WO2006121745A1 - Valve regulation for turbocharger - Google Patents
Valve regulation for turbocharger Download PDFInfo
- Publication number
- WO2006121745A1 WO2006121745A1 PCT/US2006/017080 US2006017080W WO2006121745A1 WO 2006121745 A1 WO2006121745 A1 WO 2006121745A1 US 2006017080 W US2006017080 W US 2006017080W WO 2006121745 A1 WO2006121745 A1 WO 2006121745A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- valve
- pressure
- pressure turbine
- turbine
- Prior art date
Links
- 239000007789 gas Substances 0.000 claims description 88
- 230000007704 transition Effects 0.000 abstract description 2
- 230000001419 dependent effect Effects 0.000 abstract 1
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/013—Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/001—Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
- F02B37/002—Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel the exhaust supply to one of the exhaust drives can be interrupted
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/004—Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/007—Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
- F02B37/183—Arrangements of bypass valves or actuators therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
- F01N13/10—Other arrangements or adaptations of exhaust conduits of exhaust manifolds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/86493—Multi-way valve unit
- Y10T137/86847—Pivoted valve unit
Definitions
- the present invention relates to the use of control valves in a two-stage turbocharger.
- Two-stage turbochargers are commonly known and are used in all kinds of engines. They consist of a high-pressure (HP) turbine, and a low-pressure (LP) turbine, with each turbine having its own compressor.
- HP high-pressure
- LP low-pressure
- the HP turbine When the engine runs at lower speeds, it creates less exhaust gas energy. This lower amount of exhaust gas energy is typically not enough to power the LP turbine, but it does provide enough energy to power the HP turbine.
- the HP turbine is typically operated by the lower energy exhaust gases, but after the engine reaches a certain speed and load, the HP turbine begins to operate in series with the LP turbine until the HP turbine provides enough flow capacity to have any effect on engine performance. When this occurs, the LP turbine begins to operate and generate the higher level of boost pressure than the HP turbine cannot generate in series with the LP turbine.
- Increasing engine speed also increases the exhaust gas energy, which is necessary to operate the LP turbine.
- a first embodiment of the present invention relates to a valve regulation assembly for a two-stage turbocharger having a high-pressure turbocharger unit, a low- pressure turbocharger unit and a valve operably associated with the high-pressure and low-pressure turbocharger unit.
- the high-pressure turbocharger unit has a high- pressure turbine operable to receive an exhaust gas flow.
- the low-pressure turbine has a low-pressure turbine portion located downstream from the high-pressure turbocharger unit.
- the valve can direct the exhaust gas from a source of the exhaust gas to either the high-pressure turbocharger unit, the low-pressure turbocharger unit, or distribute the exhaust gas flow therebetween.
- a second embodiment of the invention relates to a two-stage turbocharger for use in a motor vehicle having an exhaust conduit, a high-pressure turbocharger unit, a low-pressure turbocharger unit and a valve operably associated with the high-pressure turbine through the exhaust gas conduit.
- the high-pressure turbocharger unit is associated with the exhaust conduit and is operable to receive the exhaust gas flow.
- the low-pressure turbocharger unit is connected to the exhaust gas conduit and is located downstream from the high-pressure turbine.
- the valve can be in a position to restrict all of the exhaust gas flow through the high-pressure turbine only, or the valve can be moved to another position to inhibit the exhaust gas flow from entering the high- pressure turbine, thereby directing all the exhaust gas flow to the low-pressure turbine.
- a third embodiment of the present invention relates to a method for directing exhaust gas flow in a two-stage turbocharger for use in a motor vehicle having the steps of providing a high-pressure turbine, providing a low-pressure turbine, providing a conduit for exhaust gas flow, and providing a valve and the conduit.
- the low-pressure turbine is located downstream from the high-pressure turbine.
- the conduit allows the exhaust gas to flow from the high-pressure turbine to the low-pressure turbine.
- the valve is used for directing the exhaust gas from the high-pressure turbine to the low- pressure turbine.
- Figure 1 is a schematic view of a two-stage turbocharger unit having the present invention used in an engine with one exhaust bank;
- Figure 2 is a schematic view of a two-stage turbocharger unit having the present invention used in an engine with two exhaust banks;
- FIG. 3 is a top view of the valve assembly portion of the present invention. - A -
- Figure 4 is a bottom view of the valve assembly portion of the present invention
- Figure 5 is a plan view of the valve assembly portion of the present invention
- Figure 6 is a cross-sectional plan view of the valve assembly portion of the present invention with the valve in a position to block off the exhaust gas inlet port
- Figure 7 is a cross-sectional plan view of the valve assembly portion of the present invention with the valve in a position to block off the HP turbine inlet port
- Figure 8 is a cross-sectional plan view of the valve assembly portion of the present invention with the valve in an intermediate position.
- a two-stage exhaust gas turbocharger unit is generally shown at 10.
- the two-stage exhaust gas turbocharger has a high-pressure (HP) turbocharger unit generally indicated at 12, and a low-pressure (LP) turbocharger unit generally indicated at 14.
- the HP turbocharger unit 12 includes a HP turbine 16, and an HP compressor 18 having an outlet port 20.
- the LP turbocharger unit 14 includes a LP turbine 22 and a LP compressor 24 having an outlet port 26.
- the LP turbine 22 is mounted on an exhaust manifold 28.
- the LP compressor 24 is connected to an intake line 30, which is connected at the center of LP compressor 24.
- An intake conduit 32 is connected to outlet port 26 on a first end, and is connected to the center of HP turbine
- the HP turbine 16 and the LP turbine 22 are connected by a valve assembly generally indicated at 34, having a valve 36, shown in Fig. 1, and in Figs. 3-8.
- the valve assembly 34 is mounted on the exhaust manifold 28 and receives exhaust gases from either the second exhaust manifold outlet 40 or the HP turbine outlet 42.
- the assembly 34 is also comprised of a lever 44, a first valve plate 46 that works in conjunction with a first contact surface 48, and second valve plate 50 that works in conjunction with a second contact surface 52.
- the first valve plate 46 and the second valve plate 50 face in opposite directions of each other, and are connected by a pin 54, and are mounted onto a valve stem 56.
- the valve stem 56 is fixed for rotation upon a hinge assembly 58.
- the valve assembly 34 also includes an exhaust gas inlet port 60, an HP turbine inlet port 62, an LP turbine outlet port 64, and a rotatable connector 66.
- the rotatable connector 66 is connected to an actuator (not shown) which can be hydraulic, pneumatic, or some other type of device controlled by the vehicle's electronic control unit.
- valve 36 is used to close off the exhaust gas inlet port 60 when the vehicle is first beginning to accelerate, and exhaust gas pressure is low, forcing all of the exhaust gas through the HP turbine 16.
- the valve 36 is configured in this manner, the exhaust gas flows from the exhaust manifold 28, through the first exhaust manifold outlet 38, through the HP turbine 16, through the HP turbine outlet 42, through the HP turbine inlet port 62 and into the valve assembly 34.
- the valve assembly 34 then directs the exhaust gas into the LP turbine 22, where it is then passed into the remaining components of the exhaust system (not shown).
- the vehicle's electronic control unit commands the actuator (not shown) to open the valve 36, lifting the second valve plate 50 away from the second contact surface 52, allowing exhaust gas from the exhaust manifold 28 to flow through the second exhaust manifold outlet 40, through the exhaust gas inlet port 60, and then through the valve assembly 34.
- the exhaust gas then exits through the LP turbine outlet port 64 and flows into the LP turbine 22, the exhaust gas then flows into the remaining exhaust system components.
- the LP turbine 22 is activated from the increased exhaust gas pressure, the LP compressor 24 will begin to compress air coming in from the intake line 30.
- the compressed air is then forced through the outlet port 26 and into the intake conduit 32, where it then flows through the HP compressor 18, through the outlet port 20, and into the intake manifold of the engine.
- the air coming into the HP compressor 18 has already been pressurized by the LP compressor 24, and the LP compressor 24 does not compress the air any further.
- the valve 36 continues to rotate further away from the exhaust gas iniet port 60, and moves closer to the HP turbine inlet port 62.
- the valve 36 moves into a position where the first valve plate 46 comes in contact with the first contact surface 48.
- exhaust gas cannot flow from the HP turbine 16 into the valve assembly 34.
- valve 36 can be controlled by an actuator, or some other device, connected to the rotatable connector 66, which rotates the lever 44, thereby rotating the valve 36.
- valve 36 When closing off the second exhaust manifold outlet 40 or the HP turbine outlet 42, the valve 36 provides a smooth transition from the exhaust gas flowing through the HP turbine 16 to the LP turbine 22, and can be moved to any position therebetween to direct the flow of exhaust gas as driving conditions mandate. It should also be noted that another advantage of the present invention is the orientation of the valve assembly 34 in relation to the HP turbine 16 and the LP turbine 22. The valve 36 is located in a position where the flow of exhaust gas pushes on the valve 36 when the first valve plate 46 is pressed against the first contact surface 48 and when the second valve plate 50 is pressed against the second contact surface 52. This also occurs when the valve 36 is located in any position therebetween.
- the hinge assembly 58 is located in a position between the HP turbine outlet 42, and the second exhaust manifold outlet 40. Locating the hinge assembly 58 in this position allows for a single valve to be used for directing exhaust gas flow to either the HP turbine 16 or the LP turbine 22. Also, the valve assembly 34 is not only used for directing exhaust gas flow to each of the turbines, but the valve assembly 34 can also stop the flow of exhaust gas into the HP turbine 16, preventing overspeed and damage. Additionally, locating the valve 36 in the aforementioned position allows for greater control of the exhaust gas flow than compared to, for example, if the valve 36 were positioned in front of the second exhaust manifold outlet 40 or in front of the HP turbine outlet 42.
- the present invention can also be used with engines having two exhaust banks, such as with a "V-6" or "V-8" engine.
- This embodiment is shown in Fig. 2, and is similar to the embodiment shown in Fig. 1 , wherein like numbers refer to like elements.
- this embodiment also includes a first exhaust tube 68 connected to a first exhaust bank (not shown) and a first opening 70, as well as a second exhaust tube 72 connected to a second exhaust bank (not shown) and a second opening 74.
- exhaust gas flows from the first exhaust tube 68 into the first opening 70, and from the second exhaust tube 72 into the second opening 74.
- the exhaust gas then flows into the exhaust manifold 28 where it is directed to flow into either the HP turbine 16 or the LP turbine 22 through the use of the valve assembly 34.
- the remaining operations of the HP turbocharger unit 12, the LP turbocharger unit 14 and the valve assembly 34 remain the same as mentioned in the previous embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
The present invention provides a two-stage turbocharger unit (10) having a valve assembly (34) that will help to create a smooth transition of exhaust gas energy from the high-pressure (HP) turbine (16) to the low-pressure (LP) turbine (22) . The LP and HP turbines (22, 16) are positioned such that a valve (36) can be in one position to force all of the exhaust gas to flow through the HP turbine (16) and when in another position to force all of the exhaust gas through the LP turbine (22) . When the valve (36) is placed in an intermediary position, the exhaust gas can be variably directed to flow through both turbines (16, 22) , with the percentage of exhaust gas flowing through each turbine (16, 22) being dependent on the position of the valve (36) .
Description
VALVE REGULATION FOR TURBOCHARGER
FIELD OF THE INVENTION
The present invention relates to the use of control valves in a two-stage turbocharger.
BACKGROUND OF THE INVENTION
Two-stage turbochargers are commonly known and are used in all kinds of engines. They consist of a high-pressure (HP) turbine, and a low-pressure (LP) turbine, with each turbine having its own compressor. During normal operating conditions, when the engine runs at lower speeds, the only turbine typically in use is the HP turbine. When the engine is running at lower speeds, it creates less exhaust gas energy. This lower amount of exhaust gas energy is typically not enough to power the LP turbine, but it does provide enough energy to power the HP turbine. During operation, as the engine begins to increase speed, the HP turbine is typically operated by the lower energy exhaust gases, but after the engine reaches a certain speed and load, the HP turbine begins to operate in series with the LP turbine until the HP turbine provides enough flow capacity to have any effect on engine performance. When this occurs, the LP turbine begins to operate and generate the higher level of boost pressure than the HP turbine cannot generate in series with the LP turbine. Increasing engine speed also increases the exhaust gas energy, which is necessary to operate the LP turbine.
Another common problem with two-stage turbochargers occurs at higher engine speed, when the HP turbine is not cut off from the air flow of the exhaust gas. During this condition there is the possibility of "overspeed," i.e., the increased exhaust gas energy can cause the HP turbine to spin at speeds which may cause damage. Control valves of two-stage series turbocharger systems have been applied to modulate the
amount of exhaust gas pressure flowing into the LP turbine. These valves typically have been used for closing off exhaust gas flow to the LP turbine thereby only allowing the exhaust gas to flow only to the HP turbine until the HP turbine is no longer effective, at which point the valve opens a pathway to allow exhaust to flow to the LP turbine. This is beneficial in providing boost pressure at low engine speeds, but does not aid preventing overspeed of the HP turbine.
Therefore, it is desirable to develop a device for transitioning from the HP turbine to the LP turbine in a two-stage turbocharger system, as well as an improvement in the prevention in overspeed in a HP turbine.
SUMMARY OF THE INVENTION
A first embodiment of the present invention relates to a valve regulation assembly for a two-stage turbocharger having a high-pressure turbocharger unit, a low- pressure turbocharger unit and a valve operably associated with the high-pressure and low-pressure turbocharger unit. The high-pressure turbocharger unit has a high- pressure turbine operable to receive an exhaust gas flow. The low-pressure turbine has a low-pressure turbine portion located downstream from the high-pressure turbocharger unit. The valve can direct the exhaust gas from a source of the exhaust gas to either the high-pressure turbocharger unit, the low-pressure turbocharger unit, or distribute the exhaust gas flow therebetween.
A second embodiment of the invention relates to a two-stage turbocharger for use in a motor vehicle having an exhaust conduit, a high-pressure turbocharger unit, a low-pressure turbocharger unit and a valve operably associated with the high-pressure turbine through the exhaust gas conduit. The high-pressure turbocharger unit is associated with the exhaust conduit and is operable to receive the exhaust gas flow. The low-pressure turbocharger unit is connected to the exhaust gas conduit and is
located downstream from the high-pressure turbine. The valve can be in a position to restrict all of the exhaust gas flow through the high-pressure turbine only, or the valve can be moved to another position to inhibit the exhaust gas flow from entering the high- pressure turbine, thereby directing all the exhaust gas flow to the low-pressure turbine. A third embodiment of the present invention relates to a method for directing exhaust gas flow in a two-stage turbocharger for use in a motor vehicle having the steps of providing a high-pressure turbine, providing a low-pressure turbine, providing a conduit for exhaust gas flow, and providing a valve and the conduit. The low-pressure turbine is located downstream from the high-pressure turbine. The conduit allows the exhaust gas to flow from the high-pressure turbine to the low-pressure turbine. The valve is used for directing the exhaust gas from the high-pressure turbine to the low- pressure turbine.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
Figure 1 is a schematic view of a two-stage turbocharger unit having the present invention used in an engine with one exhaust bank;
Figure 2 is a schematic view of a two-stage turbocharger unit having the present invention used in an engine with two exhaust banks;
Figure 3 is a top view of the valve assembly portion of the present invention;
- A -
Figure 4 is a bottom view of the valve assembly portion of the present invention; Figure 5 is a plan view of the valve assembly portion of the present invention; Figure 6 is a cross-sectional plan view of the valve assembly portion of the present invention with the valve in a position to block off the exhaust gas inlet port; Figure 7 is a cross-sectional plan view of the valve assembly portion of the present invention with the valve in a position to block off the HP turbine inlet port; and
Figure 8 is a cross-sectional plan view of the valve assembly portion of the present invention with the valve in an intermediate position.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring to Fig. 1, a two-stage exhaust gas turbocharger unit is generally shown at 10. The two-stage exhaust gas turbocharger has a high-pressure (HP) turbocharger unit generally indicated at 12, and a low-pressure (LP) turbocharger unit generally indicated at 14. The HP turbocharger unit 12 includes a HP turbine 16, and an HP compressor 18 having an outlet port 20. Similarly, the LP turbocharger unit 14 includes a LP turbine 22 and a LP compressor 24 having an outlet port 26. The LP turbine 22 is mounted on an exhaust manifold 28. The LP compressor 24 is connected to an intake line 30, which is connected at the center of LP compressor 24. An intake conduit 32 is connected to outlet port 26 on a first end, and is connected to the center of HP turbine
18 on a second end.
The HP turbine 16 and the LP turbine 22 are connected by a valve assembly generally indicated at 34, having a valve 36, shown in Fig. 1, and in Figs. 3-8. The valve assembly 34 is mounted on the exhaust manifold 28 and receives exhaust gases from either the second exhaust manifold outlet 40 or the HP turbine outlet 42. The
assembly 34 is also comprised of a lever 44, a first valve plate 46 that works in conjunction with a first contact surface 48, and second valve plate 50 that works in conjunction with a second contact surface 52. The first valve plate 46 and the second valve plate 50 face in opposite directions of each other, and are connected by a pin 54, and are mounted onto a valve stem 56. The valve stem 56 is fixed for rotation upon a hinge assembly 58. The valve assembly 34 also includes an exhaust gas inlet port 60, an HP turbine inlet port 62, an LP turbine outlet port 64, and a rotatable connector 66. The rotatable connector 66 is connected to an actuator (not shown) which can be hydraulic, pneumatic, or some other type of device controlled by the vehicle's electronic control unit.
The operation of the present invention configured for a single-bank exhaust system as shown in Fig. 1 will now be described. During low engine speed operation, the valve 36 is used to close off the exhaust gas inlet port 60 when the vehicle is first beginning to accelerate, and exhaust gas pressure is low, forcing all of the exhaust gas through the HP turbine 16. When the valve 36 is configured in this manner, the exhaust gas flows from the exhaust manifold 28, through the first exhaust manifold outlet 38, through the HP turbine 16, through the HP turbine outlet 42, through the HP turbine inlet port 62 and into the valve assembly 34. The valve assembly 34 then directs the exhaust gas into the LP turbine 22, where it is then passed into the remaining components of the exhaust system (not shown). As all of the exhaust gas is being forced through the HP turbine 16, fresh air flows through the intake line 30, passing through the LP compressor 24, and through outlet port 26. The air then flows through the intake conduit 32, and into the HP compressor 18. The HP compressor 18 compresses the fresh air received from the intake conduit 32, and forces it into the intake manifold of the engine (not shown).
During the process where all of the exhaust gas is being directed toward the HP turbine, the LP compressor 24 is not activated because it is controlled by the LP turbine 22, which is also not activated. The LP turbine 22 is larger in size compared to the HP turbine 16, and the LP compressor 24 is larger than the HP compressor 18. Neither are activated during this process because at lower engine speeds the volume of exhaust gas flow is not high enough to activate the LP turbine 22, and the volume of fresh air flowing into the system is not high enough for LP compressor 24 to effectively compress it. Directing all of the exhaust gas flow into the smaller HP turbine 16 allows the HP compressor 18 to provide the necessary amount of compressed air to flow into the intake manifold of the engine, increasing engine power at low engine speeds.
As the engine speed increases and the vehicle accelerates, the smaller HP turbine 16 and HP compressor 18 become less and less effective. When the engine speed increases to a certain predetermined value, the vehicle's electronic control unit commands the actuator (not shown) to open the valve 36, lifting the second valve plate 50 away from the second contact surface 52, allowing exhaust gas from the exhaust manifold 28 to flow through the second exhaust manifold outlet 40, through the exhaust gas inlet port 60, and then through the valve assembly 34. The exhaust gas then exits through the LP turbine outlet port 64 and flows into the LP turbine 22, the exhaust gas then flows into the remaining exhaust system components. As the LP turbine 22 is activated from the increased exhaust gas pressure, the LP compressor 24 will begin to compress air coming in from the intake line 30. The compressed air is then forced through the outlet port 26 and into the intake conduit 32, where it then flows through the HP compressor 18, through the outlet port 20, and into the intake manifold of the engine. During this portion of operation, the air coming into the HP compressor 18 has already been pressurized by the LP compressor 24, and the LP compressor 24 does not compress the air any further.
As the engine speed continues to increase, the valve 36 continues to rotate further away from the exhaust gas iniet port 60, and moves closer to the HP turbine inlet port 62. When it becomes necessary to direct all of the exhaust gas to flow directly into the LP turbine 22, the valve 36 moves into a position where the first valve plate 46 comes in contact with the first contact surface 48. When the valve 36 is in this position, exhaust gas cannot flow from the HP turbine 16 into the valve assembly 34. All of the exhaust gas flows from the exhaust manifold 28, through the second exhaust manifold outlet 40, and into the valve assembly 34. The valve 36 can be controlled by an actuator, or some other device, connected to the rotatable connector 66, which rotates the lever 44, thereby rotating the valve 36.
When closing off the second exhaust manifold outlet 40 or the HP turbine outlet 42, the valve 36 provides a smooth transition from the exhaust gas flowing through the HP turbine 16 to the LP turbine 22, and can be moved to any position therebetween to direct the flow of exhaust gas as driving conditions mandate. It should also be noted that another advantage of the present invention is the orientation of the valve assembly 34 in relation to the HP turbine 16 and the LP turbine 22. The valve 36 is located in a position where the flow of exhaust gas pushes on the valve 36 when the first valve plate 46 is pressed against the first contact surface 48 and when the second valve plate 50 is pressed against the second contact surface 52. This also occurs when the valve 36 is located in any position therebetween. Also, the hinge assembly 58 is located in a position between the HP turbine outlet 42, and the second exhaust manifold outlet 40. Locating the hinge assembly 58 in this position allows for a single valve to be used for directing exhaust gas flow to either the HP turbine 16 or the LP turbine 22. Also, the valve assembly 34 is not only used for directing exhaust gas flow to each of the turbines, but the valve assembly 34 can also stop the flow of exhaust gas into the HP turbine 16, preventing overspeed and damage. Additionally, locating
the valve 36 in the aforementioned position allows for greater control of the exhaust gas flow than compared to, for example, if the valve 36 were positioned in front of the second exhaust manifold outlet 40 or in front of the HP turbine outlet 42.
The present invention can also be used with engines having two exhaust banks, such as with a "V-6" or "V-8" engine. This embodiment is shown in Fig. 2, and is similar to the embodiment shown in Fig. 1 , wherein like numbers refer to like elements. In addition, this embodiment also includes a first exhaust tube 68 connected to a first exhaust bank (not shown) and a first opening 70, as well as a second exhaust tube 72 connected to a second exhaust bank (not shown) and a second opening 74. In this embodiment, exhaust gas flows from the first exhaust tube 68 into the first opening 70, and from the second exhaust tube 72 into the second opening 74. The exhaust gas then flows into the exhaust manifold 28 where it is directed to flow into either the HP turbine 16 or the LP turbine 22 through the use of the valve assembly 34. The remaining operations of the HP turbocharger unit 12, the LP turbocharger unit 14 and the valve assembly 34 remain the same as mentioned in the previous embodiment.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Claims
1. A valve regulation assembly for a two-stage turbocharger, comprising: a high-pressure turbocharger unit having a high-pressure turbine portion operable to receive an exhaust gas flow; a low-pressure turbocharger unit having a low-pressure turbine portion, and located downstream from said high-pressure turbocharger unit; a valve operably associated with said turbine portions of said high-pressure and said low-pressure turbocharger units; and wherein said valve can direct said exhaust gas flow from a source of said exhaust gas flow to at least one of said high-pressure turbocharger unit and said low- pressure turbocharger unit.
2. The invention of claim 1 , further comprising an exhaust gas manifold operably associated with an engine, wherein said high-pressure turbocharger unit is operably associated with said exhaust gas manifold.
3. The invention of claim 1 , wherein when said valve is positioned such that said high-pressure turbocharger unit is closed off from said exhaust gas flow and said valve is fully opened, the flow of said exhaust gas is such that said exhaust gas applies pressure to said valve.
4. The invention of claim 1 , wherein when said valve is positioned to force all exhaust gas through said high-pressure turbocharger unit, the flow of said exhaust gas still applies pressure to said valve.
5. The invention of claim 1 , wherein said valve is held in its desired position by an actuator selected from the group consisting of an electric actuator, a hydraulic actuator, a pneumatic actuator, and combinations thereof.
6. The invention of claim 4, wherein said actuator manipulates said valve to direct exhaust gas flow to both said high-pressure turbocharger unit, and said low- pressure turbocharger unit.
7. A two-stage turbocharger for use in a motor vehicle, comprising: an exhaust conduit; a high-pressure (HP) turbocharger unit operably associated with said exhaust conduit and operable to receive an exhaust gas flow; a low-pressure (LP) turbocharger unit connected to said exhaust gas conduit and is located downstream of said high-pressure turbine; a valve located operably associated with said high-pressure turbine through said exhaust gas conduit; and wherein said valve can be in a position to restrict all of said exhaust gas flow through said high-pressure turbine only, or said valve can be moved to another position to inhibit said exhaust gas flow from entering the high-pressure turbine, thereby directing all of said exhaust gas to flow to said low-pressure turbine.
8. The invention of claim 7, further comprising an exhaust gas manifold operably associated with an engine, wherein said high-pressure turbocharger unit is operably associated with said exhaust gas manifold.
9. The invention of claim 8, wherein said valve is located near said first outlet of said exhaust manifold, where the flow of exhaust gases from said exhaust manifold bias said valve away from said exhaust manifold.
10. The invention of claim 7, wherein said valve is located on the output side of said high-pressure turbine, thereby allowing the flow of exhaust gases through said high-pressure turbine to bias said valve away from said high-pressure turbine.
11. The invention of claim 7, wherein said valve is controlled by an actuator selected from the group consisting of an electric actuator, a hydraulic actuator, a pneumatic actuator, and combinations thereof, wherein said actuator holds said valve in the position necessary to inhibit all exhaust gas from flowing through said high-pressure turbine, or in the position necessary to force all exhaust gas through said high-pressure turbine.
12. The invention of claim 11 , wherein said actuator can also position said valve to distribute the flow of exhaust gases through both said high-pressure turbine and said low-pressure turbine simultaneously.
13. A method for directing exhaust gas flow in a two-stage turbocharger for use in a motor vehicle, comprised of: providing a high-pressure turbine; providing a low-pressure turbine located downstream from said high-pressure turbine; providing a conduit for exhaust gas flow from said high-pressure turbine to said low-pressure turbine; providing a valve located in said conduit; and wherein said valve is used for directing exhaust gas flow from said high-pressure turbine to said low-pressure turbine.
14. The method of claim 13, further comprising the step of providing an exhaust manifold for distributing exhaust gases into said conduit and said high-pressure turbine.
15. The method of claim 14, further comprising the step of locating said valve in a position to pivot between the output side of said exhaust gas manifold, and thλe output side of said high-pressure turbine, and any position therebetween.
16. The method of claim 14, further comprising the step of providing a first outlet and a second outlet for use in said exhaust manifold, wherein said first outlet is for distributing exhaust gases directly into said high-pressure turbine, and said second outlet for distributing exhaust gases directly into said conduit.
17. The method of claim 14, further comprising the step of moving said valve in a position to close off said outlet of said' high-pressure turbine, forcing all of the exhaust gas to flow directly through said second outlet of said exhaust manifold, and directly into said conduit.
18. The method of claim 14, further comprising the step of moving said valve in a position to close off said second outlet of said exhaust manifold, forcing all of the exhaust gas to flow directly into said high-pressure turbine.
19. The method of claim 13, further comprising the step of controlling said valve by an actuator.
20. The method of claim 19, wherein the actuator is selected from the group consisting of an electric actuator, a hydraulic actuator, a pneumatic actuator, and combinations thereof.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200680015874A CN100594293C (en) | 2005-05-10 | 2006-05-04 | Valve regulation for turbocharger |
EP20060752190 EP1880092B1 (en) | 2005-05-10 | 2006-05-04 | Valve regulation for turbocharger |
KR1020077025592A KR101238385B1 (en) | 2005-05-10 | 2006-05-04 | Valve regulation for turbocharger |
DE200660020126 DE602006020126D1 (en) | 2005-05-10 | 2006-05-04 | VALVE CONTROL FOR TURBOCHARGER |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/125,959 | 2005-05-10 | ||
US11/125,959 US7600380B2 (en) | 2005-05-10 | 2005-05-10 | Valve regulation for turbocharger |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006121745A1 true WO2006121745A1 (en) | 2006-11-16 |
Family
ID=36933389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/017080 WO2006121745A1 (en) | 2005-05-10 | 2006-05-04 | Valve regulation for turbocharger |
Country Status (6)
Country | Link |
---|---|
US (2) | US7600380B2 (en) |
EP (1) | EP1880092B1 (en) |
KR (1) | KR101238385B1 (en) |
CN (2) | CN100594293C (en) |
DE (1) | DE602006020126D1 (en) |
WO (1) | WO2006121745A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007084592A2 (en) * | 2006-01-20 | 2007-07-26 | Honeywell International Inc. | Two-stage turbocharger system with integrated exhaust manifold and bypass assembly |
FR2918710A1 (en) * | 2007-07-12 | 2009-01-16 | Renault Sas | ARRANGEMENT FOR AN INTERNAL COMBUSTION ENGINE COMPRISING TWO TURBOCHARGERS. |
WO2009053206A1 (en) * | 2007-10-25 | 2009-04-30 | Robert Bosch Gmbh | Compressor sequence valve and register charging unit having such compressor sequence valve |
EP2143905A1 (en) * | 2008-07-07 | 2010-01-13 | BorgWarner Inc. | Valve regulation assembly |
WO2013078493A1 (en) * | 2011-11-28 | 2013-06-06 | Steyr Motors Gmbh | Regulating flap device for a turbocharger unit |
US8844285B2 (en) | 2007-10-12 | 2014-09-30 | Mitsubishi Heavy Industries, Ltd. | Two-stage supercharging exhaust turbocharger |
EP3546320A1 (en) | 2013-06-28 | 2019-10-02 | Qinetiq Limited | Drive configurations for skid steered vehicles |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE50213429D1 (en) * | 2002-08-30 | 2009-05-20 | Borgwarner Inc | Charging system for an internal combustion engine |
US20060137343A1 (en) * | 2004-12-14 | 2006-06-29 | Borgwarner Inc. | Turbine flow regulating valve system |
US20070089413A1 (en) * | 2005-10-21 | 2007-04-26 | Edward Green | Turbo catalyst light-off device |
EP1954929B1 (en) * | 2005-11-22 | 2012-02-22 | Volvo Lastvagnar AB | Internal combustion engine with two-stage turbo charging system |
JP5451247B2 (en) * | 2008-09-10 | 2014-03-26 | ボーグワーナー インコーポレーテッド | Turbocharger connection for reverse rotation of passive pre-turn |
US8439073B2 (en) | 2010-09-10 | 2013-05-14 | Hamilton Sundstrand Corporation | Gate valve |
US8820709B2 (en) * | 2011-03-14 | 2014-09-02 | Honeywell International Inc. | Wastegates and wastegate components |
EP2503127B1 (en) | 2011-03-25 | 2014-09-24 | Ford Global Technologies, LLC | Charged internal combustion engine and method to operate such an engine |
CN102606285A (en) * | 2012-04-07 | 2012-07-25 | 潍坊富源增压器有限公司 | Turbocharger with two-stage supercharging function |
KR101248524B1 (en) * | 2012-08-09 | 2013-04-19 | (주)덕산인프라코어 | Exhaust valve test apparatus for turbocharger |
US9874139B2 (en) * | 2012-12-17 | 2018-01-23 | Honeywell International Inc. | Assembly with wastegate opening, wastegate seat and wall |
CN102979616A (en) * | 2012-12-20 | 2013-03-20 | 无锡康明斯涡轮增压技术有限公司 | Two-stage turbocharger applied to heavy-duty diesel engine |
US9644753B2 (en) * | 2013-07-17 | 2017-05-09 | Norgren Limited | Flapper exhaust diverter valve |
US9217361B2 (en) * | 2013-08-05 | 2015-12-22 | GM Global Technology Operations LLC | Turbocharging system |
JP6109040B2 (en) * | 2013-10-28 | 2017-04-05 | ヤンマー株式会社 | Engine equipment |
FR3013384B1 (en) * | 2013-11-21 | 2015-12-25 | Peugeot Citroen Automobiles Sa | TURBOCOMPRESSOR WITH SILENT DISCHARGE VALVE |
KR101526739B1 (en) * | 2013-12-16 | 2015-06-05 | 현대자동차주식회사 | Housing for high pressure turbine with exhaust manifold of two stage turbo charger and two stage turbo charger using of the same |
US9441534B2 (en) | 2014-10-09 | 2016-09-13 | GM Global Technology Operations LLC | Cooled two-stage turbocharging system |
US9856787B2 (en) * | 2015-07-22 | 2018-01-02 | Hyundai Motor Company | Valve device of turbocharger |
DE102015214324A1 (en) * | 2015-07-29 | 2017-02-02 | Ford Global Technologies, Llc | Supercharged internal combustion engine with exhaust gas recirculation and flap and method for operating such an internal combustion engine |
US9920845B2 (en) * | 2015-08-12 | 2018-03-20 | Delphi Technologies Ip Limited | Control valve |
US10526958B2 (en) | 2016-03-23 | 2020-01-07 | Borgwarner Inc. | Reverse offset wastegate valve assembly for improved catalyst light-off performance |
CN110307070B (en) * | 2019-06-27 | 2021-11-16 | 三一重型装备有限公司 | Gas reversing device and internal combustion engine |
US20220381205A1 (en) * | 2021-05-25 | 2022-12-01 | Faurecia Emissions Control Technologies, Usa, Llc | Valve assembly for vehicle exhaust system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03117624A (en) * | 1989-09-29 | 1991-05-20 | Hino Motors Ltd | Turbosupercharge engine |
DE4331943A1 (en) | 1993-09-02 | 1995-03-16 | Man Nutzfahrzeuge Ag | Supercharging system for air-compressing internal combustion engines |
DE10222919A1 (en) * | 2002-05-24 | 2003-12-24 | Man Nutzfahrzeuge Ag | Two-stage charged combustion engine has exhaust gas feedback control element, engine braking shut-off element, control element for varying exhaust gas applied to turbines implemented as rotary valve |
US20060042246A1 (en) * | 2004-08-31 | 2006-03-02 | Government of the United States of America, as represented by the Administrator of the U.S. | Efficient bypass valve for multi-stage turbocharging system |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US260490A (en) * | 1882-07-04 | Stop-valve | ||
US2035747A (en) * | 1935-07-20 | 1936-03-31 | Creath N Harris | Two-way valve gate |
US3270775A (en) * | 1963-04-09 | 1966-09-06 | Gen Electric | Diverter valve assembly |
US3521659A (en) * | 1967-05-18 | 1970-07-28 | Blaw Knox Co | High temperature valve for throttling or three-way application |
US3636980A (en) * | 1969-10-16 | 1972-01-25 | Gerald P Maloney | Diverter valve |
US3885771A (en) * | 1974-04-01 | 1975-05-27 | Hans D Baumann | Eccentric rotary plug valve with quick removal trim insert |
US4718457A (en) * | 1986-06-20 | 1988-01-12 | Luger G William | Diverter valve |
JPH07224633A (en) * | 1994-02-16 | 1995-08-22 | Nippon Soken Inc | Valve and exhaust emission control device using it |
DE19514572C2 (en) * | 1995-04-20 | 1997-04-30 | Man Nutzfahrzeuge Ag | Supercharged internal combustion engine |
JPH10121996A (en) * | 1996-10-18 | 1998-05-12 | Sumitomo Electric Ind Ltd | Three way valve and exhaust gas processing device using it |
EP1071870B2 (en) | 1998-04-16 | 2011-06-29 | 3K-Warner Turbosystems GmbH | Turbocharged internal combustion engine |
JP3931507B2 (en) | 1999-11-17 | 2007-06-20 | いすゞ自動車株式会社 | Diesel engine turbocharger system |
JP3738653B2 (en) * | 2000-03-30 | 2006-01-25 | いすゞ自動車株式会社 | Series two-stage turbocharging system |
US6648018B2 (en) * | 2000-06-27 | 2003-11-18 | Siemens Automotive Inc. | Bypass control valve |
FR2858656B1 (en) * | 2003-08-08 | 2006-03-17 | Moteur Moderne Le | SUPER-POWERED MOTOR COMPRISING AT LEAST TWO TURBOCOMPRESSION FLOORS |
US6941755B2 (en) | 2003-10-28 | 2005-09-13 | Daimlerchrysler Corporation | Integrated bypass and variable geometry configuration for an exhaust gas turbocharger |
US7086416B2 (en) * | 2004-05-27 | 2006-08-08 | Zimmerman & Jansen, Inc. | Valve assembly having a compensating gate |
US20090014674A1 (en) * | 2005-05-10 | 2009-01-15 | Borgwarner Inc. | Valve regulation assembly |
GB2430708B (en) * | 2005-10-03 | 2010-09-22 | Ford Global Tech Llc | Turbo charging in a variable displacement engine |
-
2005
- 2005-05-10 US US11/125,959 patent/US7600380B2/en not_active Expired - Fee Related
-
2006
- 2006-05-04 CN CN200680015874A patent/CN100594293C/en not_active Expired - Fee Related
- 2006-05-04 CN CN200910217139A patent/CN101737153A/en active Pending
- 2006-05-04 WO PCT/US2006/017080 patent/WO2006121745A1/en active Application Filing
- 2006-05-04 EP EP20060752190 patent/EP1880092B1/en not_active Ceased
- 2006-05-04 KR KR1020077025592A patent/KR101238385B1/en active IP Right Grant
- 2006-05-04 DE DE200660020126 patent/DE602006020126D1/en active Active
-
2007
- 2007-10-02 US US11/906,478 patent/US20080245987A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03117624A (en) * | 1989-09-29 | 1991-05-20 | Hino Motors Ltd | Turbosupercharge engine |
DE4331943A1 (en) | 1993-09-02 | 1995-03-16 | Man Nutzfahrzeuge Ag | Supercharging system for air-compressing internal combustion engines |
DE10222919A1 (en) * | 2002-05-24 | 2003-12-24 | Man Nutzfahrzeuge Ag | Two-stage charged combustion engine has exhaust gas feedback control element, engine braking shut-off element, control element for varying exhaust gas applied to turbines implemented as rotary valve |
US20060042246A1 (en) * | 2004-08-31 | 2006-03-02 | Government of the United States of America, as represented by the Administrator of the U.S. | Efficient bypass valve for multi-stage turbocharging system |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 015, no. 314 (M - 1145) 12 August 1991 (1991-08-12) * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007084592A2 (en) * | 2006-01-20 | 2007-07-26 | Honeywell International Inc. | Two-stage turbocharger system with integrated exhaust manifold and bypass assembly |
WO2007084592A3 (en) * | 2006-01-20 | 2007-09-13 | Honeywell Int Inc | Two-stage turbocharger system with integrated exhaust manifold and bypass assembly |
US7360362B2 (en) | 2006-01-20 | 2008-04-22 | Honeywell International, Inc. | Two-stage turbocharger system with integrated exhaust manifold and bypass assembly |
FR2918710A1 (en) * | 2007-07-12 | 2009-01-16 | Renault Sas | ARRANGEMENT FOR AN INTERNAL COMBUSTION ENGINE COMPRISING TWO TURBOCHARGERS. |
WO2009010679A1 (en) * | 2007-07-12 | 2009-01-22 | Renault S.A.S | Twin-turbocharger internal combustion engine arrangement |
US8844285B2 (en) | 2007-10-12 | 2014-09-30 | Mitsubishi Heavy Industries, Ltd. | Two-stage supercharging exhaust turbocharger |
WO2009053206A1 (en) * | 2007-10-25 | 2009-04-30 | Robert Bosch Gmbh | Compressor sequence valve and register charging unit having such compressor sequence valve |
EP2143905A1 (en) * | 2008-07-07 | 2010-01-13 | BorgWarner Inc. | Valve regulation assembly |
WO2013078493A1 (en) * | 2011-11-28 | 2013-06-06 | Steyr Motors Gmbh | Regulating flap device for a turbocharger unit |
EP3546320A1 (en) | 2013-06-28 | 2019-10-02 | Qinetiq Limited | Drive configurations for skid steered vehicles |
Also Published As
Publication number | Publication date |
---|---|
EP1880092A1 (en) | 2008-01-23 |
KR101238385B1 (en) | 2013-02-28 |
DE602006020126D1 (en) | 2011-03-31 |
CN101171408A (en) | 2008-04-30 |
CN101737153A (en) | 2010-06-16 |
US20060254273A1 (en) | 2006-11-16 |
KR20080005257A (en) | 2008-01-10 |
US20080245987A1 (en) | 2008-10-09 |
US7600380B2 (en) | 2009-10-13 |
CN100594293C (en) | 2010-03-17 |
EP1880092B1 (en) | 2011-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1880092B1 (en) | Valve regulation for turbocharger | |
EP2143905B1 (en) | Valve regulation assembly | |
JP4885105B2 (en) | Fluid switching valve device, exhaust gas control valve and wastegate valve provided with the same | |
US6263673B1 (en) | Method for operating a supercharged internal combustion engine and device for this purpose | |
WO2009030914A2 (en) | Multi-stage turbocharger system | |
KR20120113761A (en) | Fresh gas supply device for an internal combustion engine and method for operating said type of fresh gas supply device | |
JPH08260992A (en) | Method and equipment for successively supercharging internalcombustion engine | |
JPS5982526A (en) | Supercharger for internal-combustion engine | |
US20060054133A1 (en) | Method of effecting multistage super-charging in internal combustion engines | |
JP2008528860A (en) | Twin charger combustion engine and its operation method | |
JP5728943B2 (en) | Turbo system and switchable two-stage turbocharger turbo system | |
JPS60169630A (en) | Supercharger for internal-combustion engine | |
CN102392732A (en) | Multi-valve bypass valve assembly for two stages of supercharging | |
JP2513496B2 (en) | Control device for turbocharger | |
WO2010151391A1 (en) | Brake valve for engine braking | |
JP3487357B2 (en) | Supercharger for internal combustion engine | |
JPS58190518A (en) | Supercharger for internal-combustion engine | |
JPH0326826A (en) | Supercharger for engine and device therefor | |
JPS61190124A (en) | Supercharger of engine | |
JP6785712B2 (en) | Multi-stage turbocharging system | |
JP3379112B2 (en) | Supercharger for internal combustion engine | |
JPS61112734A (en) | Multiple turbo-supercharger for internal-combustion engine | |
EP2808514B1 (en) | Compressor Bypass Valve | |
JPH0311125A (en) | Control of internal combustion engine equipped with exhaust turbine supercharger and device therefor | |
JP2001280147A (en) | Series two-stage turbo supercharging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680015874.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020077025592 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4306/KOLNP/2007 Country of ref document: IN Ref document number: 2006752190 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |