[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007045586A1 - Schuhsohlen auf basis von geschäumtem thermoplastischen polyurethan (tpu) - Google Patents

Schuhsohlen auf basis von geschäumtem thermoplastischen polyurethan (tpu) Download PDF

Info

Publication number
WO2007045586A1
WO2007045586A1 PCT/EP2006/067303 EP2006067303W WO2007045586A1 WO 2007045586 A1 WO2007045586 A1 WO 2007045586A1 EP 2006067303 W EP2006067303 W EP 2006067303W WO 2007045586 A1 WO2007045586 A1 WO 2007045586A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polyurethane
outsole
expandable
density
shoe
Prior art date
Application number
PCT/EP2006/067303
Other languages
English (en)
French (fr)
Inventor
Marcus Leberfinger
Carsten GÜNTHER
Denis Bouvier
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP06807171A priority Critical patent/EP1940600A1/de
Publication of WO2007045586A1 publication Critical patent/WO2007045586A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/06Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising
    • B29D35/065Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising by compression moulding, vulcanising or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/06Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising
    • B29D35/08Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising having multilayered parts
    • B29D35/085Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising having multilayered parts by compression moulding, vulcanising or the like
    • B29D35/087Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising having multilayered parts by compression moulding, vulcanising or the like forming first the outer sole part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/122Soles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to a process for the production of an outsole made of foamed thermoplastic polyurethane, wherein the foamed thermoplastic polyurethane is introduced into an open mold and is then pressed to the outsole. Furthermore, the present invention relates to an outsole, obtainable by such a method, as well as a shoe, which contains such a sole. Further embodiments of the present invention can be taken from the claims, the description and the examples. It goes without saying that the features mentioned above and those still to be explained below of the article according to the invention can be used not only in the particular combination indicated, but also in other combinations, without departing from the scope of the invention.
  • Thermoplastic polyurethanes are partially crystalline materials and belong to the class of thermoplastic elastomers (TPE). They are characterized among others by good strength, abrasion resistance, tear resistance and chemical resistance and can be produced in almost any hardness by suitable raw material composition.
  • EP-A-692 516, WO 00/44821, EP-A-1 174 459 and EP-A-1 174 458 to foam thermoplastic polyurethanes with blowing agents, inter alia, for the production of shoe soles.
  • Single density soles consist of a material of substantially uniform density, except for a marginal zone that forms a compact skin and a uniform composition.
  • Double density shoe soles consist of an outer outsole that comes into contact with the ground material in use, and a foamed midsole that is sandwiched in the finished shoe between the outsole and the upper and connects both. In most cases, the outsole has at least a higher density than the midsole for double density shoe soles.
  • thermoplastic elastomer eg PVC, thermoplastic rubber, TPU, etc.
  • a so-called rotary table installation eg 24 stations D612 from DESMA or MainGroup
  • SPE 22.65 TPU DESMA known to those skilled plasticizing unit in an open sole tool poured (Descom ® method; DESMA) and then pressed on a so-called displacer. or possibly injected into a closed sole tool.
  • the shoe upper After solidification of the melt and optionally opening the tool, the shoe upper is positioned over the produced compact sole, the tool is sealed by laterally closing jaws and in a next step a polyurethane reactive system containing at least one compound with isocyanate groups, at least one compound with isocyanate-reactive groups and at least one propellant introduced via a known to those skilled dosing in the cavity between the sole and shaft.
  • a polyurethane reactive system containing at least one compound with isocyanate groups, at least one compound with isocyanate-reactive groups and at least one propellant introduced via a known to those skilled dosing in the cavity between the sole and shaft.
  • thermoplastic polyurethane is foamed in contact with the shoe upper.
  • the foaming takes place in a closed tool.
  • the foamed thermoplastic polyurethane can take over the function of the midsole in a sole with double density, or the function of the outer sole of a sole simple density.
  • thermolpastic polyurethane soles include high strength and low abrasion, good tear resistance and good chemical resistance.
  • z. B. rubber soles compared to TPU lower density and especially better slip resistance, especially in wet conditions.
  • the object of the invention was therefore to develop an outsole which, in addition to the known positive properties of the thermoplastic polyurethanes, has a good slip resistance, both in the dry and in the wet, with a low sole weight.
  • an outsole made of foamed thermoplastic polyurethane, wherein one introduces expandable thermoplastic polyurethane in an open tool and pressed to the outsole, solved.
  • an outsole the unitary part of a shoe sole, which comes in use in contact with the soil material. Accordingly, in the context of the invention under an outsole, the entire shoe sole with simple density to understand. Under a closed tool is a hollow body to understand, in which the material to be formed is introduced. While expanding the thermoplastic polyurethane can indeed displaced gases escape, z. B. on introduced vents, but the TPU is prevented by the walls of the tool and the counterpressure thus building on the free expansion. The tool is ultimately filled by the expansion and the building up internal pressure by the expanding TPU, which is formed by the contact with the mold walls a more or less compact outer skin. The compression factor of the expanded TPU, which results from the ratio of the actual volume of the shaped body and the theoretical volume during free expansion, is usually less than 0.8. TPU outsoles made in the closed form usually have a thickness of 10mm or more.
  • an open tool is to be understood as meaning a casting tool which does not form a closed hollow body during the introduction of the expandable TPU, ie. H. at least to one side of the tool is open.
  • the introduced TPU melt can thus expand freely before it is pressed by a so-called displacer in the mold.
  • the compression factor in a shoe sole according to the invention is usually 0.8 and larger.
  • the expanding TPU is not compacted on the tool surfaces, i. H. it comes here to none, or only a small formation of a compact outer skin. This means that the outer skin retains a largely cellular and poor surface texture.
  • a compact outer skin means the region of a TPU outsole which has a lower porosity than an area in the interior of the outsole.
  • the expandable thermoplastic polyurethanes used according to the invention are preferably a mixture comprising thermoplastic polyurethanes and expandable microspheres as blowing agents, particularly preferably thermoplastic polyurethanes and expandable microspheres with a TMA density (defined below) of between 2 and 30 kg / m 3 , preferably between 2 and 10 kg / m 3 . Due to these low TMA densities, the weight percentage use of microspheres can be minimized with comparable density. This leads to cost savings, since usually the microspheres is the price-determining factor with respect to the raw materials of the final product.
  • TMA density defined below
  • the preferred expandable microspheres may be in the form of powders or, preferably, masterbatches, the microspheres being well known and commercially available, eg under the trademark Expancell® from AKZO Nobel Industries, Sweden.
  • masterbatch is meant that the expandable microspheres in a carrier z.
  • binders waxes or a thermoplastic (eg., TPU, EVA, PVC, PE, PP, PES, PS, TR, etc., or blends thereof) are bound in granular form.
  • micropher- gent masterbatches are generally employed with very low melting point (eg, 60-110 ° C) thermoplastics and very low viscosities to assist in the preparation of masterbatches of expandable microspheres and supports by the use of a masterbatch the lowest possible temperatures prevent premature expansion.
  • very low melting point eg, 60-110 ° C
  • thermoplastics e.g., polyethylene terephthalate
  • very low viscosities eg. 60-110 ° C thermoplastics and very low viscosities to assist in the preparation of masterbatches of expandable microspheres and supports by the use of a masterbatch the lowest possible temperatures prevent premature expansion.
  • the use of such masterbatches avoids the formation of dust, such as those arising from the use and handling of expandable microspheres in powder form.
  • homogeneous mixing of the expandable microspheres with the TPU is easier with the use of masterbatches.
  • the TMA density of the expandable microspheres defines itself as the minimum achievable density [kg / m 3 ] of an expandable microspheric powder or masterbatch thereof until the microspheres collapse. These were determined at a heating rate of 20 ° C per minute with a weight of 0.5 mg using a "Stare Thermal Analysis System" from Mttler Toledo.
  • expandable microspheres By using the preferably used expandable microspheres as propellants can be completely dispensed with the use of co-blowing agents. Nevertheless, it is possible for the production of outsoles according to the invention also co-blowing agent, such as. B. exothermic and endothermic chemical blowing agents to use.
  • exothermic chemical blowing agents are azodicarbonamides.
  • endothermic chemical blowing agents are citric acid and bicarbonates, such as alkali bicarbonates.
  • outsoles according to the invention are produced with a mixture of one or more expandable microspheres and one or more chemical blowing agents.
  • blowing agent mixtures containing 5 to 95 wt .-% expandable microspheres and 95 to 5 wt .-% of one or more chemical blowing agents, more preferably 40 to 90 wt .-% expandable microspheres and 60 to 10 wt .-% of a or more chemical blowing agents, in particular 60 to 80% by weight of expandable microspheres and 40 to 20% by weight of one or more chemical blowing agents, each based on the total weight of the expandable microspheres and the chemical blowing agent without the support used to prepare a masterbatch, used.
  • the expandable thermoplastic polyurethane for producing an outsole according to the invention preferably contains 0.1 to 30 wt .-%, particularly preferably 1, 5 and 7.5 wt .-% and in particular 2 to 5 wt .-%, based on the total weight of expandable thermoplastic polyurethane, blowing agent.
  • the expandable thermoplastic polyurethane may preferably contain from 0.1 to 50% by weight, more preferably from 1 to 40% by weight, based on the total weight of the mixture, of plasticizer.
  • Plasticizers may be any common substance. zen be used. Preference is given to using esters of benzoic acid and phthalic acid and derivatives thereof,
  • thermoplastic polyurethanes can be used as the sole thermoplastic.
  • TPU blends of other well-known thermoplastics All known thermoplastics can be used. Examples of these are thermoplastic rubber, ethylene vinyl acetate and polyvinyl chloride.
  • the blend preferably contains at least 40% by weight of thermoplastic polyurethane.
  • thermoplastic polyurethanes which are generally present as powder, granules or pellets, are usually mixed with the expandable microspheres and / or the masterbatch and any other additives to be used, such as further blowing agents, other thermoplastics and plasticizers and thermoplastically processed to the shoes and / or shoe parts according to the invention.
  • thermoplastic processing any processing which is associated with a melting of the thermoplastic polyurethane.
  • the temperature increase during the thermoplastic processing leads to an expansion of the expandable microspheres and thus to the formation of the expanded thermoplastic polyurethanes
  • the melt is introduced into open molds, the thermoplastic polyurethane expands there and is pressed by a displacer .
  • the temperature of the thermoplastic polyurethane when introduced into the mold between 100 ° C and 220 ° C, more preferably between 140 ° C and 190 ° C.
  • both soled shoes with single and double density are available.
  • a first, expandable thermoplastic polyurethane preferably at a temperature between 100 and 220 ° C., more preferably between 140 and 190 ° C.
  • the mold used is preferably part of a commercially available rotary table system.
  • the mold temperature is maintained between 10-130 ° C., preferably between 40-70 ° C.
  • the displacer is opened and then the midsole produced.
  • the shoe upper is preferably positioned over the outsole produced by the method described above, the mold is closed again via lateral jaws and, in a next step, the midsole material is introduced into the intermediate space between sole and shaft.
  • the midsole material is a second expandable thermoplastic polyurethane or particularly preferably a polyurethane reactive system.
  • the density of the midsole material is different from the density of the outsole, in particular, the density of the midsole material is less than the density of the outsole.
  • the thickness of a TPU outsole is preferably less than 10 mm, particularly preferably 5 to 0.5 mm and in particular 3 to 1 mm in the case of a double-density sole
  • the procedure is as above, but the first expandable thermoplastic polyurethane is displaced by the shoe upper or the shoe last, which at the same time leads to a direct adhesion of the not yet solidified first TPU melt to the shoe upper or the shoe last comes.
  • a bonding agent can be used on the shoe upper or the shoe bar.
  • the thickness of any existing skin in an outsole according to the invention is preferably 0.2 mm or less, particularly preferably 0.1 mm or less and in particular 0 mm.
  • thermoplastic polyurethanes the customary and known compounds can be used, as described for example in Kunststoffhandbuch, Volume 7 "Polyurethanes", Carl Hanser Verlag Kunststoff Vienna, 3 Edition 1993, pages 455 to 466 Their preparation is carried out by reacting with diisocyanates Compounds having at least two isocyanate-reactive hydrogen atoms, preferably difunctional alcohols.
  • diisocyanates customary aromatic, aliphatic and / or cycloaliphatic diisocyanates are, for example, diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), tri-, tetra-, penta-, hexa-, hepta- and / or octamethylene diisocyanate, 2- Methylpentamethylene-dinocyanat-1, 5, 2-ethyl-butylene-d ⁇ socyanat-1, 4, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (isophorone diisocyanate, IPDI), 1.4 and / or 1,3-bis (isocyanatomethyl) cyclohexane (HXDI), 1,4-cyclohexanediocyanate, 1-methyl-2,4- and / or -2,6-cyclohexanediisocyanate
  • isocyanate-reactive compounds generally known polyhydroxy compounds having molecular weights of 500 to 8,000, preferably 600 to 6,000, especially 800 to 4,000, and preferably an average functionality of 1, 8 to 2.6, preferably 1, 9 to 2.2 , in particular 2 are used, for example, poly esterols, polyetherols and / or polycarbonate diols.
  • polyesterdiols which are obtainable by reacting butanediol and hexanediol as diol with adipic acid as dicarboxylic acid, the weight ratio of butanediol to hexanediol preferably being 2: 1.
  • chain extenders it is possible to use generally known compounds, for example diamines and / or alkanediols having 2 to 10 C atoms in the alkylene radical, in particular ethylene glycol and / or butanediol-1, 4, and / or hexanediol and / or di- and / or Tri-oxyalkylenglykole having 3 to 8 carbon atoms in the oxyalkylene lenrest, preferably corresponding oligo-polyoxypropylene glycols, mixtures of the chain extenders can be used.
  • diamines and / or alkanediols having 2 to 10 C atoms in the alkylene radical in particular ethylene glycol and / or butanediol-1, 4, and / or hexanediol and / or di- and / or Tri-oxyalkylenglykole having 3 to 8 carbon atoms in the oxyalkylene lenrest, preferably corresponding oli
  • chain extenders it is also possible to use 1,4-bis (hydroxymethyl) benzene (1,4-BHMB), 1,4-bis (hydroxyethyl) benzene (1,4-BHEB) or 1,4-bis (2 -hydroxyethoxy) -benzene (1, 4-HQEE) are used.
  • Preferred chain extenders are ethylene glycol and hexanediol, particularly preferably ethylene glycol.
  • catalysts which accelerate the reaction between the NCO groups of the diisocyanates and the hydroxyl groups of the synthesis components, for example tertiary amines, such as triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) - ethanol, diazabicyclo- (2,2,2) octane and the like, and in particular organic metal compounds such as titanic acid esters, iron compounds such as Iron (III) acetylacetonate, tin compounds such as tin diacetate, tin dilaurate or the tin dialkyl salts of aliphatic carboxylic acids such as dibutyltin diacetate, dibutyltin dilaurate, bismuth compounds or the like.
  • the catalysts are usually used in amounts of 0.0001 to 0.1 parts by weight per 100 parts by weight of polyhydroxyl compound.
  • auxiliaries can also be added to the structural components. Mention may be made, for example, of surface-active substances, flame retardants, nucleating agents, lubricants and mold release agents, flow improvers, abrasion improvers, dyes and pigments, inhibitors, stabilizers against hydrolysis, light, heat, oxidation or discoloration, protective agents against microbial degradation, inorganic and / or organic fillers, reinforcing agents and plasticizers, but also chain regulators, such.
  • Outer soles of thermoplastic polyurethane according to the invention preferably have a density of from 0.1 to 1.2 g / cm 3 , more preferably from 0.6 to 1.5, and in particular from 0.75 to 1.0 g / cm 3 .
  • Preferably outsoles according to the invention have an abrasion according to DIN 53516 of less than 120 mm 3 , more preferably less than 100 mm 3 and in particular less than 80 mm 3 .
  • Outer soles according to the invention have improved slip resistance.
  • the measurement of slip resistance is carried out with the aid of a device for determining the dynamic limit angle of the static friction of shoes. This procedure according to Dr. med. Radio is described in DE 3635263.
  • To measure the outsole is glued to a Dummy shaft.
  • the size and profile of the test specimens must always be identical.
  • unprofiled rectangular test plates of 3 mm thickness, 15 cm length and 10 cm width are used.
  • This test shoe is placed cyclically parallel to the substrate on this and loaded with a constant, adjustable weight. Before each cycle, the angle of inclination of the ground is increased until the test shoe slides out. For concrete measurement, a steel plate and a load of 40 kg were chosen as the substrate.
  • Outer soles according to the invention are lightweight, non-slip, resistant to hydrolysis and resistant to oil and chemicals and have good tear resistance. Therefore outsoles according to the invention are outstandingly suitable as outsoles for shoes of any kind. This includes, for example, street shoes, slippers and safety shoes. Safety shoes, in particular, are subject to high requirements with regard to skid resistance, chemical and oil resistance, hydrolysis resistance and weight. Therefore, outsoles according to the invention are particularly suitable for the production of safety shoes.
  • DESMA rotary table systems usual, known in the art open form according to the DEScom ® method introduced and processed via the displacer to a test plate with 15 cm in length, 10 cm in width and 3mm in height.
  • the mold temperature was 60 ° C.
  • the weight of the sole after deburring, its density, the abrasion and the limit angle of static friction are given in Table 1.
  • Table 1 shows that the outsoles of the invention have a similar or only slightly worse slip resistance compared to rubber at lower density and lower abrasion. In comparison to non-foamed TPU, slip resistance and density are substantially improved with only a slight increase in abrasion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Laufsohle aus geschäumtem thermoplastischem Polyurethan, bei dem man diese in einem offenen Werkzeug herstellt und zur Laufsohle verpresst, sowie eine Laufsohle, erhältlich nach einem solchen Verfahren, und einen Schuh, der eine solche Laufsohle aufweist.

