基準画像を記憶することが できる。照合手段 117は、撮像手段 115が撮影した画像と記憶手段 116が記憶する 基準画像とを比較して、基板 3の被照射面に対して実際に光エネルギを照射してい る範囲と本来光エネルギを照射すべき範囲との位置や角度のズレ量を算出できる。 [0030] The imaging means 115 can photograph the irradiated surface of the substrate 3 placed on the table 12. Various known imaging devices such as a CCD camera can be applied to this imaging means 115. The storage means 116 can store a reference image used for positioning the photomask 2. The comparison means 117 compares the image taken by the imaging means 115 with the reference image stored in the storage means 116, and determines the range where light energy is actually irradiated onto the irradiated surface of the substrate 3 and the original light energy. The amount of positional and angular deviation from the area to be irradiated can be calculated.
[0031] 第一補正手段 113は、照合手段 117が算出したズレ量に基づいて、フォトマスク 2 の位置や角度を補正し、基板 3の被照射面の光エネルギを照射すべき範囲に対して 実際に光エネルギを照射できるようにする。 [0031] The first correction means 113 corrects the position and angle of the photomask 2 based on the amount of deviation calculated by the verification means 117, and applies light energy to the area to be irradiated on the irradiated surface of the substrate 3. Make it possible to actually irradiate light energy.
[0032] 第二補正手段 114aは、筐体 111の内部の気圧を調整することができる。この第二 補正手段 114aには、空気ポンプなどの各種公知の調圧装置が適用できる。 [0033] このような構成の露光装置 laを用いて基板 3の被照射面に光エネルギを照射する 方法につ!、て簡単に説明する。 [0032] The second correction means 114a can adjust the air pressure inside the housing 111. Various known pressure regulating devices such as an air pump can be applied to this second correction means 114a. [0033] A method of irradiating the irradiated surface of the substrate 3 with light energy using the exposure apparatus la having such a configuration will be briefly described.
[0034] 基板 3がテーブル 12上を移動してこのフォトマスク 2の近傍を通過すると、透光部 2 2の直近を通過した部分のみが光エネルギの照射を受け、遮光部 21の直近を通過し た部分は光エネルギの照射を受けない。このため基板 3の被照射面は、基板 3の移 動方向(矢印 aの方向)に沿って線状またはストライプ状に光エネルギの照射を受け る。 [0034] When the substrate 3 moves on the table 12 and passes near this photomask 2, only the portion that passed immediately adjacent to the light-transmitting portion 22 is irradiated with light energy, and passes immediately adjacent to the light-shielding portion 21. The exposed areas are not irradiated with light energy. Therefore, the irradiated surface of the substrate 3 is irradiated with light energy in a linear or striped manner along the direction of movement of the substrate 3 (direction of arrow a).
[0035] そして基板が移動している間は、撮像手段 115は基板 3の被照射面に形成される 所定の要素パターン、たとえばゲートバスラインもしくはソースバスラインなどの各種 配線、またはブラックマトリックスなどのいずれかを撮影する。そして、照合手段 117 は、撮像手段 115が撮影した画像と記憶手段 116が記憶する画像とを比較して、光 エネルギを照射すべき範囲と実際に光エネルギが照射される範囲とのズレ量を算出 する。第一補正手段 113は、この算出結果に基づいてフォトマスク 2の位置(主に基 板 3の移動方向 aに対して直角方向の位置)や角度(主に基板の移動方向 aと透光部 のパターンとがなす角度)を補正する。 [0035] While the substrate is moving, the imaging means 115 is configured to carry out predetermined element patterns formed on the irradiated surface of the substrate 3, such as various types of wiring such as gate bus lines or source bus lines, or black matrices. Take a photo of either. Then, the collation means 117 compares the image taken by the imaging means 115 and the image stored in the storage means 116, and determines the amount of deviation between the range to be irradiated with light energy and the range actually irradiated with light energy. calculate. The first correction means 113 calculates the position of the photomask 2 (mainly the position perpendicular to the moving direction a of the substrate 3) and the angle (mainly the moving direction a of the substrate and the transparent area) based on this calculation result. (the angle formed by the pattern).
[0036] 以降、基板 3を移動させて光エネルギを照射しつつ、基板 3の被照射面に形成され る要素パターンの撮影と、撮影した画像と基準画像とに基づく光エネルギの照射位 置や角度のズレ量の算出、およびこの算出結果に基づくフォトマスク 2の位置や角度 の補正を継続的に行う。この結果、基板 3の被照射面の所定の範囲に対し、線状ま たはストライプ状に光エネルギを照射できる。 [0036] After that, while moving the substrate 3 and irradiating light energy, the element pattern formed on the irradiated surface of the substrate 3 is photographed, and the irradiation position of the light energy is determined based on the photographed image and the reference image. The amount of angular deviation is calculated, and the position and angle of the photomask 2 are continuously corrected based on the calculation results. As a result, a predetermined range of the irradiated surface of the substrate 3 can be irradiated with light energy in a linear or striped manner.
[0037] 次に、フォトマスク 2の透光部 22を通じて光エネルギを照射する範囲を拡大または 縮小する補正について説明する。たとえばフォトマスク 2の透光部 22のパターンが寸 法誤差を有しており、設計寸法よりも大きい場合や小さい場合がある。また、フォトマ スク 2の伸縮によって、フォトマスク 2に形成される遮光部 21と透光部 22のパターンが 全体的に拡大または縮小する場合がある。このような場合には、透光部 22を通じて 光エネルギを照射する範囲を拡大または縮小する補正を行 、、本来光エネルギを照 射すべき範囲に対して実際に光エネルギを照射できるようにする必要がある。 [0037] Next, a description will be given of correction for enlarging or reducing the range to which light energy is irradiated through the transparent portion 22 of the photomask 2. For example, the pattern of the transparent portion 22 of the photomask 2 has a dimensional error, and may be larger or smaller than the designed dimension. Furthermore, as the photomask 2 expands and contracts, the pattern of the light-shielding portions 21 and the light-transmitting portions 22 formed on the photomask 2 may expand or contract as a whole. In such a case, it is necessary to make corrections to enlarge or reduce the range to which light energy is irradiated through the transparent portion 22, so that the light energy can actually be irradiated to the range to which light energy should originally be irradiated. There is.
[0038] まず、透光部 22を通じて光エネルギを照射する範囲を縮小する補正について説明 する。この補正は、フォトマスク 2の実際の寸法が設計寸法よりも大きい場合などに適 用できる。 [0038] First, the correction for reducing the range of light energy irradiated through the transparent portion 22 will be explained. do. This correction can be applied when the actual dimensions of photomask 2 are larger than the designed dimensions.
