WO2007055012A1 - コンタクトユニットおよび検査システム - Google Patents
コンタクトユニットおよび検査システム Download PDFInfo
- Publication number
- WO2007055012A1 WO2007055012A1 PCT/JP2005/020635 JP2005020635W WO2007055012A1 WO 2007055012 A1 WO2007055012 A1 WO 2007055012A1 JP 2005020635 W JP2005020635 W JP 2005020635W WO 2007055012 A1 WO2007055012 A1 WO 2007055012A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contact unit
- inspection
- positional relationship
- wiring structure
- detection
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
- G01R31/2891—Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2884—Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
Definitions
- the present invention relates to a contact unit and a contact unit for making an electrical connection to a wiring structure with respect to an inspection object in which a plurality of conductive regions including the wiring structure used for input or output of an electric signal are formed on the surface. It relates to the inspection system used.
- T tape carrier package
- COF Chip On Film
- a TCP having such a structure is formed by forming a wiring structure corresponding to a plurality of packages on the same film, and mounting a semiconductor chip for each knocker and then separating them into individual packages. Manufactured by. Therefore, the wiring structure is formed on the substrate prepared for each individual package, and it has an advantage in that it is superior in terms of production efficiency as compared with the conventional package on which each semiconductor chip is mounted.
- the film base material that constitutes TCP has a very small material thickness compared to conventional semiconductor substrates and is highly flexible. Therefore, when used in a liquid crystal display, etc., the entire device can be downsized. Etc.
- an inspection relating to electrical characteristics is performed for the purpose of detecting defective products as in the case of other semiconductor integrated circuits. Specifically, for example, inspection of the presence or absence of an electrical short circuit or disconnection in a wiring structure formed on a film substrate, or a predetermined inspection signal is applied to a semiconductor chip via a wiring structure after mounting a semiconductor chip. On the other hand, operation characteristics inspection etc. are performed.
- a contact portion force is formed by forming a through-hole extending straight to the outside, and the positional relationship of the contact portion is externally determined through the through-hole.
- Inspection apparatuses that can be visually recognized are known.
- a through-hole bent in the middle is formed, and an optical member such as a mirror is disposed at a bent portion of the through-hole.
- An inspection apparatus that employs a mechanism for guiding the image of the contact portion to the outside has also been proposed (see, for example, Patent Document 1).
- Patent Document 1 JP 2000-9753 A
- the conventional inspection apparatus that performs alignment by visually recognizing the positional relationship between the input / output terminals provided in the inspection apparatus and the wiring structure formed on the film base has a structure.
- the positioning accuracy may be lowered.
- the problems that will be worked out will be described in sequence.
- the alignment accuracy may be reduced.
- the alignment can be performed to the extent that there is no problem in performing the inspection. It is difficult to objectively determine the power force accurately performed.
- the alignment accuracy will change due to differences in proficiency, etc., which is not appropriate.
- the present invention has been made in view of the above, and has a simple configuration and an inspection using a contact unit and a contact unit that can be accurately aligned with an inspection object.
- the purpose is to realize the system.
- the contact shoe according to claim 1 has a plurality of conductive regions including a wiring structure used for input or output of an electric signal formed on the surface.
- a contact unit for making an electrical connection to the wiring structure with respect to the inspection object the wiring unit being arranged corresponding to an arrangement pattern of the wiring structure, and electrically connected to the corresponding wiring structure;
- an input / output terminal that inputs and / or outputs a predetermined electrical signal, and a plurality of terminals that are arranged corresponding to the predetermined conductive region, and that passes through the corresponding conductive region.
- the group is characterized in that a holder substrate that holds.
- the inspection target is determined based on the presence or absence of conduction between the detection terminal group and the conductive region. It is possible to detect whether or not a force has occurred between the contact unit and the contact unit. Furthermore, since the terminals constituting the detection terminal group can be formed by the same configuration as the input / output terminals, the structure of the contact unit is complicated even when the detection terminal group is newly arranged. It is possible to detect misalignment with a simple configuration.
- a plurality of the detection terminal groups are arranged corresponding to the plurality of the conductive regions, and the plurality of detection terminal groups are the inspection target.
- the contact unit is arranged at a position corresponding to the vicinity of the different end of the region in contact with the contact unit.
- a portion of the inspection object that is electrically connected to the contact unit has a rectangular shape, and the detection terminal group includes a plurality of detection terminal groups.
- a plurality of the detection terminal groups are arranged corresponding to the conductive regions, and the plurality of detection terminal groups are arranged in regions corresponding to the rectangular diagonal lines or in the vicinity of the apexes, respectively.
- the contact unit according to claim 4 is electrically connected to a plurality of terminals forming the detection terminal group, and is connected via the conductive region corresponding to the detection terminal group.
- the apparatus further comprises a positional relationship detecting means for detecting a positional relationship between the contact unit and the inspection object in accordance with the presence / absence of conduction between the plurality of terminals.
- the positional relationship detecting means is connected in series with a voltage source for supplying a predetermined voltage, the voltage source, and the plurality of terminals. And a passive element that forms a closed circuit with the voltage source when conducting through the conductive region and performs a predetermined action based on a potential supplied by the voltage source. .
- the passive element is a light emitting diode.
- the detection terminal group is arranged corresponding to a dummy pad electrically insulated from the wiring structure in the conductive region. It is characterized by that.
- the detection terminal group is arranged corresponding to a wiring structure in the conductive region, and the positional relationship detecting means includes a corresponding wiring structure.
- switch means capable of stopping voltage supply to the passive element is further provided.
- the inspection system according to claim 9 relates to an inspection object in which a plurality of conductive regions including a wiring structure used for at least one of input and output of an electric signal are formed on a surface. Input and output of electrical signals through a mechanical connection
- An inspection system for performing inspection by the method wherein the inspection system is arranged corresponding to the wiring structure, electrically connected to the corresponding wiring structure, and at least one of input and output of a predetermined electric signal to the wiring structure And the contact unit formed by the presence or absence of conduction between the plurality of terminals via the corresponding conductive region.
- a contact unit including a detection terminal group used for detecting a positional relationship with an inspection object, a holder substrate for holding the input / output terminal and the detection terminal group, and an electrical signal used for inspection of the inspection object.
- a signal processing device that generates and analyzes the electrical signal output by the inspection object, and electrically connects the signal processing device and the outer contour unit.
- the contact unit and the inspection system according to the present invention are provided with the detection terminal group corresponding to the conductive region provided in the inspection object, the presence or absence of conduction between the detection terminal group and the conductive region is determined. Based on this, it is possible to detect whether or not a positional deviation has occurred between the inspection object and the contact unit.
- the terminals constituting the detection terminal group can be formed in the same configuration as the input / output terminals, the structure of the outer contour unit is complicated even when the detection terminal group is newly arranged. This has the effect of being able to detect misalignment with a simple configuration.
- FIG. 1 is a schematic diagram showing an overall configuration of an inspection system according to a first embodiment.
- FIG. 2 is a schematic diagram showing a configuration of a contact unit provided in the inspection system.
- FIG. 3 is a schematic cross-sectional view showing the structure of a probe provided in the contact unit.
- FIG. 4 is a schematic diagram showing functions of a detection probe group and a positional relationship detection unit in the case of positional deviation due to parallel movement.
- FIG. 5 is a schematic diagram showing functions of a detection probe group and a positional relationship detection unit when a positional shift occurs due to parallel movement.
- Fig. 6 shows detection probe groups and positional relationship detection in the case of positional deviation due to rotation. It is a schematic diagram which shows the function of an exit part.
- FIG. 7 is a schematic diagram showing the functions of the detection probe group and the positional relationship detection unit when the object to be inspected and the contact unit are relatively inclined.
- FIG. 8 is a schematic diagram showing an overall configuration of an inspection system according to a second embodiment.
- FIG. 9 is a schematic diagram showing a configuration of a contact unit provided in the inspection system.
- FIG. 10 is a schematic diagram showing the functions of a detection probe group and a positional relationship detection unit when detecting displacement.
- FIG. 11 is a schematic diagram showing functions of a detection probe group and a positional relationship detection unit at the time of inspection.
- FIG. 12 is a schematic diagram showing a modification of the inspection system according to the second embodiment.
- FIG. 13 is a schematic diagram illustrating a configuration of a contact unit provided in the inspection system according to the third embodiment.
- FIG. 1 is a schematic diagram showing the overall configuration of the inspection system according to the first embodiment.
- the inspection system according to the first embodiment is configured to generate a contact unit 2 for realizing an electrical connection to the inspection object 1 and an electric signal to be input to the inspection object.
- the signal processing device 3 to be performed, and the connection substrate 4 for electrically connecting the signal processing device 3 and the contact unit 2 are configured.
- Inspection object 1 is an object to be inspected by the inspection system according to the first embodiment.
- the inspection object 1 is a sprocket hole 5b in which a plurality of circuit formation regions 5a are arranged in a longitudinal direction on a predetermined film substrate, and are provided at regular intervals in the longitudinal direction in the vicinity of the end in the lateral direction. It has a long tape-like structure equipped with, and is moved in the longitudinal direction by the handler through the sprocket hole 5b during inspection.
- a conductive region including the wiring structure 6, specifically, a plurality of wiring structures 6 and dummy pads 7 are formed on the circuit forming region 5 a, and a semiconductor chip 8 is mounted.
- Each wiring structure 6 includes an inner lead 9 that is electrically connected to the semiconductor chip 8, and an outer lead 10 that is electrically connected to the inner lead 9 and is used for electrical connection with an external device during mounting. And a test pad 11 electrically connected to the outer lead 10 and used for input / output of an electric signal at the time of inspection.
- the dummy pad 7 functions as an example of a conductive region in the claims. Specifically, the dummy pad 7 is formed by a conductive region electrically insulated from any of the plurality of wiring structures 6, and is not electrically connected to the semiconductor chip 8, It does not function at all for the input and output of electrical signals used for inspection. In the first embodiment, the positional relationship between the inspection object 1 and the contact unit 2 is determined by effectively using the dummy pad 7 as will be described later.
- the signal processing device 3 In addition to the function of generating an electrical signal used for inspection, the signal processing device 3 outputs the generated electrical signal to the inspection object 1 and analyzes the response signal for the input electrical signal. This is for analyzing the electrical characteristics of the inspection object 1. Specifically, the electrical signal generated by the signal processing device 3 is sequentially input to the inspection object 1 via the connection board 4 and the contact unit 2, and the response signal output from the inspection object 1 is the contact unit. 2 and the connection board 4 are sequentially input to the signal processing device 3. Note that the electrical connection between the signal processing device 3 and the connection board 4 is actually performed using a large number of wirings, but such a connection mode is irrelevant to the main part of the present invention. In FIG. 1, the electrical connection between the two is only shown schematically.
- connection substrate 4 is for electrically connecting the contact unit 2 and the signal processing device 3.
- connection board 4 that can be directly connected between the connection terminal on the contact unit 2 side and the connection terminal on the signal processing device 3 side using a predetermined wiring or the like can be omitted. It is.
- the connection terminals on the contact unit 2 side are actually arranged to correspond to the test probe provided on the inspection object 1, the distance between the connection terminals becomes very small, and the signal processing device 3 is directly connected. It is not easy to connect to.
- connection board 4 on which a plurality of wiring structures formed so that the distance between each other is increased as it is extended is newly provided, and the connection board 4 that can be obtained is provided.
- the signal processing device 3 and the contact unit 2 are electrically connected via the cable.
- the contact unit 2 is for making electrical contact with the inspection object 1 when performing an inspection using the inspection system according to the first embodiment.
- the contact unit 2 includes light emitting diodes 12a to 12d that display the detection results of the positional relationship, a plurality of contact probes 13 that are arranged corresponding to the plurality of test pads 11 provided in the inspection object 1, and 1 It has a configuration provided with detection probe groups 14a to 14d arranged corresponding to the above dummy pads 7, and a holder substrate 15 that holds the contact probes 13 and the detection probe groups 14a to 14d.
- the holder substrate 15 is composed of a plurality of substrates, and the plurality of substrates to be covered are fixed to each other by screw members 16.
- the holder substrate 15 has a structure that is fixed to the connection substrate 4 by a screw member 17.
- the light emitting diodes 12a to 12d are intended to function as an example of a passive element in the claims. Specifically, the light emitting diodes 12a to 12d constitute the positional relationship detection units 22a to 22d described later, and the light emission state changes according to the positional deviation between the contact unit 2 and the inspection object 1. It has a function.