Description

Schuhsohlen auf Basis von geschäumtem thermoplastischen Polyurethan (TPU)
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Laufsohle aus geschäumtem thermoplastischem Polyurethan, wobei das geschäumte thermoplastische Polyurethan in ein offenes Werkzeug eingebracht wird und im Anschluss zur Laufsohle verpresst wird. Des weiteren betrifft die vorliegende Erfindung eine Laufsohle, erhältlich nach einem solchen Verfahren, sowie einen Schuh, der eine solche Lauf- sohle enthält. Weitere Ausführungsformen der vorliegenden Erfindung sind den Ansprüchen, der Beschreibung und den Beispielen zu entnehmen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale des erfindungsgemäßen Gegenstandes nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der Er- findung zu verlassen.
Thermoplastische Polyurethane (im Folgenden auch als TPU bezeichnet) sind teilkristalline Werkstoffe und gehören zu der Klasse der thermoplastischen Elastomere (TPE). Sie zeichnen sich unter anderem durch gute Festigkeiten, Abriebfestigkeit, Wei- terreißfestigkeiten und Chemikalienbeständigkeit aus und können in nahezu beliebiger Härte durch geeignete Rohstoffzusammensetzung hergestellt werden.
Es sind aus EP-A-692 516, WO 00/44821 , EP-A-1 174459 und EP-A-1 174458 Verfahren bekannt, thermoplastische Polyurethane mit Treibmitteln unter anderem zur Her- Stellung von Schuhsohlen zu verschäumen.
Man unterscheidet prinzipiell zwischen Schuhsohlen mit einfacher Dichte und mit sogenannter doppelter Dichte. Schuhsohlen mit einfacher Dichte bestehen aus einem Material mit einer im wesentlichen einheitlichen Dichte, abgesehen von einer Randzo- ne, die eine kompakte Haut bildet, und einheitlicher Zusammensetzung. Schuhsohlen mit doppelter Dichte bestehen aus einer äußeren Laufsohle, die bei Gebrauch in Kontakt mit dem Bodenmaterial kommt, und einer geschäumten Zwischensohle, die im fertigen Schuh zwischen Laufsohle und Schuhschaft angeordnet ist und beides miteinander verbindet. Meist hat bei Schuhsohlen mit doppelter Dichte die Laufsohle zumin- dest eine höhere Dichte als die Zwischensohle.
Bei dem herkömmlichen Verfahren der Schuhherstellung mit doppelter Dichte wird auf einer sogenannten Rundtischanlage (z. B. 24 Stationen D612 von DESMA oder MainGroup) die Schmelze eines thermoplastischen Elastomeren (z. B. PVC, thermo- plastischer Rubber, TPU etc) über eine geeignete, dem Fachmann bekannte Plastifi- ziereinheit (z. B. SPE 22.65 TPU von DESMA) in ein offenes Sohlenwerkzeug eingegossen (DEScom® Verfahren; DESMA) und anschließend über einen sogenannten Verdränger verpresst. oder ggf. in ein geschlossenes Sohlenwerkzeug eingespritzt. Nach Erstarrung der Schmelze und gegebenenfalls Öffnen des Werkzeuges wird von oben der Schuhschaft über die hergestellte kompakte Sohle positioniert, das Werkzeug über seitlich sich schließende Backen abgedichtet und in einem nächsten Schritt ein Polyurethanreaktivsystem, enthaltend mindestens eine Verbindung mit Isocyanatgrup- pen, mindestens eine Verbindung mit gegenüber Isocyanaten reaktiven Gruppen und mindestens ein Treibmittel, über eine dem Fachmann bekannte Dosiereinheit in den Hohlraum zwischen Sohle und Schaft eingebracht. Nach vollständiger Reaktion wird der Schuh entformt und Austriebe am Schuh werden entgratet.
Zur Herstellung einer herkömmlichen Schuhsohle mit einfacher Dichte kann wie oben beschrieben verfahren werden, jedoch mit dem Unterschied, dass auf eine vorherige Fertigung einer kompakten Außensohle verzichtet wird. Die Abriebsbeständigkeit wird demzufolge nur über die kompakte Außenhaut der so erhaltenen Polyurethansohle gewährleistet.
Aus WO 05/066250 ist ein Verfahren zur Herstellung von Schuhsohlen bekannt, bei dem thermoplastisches Polyurethan in Kontakt mit dem Schuhschaft verschäumt wird. Das Verschäumen erfolgt dabei in einem geschlossenen Werkzeug. Hierbei kann das geschäumte thermoplastische Polyurethan die Funktion der Zwischensohle bei einer Sohle mit doppelter Dichte, oder die Funktion der äußeren Laufsohle einer Sohle einfacher Dichte übernehmen.
Vorteile von Schuhsohlen aus thermolpastischem Polyurethan sind neben hoher Festigkeit und geringem Abrieb eine gute Weiterreißfestigkeit und gute Chemikalienbe- ständigkeit. Zum anderen weisen jedoch z. B. Gummisohlen im Vergleich zu TPU eine geringere Dichte und vor allem aber bessere Rutschfestigkeiten auf, insbesondere unter nassen Bedingungen.
Aufgabe der Erfindung war es daher eine Laufsohle zu entwickeln, die neben den be- kannten positiven Eigenschaften der thermoplastischen Polyurethane, bei einem geringen Sohlengewicht eine gute Rutschfestigkeit, sowohl im Trockenen als auch bei Nässe, aufweist.
Diese Aufgabe wird durch eine Laufsohle, herstellbar aus geschäumtem thermoplasti- schem Polyurethan, wobei man expandierbares thermoplastisches Polyurethan in ein offenes Werkzeug einbringt und zur Laufsohle verpresst, gelöst.
Im Rahmen der Erfindung soll unter einer Laufsohle der einheitlicher Teil einer Schuhsohle verstanden werden, der bei Gebrauch in Kontakt mit dem Bodenmaterial kommt. Demnach ist im Rahmen der Erfindung unter einer Laufsohle auch die gesamte Schuhsohle mit einfacher Dichte zu verstehen. Unter einem geschlossenen Werkzeug ist ein Hohlkörper zu verstehen, in den das zu formende Material eingebracht wird. Während des Expandierens des thermoplastischen Polyurethans können zwar verdrängte Gase entweichen, z. B. über eingebrachte Entlüftungen, das TPU wird aber durch die Wandungen des Werkzeugs und den sich damit aufbauenden Gegendruck am freien Expandieren gehindert. Das Werkzeug wird letztlich durch die Expansion und den sich aufbauenden inneren Druck durch das expandierende TPU gefüllt, wodurch durch den Kontakt zu den Werkzeugwandungen eine mehr oder weniger kompakte Außenhaut ausgebildet wird. Der Kompressionsfaktor des expandierten TPUs, der sich aus dem Verhältnis des tatsächlichen Volumens des Formkörpers und dem theoretischen Volumens bei freier Expansion ergibt, liegt üblicherweise bei kleiner 0,8. Laufsohlen aus TPU, die in der geschlossenen Form hergestellt wurden, haben üblicherweise eine Dicke von 10mm und mehr.
Unter einem offenen Werkzeug soll im Rahmen der Erfindung ein Gießwerkzeug ver- standen werden, das während des Einbringens des expandierbaren TPU keinen geschlossenen Hohlkörper bildet, d. h. mindestens zu einer Seite des Werkzeugs offen ist. Die eingebrachte TPU-Schmelze kann somit frei expandieren, bevor diese von einem sogenannten Verdränger in der Form verpresst wird. Der Kompressionsfaktor bei einer erfindungsgemäßen Schuhsohle ist üblicherweise 0,8 und größer. Somit wird in der offenen Form das expandierende TPU an den Werkzeugflächen nicht verdichtet, d. h. es kommt hier zu keiner, bzw. nur geringen Ausbildung einer kompakten Außenhaut. Dies bedeutet, das die Außenhaut eine weitestgehend zellige und poorige Oberflächenstruktur beibehält.