[0039] ここでは、図 2に示すフォトマスクを用いて説明する。すなわちフォトマスクには、基 板の移動方向 aに沿って細長い略長方形の透光部 22が、基板の移動方向 aの直角 方向に沿って所定のピッチで複数並列して形成される。このフォトマスク 2は寸法誤 差を有しており、透光部 22の横幅寸法 (以後特に断らない限りは、「横幅寸法」という 場合には、基板の移動方向 aに直角の方向の寸法をいうものとする)が設計寸法より も大きいものとする。したがつてこのフォトマスク 2を基板の被照射面に平行に配置し て光エネルギを照射すると、本来光エネルギを照射すべき範囲を越えて光エネルギ を照射することになる。 [0039]Here, explanation will be made using the photomask shown in FIG. 2. That is, in the photomask, a plurality of elongated substantially rectangular light-transmitting portions 22 are formed in parallel at a predetermined pitch along a direction perpendicular to the substrate movement direction a. This photomask 2 has a dimensional error. ) shall be larger than the design dimensions. Therefore, if this photomask 2 is placed parallel to the surface of the substrate to be irradiated and light energy is irradiated, the light energy will be irradiated beyond the range to which light energy should originally be irradiated.
[0040] 図 3は、透光部 22を通じて光エネルギを照射する範囲を縮小する補正の動作を示 した模式図である。詳しくは、フォトマスク 2、照射ユニットの筐体 111および基板 3を、 基板の移動方向に対して直角方向に切断して示した図であり、図 3 (a)は補正前の 状態を、図 3 (b)は補正後の状態を、図 3 (c)は補正前後の状態を拡大してまとめて 示す。なお、図中の矢印 bは光エネルギの光軸の向きを示す。 [0040] FIG. 3 is a schematic diagram showing a correction operation for reducing the range of light energy irradiated through the light-transmitting part 22. In detail, the photomask 2, the irradiation unit housing 111, and the substrate 3 are cut in a direction perpendicular to the direction of movement of the substrate, and FIG. 3(a) shows the state before correction. Figure 3 (b) shows the state after correction, and Figure 3 (c) shows an enlarged view of the state before and after correction. Note that arrow b in the figure indicates the direction of the optical axis of light energy.
[0041] 第二補正手段 114bにより、筐体 111の内部気圧を外部気圧よりも低くするか高く する。筐体 111の内部と外部とで気圧差が生じると、この気圧差によってフォトマスク 2が微小に湾曲する。たとえば筐体 111の内部気圧を外部気圧よりも低くすると、フォ トマスク 2は筐体 111の内部に向力つて吸引され、図 2 (a)に示す状態から図 2 (b)に 示すように筐体 111の内側に向力つて張り出すように湾曲する。 [0041] The second correction means 114b makes the internal air pressure of the casing 111 lower or higher than the external air pressure. When a pressure difference occurs between the inside and outside of the housing 111, the photomask 2 is slightly curved due to this pressure difference. For example, when the internal air pressure of the casing 111 is lower than the external air pressure, the photomask 2 is attracted toward the inside of the casing 111, and the casing changes from the state shown in Figure 2 (a) to the state shown in Figure 2 (b). The body 111 curves so that it extends outward with a directional force.
[0042] フォトマスク 2が湾曲する前の状態、すなわちフォトマスク 2の表面と基板 3の被照射 面とが平行な状態においては、透光部 22の横幅寸法 Lがほぼそのまま基板 3の被 [0042] In the state before the photomask 2 is curved, that is, in the state where the surface of the photomask 2 and the irradiated surface of the substrate 3 are parallel, the width L of the light-transmitting part 22 remains almost the same as the surface of the substrate 3.
a a
照射面に投影される。これに対してフォトマスク 2が湾曲するとフォトマスク 2の表面が 基板 3の被照射面に対して所定の角度をもって傾斜する。この結果、基板 3の被照射 面に投影される透光部 22の投影寸法 Lは、実際の透光部 22の横幅寸法 Lよりも小 Projected onto the irradiation surface. On the other hand, when the photomask 2 is curved, the surface of the photomask 2 is inclined at a predetermined angle with respect to the irradiated surface of the substrate 3. As a result, the projected dimension L of the transparent part 22 projected onto the irradiated surface of the substrate 3 is smaller than the actual width dimension L of the transparent part 22.
b a さくなる。したがってフォトマスク 2の各透光部 22を通じて光エネルギを照射する範囲 を、フォトマスク 2に形成される透光部 22の寸法よりも小さくすることができる。 b a It gets smaller. Therefore, the range to which light energy is irradiated through each light-transmitting part 22 of the photomask 2 can be made smaller than the dimensions of the light-transmitting part 22 formed in the photomask 2.
[0043] フォトマスク 2の各透光部 22を通じて光エネルギを照射できる範囲は、フォトマスク 2 の表面と基板 3の被照射面とがなす角度に応じて変化する。フォトマスク 2の表面と基 板 3の被照射面とがなす角度は、フォトマスク 2の湾曲変形の程度に応じて変化する 。フォトマスク 2の湾曲変形の程度は、筐体 111の内部と外部の気圧差に応じて変化 する。したがって筐体 111の内部の気圧を調整することにより、透光部 22を通じて光 エネルギを照射できる範囲を小さくする補正ができる。 [0043] The range that can be irradiated with light energy through each transparent part 22 of photomask 2 is It changes depending on the angle between the surface of the substrate 3 and the irradiated surface of the substrate 3. The angle formed between the surface of the photomask 2 and the irradiated surface of the substrate 3 changes depending on the degree of curved deformation of the photomask 2. The degree of curving deformation of the photomask 2 changes depending on the pressure difference between the inside and outside of the housing 111. Therefore, by adjusting the air pressure inside the housing 111, it is possible to make corrections to reduce the range in which light energy can be irradiated through the transparent portion 22.
[0044] なお、図 3においては、筐体 111の内部気圧を外部気圧よりも低くする構成を示し た力 筐体 111の内部気圧を外部気圧よりも高くし、フォトマスク 2を筐体 111の外側 に向力 て膨出するように湾曲させる構成であってもよい。このような構成であっても 、前記構成と同様の作用効果を奏することができる。 [0044] In addition, FIG. 3 shows a configuration in which the internal air pressure of the casing 111 is lower than the external air pressure. The structure may be such that it is curved so as to bulge outward. Even with such a configuration, the same effects as the above configuration can be achieved.
[0045] 次に、フォトマスク 2の各透光部 22を通じて光エネルギを照射できる範囲を拡大す る補正について説明する。この補正は、フォトマスク 2の実際の寸法が設計寸法よりも 小さい場合などに適用できる。図 4は、この補正の機構を示した平面模式図であり、 図 4 (a)は補正前の状態を、図 4 (b)は補正後の状態を示す。なお、図中の矢印 aは 基板 3の移動方向を示す。また、フォトマスク 2は、前記光エネルギを照射する範囲を 縮小する補正で示したものと同じ構成のものが適用できる。 [0045] Next, a description will be given of correction for expanding the range in which light energy can be irradiated through each light-transmitting part 22 of the photomask 2. This correction can be applied when the actual dimensions of photomask 2 are smaller than the designed dimensions. Figure 4 is a schematic plan view showing this correction mechanism, with Figure 4 (a) showing the state before correction and Figure 4 (b) showing the state after correction. Note that arrow a in the figure indicates the direction of movement of the substrate 3. Furthermore, the photomask 2 can have the same configuration as that shown in the correction for reducing the range irradiated with light energy.
[0046] 図 4に示すフォトマスク 4は寸法誤差を有しており、透光部 22の実際の横幅寸法 L a 力 設計寸法よりも小さいものとする。このため図 4 (a)に示すように、透光部 22の長 手方向が基板 3の移動方向 aに平行である場合には、基板 3の被照射面に対して横 幅寸法 Lとほぼ同じ幅でしか光エネルギを照射できず、基板 3の被照射面の光エネ a [0046] The photomask 4 shown in FIG. 4 has a dimensional error, and the actual width dimension of the transparent portion 22 is smaller than the designed dimension. Therefore, as shown in Fig. 4(a), when the longitudinal direction of the transparent part 22 is parallel to the moving direction a of the substrate 3, the width dimension L is approximately equal to the irradiated surface of the substrate 3. Light energy can only be irradiated in the same width, and the light energy on the irradiated surface of substrate 3 is
ルギを照射すべき範囲の全幅に亘つて光エネルギを照射することができない。 It is not possible to irradiate light energy over the entire width of the range to be irradiated.
[0047] そこでこのような場合には、図 4 (b)に示すように、フォトマスク 2を基板 3の被照射面 に平行な面内を所定の角度だけ回転させる(矢印 cはフォトマスク 2の回転を模式的 に示す)。透光部 22が基板 3の移動方向 aに対して所定の角度だけ傾斜するため、こ のようにすると、透光部 22の基板 3の移動方向に直角方向の最大寸法 L (以下、こ の寸法を「有効寸法」と称する)が透光部 22の横幅寸法 Lよりも大きくなる。したがつ a [0047] In such a case, the photomask 2 is rotated by a predetermined angle in a plane parallel to the irradiated surface of the substrate 3, as shown in FIG. (schematically shows the rotation of ). Since the light-transmitting part 22 is inclined by a predetermined angle with respect to the moving direction a of the substrate 3, if this is done, the maximum dimension L of the light-transmitting part 22 in the direction perpendicular to the moving direction of the substrate 3 (hereinafter, this (referred to as the "effective dimension") is larger than the width dimension L of the transparent portion 22. Gakatsu a
てこのような状態で基板 3を移動させつつ光エネルギを照射すると、各透光部 22を通 じて基板 3の被照射面に対して光エネルギを照射できる範囲を広くすることができる。 By irradiating light energy while moving the substrate 3 in such a levered state, it is possible to widen the range in which the light energy can be irradiated onto the irradiated surface of the substrate 3 through each light-transmitting portion 22.
[0048] このように、フォトマスク 2を基板 3の被照射面に平行な面内を所定の角度だけ回転 させることにより、フォトマスク 2の各透光部 22の有効寸法を大きくし、光エネルギの照 射範囲を拡大することができる。この各透光部 22の有効寸法は、フォトマスク 2を回 転させた角度に応じて変化するから、フォトマスク 2の回転角度を調整することによつ て、各透光部 22を通じて照射される光エネルギの範囲を補正することができる。 [0048] In this way, the photomask 2 is rotated by a predetermined angle in a plane parallel to the irradiated surface of the substrate 3. By doing so, it is possible to increase the effective dimension of each light-transmitting portion 22 of the photomask 2 and expand the irradiation range of light energy. The effective dimensions of each transparent portion 22 change depending on the angle at which the photomask 2 is rotated, so by adjusting the rotation angle of the photomask 2, the amount of light that can be irradiated through each transparent portion 22 can be adjusted. It is possible to correct the range of light energy.
[0049] これらの前記二つの構成を適宜用いることによって、透光部 22を通じた光エネルギ の照射範囲を拡大または縮小することができる。したがってたとえばフォトマスク 2の 寸法誤差やフォトマスクの伸縮によって遮光部 21と透光部 22の実際の横幅寸法 L a が設計寸法と異なる場合であっても、光エネルギを照射すべき本来の範囲に対して 精度よく照射できる。 [0049] By appropriately using these two configurations, the range of light energy irradiated through the transparent portion 22 can be expanded or reduced. Therefore, even if the actual width dimension L a of the light-shielding part 21 and the light-transmitting part 22 differs from the designed dimension due to dimensional errors in the photomask 2 or expansion and contraction of the photomask, the light energy can be irradiated to the original area. It can irradiate with high precision.
[0050] 次に、本発明の第二実施形態に係る露光装置と、この露光装置を用いた露光方法 について説明する。ここでは前記第一実施形態と異なる構成を主に説明し、共通す る構成については説明を省略する。 [0050] Next, an exposure apparatus according to a second embodiment of the present invention and an exposure method using this exposure apparatus will be described. Here, configurations that are different from the first embodiment will be mainly explained, and descriptions of common configurations will be omitted.
[0051] 図 1を参照して説明すると、第二実施形態に係る露光装置 lbは、基板 3の被照射 面に光エネルギを照射する照射ユニット l ibと基板 3を載置するテーブル 12を備える 構成、および照射ユニット l ibが筐体 111、光源 112、フォトマスク 2、第一補正手段 113、撮像手段 115、記憶手段 116および照合手段 117とを備える構成については 、前記第一実施形態に係る露光装置 laと共通する。そして、テーブル 12、照射ュニ ット l ibの筐体 111、光源 112、フォトマスク 2、第一補正手段 113、撮像手段 115、 記憶手段 116および照合手段 117は、それぞれ前記第一実施形態に係る露光装置 laのものと同じものが適用できる。 [0051] Referring to FIG. 1, the exposure apparatus lb according to the second embodiment includes an irradiation unit l ib that irradiates the irradiated surface of the substrate 3 with light energy and a table 12 on which the substrate 3 is placed. The configuration and the configuration in which the irradiation unit lib includes a housing 111, a light source 112, a photomask 2, a first correction means 113, an imaging means 115, a storage means 116 and a collation means 117 are according to the first embodiment. Same as exposure equipment la. The table 12, the case 111 of the irradiation unit lib, the light source 112, the photomask 2, the first correction means 113, the imaging means 115, the storage means 116, and the collation means 117 are the same as those of the first embodiment. The same exposure apparatus as that of the exposure apparatus la can be applied.