- FIG. 2 is a schematic diagram conceptually showing the planar structure of the contact unit 2 when the side force of the inspection object 1 is also viewed and the structure of the positional relationship detectors 22a to 22d corresponding to the detection probe groups 14a to 14d.
- FIG. 2 in order to easily understand the positional relationship with inspection object 1 at the time of inspection, the positions of the components of inspection object 1 when ideally aligned are indicated by broken lines.
- the contact probe 13 is arranged in accordance with a pattern corresponding to the arrangement pattern of the test pads 11 provided in the inspection object 1, and is arranged in accordance with such a pattern so that it can be used for inspection. Input / output of electrical signals to inspection object 1 is possible.
- the detection probe groups 14a to 14d are arranged corresponding to the dummy pads 7 located at the four corners of the circuit formation region 5a. Specifically, the probes 19a to 19d and 20a to 20d constituting each of the detection probe groups 14a to 14d are respectively dummy when accurate alignment is performed between the contact unit 2 and the inspection target 1.
- the pads 7a to 7d are arranged so as to overlap with each other.
- the contact probe 13 functions as an example of an input / output terminal in the claims. Specifically, the contact probe 13 is arranged corresponding to the arrangement pattern of the test pads 11 provided in the inspection object 1 and physically contacts with each of the test pads 11 so that a predetermined contact with the inspection object 1 is obtained. It has a function to perform at least one of input and output of electrical signals.
- the detection probe group 14 functions as an example of a detection terminal group in the scope of the claims, and for the purpose of detecting the quality of the positional relationship between the inspection target 1 and the contact unit 2 at the time of inspection. It is what is used.
- each of the detection probe groups 14a to 14d includes two probes 19a to 19d and 20a to 20d each functioning as an example of a terminal in the claims.
- a predetermined conductive area dummy pads 7a to 7d
- the contact unit 2 includes positional relationship detection units 22a to 22d corresponding to the detection probe groups 14a to 14d.
- the positional relationship detection unit 22 has a configuration in which a light emitting diode 12 and a voltage source 21 are connected in series as shown in FIG. Specifically, for example
- the positional relationship detection unit 22a has a configuration in which the anode of the voltage source 21a and the cathode of the light emitting diode 12a are connected via a predetermined wiring.
- the positional relationship detection unit 22 has a configuration that is electrically connected to the probe 19 and the probe 20 that constitute the detection probe group 14. Specifically, for example, in the positional relationship detection unit 22a, the cathode of the voltage source 21a is electrically connected to the probe 20a via a predetermined wiring, and the anode of the light emitting diode 12a is connected via a predetermined wiring. The probe is electrically connected to the probe 19a.
- the contact probe 13 and the probes 19 and 20 have the same structure, and the specific structure will be described below by taking the probe 19 as an example.
- FIG. 3 is a schematic cross-sectional view showing the structure of the probe 19.
- the probe 19 has a structure that can be expanded and contracted in the normal direction of the upper surface of the holder substrate 15 that constitutes the contact unit 2 (the surface that faces the inspection object 1 during the inspection).
- the probe 19 has a structure in which needle-like members 24 and 25 are arranged at both ends, and a panel member 26 is arranged between the needle-like members 24 and 25.
- the needle-like members 24 and 25 and the panel member 26 are each formed of a conductive material such as metal, and the needle-like member 24 and the panel member 26 and the panel member 26 and the needle-like member 25 are fixed to each other, so that The structure is integrated and electrically connected.
- the holder substrate 15 is formed with an opening 27 having a central axis parallel to the vertical direction with respect to the above-described upper surface.
- the holder substrate 15 is Hold probe 19.
- the probe 19 has a function of expanding and contracting in a direction parallel to the central axis of the opening 27 by being accommodated in the opening 27, and the panel member with respect to the test pad 11 is inspected. It will be in contact while applying the splinter caused by 26.
- a lead wire 28 can be cited as a member accommodated in the opening 27.
- the lead wire 28 is accommodated in the opening 27 so as to be located on the side opposite to the inspection object 1 with respect to the probe 19, and in the opening 27, one end of the lead wire 28 and the needle-like member 25 are mutually connected. It is arranged to be in contact with the main body.
- the lead wire 28 When the lead wire 28 comes into contact with the probes 19 and 20, the lead wire 28 functions as a wiring for connecting to the light emitting diode 12 and the voltage source 21 constituting the positional relationship detection unit 22, respectively. Functions as a wiring for electrically connecting a predetermined wiring structure provided on the connection board 4 and the needle-like member 25.
- FIG. 4 shows accurate alignment between the detection target 1 and the contact unit 2.
- Fig. 5 shows the case where a positional shift occurs due to the relative translation of the inspection object 1 and the contact unit 2.
- 4 and 5 show only the components disposed around the positional relationship detection unit 22a and the positional relationship detection unit 22a, but the functions described below also hold for the positional relationship detection units 22b to 22d. Of course.
- the probes 19a and 20a come into contact with the dummy pad 7a, and the probes 19a and 20a are electrically connected via the dummy pad 7a. Will be connected. Therefore, in the positional relationship detection unit 22a, the light emitting diode 12a and the voltage source 21a form a closed circuit, and the light emitting diode 12a emits light with a predetermined luminance based on the potential supplied by the voltage source 21a. Become.
- the light emitting diode 12a Does not emit light. That is, the positional relationship between the probes 19a and 20a and the dummy pad 7a is caused by the positional deviation between the contact unit 2 and the inspection object 1, and for example, as shown in FIG. The probe 20a is in contact with the dummy pad 7a, while the probe 19a is not in contact with the dummy pad 7a.
- the probe 19a, 20a is not electrically connected between the light emitting diode 12a and the voltage source 21a in the positional relationship detection unit 22a. No circuit is formed. Accordingly, the light emitting diode 12a does not emit light without being supplied with a potential difference from the voltage source 21a to the light emitting diode 12a. That is, in the inspection system according to the first embodiment, when accurate alignment is performed between the contact unit 2 and the inspection target 1, the light emission provided in the positional relationship detection units 22a to 22d, respectively. When the diodes 12a to l 2d emit light and a position shift occurs, at least one of the light emitting diodes 12a to 12d does not emit light.
- the correct characteristic is correct positioning when all of the light emitting diodes 12a to 12d emit light, and misalignment occurs when any of the light emitting diodes 12a to 12d does not emit light.
- the user of the inspection system can determine whether or not the force has been accurately aligned by confirming the light emitting state of the light emitting diodes 12a to 12d.
- each of the probes 19a and 20a has a longitudinal center axis (indicating the probes 19a and 20a in FIG. 4) when the alignment is performed accurately.
- the distance between the center of the circle) and the peripheral edge of the dummy pad 7a is set in advance so as to have a predetermined value.
- the center axis of the probe 19a is the largest of the peripheral edges of the dummy node 7a with respect to the rectangular dummy pad 7a. It is arranged so that the distance between two adjacent sides is d, d,
- the center axis of the probe 20a is arranged so that the distance between the two closest sides is d and d
- the actual outer diameters of the probes 19a and 20a are usually very small. Therefore, in the inspection system according to the first embodiment, for example, when the contact unit 2 is displaced by d in the y direction with respect to the inspection object 1, the probe 19a is detached from the dummy pad 7a.
- the light emitting diode 12a since the light emitting diode 12a does not emit light, it can be detected that a positional shift has occurred. On the other hand, even when the position shift occurs from the state shown in FIG. 4, for example, the contact unit 2 is not positioned in the y direction by d ( ⁇ d) with respect to the inspection object 1.
- the probes 19a and 20a still maintain the contact state with the dummy pad 7a, so that the light emitting diode 12a emits light.
- Misalignment detection is not performed, and it is possible to reliably detect misalignment that may cause inspection problems.
- the specific value of 14 is preferably 10 to 20 ⁇ m, for example.
- the inspection system according to the first embodiment includes a plurality of positional relationship detection units 22 in the contact unit 2. Therefore, in the first embodiment, only a positional shift in the direction parallel to the X direction and the y direction in FIG. 4, that is, a positional shift caused by a relative translation of the contact unit 2 and the inspection object 1 will be used. First, even when the inspection object 1 is relatively rotated with the normal direction of the upper surface of the holder substrate 15 as the central axis, it is possible to detect the displacement.
- FIG. 6 is a schematic diagram showing a case where the inspection object 1 is relatively rotated between the contact unit 2 and the inspection object 1 with the normal direction of the upper surface of the holder substrate 15 as the central axis.
- the positional relationship detection unit 22a alone cannot detect that an abnormality has occurred in the positional relationship between the contact unit 2 and the inspection object 1.
- the contact unit 2 includes not only the positional relationship detection unit 22a but also the positional relationship detection units 22b to 22d. And contact When relative rotation occurs between the unit 2 and the inspection object 1, as shown in FIG. 6, a position shift occurs at a portion other than the rotation center. Therefore, each of the positional relationship detectors 22b to 22d is not in contact with the dummy pads 7b to 7d corresponding to the probes 19b to 19d, 20b to 20d, and the light emitting diodes 12b to l 2d. Since each of them does not emit light, it is possible to detect misalignment. Therefore, since the inspection system according to the first embodiment includes the plurality of positional relationship detection units 22, even when rotation occurs between the contact unit 2 and the inspection target 1, Abnormalities can be detected reliably.
- the inspection system according to the first embodiment is not limited to detection of displacement in the in-plane direction, that is, the X direction and the y direction shown in FIG. Can also be detected.
- detection probe groups 14 a to 14 d corresponding to the positional relationship detection units 22 a to 22 d correspond to the four corners of the circuit formation region 5 a provided in the inspection target 1 on the upper surface of the holder substrate 15. Is located. Therefore, when an inclination occurs between the inspection target 1 and the contact unit 2, contact between the probes 19 and 20 and the corresponding dummy pad 7 does not occur in any of the positional relationship detection units 22a to 22d. Thus, the light emitting diode 12 does not emit light.
- FIG. 7 is a schematic diagram showing a case where an inclination occurs between the inspection object 1 and the contact unit 2.
- the detection probe group 14b when the inspection object 1 is brought close to the contact unit 2 with an inclination between each other, for example, the detection probe group 14b is in contact with the dummy pad 7b, while the detection probe Group 14c will not come into contact with dummy pad 7c.
- the light emitting diode 12b provided in the positional relationship detection unit 22b corresponding to the detection probe group 14b emits light, whereas the light emitting diode 12c corresponding to the detection probe group 14c does not emit light, and strong light emission.
- the occurrence of the pattern allows the inspection system user to detect the abnormality.
- the inspection system according to the first embodiment it is possible to detect the occurrence of displacement between the contact unit 2 and the inspection object 1 based on the mechanism described above. From the viewpoint of performing such displacement detection, the simplest configuration is a single detection probe group 14 and By providing a plurality of force detection probe groups 14 and positional relationship detection units 22 that can be realized by providing the positional relationship detection unit 22, further effects can be obtained.
- the detection probe is used.
- the distance between the plurality of detection probe groups 14 it is possible to perform more reliable positional deviation detection. It should be noted that, from the viewpoint of reliably detecting misalignment, it is preferable to arrange the distance between the plurality of detection probe groups 14 to be as large as possible. That is, for example, when a positional deviation occurs due to a rotational motion, the degree of the positional deviation increases as the rotational center force increases. Therefore, when one of the plurality of detection probe groups 14 coincides with the rotation center (for example, detection probe group 14a in FIG.
- the other detection probe groups 14 detect detection probes that coincide with the rotation center. It is preferable from the viewpoint of improving the accuracy of detection of force and displacement. From this point of view, in the first embodiment, with respect to the plurality of detection probe groups 14a to 14d, the position where the mutual distance becomes the maximum, specifically, the inspection object 1 (in this embodiment 1, the inspection object 1 is configured.
- the circuit is formed near the edge of the circuit formation region 5a). More specifically, the distance between the detection probe groups 14a to 14d is determined by arranging the circuit forming region 5a in the vicinity of each vertex corresponding to the rectangular shape of the circuit forming region 5a, that is, the positions corresponding to the four corners of the circuit forming region 5a. Is configured to maximize.
- each of the detection probe groups 14a to 14d has a rectangular diagonal line among the regions near the end of the rectangular shape in the circuit formation region 5a. Trying to place on top. By arranging at a position where it can be applied, a sufficient interval can be secured for a plurality of detection probe groups, and more accurate alignment can be performed.
- the inspection system according to the first embodiment can perform alignment with a simple configuration. Specifically, the inspection system according to the first embodiment does not form a through-hole for visual recognition or the like on the holder substrate 15 as in the prior art, but contacts necessary for electrical connection to the inspection object. Probe 1 with the same structure as probe 13 Only the detection probe group 14 consisting of 9 and 20 is provided. Since a large number of contact probes 13 are inherently provided corresponding to the test pads 11, it is possible to hold the probes 19 and 20 having the same structure as the contact probe 13 newly. It is possible to realize a simple configuration without complicating the structure.
- the positional relationship detection unit 22 connected to the probes 19 and 20 is also a simple one constituted only by the voltage source 21 and the light emitting diode 12. Furthermore, the electrical connection between the voltage source 21 and the light emitting diode 12 and the probes 19 and 20 is also performed using the same structure (lead wire 28) as the contact probe 13 as shown in FIG. It is possible. As described above, the structure of the outer contour unit 2 is not complicated by newly providing the detection probe group 14 and the positional relationship detection unit 22 in the first embodiment. The system enables positioning with a simple configuration.
- the inspection system according to the first embodiment employs a configuration that detects a positional shift using the positional relationship detection unit 22, it is possible to perform accurate positioning.
- the positional relationship detection unit 22 uses an objective determination criterion that causes the light emitting diode 12 to emit light only when conduction through the dummy pad 7 occurs in the probes 19 and 20. For this reason, it is possible to perform objective and accurate displacement detection that does not cause a difference depending on the skill level of the user of the inspection system when determining the presence or absence of displacement.
- the second embodiment employs a configuration that enables accurate alignment when inspecting an inspection object that does not include a conductive region corresponding to a dummy pad.
- FIG. 8 is a schematic diagram showing the overall configuration of the inspection system according to the second embodiment.
- the inspection system according to the second embodiment has a configuration including the signal processing device 3 and the connection board 4 as in the first embodiment, but does not include a dummy pad.
- the contact probe 32 has been newly provided with a modified arrangement pattern of the detection probe group 14.
- the actual Components having the same reference numerals as those in the first embodiment have the same structure as the components in the first embodiment unless otherwise specified.
- FIG. 9 is a schematic diagram showing the arrangement pattern of the detection probe group 14 on the upper surface of the contact unit 32 and the configuration of the positional relationship detection unit including the detection probe group 14.
- the contact probe 13 arranged on the upper surface of the contact unit 32 is arranged according to a pattern corresponding to the arrangement pattern of the test pads 11 in the inspection object 31. .
- the dummy pad is not formed on the inspection target 31, and the configuration of the first embodiment in which the detection probe group 14 is arranged corresponding to the dummy pad is adopted. I can't do it. Therefore, in the second embodiment, the test pad 11 is used as the conductive region in the claims, and the predetermined force (the test pad l la in FIG.
- the detection probe groups 14a to 14d are arranged so as to correspond to ⁇ l Id (the same applies to the following description).
- test pads lle to lll function as input / output of electrical signals via the corresponding contact probes 13 as in the case of the test pads 11 in the first embodiment.
- the configuration of the positional relationship detection units 33a to 33d is different from the configuration of the positional relationship detection unit 22 in the first embodiment in response to the change in the arrangement mode of the detection probe groups 14a to 14d.
- the positional relationship detection unit 33 has a configuration in which a switch 34 is newly provided between the probe 19 and the anode of the light emitting diode 12 in addition to the configuration of the first embodiment, so that the positioning can be accurately performed.
- a configuration is adopted in which the switch 34 is turned on only when determining whether or not the operation is performed.
- positional relationship detection units 33a to 33d in the inspection system according to the second embodiment will be described.
- the positional relationship detection unit 33a will be described as an example, but the positional relationship detection units 33b to 33d are of course the same.
- FIG. 10 is a schematic diagram illustrating an operation in determining whether or not the positional relationship detection unit 33a is a force with which the alignment between the inspection target 31 and the contact unit 32 is accurately performed.
- the switch 34a is controlled to be in the on state when making a determination regarding alignment. Accordingly, when the test pad 11a and the probes 19a and 20a come into contact with each other, the positional relationship detection unit 33a forms a closed circuit, and the light emitting diode 12a emits light based on the potential supplied by the voltage source 21a.
- the user of the inspection system detects the presence or absence of light emission of the light emitting diode 12a in the same manner as in the first embodiment, so that the alignment between the inspection target 31 and the contact unit 32 is accurately performed. It is possible to determine whether the power is broken. Also in the second embodiment, the detection when the inspection object 31 and the contact unit 32 rotate relatively by setting a predetermined allowable range and providing the plurality of positional relationship detection units 33 is also provided. In addition, it is possible to detect when the inspection object 31 and the contact unit 32 are inclined with respect to each other.
- FIG. 11 is a schematic diagram showing the positional relationship detection unit 33a at the time of inspection.
- the electric signal generated by the signal processing device 3 is input / output via the contact probe 13 to the test pad 11a.
- the positional relationship detection unit 33a constitutes a closed circuit at the time of inspection, an electrical signal input / output via the contact probe 13 may affect the positional relationship detection unit 33a.
- the potential of the test pad 11a when the input electric signal is a high potential, the potential of the test pad 11a also rises, and the potential to be applied functions as the voltage source 21a or the light emitting diode 12a constituting the positional relationship detection unit 33a. There is a possibility of damage.
- the positional relationship detection unit 33a is newly provided with a switch 34a, and the electrical signal to be input / output is changed by changing the switch 34a to the OFF state at the time of inspection. This prevents the light emitting diode 12a constituting the positional relationship detection unit 33a from being affected. It should be noted that by turning off the switch 34a at the time of inspection, the voltage source 21a and the like constituting the positional relationship detection unit 33a can affect the inspection result. That is, when the switch 34a is kept on during the inspection, noise generated in the positional relationship detection unit 33a is input to the test pad 1la. There is a risk of being.
- the noise signal is input to the test pad 1 la in a state of being mixed with the electric signal for inspection, thereby affecting the inspection result. Therefore, in the second embodiment, it is possible to prevent such an adverse effect from occurring by turning off the switch 34a during the inspection.
- FIG. 12 shows probes 19 and 20 constituting a detection probe group on the upper surface of the contact unit 35 (that is, the surface in contact with the inspection object 1) provided in the inspection system that is effective in this modification. It is a schematic diagram shown about this arrangement
- FIG. 12 shows that in FIG. 12, as in FIG. 2, etc., in order to easily understand the positional relationship between the contact unit 35 and the inspection object 1 at the time of inspection, the inspection object 1 when ideally aligned ( The structure of the circuit formation region 36) is indicated by a broken line.
- test pad 11 electrically connected to the semiconductor chip 8 via the inner lead 9 and the outer lead 10 is provided.
- the test pads 37a to 37d located at the four corners are directly connected to each other by through wirings 38a and 38b without being electrically connected to the semiconductor chip 8.
- the probe 19a constituting the detection probe group 14a is arranged corresponding to the test pad 37d, and the probe 20a is attached to the test pad 37a.
- the probe 19b constituting the detection probe group 14b is arranged corresponding to the test pad 37c, and the probe 20b is arranged corresponding to the test pad 37b.
- the detection probe group 14a (probes 19a, 20a) will be described as an example. Specifically, when the probe 19a is in contact with the test pad 37d and the probe 20a is in contact with the test pad 37a during the inspection, that is, when accurate alignment is performed, the test pads 37a, 37d and the through The probes 19a and 20a are electrically connected through the conductive region constituted by the wiring 38a.
- the positional relationship detection unit 33a forms a closed circuit, and the light emitting diode 12a emits light. It is possible to detect that accurate alignment is performed.
- the inspection system according to the third embodiment has a configuration in which inspection is performed on a plurality of circuit formation regions at a time, and a detection system that enables accurate alignment is realized.
- FIG. 13 is a schematic diagram showing an arrangement pattern of contact probes 13 and detection probe groups 14 arranged on the holder substrate in the inspection system according to the third embodiment.
- FIG. 13 as in FIGS. 2 and 9, in order to easily understand the positional relationship, the positions of the components of the inspection target 1 when ideally aligned are indicated by broken lines.
- the detection system according to the third embodiment is provided with the signal processing device 3 and the connection board 4 and has the same names as the constituent elements in the first and second embodiments. Those denoted by reference numerals have the same structure 'function as the constituent elements in the first and second embodiments unless otherwise specified.
- Embodiment 3 employs a configuration in which a plurality of circuit formation regions 5a are inspected in one inspection.
- the holder substrate 42 provided in the contact unit 41 employs a configuration in which the area of the upper surface is enlarged so as to be in contact with the plurality of circuit formation regions 5a, and the test pads 11 provided in the plurality of circuit formation regions 5a as shown in FIG.
- the contact probe 13 is arranged corresponding to
- the detection probe groups 14a to 14d are also arranged at positions corresponding to the plurality of circuit formation regions 5a. Specifically, the detection probe groups 14a and 14b are arranged at positions corresponding to the dummy pads 7a and 7b as in the first embodiment, while the detection probe groups 14c and 14d are dummy pads 7c, Instead of corresponding to 7d, it is arranged at a position corresponding to dummy pads 7g and 7h provided in another adjacent circuit formation region 5a.
- the third embodiment since the number of dummy pads 7 is larger than the number of detection probe groups 14a to 14d, a plurality of arrangement patterns of detection probe groups 14a to 14d can be taken. . In such a case, an arbitrary arrangement pattern may be used. However, in the third embodiment, an arrangement pattern in which the detection probe groups 14a to 14d are most separated from each other is adopted. As shown in the examples of FIGS. 6 and 7, when a plurality of detection probe groups 14 are used, the detection accuracy of the positional deviation improves as the distance between them increases.
- the dummy pads 7 corresponding to the detection probe groups 14 are selected based on the area. It's also good. For example, when it is used as a driver IC for a TCP power liquid crystal panel used as the inspection target 1 (an IC that controls the selection and supply potential of the pixel electrode arranged in the liquid crystal panel), it must be The input terminal force used for inputting the video signal or the like usually has a larger area than the output terminal connected to the liquid crystal panel.
- the detection probe groups 14a to 14d are connected to dummy nodes having a large area. It is also preferable to arrange so as to correspond to 7a, 7b, 7e, 7f.
- the present invention has been described using the first to third embodiments, the present invention should not be construed as being limited to the above-described embodiments. Variations can be conceived. For example, in the embodiment, it is within the scope of the claims. It is not necessary to limit to the configuration that uses a contact probe as an input / output terminal and a detection probe group as a detection terminal group. This structure can be used as a group of input / output terminals and detection terminals.
- a light emitting diode is used as an example of a passive element, it is also effective to adopt another configuration. For example, it is also effective to use a voice generation mechanism as a passive element to inform the user of positional information as voice information.
- the present invention can be applied to an inspection system used as an inspection target for general integrated circuits that need not be limited to the so-called TCP.
- the contact unit and the inspection system according to the present invention relate to an inspection object in which a plurality of conductive regions including a wiring structure used for input or output of an electric signal are formed on the surface. This is useful when electrical connection is made, and is particularly suitable when performing an operation characteristic inspection such as TCP in which a semiconductor chip is mounted on a flexible film substrate having a wiring structure formed on the surface.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Tests Of Electronic Circuits (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
Abstract
簡易な構成を有すると共に検査対象との間で正確な位置あわせを行うことが可能なコンタクトユニットを実現する。 コンタクトユニット2に備わるホルダ基板15の上面には、検査対象たる回路形成領域5aに備わるテストパッド11の配置パターンに対応してコンタクトプローブ13が配置されると共に、ダミーパッド7a~7dに対応して、検出プローブ群14a~14dが配置される。検出プローブ群14はプローブ19、20によって構成され、それぞれが位置関係検出部22を構成する発光ダイオード12および電圧源21と接続される。コンタクトユニット2を用いた検査が行われる際に、プローブ19、20が対応するダミーパッド7と接触することによって互いに導通した場合に発光ダイオード12が発光するため、発光ダイオード12の発光状態を確認することで位置あわせが正確に行われたか否かを判定できる。
Description
明 細 書
コンタクトユニットおよび検査システム 技術分野
[0001] 本発明は、電気信号の入力または出力に用いられる配線構造を含む複数の導電 領域が表面上に形成された検査対象に関して、前記配線構造に対する電気的接続 を行うコンタクトユニットおよびコンタクトユニットを用いた検査システムに関するもので ある。
背景技術
[0002] 従来、例えば液晶ディスプレイを構成する液晶パネルのドライバ回路等に TAB (Ta pe Automated Bonding;、 COF (Chip On Film)等の Tし P (Tape Carrier Packag e)を用いた構成が知られている。 TCPは、表面に配線構造を形成したフレキシブル なフィルム基材上に半導体チップを搭載し、搭載した半導体チップを榭脂によって封 止することによって形成される。
[0003] このような構造を有する TCPは、同一フィルム上に複数のパッケージに対応した配 線構造を形成し、ノッケージ毎に半導体チップの搭載等を行った後に個々のパッケ ージに分離することによって製造される。従って、個々のパッケージごとに用意した基 板上に配線構造を形成し、それぞれ半導体チップを搭載する従来のパッケージと比 較して、生産効率の点で優れるという利点を有する。また、 TCPを構成するフィルム 基材は、従来の半導体基板と比較して非常に材料厚が小さぐ柔軟性に富むことか ら、液晶ディスプレイ等に使用した場合には、装置全体を小型化できる等の利点を有 する。
[0004] 力かる TCPを製造する際には、他の半導体集積回路の場合と同様に不良品を検 出する等の目的で電気特性に関する検査が行われる。具体的には、例えばフィルム 基材上に形成された配線構造における電気的短絡'断線等の有無の検査や、半導 体チップを搭載した後に配線構造を介して所定の検査信号を半導体チップに対して 入出力する動作特性検査等が行われる。
[0005] 電気特性検査を行う際には、検査信号の入出力を正確に行うために、検査装置に
備わる入出力端子と、フィルム基材上に形成された配線構造との間の位置あわせを 行う必要がある。このため、従来の検査装置では、入出力端子と配線構造とが接触 する部分を視認するための機構が設けられているのが通常である。
[0006] 接触部分を視認するための単純な機構としては、接触部分力 外部に至るまで直 線的に延伸する貫通孔を形成することによって、貫通孔を介して外部より接触部分の 位置関係を視認可能とした検査装置が知られている。また、かかる直線的な貫通孔 は検査装置の構造によっては形成が困難であることから、途中で屈曲した貫通孔を 形成すると共に、貫通孔の屈曲部分にミラー等の光学部材を配置することによって、 接触部分の像を外部に導く機構を採用した検査装置も提案されている (例えば、特 許文献 1参照)。
[0007] 特許文献 1 :特開 2000— 9753号公報
発明の開示
発明が解決しょうとする課題
[0008] しカゝしながら、検査装置に備わる入出力端子と、フィルム基材上に形成された配線 構造との間の位置関係を視認することによって位置あわせを行う従来の検査装置は 、構造が複雑化すると共に、位置あわせ精度が低下するおそれがあるという課題を有 する。以下、力かる課題について順次説明する。
[0009] まず、位置関係を視認する構成を採用した場合には、上述したように所定の貫通孔 および必要に応じてミラー等を形成する必要がある。従って、検査装置においては貫 通孔形成用の領域をあらかじめ確保しつつ所定の物理強度等を実現する必要があ り、位置関係を視認する構成を採用した検査システムでは、検査対象と直接接触す るコンタ外ユニットの構造が複雑ィ匕または大型化するという課題を有することとなる。 また、検査対象またはコンタクトユニットの構造によっては、そもそも貫通孔およびミラ 一等の光学部材を適切な場所に配置することが困難なものもあり、その場合には他 の構造を採用する必要がある。
[0010] また、接触部分の視認によって位置あわせを行う構成を採用した場合には、位置あ わせ精度が低下するおそれがある。すなわち、検査者の五感に頼って位置あわせを 行う構成を採用した場合には、検査を行う上で支障のない程度にまで位置あわせが
正確に行われた力否力を客観的に判定することは困難である。また、検査者が交代 した場合には熟練度等の違いにより、位置あわせ精度が変化することとなり妥当では ない。
[0011] 本発明は、上記に鑑みてなされたものであって、簡易な構成を有すると共に検査対 象との間で正確な位置あわせを行うことが可能なコンタクトユニットおよびコンタクトュ ニットを用いた検査システムを実現することを目的とする。
課題を解決するための手段
[0012] 上述した課題を解決し、目的を達成するために、請求項 1にかかるコンタクトュ-ッ トは、電気信号の入力または出力に用いられる配線構造を含む複数の導電領域が 表面上に形成された検査対象に関して、前記配線構造に対する電気的接続を行うコ ンタクトユニットであって、前記配線構造の配置パターンに対応して配置され、対応 する前記配線構造と電気的に接続し、前記配線構造に対して所定の電気信号の入 力または出力の少なくとも一方を行う入出力端子と、所定の前記導電領域に対応し て配置された複数の端子によって形成され、対応する前記導電領域を介した前記複 数の端子間の導通の有無に応じた当該コンタクトユニットと前記検査対象との位置関 係の検出に用いられる検出端子群と、前記入出力端子および前記検出端子群を保 持するホルダ基板とを備えたことを特徴とする。
[0013] この請求項 1の発明によれば、検査対象に備わる導電領域に対応して検出端子群 を備えることとしたため、かかる検出端子群と導電領域との間の導通の有無に基づき 検査対象とコンタクトユニットとの間に位置ずれが生じた力否かの検出を行うことが可 能である。さらに、検出端子群を構成する端子は入出力端子と同様な構成によって 形成することが可能であるため、検出端子群を新たに配置した場合であっても、コン タクトユニットの構造を複雑ィ匕することはなぐ簡易な構成によって位置ずれの検出を 行うことが可能である。
[0014] また、請求項 2にかかるコンタクトユニットは、上記の発明において、前記検出端子 群は、複数の前記導電領域に対応して複数配置され、複数の前記検出端子群は、 前記検査対象のうち前記コンタクトユニットと接触する領域の異なる端部近傍に対応 した位置に配置されることを特徴とする。
[0015] また、請求項 3にかかるコンタクトユニットは、上記の発明において、前記検査対象 のうち、前記コンタクトユニットと電気的接続を行う部分は矩形形状を有し、前記検出 端子群は、複数の前記導電領域に対応して複数配置され、複数の前記検出端子群 は、それぞれ前記矩形形状の対角線上または頂点近傍に対応した領域に配置され ることを特徴とする。
[0016] また、請求項 4に力かるコンタクトユニットは、上記の発明において、前記検出端子 群を形成する複数の端子と電気的に接続され、前記検出端子群に対応した前記導 電領域を介した前記複数の端子間の導通の有無に応じて、当該コンタクトユニットと 前記検査対象との間の位置関係を検出する位置関係検出手段をさらに備えたことを 特徴とする。
[0017] また、請求項 5にかかるコンタクトユニットは、上記の発明において、前記位置関係 検出手段は、所定の電圧を供給する電圧源と、前記電圧源と直列に接続され、前記 複数の端子が前記導電領域を介して導通した際に前記電圧源との間で閉回路を形 成し、前記電圧源によって供給される電位に基づき所定の作用を行う受動素子とを 備えたことを特徴とする。
[0018] また、請求項 6にかかるコンタクトユニットは、上記の発明において、前記受動素子 は、発光ダイオードであることを特徴とする。
[0019] また、請求項 7にかかるコンタクトユニットは、上記の発明において、前記検出端子 群は、前記導電領域のうち、前記配線構造と電気的に絶縁されたダミーパッドに対応 して配置されたことを特徴とする。
[0020] また、請求項 8にかかるコンタクトユニットは、上記の発明において、前記検出端子 群は、前記導電領域のうち配線構造に対応して配置され、前記位置関係検出手段 は、対応する配線構造に対して前記入出力端子を介した電気信号の入力または出 力がなされる際に、前記受動素子に対する電圧供給を停止可能なスィッチ手段をさ らに備えたことを特徴とする。
[0021] また、請求項 9にかかる検査システムは、電気信号の入力または出力の少なくとも 一方に用いられる配線構造を含む複数の導電領域が表面上に形成された検査対象 に関して、前記配線構造に対する電気的接続を介して電気信号の入出力を行うこと
によって検査を行う検査システムであって、前記配線構造に対応して配置され、対応 する前記配線構造と電気的に接続し、前記配線構造に対して所定の電気信号の入 力または出力の少なくとも一方を行う入出力端子と、所定の前記導電領域に対応し て配置された複数の端子によって形成され、対応する前記導電領域を介した前記複 数の端子間の導通の有無による当該コンタクトユニットと前記検査対象との位置関係 の検出に用いられる検出端子群と、前記入出力端子および前記検出端子群を保持 するホルダ基板とを備えたコンタクトユニットと、前記検査対象に対する検査に使用す る電気信号を生成し、前記検査対象によって出力された電気信号を分析する信号処 理装置と、前記信号処理装置と前記コンタ外ユニットとの間を電気的に接続する接 続基板と、を備えたことを特徴とする。
発明の効果
[0022] 本発明に力かるコンタクトユニットおよび検査システムは、検査対象に備わる導電領 域に対応して検出端子群を備えることとしたため、かかる検出端子群と導電領域との 間の導通の有無に基づき検査対象とコンタクトユニットとの間に位置ずれが生じたか 否かの検出を行えるという効果を奏する。また、検出端子群を構成する端子は入出 力端子と同様な構成によって形成することが可能であるため、検出端子群を新たに 配置した場合であっても、コンタ外ユニットの構造を複雑ィ匕することはなぐ簡易な構 成によって位置ずれの検出を行えるという効果を奏する。
図面の簡単な説明
[0023] [図 1]図 1は、実施の形態 1にかかる検査システムの全体構成を示す模式図である。
[図 2]図 2は、検査システムに備わるコンタクトユニットの構成を示す模式図である。
[図 3]図 3は、コンタクトユニットに備わるプローブの構造を示す模式的な断面図であ る。
[図 4]図 4は、平行移動による位置ずれの際における検出プローブ群および位置関 係検出部の機能を示す模式図である。
[図 5]図 5は、平行移動による位置ずれの際における検出プローブ群および位置関 係検出部の機能を示す模式図である。
[図 6]図 6は、回転による位置ずれの際における検出プローブ群および位置関係検
出部の機能を示す模式図である。
[図 7]図 7は、検査対象とコンタクトユニットとが相対的に傾いた際における検出プロ一 ブ群および位置関係検出部の機能を示す模式図である。
[図 8]図 8は、実施の形態 2にかかる検査システムの全体構成を示す模式図である。
[図 9]図 9は、検査システムに備わるコンタクトユニットの構成を示す模式図である。
[図 10]図 10は、位置ずれ検出の際における検出プローブ群および位置関係検出部 の機能を示す模式図である。
[図 11]図 11は、検査の際における検出プローブ群および位置関係検出部の機能を 示す模式図である。
[図 12]図 12は、実施の形態 2にかかる検査システムの変形例について示す模式図で ある。
[図 13]図 13は、実施の形態 3にかかる検査システムに備わるコンタクトユニットの構成 を示す模式図である。
符号の説明
1、31 検査対象
2、 32、 35、 41 コンタクトユニット
3 信号処理装置
4 接続基板
5a, 36 回路形成領域
5b スプロケットホーノレ
6 配線構造
7、 7a〜7h ダミーパッド
8 半導体チップ
9 インナーリード
10 アウターリード
11、 l la〜l ll、 37a〜37d テストノ ッド
12、 12a〜12d 発光ダイオード
13 コンタクトプローブ
14、 14a〜14d 検出プローブ群
15、 42 ホノレダ基板
16、 17 ネジ部材
19、 19a〜19d、 20、 20a〜20d プローブ
21、 21a〜21d 電圧源
22、 22a〜22d、 33、 33a〜33d 位置関係検出部
24、 25 針状部材
26 パネ部材
27 開口部
28 リード線
34、 34a〜34d スィッチ
38a、 38b スルー配線
発明を実施するための最良の形態
[0025] 以下に、本発明に力かるコンタクトユニットおよび検査システムを実施するための最 良の形態 (以下、「実施の形態」と称する)を、図面を参照しつつ詳細に説明する。な お、図面は模式的なものであり、各部分の厚みと幅との関係、それぞれの部分の厚 みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間におい ても互 、の寸法の関係や比率が異なる部分が含まれて 、ることはもちろんである。ま た、図面中における符号について、同一構成を有するものについては例えば"発光 ダイオード 12a"、 "発光ダイオード 12b"のように示し、必要に応じて"発光ダイオード 12"と総称して記述する。
[0026] (実施の形態 1)
まず、実施の形態 1にかかる検査システムについて説明する。図 1は、本実施の形 態 1にかかる検査システムの全体構成を示す模式図である。図 1に示すように、本実 施の形態 1にかかる検査システムは、検査対象 1に対する電気的接続を実現するた めのコンタクトユニット 2と、検査対象に対して入力する電気信号の生成等を行う信号 処理装置 3と、信号処理装置 3とコンタクトユニット 2とを電気的に接続するための接 続基板 4とによって構成される。
[0027] 検査対象 1は、本実施の形態 1にかかる検査システムによって行われる検査の対象 となるものである。具体的には、検査対象 1は、所定のフィルム基材上に回路形成領 域 5aが長手方向に複数配置され、短手方向端部近傍において長手方向に一定の 間隔で設けられたスプロケットホール 5bを備えた長尺のテープ状の構造を有し、検 查の際には、スプロケットホール 5bを介してハンドラーによる長手方向への移動が行 われる。また、回路形成領域 5a上には、配線構造 6を含む導電領域、具体的には複 数の配線構造 6およびダミーパッド 7が形成されると共に、半導体チップ 8が搭載され た構成を有する。
[0028] 個々の配線構造 6は、半導体チップ 8と電気的に接続するインナーリード 9と、イン ナーリード 9と電気的に接続され、実装時に外部機器との電気的な接続に用いられる アウターリード 10と、アウターリード 10と電気的に接続され、検査時に電気信号の入 出力に用いられるテストパッド 11とによってそれぞれ構成される。カゝかる配線構造 6が 半導体チップ 8に備わる接続端子に対応して複数形成されることによって、半導体チ ップ 8と外部機器との間の電気的な接続を実現する。
[0029] ダミーパッド 7は、特許請求の範囲における導電領域の一例として機能するもので ある。具体的には、ダミーパッド 7は、複数の配線構造 6のいずれに対しても電気的に 絶縁された導電領域によって形成されており、半導体チップ 8に対して電気的に接続 されておらず、検査の際に用いられる電気信号の入出力には何ら機能することはな い。本実施の形態 1では、後述するようにダミーパッド 7を有効に活用することによつ て検査対象 1とコンタクトユニット 2との位置関係を判定することとしている。
[0030] 信号処理装置 3は、検査に使用される電気信号を生成する機能の他に、生成した 電気信号を検査対象 1に対して出力し、入力した電気信号に対する応答信号を分析 すること〖こよって、検査対象 1の電気的な特性を分析するためのものである。具体的 には、信号処理装置 3によって生成された電気信号は、接続基板 4およびコンタクト ユニット 2を順次経由して検査対象 1に入力され、検査対象 1から出力される応答信 号は、コンタクトユニット 2および接続基板 4を順次経由して信号処理装置 3に入力さ れる。なお、信号処理装置 3と接続基板 4との間の電気的な接続は、実際には多数の 配線を用いて行われるが、かかる接続態様は本発明の要部と無関係であることから、
図 1においては両者間の電気的な接続に関しては模式的に示すに留めることとする
[0031] 接続基板 4は、コンタクトユニット 2と信号処理装置 3とを電気的に接続するためのも のである。理論上はコンタクトユニット 2側の接続端子と信号処理装置 3側の接続端 子との間を所定の配線等を用いて直接接続しても良ぐ接続基板 4を省略した構成と することも可能である。し力しながら、実際にはコンタクトユニット 2側の接続端子は、 検査対象 1に備わるテストプローブに対応した配置となるため、接続端子間の間隔が 微小なものとなり、信号処理装置 3と直接的に接続することは容易ではない。従って、 本実施の形態 1では、例えば延伸するに従って互いの間の間隔が広がるよう形成さ れた複数の配線構造が形成された接続基板 4を新たに備えることとし、カゝかる接続基 板 4を経由して信号処理装置 3とコンタクトユニット 2とを電気的に接続することとして いる。
[0032] 次に、コンタクトユニット 2について説明する。コンタクトユニット 2は、本実施の形態 1 にかかる検査システムを用いた検査を行う際に、検査対象 1に対する電気的接触を 行うためのものである。具体的には、コンタクトユニット 2は、位置関係の検出結果を 表示する発光ダイオード 12a〜 12dと、検査対象 1に備わる複数のテストパッド 11に 対応して配置された複数のコンタクトプローブ 13と、 1以上のダミーパッド 7に対応し て配置された検出プローブ群 14a〜14dと、コンタクトプローブ 13および検出プロ一 ブ群 14a〜14dを保持するホルダ基板 15とを備えた構成を有する。また、ホルダ基 板 15は複数の基板によって構成されており、カゝかる複数の基板は、ネジ部材 16によ つて互いに固定されている。また、ホルダ基板 15は、接続基板 4に対してネジ部材 1 7によって固定された構造を有する。
[0033] 発光ダイオード 12a〜l 2dは、特許請求の範囲における受動素子の一例として機 能するためのものである。具体的には、発光ダイオード 12a〜12dは、後述する位置 関係検出部 22a〜22dを構成するものであって、コンタクトユニット 2と検査対象 1との 間の位置ずれに応じて発光状態が変化する機能を有する。
[0034] 検出プローブ群 14a〜14dおよびコンタクトプローブ 13が配置される位置と、検出 プローブ群 14a〜14dを含む位置関係検出部 22a〜22dの構成とについて説明する
。図 2は、コンタクトユニット 2を検査対象 1側力も見た平面構造および検出プローブ 群 14a〜14dに対応した位置関係検出部 22a〜22dの構造を概念的に示す模式図 である。なお、図 2において、検査の際における検査対象 1との位置関係を容易に理 解するため、理想的に位置あわせが行われた場合における検査対象 1の構成要素 の位置を破線にて示すこととする。
[0035] 図 2にも示すように、コンタクトプローブ 13は、検査対象 1に備わるテストパッド 11の 配列パターンに対応したパターンに従って配置されており、かかるパターンに従って 配置されることによって、検査の際に検査対象 1に対する電気信号の入出力を可能と している。一方、検出プローブ群 14a〜14dは、回路形成領域 5aの四隅に位置する ダミーパッド 7に対応して配置されている。具体的には、検出プローブ群 14a〜14d のそれぞれを構成するプローブ 19a〜19d、 20a〜20dは、コンタクトユニット 2と検査 対象 1との間で正確な位置あわせが行われている場合にそれぞれダミーパッド 7a〜 7dと重なり合う位置に配置されて 、る。
[0036] コンタクトプローブ 13は、特許請求の範囲における入出力端子の一例として機能す るものである。具体的には、コンタクトプローブ 13は、検査対象 1に備わるテストパッド 11の配置パターンと対応して配置され、テストパッド 11のそれぞれと物理的に接触 することによって、検査対象 1に対して所定の電気信号の入力または出力の少なくと も一方を行う機能を有する。
[0037] 検出プローブ群 14は、特許請求の範囲における検出端子群の一例として機能する ものであり、検査の際に検査対象 1とコンタクトユニット 2との間の位置関係の良否を 検出する目的で使用されるものである。具体的には、検出プローブ群 14a〜14dは、 それぞれ特許請求の範囲における端子の一例として機能する 2本のプローブ 19a〜 19d、 20a〜20dによって構成されており、本実施の形態 1では、かかる 2本のプロ一 ブが所定の導電領域 (ダミーパッド 7a〜7d)と接触した際に導電領域を介して 2本の プローブが導通することを利用して位置関係の良否を検出することとしている。
[0038] また、コンタクトユニット 2は、検出プローブ群 14a〜14dに対応して位置関係検出 部 22a〜22dを備える。位置関係検出部 22は、図 2にも示すようにそれぞれ発光ダイ オード 12と、電圧源 21とが直列に接続された構成を有する。具体的には、例えば位
置関係検出部 22aにおいては電圧源 21aの陽極と発光ダイオード 12aの陰極とが所 定の配線を介して接続された構成を有する。
[0039] また、位置関係検出部 22は、検出プローブ群 14を構成するプローブ 19およびプロ ーブ 20と電気的に接続した構成を有する。具体的には、例えば位置関係検出部 22 aにおいては、電圧源 21aの陰極は所定の配線を介してプローブ 20aと電気的に接 続され、発光ダイオード 12aの陽極は、所定の配線を介してプローブ 19aと電気的に 接続された構成を有する。
[0040] 次に、コンタクトプローブ 13およびプローブ 19、 20の具体的な構造について説明 する。本実施の形態 1においては、コンタクトプローブ 13およびプローブ 19、 20はそ れぞれ同一の構造を有しており、以下ではプローブ 19を例として具体的な構造につ いて説明する。
[0041] 図 3は、プローブ 19の構造を示す模式的な断面図である。プローブ 19は、コンタク トユニット 2を構成するホルダ基板 15の上面 (検査の際に検査対象 1と対向する面)の 法線方向に伸縮可能な構造を有する。具体的には、プローブ 19は、図 3にも示すよ うに、両端に針状部材 24、 25が配置され、針状部材 24、 25間にパネ部材 26が配置 された構造を有する。針状部材 24、 25およびパネ部材 26は、それぞれ金属等の導 電性材料によって形成され、針状部材 24とパネ部材 26、パネ部材 26と針状部材 25 とが互いに固着することによって、物理的に一体化すると共に電気的に接続した構 造を有する。
[0042] ホルダ基板 15には、上述した上面に対して垂直方向と平行な中心軸を有する開口 部 27が形成されており、開口部 27にプローブ 19を収容することによって、ホルダ基 板 15はプローブ 19を保持する。一方で、プローブ 19は、開口部 27に収容されること によって、開口部 27の中心軸と平行な方向に伸縮する機能を有し、検査の際には、 テストパッド 11に対して、パネ部材 26に起因した弹発カを印加しつつ接触することと なる。
[0043] また、開口部 27に収容される部材として、プローブ 19の他にリード線 28が挙げられ る。リード線 28は、プローブ 19に対して検査対象 1と反対側に位置するよう開口部 27 内に収容されており、開口部 27内においてリード線 28の一端と針状部材 25とが互
いに接触した状態となるよう配置されている。リード線 28は、プローブ 19、 20と接触 する場合には、それぞれ位置関係検出部 22を構成する発光ダイオード 12、電圧源 21と接続するための配線として機能し、コンタクトプローブ 13と接触する場合には、 接続基板 4に備わる所定の配線構造と針状部材 25とを電気的に接続するための配 線として機能する。
[0044] 次に、本実施の形態 1にかかる検出システムにおいて検出プローブ群 14および位 置関係検出部 22が果たす機能について説明する。図 4および図 5は、検出プローブ 群 14および位置関係検出部 22の機能を説明するための模式図であって、図 4は検 查対象 1とコンタクトユニット 2との間で正確な位置あわせが行われた場合を示し、図 5 は検査対象 1とコンタクトユニット 2とが相対的に平行移動することによって位置ずれ が生じた場合について示す。なお、図 4および図 5では、位置関係検出部 22aおよび 位置関係検出部 22aの周囲に配置される構成要素のみを示すが、以下に説明する 機能が位置関係検出部 22b〜22dに関しても成立することはもちろんである。
[0045] 図 4に示すように、正確な位置あわせが行われた場合には、プローブ 19a、 20aは、 ダミーパッド 7aと接触することとなり、ダミーパッド 7aを介してプローブ 19a、 20a間が 電気的に接続されることとなる。従って、位置関係検出部 22aにおいて、発光ダイォ ード 12aおよび電圧源 21aは閉回路を形成することとなり、電圧源 21aによって供給 される電位に基づき発光ダイオード 12aが所定の輝度にて発光することとなる。
[0046] 一方、図 5に示すように、コンタクトユニット 2と検査対象 1との間で正確な位置あわ せが行われず、所定の距離だけ位置ずれを生じていた場合には、発光ダイオード 12 aが発光することはない。すなわち、コンタクトユニット 2と検査対象 1との間で位置ず れが生じることによってプローブ 19a、 20aとダミーパッド 7aとの間の位置関係にもず れが生じることとなり、例えば図 5に示すように、プローブ 20aはダミーパッド 7aと接触 する一方で、プローブ 19aとダミーパッド 7aとが接触しない状態となる。
[0047] 図 5からも明らかなように、かかる場合にはプローブ 19a、 20a間が電気的に接続さ れることはなぐ位置関係検出部 22aにおいて、発光ダイオード 12aと電圧源 21aとの 間で閉回路が形成されることもない。従って、発光ダイオード 12aに対して電圧源 21 aによって電位差が供給されることはなぐ発光ダイオード 12aが発光することはない。
[0048] すなわち、本実施の形態 1にかかる検査システムでは、コンタクトユニット 2と検査対 象 1との間で正確な位置あわせが行われた場合には位置関係検出部 22a〜22dに それぞれ備わる発光ダイオード 12a〜l 2dが発光し、位置ずれが生じている場合に は、発光ダイオード 12a〜12dの少なくとも 1つは発光しないこととなる。力かる特性は 、換言すれば発光ダイオード 12a〜 12dのすべてが発光する場合には正確な位置あ わせが行われ、発光ダイオード 12a〜l 2dのいずれかが発光しない場合には位置ず れが生じていることを意味する。すなわち、検査システムの使用者は、発光ダイオード 12a〜 12dの発光状態を確認することによって位置あわせが正確に行われた力否か を判定することが可能である。
[0049] なお、本実施の形態 1では、位置あわせの精度を調整するための工夫を施して!/、る 。具体的には、図 4にも示すように、正確に位置あわせが行われている場合に、プロ ーブ 19a、 20aのそれぞれは、長手方向の中心軸(図 4においてプローブ 19a、 20a を示す円の中心)と、ダミーパッド 7aの周縁部との距離が所定の値となるようあらかじ め配置されている。具体的には、図 4にも示すように、正確な位置あわせが行われた 場合において、矩形状のダミーパッド 7aに対して、プローブ 19aの中心軸は、ダミー ノッド 7aの周縁部のうち最も近接する 2辺との間の距離が d、 dとなるよう配置され、
1 2
プローブ 20aの中心軸は、最も近接する 2辺との距離が d、 dとなるよう配置されてい
3 4
る。
[0050] 図 4ではプローブ 19a、 20aの外径を強調して表示しているものの、実際のプローブ 19a、 20aの外径はきわめて小さな値となるのが通常である。従って、本実施の形態 1 にかかる検査システムにおいては、例えば検査対象 1に対してコンタクトユニット 2が y 方向に dだけ位置ずれを生じた場合には、プローブ 19aはダミーパッド 7aから外れる
2
こととなり、発光ダイオード 12aが発光しないこととなるため、位置ずれが生じたものと 検出することが可能である。一方で、図 4に示す状態から位置ずれが生じた場合であ つても、例えば検査対象 1に対してコンタクトユニット 2が y方向に d (く d )だけ位置ず
5 2
れした場合には、依然としてプローブ 19a、 20aはダミーパッド 7aと接触した状態を維 持するため、発光ダイオード 12aは発光することとなる。
[0051] これらのことは、位置ずれの有無の判定において、ある程度の許容範囲が設定され
ていることを意味する。すなわち、図 4に示した状態からわずかでも位置ずれが生じ たすベての場合について位置ずれ発生として検出する必要はなぐ位置ずれが生じ た場合であっても、検査に支障を及ぼさな ヽ程度の軽微なものであった場合には、 位置ずれとして検出しないことが実用上望ましい。従って、本実施の形態 1では、プロ ーブ 19a、 20aを配置する位置を工夫することによって、検査を行う上で問題とならな い程度の位置ずれが生じた場合には、発光ダイオード 12aを発光させる、すなわち 位置ずれとして検出しないこととしている。なお、 d〜dの具体的な値は、検査対象 1
1 4
の構造等によって定められる力 好ましくはそれぞれ 20 μ m〜50 μ m、より好ましく は d =d =d =d = 30 mとすることによって、一般的な検査においては軽微な位
1 2 3 4
置ずれの検出を行わず、かつ検査上問題が生じうる位置ずれに関して確実に検出 することが可能である。もちろん、今後の微細加工技術の進歩等によって検査対象の 構造がさらに微細化した場合には 30 mよりも小さな値とすることが好ましぐ d〜d
1 4 の具体的な値は、例えば 10〜20 μ mとすることが好ましい。
[0052] また、本実施の形態 1にかかる検査システムは、コンタクトユニット 2において複数の 位置関係検出部 22を備える。従って、本実施の形態 1においては、図 4における X方 向、 y方向と平行な方向に関する位置ずれ、すなわちコンタクトユニット 2と検査対象 1 とが相対的に平行移動することによって生ずる位置ずれのみならず、ホルダ基板 15 の上面の法線方向を中心軸として検査対象 1が相対的に回転した場合であっても、 位置ずれを検出することが可能である。
[0053] 図 6は、コンタクトユニット 2と検査対象 1との間で、ホルダ基板 15の上面の法線方 向を中心軸として検査対象 1が相対的に回転した場合を示す模式図である。図 6に 示すように、ダミーパッド 7aおよびプローブ 19a、 20aの近傍を中心として相対的な回 転による位置ずれが生じた場合には、プローブ 19a、 20aとダミーパッド 7aとの間の 電気的接触は維持されることとなり、位置関係検出部 22aのみによっては、コンタクト ユニット 2と検査対象 1との間の位置関係に異常が生じたことを検知することができな い。
[0054] し力しながら、本実施の形態 1では、コンタクトユニット 2は位置関係検出部 22aのみ ならず、さらに位置関係検出部 22b〜22dを備えた構成を有する。そして、コンタクト
ユニット 2と検査対象 1との間で相対的な回転が生じた場合には、図 6にも示すように 回転中心以外の部分では位置ずれを生じることとなる。従って、位置関係検出部 22 b〜22dのそれぞれ【こお!ヽて ίま、プローブ 19b〜19d、 20b〜20dと対応するダミー パッド 7b〜7dとは接触せず、発光ダイオード 12b〜l 2dのそれぞれが発光しないこと となり位置ずれを検出することが可能である。従って、本実施の形態 1にかかる検査 システムでは、複数の位置関係検出部 22を備えることとしたため、コンタクトユニット 2 と検査対象 1との間で回転が生じた場合であっても、位置関係の異常を確実に検出 することが可能である。
[0055] さらに、本実施の形態 1にかかる検査システムは、面内方向、すなわち図 4に示す X 方向および y方向等に関する位置ずれの検出の他に、検査対象 1とコンタクトユニット 2との間に生じる傾きについても検出することが可能である。図 3にも示したように、ホ ルダ基板 15の上面には、位置関係検出部 22a〜22dに対応した検出プローブ群 14 a〜 14dが検査対象 1に備わる回路形成領域 5aの四隅に対応した位置に配置されて いる。従って、検査対象 1とコンタクトユニット 2との間に傾きが生じた場合には、位置 関係検出部 22a〜22dのいずれかにおいて、プローブ 19、 20と対応するダミーパッ ド 7との接触が生じないこととなり、発光ダイオード 12が発光しないこととなる。
[0056] 図 7は、検査対象 1とコンタクトユニット 2との間で傾きが生じた場合について示す模 式図である。図 7に示すように、互いの間で傾きが生じたまま検査対象 1をコンタクト ユニット 2に接近させた場合には、例えば検出プローブ群 14bは、ダミーパッド 7bと接 触する一方で、検出プローブ群 14cはダミーパッド 7cと接触しないこととなる。従って 、図 7のケースでは検出プローブ群 14bに対応した位置関係検出部 22bに備わる発 光ダイオード 12bは発光する一方で、検出プローブ群 14cに対応した発光ダイオード 12cは発光しないこととなり、力かる発光パターンが生じることにより、検査システムの 使用者は異常を察知することが可能である。
[0057] 次に、本実施の形態 1にかかる検査システムの利点について説明する。まず、本実 施の形態 1にかかる検査システムでは、上述したメカニズムに基づきコンタクトユニット 2と検査対象 1との間で位置ずれの発生を検出することが可能である。かかる位置ず れ検出を行う観点からは、最も簡易な構成としては単一の検出プローブ群 14および
位置関係検出部 22を備えることによって実現することが可能である力 検出プローブ 群 14および位置関係検出部 22を複数設けることによってさらなる効果を得ることが 可能である。
[0058] すなわち、図 6及び図 7に示したケースのように、検出対象とコンタクトユニット 2との 間で相対的な回転による位置ずれや、傾きによる位置ずれが生じた場合に関しては 、検出プローブ群 14および位置関係検出部 22を複数設けることによって、より確実 な位置ずれ検出を行うことが可能となる。なお、確実な位置ずれ検出を行う観点から は、複数の検出プローブ群 14間の距離が可能な限り限り大きな値となるよう配置する ことが好ましい。すなわち、例えば回転運動による位置ずれが生じた場合には、位置 ずれの程度は、回転中心力も離れるに従って大きなものとなる。従って、複数の検出 プローブ群 14のうちあるものが回転中心と一致した場合 (例えば、図 6における検出 プローブ群 14a)には、他の検出プローブ群 14は、回転中心と一致した検出プロ一 ブ群 14力もなるベく離れた位置に配置されていること力 位置ずれ検出精度の向上 の観点からは好ましい。かかる観点より、本実施の形態 1では、複数の検出プローブ 群 14a〜14dに関して、互いの距離が最大となる位置、具体的には検査対象 1 (本実 施の形態 1では検査対象 1を構成する回路形成領域 5a)の端部近傍に配置すること としている。より具体的には、回路形成領域 5aが矩形を有することに対応して各頂点 近傍、すなわち回路形成領域 5aの四隅に対応した位置に配置することによって、検 出プローブ群 14a〜14d間の距離が最大となるよう構成している。また、本実施の形 態 1では、回路形成領域 5aが矩形形状を有するため、検出プローブ群 14a〜14dは 、それぞれ回路形成領域 5aにおける矩形形状の端部近傍の領域のうち、矩形形状 の対角線上に配置することとしている。力かる位置に配置することにより、複数の検出 プローブ群に関して充分な間隔を確保することが可能となり、より正確な位置あわせ を行うことが可能である。
[0059] さらに、本実施の形態 1にかかる検査システムは、簡易な構成によって位置あわせ を行うことを可能としている。具体的には、本実施の形態 1にかかる検査システムは、 ホルダ基板 15に対して従来のように視認用の貫通孔等を形成することとせず、検査 対象に対する電気的接続に必要となるコンタクトプローブ 13と同一構造のプローブ 1
9、 20からなる検出プローブ群 14を設けることのみとしている。本来的にコンタクトプ ローブ 13はテストパッド 11に対応して多数設けられるものであることから、かかるコン タクトプローブ 13と同一構造のプローブ 19、 20を新たに保持することとしても、ホル ダ基板 15の構造は複雑ィ匕することはなぐ簡易な構成を実現することが可能である。
[0060] また、プローブ 19、 20と接続される位置関係検出部 22についても、電圧源 21およ び発光ダイオード 12のみによって構成される簡易なものである。さら〖こ、電圧源 21お よび発光ダイオード 12とプローブ 19、 20との電気的な接続関係に関しても、図 3に 示したようにコンタクトプローブ 13と同様の構造 (リード線 28)を用いて行うことが可能 である。以上のことから、本実施の形態 1において新たに検出プローブ群 14および 位置関係検出部 22を設けたことによってコンタ外ユニット 2の構造が複雑ィ匕すること はなぐ本実施の形態 1にかかる検査システムは、簡易な構成によって位置あわせを 行うことを可能としている。
[0061] また、本実施の形態 1にかかる検査システムは、位置関係検出部 22を用いて位置 ずれを検出する構成を採用することとしたため、正確な位置あわせを行うことが可能 であるという利点を有する。すなわち、位置関係検出部 22は、プローブ 19、 20にお いてダミーパッド 7を介した導通が生じた場合にのみ発光ダイオード 12を発光させる という客観的な判定基準を用いている。このため、位置ずれの有無の判定に際して 検査システムの使用者の熟練度等によって差が生じることがなぐ客観的かつ正確な 位置ずれ検出を行うことが可能となる。
[0062] (実施の形態 2)
次に、実施の形態 2にかかる検査システムについて説明する。本実施の形態 2では 、ダミーパッドに相当する導電領域を備えない検査対象を検査する場合に、正確な 位置あわせを行うことを可能とした構成を採用して 、る。
[0063] 図 8は、本実施の形態 2にかかる検査システムの全体構成について示す模式図で ある。図 8に示すように、本実施の形態 2にかかる検査システムは、実施の形態 1と同 様に信号処理装置 3および接続基板 4を備えた構成を有する一方で、ダミーパッドを 備えない検査対象 31に対応して、検出プローブ群 14の配置パターンを工夫したコ ンタクトユニット 32を新たに備えた構成を有する。なお、本実施の形態 2において、実
施の形態 1と同様の符号'名称が付された構成要素は、以下で特に言及しない限り 実施の形態 1における構成要素と同様の構造'機能を有することとする。
[0064] 図 9は、コンタクトユニット 32の上面における検出プローブ群 14の配置パターンお よび検出プローブ群 14を含む位置関係検出部の構成を示す模式図である。図 9〖こ 示すように、本実施の形態 2において、コンタクトユニット 32の上面に配置されるコン タクトプローブ 13は、検査対象 31におけるテストパッド 11の配置パターンに対応した パターンに従って配置されて 、る。
[0065] 一方、本実施の形態 2では、検査対象 31にはダミーパッドが形成されていないこと としており、検出プローブ群 14をダミーパッドに対応して配置する実施の形態 1の構 成を採用することはできない。従って、本実施の形態 2では、特許請求の範囲におけ る導電領域としてテストパッド 11を用いることとし、多数存在するテストパッド 11の中 力も選択した所定のもの(図 9において、テストパッド l la〜l Idとして表示する。以下 の説明においても同様である)に対応するよう検出プローブ群 14a〜14dを配置する こととしている。なお、図 9において、テストパッド l le〜l llに関しては、実施の形態 1 におけるテストパッド 11と同様に、対応するコンタクトプローブ 13を介した電気信号の 入出力が行われるものとして機能する。
[0066] また、検出プローブ群 14a〜14dの配置態様の変更に対応して、位置関係検出部 33a〜33dの構成も、実施の形態 1における位置関係検出部 22の構成と異なるもの となっている。具体的には、位置関係検出部 33は、実施の形態 1の構成に加え、プ ローブ 19と発光ダイオード 12の陽極との間に新たにスィッチ 34を備えた構成を有し 、正確に位置あわせが行われているか否かの判定を行う際にのみスィッチ 34をオン する構成を採用している。
[0067] 次に、本実施の形態 2にかかる検査システムにおいて、位置関係検出部 33a〜33 dが果たす機能および利点について説明する。なお、以下では位置関係検出部 33a 〜33dのうち、位置関係検出部 33aを例として説明を行うが、位置関係検出部 33b〜 33dについても同様であることはもちろんである。
[0068] 図 10は、位置関係検出部 33aに関して、検査対象 31とコンタクトユニット 32との間 の位置あわせが正確に行われている力否かを判定する際における動作を示す模式
図である。図 10に示すように、位置あわせに関する判定の際には、スィッチ 34aがォ ン状態となるよう制御されている。従って、テストパッド 11aとプローブ 19a、 20aとが接 触することによって、位置関係検出部 33aは閉回路を形成することとなり、電圧源 21a によって供給される電位に基づき、発光ダイオード 12aが発光する。従って、検査シ ステムの使用者は、実施の形態 1の場合と同様に発光ダイオード 12aの発光の有無 を検知することによって、検査対象 31とコンタクトユニット 32との間の位置あわせが正 確に行われた力否かを判定することが可能である。また、本実施の形態 2においても 、所定の許容範囲を定めること、および複数の位置関係検出部 33を備えることによつ て検査対象 31とコンタクトユニット 32とが相対的に回転した場合の検出、および検査 対象 31とコンタクトユニット 32とが互いに傾いた場合の検出を行うことが可能である。
[0069] 次に、本実施の形態 2にかかる検査システムを用いて検査対象 31に対して所定の 検査を行う際における位置関係検出部 33a〜33dが果たす機能および利点につい て説明する。図 11は、検査の際における位置関係検出部 33aについて示す模式図 である。図 11にも示すように、検査システムによって検査が行われる際には、テストパ ッド 11aに対して、信号処理装置 3によって生成された電気信号等がコンタクトプロ一 ブ 13を介して入出力される。従って、検査の際に位置関係検出部 33aが閉回路を構 成した場合には、コンタクトプローブ 13を介して入出力される電気信号が位置関係 検出部 33aに対して影響を及ぼすおそれがある。例えば、入力される電気信号が高 電位の場合には、テストパッド 11aの電位も上昇することとなり、カゝかる電位が位置関 係検出部 33aを構成する電圧源 21aまたは発光ダイオード 12aの機能を損なう等の 可能性がある。
[0070] 従って、本実施の形態 2では、位置関係検出部 33aにおいて新たにスィッチ 34aを 備えることとし、検査の際にはスィッチ 34aをオフ状態に変化させることによって、入 出力される電気信号が位置関係検出部 33aを構成する発光ダイオード 12aに対して 影響を及ぼすことを防止する。なお、検査の際にスィッチ 34aをオフ状態とすることに よって、位置関係検出部 33aを構成する電圧源 21a等が検査結果に影響を及ぼすこ とも可能である。すなわち、検査の際にスィッチ 34aがオン状態に維持された場合に は、位置関係検出部 33aにおいて生じるノイズ等がテストパッド 1 laに対して入力さ
れるおそれがある。このように、検査の際に位置関係検出部 33aが閉回路を形成した 場合には、ノイズ信号が検査用の電気信号に混入した状態でテストパッド 1 laに入力 されることによって検査結果に影響を及ぼすため、本実施の形態 2では検査の際に スィッチ 34aをオフ状態にすることによって、かかる弊害が生じることを防止することを 可能としている。
[0071] (変形例)
次に、実施の形態 2にかかる検査システムの変形例について説明する。本変形例 にかかる検査システムは、検査対象 1に備わる回路形成領域上に形成される配線構 造の一部において、複数のテストパッド間を、半導体チップ 8を介するのではなく電気 的に直接接続させる配線構造を有する場合に、カゝかる配線構造を活用して正確な位 置あわせを可能とするものである。
[0072] 図 12は、本変形例に力かる検査システムに備わるコンタクトユニット 35の上面(すな わち、検査対象 1と接触する側の面)における検出プローブ群を構成するプローブ 1 9、 20の配置態様について示す模式図である。なお、図 12において、図 2等と同様 に、検査の際におけるコンタクトユニット 35と検査対象 1との位置関係を容易に理解 するため、理想的に位置あわせが行われた場合における検査対象 1 (回路形成領域 36)の構造を破線にて示すこととする。
[0073] 図 12に示すように、回路形成領域 36上において、インナーリード 9およびアウター リード 10を介して半導体チップ 8と電気的に接続されたテストパッド 11を備える一方 で、回路形成領域 36の四隅に位置するテストパッド 37a〜37dに関しては、半導体 チップ 8と電気的に接続すること無ぐ互いの間がスルー配線 38a、 38bによって直接 的に接続される。
[0074] そして、力かる回路形成領域 36の構造に対応して、本変形例では、検出プローブ 群 14aを構成するプローブ 19aがテストパッド 37dに対応して配置され、プローブ 20a がテストパッド 37aに対応して配置される。また、検出プローブ群 14bを構成するプロ ーブ 19bはテストパッド 37cに対応して配置され、プローブ 20bは、テストパッド 37bに 対応して配置される。
[0075] カゝかる構成を採用した場合であっても、実施の形態 2と同様に、検査の際に正確な
位置あわせを行うことが可能である。以下、検出プローブ群 14a (プローブ 19a、 20a )に例に説明する。具体的には、検査の際にプローブ 19aがテストパッド 37dと接触し 、プローブ 20aがテストパッド 37aと接触した場合、すなわち正確な位置あわせが行 われた場合には、テストパッド 37a、 37dおよびスルー配線 38aによって構成される導 電領域を介してプローブ 19a、 20a間が導通することとなる。従って、実施の形態 2と 同様に位置関係検出部 33aに備わるスィッチ 34aがオン状態を維持する限りにおい て、位置関係検出部 33aは閉回路を形成することとなり、発光ダイオード 12aが発光 することとなり、正確な位置あわせが行われていることを検知することが可能である。
[0076] このように、同一の検出プローブ群 14を構成するプローブ 19、 20に関して、異なる テストパッドまたはダミーパッドと接触させる構成を採用することも有効である。すなわ ち、異なるテストパッド等であっても、異なるテストパッド等が同一電位に維持されるよ う構成された場合には、全体として特許請求の範囲における導電領域を形成するも のと考えることが可能であり、実施の形態 1、 2と同様のメカニズムに基づき正確な位 置あわせを行うことが可能である。
[0077] (実施の形態 3)
次に、実施の形態 3にかかる検査システムについて説明する。本実施の形態 3にか 力る検査システムでは、一度に複数の回路形成領域に関して検査を行う構成を有す ると共に、正確な位置あわせを可能とする検出システムを実現して 、る。
[0078] 図 13は、本実施の形態 3にかかる検査システムにおいて、ホルダ基板上に配置さ れるコンタクトプローブ 13および検出プローブ群 14の配置パターンについて示す模 式図である。また、図 13では、図 2および図 9と同様に、位置関係を容易に理解する ため、理想的に位置あわせが行われた場合における検査対象 1の構成要素の位置 を破線にて示すこととする。なお、図示は省略するものの本実施の形態 3にかかる検 查システムにお 、ても信号処理装置 3および接続基板 4を備えることとし、実施の形 態 1、 2における構成要素と同様の名称'符号が付されたものは、以下で特に言及し ない限り実施の形態 1、 2における構成要素と同様の構造'機能を有することとする。
[0079] 図 13に示すように、本実施の形態 3では、一度の検査において、複数の回路形成 領域 5aに関して検査を行う構成を採用する。カゝかる構成を採用したことに対応して、
コンタクトユニット 41に備わるホルダ基板 42は、複数の回路形成領域 5aと接触可能 なよう上面の面積を拡大した構成を採用すると共に、図 13に示すように複数の回路 形成領域 5aに備わるテストパッド 11に対応してコンタクトプローブ 13を配置する。
[0080] また、本実施の形態 3において、検出プローブ群 14a〜14dに関しても複数の回路 形成領域 5aに対応した位置に配置される。具体的には、検出プローブ群 14a、 14b に関しては実施の形態 1と同様にダミーパッド 7a、 7bに対応した位置に配置される一 方で、検出プローブ群 14c、 14dに関しては、ダミーパッド 7c、 7dに対応するのでは なぐ隣接した別の回路形成領域 5aに備わるダミーパッド 7g、 7hに対応した位置に 配置されることとしている。
[0081] 本実施の形態 3では、検出プローブ群 14a〜14dの個数よりもダミーパッド 7の個数 の方が多いことから、検出プローブ群 14a〜14dの配置パターンを複数取ることが可 能である。かかる場合、任意の配置パターンを用いることとしても良いが、本実施の形 態 3では、検出プローブ群 14a〜14dが互いに最も離隔する配置パターンを採用す ることとしている。図 6および図 7の例でも示したように、複数の検出プローブ群 14を 用いることとした場合には、互いの間の距離が大きいほど位置ずれの検出精度が向 上するためである。
[0082] なお、本実施の形態 3のように、ダミーパッド 7の数が検出プローブ群 14の数を上回 る場合には、面積に基づき検出プローブ群 14を対応させるダミーパッド 7を選択する こととしても良い。例えば、検査対象 1として用いられる TCP力 液晶パネルのドライ バ IC (液晶パネル中に配置される画素電極の選択および供給電位を制御する IC)と して使用されるような場合には、外部からの映像信号等の入力に用いられる入力端 子力 液晶パネルと接続される出力端子よりも大きな面積を有するのが通常である。 具体的には、ダミーパッド 7a、 7b、 7e、 7fを入力端子とし、ダミーパッド 7c、 7d、 7g、 7hを出力端子とした場合には、検出プローブ群 14a〜14dを、面積の大きいダミー ノッド 7a、 7b、 7e、 7fに対応するよう配置することも好ましい。
[0083] 以上、実施の形態 1〜3を用いて本発明を説明したが、本発明は上記の実施の形 態に限定して解釈されるべきではなぐ当業者であれば様々な実施例、変形例に想 到することが可能である。例えば、実施の形態においては、特許請求の範囲におけ
る入出力端子としてコンタクトプローブを使用し、検出端子群として検出プローブ群を 用いることとした力 力かる構成に限定する必要はなぐ電気的な導通を取ることが可 能なものであれば、任意の構造のものを入出力端子および検出端子群として使用す ることが可能である。また、受動素子の例として発光ダイオードを用いることとしたが、 他の構成を採用することも有効である。例えば、受動素子として音声発生機構を用い ることによって、位置ずれの有無を音声情報として使用者に知らせる構成も有効であ る。さらに、検査対象に関しても、いわゆる TCPに限定する必要はなぐ集積回路一 般について検査対象として用いた検査システムに対して本発明を適用することが可 能である。
産業上の利用可能性
以上のように、本発明に力かるコンタクトユニットおよび検査システムは、電気信号 の入力または出力に用いられる配線構造を含む複数の導電領域が表面上に形成さ れた検査対象に関して、その配線構造に対する電気的接続を行う場合に有用であり 、特に、表面に配線構造を形成したフレキシブルなフィルム基材上に半導体チップを 搭載した TCP等の動作特性検査を行う場合に好適である。
Claims
[1] 電気信号の入力または出力に用いられる配線構造を含む複数の導電領域が表面 上に形成された検査対象に関して、前記配線構造に対する電気的接続を行うコンタ タトユニットであって、
前記配線構造の配置パターンに対応して配置され、対応する前記配線構造と電気 的に接続し、前記配線構造に対して所定の電気信号の入力または出力の少なくとも 一方を行う入出力端子と、
所定の前記導電領域に対応して配置された複数の端子によって形成され、対応す る前記導電領域を介した前記複数の端子間の導通の有無に応じた当該コンタクトュ ニットと前記検査対象との位置関係の検出に用いられる検出端子群と、
前記入出力端子および前記検出端子群を保持するホルダ基板と、
を備えたことを特徴とするコンタクトユニット。
[2] 前記検出端子群は、複数の前記導電領域に対応して複数配置され、複数の前記 検出端子群は、前記検査対象のうち前記コンタクトユニットと接触する領域の異なる 端部近傍に対応した位置に配置されることを特徴とする請求項 1に記載のコンタクト ユニット。
[3] 前記検査対象のうち、前記コンタクトユニットと電気的接続を行う部分は矩形形状を 有し、
前記検出端子群は、複数の前記導電領域に対応して複数配置され、複数の前記 検出端子群は、それぞれ前記矩形形状の対角線上または頂点近傍に対応した領域 に配置されることを特徴とする請求項 1に記載のコンタクトユニット。
[4] 前記検出端子群を形成する複数の端子と電気的に接続され、前記検出端子群に 対応した前記導電領域を介した前記複数の端子間の導通の有無に応じて、当該コ ンタ外ユニットと前記検査対象との間の位置関係を検出する位置関係検出手段をさ らに備えたことを特徴とする請求項 1に記載のコンタクトユニット。
[5] 前記位置関係検出手段は、
所定の電圧を供給する電圧源と、
前記電圧源と直列に接続され、前記複数の端子が前記導電領域を介して導通した
際に前記電圧源との間で閉回路を形成し、前記電圧源によって供給される電位に基 づき所定の作用を行う受動素子とを備えたことを特徴とする請求項 4に記載のコンタ タトユニット。
[6] 前記受動素子は、発光ダイオードであることを特徴とする請求項 5に記載のコンタク トユニット。
[7] 前記検出端子群は、前記導電領域のうち、前記配線構造と電気的に絶縁されたダ ミーパッドに対応して配置されたことを特徴とする請求項 1に記載のコンタクトユニット
[8] 前記検出端子群は、前記導電領域のうち配線構造に対応して配置され、
前記位置関係検出手段は、対応する配線構造に対して前記入出力端子を介した 電気信号の入力または出力がなされる際に、前記受動素子に対する電圧供給を停 止可能なスィッチ手段をさらに備えたことを特徴とする請求項 1に記載のコンタクトュ ニット。
[9] 電気信号の入力または出力の少なくとも一方に用いられる配線構造を含む複数の 導電領域が表面上に形成された検査対象に関して、前記配線構造に対する電気的 接続を介して電気信号の入出力を行うことによって検査を行う検査システムであって 前記配線構造に対応して配置され、対応する前記配線構造と電気的に接続し、前 記配線構造に対して所定の電気信号の入力または出力の少なくとも一方を行う入出 力端子と、所定の前記導電領域に対応して配置された複数の端子によって形成され
、対応する前記導電領域を介した前記複数の端子間の導通の有無による当該コンタ タトユニットと前記検査対象との位置関係の検出に用いられる検出端子群と、前記入 出力端子および前記検出端子群を保持するホルダ基板とを備えたコンタクトユニット と、
前記検査対象に対する検査に使用する電気信号を生成し、前記検査対象によって 出力された電気信号を分析する信号処理装置と、
前記信号処理装置と前記コンタクトユニットとの間を電気的に接続する接続基板と、 を備えたことを特徴とする検査システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020087013855A KR101046353B1 (ko) | 2005-11-10 | 2005-11-10 | 콘택트 유닛 및 검사시스템 |
PCT/JP2005/020635 WO2007055012A1 (ja) | 2005-11-10 | 2005-11-10 | コンタクトユニットおよび検査システム |
CN200580052033XA CN101317099B (zh) | 2005-11-10 | 2005-11-10 | 接触单元以及检查系统 |
TW094139569A TWI292828B (en) | 2005-11-10 | 2005-11-11 | Contact unit and inspection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/020635 WO2007055012A1 (ja) | 2005-11-10 | 2005-11-10 | コンタクトユニットおよび検査システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007055012A1 true WO2007055012A1 (ja) | 2007-05-18 |
Family
ID=38023023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/020635 WO2007055012A1 (ja) | 2005-11-10 | 2005-11-10 | コンタクトユニットおよび検査システム |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101046353B1 (ja) |
CN (1) | CN101317099B (ja) |
TW (1) | TWI292828B (ja) |
WO (1) | WO2007055012A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103558540A (zh) * | 2013-11-07 | 2014-02-05 | 周芸 | 二极管三极管特性通用测试器 |
CN112740384A (zh) * | 2018-09-21 | 2021-04-30 | 日本麦可罗尼克斯股份有限公司 | 检查方法和检查系统 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101089846B1 (ko) * | 2011-04-06 | 2011-12-05 | 이상용 | 다채널 pwm 파형 측정기 |
CN102928698B (zh) * | 2012-10-19 | 2015-12-09 | 广东欧珀移动通信有限公司 | 一种测试点异常的检测电路 |
CN103899986A (zh) * | 2012-12-31 | 2014-07-02 | 苏州璨宇光学有限公司 | 背光模组 |
CN103323635B (zh) * | 2013-06-21 | 2015-12-02 | 深圳市华星光电技术有限公司 | 用于检测接触效果的探针模组 |
CN104658844B (zh) * | 2013-11-22 | 2017-06-06 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种托盘支撑装置及等离子体加工设备 |
CN106093750B (zh) * | 2016-06-17 | 2018-12-18 | 深圳市燕麦科技股份有限公司 | 用于电路板测试的转接电路板和转接装置 |
CN106918777A (zh) * | 2017-05-16 | 2017-07-04 | 国网河南省电力公司平顶山供电公司 | 一种电路板金手指焊接位置检测装置 |
CN108480636B (zh) * | 2018-05-24 | 2024-03-29 | 成都青石激光科技有限公司 | 一种激光增材制造校点装置 |
CN108957807A (zh) * | 2018-08-08 | 2018-12-07 | 昆山龙腾光电有限公司 | 一种绑定检测系统及显示面板 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0174575U (ja) * | 1987-11-06 | 1989-05-19 | ||
JPH01129432A (ja) * | 1987-11-16 | 1989-05-22 | Nec Corp | 集積回路 |
JPH02151048A (ja) * | 1988-12-01 | 1990-06-11 | Nec Corp | 半導体集積回路 |
JPH09213757A (ja) * | 1996-02-07 | 1997-08-15 | Kawasaki Steel Corp | ウエハプローブ容易化方法 |
JPH1073640A (ja) * | 1996-08-30 | 1998-03-17 | Sharp Corp | 半導体集積回路装置の検査方法 |
JPH11142472A (ja) * | 1997-11-06 | 1999-05-28 | Nec Corp | フィルムキャリア型半導体装置及び検査用プローブヘッド並びに位置合わせ方法 |
-
2005
- 2005-11-10 WO PCT/JP2005/020635 patent/WO2007055012A1/ja active Application Filing
- 2005-11-10 CN CN200580052033XA patent/CN101317099B/zh not_active Expired - Fee Related
- 2005-11-10 KR KR1020087013855A patent/KR101046353B1/ko not_active IP Right Cessation
- 2005-11-11 TW TW094139569A patent/TWI292828B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0174575U (ja) * | 1987-11-06 | 1989-05-19 | ||
JPH01129432A (ja) * | 1987-11-16 | 1989-05-22 | Nec Corp | 集積回路 |
JPH02151048A (ja) * | 1988-12-01 | 1990-06-11 | Nec Corp | 半導体集積回路 |
JPH09213757A (ja) * | 1996-02-07 | 1997-08-15 | Kawasaki Steel Corp | ウエハプローブ容易化方法 |
JPH1073640A (ja) * | 1996-08-30 | 1998-03-17 | Sharp Corp | 半導体集積回路装置の検査方法 |
JPH11142472A (ja) * | 1997-11-06 | 1999-05-28 | Nec Corp | フィルムキャリア型半導体装置及び検査用プローブヘッド並びに位置合わせ方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103558540A (zh) * | 2013-11-07 | 2014-02-05 | 周芸 | 二极管三极管特性通用测试器 |
CN112740384A (zh) * | 2018-09-21 | 2021-04-30 | 日本麦可罗尼克斯股份有限公司 | 检查方法和检查系统 |
CN112740384B (zh) * | 2018-09-21 | 2024-09-17 | 日本麦可罗尼克斯股份有限公司 | 检查方法和检查系统 |
Also Published As
Publication number | Publication date |
---|---|
CN101317099B (zh) | 2012-06-27 |
TWI292828B (en) | 2008-01-21 |
CN101317099A (zh) | 2008-12-03 |
KR20080072044A (ko) | 2008-08-05 |
KR101046353B1 (ko) | 2011-07-04 |
TW200718948A (en) | 2007-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008180716A (ja) | プローブ及びこれを持つプローブカード | |
EP3937159A2 (en) | Display device and method of manufacturing the same | |
JP2006350064A (ja) | 表示装置および位置ずれ検査方法 | |
WO2007055012A1 (ja) | コンタクトユニットおよび検査システム | |
US20080158839A1 (en) | Printed Wiring Board, Printed Circuit Board, and Method of Inspecting Joint of Printed Circuit Board | |
JP2003007778A (ja) | 半導体装置、半導体デバイスの実装方法および半導体デバイス実装装置 | |
JP4835317B2 (ja) | プリント配線板の電気検査方法 | |
JP2004184839A (ja) | 表示装置 | |
JP2011129554A (ja) | Fpc基板が接続された回路基板及びfpc基板と回路基板との接続方法。 | |
JPH01283993A (ja) | 回路プリント板、その面付け部品位置認識装置、及び面付け部品検査装置 | |
JP4255896B2 (ja) | コンタクトユニットおよび検査システム | |
KR101471391B1 (ko) | 유기발광다이오드 표시장치 검사방법 및 검사장치 | |
JPH0782032B2 (ja) | 表示パネル用プローブとその組み立て方法 | |
KR20210032472A (ko) | 프로브, 검사 지그, 검사 장치, 및 프로브의 제조 방법 | |
JP5145332B2 (ja) | プローブカード | |
US20080017508A1 (en) | Non-contact type single side probe structure | |
JP2002310933A (ja) | 回路基板の検査装置および検査方法ならびに電気光学素子 | |
WO2017168530A1 (ja) | 基板の配線経路の検査方法及び検査システム | |
JP5308948B2 (ja) | 半導体デバイスの検査装置及び方法 | |
JP2004361249A (ja) | 基板検査装置 | |
JP2967774B2 (ja) | 半導体装置の不良解析方法および不良解析装置 | |
JP2007311624A (ja) | 半導体集積回路パッケージおよびその製造方法 | |
JP2010066031A (ja) | 回路基板検査装置 | |
JP2005055359A (ja) | 基板検査装置 | |
JP2007278890A (ja) | 半導体装置、その検査装置および検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200580052033.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087013855 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05806109 Country of ref document: EP Kind code of ref document: A1 |