Unter einer kompakten Außenhaut ist dabei im Rahmen der Erfindung der Bereich ei- ner TPU-Laufsohle zu verstehen, der eine geringere Porosität aufweist als ein Bereich im Innern der Laufsohle.
Bei den erfindungsgemäß zur Anwendung gelangenden expandierbaren thermoplastischen Polyurethanen handelt es sich bevorzugt um eine Mischung, aufweisend ther- moplastische Polyurethane und expandierbare Mikrospheren als Treibmittel, besonders bevorzugt thermoplastische Polyurethane und expandierbare Mikrospheren mit einer TMA-Dichte (im folgenden definiert) zwischen 2 und 30 kg/m3, bevorzugt zwischen 2 und 10 kg/m3. Durch diese niedrigen TMA-Dichten kann bei vergleichbarer Dichte der gewichtsanteilige Einsatz von Mikrospheren minimiert werden. Dies führt zu Kosteneinsparungen, da in der Regel die Mikrospheren der preisbestimmende Faktor bzgl. der Rohstoffe des Endproduktes ist. Die bevorzugten expandierbaren Mikrospheren können in Form von Pulver oder bevorzugt als Masterbatches eingesetzt werden, wobei die Mikrospheren allgemein bekannt und kommerziell erhältlich sind, z.B. unter der Marke Expancell® von AKZO Nobel Industries, Schweden. Unter dem Ausdruck Masterbatch ist zu verstehen, dass die expandierbaren Mikrospheren in einem Träger z. B. Bindemittel, Wachse oder einem Thermoplasten (z. B. TPU, EVA, PVC, PE, PP, PES, PS, TR etc. oder Blends hieraus) in Granulatform gebunden sind. Bei der Her- Stellung dieser Mikropheren-Masterbatches werden in der Regel Thermoplaste mit einem sehr niedrigen Schmelzpunkt (z. B. 60 - 1 10 °C) und sehr niedrigen Viskositäten eingesetzt, um bei der Herstellung der Masterbatches aus expandierbaren Mikrosphe- ren und Träger durch die Anwendung einer möglichst niedrige Temperaturen eine vor- zeitige Expansion zu vermeiden. Durch den Einsatz solcher Masterbatches werden Staubbildungen, wie sie bei der Verwendung und dem Handling von expandierbaren Mikrospheren in Pulverform entstehen, vermieden. Außerdem ist die homogene Vermischung der expandierbaren Mikrospheren mit dem TPU bei der Verwendung von Masterbatches einfacher.
Die TMA-Dichte der expandierbaren Mikrospheren definiert sich als die minimal erreichbare Dichte [kg/m3] eines expandierbaren Mikrospherenpulvers oder eines entsprechenden Masterbatches hieraus, bis die Mikrospheren kollabieren. Diese wurden bei einer Heizrate von 20 °C pro Minute bei einer Einwaage von 0,5 mg mit Hilfe eines „Stare Thermal Analysis System" der Firma Mttler Toledo bestimmt.
Durch den Einsatz der bevorzugt verwendeten expandierbaren Mikrospheren als Treibmittel kann auf den Einsatz von Co-Treibmitteln völlig verzichtet werden. Dennoch ist es möglich, zur Herstellung von erfindungsgemäßen Laufsohlen auch Co- Treibmittel, wie z. B. exotherme und endotherme chemische Treibmittel, einzusetzen. Beispiele für exotherme chemische Treibmittel sind Azodicarbonamide. Beispiele für endotherme chemische Treibmittel sind Zitronensäure und Hydrogencarbonate, wie Alkalihydrogencarbonate.
Vorzugsweise werden erfindungsgemäße Laufsohlen mit einer Mischung aus einer oder mehreren expandierbaren Mikrospheren und einem oder mehreren chemischen Treibmitteln hergestellt. Besonders bevorzugt werden dabei Treibmittelmischungen, enthaltend 5 bis 95 Gew.-% expandierbare Mikrosphären und 95 bis 5 Gew.-% eines oder mehrerer chemischer Treibmittel, mehr bevorzugt 40 bis 90 Gew.-% expandierbare Mikrosphären und 60 bis 10 Gew.-% eines oder mehrerer chemischer Treibmittel, insbesondere 60 bis 80 Gew.-% expandierbare Mikrosphären und 40 bis 20 Gew.-% eines oder mehrerer chemischer Treibmittel, jeweils bezogen auf das Gesamtgewicht der expandierbaren Mikrospheren und des chemischen Treibmittels ohne den zur Herstellung eines Masterbatches verwendeten Träger, verwendet.
Insgesamt enthält das expandierbare thermoplastische Polyurethan zur Herstellung einer erfindungsgemäßen Laufsohle vorzugsweise 0,1 bis 30 Gew.-%, besonders bevorzugt 1 ,5 und 7,5 Gew.-% und insbesondere 2 bis 5 Gew.-%, bezogen auf das Gesamtgewicht des expandierbaren thermoplastischen Polyurethans, an Treibmittel.
Bevorzugt kann das expandierbare thermoplastische Polyurethan von 0,1 bis 50 Gew.- %, besonders bevorzugt von 1 bis 40 Gew.-%, bezogen auf das Gesamtgewicht der Mischung, Weichmacher enthalten. Als Weichmacher könnnen alle üblichen Substan- zen verwendet werden. Bevorzugt werden Ester der Benzoesäure und der Phthalsäure sowie Derivate davon verwendet,
Zur Herstellung des expandierbaren thermoplastischen Polyurethans können thermo- plastische Polyurethane als alleiniger thermoplastischer Kunststoff eingesetzt werden. Alternativ ist es aber möglich, TPU- Blends aus anderen allgemein bekannten thermoplastischen Kunststoffen einzusetzen Dabei können alle bekannten thermoplastischen Kunststoffe verwendet werden. Beispiele hierfür sind thermoplastischer Rubber, Ethy- lenvinylacetat und Polyvinylchlorid. Bevorzugt enthält der Blend dabei mindestens 40 Gew.-% thermoplastisches Polyurethan.
Zur Herstellung der expandierten thermoplastischen Polyurethane werden die thermoplastischen Polyurethane, die im Allgemeinen als Pulver, Granulat oder Pellets vorliegen, üblicherweise mit den expandierbaren Mikrospheren und/oder dem Masterbatch sowie den gegebenenfalls zu verwendenden sonstigen Zusatzstoffen, wie weiteren Treibmitteln, weiteren thermoplastischen Kunststoffen und Weichmachern gemischt und thermoplastisch zu den erfindungsgemäßen Schuhen und/oder Schuhteilen verarbeitet. Unter dem Begriff „thermoplastische Verarbeitung" ist jede Verarbeitung gemeint, die mit einem Aufschmelzen des thermoplastischen Polyurethans verbunden ist. Durch die Temperaturerhöhung bei der thermoplastischen Verarbeitung kommt es zu einer Expansion der expandierbaren Mikrospheren und somit zur Ausbildung der expandierten thermoplastischen Polyurethane. Zur Herstellung der erfindungsgemäßen Polyurethane wird die Schmelze in offene Formen eingetragen, das thermoplastische Polyurethan expandiert dort und wird durch einen Verdränger verpresst. Bevorzugt beträgt die Temperatur des thermoplastischen Polyurethans beim Eintragen in die Form zwischen 100°C und 220°C, besonders bevorzugt zwischen 140°C und 190°C.
Durch das beschriebene Verfahren sind sowohl Schuhe mit Sohlen mit einfacher als auch mit doppelter Dichte erhältlich. Zur Herstellung von Schuhen mit Sohlen mit dop- pelter Dichte wird ein erstes, expandierbares thermoplastisches Polyurethan, bevorzugt bei einer Temperatur zwischen 100 und 220 °C, besonders bevorzugt zwischen 140 und 190 °C, in die offene Form eingebracht und anschließend durch den sogenannten Verdränger in der Form verteilt. Die verwendete Form ist vorzugsweise Bestandteil einer kommerziell erhältlichen Rundtischanlage. Die Formentemperatur wird zwischen 10 - 130 °C bevorzugt zwischen 40 - 70 °C gehalten. Nach dem zumindest teilweisen Erstarren des ersten expandierten thermoplastischen Polyurethans wird der Verdränger geöffnet und anschließend die Zwischensohle hergestellt. Vorzugsweise wird dazu der Schuhschaft über die nach dem oben beschriebenen Verfahren hergestellte Laufsohle positioniert, das Werkzeug über seitliche Backen wieder verschlossen und in einem nächsten Schritt das Zwischensohlenmaterial in den Zwischenraum zwischen Sohle und Schaft eingebracht. Vorzugsweise handelt es sich bei dem Zwischensohlenmaterial um ein zweites expandierbares thermoplastisches Polyurethan oder besonders bevorzugt um ein Polyurethanreaktivsystem. Vorzugsweise unterscheidet sich die Dichte des Zwischensohlenmaterials von der Dichte der Laufsohle, insbesondere ist die Dichte des Zwischensohlenmatenals geringer als die Dichte der Laufsohle. Die Dicke einer Laufsohle aus TPU beträgt bei einer Sohle mit doppelter Dichte vor- zugsweise weniger als 10 mm, besonders bevorzugt 5 bis 0,5 mm und insbesondere 3 bis 1 mm
Zur Herstellung von Schuhen mit einfacher Dichte wird wie oben verfahren, jedoch wird das erste expandierbare thermoplastische Polyurethan durch den Schuhschaft bzw. die Schuhleiste verdrängt, wodurch es gleichzeitig zu einer direkten Haftung der noch nicht erstarrten ersten TPU-Schmelze am Schuhschaft bzw. der Schuhleiste selbst kommt. Zur Haftungsverbesserung kann auf dem Schuhschaft bzw. der Schuhleiste ein Haftvermittler eingesetzt werden.
Bevorzugt ist der Kompressionsfaktor (= Volumen der erfindungsgemaßen Laufsohle/Volumen der gleichen Menge TPU, bezogen auf das Gewicht, bei freier Expansion) einer erfindungsgemäßen Laufsohle großer 0,8, besonders bevorzugt in einem Bereich von 0,85 bis 1 ,00 und insbesondere in einem Bereich von 0,90 bis 0,98. Die Dicke einer eventuell vorhandenen Haut ist bei einer erfindungsgemäßen Laufsohle vorzugs- weise 0,2 mm oder geringer, besonders bevorzugt 0,1 mm oder geringer und insbesondere 0 mm.
Als thermoplastische Polyurethane können die üblichen und bekannten Verbindungen eingesetzt werden, wie sie beispielsweise im Kunststoffhandbuch, Band 7 „Polyuretha- ne", Carl Hanser Verlag München Wien, 3 Auflage 1993, Seiten 455 bis 466 beschrieben sind Ihre Herstellung erfolgt durch Umsetzung von Diisocyanaten mit Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen, vorzugsweise difunktionellen Alkoholen.
Als Diisocyanate übliche aromatische, aliphatische und/oder cycloaliphatische Diisocy- anate sind beispielsweise Diphenyl-Methan-Diisocyanat (MDI), Toluylendiisocyanat (TDI), Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Oktamethylendiisocyanat, 2-Methyl- pentamethylen-dιιsocyanat-1 ,5, 2-Ethyl-butylen-dιιsocyanat-1 ,4, 1-lsocyanato-3,3,5- trimethyl-5-isocyanatomethyl-cyclohexan (Isophoron-diisocyanat, IPDI), 1,4- und/oder 1 ,3-Bιs(ιsocyanatomethyl)cyclohexan (HXDI), 1 ,4-Cyclohexan-dιιsocyanat, 1-Methyl- 2,4- und/oder -2, 6-cyclohexan-dιisocyanat, 4,4'-, 2,4'- und/oder 2,2'-Dicyclo- hexylmethan-diisocyanat
Als gegenüber Isocyanaten reaktive Verbindungen können allgemein bekannte PoIy- hydroxylverbindungen mit Molekulargewichten von 500 bis 8000, bevorzugt 600 bis 6000, insbesondere 800 bis 4000, und bevorzugt einer mittleren Funktionalität von 1 ,8 bis 2,6, bevorzugt 1 ,9 bis 2,2, insbesondere 2 eingesetzt werden, beispielsweise PoIy- esterole, Polyetherole und/oder Polycarbonatdiole. Bevorzugt werden Polyesterdiole eingesetzt, die erhältlich sind durch Umsetzung von Butandiol und Hexandiol als Diol mit Adipinsäure als Dicarbonsäure, wobei das Gewichtsverhältnis von Butandiol zu Hexandiol bevorzugt 2 : 1 beträgt. Bevorzugt ist weiterhin Polytetrahydrofuran mit ei- nem Molekulargewicht von 750 bis 2500 g/mol, bevorzugt 750 bis 1200 g/mol.
Als Kettenverlängerungsmittel können allgemein bekannte Verbindungen eingesetzt werden, beispielsweise Diamine und/oder Alkandiole mit 2 bis 10 C-Atomen im Alky- lenrest, insbesondere Ethylenglykol und/oder Butandiol-1 , 4, und/oder Hexandiol und/oder Di- und/oder Tri-oxyalkylenglykole mit 3 bis 8 Kohlenstoffatomen im Oxyalky- lenrest, bevorzugt entsprechende Oligo-Polyoxypropylenglykole, wobei auch Mischungen der Kettenverlängerer eingesetzt werden können. Als Kettenverlängerer können auch 1 ,4-Bis-(hydroxymethyl)-benzol (1 ,4-BHMB), 1 ,4-Bis-(hydroxyethyl)-benzol (1 ,4- BHEB) oder 1 ,4-Bis-(2-hydroxyethoxy)-benzol (1 ,4-HQEE) zum Einsatz kommen. Be- vorzugt werden als Kettenverlängerer Ethylenglykol und Hexandiol, besonders bevorzugt Ethylenglykol.
Üblicherweise werden Katalysatoren eingesetzt, welche die Reaktion zwischen den NCO-Gruppen der Diisocyanate und den Hydroxylgruppen der Aufbaukomponenten beschleunigen, beispielsweise tertiäre Amine, wie Triethylamin, Dimethylcyclohexyl- amin, N-Methylmorpholin, N,N'-Dimethylpiperazin, 2-(Dimethylaminoethoxy)-ethanol, Diazabicyclo-(2,2,2)-octan und ähnliche sowie insbesondere organische Metallverbindungen wie Titansäureester, Eisenverbindungen wie z.B. Eisen— (Ml)- acetylacetonat, Zinnverbindungen, wie Zinndiacetat, Zinndilaurat oder die Zinndialkylsalze aliphati- scher Carbonsäuren wie Dibutylzinndiacetat, Dibutylzinndilaurat, Bismuthverbindungen oder ähnliche. Die Katalysatoren werden üblicherweise in Mengen von 0,0001 bis 0,1 Gew.-Teilen pro 100 Gew.-Teile Polyhydroxylverbindung eingesetzt.
Neben Katalysatoren können den Aufbaukomponenten auch übliche Hilfsstoffe hinzu- gefügt werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Flammschutzmittel, Keimbildungsmittel, Gleit- und Entformungshilfen, Fließverbesserer, Abriebsverbesserer, Farbstoffe und Pigmente, Inhibitoren, Stabilisatoren gegen Hydrolyse, Licht, Hitze, Oxidation oder Verfärbung, Schutzmittel gegen mikrobiellen Abbau, anorganische und/oder organische Füllstoffe, Verstärkungsmittel und Weichmacher, aber auch Kettenregler, wie z. B. gegenüber Isocyanaten reaktive monofunktionelle Verbindungen.
Erfindungsgemäße Laufsohlen aus thermoplastischem Polyurethan weisen bevorzugt eine Dichte von 0,1 bis 1 ,2 g/cm3, besonders bevorzugt von 0,6 bis 1 ,05 und insbeson- dere von 0,75 bis 1 ,0 g/cm3 auf . Vorzugsweise haben erfindungsgemäße Laufsohlen einen Abrieb nach DIN 53516 von kleiner 120 mm3, besonders bevorzugt kleiner 100 mm3 und insbesondere kleiner 80 mm3 .
Erfindungsgemäße Laufsohlen weisen eine verbesserte Rutschfestigkeit auf. Die Messung der Rutschfestigkeit erfolgt dabei mit Hilfe einer Vorrichtung zur Bestimmung des dynamischen Grenzwinkels der Haftreibung von Schuhen. Dieses Verfahren nach Dr. Funk ist in DE 3635263 beschrieben. Zur Messung wird die Laufsohle auf einen Dum- my-Schaft verklebt. Zum direkten Vergleich der Rutschfestigkeit müssen Größe und Profilierung der Prüflinge stets identisch sein. Üblicherweise werden unprofilierte, rechteckige Testplatten mit 3 mm Dicke, 15 cm Länge und 10 cm Breite verwendet. Dieser Testschuh wird zyklisch parallel zu dem Untergrund auf diesen aufgesetzt und mit einer konstanten, einstellbaren Gewichtskraft belastet. Vor jedem Zyklus wird der Neigungswinkel des Untergrunds erhöht, bis der Testschuh beim Aufsetzen ausgleitet. Zur konkreten Messung wurde als Untergrund eine Stahlplatte und eine Belastung von 40 kg gewählt. Zur Messung bei Nässe wurde die Stahlplatte während der Prüfung ständig mit Wasser gespült. Weitere Details dieser Prüfung sind auch unter „Prüfmaschine zur Messung des Haftreibungswinkels" (Funk, H.; Jung, K; Berufsgenossenschaftliches Institut für Arbeitssicherheit, St. Augustin) zu finden.
Erfindungsgemäße Laufsohlen sind leicht, rutschfest, hydrolysebeständig und öl- und chemikalienbeständig und besitzen eine gute Weiterreißfestigkeit. Daher eignen sich erfindungsgemäße Laufsohlen hervorragend als Laufsohlen für Schuhe jeglicher Art. Dies umfasst beispielsweise Straßenschuhe, Slipper und Sicherheitsschuhe. Vor allem an Sicherheitsschuhe werden hohe Anforderungen bezüglich Rutschfestigkeit, Chemikalien- und Ölbeständigkeit, Hydrolysebeständigkeit und Gewicht gestellt. Daher eignen sich erfindungsgemäße Laufsohlen besonders für die Herstellung von Sicherheitsschuhen.
Die vorliegende Erfindung soll durch nachfolgende Beispiele veranschaulicht werden:
Messmethoden:
Dichte: nach DIN 53479 Abrieb: nach DIN 53516
Rutschfestigkeit
Als maß für die Rutschfestigkeit wurde der Grenzwinkel der Haftreibung gemessen. Dieser wurde, wie oben erläutert, bestimmt. Bei dem in der Tabelle angegebenen Wert handelt es sich um den Mittelwert aus sechs Prüfungen. Versuch 1 :
100 Gewichtsteile thermoplastisches Polyurethan (Elastollan® B60A10WHA, E- lastogran GmbH) wurden mit 3 Gewichtsteilen TPU-Schwarz-Masterbatch Elastollan® Konz V 917/1 und 2 Gewichtsteilen Mikrospheren-Masterbatch MB095DU120 versetzt, über eine DESMA SPE 22.65 plastifiziert (Temp.: 1 10/160/180/Düse=170 0C), in eine für z. B. DESMA-Rundstischanlagen übliche, dem Fachmann bekannte offenen Form nach dem DEScom® Verfahren eingebracht und über den Verdränger zu einer Testplatte mit 15 cm Länge, 10 cm Breite und 3mm Höhe verarbeitet. Die Formentemperatur betrug 60 °C. Das Gewicht der Sohle nach Entgraten, deren Dichte, der Abrieb und der Grenzwinkel der Haftreibung sind in Tabelle 1 angegeben.
Versuch 2
Es wurde analog zu Versuch 1 verfahren, wobei anstelle der 2 Gewichtsteile Mikrospheren-Masterbatch MB095DU120 4 Gewichtsteile Mikrospheren-Masterbatch MB095DU120 verwendet wurden. Das Gewicht der Sohle nach Entgraten, deren Dichte, der Abrieb und der Grenzwinkel der Haftreibung sind in Tabelle 1 angegeben.
Versuch 3
Es wurde analog zu Versuch 1 verfahren, wobei vor dem Verschäumen zusätzlich noch 2 Gewichtsteile des chemischen Treibmittels Hydrocerol® BIH 40 .Cariant GmbH, zugegeben wurden. Das Gewicht der Sohle nach Entgraten, deren Dichte, der Abrieb und der Grenzwinkel der Haftreibung sind in Tabelle 1 angegeben.
Vergleichsversuch 1
Es wurde analog zu Versuch 1 verfahren, wobei auf die Zugabe von MB095DU120 verzichtet wurde. Die Verarbeitungstemperaturen wurde hier über alle Zonen im Vergleich zu Verusch 1 um 20 °C angehoben. Das Gewicht der Sohle nach Entgraten, deren Dichte, der Abrieb und der Grenzwinkel der Haftreibung sind in Tabelle 1 angegeben.
Vergleichsversuch 2
Als Vergleichsversuch 2 wurde eine Standardgummisohle gleicher Größe verwendet. Das Gewicht der Sohle nach Entgraten, deren Dichte, der Abrieb und der Grenzwinkel der Haftreibung sind in Tabelle 1 angegeben.
Tabelle 1
Figure imgf000011_0001
Tabelle 1 zeigt, dass die erfindungsgemäßen Laufsohlen im Vergleich zu Gummi bei geringerer Dichte und geringerem Abrieb eine ähnliche oder nur unwesentlich schlechtere Rutschfestigkeit aufweisen. Im Vergleich zum nicht geschäumten TPU sind Rutschfestigkeit und Dichte bei nur geringer Zunahme des Abriebs wesentlich verbessert.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer Laufsohle aus geschäumtem thermoplastischem Polyurethan, dadurch gekennzeichnet, dass man expandierbares ther- moplastisches Polyurethan in ein offenes Werkzeug einbringt und zur Laufsohle verpresst.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das expandierbare thermoplastische Polyurethan 0,1 bis 30 Gew.-%, bezogen auf das Gesamtge- wicht des expandierbaren thermoplastischen Polyurethans, an Treibmittel aufweist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das expandierbare thermoplastisch Polyurethan als Treibmittel expandierbare Mikrosphe- ren, exotherme oder endotherme chemischen Treibmitteln oder Kombinationen daraus enthält.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass als Treibmittel eine Mischung aus expandierbaren Mikrosphären und chemischen Treibmitteln ver- wendet wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Treibmittelmischung 5 bis 95 Gew.-% expandierbare Mikrospheren und 95 bis 5 Gew.-% chemische Treibmittel aufweist.
6. Verfahren nach Anspruch 3 bis 5, dadurch gekennzeichnet, dass die expandierbaren Mikrospheren eine TMA-Dichte zwischen 2 und 30 kg/m3 aufweisen.
7. Verfahren nach Anspruch 2 bis 6, dadurch gekennzeichnet, dass das expan- dierbare thermoplastische Polyurethan zwischen 0,1 und 50 Gew.-% Weichmacher enthält.
8. Laufsohle, erhältlich nach einem der Ansprüche 1 bis 7.
9. Laufsohle nach Anspruch 8, dadurch gekennzeichnet, dass deren Dichte kleiner 1 ,05 g/cm3, ist.
10. Schuh, aufweisend eine Laufsohle nach Anspruch 8 oder 9.
1 1. Schuh nach Anspruch 10, dadurch gekennzeichnet, dass das geschäumte thermoplastische Polyurethan durch den Schäumprozess haftend mit dem Schuhschaft verbunden ist.
12. Schuh nach Anspruch 10 oder 1 1 , enthaltend des weiteren eine Zwischensohle, die geschäumtes Polyurethan oder geschäumtes thermoplastisches Polyurethan aufweist.
PCT/EP2006/067303 2005-10-19 2006-10-12 Schuhsohlen auf basis von geschäumtem thermoplastischen polyurethan (tpu) WO2007045586A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06807171A EP1940600A1 (de) 2005-10-19 2006-10-12 Schuhsohlen auf basis von geschäumtem thermoplastischen polyurethan (tpu)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510050411 DE102005050411A1 (de) 2005-10-19 2005-10-19 Schuhsohlen auf Basis von geschäumtem thermoplastischen Polyurethan (TPU)
DE102005050411.6 2005-10-19

Publications (1)

Publication Number Publication Date
WO2007045586A1 true WO2007045586A1 (de) 2007-04-26

Family

ID=37643010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/067303 WO2007045586A1 (de) 2005-10-19 2006-10-12 Schuhsohlen auf basis von geschäumtem thermoplastischen polyurethan (tpu)

Country Status (4)

Country Link
EP (1) EP1940600A1 (de)
CN (1) CN101291789A (de)
DE (1) DE102005050411A1 (de)
WO (1) WO2007045586A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660113A (zh) * 2012-04-11 2012-09-12 黎明化工研究院 一种热塑性聚氨酯微孔弹性体及其制备方法
EP2610287A1 (de) * 2010-08-24 2013-07-03 Cheil Industries Inc. Hochisolierender polyurethanschaumstoff und herstellungsverfahren dafür
US9181411B2 (en) 2009-11-26 2015-11-10 Cheil Industries Inc. Rigid polyurethane foam having excellent insulating properties and method for preparing the same
EP3424974A1 (de) 2017-07-04 2019-01-09 Covestro Deutschland AG Artikel mit expandiertem tpu und einer wasserbasierten beschichtung
EP3424973A1 (de) 2017-07-04 2019-01-09 Covestro Deutschland AG Artikel mit expandiertem tpu und beschichtung
CN112724453A (zh) * 2020-12-23 2021-04-30 快思瑞科技(上海)有限公司 母粒材料、发泡母粒制备方法及工程塑料制备方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972057A (zh) * 2010-10-29 2011-02-16 泉州奇鹭进出口有限公司 减震助力鞋底
CN101972061B (zh) * 2010-11-10 2012-08-29 泉州鸿荣轻工有限公司 运动鞋鞋底
CN101982131A (zh) * 2010-11-10 2011-03-02 吴荣光 运动鞋鞋底缓震装置
ITVR20110138A1 (it) * 2011-07-06 2013-01-07 Vibram Spa Macchina e metodo per eseguire prove di scivolamento
DE102011108744B4 (de) * 2011-07-28 2014-03-13 Puma SE Verfahren zur Herstellung einer Sohle oder eines Sohlenteils eines Schuhs
DE102012206094B4 (de) * 2012-04-13 2019-12-05 Adidas Ag Sohlen für Sportschuhe, Schuhe und Verfahren zur Herstellung einer Schuhsohle
CN102672882A (zh) * 2012-05-23 2012-09-19 新疆泰安鞋业有限公司 橡胶外鞋底与聚氨酯中鞋底形成组合鞋底的制作工艺
WO2014011132A2 (en) * 2012-07-13 2014-01-16 Arya Polimer Sanayi Ve Ticaret Limited Şirketi Low-density thermoplastic polyurethane (tpu) rubber
US9610746B2 (en) 2013-02-13 2017-04-04 Adidas Ag Methods for manufacturing cushioning elements for sports apparel
US9930928B2 (en) 2013-02-13 2018-04-03 Adidas Ag Sole for a shoe
DE102013202291B4 (de) 2013-02-13 2020-06-18 Adidas Ag Dämpfungselement für Sportbekleidung und Schuh mit einem solchen Dämpfungselement
DE102013202306B4 (de) 2013-02-13 2014-12-18 Adidas Ag Sohle für einen Schuh
DE102013002519B4 (de) 2013-02-13 2016-08-18 Adidas Ag Herstellungsverfahren für Dämpfungselemente für Sportbekleidung
DE102013108053A1 (de) 2013-07-26 2015-01-29 Kurtz Gmbh Verfahren und Vorrichtung zur Herstellung eines Partikelschaumstoffteils
CN105008103B (zh) 2013-02-20 2017-09-26 库尔特股份有限公司 用于生产颗粒状泡沫件的方法和设备
USD758056S1 (en) 2013-04-12 2016-06-07 Adidas Ag Shoe
USD776410S1 (en) 2013-04-12 2017-01-17 Adidas Ag Shoe
CN104106876B (zh) * 2014-07-30 2015-07-08 晋江国盛新材料科技有限公司 一种多用途复合鞋底及包含该鞋底的运动鞋
DE102014215897B4 (de) 2014-08-11 2016-12-22 Adidas Ag adistar boost
DE102014216115B4 (de) 2014-08-13 2022-03-31 Adidas Ag Gemeinsam gegossene 3D Elemente
DE102015206486B4 (de) 2015-04-10 2023-06-01 Adidas Ag Schuh, insbesondere Sportschuh, und Verfahren zur Herstellung desselben
DE102015206900B4 (de) 2015-04-16 2023-07-27 Adidas Ag Sportschuh
DE102015209795B4 (de) 2015-05-28 2024-03-21 Adidas Ag Ball und Verfahren zu dessen Herstellung
USD783264S1 (en) 2015-09-15 2017-04-11 Adidas Ag Shoe
USD840137S1 (en) 2016-08-03 2019-02-12 Adidas Ag Shoe midsole
USD840136S1 (en) 2016-08-03 2019-02-12 Adidas Ag Shoe midsole
USD852475S1 (en) 2016-08-17 2019-07-02 Adidas Ag Shoe
JP1582717S (de) 2016-09-02 2017-07-31
USD899061S1 (en) 2017-10-05 2020-10-20 Adidas Ag Shoe
PL3717211T3 (pl) 2017-11-27 2023-05-02 Evonik Operations Gmbh Tworzywa piankowe wysokotemperaturowe o zmniejszonym wchłanianiu żywicy do wytwarzania materiałów przekładkowych
CN109363290A (zh) * 2018-12-14 2019-02-22 瑞安市大虎鞋业有限公司 轻便立体护踝作战靴
CN112659442A (zh) * 2019-10-16 2021-04-16 加久企业股份有限公司 Tpu发泡鞋底制程及其成品
CN113068898A (zh) * 2020-01-06 2021-07-06 广东昂斯新材料技术有限公司 一种带注射条纹路的热塑性聚氨酯发泡鞋底及其制备工艺
CN112679839A (zh) * 2020-12-24 2021-04-20 快思瑞科技(上海)有限公司 一种复合发泡功能母粒及其制备方法和应用
CN113508956A (zh) * 2021-06-21 2021-10-19 周加友 可自回收式带有可伸出摩擦盘功能的运动鞋

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635263C1 (de) 1986-10-16 1987-08-27 Herbert Dr-Ing Funck Verfahren und Vorrichtung zum Ermitteln des dynamischen Grenzwinkels der Haftreibung von Schuhen auf geneigtem Untergrund
EP0692516A1 (de) 1994-07-15 1996-01-17 Hans-Joachim Burger Massgenauer thermoplastischer syntaktischer Schaum
WO2000044821A1 (en) 1999-01-26 2000-08-03 Huntsman International Llc Foamed thermoplastic polyurethanes
EP1174458A1 (de) 2000-07-20 2002-01-23 Huntsman International Llc Expandierte thermoplastische Polyurethane
EP1174459A1 (de) 2000-07-20 2002-01-23 Huntsman International Llc Expandierte thermoplastische Polyurethane
WO2004108811A1 (de) * 2003-06-06 2004-12-16 Basf Aktiengesellschaft Verfahren zur herstellung von expandierbaren thermoplastischen elastomeren
WO2005066250A1 (de) 2004-01-06 2005-07-21 Basf Aktiengesellschaft Verfahren zur herstellung von schuhen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635263C1 (de) 1986-10-16 1987-08-27 Herbert Dr-Ing Funck Verfahren und Vorrichtung zum Ermitteln des dynamischen Grenzwinkels der Haftreibung von Schuhen auf geneigtem Untergrund
EP0692516A1 (de) 1994-07-15 1996-01-17 Hans-Joachim Burger Massgenauer thermoplastischer syntaktischer Schaum
WO2000044821A1 (en) 1999-01-26 2000-08-03 Huntsman International Llc Foamed thermoplastic polyurethanes
EP1174458A1 (de) 2000-07-20 2002-01-23 Huntsman International Llc Expandierte thermoplastische Polyurethane
EP1174459A1 (de) 2000-07-20 2002-01-23 Huntsman International Llc Expandierte thermoplastische Polyurethane
WO2004108811A1 (de) * 2003-06-06 2004-12-16 Basf Aktiengesellschaft Verfahren zur herstellung von expandierbaren thermoplastischen elastomeren
WO2005066250A1 (de) 2004-01-06 2005-07-21 Basf Aktiengesellschaft Verfahren zur herstellung von schuhen

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181411B2 (en) 2009-11-26 2015-11-10 Cheil Industries Inc. Rigid polyurethane foam having excellent insulating properties and method for preparing the same
EP2610287A1 (de) * 2010-08-24 2013-07-03 Cheil Industries Inc. Hochisolierender polyurethanschaumstoff und herstellungsverfahren dafür
EP2610287A4 (de) * 2010-08-24 2014-07-16 Cheil Ind Inc Hochisolierender polyurethanschaumstoff und herstellungsverfahren dafür
US9045608B2 (en) 2010-08-24 2015-06-02 Cheil Industries Inc. Highly insulating polyurethane foam and method for manufacturing same
CN102660113A (zh) * 2012-04-11 2012-09-12 黎明化工研究院 一种热塑性聚氨酯微孔弹性体及其制备方法
CN102660113B (zh) * 2012-04-11 2014-03-19 黎明化工研究院 一种热塑性聚氨酯微孔弹性体及其制备方法
EP3424974A1 (de) 2017-07-04 2019-01-09 Covestro Deutschland AG Artikel mit expandiertem tpu und einer wasserbasierten beschichtung
EP3424973A1 (de) 2017-07-04 2019-01-09 Covestro Deutschland AG Artikel mit expandiertem tpu und beschichtung
WO2019007767A1 (en) 2017-07-04 2019-01-10 Covestro Deutschland Ag ARTICLE COMPRISING EXPANDED TPU AND COATING
WO2019007770A1 (en) 2017-07-04 2019-01-10 Covestro Deutschland Ag ARTICLE COMPRISING EXPANDED TPU AND WATER BASED COATING
US10927274B2 (en) 2017-07-04 2021-02-23 Covestro Deutschland Ag Article comprising expanded TPU and a water based coating
CN112724453A (zh) * 2020-12-23 2021-04-30 快思瑞科技(上海)有限公司 母粒材料、发泡母粒制备方法及工程塑料制备方法

Also Published As

Publication number Publication date
DE102005050411A1 (de) 2007-04-26
CN101291789A (zh) 2008-10-22
EP1940600A1 (de) 2008-07-09

Similar Documents

Publication Publication Date Title
EP1940600A1 (de) Schuhsohlen auf basis von geschäumtem thermoplastischen polyurethan (tpu)
EP1704177B1 (de) Verfahren zur herstellung von schuhen
EP1664169B1 (de) Expandierbare thermoplastische polyurethan-blends
EP2882788B1 (de) Kombinationsschaum
EP2430098B1 (de) Hybridschaum
DE10326138A1 (de) Verfahren zur Herstellung von expandierbaren thermoplastischen Elastomeren
EP2109637B1 (de) Hybridsysteme aus geschäumten thermoplastischen elastomeren und polyurethanen
EP1979401B1 (de) Schaumstoffe auf basis thermoplastischer polyurethane
EP3433295B1 (de) Vernetztes polyurethan
DE10340539A1 (de) Verfahren zur Herstellung von expandierten thermoplastischen Elastomeren
EP3504038B1 (de) Mikrowellenaufschäumen
EP3274387B1 (de) Gedächtnisschaum auf der basis von thermoplastischem polyurethan
EP3755752B1 (de) Verbindung von körpern durch thermoplastisches elastomer mittels hochfrequenzstrahlung
EP3538579A1 (de) Polyurethanelastomer mit niedriger dämpfung
DE60313606T2 (de) Expandierte supramolekulare polymere
EP1097954B1 (de) Verfahren zur Herstellung von Polyurethanschaumstoffen
EP2580263B1 (de) Polyurethanintegralschaumstoffe mit guter dimensionsstabilität
EP3268408B1 (de) Polyurethanformkörper mit herausragender kälteflexibilität
DE112017005249T5 (de) Verfahren zur Verzögerung der Härtung in Polyurethan und daraus hergestellte Zusammensetzungen und Artikel
DE2702232A1 (de) Fender
WO2015113874A1 (de) Stabilisierte weichmacher für thermoplastisches polyurethan
EP0094375A1 (de) Verfahren zur Herstellung einer elastischen Schuhsohle und Form zur Durchführung des Verfahrens
EP3495404A1 (de) Polyurethanschaum
EP3233222B1 (de) Ball, insbesondere fussball, und verfahren zu seiner herstellung
DE1794335A1 (de) Aus Kunststoffschaummasse hergestellter Schuhleisten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039021.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006807171

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006807171

Country of ref document: EP