[0052] 第二実施形態に係る露光装置 lbは、フォトマスク 2の両端近傍に基板 3の被照射 面に対してティルト角を与えることができる(すなわちフォトマスク 2の両端近傍を基板 3の被照射面に対して所定の角度だけ傾斜させることができる)ティルト機構(図略) を備える。そして第二補正手段 114bは、フォトマスク 2の両端近傍のティルト角を調 整することができる。 [0052] The exposure apparatus lb according to the second embodiment can provide a tilt angle with respect to the irradiated surface of the substrate 3 near both ends of the photomask 2 (that is, the vicinity of both ends of the photomask 2 can be provided with a tilt angle relative to the irradiated surface of the substrate 3). It is equipped with a tilt mechanism (not shown) that can be tilted at a predetermined angle with respect to the irradiation surface. The second correction means 114b can adjust the tilt angle near both ends of the photomask 2.
[0053] 図 3を参照すると、フォトマスク 2の両端近傍にティルト角を与えると、フォトマスク 2は 全体として図 3 (b)に示すように湾曲変形する。この湾曲変形の程度は、フォトマスク 2の両端近傍に与えるティルト角の大きさに応じて変化する。 [0054] このような構成によれば、フォトマスク 2を基板 3の被照射面に対する傾斜角を調整 できるから、前記第一実施形態に係る露光装置 laにおいて筐体の内部気圧を調整 する構成と同様に、フォトマスク 2の透光部 22を通じて照射される光エネルギの横幅 寸法を調整することができる。第二実施形態に係る露光装置 lbの光エネルギの横幅 寸法の補正メカニズムは、前記第一実施形態とほぼ同じであることから説明は省略 する。このように、本発明の第二実施形態に係る露光装置 lbによれば、前記第一実 施形態に係る露光装置 laと同様の作用効果を奏することができる。なお、第一実施 形態に係る露光装置 laとは異なり、必ずしも筐体力フォトマスクによって気密状態に 保たれる必要はない。 [0053] Referring to FIG. 3, when a tilt angle is given to the vicinity of both ends of the photomask 2, the photomask 2 as a whole is deformed into a curve as shown in FIG. 3(b). The degree of this curved deformation changes depending on the magnitude of the tilt angle given to the vicinity of both ends of the photomask 2. [0054] According to such a configuration, since the inclination angle of the photomask 2 with respect to the irradiated surface of the substrate 3 can be adjusted, it is possible to adjust the internal air pressure of the housing in the exposure apparatus la according to the first embodiment. Similarly, the width dimension of the light energy irradiated through the transparent portion 22 of the photomask 2 can be adjusted. The mechanism for correcting the width dimension of the light energy of the exposure apparatus lb according to the second embodiment is almost the same as that of the first embodiment, and therefore the explanation thereof will be omitted. In this way, the exposure apparatus lb according to the second embodiment of the present invention can achieve the same effects as the exposure apparatus la according to the first embodiment. Note that, unlike the exposure apparatus la according to the first embodiment, the housing does not necessarily need to be kept in an airtight state using a photomask.
[0055] 次に本発明の実施例 (適用例)につ 、て説明する。ここで説明する実施例は、液晶 表示パネルの各絵素内に、液晶の配向が互いに異なる複数の領域 (以下、この領域 を「ドメイン領域」と称する)を形成するために配向膜に施す光配向処理である。また、 ここでは照射する光エネルギとして紫外線を用いるものとする。 [0055] Next, embodiments (application examples) of the present invention will be described. The embodiment described here is a method of applying light to an alignment film to form multiple regions (hereinafter referred to as "domain regions") in which liquid crystals have different orientations within each pixel of a liquid crystal display panel. This is an orientation process. In addition, ultraviolet rays are used here as the light energy to be irradiated.
[0056] 図 5 (a) , (b)は、液晶表示パネルを構成する一対の基板、アレイ基板とカラーフィ ルタ基板のそれぞれに形成される絵素に対する光エネルギの照射形態を模式的に 示した図である。それぞれ、図 5 (a)がアレイ基板に形成される絵素を、図 5 (b)がカラ 一フィルタ基板に形成される絵素を示す。また、図 5 (c)は、前記各基板を貼り合わせ て構成される液晶表示パネルの各絵素内の液晶の配向を示した平面模式図である [0056] Figures 5 (a) and (b) schematically show the form of irradiation of light energy to picture elements formed on each of a pair of substrates, an array substrate and a color filter substrate, constituting a liquid crystal display panel. It is a diagram. Figure 5 (a) shows the picture element formed on the array substrate, and Figure 5 (b) shows the picture element formed on the color filter substrate. Furthermore, FIG. 5(c) is a schematic plan view showing the orientation of liquid crystal within each pixel of a liquid crystal display panel constructed by bonding each of the above-mentioned substrates.
[0057] 本実施例に用いられる基板および絵素 31, 32の構成は特に限定されるものではな いが、アレイ基板については、ソースバスライン 312とゲートバスライン 311に囲まれ る領域に絵素電極 313が形成され、ソースバスライン 312とゲートバスライン 311の交 差点近傍にこの絵素電極 313を駆動する薄膜トランジスタ 314が形成される構成の 絵素 31を例に用いて説明する。なお図示しないが、絵素 31の表面にはポリイミドな ど力 なる配向膜が形成される。 [0057] Although the configurations of the substrate and the picture elements 31, 32 used in this example are not particularly limited, the array substrate has a picture element in the area surrounded by the source bus line 312 and the gate bus line 311. A picture element 31 having a configuration in which an element electrode 313 is formed and a thin film transistor 314 for driving this picture element electrode 313 is formed near the intersection of a source bus line 312 and a gate bus line 311 will be described as an example. Although not shown, an alignment film made of polyimide or the like is formed on the surface of the picture element 31.
[0058] また図 5 (b)に示すようにカラーフィルタ基板については、ブラックマトリックス 321に より絵素 32が画成され、各絵素 32の内側にはカラーフィルタ層 322が形成されるも のを用いて説明する。そして各絵素 32の表面には共通電極(図示せず)や配向膜( 図示せず)が形成される。 [0058] Furthermore, as shown in FIG. 5(b), regarding the color filter substrate, picture elements 32 are defined by a black matrix 321, and a color filter layer 322 is formed inside each picture element 32. Explain using. The surface of each picture element 32 is covered with a common electrode (not shown) and an alignment film ( (not shown) is formed.
[0059] これらアレイ基板やカラーフィルタ基板の構成および製造方法は、従来一般のもの が適用できるから説明は省略する。 [0059] As the configuration and manufacturing method of these array substrates and color filter substrates can be conventionally used, explanations thereof will be omitted.
[0060] アレイ基板の光配向処理は図 5 (a)に示すように、まず各絵素 31内にその両側のソ ースバスライン 312の略中間で二分されて形成される二つの領域を想定する。図中 の一点鎖線 Aはこの領域の境界を示す。そしてそれぞれの領域の配向膜に対して、 絵素 31の面の法線に対して所定の角度 Θだけ傾斜した方向から紫外線を照射する 。各領域に照射される紫外線の向きは、それぞれ照射される紫外線の光軸を絵素 31 の面に投影した場合に、投影した光軸がソースノ スライン 312に略平行でかつ互い に略 180° 異なる向きとする。 [0060] In the optical alignment process of the array substrate, as shown in FIG. 5(a), first, two regions are assumed to be formed within each picture element 31 by dividing it into two approximately at the middle of the source bus lines 312 on both sides thereof. The dash-dotted line A in the figure indicates the boundary of this area. The alignment film in each region is then irradiated with ultraviolet light from a direction inclined at a predetermined angle Θ with respect to the normal to the surface of the picture element 31. The direction of the ultraviolet rays irradiated to each area is such that when the optical axes of the respective irradiated ultraviolet rays are projected onto the surface of the picture element 31, the projected optical axes are approximately parallel to the source line 312 and differ from each other by approximately 180°. direction.
[0061] カラーフィルタ基板の光配向処理では、ブラックマトリックス 321の四辺のうち前記ァ レイ基板と貼り合わせた際にアレイ基板のゲートバスライン 311に平行する二辺の略 中間で二分されて形成される二つの領域を想定する。図中の一点鎖線 Bはこの領域 の境界を示す。そしてそれぞれの領域の配向膜に、絵素 32の面の法線に対して所 定の角度 Θだけ傾斜した方向から紫外線を照射する。各領域に対する紫外線の照 射の向きは、それぞれ照射される紫外線の光軸を絵素 32の面に投影した場合に、こ れらの投影した光軸がアレイ基板のゲート信号線 311に略平行でかつ互いに略 180 ° 異なる向きとする。 [0061] In the photo-alignment treatment of the color filter substrate, the black matrix 321 is formed by being divided into two approximately in the middle of two sides parallel to the gate bus line 311 of the array substrate when bonded to the array substrate among the four sides of the black matrix 321. We assume two areas. The dash-dotted line B in the figure indicates the boundary of this area. The alignment film in each region is then irradiated with ultraviolet light from a direction inclined at a predetermined angle Θ with respect to the normal to the surface of the picture element 32. The direction in which the ultraviolet rays are irradiated to each region is such that when the optical axes of the irradiated ultraviolet rays are projected onto the surface of the picture element 32, these projected optical axes are approximately parallel to the gate signal line 311 of the array substrate. and be oriented approximately 180° different from each other.
[0062] このように光配向処理が施された配向膜を有するアレイ基板とカラーフィルタ基とを 貼り合わせると、図 5 (c)に示すように、これらの基板の間に充填される液晶は、各基 板の各領域に施された光配向処理の向き、すなわち紫外線の照射の向きにしたがつ て配向する。図中の各矢印は液晶の配向を模式的に示す。この結果各絵素内には 、液晶の配向の向きが互いに異なる四つのドメイン領域が形成される。 [0062] When the array substrate having the alignment film subjected to the photo-alignment treatment and the color filter base are bonded together, as shown in Figure 5(c), the liquid crystal filled between these substrates is The substrate is oriented according to the direction of the photo-alignment treatment applied to each region of each substrate, that is, the direction of the ultraviolet ray irradiation. Each arrow in the figure schematically indicates the orientation of liquid crystal. As a result, within each picture element, four domain regions are formed in which the directions of liquid crystal alignment differ from each other.
[0063] 図 6 (a)は、本実施例においてアレイ基板の配向膜に光配向処理を施す際に使用 されるフォトマスク(以下、「アレイ基板用フォトマスク」と称する)の構成を示す。また、 図 6 (b)はこのアレイ基板用フォトマスクとアレイ基板に形成される絵素のパターンと の寸法および位置関係を示した平面模式図である。 [0063] FIG. 6(a) shows the configuration of a photomask (hereinafter referred to as "array substrate photomask") used when photo-aligning the alignment film of the array substrate in this example. Furthermore, FIG. 6(b) is a schematic plan view showing the dimensions and positional relationship between this array substrate photomask and the pixel pattern formed on the array substrate.
[0064] アレイ基板用フォトマスク 2xは、たとえば石英ガラスなど力もなる略長方形の板状の 部材である。そして図 6 (a)に示すように紫外線が透過できる複数の透光部 22xが所 定のピッチで互いに略平行に形成される。この透光部 22xのピッチ Pは図 6 (b)に示 すようにアレイ基板に形成されるソースバスライン 312のピッチに等しく設定される。ま た透光部 22xの横幅寸法は、前記ピッチ Pの約 1Z2の寸法に設定される。なお、図 中の矢印 aはアレイ基板用フォトマスク 2xに対するアレイ基板の移動方向を示す。 [0064] Photomask 2x for array substrate is made of a roughly rectangular plate-like material, such as quartz glass, which has a strong force. It is a member. Then, as shown in FIG. 6(a), a plurality of transparent parts 22x through which ultraviolet rays can pass are formed substantially parallel to each other at a predetermined pitch. The pitch P of the transparent parts 22x is set equal to the pitch of the source bus lines 312 formed on the array substrate, as shown in FIG. 6(b). Further, the width dimension of the transparent portion 22x is set to approximately 1Z2 of the pitch P. Note that arrow a in the figure indicates the direction of movement of the array substrate with respect to the array substrate photomask 2x.
[0065] そしてこのようなアレイ基板用フォトマスク 2xを用いて、まず前記ソースバスライン 31 2の略中間で二分されて形成される二つの領域の一方に対し、所定の照射角で紫外 線を照射する。次いで前記二つの領域の他方に対して所定の照射角で紫外線を照 射する。各領域に対する紫外線の照射角の関係は前記の通りである。アレイ基板用 フォトマスク 2xとアレイ基板の相対的な位置関係をアレイ基板の移動方向 aの直角方 向に前記透光部 22xのピッチ Pの 1Z2の寸法だけずらして用いれば、一枚のアレイ 基板用フォトマスク 2xで前記二つの領域のそれぞれに対して紫外線を照射できる。 [0065] Using such an array substrate photomask 2x, UV rays are first applied at a predetermined irradiation angle to one of the two regions formed by dividing the source bus line 312 into two approximately in the middle. irradiate. Next, the other of the two regions is irradiated with ultraviolet light at a predetermined irradiation angle. The relationship between the irradiation angle of ultraviolet rays for each region is as described above. If the relative positional relationship between the array substrate photomask 2x and the array substrate is shifted by the dimension 1Z2 of the pitch P of the light-transmitting portion 22x in the direction perpendicular to the moving direction a of the array substrate, one array substrate can be formed. Ultraviolet rays can be irradiated to each of the two areas using a 2x photomask.
[0066] 図 7は、本実施例においてカラーフィルタ基板の表面に形成される配向膜に光配 向処理を施す際に使用されるフォトマスク(以下、「カラーフィルタ基板用フォトマスク」 と称する)と、カラーフィルタ基板に形成される絵素との寸法および位置関係を示した 平面模式図である。 [0066] FIG. 7 shows a photomask (hereinafter referred to as "photomask for color filter substrate") used when photo-aligning the alignment film formed on the surface of the color filter substrate in this example. FIG. 2 is a schematic plan view showing the dimensions and positional relationship between the color filter substrate and picture elements formed on the color filter substrate.
[0067] カラーフィルタ基板用のフォトマスク 2yの構成は、透光部 22yの寸法形状を除いて は前記アレイ基板用フォトマスク 2xとほぼ同じである。図 7に示すように、透光部 22y のピッチ Pは、ブラックマトリックス 321の四辺のうちアレイ基板のゲートバスラインに [0067] The configuration of the color filter substrate photomask 2y is almost the same as the array substrate photomask 2x except for the dimensions and shape of the light-transmitting portion 22y. As shown in Figure 7, the pitch P of the light-transmitting portion 22y is the one that is closest to the gate bus line of the array substrate among the four sides of the black matrix 321.
y y
平行な辺のピッチに等しく設定される。また透光部 22yの横幅寸法は前記ピッチ Pの Set equal to the pitch of parallel sides. In addition, the width dimension of the transparent part 22y is equal to the pitch P mentioned above.
y 約 1Z2に設定される。なお、図中の矢印 aは、カラーフィルタ基板用フォトマスクに対 するカラーフィルタ基板の移動方向を示す。 y Set to approximately 1Z2. Note that arrow a in the figure indicates the direction of movement of the color filter substrate with respect to the color filter substrate photomask.
[0068] そしてこのようなカラーフィルタ基板用フォトマスク 2yを用いて、まずアレイ基板のゲ ートバスラインに平行な辺の略中間で二分して形成される二つの領域の一方に対し て、所定の照射角で紫外線を照射する。次いで前記二つの領域の他方に対して所 定の照射角で紫外線を照射する。各領域に対する紫外線の照射角の関係は前記の 通りである。カラーフィルタ基板用フォトマスク 2yとカラーフィルタ基板との相対的な位 置関係をカラーフィルタ基板の移動方向 aの直角方向に前記透光部 22yのピッチ P の 1Z2の寸法だけずらして用いれば、一枚のカラーフィルタ基板用フォトマスク 2yで 前記二つの領域のそれぞれに対して紫外線を照射できる。 [0068] Using such a color filter substrate photomask 2y, first, a predetermined irradiation is applied to one of two regions formed by dividing the array substrate into two regions approximately in the middle of the side parallel to the gate bus line. Irradiate ultraviolet light at the corner. Next, the other of the two regions is irradiated with ultraviolet rays at a predetermined irradiation angle. The relationship between the irradiation angle of ultraviolet rays for each region is as described above. The relative positional relationship between the photomask 2y for color filter substrate and the color filter substrate is determined by the pitch P of the transparent portion 22y in the direction perpendicular to the moving direction a of the color filter substrate. By shifting the dimensions of 1Z2, it is possible to irradiate each of the two regions with ultraviolet rays using a single color filter substrate photomask 2y.
[0069] しかしながら、これらのフォトマスク 2x, 2yが寸法誤差を有するなどして、透光部 22 x、 22yの横幅寸法が設計寸法と異なると、次のような問題が生じうる。 [0069] However, if these photomasks 2x, 2y have dimensional errors and the width dimensions of the transparent parts 22x, 22y differ from the design dimensions, the following problem may occur.
[0070] 図 8は、アレイ基板用フォトマスク 2xの透光部 22xの横幅寸法 Lが設計寸法と異な る場合の、フォトマスク 2xの透光部 22xとアレイ基板に形成される絵素との位置関係 を示した平面模式図である。それぞれ図 8 (a)は透光部 22xの横幅寸法 Lが設計寸 法よりも小さい場合を、図 8 (b)は透光部 22xの横幅寸法 Lが設計寸法よりも大きい 場合を示す。また図 8 (a) , (b)の図中の上側に示したフォトマスク 2xは、前記二つの 領域のうちの一方の領域に紫外線を照射する場合の位置関係を示し、図中の下方 に示したフォトマスク 2xは、他方の領域に紫外線を照射する場合の位置関係を示す [0070] Figure 8 shows the relationship between the light-transmitting portion 22x of the photomask 2x and the picture element formed on the array substrate when the width dimension L of the light-transmitting portion 22x of the photomask 2x for array substrate is different from the design dimension. FIG. 3 is a schematic plan view showing the positional relationship. Figure 8 (a) shows the case where the width dimension L of the transparent part 22x is smaller than the design dimension, and Figure 8 (b) shows the case where the width dimension L of the transparent part 22x is larger than the design dimension. In addition, the photomask 2x shown at the top of Figure 8 (a) and (b) shows the positional relationship when one of the two areas is irradiated with ultraviolet rays, and the photomask 2x shown at the bottom of the figure The photomask 2x shown shows the positional relationship when irradiating the other area with ultraviolet rays.
[0071] なお、ここではアレイ基板用フォトマスク 2xおよびアレイ基板を例に説明する力 力 ラーフィルタ基板用フォトマスクおよびカラーフィルタ基板においても同様である。 [0071] Note that although the photomask 2x for array substrates and the array substrate will be explained here as examples, the same applies to the photomask for color filter substrates and the color filter substrate.
[0072] 図 8 (a)に示すように透光部 22xの横幅寸法 Lが設計寸法よりも小さ!/、と、前記二 つの領域の境界線 Aの近傍に紫外線の照射を受けない領域が残る。一方、図 8 (b) に示すように透光部 22xの横幅寸法 Lが設計寸法よりも大きいと、前記二つの領域 の境界線 Aの近傍に二重に紫外線の照射を受ける領域が形成される。各絵素内にこ のような領域が存在すると、当該領域またはその近傍において液晶の配向が乱れ、 液晶表示パネルの表示品位が低下するおそれがある。 [0072] As shown in Figure 8 (a), the width L of the transparent part 22x is smaller than the design dimension!/, and there is an area near the boundary line A between the two areas that is not irradiated with ultraviolet rays. remain. On the other hand, as shown in Figure 8(b), if the width L of the transparent part 22x is larger than the design dimension, an area that is double irradiated with ultraviolet rays is formed near the boundary line A between the two areas. Ru. If such a region exists in each picture element, the alignment of the liquid crystal may be disturbed in or near the region, and the display quality of the liquid crystal display panel may deteriorate.
[0073] そこでこのような場合には、各領域に対して適正に紫外線を照射できるよう、紫外線 の照射幅を補正する。すなわち、図 8 (a)に示すように透光部 22xの横幅寸法 Lが設 計寸法よりも小さい場合には、アレイ基板用のフォトマスク 2xを基板の表面に平行な 面内で所定の角度だけ回転させて透光部 22xの有効寸法を大きくし、紫外線の照射 幅が増加するように補正する。反対に図 8 (b)に示すように透光部 22xの横幅寸法 L が設計寸法よりも大きい場合には、アレイ基板用フォトマスク 2xを湾曲させて透光部 22xの投影寸法を小さくし、紫外線の照射幅が小さくなるように補正する。これらの補 正方法は前記実施形態において説明したとおりである。 [0074] このような露光装置または露光方法によれば、ドメイン領域の境界近傍において、 紫外線が照射されない領域または二重に照射される領域が形成されることを抑制ま たは防止でき、表示品位の高!、液晶表示パネルを提供することができる。 [0073] Therefore, in such a case, the irradiation width of the ultraviolet rays is corrected so that each region can be properly irradiated with the ultraviolet rays. In other words, as shown in Figure 8(a), if the width dimension L of the light-transmitting part 22x is smaller than the design dimension, the photomask 2x for the array substrate is placed at a predetermined angle in a plane parallel to the surface of the substrate. 22x to increase the effective dimension of the transparent part 22x, and correct it so that the irradiation width of ultraviolet rays increases. On the other hand, as shown in Figure 8(b), if the width dimension L of the transparent part 22x is larger than the design dimension, the projected dimension of the transparent part 22x is made smaller by curving the array substrate photomask 2x. Correct so that the irradiation width of ultraviolet rays becomes smaller. These correction methods are as explained in the previous embodiment. [0074] According to such an exposure device or exposure method, it is possible to suppress or prevent the formation of a region that is not irradiated with ultraviolet rays or a region that is double irradiated with ultraviolet rays near the boundaries of domain regions, thereby improving display quality. High!, we can provide LCD display panels.
産業上の利用可能性 Industrial applicability
[0075] 以上、本発明の各種実施形態および実施例につ!、て詳細に説明した力 本発明 は前記各実施形態に何ら限定されるものではなぐ本発明の趣旨を逸脱しない範囲 で種々の改変が可能である。 [0075] The various embodiments and examples of the present invention have been described in detail above.The present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the spirit of the present invention. Modifications are possible.
[0076] たとえば前記実施形態および実施例においては液晶表示パネルの配向膜の光配 向処理に適用する構成を示したが、適用対象は配向膜の光配向処理に限定される ものではない。たとえばカラーフィルタ層、ブラックマトリックス、その他の所定の要素 をフォトリソグラフィ法を用 、て形成する際の露光に適用できる。 [0076] For example, in the embodiments and examples described above, a configuration is shown that is applied to photo-alignment treatment of an alignment film of a liquid crystal display panel, but the application is not limited to photo-alignment treatment of an alignment film. For example, it can be applied to exposure when forming color filter layers, black matrices, and other predetermined elements using photolithography.

Claims

請求の範囲 The scope of the claims
[1] 光エネルギが透過可能な透光部が形成されるフォトマスクと、該フォトマスクの表面 と光エネルギの被照射面とのなす角度を調整することによって前記フォトマスクの透 光部を通じて前記光エネルギの被照射面に照射する光エネルギの照射範囲の寸法 を補正する補正手段と、を備えることを特徴とする露光装置。 [1] A photomask in which a light-transmitting part through which light energy can pass is formed, and the angle between the surface of the photomask and the surface to which the light energy is irradiated is adjusted so that the light energy can be transmitted through the light-transmitting part of the photomask. An exposure apparatus comprising: a correction means for correcting a dimension of an irradiation range of light energy irradiated onto a surface to be irradiated with light energy.
[2] 前記補正手段は内部と外部の圧力差を調整する気圧調整手段を備え、前記気圧 差を調整して前記フォトマスクの湾曲変形量を調整することによって前記フォトマスク の表面と前記光エネルギの被照射面とのなす角度を調整することを特徴とする請求 項 1に記載の露光装置。 [2] The correction means includes an air pressure adjustment means for adjusting a pressure difference between the inside and the outside, and adjusts the air pressure difference to adjust the amount of curved deformation of the photomask, thereby adjusting the surface of the photomask and the light energy. 2. The exposure apparatus according to claim 1, wherein the exposure apparatus adjusts the angle between the irradiation surface and the irradiated surface.
[3] 前記補正手段は前記フォトマスクの端部近傍に前記光エネルギの被照射面に対し てティルト角を与えることができるティルト機構を有し、前記フォトマスクの端部近傍の ティルト角を調整して湾曲変形量を調整することにより前記フォトマスクの表面と前記 光エネルギの被照射面とのなす角度を調整することを特徴とする請求項 1に記載の 露光装置。 [3] The correction means has a tilt mechanism near the end of the photomask that can give a tilt angle to the surface to be irradiated with the light energy, and adjusts the tilt angle near the end of the photomask. 2. The exposure apparatus according to claim 1, wherein the angle between the surface of the photomask and the surface to be irradiated with the light energy is adjusted by adjusting the amount of curvature deformation.
[4] 光エネルギが透過可能な透光部が形成されるフォトマスクと、該フォトマスクの光ェ ネルギの被照射面に平行な面内における回転角を調整することにより該フォトマスク の透光部を通じて前記光エネルギの被照射面に照射される光エネルギの照射範囲 の寸法を補正する補正手段と、を備えることを特徴とする露光装置。 [4] A photomask in which a transparent portion through which light energy can pass is formed, and a rotation angle of the photomask in a plane parallel to a surface to which light energy is irradiated is adjusted to reduce the light transmission of the photomask. An exposure apparatus comprising: a correction means for correcting a dimension of an irradiation range of light energy that is irradiated onto the surface to be irradiated with the light energy through the part.
[5] 光エネルギが透過可能な透光部が形成されるフォトマスクと該フォトマスクの表面と 前記光エネルギの被照射面とのなす角度を調整することにより、該フォトマスクの透 光部を通じて前記光エネルギの被照射面に照射される光エネルギの照射範囲の寸 法を補正することを特徴とする露光方法。 [5] A photomask in which a light-transmitting part through which light energy can pass is formed, and by adjusting the angle between the surface of the photomask and the surface to which the light energy is irradiated, the light energy can be transmitted through the light-transmitting part of the photomask. An exposure method comprising: correcting a size of an irradiation range of light energy irradiated onto a surface to be irradiated with the light energy.
[6] 内部と気圧の圧力差を調整して前記フォトマスクの湾曲変形量を調整することによ り前記フォトマスクの表面と前記光エネルギの被照射面とのなす角度を調整すること を特徴とする請求項 5に記載の露光方法。 [6] The angle between the surface of the photomask and the surface to be irradiated with the light energy is adjusted by adjusting the amount of curved deformation of the photomask by adjusting the pressure difference between the inside and the atmospheric pressure. 6. The exposure method according to claim 5.
[7] 前記フォトマスクの前記光エネルギの被照射面に対するティルト角を調整すること により前記フォトマスクの湾曲変形量を調整して前記フォトマスクの表面と前記光エネ ルギの被照射面とのなす角度を調整することを特徴とする請求項 5に記載の露光方 法。 [7] By adjusting the tilt angle of the photomask with respect to the surface to which the light energy is irradiated, the amount of curvature deformation of the photomask is adjusted, and the shape between the surface of the photomask and the surface to be irradiated with the light energy is adjusted. The exposure method according to claim 5, characterized in that the angle is adjusted. Law.
光エネルギが透過可能な透光部が形成されるフォトマスクの前記光エネルギの被 照射面に平行な面内における回転角を調整して、該フォトマスクの透光部を通じて前 記光エネルギの被照射面に照射される光エネルギの照射範囲の寸法を補正すること を特徴とする露光方法。 Adjusting the rotation angle in a plane parallel to the surface to which the light energy is irradiated of a photomask in which a light-transmitting part through which light energy can pass is formed, so that the light energy is not irradiated through the light-transmitting part of the photomask. An exposure method characterized by correcting the dimensions of an irradiation range of light energy irradiated onto an irradiation surface.
PCT/JP2006/324083 2005-12-09 2006-12-01 Exposure method and exposure device WO2007066596A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005356605 2005-12-09
JP2005-356605 2005-12-09

Publications (1)

Publication Number Publication Date
WO2007066596A1 true WO2007066596A1 (en) 2007-06-14

Family

ID=38122742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324083 WO2007066596A1 (en) 2005-12-09 2006-12-01 Exposure method and exposure device

Country Status (1)

Country Link
WO (1) WO2007066596A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026369A (en) * 2008-07-23 2010-02-04 V Technology Co Ltd Proximity exposure apparatus
WO2014006944A1 (en) * 2012-07-05 2014-01-09 株式会社ブイ・テクノロジー Photo-alignment exposure device and photo-alignment exposure method
WO2015029818A1 (en) * 2013-08-26 2015-03-05 株式会社村田製作所 Exposure device and exposure method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385719A (en) * 1989-08-30 1991-04-10 Sony Corp Exposure method
JP2004095653A (en) * 2002-08-29 2004-03-25 Nikon Corp Aligner
JP2004191661A (en) * 2002-12-11 2004-07-08 Topcon Corp Mask frame and aligner
JP2004303951A (en) * 2003-03-31 2004-10-28 Nikon Corp Aligner and exposure method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385719A (en) * 1989-08-30 1991-04-10 Sony Corp Exposure method
JP2004095653A (en) * 2002-08-29 2004-03-25 Nikon Corp Aligner
JP2004191661A (en) * 2002-12-11 2004-07-08 Topcon Corp Mask frame and aligner
JP2004303951A (en) * 2003-03-31 2004-10-28 Nikon Corp Aligner and exposure method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026369A (en) * 2008-07-23 2010-02-04 V Technology Co Ltd Proximity exposure apparatus
WO2014006944A1 (en) * 2012-07-05 2014-01-09 株式会社ブイ・テクノロジー Photo-alignment exposure device and photo-alignment exposure method
JP2014016380A (en) * 2012-07-05 2014-01-30 V Technology Co Ltd Optical orientation exposure equipment and optical alignment exposure method
US9207498B2 (en) 2012-07-05 2015-12-08 V Technology Co., Ltd. Photo-alignment exposure device and photo-alignment exposure method
TWI582541B (en) * 2012-07-05 2017-05-11 V Technology Co Ltd Light alignment exposure device and optical alignment exposure method
WO2015029818A1 (en) * 2013-08-26 2015-03-05 株式会社村田製作所 Exposure device and exposure method
CN105474102A (en) * 2013-08-26 2016-04-06 株式会社村田制作所 Exposure device and exposure method
JP6037019B2 (en) * 2013-08-26 2016-11-30 株式会社村田製作所 Exposure apparatus and exposure method
CN105474102B (en) * 2013-08-26 2017-03-22 株式会社村田制作所 Exposure device and exposure method

Similar Documents

Publication Publication Date Title
US8159674B2 (en) Exposure method and exposure device
JP4754037B2 (en) Manufacturing method of liquid crystal display device and aligner exposure apparatus
KR101829778B1 (en) Exposure device and manufacturing method of liquid crystal display
US8593602B2 (en) Production method for liquid crystal display device and exposure device including exposure of alignment layers
US7803501B2 (en) Mask for light exposure
US20170315451A1 (en) Divisional exopsure apparatus and method of manufacturing liquid crystal display using the same
KR101984898B1 (en) Method of fabricating display device using maskless exposure apparatus and display device
US8922757B2 (en) Photo-alingment apparatus, and method for fabricating liquid crystal display
JP2008076825A (en) Mask for manufacturing alignment layer, and method of manufacturing liquid crystal device
WO2007066596A1 (en) Exposure method and exposure device
WO2007001023A1 (en) Substrate manufacturing method and exposure apparatus
US7767369B2 (en) Photo-mask and thin-film transistor substrate
JP4396032B2 (en) Exposure method and scanning exposure apparatus
JP4693347B2 (en) Exposure shutter, exposure apparatus, exposure method, and substrate manufacturing method
JP2008020706A (en) Mask and method for manufacturing liquid crystal display
JP4135557B2 (en) Polarized light irradiation device for photo-alignment
US7092058B2 (en) Method and apparatus for imparting alignment to alignment layer through generation of two kinds of polarized light from a single light source and treatment with both
JP4023461B2 (en) Liquid crystal alignment processing apparatus and liquid crystal alignment processing method
US9250539B2 (en) Blind, exposure apparatus having the blind and method of driving the exposure apparatus
US20120013876A1 (en) Exposure apparatus and exposure method using the same
JP2007041175A (en) Substrate for display panel and exposing method for the substrate
JP2006292902A (en) Exposure apparatus
JP4306385B2 (en) Substrate for liquid crystal display
JP4239640B2 (en) Exposure apparatus and liquid crystal device manufacturing method using the exposure apparatus
JP2006243580A (en) Liquid crystal mask, exposure device, and manufacturing method for electrooptical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP