[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006120780A1 - Carbon nanotube aggregate and method for producing same - Google Patents

Carbon nanotube aggregate and method for producing same Download PDF

Info

Publication number
WO2006120780A1
WO2006120780A1 PCT/JP2006/300981 JP2006300981W WO2006120780A1 WO 2006120780 A1 WO2006120780 A1 WO 2006120780A1 JP 2006300981 W JP2006300981 W JP 2006300981W WO 2006120780 A1 WO2006120780 A1 WO 2006120780A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
carbon nanotubes
aggregate
substrate
carbon
Prior art date
Application number
PCT/JP2006/300981
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Hori
Mineo Hiramatsu
Hiroyuki Kano
Original Assignee
Nu Eco Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nu Eco Engineering Co., Ltd. filed Critical Nu Eco Engineering Co., Ltd.
Publication of WO2006120780A1 publication Critical patent/WO2006120780A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Definitions

  • Carbon nanotube aggregate and method for producing the same
  • the present invention relates to a carbon nanotube aggregate and a method for producing the same.
  • This carbon nanotube has a shape in which a graphite sheet is rounded into a cylindrical shape, and is classified into a single-walled carbon nanotube with a single sheet and a multi-walled carbon nanotube in which a plurality of sheets are nested. be able to.
  • Patent Documents 1 and 2 below disclose the use of carbon nanotubes for wiring between stages of an electronic device.
  • transition metal particles having a particle size of 0.4 to 20 nm are formed on the bottom surface of a via hole by electroless plating, and this is used as a catalyst to form a via hole.
  • carbon nanotubes are grown by a plasma CVD method or the like.
  • Patent Document 2 discloses a method of selectively forming a carbon nanotube at the bottom of a high aspect ratio via hole.
  • a flow of fine particles is obtained parallel to the height direction of the via hole, and Ni nanoparticles having a particle size of 5 nm are formed at the bottom of the via hole.
  • This is a method for growing carbon nanotubes using this as a catalyst.
  • Patent Document 3 discloses a method of forming an ultrafine Si thin film by sputtering using helicon plasma, although it is not a method of forming carbon nanotubes.
  • Patent Document 4 discloses a sharp end multi-walled carbon nanotube radial assembly in which a plurality of spire-shaped multi-walled carbon nanotubes and a common root portion are gathered radially.
  • Patent Document 1 JP 2005-72171
  • Patent Document 2 JP 2005-22886
  • Patent Document 3 JP 2002-167671
  • Patent Document 4 JP 2003-206116
  • Patent Documents 1 and 2 are formed in parallel and cannot be used as a force field emission electrode, which can be used as a wiring. Further, Patent Document 4 discloses use as a field emission electrode.
  • the force-bonn nanotube of this document is essentially a multi-walled carbon nanotube with a large number of layers, and has a sharp tip. Is.
  • the present invention is a force-bonn nanotube aggregate having a completely new structure that has never existed so far.
  • the field emission effect can be enhanced, and application to other fields is expected.
  • an object of the present invention is to provide a carbon nanotube aggregate having a novel structure.
  • the invention of claim 1 is a carbon nanotube aggregate in which tips of a plurality of carbon nanotubes are aggregated in a conical shape.
  • the portion excluding the tip of the carbon nanotube is substantially the same as the base. 2.
  • the roots and intermediate portions of the plurality of carbon nanotubes are formed substantially perpendicular to the substrate and are formed in parallel to each other, and the tip portions of the plurality of carbon nanotubes are assembled in a dot shape. .
  • the invention of claim 3 is the carbon nanotube aggregate according to claim 1 or claim 2, wherein the carbon nanotube is a single-layer or a double-wall.
  • each carbon nanotube constituting the aggregate is a single wall or a double wall. With this structure, it becomes easy to gather the tip portions in a dot shape.
  • the invention of claim 4 is characterized in that the carbon nanotubes are formed by a particulate catalyst having a particle diameter of 5 nm or less formed on a substrate.
  • the aggregate of carbon nanotubes according to any one of the above items.
  • the particulate catalyst formed on the substrate is characterized by a particle size of 5 nm or less. With this configuration, it is easy to gather the tip portions in a dot shape.
  • the invention of claim 5 is characterized in that the carbon nanotube is formed by a particulate catalyst having a particle diameter of 2 nm or more and 4 nm or less formed on a substrate. Or an aggregate of carbon nanotubes according to item 1.
  • the invention of claim 6 is characterized in that the density of the particulate catalyst is 1 x 10 12 m 2 to 5 x 10 13 m 2.
  • a desirable range of the density of the particulate catalyst is 3 ⁇ 10 12 111 2 to 3 ⁇ 10 13 111 2 .
  • a more desirable range is 1 10 13 01 2 to 3 10 13 01 2 . In this desirable range, a high-quality force-bonbon nanotube aggregate in which the tips of a plurality of carbon nanotubes are gathered in a conical shape can be reliably obtained.
  • the invention of claim 7 is the aggregate of carbon nanotubes according to claims 1 to 6, wherein the diameter of the carbon nanotube is 2 nm or more and 5 nm or less.
  • the average outer diameter of the carbon nanotube is 4 nm and the average inner diameter is 3 nm.
  • a particulate catalyst having a particle size of 5 nm or less is deposited on a substrate in a density range of 1 ⁇ 10 12 m 2 to 5 ⁇ 10 cm 2 , and thereafter, two layers are formed by plasma CVD.
  • it is a method for producing a carbon nanotube aggregate in which single-bonn nanotubes are grown and the tips of a plurality of carbon nanotubes are aggregated into a cone shape.
  • the particle size of the particulate catalyst is 5 nm or less and the density is in the range of 1 x 10 12 m 2 to 5 x 10 13 m 2.
  • a desirable range for the density of the particulate catalyst is 3 10 12 111 2 to 3 10 13 111 2 . Further, the desirable range of the density of the particulate catalyst is 1 ⁇ 10 13 m 2 to 3 ⁇ 10 13 m 2 .
  • the invention of claim 10 the particulate catalyst, 1 in X 10- 4 Torr or less degree of vacuum, the carbon nanotube aggregate according to claim 9, characterized in that it is produced by the pulsed arc plasma It is a manufacturing method.
  • the invention of claim 11 is the method for producing a carbon nanotube aggregate according to claims 9 to 10, wherein the particulate catalyst is cobalt or a cobalt alloy.
  • the gas phase density above the substrate of the particulate catalyst formed by the pulsed arc plasma is measured by absorption spectroscopy, and the particulate matter deposited on the substrate is determined from the measured gas phase density.
  • a laser or a holo-power sword lamp can be used as a light source for absorption spectroscopy.
  • the density of the particulate catalyst deposited on the substrate and the density and number of pulses of the gas phase particulate catalyst scattered in the atmosphere by the pulsed arc plasma (generally, the density of the gas phase particulate catalyst x the number of pulses) Is previously measured.
  • the gas phase particulate catalyst density is measured by absorption spectroscopy, and the number of pulses is controlled so that a predetermined density of the particulate catalyst is obtained on the substrate. To do. Thereby, the desired optimum density of the particulate catalyst can be obtained on the substrate.
  • the pulse width and the pulse voltage It It ’s good to control it.
  • Plasma CVD is a method in which a raw material gas of carbon nanotubes is turned into plasma to form a plasma atmosphere, and carbon nanotubes are grown on the substrate using a particulate catalyst deposited on the substrate.
  • a plasma atmosphere is a state in which at least some of the substances that make up the atmosphere are ionized (ie, charged particles such as ions and electrons of atoms and molecules, and neutral particles such as radicals of atoms and molecules) Atmosphere (in a plasma state)).
  • the carbon nanotube can be formed into a single-walled or double-walled carbon nanotube by forming it with a particulate catalyst having a particle diameter of 5 nm or less formed on the substrate. .
  • the outer diameter of each carbon nanotube can be reduced to 5 nm or less, and the tips can be assembled in the form of dots.
  • the invention of claim 5 is to increase the ratio of single-walled or double-walled carbon nanotubes by forming carbon nanotubes with a particulate catalyst having a particle diameter of 2 nm or more and 4 nm or less formed on a substrate. This makes it possible to make the electrical properties of the carbon nanotube aggregate in which the tip ends gather like dots.
  • the tip portion can be assembled in the form of dots by setting the density of the particulate catalyst to 1 ⁇ 10 12 m 2 to 5 ⁇ 10 13 m 2 .
  • the distance between the target and the substrate it is possible to form a carbon nanotube aggregate in which the tips of a plurality of carbon nanotubes are aggregated in a conical shape.
  • 3 10 12 111 2 to 3 10 13 111 2 it is preferably 1 ⁇ 10 13 111 2 to 3 ⁇ 10 13 111 2 .
  • the tip portions can be assembled in the form of dots.
  • the diameter of the carbon nanotubes is 2 nm or more and 5 nm or less, so that the ratio of single-walled or double-walled carbon nanotubes can be increased, and the tips are gathered in the form of dots. It is possible to make the electrical characteristics of the carbon nanotube aggregate uniform.
  • a particulate catalyst having a particle size of 5 nm or less is deposited on a substrate in a density range of 1 x 10 12 m 2 to 5 x 10 13 / cm 2 , and then plasma CVD
  • a carbon nanotube aggregate in which the tips of a plurality of carbon nanotubes are aggregated in a conical shape.
  • the number of the layers is two or less, it becomes easy to manufacture a carbon nanotube aggregate having a pyramidal shape with aggregated tips.
  • an aggregate of carbon nanotubes whose tips are assembled in a dot shape can be easily and uniformly produced.
  • the density of the particulate catalyst is in the range of 1 X 10 12 / cm 2 to 5 X 10 13 / cm3 ⁇ 4
  • the tips of multiple carbon nanotubes can be conically shaped by adjusting the distance between the target and the substrate. It becomes possible to form aggregated carbon nanotube aggregates.
  • 1 X 10 1 3 111 2 to 3 10 13 1 11 2 is desirable. In this range, it is possible to reliably gather the tips in the form of dots.
  • the particulate catalyst is in the degree of vacuum of 1 X 10- 4 Torr, it is generated by the pulse arc plasma, to less 5nm particle size of the particulate catalyst It is possible to make each carbon nanotube as a single layer or a double layer and to assemble the tips in a dot shape.
  • the gas phase density of the particulate catalyst above the substrate is measured by absorption spectroscopy and the measured value power pulse number is controlled, it is deposited on the substrate. It is possible to accurately control the density of the particulate catalyst to be produced, and it is possible to produce high-quality carbon nanotubes.
  • FIG. 1 is a configuration diagram showing an apparatus for depositing a particulate catalyst.
  • FIG. 2 is a configuration diagram showing the principle of the arc gun of the device.
  • FIG. 3 is a table showing conditions for depositing a buffer layer and a particulate catalyst.
  • FIG. 5 is a configuration diagram showing an apparatus for growing carbon nanotubes.
  • FIG. 6 Measurement diagram showing the relationship between the deposition rate of carbon nanotubes and the number of pulse arcs when depositing Co nanoparticles.
  • FIG. 7 SEM image showing the surface structure of an aggregate of carbon nanotubes grown on a substrate on which a particulate catalyst has been formed by 50 pulse arcs.
  • FIG. 9 SEM image showing the side structure of an aggregate of carbon nanotubes grown on a substrate with a particulate catalyst formed by 50 pulse arcs.
  • FIG. 10 is an SEM image showing the surface structure of a carbon nanotube aggregate grown on a substrate on which a particulate catalyst has been formed by 250 pulsed arcs.
  • FIG. 11 SEM image showing the side structure of an aggregate of carbon nanotubes grown on a substrate with a particulate catalyst formed by 50 pulse arcs.
  • FIG. 12 SEM image of the side of an aggregate of carbon nanotubes with tips gathered in a pyramid shape.
  • FIG. 13 SEM image showing the surface structure of an aggregate of carbon nanotubes grown at 600 ° C on a substrate on which a particulate catalyst has been formed by 50 pulse arcs.
  • FIG. 14 SEM image showing the surface structure of an aggregate of carbon nanotubes grown at 700 ° C for 5 minutes on a substrate with a particulate catalyst formed by 50 pulsed arcs.
  • FIG. 15 TEM image of the side of the carbon nanotube aggregate.
  • FIG. 16 is an SEM image showing the surface structure of a carbon nanotube aggregate grown on a substrate on which a particulate catalyst has been formed by 30 pulse arcs.
  • Gon 26 A schematic diagram showing the relationship between the density of the particulate catalyst and the properties of the carbon nanotubes formed.
  • a raw material used for the production of carbon nanotubes various substances having at least carbon as a constituent element can be selected.
  • the elements that can form the source material together with carbon include one or more selected from hydrogen, fluorine, chlorine, bromine, nitrogen, oxygen, and the like.
  • Preferred raw material materials include a raw material material substantially composed of carbon and hydrogen, a raw material material substantially composed of carbon and fluorine, and a raw material material substantially composed of carbon, hydrogen and fluorine.
  • the Saturated or unsaturated hydrocarbons eg CH
  • a source material that exhibits a gaseous state at normal temperature and pressure.
  • Two or more kinds of materials may be used in any proportion, or only one kind of material may be used as a raw material.
  • the type (composition) of the raw material used may vary depending on the production stage, which may be constant throughout the production stage (for example, the growth process) of carbon nanotubes. Depending on the properties and / or characteristics (for example, electrical characteristics) of the target carbon nanostructure, the type (composition) of the raw material used, the supply method, and the like can be appropriately selected.
  • radical source substance a substance containing at least hydrogen as a constituent element can be preferably used. It is preferable to use a radical source material (radical source gas) that exhibits a gaseous state at normal temperature and pressure.
  • a particularly preferred radical source material is hydrogen gas (H 2). Also, ha
  • Substances that can generate H radicals by decomposition such as id carbon (CH etc.)
  • the plasma atmosphere is formed by converting the raw material into plasma in the reaction chamber.
  • the source material is plasmaized outside the reaction chamber, and the plasma is introduced into the reaction chamber to form a plasma atmosphere in the reaction chamber. Good.
  • radicals are injected into the plasma atmosphere from the outside of the atmosphere. It is preferable to decompose radical source materials in a radical generation chamber outside the chamber forming the reaction chamber to generate radicals, which are then injected into the plasma atmosphere in the reaction chamber. Alternatively, a radical generation chamber in the same chamber as the reaction chamber may be decomposed outside the plasma atmosphere, and radicals generated thereby may be injected into the plasma atmosphere. In short, radicals are generated in a region different from the processing region where film formation or processing is performed by plasma of the raw material, and only these radicals are injected into the cache region to control film formation and processing. Carbon nanotubes may be grown.
  • a preferred method for generating radicals from a radical source material includes a method of irradiating the radical source material with electromagnetic waves.
  • the electromagnetic wave used in this method can be selected from either microphone mouth waves or high-frequency waves (UHF waves, VHF waves, or RF waves). It is particularly preferable to irradiate VH F wave or RF wave.
  • the method it is possible to easily adjust the decomposition strength (radical generation amount) of the radical source material, for example, by changing the frequency and / or the input power. Therefore, there is an advantage that the production conditions of carbon nanotubes (such as the amount of radicals supplied into the plasma atmosphere) can be easily controlled.
  • microwave refers to an electromagnetic wave of about 1 GHz or more.
  • UHF wave refers to electromagnetic waves of about 300 to 3000 MHz
  • VHF waves refers to electromagnetic waves of about 30 to 300 MHz
  • RF waves refers to electromagnetic waves of about 3 to 30 MHz.
  • Another preferred method and method for generating radicals from a radical source material is a method of applying a DC voltage to the radical source material. It is also possible to employ a method of irradiating the radical source material with light (eg, visible light or ultraviolet light), a method of irradiating an electron beam, a method of heating the radical source material, or the like. Alternatively, a member having a catalytic metal may be heated and a radical source material may be brought into contact with the member (ie, by heat and catalysis) to generate a radical. As the catalyst metal for generating radicals, one or more selected from Pt, Pd, W, Mo, Ni and the like can be used.
  • the radicals injected into the plasma atmosphere are at least hydrogen radicals (that is, hydrogen atoms). Child. Hereinafter, it may be referred to as “H radical”. ) Is preferably included. It is preferable to decompose a radical source material containing at least hydrogen as a constituent element to generate H radicals and inject the H radicals into a plasma atmosphere. Particularly preferred as such a radical source material is hydrogen gas (H 2).
  • At least one of the carbon nanotube production conditions is adjusted. It is desirable to do.
  • Examples of manufacturing conditions that can be adjusted based on such radical concentrations include the amount of raw material supplied, the plasma intensity of the raw material (the severity of the plasma conditions), and the injection of radicals (typically H radio canore). Amount and the like.
  • Such production conditions are preferably controlled by feedback of the radical concentration. According to a powerful production method, it is possible to more efficiently produce carbon nanotubes having properties and / or characteristics according to the purpose.
  • a radical emission line that is, a carbon atom emission line
  • the emitted emission line is received, and the radio-canole concentration is measured from the light absorption spectrum.
  • the emission line specific to the carbon radical (carbon atom) can be obtained, for example, by applying appropriate energy to a gas containing at least carbon as a constituent element. It can be configured to emit a light beam specific to a carbon radical (carbon atom).
  • Monitors and control targets are not limited to C, H, and F radicals, and C, CF, CF, CF, and CF (x ⁇ l, y ⁇ l) may be used as target radicals.
  • Examples of manufacturing conditions that can be adjusted based on such measurement results include the amount of raw material supplied, the intensity of plasma of the raw material, the amount of radicals (typically H radicals) injected, the amount of radical source material supplied, Radical strength of the radio-canole source material. Such production conditions are determined based on the radical concentration. It is preferable to control the measurement result by feedback. According to such a production method, it becomes possible to produce carbon nanotubes having properties and / or characteristics according to the purpose homogeneously and more efficiently.
  • the amount of radicals injected into the reaction chamber is determined by measuring radicals, particularly H radicals, in the radical generating chamber for generating radicals to be injected or in the inlet for injecting radicals into the reaction chamber. Therefore, it is desirable to control the supply amount of the radical source material and the electric power applied to the radical source material. In this way, the amount of radicals injected into the reaction chamber, particularly H radicals, can be controlled in real time during the growth process, and high-quality carbon nanotubes can be generated.
  • a member having a metal catalyst (Pt, Pd, W, Mo, Ni, etc.) for generating radicals is disposed facing the radical generation chamber, and radical generating means is provided so that the metal catalyst can be heated.
  • a metal catalyst Pt, Pd, W, Mo, Ni, etc.
  • radical generating means is provided so that the metal catalyst can be heated.
  • a wavy Ni wire can be arranged inside the radical generation chamber. Introduce H as a radionocule source material into contact with the heater that passed a current through the wire.
  • H radicals can be generated by the catalytic action of Ni.
  • the heating temperature of the catalyst metal can be, for example, about 300 to 800 ° C, and is usually preferably about 400 to 600 ° C.
  • the plasma discharge means is preferably configured as a capacitively coupled plasma (CCP) generation mechanism.
  • CCP capacitively coupled plasma
  • transition metals such as Ni, Fe, Co, Pd, and Pt
  • alloys of these transition metals, transition metals and other metals are used.
  • An alloy with a semiconductor can be used.
  • a method for depositing the particulate catalyst on the substrate it is desirable to use a no-less arc plasma deposition method. For example, 10 at 4 Torr or less degree of vacuum, by generating an arc to a target consisting of transition metals such as Co, plasma is generated in the transition metal, particulate catalyst particle size of less than 5nm on a substrate Power to deposit S. To less 10- 4 Torr is to reduce the collision probability of atoms or molecules, in order to reduce the particle size.
  • the substrate is Si
  • catalyst particles and Si are alloyed to form silicide, so it is desirable to form a buffer layer such as TiN or AlO.
  • a buffer layer such as TiN or AlO.
  • CoTi is used for the catalyst particles, it does not react with Si, so that the particulate catalyst can be deposited directly on the Si substrate.
  • a Si substrate was used as a substrate as a base.
  • the coaxial vacuum arc deposition apparatus shown in Fig. 1 deposited a TiN buffer layer on a Si substrate and a particulate catalyst made of Co on the TiN buffer layer.
  • a susceptor 11 is provided in a reaction chamber 10, and a Si substrate 12 is provided thereon. Under the susceptor 11, a halogen lamp 13 for heating the Si substrate 12 is provided.
  • a plasma gun 14 is provided above the reaction chamber 10.
  • FIG. 2 is a principle diagram of the plasma gun 14.
  • a cylindrical cathode 15 is provided at the center, a cylindrical insulator 16 is provided around the cathode 15, and a ring-shaped trigger electrode 17 is provided outside thereof.
  • a cylindrical anode 18 is provided coaxially with the cathode 15 and outside the insulator 16.
  • a target 19 made of Co is provided on the end face of the cathode 15, and a cap 30 is provided on the end face of the target 19.
  • a plate-like insulator 31 is provided on the end face of the trigger one electrode 17.
  • FIG. 3 shows the formation conditions of the TiN buffer layer and the particulate catalyst.
  • a pulsed arc plasma was generated 900 times by applying a voltage.
  • a TiN buffer layer having a thickness of 20 nm was formed on the Si substrate 12.
  • the buffer layer is used to prevent the particulate catalyst and Si from reacting to form silicide.
  • the deposition of the particulate catalyst consisting of Co the temperature of the Si substrate 12 to room temperature, 1 X 10- 5 Torr pressure in the reaction chamber 10 to Nag and scores flow of gas, 30 a pulse voltage : Applied 100 times to generate pulsed arc plasma.
  • Co nanoparticles having a particle diameter of 5 nm or less were deposited on the TiN buffer layer in the range of 1 ⁇ 10 12 m 2 to 5 ⁇ 10 13 111 2 .
  • Figure 4 shows the substrate surface when Co particles are deposited on the substrate using 10 pulsed arcs.
  • An atomic force microscope image (AFM image) is shown. From this image, the particle size was determined to be 2-3 nm and the density was 3 ⁇ 10 12 m 2 . Therefore, it was found that the density of Co nanoparticles deposited in a single no-arc was 3 X 10 1 cm 2 .
  • a susceptor 21 made of Mo is provided, and a substrate 12 is provided thereon.
  • a carbon heater 22 for heating the substrate 12 is provided under the susceptor 21.
  • a 2.45 GHz microwave is introduced into the reaction chamber 20.
  • the reaction chamber 20 is provided with an exhaust port 24, which is evacuated by a vacuum pump so that a certain degree of vacuum can be obtained in the reaction chamber 20.
  • H and CH gas are introduced into the reaction chamber 20 via the mass flow controllers 25 and 26, respectively.
  • Figure 7 shows that after depositing Co particles on the substrate by 50 pulse arcs, substrate temperature 700 ° C, microwave power 900W, pressure 70Torr, CH flow 50sccm, H flow 70sccm, growth time Scattered electrons on the surface when carbon nanotubes are grown for 5 seconds It is the image (SEM image) by a microscope. It can be seen that the tips of a plurality of carbon nanotubes are gathered in the form of dots in a pyramid shape. The density of this pyramid is 3 x 10 8 m 2 , and the average spacing is about 0.5 / im.
  • Fig. 8 shows an enlarged image of Fig. 7.
  • Figure 9 shows the side SEM images.
  • the carbon nanotubes grow almost perpendicular to the substrate and the tips are gathered in a cone shape.
  • self-organization in which the tips gather in a cone shape can be seen from the initial stage of growth. Accordingly, it was found that pyramid-like self-organization occurred in the early stage of growth, and then the carbon nanotubes grew perpendicularly to the substrate from the root.
  • FIG. 12 shows an SEM image of the side surface of the carbon nanotube aggregate with the tips assembled in a pyramid shape. It can be seen that the tip forming the pyramid grows straight, but the other intermediate and root portions are twisted and bent perpendicular to the substrate.
  • the growth temperature of the carbon nanotubes was changed.
  • the growth temperature was 700 ° C. Only the growth temperature was 600 ° C, and the other growth conditions were the same, and the carbon nanotubes were grown.
  • Figure 13 shows the SEM image of the surface at that time. It can be seen that the aggregate of carbon nanotubes whose tips are gathered in a pyramid shape is obtained uniformly.
  • Fig. 14 shows the SEM image of the surface when carbon nanotubes were grown with a growth time of 5 seconds and a force of 5 minutes.
  • Figure 15 shows an image (TEM image) obtained by a scanning electron microscope. Even if the growth time is lengthened, once the pyramid is formed, a carbon nanotube aggregate is obtained in which the tips of the middle part and the root part that do not disappear are gathered in a conical shape. Is understood.
  • FIG. 16 SEM images of the respective surface when grown carbon nano tube To Figure 20.
  • the number of panoramic arcs is 30 to 100, a carbon nanotube aggregate in which the tips are gathered in the shape of dots in a cone shape is observed. It can be seen that the density of the aggregate increases as the density of Co nanoparticles increases. However, as shown in Fig. 20, when the panoramic arc reaches 200 times, it can be seen that pyramid-like self-organization has not occurred.
  • the number of pulse arcs was changed in various ways, and as a result of imaging the growth rate of the carbon nanotube and the SEM image of the surface, the pulse arc of about 3 to 150 times was obtained. It was found that pyramid-like self-organization occurs when Co particles are deposited by the above method.
  • the reason for the formation of the pyramid-shaped carbon nanotube aggregate in which the tips are gathered in a conical shape in the form of a dot is considered as follows.
  • the particle size is also small as 2-3 nm, and the diameter of the carbon nanotubes that grow using it as a catalyst is also small, so each carbon nanotube cannot stand independently and grow
  • the tip is considered to be integrated into a cone shape under the Van der Waals force.
  • the aggregate stands on the substrate with a large number of carbon nanotubes as a large number of legs, so that the mechanical strength of the aggregate increases and the tip remains integrated while the root portion is integrated. It seems that the carbon nano tube aggregate with the tip integrated into the pyramid shape is formed.
  • Figure 25 shows a schematic diagram of the growth mechanism at this time.
  • the shape change of the growing carbon nanotubes is considered as follows depending on the number of pulse arcs when depositing Co nanoparticles, and therefore the density of Co nanoparticles. If the density of Co nanoparticles is too low, the distance between adjacent carbon nanotubes is too large and there is no interaction, so it grows randomly and does not grow orderly and perpendicular to the substrate. On the other hand, if the density of Co nanoparticles is too high, the particles themselves will continue to form large lumps, so they will not grow in an orderly manner with respect to the substrate. When the density of Co nanoparticles is appropriate, it is likely that adjacent carbon nanotubes will grow in an orderly manner perpendicular to the substrate and parallel to each other.
  • Figure 26 shows a schematic diagram of the growth mechanism at this time.
  • Such a pyramid-shaped carbon nanotube aggregate in which the tips are gathered in the shape of a cone is a field emission electrode, a field emission electrode array, an interstage wiring of a next generation VLSI, a planar wiring, a fine capacitance, a diode It can also be applied to transistors and the like.
  • the aggregate of carbon nanotubes of the present invention can be used as, for example, a field electron emission electrode, and can be used for displays and other electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

[PROBLEMS] To provide a carbon nanotube of novel structure. [MEANS FOR SOLVING PROBLEMS] A buffer layer composed of TiN is formed on an Si substrate. Co nano particles having a particle size of 5 nm or less are deposited on the buffer layer by generating a pulse arc about 3-150 times by using a pulse arc plasma under a vacuum of 1×10-5 Torr. When a carbon nanotube is grown subsequently, a pyramidal punctate aggregate of carbon nanotubes having a mean outside diameter of 4 nm and a mean inside diameter of 3 nm is formed. The aggregate exhibits high field electron emission efficiency.

Description

明 細 書  Specification
カーボンナノチューブ集合体及びその製造方法  Carbon nanotube aggregate and method for producing the same
技術分野  Technical field
[0001] 本発明は、カーボンナノチューブ集合体とその製造方法に関する。  The present invention relates to a carbon nanotube aggregate and a method for producing the same.
背景技術  Background art
[0002] 従来より、カーボンナノチューブ等のカーボンナノ構造物質を、微小電子素子の導 体や電界放出電極、電気配線、ミクロ構造物、高強度材料吸着材等として利用する 研究が数多くなされている。  [0002] Conventionally, many studies have been made on the use of carbon nanostructured materials such as carbon nanotubes as conductors for microelectronic devices, field emission electrodes, electrical wiring, microstructures, high-strength material adsorbents, and the like.
[0003] このカーボンナノチューブは、グラフアイトのシートが円筒状に丸まった形状を有し、 シートが一重の単層カーボンナノチューブと、複数のシートが入れ子状に重なった多 層カーボンナノチューブとに分類することができる。  [0003] This carbon nanotube has a shape in which a graphite sheet is rounded into a cylindrical shape, and is classified into a single-walled carbon nanotube with a single sheet and a multi-walled carbon nanotube in which a plurality of sheets are nested. be able to.
[0004] 下記特許文献 1、 2には、電子装置の各段間の配線にカーボンナノチューブを用い ることが開示されている。カーボンナノチューブを形成する方法としては、特許文献 1 では、無電界メツキにより、ビアホールの底面に粒径 0. 4 〜20nmの遷移金属微粒 子を基板上に形成して、これを触媒として、ビアホールに、プラズマ CVD法などによ り、カーボンナノチューブを成長させることが開示されている。  [0004] Patent Documents 1 and 2 below disclose the use of carbon nanotubes for wiring between stages of an electronic device. As a method of forming carbon nanotubes, in Patent Document 1, transition metal particles having a particle size of 0.4 to 20 nm are formed on the bottom surface of a via hole by electroless plating, and this is used as a catalyst to form a via hole. Further, it is disclosed that carbon nanotubes are grown by a plasma CVD method or the like.
[0005] また、下記特許文献 2では、高アスペクト比のビアホールの底部に、カーボンナノチ ユーブを選択的に形成する方法が開示されている。その方法は、レーザアブレーショ ンにより金属微粒子を生成して、粒径を選別した後に、ビアホールの高さ方向に平行 に、微粒子流を得て、ビアホールの底部に、粒径 5nmの Niナノ粒子を堆積させて、 これを触媒として、カーボンナノチューブを成長させる方法である。  [0005] Further, Patent Document 2 below discloses a method of selectively forming a carbon nanotube at the bottom of a high aspect ratio via hole. In this method, after forming metal fine particles by laser ablation and selecting the particle size, a flow of fine particles is obtained parallel to the height direction of the via hole, and Ni nanoparticles having a particle size of 5 nm are formed at the bottom of the via hole. This is a method for growing carbon nanotubes using this as a catalyst.
[0006] また、下記特許文献 3には、カーボンナノチューブを形成する方法ではないが、ヘリ コンプラズマを用いたスパッタリングにより、 Siの超微粒子薄膜を形成する方法が開 示されている。  [0006] Patent Document 3 below discloses a method of forming an ultrafine Si thin film by sputtering using helicon plasma, although it is not a method of forming carbon nanotubes.
[0007] また、下記特許文献 4には、尖塔形の多層カーボンナノチューブを複数、根元部を 共通にして、放射状に集合させた鋭端多層カーボンナノチューブ放射状集合体が開 示されている。 特許文献 1 :特開 2005— 72171 [0007] Further, Patent Document 4 discloses a sharp end multi-walled carbon nanotube radial assembly in which a plurality of spire-shaped multi-walled carbon nanotubes and a common root portion are gathered radially. Patent Document 1: JP 2005-72171
特許文献 2 :特開 2005— 22886  Patent Document 2: JP 2005-22886
特許文献 3 :特開 2002— 167671  Patent Document 3: JP 2002-167671
特許文献 4 :特開 2003— 206116  Patent Document 4: JP 2003-206116
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、上記特許文献 1、 2のカーボンナノチューブは、平行に形成されてお り、配線として用いることができる力 電界放出電極として用いることはできなレ、。また 、上記特許文献 4は、電界放出電極として用いることを開示しているが、この文献の力 一ボンナノチューブは、本質的には、層数が多い多層カーボンナノチューブで、先端 を鋭端としたものである。 [0008] However, the carbon nanotubes of Patent Documents 1 and 2 are formed in parallel and cannot be used as a force field emission electrode, which can be used as a wiring. Further, Patent Document 4 discloses use as a field emission electrode. However, the force-bonn nanotube of this document is essentially a multi-walled carbon nanotube with a large number of layers, and has a sharp tip. Is.
しかし、さらに、電界放出効果の高い他の構造体の開発が期待されている。  However, development of other structures having a high field emission effect is expected.
本発明は、従来の構造とは異なり、一層又は二層のカーボンナノチューブの複数 力 それらの先端部で集合した形状とした今までに存在しない全く新規な構造の力 一ボンナノチューブ集合体である。  Unlike the conventional structure, the present invention is a force-bonn nanotube aggregate having a completely new structure that has never existed so far.
この構造体とすることで、一例として、電界放出効果を高くすることができ、他の分 野への応用が期待される。  By using this structure, for example, the field emission effect can be enhanced, and application to other fields is expected.
そこで、本発明の目的は、新規な構造のカーボンナノチューブ集合体を提供するこ とである。  Accordingly, an object of the present invention is to provide a carbon nanotube aggregate having a novel structure.
課題を解決するための手段  Means for solving the problem
[0009] 請求項 1の発明は、複数のカーボンナノチューブの先端部が錐形に集合したカー ボンナノチューブ集合体である。  [0009] The invention of claim 1 is a carbon nanotube aggregate in which tips of a plurality of carbon nanotubes are aggregated in a conical shape.
基体上に多数のカーボンナノチューブを成長させた場合には、各領域毎に、その 領域に含まれるカーボンナノチューブの先端部が錐形に集合される。したがって、多 数のカーボンナノチューブ集合体が形成されることになる。し力、しながら、成長領域を 制限することにより、カーボンナノチューブ集合体の数は制御できるし、集合された先 端部が 1つである 1つのカーボンナノチューブ集合体も本件発明の範囲内である。  When a large number of carbon nanotubes are grown on the substrate, the tips of the carbon nanotubes contained in each region are gathered in a conical shape for each region. Therefore, a large number of aggregates of carbon nanotubes are formed. However, by limiting the growth region, the number of aggregates of carbon nanotubes can be controlled, and a single aggregate of carbon nanotubes with one aggregated end is within the scope of the present invention. .
[0010] 請求項 2の発明は、カーボンナノチューブの先端部を除く部分は、基体に対して略 垂直に形成されてレ、ることを特徴とする請求項 1に記載のカーボンナノチューブ集合 体である。 [0010] In the invention of claim 2, the portion excluding the tip of the carbon nanotube is substantially the same as the base. 2. The carbon nanotube aggregate according to claim 1, wherein the carbon nanotube aggregate is formed vertically.
すなわち、複数のカーボンナノチューブの根元や中間部は、基体に対して略垂直 に形成され、相互に平行に形成されており、複数の各カーボンナノチューブの先端 部が点状に集合されたものである。  That is, the roots and intermediate portions of the plurality of carbon nanotubes are formed substantially perpendicular to the substrate and are formed in parallel to each other, and the tip portions of the plurality of carbon nanotubes are assembled in a dot shape. .
[0011] 請求項 3の発明は、カーボンナノチューブは、単層又は二層であることを特徴とする 請求項 1又は請求項 2に記載のカーボンナノチューブ集合体である。  [0011] The invention of claim 3 is the carbon nanotube aggregate according to claim 1 or claim 2, wherein the carbon nanotube is a single-layer or a double-wall.
本発明では、集合体を構成する各カーボンナノチューブは、単層又は二層であるこ とが特徴である。この構造により、先端部を点状に集合させることが容易となる。  The present invention is characterized in that each carbon nanotube constituting the aggregate is a single wall or a double wall. With this structure, it becomes easy to gather the tip portions in a dot shape.
[0012] 請求項 4の発明は、カーボンナノチューブは、基体上に形成された粒径が 5nm以 下の粒子状触媒により形成されたものであることを特徴とする請求項 1乃至請求項 3 の何れか 1項に記載のカーボンナノチューブ集合体である。 [0012] The invention of claim 4 is characterized in that the carbon nanotubes are formed by a particulate catalyst having a particle diameter of 5 nm or less formed on a substrate. The aggregate of carbon nanotubes according to any one of the above items.
基体上に形成された粒子状触媒を粒径 5nm以下としたことが特徴である。この構 成により、先端部を点状に集合させることが容易となる。  The particulate catalyst formed on the substrate is characterized by a particle size of 5 nm or less. With this configuration, it is easy to gather the tip portions in a dot shape.
請求項 5の発明は、カーボンナノチューブは、基体上に形成された粒径が 2nm以 上 4nm以下の粒子状触媒により形成されたものであることを特徴とする請求項 1乃至 請求項 3の何れか 1項に記載のカーボンナノチューブ集合体である。  The invention of claim 5 is characterized in that the carbon nanotube is formed by a particulate catalyst having a particle diameter of 2 nm or more and 4 nm or less formed on a substrate. Or an aggregate of carbon nanotubes according to item 1.
この構成により、先端部を点状に集合させることが容易となる。  With this configuration, it is easy to gather the tip portions in a dot shape.
[0013] 請求項 6の発明は、粒子状触媒の密度は、 1 X 1012ん m2〜5 X 1013ん m2であること を特徴とする請求項 1乃至請求項 5の何れ力 1項に記載のカーボンナノチューブ集 合体である。粒子状触媒の密度の望ましい範囲は、 3 X 1012ん1112〜3 X 1013ん1112で ある。さらに望ましい範囲は、 1 1013ん012〜3 1013ん012でぁる。この望ましい範囲 においては、高品質で、複数のカーボンナノチューブの先端部が錐形に集合した力 一ボンナノチューブ集合体を確実に得ることができる。 [0013] The invention of claim 6 is characterized in that the density of the particulate catalyst is 1 x 10 12 m 2 to 5 x 10 13 m 2. The aggregate of carbon nanotubes described in the item. A desirable range of the density of the particulate catalyst is 3 × 10 12 111 2 to 3 × 10 13 111 2 . A more desirable range is 1 10 13 01 2 to 3 10 13 01 2 . In this desirable range, a high-quality force-bonbon nanotube aggregate in which the tips of a plurality of carbon nanotubes are gathered in a conical shape can be reliably obtained.
また、請求項 7の発明は、カーボンナノチューブの直径は、 2nm以上 5nm以下であ ることを特徴とする請求項 1乃至請求項 6に記載のカーボンナノチューブ集合体であ る。  The invention of claim 7 is the aggregate of carbon nanotubes according to claims 1 to 6, wherein the diameter of the carbon nanotube is 2 nm or more and 5 nm or less.
また、請求項 8の発明は、カーボンナノチューブの平均外径は 4nm、平均内径は 3 nmであることを特徴とする請求項 1乃至請求項 7の何れ力 1項に記載のカーボンナノ チューブ集合体である。 In the invention of claim 8, the average outer diameter of the carbon nanotube is 4 nm and the average inner diameter is 3 nm. The carbon nanotube assembly according to any one of claims 1 to 7, wherein the aggregate is a nanometer.
請求項 9の発明は、粒径が 5nm以下の粒子状触媒を、 1 X 1012ん m2〜5 X 10 cm 2の密度の範囲で基体に堆積し、その後、プラズマ CVD法により、二層又は一層の力 一ボンナノチューブを成長させて、複数のカーボンナノチューブの先端部を錐形に 集合させたカーボンナノチューブ集合体の製造方法である。粒子状触媒を粒径が 5n m以下、密度を 1 X 1012ん m2〜5 X 1013ん m2の範囲とすることで、複数のカーボンナ ノチューブの先端部を錐形に集合させることが可能となる。粒子状触媒の密度の望ま しい範囲は、 3 1012ん1112〜3 1013ん1112でぁる。さらに粒子状触媒の密度の望まし い範囲は、 1 X 1013ん m2〜3 X 1013ん m2である。 According to the invention of claim 9, a particulate catalyst having a particle size of 5 nm or less is deposited on a substrate in a density range of 1 × 10 12 m 2 to 5 × 10 cm 2 , and thereafter, two layers are formed by plasma CVD. Alternatively, it is a method for producing a carbon nanotube aggregate in which single-bonn nanotubes are grown and the tips of a plurality of carbon nanotubes are aggregated into a cone shape. By concentrating the tip of multiple carbon nanotubes in a cone shape, the particle size of the particulate catalyst is 5 nm or less and the density is in the range of 1 x 10 12 m 2 to 5 x 10 13 m 2. Is possible. A desirable range for the density of the particulate catalyst is 3 10 12 111 2 to 3 10 13 111 2 . Further, the desirable range of the density of the particulate catalyst is 1 × 10 13 m 2 to 3 × 10 13 m 2 .
請求項 10の発明は、粒子状触媒は、 1 X 10— 4Torr以下の真空度において、パルス アークプラズマにより生成されることを特徴とする請求項 9に記載のカーボンナノチュ ーブ集合体の製造方法である。 The invention of claim 10, the particulate catalyst, 1 in X 10- 4 Torr or less degree of vacuum, the carbon nanotube aggregate according to claim 9, characterized in that it is produced by the pulsed arc plasma It is a manufacturing method.
請求項 11の発明は、粒子状触媒は、コバルト又はコバルト合金であることを特徴と する請求項 9乃至請求項 10に記載のカーボンナノチューブ集合体の製造方法であ る。  The invention of claim 11 is the method for producing a carbon nanotube aggregate according to claims 9 to 10, wherein the particulate catalyst is cobalt or a cobalt alloy.
請求項 12の発明は、パルスアークプラズマにより形成される粒子状触媒の基体の 上方における気相密度を吸収分光により測定して、その測定された気相密度から、 基体上に堆積される粒子状触媒の密度が所望の値になるようにパルスアークプラズ マのパルス数を制御することを特徴とする請求項 10又は請求項 11に記載のカーボ ンナノチューブ集合体の製造方法である。  In the invention of claim 12, the gas phase density above the substrate of the particulate catalyst formed by the pulsed arc plasma is measured by absorption spectroscopy, and the particulate matter deposited on the substrate is determined from the measured gas phase density. 12. The carbon nanotube aggregate manufacturing method according to claim 10, wherein the number of pulses of the pulse arc plasma is controlled so that the density of the catalyst becomes a desired value.
吸収分光の光源にはレーザやホロ一力ソードランプを用いることができる。基体上 に堆積された粒子状触媒の密度と、パルスアークプラズマにより雰囲気中に飛散した 気相粒子状触媒の密度およびパルス数 (一般的には、気相粒子状触媒密度 Xパル ス数)との関係を予め測定しておく。そして、実際に粒子状触媒を基体上に堆積する 場合には、気相粒子状触媒密度を吸収分光により測定し、基体上に粒子状触媒の 所定の密度が得られるように、パルス数を制御する。これにより、基体上に粒子状触 媒の所望の最適な密度を得ることができる。この時、パルス幅や、パルス電圧の大き さを制御するようにしても良レ、。 A laser or a holo-power sword lamp can be used as a light source for absorption spectroscopy. The density of the particulate catalyst deposited on the substrate and the density and number of pulses of the gas phase particulate catalyst scattered in the atmosphere by the pulsed arc plasma (generally, the density of the gas phase particulate catalyst x the number of pulses) Is previously measured. When the particulate catalyst is actually deposited on the substrate, the gas phase particulate catalyst density is measured by absorption spectroscopy, and the number of pulses is controlled so that a predetermined density of the particulate catalyst is obtained on the substrate. To do. Thereby, the desired optimum density of the particulate catalyst can be obtained on the substrate. At this time, the pulse width and the pulse voltage It ’s good to control it.
[0015] プラズマ CVDはカーボンナノチューブの原料ガスをプラズマ化してプラズマ雰囲気 を形成し、基体上に堆積された粒子状触媒を用いて、カーボンナノチューブを基体 上に成長させる方法である。プラズマ雰囲気とは、当該雰囲気を構成する物質の少 なくとも一部が電離した状態(すなわち、原子や分子のイオンや電子などの荷電粒子 や、原子や分子のラジカルなどの中性粒子などが混在した状態 (プラズマ化した状態 ) )にある雰囲気をいう。 [0015] Plasma CVD is a method in which a raw material gas of carbon nanotubes is turned into plasma to form a plasma atmosphere, and carbon nanotubes are grown on the substrate using a particulate catalyst deposited on the substrate. A plasma atmosphere is a state in which at least some of the substances that make up the atmosphere are ionized (ie, charged particles such as ions and electrons of atoms and molecules, and neutral particles such as radicals of atoms and molecules) Atmosphere (in a plasma state)).
発明の効果  The invention's effect
[0016] 請求項 1、 2の発明では、複数のカーボンナノチューブの先端部が錐形に集合した カーボンナノチューブ集合体としたことにより、電界放出電極に用いた場合には、そ の先端部からの電界電子放出効率が向上する。また、多数のカーボンナノチューブ を点状に集合させていることから、その電界放出電極の機械的な強度が向上する。 請求項 3の発明は、カーボンナノチューブは、単層又は二層であることから、各カー ボンナノチューブの電気的特性が均一となり、特性が均一のカーボンナノチューブ集 合体を得ること力 Sできる。  [0016] In the inventions of claims 1 and 2, by using a carbon nanotube aggregate in which the tip portions of a plurality of carbon nanotubes are gathered in a cone shape, when used for a field emission electrode, Field electron emission efficiency is improved. In addition, since a large number of carbon nanotubes are gathered in the form of dots, the mechanical strength of the field emission electrode is improved. According to the invention of claim 3, since the carbon nanotubes are single-walled or double-walled, the electrical characteristics of each carbon nanotube are uniform, and it is possible to obtain a carbon nanotube aggregate with uniform characteristics.
[0017] 請求項 4の発明は、カーボンナノチューブは、基体上に形成された粒径が 5nm以 下の粒子状触媒により形成することで、単層又は二層のカーボンナノチューブとする こと力 Sできる。各カーボンナノチューブの外径を 5nm以下にすることができ、先端部を 点状に集合させることができる。  [0017] According to the invention of claim 4, the carbon nanotube can be formed into a single-walled or double-walled carbon nanotube by forming it with a particulate catalyst having a particle diameter of 5 nm or less formed on the substrate. . The outer diameter of each carbon nanotube can be reduced to 5 nm or less, and the tips can be assembled in the form of dots.
請求項 5の発明は、カーボンナノチューブを、基体上に形成された粒径が 2nm以 上 4nm以下の粒子状触媒により形成したことにより、各カーボンナノチューブの単層 又は二層の割合を高くすることができ、先端部が点状に集合したカーボンナノチュー ブ集合体の電気的特性を均一にすることができる。  The invention of claim 5 is to increase the ratio of single-walled or double-walled carbon nanotubes by forming carbon nanotubes with a particulate catalyst having a particle diameter of 2 nm or more and 4 nm or less formed on a substrate. This makes it possible to make the electrical properties of the carbon nanotube aggregate in which the tip ends gather like dots.
[0018] 請求項 6の発明は、粒子状触媒の密度は、 1 X 1012ん m2〜5 X 1013ん m2とすること で、先端部を点状に集合させることができる。ターゲットと基板との距離を調整するこ とで、複数のカーボンナノチューブの先端部が錐形に集合したカーボンナノチューブ 集合体を形成することが可能となる。望ましくは、 3 1012ん1112〜3 1013ん1112でぁる 。さらに、望ましくは、 1 X 1013ん1112〜3 X 1013ん1112である。この範囲の時には、確実に 、先端部を点状に集合させることができる。 [0018] According to the invention of claim 6, the tip portion can be assembled in the form of dots by setting the density of the particulate catalyst to 1 × 10 12 m 2 to 5 × 10 13 m 2 . By adjusting the distance between the target and the substrate, it is possible to form a carbon nanotube aggregate in which the tips of a plurality of carbon nanotubes are aggregated in a conical shape. Desirably, 3 10 12 111 2 to 3 10 13 111 2 . Further, it is preferably 1 × 10 13 111 2 to 3 × 10 13 111 2 . When in this range, make sure The tip portions can be assembled in the form of dots.
また、請求項 7の発明は、カーボンナノチューブの直径は、 2nm以上 5nm以下とす ることで、各カーボンナノチューブの単層又は二層の割合を高くすることができ、先端 部が点状に集合したカーボンナノチューブ集合体の電気的特性を均一にすることが できる。  In the invention of claim 7, the diameter of the carbon nanotubes is 2 nm or more and 5 nm or less, so that the ratio of single-walled or double-walled carbon nanotubes can be increased, and the tips are gathered in the form of dots. It is possible to make the electrical characteristics of the carbon nanotube aggregate uniform.
[0019] 請求項 9の発明では、粒径が 5nm以下の粒子状触媒を、 1 X 1012ん m2〜5 X 1013/ cm2の密度の範囲で基板に堆積し、その後、プラズマ CVD法により、二層又は一層 のカーボンナノチューブを成長させることにより、複数のカーボンナノチューブの先端 部を錐形に集合させたカーボンナノチューブ集合体を製造することができる。粒子状 触媒の径が大きくなる程、多層となり、粒径が小さい程、単層となる。本発明では、二 層以下とすると、先端が集合したピラミッド形状のカーボンナノチューブ集合体が製 造し易くなる。 [0019] In the invention of claim 9, a particulate catalyst having a particle size of 5 nm or less is deposited on a substrate in a density range of 1 x 10 12 m 2 to 5 x 10 13 / cm 2 , and then plasma CVD By growing double-layer or single-layer carbon nanotubes by the method, it is possible to produce a carbon nanotube aggregate in which the tips of a plurality of carbon nanotubes are aggregated in a conical shape. The larger the diameter of the particulate catalyst, the more multilayered, and the smaller the particle diameter, the more monolayered. In the present invention, when the number of the layers is two or less, it becomes easy to manufacture a carbon nanotube aggregate having a pyramidal shape with aggregated tips.
この方法により、先端部が点状に集合したカーボンナノチューブ集合体を容易且つ 均質に製造することができる。粒子状触媒の密度が 1 X 1012/cm2~5 X 1013/cm¾ 範囲の場合には、ターゲットと基板との距離を調整することで、複数のカーボンナノチ ユーブの先端部が錐形に集合したカーボンナノチューブ集合体を形成することが可 能となる。望ましくは、 3 1012ん1112〜3 1013ん1112でぁる。さらに、望ましくは、 1 X 10 13ん1112〜3 1013ん1112でぁる。この範囲の時には、確実に、先端部を点状に集合させ ること力 Sできる。 By this method, an aggregate of carbon nanotubes whose tips are assembled in a dot shape can be easily and uniformly produced. When the density of the particulate catalyst is in the range of 1 X 10 12 / cm 2 to 5 X 10 13 / cm¾, the tips of multiple carbon nanotubes can be conically shaped by adjusting the distance between the target and the substrate. It becomes possible to form aggregated carbon nanotube aggregates. Desirably, 3 10 12 111 2 to 3 10 13 111 2 . Furthermore, 1 X 10 1 3 111 2 to 3 10 13 1 11 2 is desirable. In this range, it is possible to reliably gather the tips in the form of dots.
[0020] また、請求項 10の発明では、粒子状触媒が、 1 X 10— 4Torr以下の真空度において 、パルスアークプラズマにより生成されることで、粒子状触媒の粒径を 5nm以下とす ること力 Sでき、各カーボンナノチューブを単層又は二層として、その先端を点状に集 合させることが可能となる。 [0020] Further, in the invention of claim 10, the particulate catalyst is in the degree of vacuum of 1 X 10- 4 Torr, it is generated by the pulse arc plasma, to less 5nm particle size of the particulate catalyst It is possible to make each carbon nanotube as a single layer or a double layer and to assemble the tips in a dot shape.
また、請求項 11の発明では、粒子状触媒を、コバルト又はコバルト合金としたことに より、先端部が点状に集合したカーボンナノチューブ集合体を均質且つ高速に製造 すること力 S可肯 となる。  In addition, in the invention of claim 11, by using cobalt or a cobalt alloy as the particulate catalyst, it is possible to produce a carbon nanotube aggregate in which the tip ends are gathered in a dot shape uniformly and at high speed. .
また、請求項 12の発明によると、基体の上方における粒子状触媒の気相密度を吸 収分光により測定して、その測定値力 パルス数を制御しているので、基体上に堆積 される粒子状触媒の密度を正確に制御することが可能となり、高品質のカーボンナノ チューブを製造することができる。 Further, according to the invention of claim 12, since the gas phase density of the particulate catalyst above the substrate is measured by absorption spectroscopy and the measured value power pulse number is controlled, it is deposited on the substrate. It is possible to accurately control the density of the particulate catalyst to be produced, and it is possible to produce high-quality carbon nanotubes.
図面の簡単な説明 Brief Description of Drawings
[図 1]粒子状触媒を堆積させるための装置を示した構成図。 FIG. 1 is a configuration diagram showing an apparatus for depositing a particulate catalyst.
[図 2]その装置のアークガンの原理を示した構成図。 FIG. 2 is a configuration diagram showing the principle of the arc gun of the device.
[図 3]バッファ層と粒子状触媒とを堆積する場合の条件を示した表図。 FIG. 3 is a table showing conditions for depositing a buffer layer and a particulate catalyst.
[図 4]Coナノ粒子を堆積させた基板表面の AFM像。 [Figure 4] AFM image of substrate surface on which Co nanoparticles were deposited.
[図 5]カーボンナノチューブを成長させる装置を示した構成図。 FIG. 5 is a configuration diagram showing an apparatus for growing carbon nanotubes.
[図 6]Coナノ粒子を堆積させる時のパルスアークの回数に対するカーボンナノチュー ブの堆積速度との関係を示した測定図。  [Fig. 6] Measurement diagram showing the relationship between the deposition rate of carbon nanotubes and the number of pulse arcs when depositing Co nanoparticles.
[図 7]50回のパルスアークにより粒子状触媒を形成した基板に成長させたカーボンナ ノチューブ集合体の表面構造を示す SEM像。  [Fig. 7] SEM image showing the surface structure of an aggregate of carbon nanotubes grown on a substrate on which a particulate catalyst has been formed by 50 pulse arcs.
[図 8]図 7の SEM像の拡大像。 [Fig.8] Magnified image of SEM image of Fig.7.
[図 9]50回のパルスアークにより粒子状触媒を形成した基板に成長させたカーボンナ ノチューブ集合体の側面構造を示した SEM像。  [Fig. 9] SEM image showing the side structure of an aggregate of carbon nanotubes grown on a substrate with a particulate catalyst formed by 50 pulse arcs.
[図 10]250回のパルスアークにより粒子状触媒を形成した基板に成長させたカーボ ンナノチューブ集合体の表面構造を示す SEM像。  FIG. 10 is an SEM image showing the surface structure of a carbon nanotube aggregate grown on a substrate on which a particulate catalyst has been formed by 250 pulsed arcs.
[図 11]50回のパルスアークにより粒子状触媒を形成した基板に成長させたカーボン ナノチューブ集合体の側面構造を示した SEM像。  [Fig. 11] SEM image showing the side structure of an aggregate of carbon nanotubes grown on a substrate with a particulate catalyst formed by 50 pulse arcs.
[図 12]先端がピラミッド状に集合したカーボンナノチューブ集合体の側面の SEM像。  [Fig. 12] SEM image of the side of an aggregate of carbon nanotubes with tips gathered in a pyramid shape.
[図 13]50回のパルスアークにより粒子状触媒を形成した基板に 600°Cで成長させた カーボンナノチューブ集合体の表面構造を示す SEM像。 [Fig. 13] SEM image showing the surface structure of an aggregate of carbon nanotubes grown at 600 ° C on a substrate on which a particulate catalyst has been formed by 50 pulse arcs.
[図 14]50回のパルスアークにより粒子状触媒を形成した基板に 700°Cで 5分間成長 させたカーボンナノチューブ集合体の表面構造を示す SEM像。  [Fig. 14] SEM image showing the surface structure of an aggregate of carbon nanotubes grown at 700 ° C for 5 minutes on a substrate with a particulate catalyst formed by 50 pulsed arcs.
[図 15]そのカーボンナノチューブ集合体の側面の TEM像。 [Fig. 15] TEM image of the side of the carbon nanotube aggregate.
[図 16]30回のパルスアークにより粒子状触媒を形成した基板に成長させたカーボン ナノチューブ集合体の表面構造を示す SEM像。  FIG. 16 is an SEM image showing the surface structure of a carbon nanotube aggregate grown on a substrate on which a particulate catalyst has been formed by 30 pulse arcs.
[図 17]50回のパルスアークにより粒子状触媒を形成した基板に成長させたカーボン ナノチューブ集合体の表面構造を示す SEM像。 [Fig.17] Carbon grown on substrate with particulate catalyst formed by 50 pulse arcs SEM image showing the surface structure of the aggregate of nanotubes.
園 18]70回のパルスアークにより粒子状触媒を形成した基板に成長させたカーボン ナノチューブ集合体の表面構造を示す SEM像。  Sono 18] A SEM image showing the surface structure of an aggregate of carbon nanotubes grown on a substrate on which a particulate catalyst has been formed by 70 pulsed arcs.
園 19]100回のパルスアークにより粒子状触媒を形成した基板に成長させたカーボ ンナノチューブ集合体の表面構造を示す SEM像。  Sono 19] SEM image showing the surface structure of a carbon nanotube aggregate grown on a substrate on which a particulate catalyst has been formed by 100 pulsed arcs.
園 20]200回のパルスアークにより粒子状触媒を形成した基板に成長させたカーボ ンナノチューブ集合体の表面構造を示す SEM像。  Sono]] SEM image showing the surface structure of carbon nanotube aggregates grown on a substrate on which particulate catalyst is formed by 200 pulse arcs.
園 21]本実施例のピラミッド形状のカーボンナノチューブ集合体の先端からの電界電 子放出効果を測定するための装置を示した構成図。  [Sen 21] A configuration diagram showing an apparatus for measuring the field electron emission effect from the tip of the pyramidal carbon nanotube aggregate of this example.
園 22]その装置により測定された電界と放出電流との関係を示した測定図。  Sono 22] A measurement diagram showing the relationship between the electric field and emission current measured by the device.
園 23]その装置により測定された電界と放出電流との関係を示した測定図。  Sono 23] A measurement diagram showing the relationship between the electric field and emission current measured by the device.
園 24]本実施例のピラミッド形状のカーボンナノチューブ集合体のラマン分光による 測定図。  Sono 24] Measurement diagram of the pyramidal carbon nanotube aggregate of this example by Raman spectroscopy.
園 25]本実施例のピラミッド形状のカーボンナノチューブ集合体が形成される原理を 説明した模式図。  Sono 25] A schematic diagram illustrating the principle of the formation of a pyramidal carbon nanotube aggregate of this example.
園 26]粒子状触媒の密度と、形成されるカーボンナノチューブの性状との関係を示し た模式図。  Gon 26] A schematic diagram showing the relationship between the density of the particulate catalyst and the properties of the carbon nanotubes formed.
符号の説明  Explanation of symbols
[0022] 10-· '-反 、至  [0022] 10- · '-Anti, solstice
11-· '-サセプタ  11 -'- susceptor
12-· ••Si基板  12- · •• Si substrate
13-· '-ハロゲンラン  13 -'- Halogen run
15-· ··陰極  15 -... Cathode
16-· ··絶縁体  16 -... Insulator
17·' ··トリガー電極  17 'trigger electrode
18·' ··陽極  18 '' Anode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明の好適な実施形態について て特に言及している内容以外の技術的事項であって本発明の実施に必要な事項は 、従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に よって開示されている技術内容と当該分野における技術常識とに基づいて実施する こと力 Sできる。 [0023] Hereinafter, preferred embodiments of the present invention will be described. Technical matters other than those specifically mentioned above and matters necessary for carrying out the present invention can be understood as design matters for those skilled in the art based on the prior art. The present invention can be implemented based on the technical contents disclosed in this specification and the common general technical knowledge in the field.
[0024] カーボンナノチューブの製造に用いる原料物質としては、少なくとも炭素を構成元 素とする種々の物質を選択することができる。炭素とともに原料物質を構成し得る元 素の例としては、水素、フッ素、塩素、臭素、窒素、酸素等から選択される一種または 二種以上が挙げられる。好ましい原料物質としては、実質的に炭素と水素から構成さ れる原料物質、実質的に炭素とフッ素から構成される原料物質、実質的に炭素と水 素とフッ素から構成される原料物質が例示される。飽和または不飽和のハイドロカ一 ボン(例えば CH  [0024] As a raw material used for the production of carbon nanotubes, various substances having at least carbon as a constituent element can be selected. Examples of the elements that can form the source material together with carbon include one or more selected from hydrogen, fluorine, chlorine, bromine, nitrogen, oxygen, and the like. Preferred raw material materials include a raw material material substantially composed of carbon and hydrogen, a raw material material substantially composed of carbon and fluorine, and a raw material material substantially composed of carbon, hydrogen and fluorine. The Saturated or unsaturated hydrocarbons (eg CH
4、 C H )、フルォロカーボン(例えば C F )、フルォロハイド口カーボ 2 2 2 6  4, C H), Fluorocarbon (eg C F), Fluorohydride Carbo 2 2 2 6
ン (例えば CHF )等を好ましく用いることができる。直鎖状、分岐状、環状のいずれ  (For example, CHF) can be preferably used. Linear, branched, or cyclic
3  Three
の分子構造のものも使用可能である。通常は、常温常圧において気体状態を呈する 原料物質 (原料ガス)を用いることが好ましレ、。原料物質として一種類の物質のみを 用いてもよぐ二種以上の物質を任意の割合で用いてもよい。使用する原料物質の 種類 (組成)は、カーボンナノチューブの製造段階 (例えば成長過程)の全体を通じ て一定としても良ぐ製造段階に応じて異なるようにしても良い。 目的とするカーボン ナノ構造体の性状および/または特性 (例えば電気的特性)に応じて、使用する原 料物質の種類 (組成)や供給方法等を適宜選択することができる。  Those having the molecular structure can also be used. It is usually preferable to use a source material (source gas) that exhibits a gaseous state at normal temperature and pressure. Two or more kinds of materials may be used in any proportion, or only one kind of material may be used as a raw material. The type (composition) of the raw material used may vary depending on the production stage, which may be constant throughout the production stage (for example, the growth process) of carbon nanotubes. Depending on the properties and / or characteristics (for example, electrical characteristics) of the target carbon nanostructure, the type (composition) of the raw material used, the supply method, and the like can be appropriately selected.
[0025] ラジカル源物質としては、少なくとも水素を構成元素とする物質を好ましく用いること ができる。常温常圧において気体状態を呈するラジカル源物質 (ラジカル源ガス)を 用いることが好ましい。特に好ましいラジカル源物質は水素ガス(H )である。また、ハ [0025] As the radical source substance, a substance containing at least hydrogen as a constituent element can be preferably used. It is preferable to use a radical source material (radical source gas) that exhibits a gaseous state at normal temperature and pressure. A particularly preferred radical source material is hydrogen gas (H 2). Also, ha
2  2
イド口カーボン (CH等)のように、分解により Hラジカルを生成し得る物質をラジカル  Substances that can generate H radicals by decomposition, such as id carbon (CH etc.)
4  Four
源物質として用いることも可能である。ラジカル源物質として一種類の物質のみを用 レ、てもよく、二種以上の物質を任意の割合で用いてもよい。  It can also be used as a source material. Only one type of material may be used as the radical source material, or two or more types of materials may be used in any ratio.
[0026] 製造方法の一つの好ましい態様では、原料物質を反応室内でプラズマ化すること によって該プラズマ雰囲気を形成する。あるいは、反応室の外部で原料物質をプラズ マ化し、そのプラズマを反応室に導入して該反応室内にプラズマ雰囲気を形成して あよい。 In one preferred embodiment of the manufacturing method, the plasma atmosphere is formed by converting the raw material into plasma in the reaction chamber. Alternatively, the source material is plasmaized outside the reaction chamber, and the plasma is introduced into the reaction chamber to form a plasma atmosphere in the reaction chamber. Good.
そのプラズマ雰囲気中に、該雰囲気の外部からラジカルを注入することが望ましレ、 。反応室を形成するチャンバ一の外部のラジカル発生室でラジカル源物質を分解し てラジカルを生成し、それを反応室内のプラズマ雰囲気中に注入することが好ましい 。あるいは、反応室と同一チャンバ一内のラジカル発生室であってプラズマ雰囲気の 外部でラジカル源物質を分解し、これにより生成したラジカルをプラズマ雰囲気中に 注入してもよい。要は、原料物質のプラズマにより成膜したり処理したりする加工領域 とは、異なる領域でラジカルを生成して、このラジカルのみをカ卩ェ領域に注入して、 成膜や処理を制御してカーボンナノチューブを成長させても良い。  Desirably, radicals are injected into the plasma atmosphere from the outside of the atmosphere. It is preferable to decompose radical source materials in a radical generation chamber outside the chamber forming the reaction chamber to generate radicals, which are then injected into the plasma atmosphere in the reaction chamber. Alternatively, a radical generation chamber in the same chamber as the reaction chamber may be decomposed outside the plasma atmosphere, and radicals generated thereby may be injected into the plasma atmosphere. In short, radicals are generated in a region different from the processing region where film formation or processing is performed by plasma of the raw material, and only these radicals are injected into the cache region to control film formation and processing. Carbon nanotubes may be grown.
[0027] ラジカル源物質からラジカルを生成する好ましい方法としては、該ラジカル源物質 に電磁波を照射する方法が挙げられる。この方法に使用する電磁波としては、マイク 口波および高周波(UHF波、 VHF波または RF波)のいずれも選択可能である。 VH F波または RF波を照射することが特に好ましい。力かる方法によると、例えば周波数 および/または入力電力を変更することによって、ラジカル源物質の分解強度 (ラジ カルの生成量)を容易に調整することができる。したがって、カーボンナノチューブの 製造条件(プラズマ雰囲気中へのラジカルの供給量等)が制御し易いという利点があ る。  [0027] A preferred method for generating radicals from a radical source material includes a method of irradiating the radical source material with electromagnetic waves. The electromagnetic wave used in this method can be selected from either microphone mouth waves or high-frequency waves (UHF waves, VHF waves, or RF waves). It is particularly preferable to irradiate VH F wave or RF wave. According to the method, it is possible to easily adjust the decomposition strength (radical generation amount) of the radical source material, for example, by changing the frequency and / or the input power. Therefore, there is an advantage that the production conditions of carbon nanotubes (such as the amount of radicals supplied into the plasma atmosphere) can be easily controlled.
[0028] ここで、周知のように、「マイクロ波」とは 1GHz程度以上の電磁波を指すものとする 。また、「UHF波」とは 300〜3000MHz程度の、「VHF波」とは 30〜300MHz程度 の、「RF波」とは 3〜30MHz程度の電磁波を、それぞれ指すものとする。  [0028] Here, as is well known, "microwave" refers to an electromagnetic wave of about 1 GHz or more. “UHF wave” refers to electromagnetic waves of about 300 to 3000 MHz, “VHF waves” refers to electromagnetic waves of about 30 to 300 MHz, and “RF waves” refers to electromagnetic waves of about 3 to 30 MHz.
ラジカル源物質からラジカルを生成する他の好ましレ、方法としては、該ラジカル源 物質に直流電圧を印加する方法が挙げられる。また、該ラジカル源物質に光(例え ば可視光、紫外線)を照射する方法、電子線を照射する方法、該ラジカル源物質を 加熱する方法等を採用することも可能である。あるいは、触媒金属を有する部材を加 熱し、その部材にラジカル源物質を接触させて (すなわち、熱と触媒作用によって)ラ ジカルを生成してもよレ、。ラジカルを発生させるための触媒金属としては、 Pt, Pd, W , Mo, Ni等から選択される一種または二種以上を用いることができる。  Another preferred method and method for generating radicals from a radical source material is a method of applying a DC voltage to the radical source material. It is also possible to employ a method of irradiating the radical source material with light (eg, visible light or ultraviolet light), a method of irradiating an electron beam, a method of heating the radical source material, or the like. Alternatively, a member having a catalytic metal may be heated and a radical source material may be brought into contact with the member (ie, by heat and catalysis) to generate a radical. As the catalyst metal for generating radicals, one or more selected from Pt, Pd, W, Mo, Ni and the like can be used.
[0029] プラズマ雰囲気中に注入するラジカルは、少なくとも水素ラジカル (すなわち水素原 子。以下、「Hラジカル」ということもある。)を含むことが好ましい。少なくとも水素を構 成元素とするラジカル源物質を分解して Hラジカルを生成し、その Hラジカルをプラズ マ雰囲気中に注入することが好ましい。このようなラジカル源物質として特に好ましい ものは水素ガス(H )である。 [0029] The radicals injected into the plasma atmosphere are at least hydrogen radicals (that is, hydrogen atoms). Child. Hereinafter, it may be referred to as “H radical”. ) Is preferably included. It is preferable to decompose a radical source material containing at least hydrogen as a constituent element to generate H radicals and inject the H radicals into a plasma atmosphere. Particularly preferred as such a radical source material is hydrogen gas (H 2).
特に、 Hラジカルのみを供給すると、カーボンナノチューブを良好に生成することがで きる。また、適度に〇Hラジカルや Oラジカルが存在すると、カーボンナノチューブの 形成が容易となると思われる。  In particular, when only H radicals are supplied, carbon nanotubes can be generated satisfactorily. In addition, it seems that the formation of carbon nanotubes is facilitated by the presence of moderately OH and O radicals.
[0030] 反応室内における少なくとも一種類のラジカルの濃度(例えば、炭素ラジカル、水 素ラジカル、フッ素ラジカルのうち少なくとも一種類のラジカルの濃度)に基づいて、 カーボンナノチューブの製造条件の少なくとも一つを調整することが望ましい。かかる ラジカル濃度に基づいて調整し得る製造条件の例としては、原料物質の供給量、原 料物質のプラズマ化強度(プラズマ化条件の厳しさ)、ラジカル (典型的には Hラジカ ノレ)の注入量等が挙げられる。このような製造条件を、上記ラジカル濃度をフィードバ ックして制御することが好ましい。力かる製造方法によると、 目的に応じた性状および /または特性を有するカーボンナノチューブを、より効率よく製造することが可能であ る。 [0030] Based on the concentration of at least one kind of radical in the reaction chamber (for example, the concentration of at least one kind of radical among a carbon radical, a hydrogen radical, and a fluorine radical), at least one of the carbon nanotube production conditions is adjusted. It is desirable to do. Examples of manufacturing conditions that can be adjusted based on such radical concentrations include the amount of raw material supplied, the plasma intensity of the raw material (the severity of the plasma conditions), and the injection of radicals (typically H radio canore). Amount and the like. Such production conditions are preferably controlled by feedback of the radical concentration. According to a powerful production method, it is possible to more efficiently produce carbon nanotubes having properties and / or characteristics according to the purpose.
[0031] ラジカルの測定方法としては、ラジカルの発光線 (すなわち炭素原子の発光線)を 反応室内に出射し、出射された発光線を受光して、光吸収スペクトルから、ラジカノレ 濃度を測定することができる。したがって、 目的に応じた性状および/または特性を 有するカーボンナノチューブを効率よく製造することができる。上記の炭素ラジカル( 炭素原子)に固有の発光線は、例えば、少なくとも炭素を構成元素とするガスに適当 なエネルギーを加えることで得ることができる。炭素ラジカル (炭素原子)に固有の発 光線を出射するように構成することができる。  [0031] As a method for measuring radicals, a radical emission line (that is, a carbon atom emission line) is emitted into the reaction chamber, the emitted emission line is received, and the radio-canole concentration is measured from the light absorption spectrum. Can do. Therefore, it is possible to efficiently produce carbon nanotubes having properties and / or characteristics according to the purpose. The emission line specific to the carbon radical (carbon atom) can be obtained, for example, by applying appropriate energy to a gas containing at least carbon as a constituent element. It can be configured to emit a light beam specific to a carbon radical (carbon atom).
[0032] モニタ、制御対象としては、 C, H, Fラジカルに限定されず、この他、対象ラジカル として C , CF, CF , CF , C F (x≥l , y≥l)でも良い。かかる測定結果に基づい て調整し得る製造条件の例としては、原料物質の供給量、原料物質のプラズマ化強 度、ラジカル (典型的には Hラジカル)の注入量、ラジカル源物質の供給量、ラジカノレ 源物質のラジカルィ匕強度等が挙げられる。このような製造条件を、上記ラジカル濃度 測定結果をフィードバックして制御することが好ましい。かかる製造方法によると、 目 的に応じた性状および/または特性を有するカーボンナノチューブを、均質に、より 効率よく製造することが可能となる。 [0032] Monitors and control targets are not limited to C, H, and F radicals, and C, CF, CF, CF, and CF (x≥l, y≥l) may be used as target radicals. Examples of manufacturing conditions that can be adjusted based on such measurement results include the amount of raw material supplied, the intensity of plasma of the raw material, the amount of radicals (typically H radicals) injected, the amount of radical source material supplied, Radical strength of the radio-canole source material. Such production conditions are determined based on the radical concentration. It is preferable to control the measurement result by feedback. According to such a production method, it becomes possible to produce carbon nanotubes having properties and / or characteristics according to the purpose homogeneously and more efficiently.
[0033] 同様に、注入するラジカルを発生するラジカル発生室内や反応室にラジカルを注 入する注入口におけるラジカル、特に、 Hラジカルを測定して、反応室に注入される ラジカルの量が所定値になるように、ラジカル源物質の供給量やラジカル源物質に 印加する電力を制御することが望ましい。このようにすれば、反応室内へ注入される ラジカル、特に、 Hラジカルの量を成長過程においてリアルタイムに制御することがで き、良質なカーボンナノチューブを生成することができる。  [0033] Similarly, the amount of radicals injected into the reaction chamber is determined by measuring radicals, particularly H radicals, in the radical generating chamber for generating radicals to be injected or in the inlet for injecting radicals into the reaction chamber. Therefore, it is desirable to control the supply amount of the radical source material and the electric power applied to the radical source material. In this way, the amount of radicals injected into the reaction chamber, particularly H radicals, can be controlled in real time during the growth process, and high-quality carbon nanotubes can be generated.
[0034] ラジカルを発生するための金属触媒(Pt, Pd, W, Mo, Ni等)を有する部材を前記 ラジカル発生室に面して配置し、その金属触媒を加熱し得るようにラジカル発生手段 を構成してもよい。例えば、波状の Ni製ワイヤ (触媒金属部材)をラジカル発生室の 内部に配置した構成とすることができる。上記ワイヤに電流を流したヒータに、ラジカ ノレ源物質としての Hを導入して接触させる。これにより、 Niの触媒作用によって Hラ ジカルを発生させることができる。触媒金属の加熱温度は、例えば 300〜800°C程度 とすることができ、通常は 400〜600°C程度とすることが好ましい。また、プラズマ放 電手段は、容量結合プラズマ(CCP)発生機構として構成されてレ、ることが好ましレヽ。  [0034] A member having a metal catalyst (Pt, Pd, W, Mo, Ni, etc.) for generating radicals is disposed facing the radical generation chamber, and radical generating means is provided so that the metal catalyst can be heated. May be configured. For example, a wavy Ni wire (catalytic metal member) can be arranged inside the radical generation chamber. Introduce H as a radionocule source material into contact with the heater that passed a current through the wire. As a result, H radicals can be generated by the catalytic action of Ni. The heating temperature of the catalyst metal can be, for example, about 300 to 800 ° C, and is usually preferably about 400 to 600 ° C. The plasma discharge means is preferably configured as a capacitively coupled plasma (CCP) generation mechanism.
[0035] カーボンナノチューブを成長させるための粒子状触媒としては、 Ni, Fe, Co, Pd, Pt等の遷移金属や、それらの遷移金属同士の合金や、それらの遷移金属と他の金 属ゃ半導体との合金を用いることができる。粒子状触媒を基体上に堆積させる方法と しては、ノ^レスアークプラズ堆積法を用いることが望ましい。例えば、 10— 4Torr以下の 真空度において、 Coなどの遷移金属からなるターゲットに対してアークを発生させて 、遷移金属のプラズマを発生させて、基体上に 5nm以下の粒径の粒子状触媒を堆 積すること力 Sできる。 10— 4Torr以下とするのは、原子や分子の衝突確率を低下させて 、粒子径を小さくするためである。また、基体を Siとした場合には、触媒粒子と Siが合 金化してシリサイドが生成されるので、 TiN、 Al Oなどのバッファ層を形成することが 望ましレ、。また、 CoTiを触媒粒子に用いた場合には、 Siとは反応しないので、 Si基 板上に直接、粒子状触媒を堆積させることが可能となる。 [0036] 以下、本発明を具体的な実施例に基づいて説明するが、本発明は以下の実施例 に限定されるものではない。 [0035] As the particulate catalyst for growing carbon nanotubes, transition metals such as Ni, Fe, Co, Pd, and Pt, alloys of these transition metals, transition metals and other metals are used. An alloy with a semiconductor can be used. As a method for depositing the particulate catalyst on the substrate, it is desirable to use a no-less arc plasma deposition method. For example, 10 at 4 Torr or less degree of vacuum, by generating an arc to a target consisting of transition metals such as Co, plasma is generated in the transition metal, particulate catalyst particle size of less than 5nm on a substrate Power to deposit S. To less 10- 4 Torr is to reduce the collision probability of atoms or molecules, in order to reduce the particle size. If the substrate is Si, catalyst particles and Si are alloyed to form silicide, so it is desirable to form a buffer layer such as TiN or AlO. In addition, when CoTi is used for the catalyst particles, it does not react with Si, so that the particulate catalyst can be deposited directly on the Si substrate. Hereinafter, the present invention will be described based on specific examples, but the present invention is not limited to the following examples.
実施例 1  Example 1
[0037] まず、基体である基板には、 Si基板が用いられた。図 1に示す同軸型真空アーク蒸 着装置により、 Si基板上に、 TiNバッファ層と、その TiNバッファ層の上に、 Coから成 る粒子状触媒が堆積された。図 1において、反応室 10内に、サセプタ 11が設けられ 、その上に Si基板 12が設けられる。サセプタ 11の下には、 Si基板 12を加熱するため のハロゲンランプ 13が設けられている。反応室 10の上方に、プラズマガン 14が設け られている。図 2は、プラズマガン 14の原理図である。中心に円柱状の陰極 15が設 けられており、その周囲には円筒状の絶縁体 16が設けられ、その外側にリング状のト リガ一電極 17が設けられている。また、陰極 15と同軸に、絶縁体 16の外側に、円筒 状の陽極 18が設けられている。陰極 15の端面には、 Coから成るターゲット 19が設け られており、そのターゲット 19の端面にはキャップ 30が設けられている。また、トリガ 一電極 17の端面には、板状の絶縁体 31が設けられている。陰極 15と陽極 18との間 に電界を印加して、トリガー電極 17にパルス電圧を印加することにより、パルスアーク が発生し、ターゲット 19の構成原子が飛散する。本実施例ではターゲット 19には、バ ッファ層の形成時には、 Tiを、粒子状触媒の形成時には、金属 Coを用いた。  [0037] First, a Si substrate was used as a substrate as a base. The coaxial vacuum arc deposition apparatus shown in Fig. 1 deposited a TiN buffer layer on a Si substrate and a particulate catalyst made of Co on the TiN buffer layer. In FIG. 1, a susceptor 11 is provided in a reaction chamber 10, and a Si substrate 12 is provided thereon. Under the susceptor 11, a halogen lamp 13 for heating the Si substrate 12 is provided. A plasma gun 14 is provided above the reaction chamber 10. FIG. 2 is a principle diagram of the plasma gun 14. A cylindrical cathode 15 is provided at the center, a cylindrical insulator 16 is provided around the cathode 15, and a ring-shaped trigger electrode 17 is provided outside thereof. In addition, a cylindrical anode 18 is provided coaxially with the cathode 15 and outside the insulator 16. A target 19 made of Co is provided on the end face of the cathode 15, and a cap 30 is provided on the end face of the target 19. Further, a plate-like insulator 31 is provided on the end face of the trigger one electrode 17. By applying an electric field between the cathode 15 and the anode 18 and applying a pulse voltage to the trigger electrode 17, a pulse arc is generated and constituent atoms of the target 19 are scattered. In this example, Ti was used for the target 19 when the buffer layer was formed, and Co was used when the particulate catalyst was formed.
[0038] 図 3は、 TiNバッファ層と、粒子状触媒の形成条件を示している。 TiNバッファ層を 形成するには、ターゲット 19と Si基板 12との間隔を 10cmとし、 Si基板 12の温度を 4 00°Cとし、反応室 10内の圧力を 3 X 10— 2Torr、 Nを反応室 10に流しながら、ノ^レス FIG. 3 shows the formation conditions of the TiN buffer layer and the particulate catalyst. To form the TiN buffer layer, the distance between the target 19 and the Si substrate 12 and 10 cm, the temperature of the Si substrate 12 and 4 00 ° C, 3 X 10- 2 Torr the pressure in the reaction chamber 10, the N While flowing into reaction chamber 10,
2  2
電圧を印加して 900回のパルスアークプラズマを発生させた。これにより、 Si基板 12 上に、厚さ 20nmの TiNバッファ層が形成された。バッファ層を用いるのは、粒子状触 媒と Siが反応してシリサイドとなることを防止するためである。  A pulsed arc plasma was generated 900 times by applying a voltage. As a result, a TiN buffer layer having a thickness of 20 nm was formed on the Si substrate 12. The buffer layer is used to prevent the particulate catalyst and Si from reacting to form silicide.
[0039] また、 Coから成る粒子状触媒の堆積には、 Si基板 12の温度を室温とし、ガスを流 すことなぐ反応室 10内の圧力を 1 X 10— 5Torr、パルス電圧を 30〜: 100回印加して パルスアークプラズマを生成した。これにより、 TiNバッファ層上に、粒径が 5nm以下 の Coナノ粒子力 密度 1 X 1012ん m2〜5 X 1013ん1112範囲で堆積された。 [0039] Further, the deposition of the particulate catalyst consisting of Co, the temperature of the Si substrate 12 to room temperature, 1 X 10- 5 Torr pressure in the reaction chamber 10 to Nag and scores flow of gas, 30 a pulse voltage : Applied 100 times to generate pulsed arc plasma. As a result, Co nanoparticles having a particle diameter of 5 nm or less were deposited on the TiN buffer layer in the range of 1 × 10 12 m 2 to 5 × 10 13 111 2 .
図 4に 10回のパルスアークを用いて、 Co粒子を基板上に堆積させた時の基板表面 の原子間力顕微鏡による像 (AFM像)を示す。この像から、粒径は 2〜3nmで、密度 は、 3 X 1012 m2と測定された。したがって、 1回のノ^レスアークで、堆積される Coナ ノ粒子の密度は、 3 X 101ソ cm2であることが分かった。 Figure 4 shows the substrate surface when Co particles are deposited on the substrate using 10 pulsed arcs. An atomic force microscope image (AFM image) is shown. From this image, the particle size was determined to be 2-3 nm and the density was 3 × 10 12 m 2 . Therefore, it was found that the density of Co nanoparticles deposited in a single no-arc was 3 X 10 1 cm 2 .
[0040] 次に、図 5のマイクロ波プラズマ CVD装置を用いてカーボンナノチューブを TiNバ ッファ層の形成された Si基板 12上に成長させた。反応室 20内には、 Moから成るサ セプタ 21が設けられており、その上に、基板 12が設けられる。また、サセプタ 21の下 には、基板 12を加熱するための炭素ヒータ 22が設けられている。反応室 20の上部 からは、 2. 45GHzのマイクロ波が反応室 20に導入される。反応室 20には排気ポー ト 24が設けられ、真空ポンプにより排気されて、反応室 20内は一定の真空度が得ら れるようになっている。また、反応室 20に設けられた吸気ポート 23からは、 Hと、 CH ガスが、それぞれ、マスフローコントローラ 25、 26を介して反応室 20に導入される。 Next, carbon nanotubes were grown on the Si substrate 12 on which the TiN buffer layer was formed, using the microwave plasma CVD apparatus of FIG. In the reaction chamber 20, a susceptor 21 made of Mo is provided, and a substrate 12 is provided thereon. A carbon heater 22 for heating the substrate 12 is provided under the susceptor 21. From the top of the reaction chamber 20, a 2.45 GHz microwave is introduced into the reaction chamber 20. The reaction chamber 20 is provided with an exhaust port 24, which is evacuated by a vacuum pump so that a certain degree of vacuum can be obtained in the reaction chamber 20. Further, from the intake port 23 provided in the reaction chamber 20, H and CH gas are introduced into the reaction chamber 20 via the mass flow controllers 25 and 26, respectively.
[0041] 次に、 Coから成る粒子状触媒を基板 12上に堆積するに際して、パルスアークの数 を変化させた試料を各種準備した。そして、それぞれの試料に対して、カーボンナノ チューブを成長させた。複数のカーボンナノチューブの先端が集合して、ピラミッド状 となった自己組織化されたカーボンナノチューブ集合体が得られたのは、パルスァー クの数が 3回〜 150回程度の場合であることが分かった。すなわち、 Coナノ粒子の密 度としては、基板とターゲットとの距離にも依存するが、 1 X 1012ん1112〜5 X 1013ん m2 の場合に、ピラミッド状の自己組織化が起こることが分かった。また、ノ^レスアークの 数が 30回〜 100回の時に、すなわち、粒子状触媒の密度が 1 X 1013ん1112〜3 X 1013 m2の時には、確実に複数のカーボンナノチューブの先端が集合したピラミッド状と なった自己組織化されたカーボンナノチューブ集合体を得ることができた。また、パ ルスアークの数が 10回〜 100回の時、すなわち、粒子状触媒の密度が 3 X 1012ん m2 〜3 X 1013ん m2の時には、品質良ぐピラミッド状の自己組織化されたカーボンナノチ ユーブ集合体を得ることができた。図 6にパルスアークの回数とカーボンナノチューブ の成長速度との関係を示す。 [0041] Next, when depositing the particulate catalyst composed of Co on the substrate 12, various samples were prepared in which the number of pulse arcs was changed. Carbon nanotubes were grown for each sample. It was found that the self-organized carbon nanotube aggregate in which the tips of multiple carbon nanotubes gathered into a pyramid was obtained when the number of pulse arcs was about 3 to 150 times. It was. That is, the density of Co nanoparticles depends on the distance between the substrate and the target, but in the case of 1 × 10 12 111 2 to 5 × 10 13 m 2 , pyramidal self-organization occurs. I understood that. In addition, when the number of nano arcs is 30 to 100 times, that is, when the density of the particulate catalyst is 1 × 10 13 to 111 2 to 3 × 10 13 m 2 , the tips of the plurality of carbon nanotubes are surely attached. A self-organized carbon nanotube aggregate in an aggregated pyramid shape was obtained. In addition, when the number of pulse arcs is 10 to 100 times, that is, when the density of the particulate catalyst is 3 x 10 12 m 2 to 3 x 10 13 m 2 , high quality pyramid self-assembly As a result, an assembled carbon nanotube tube was obtained. Figure 6 shows the relationship between the number of pulse arcs and the growth rate of carbon nanotubes.
[0042] 図 7は、 50回のパルスアークで Co粒子を基板に堆積させた後に、基板温度 700°C 、マイクロ波電力 900W、圧力 70Torr、 CHの流量 50sccm、 Hの流量 70sccm、成 長時間 5secの条件で、カーボンナノチューブを成長させた時の、表面の走查型電子 顕微鏡による像(SEM像)である。複数のカーボンナノチューブの先端部がピラミッド 状に点状に集合しているのが分かる。このピラミッドの密度は、 3 X 108ん m2で、平均 間隔は、約 0. 5 /i mである。図 7の拡大像を図 8に示す。また、側面の SEM像を図 9 に示す。カーボンナノチューブは、基板に対して略垂直に成長して、先端が錐形に 集合しているのが分かる。また、成長時間を変化させて、表面の SEM像を撮像した 結果、先端が錐形に集合する自己組織化は、成長の初期段階から見られることが分 力、つた。したがって、成長の初期においてピラミッド状の自己組織化が発生し、その 後、カーボンナノチューブは、その根元部から基板に対して垂直に成長することが分 かった。 [0042] Figure 7 shows that after depositing Co particles on the substrate by 50 pulse arcs, substrate temperature 700 ° C, microwave power 900W, pressure 70Torr, CH flow 50sccm, H flow 70sccm, growth time Scattered electrons on the surface when carbon nanotubes are grown for 5 seconds It is the image (SEM image) by a microscope. It can be seen that the tips of a plurality of carbon nanotubes are gathered in the form of dots in a pyramid shape. The density of this pyramid is 3 x 10 8 m 2 , and the average spacing is about 0.5 / im. Fig. 8 shows an enlarged image of Fig. 7. Figure 9 shows the side SEM images. It can be seen that the carbon nanotubes grow almost perpendicular to the substrate and the tips are gathered in a cone shape. In addition, as a result of imaging SEM images of the surface while changing the growth time, it was found that self-organization in which the tips gather in a cone shape can be seen from the initial stage of growth. Accordingly, it was found that pyramid-like self-organization occurred in the early stage of growth, and then the carbon nanotubes grew perpendicularly to the substrate from the root.
[0043] 次に、 Coナノ粒子を堆積させるパルスアークの回数、すなわち、 Coナノ粒子の密 度を変化させて、カーボンナノチューブを成長させた時の表面の SEM像を撮像した 。その結果、 Coナノ粒子の密度が高くなる程、カーボンナノチューブは密に成長し、 複数のカーボンナノチューブの先端が錐形に集合する自己組織化は、発生し難くな ること力 S分力つた。図 10、図 11にその時の SEM像を示す。図 10は、パルスアークが 250回、図 11は、パルスアークが 50回のものである。  [0043] Next, SEM images of the surface when carbon nanotubes were grown were imaged by changing the number of pulse arcs for depositing Co nanoparticles, that is, the density of Co nanoparticles. As a result, the higher the density of Co nanoparticles, the more closely the carbon nanotubes grow, and the self-organization in which the tips of a plurality of carbon nanotubes gather in a conical shape is less likely to occur. Figures 10 and 11 show the SEM images at that time. Figure 10 shows 250 pulse arcs and Figure 11 shows 50 pulse arcs.
[0044] 次に、先端がピラミッド状に集合したカーボンナノチューブ集合体の側面の SEM像 を図 12に示す。ピラミッドを形成している先端部は、真っ直ぐに成長しているが、それ 以外の中間部と根元部は、基板に対して垂直に成長している力 曲がりくねつている ことが分かる。  Next, FIG. 12 shows an SEM image of the side surface of the carbon nanotube aggregate with the tips assembled in a pyramid shape. It can be seen that the tip forming the pyramid grows straight, but the other intermediate and root portions are twisted and bent perpendicular to the substrate.
実施例 2  Example 2
[0045] 次に、カーボンナノチューブの成長温度を変化させた。 SEM像が図 7に示される試 料は成長温度が 700°Cである力 成長温度だけを 600°Cにして、他の成長条件を全 く同一にして、カーボンナノチューブを成長させた。その時の表面の SEM像を図 13 に示す。先端がピラミッド状に集合したカーボンナノチューブ集合体が均質に得られ ていることが理解される。  [0045] Next, the growth temperature of the carbon nanotubes was changed. In the sample whose SEM image is shown in Fig. 7, the growth temperature was 700 ° C. Only the growth temperature was 600 ° C, and the other growth conditions were the same, and the carbon nanotubes were grown. Figure 13 shows the SEM image of the surface at that time. It can be seen that the aggregate of carbon nanotubes whose tips are gathered in a pyramid shape is obtained uniformly.
実施例 3  Example 3
[0046] 次に、カーボンナノチューブの成長時間を変化させた。成長時間を 5sec力 5min にして、カーボンナノチューブを成長させた時の表面の SEM像を図 14に、側面の透 過型電子顕微鏡による像 (TEM像)を図 15に示す。成長時間を長くしても、一旦、形 成されたピラミッドは、消滅することなぐ中間部と根元部が長くなつた先端が錐形に 点状に集合したカーボンナノチューブ集合体が得られているのが理解される。 [0046] Next, the growth time of the carbon nanotubes was changed. Fig. 14 shows the SEM image of the surface when carbon nanotubes were grown with a growth time of 5 seconds and a force of 5 minutes. Figure 15 shows an image (TEM image) obtained by a scanning electron microscope. Even if the growth time is lengthened, once the pyramid is formed, a carbon nanotube aggregate is obtained in which the tips of the middle part and the root part that do not disappear are gathered in a conical shape. Is understood.
実施例 4  Example 4
[0047] 粒子状触媒の密度を変化させた。 Co微粒子を堆積させる時のパルスアークの回数 を、 30回(密度 9 X 1012ん m2)、 50回(密度 1. 5 X 1013ん m2)、 70回(密度 2. 1 X 1013 /cm2)、 100回(密度 3 X 1013ん m2)、 200回(密度 6 X 1013ん m2)として、カーボンナノ チューブを成長させた時のそれぞれの表面の SEM像を図 16〜図 20に示す。パノレ スアークの回数が 30回から 100回の場合には、いずれも、先端が錐形に点状に集合 したカーボンナノチューブ集合体が観測されている。その集合体の密度も Coナノ粒 子の密度の増加に応じて増加していることが分かる。しかし、図 20に示すように、パ ノレスアークが 200回となると、ピラミッド状の自己組織化は起こっていないことが分か る。 [0047] The density of the particulate catalyst was changed. 30 times (density 9 x 10 12 m 2 ), 50 times (density 1.5 x 10 13 m 2 ), 70 times (density 2.1 x 10) 13 / cm 2), 100 times (density 3 X 10 13 I m @ 2), as 200 times (density 6 X 10 13 I m 2), FIG. 16 SEM images of the respective surface when grown carbon nano tube To Figure 20. When the number of panoramic arcs is 30 to 100, a carbon nanotube aggregate in which the tips are gathered in the shape of dots in a cone shape is observed. It can be seen that the density of the aggregate increases as the density of Co nanoparticles increases. However, as shown in Fig. 20, when the panoramic arc reaches 200 times, it can be seen that pyramid-like self-organization has not occurred.
[0048] このようにして、パルスアークの回数を、他にも、各種変化させて、カーボンナノチュ ーブの成長速度、表面の SEM像を撮像した結果、 3回〜 150回程度のパルスアーク により Co粒子を堆積させた場合に、ピラミッド状の自己組織化が発生することが分か つた。  [0048] In this way, the number of pulse arcs was changed in various ways, and as a result of imaging the growth rate of the carbon nanotube and the SEM image of the surface, the pulse arc of about 3 to 150 times was obtained. It was found that pyramid-like self-organization occurs when Co particles are deposited by the above method.
実施例 5  Example 5
[0049] 次に、このようにして製造されたカーボンナノチューブ集合体の電子の電界放出特 性を図 21に示す装置を用いて測定した。その結果を図 22、図 23に示す。先端が錐 形に点状に集合したピラミッド形状のカーボンナノチューブ集合体の特性を A、ピラミ ッドが形成されていない平行に成長した高密度カーボンナノチューブの特性を Bとし て示す。本実施例のピラミッド形状のカーボンナノチューブ集合体の場合には、 IV / μ mの電界で 5 μ A、 2V/ μ mの電界で 400 μ Αの電流が流れてレ、ることが分か る。一方、ピラミッドの形成されていない高密度カーボンナノチューブの場合には、 3 ¥/ 111の電界で4 八、 6. 5V/ /i mの電界で 400 /i Aの電流が流れていることが 分かる。明らかに、電子の電界放出特性が改善されていることが分かる。  [0049] Next, the electron field emission characteristics of the carbon nanotube aggregates thus produced were measured using the apparatus shown in FIG. The results are shown in Figs. The characteristics of the aggregate of carbon nanotubes in the shape of a pyramid whose tips are gathered in a conical shape are shown as A, and the characteristics of high-density carbon nanotubes grown in parallel without pyramids are shown as B. In the case of the aggregate of the carbon nanotubes of the pyramid shape of this example, it can be seen that a current of 5 μA flows in an electric field of IV / μm and a current of 400 μΑ flows in an electric field of 2V / μm. . On the other hand, in the case of high-density carbon nanotubes without pyramids, it can be seen that a current of 400 / i A flows at an electric field of 3 ¥ / 111 and an electric field of 6.5 V // im. Obviously, the electron field emission characteristics are improved.
[0050] 次に、本実施例のピラミッド形状のカーボンナノチューブ集合体のラマン分光測定 を行った。結果を図 24に示す。 Gバンドと、 Dバンドが観測されている。 〔原理に関する考〕 Next, Raman spectroscopic measurement of the pyramidal carbon nanotube aggregate of this example Went. The results are shown in FIG. G band and D band are observed. [Considerations about the principle]
[0051] 先端が錐形に点状に集合したピラミッド形状のカーボンナノチューブ集合体が形成 される理由は、次のように考えられる。 Coナノ粒子の密度が低いと、その粒径も 2〜3 nmと小さく、それを触媒として成長するカーボンナノチューブの直径も小さいために 、それぞれのカーボンナノチューブが独立して立つことができず、成長の初期段階に おいて、ファンデルワールス力を受けて、先端が錐状に統合するものと思われる。そ して、その後の成長において、集合体は多数のカーボンナノチューブを多数の足とし て基板に立脚するために、その集合体の機械的な強度が増加して、先端が統合した まま、根元部から成長し続けて、先端がピラミッド形状に統合したカーボンナノチュー ブ集合体が形成されるものと思われる。この時の成長メカニズムの模式図を図 25に 示す。  [0051] The reason for the formation of the pyramid-shaped carbon nanotube aggregate in which the tips are gathered in a conical shape in the form of a dot is considered as follows. When the density of Co nanoparticles is low, the particle size is also small as 2-3 nm, and the diameter of the carbon nanotubes that grow using it as a catalyst is also small, so each carbon nanotube cannot stand independently and grow In the initial stage, the tip is considered to be integrated into a cone shape under the Van der Waals force. Then, in the subsequent growth, the aggregate stands on the substrate with a large number of carbon nanotubes as a large number of legs, so that the mechanical strength of the aggregate increases and the tip remains integrated while the root portion is integrated. It seems that the carbon nano tube aggregate with the tip integrated into the pyramid shape is formed. Figure 25 shows a schematic diagram of the growth mechanism at this time.
[0052] また、 Coナノ粒子を堆積させる時のパルスアークの回数、したがって、 Coナノ粒子 の密度に応じて、成長するカーボンナノチューブの形状の変化は、次のように考えら れる。 Coナノ粒子の密度があまりにも低過ぎると、隣接するカーボンナノチューブの 間隔が空きすぎ、相互作用がないために、乱雑に成長し、基板に対して整然と垂直 には成長しない。一方、 Coナノ粒子の密度があまりにも高過ぎると、微粒子自体が連 続して、大きな塊となるため、基板に対して垂直に整然とは成長しなレ、。 Coナノ粒子 の密度が適正な場合には、隣接するカーボンナノチューブが相互に作用しい補い合 つて、基板に対して垂直に、相互に平行に整然と成長するものと思われる。この時の 成長メカニズムの模式図を図 26に示す。  [0052] The shape change of the growing carbon nanotubes is considered as follows depending on the number of pulse arcs when depositing Co nanoparticles, and therefore the density of Co nanoparticles. If the density of Co nanoparticles is too low, the distance between adjacent carbon nanotubes is too large and there is no interaction, so it grows randomly and does not grow orderly and perpendicular to the substrate. On the other hand, if the density of Co nanoparticles is too high, the particles themselves will continue to form large lumps, so they will not grow in an orderly manner with respect to the substrate. When the density of Co nanoparticles is appropriate, it is likely that adjacent carbon nanotubes will grow in an orderly manner perpendicular to the substrate and parallel to each other. Figure 26 shows a schematic diagram of the growth mechanism at this time.
[0053] このような先端が錐形に点状に集合したピラミッド形状のカーボンナノチューブ集合 体は、電界放出電極、電界放出電極アレイ、次世代超 LSIの段間配線、平面配線、 微細容量、ダイオード、トランジスタなどにも応用できるものである。  [0053] Such a pyramid-shaped carbon nanotube aggregate in which the tips are gathered in the shape of a cone is a field emission electrode, a field emission electrode array, an interstage wiring of a next generation VLSI, a planar wiring, a fine capacitance, a diode It can also be applied to transistors and the like.
産業上の利用可能性  Industrial applicability
[0054] 本発明のカーボンナノチューブ集合体は、例えば、電界電子放出電極として用い ること力 Sでき、ディスプレイや、その他の電子デバイスに用いることが可能である。 [0054] The aggregate of carbon nanotubes of the present invention can be used as, for example, a field electron emission electrode, and can be used for displays and other electronic devices.

Claims

請求の範囲  The scope of the claims
[I] 複数のカーボンナノチューブの先端部が錐形に集合したカーボンナノチューブ集合 体。  [I] A carbon nanotube aggregate in which tips of a plurality of carbon nanotubes are aggregated in a cone shape.
[2] 前記カーボンナノチューブの前記先端部を除く部分は、基体に対して略垂直に形成 されていることを特徴とする請求項 1に記載のカーボンナノチューブ集合体。  [2] The aggregate of carbon nanotubes according to [1], wherein a portion of the carbon nanotube other than the tip is formed substantially perpendicular to the substrate.
[3] 前記カーボンナノチューブは、単層又は二層であることを特徴とする請求項 1又は請 求項 2に記載のカーボンナノチューブ集合体。 [3] The aggregate of carbon nanotubes according to claim 1 or claim 2, wherein the carbon nanotubes are single-walled or double-walled.
[4] 前記カーボンナノチューブは、前記基体上に形成された粒径が 5nm以下の粒子状 触媒により形成されたものであることを特徴とする請求項 1乃至請求項 3の何れ力 1項 に記載のカーボンナノチューブ集合体。 [4] The force according to any one of claims 1 to 3, wherein the carbon nanotube is formed by a particulate catalyst having a particle diameter of 5 nm or less formed on the substrate. Of carbon nanotubes.
[5] 前記カーボンナノチューブは、前記基体上に形成された粒径が 2nm以上 4nm以下 の粒子状触媒により形成されたものであることを特徴とする請求項 1乃至請求項 3の 何れか 1項に記載のカーボンナノチューブ集合体。 [5] The carbon nanotube according to any one of claims 1 to 3, wherein the carbon nanotube is formed by a particulate catalyst having a particle diameter of 2 nm or more and 4 nm or less formed on the substrate. An aggregate of carbon nanotubes described in 1.
[6] 前記粒子状触媒の密度は、 1 X 1012/cm2~5 X 1013ん m2であることを特徴とする請求 項 1乃至請求項 5の何れか 1項に記載のカーボンナノチューブ集合体。 6. The carbon nanotube according to any one of claims 1 to 5, wherein the density of the particulate catalyst is 1 X 10 12 / cm 2 to 5 X 10 13 m 2. Aggregation.
[7] 前記カーボンナノチューブの直径は、 2nm以上 5nm以下であることを特徴とする請 求項 1乃至請求項 6に記載のカーボンナノチューブ集合体。 [7] The aggregate of carbon nanotubes according to claims 1 to 6, wherein a diameter of the carbon nanotube is 2 nm or more and 5 nm or less.
[8] 前記カーボンナノチューブの平均外径は 4nm、平均内径は 3nmであることを特徴と する請求項 1乃至請求項 7の何れか 1項に記載のカーボンナノチューブ集合体。 8. The carbon nanotube aggregate according to any one of claims 1 to 7, wherein the carbon nanotube has an average outer diameter of 4 nm and an average inner diameter of 3 nm.
[9] 粒径が 5nm以下の粒子状触媒を、 1 X 1012ん m2〜5 X 1013ん m2の密度の範囲で基 体に堆積し、その後、プラズマ CVD法により、 2層又は 1層のカーボンナノチューブを 成長させて、複数のカーボンナノチューブの先端部を錐形に集合させたカーボンナ ノチューブ集合体の製造方法。 [9] A particulate catalyst having a particle size of 5 nm or less is deposited on the substrate in the density range of 1 × 10 12 m 2 to 5 × 10 13 m 2 , and then two layers or A method for producing a carbon nanotube aggregate in which single-walled carbon nanotubes are grown and the tips of a plurality of carbon nanotubes are aggregated into a cone.
[10] 前記粒子状触媒は、 1 X 10— 4Torr以下の真空度において、パルスアークプラズマに より生成されることを特徴とする請求項 9に記載のカーボンナノチューブ集合体の製 造方法。 [10] The particulate catalyst in 1 X 10- 4 Torr or less of vacuum, manufacturing method of a carbon nanotube aggregate according to claim 9, characterized in that it is more generated pulse arc plasma.
[II] 前記粒子状触媒は、コバルト又はコバルト合金であることを特徴とする請求項 9乃至 請求項 10に記載のカーボンナノチューブ集合体の製造方法。 前記パルスアークプラズマにより形成される前記粒子状触媒の前記基体の上方にお ける気相密度を吸収分光により測定して、その測定された気相密度から、前記基体 上に堆積される前記粒子状触媒の密度が所望の値になるように前記パルスアークプ ラズマのパルス数を制御することを特徴とする請求項 10又は請求項 11に記載の力 一ボンナノチューブ集合体の製造方法。 [II] The method for producing a carbon nanotube aggregate according to any one of claims 9 to 10, wherein the particulate catalyst is cobalt or a cobalt alloy. The gas phase density above the substrate of the particulate catalyst formed by the pulsed arc plasma is measured by absorption spectroscopy, and the particulate matter deposited on the substrate is determined from the measured gas phase density. 12. The method for producing a force-bonded nanotube assembly according to claim 10, wherein the number of pulses of the pulse arc plasma is controlled so that the density of the catalyst becomes a desired value.
PCT/JP2006/300981 2005-05-10 2006-01-23 Carbon nanotube aggregate and method for producing same WO2006120780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005137933A JP4834818B2 (en) 2005-05-10 2005-05-10 Method for producing aggregate of carbon nanotubes
JP2005-137933 2005-05-10

Publications (1)

Publication Number Publication Date
WO2006120780A1 true WO2006120780A1 (en) 2006-11-16

Family

ID=37396300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300981 WO2006120780A1 (en) 2005-05-10 2006-01-23 Carbon nanotube aggregate and method for producing same

Country Status (2)

Country Link
JP (1) JP4834818B2 (en)
WO (1) WO2006120780A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234973A (en) * 2007-03-20 2008-10-02 Ulvac Japan Ltd Electron emission source, its formation method, and manufacturing method of image display device
JP2012052282A (en) * 2010-03-02 2012-03-15 Showa Denko Kk Carbon fiber aggregate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872042B2 (en) * 2005-05-10 2012-02-08 国立大学法人名古屋大学 High-density carbon nanotube aggregate and method for producing the same
TWI429585B (en) * 2006-05-29 2014-03-11 Ulvac Inc Carbon nanotubes growth substrate, carbon nanotubes growth method, carbon nanotubes growth catalyst with particle size control method, and nano-carbon tube diameter control method
JP5081684B2 (en) * 2008-03-26 2012-11-28 株式会社アルバック Carbon nanotube growth substrate, method for producing the same, and method for producing carbon nanotubes
JP2010228970A (en) * 2009-03-27 2010-10-14 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing carbon nanotube and carbon nanotube structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621347B2 (en) * 2000-11-30 2011-01-26 株式会社アルバック Ultra-fine particle thin film forming equipment using helicon plasma
JP3453378B2 (en) * 2002-01-08 2003-10-06 科学技術振興事業団 Radial aggregate of sharp-end multi-walled carbon nanotubes and method for producing the same
JP3869394B2 (en) * 2003-06-30 2007-01-17 富士通株式会社 Fine particle deposition method and carbon nanotube formation method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIRAMATSU M.: "Fabrication of Dense Carbon Nanotube Films Using Microwave Plasma-Enhanced Chemical Vapor Deposition", JAPANESE JOURNAL OF APPLIED PHYSICS, 15 February 2005 (2005-02-15), pages 1150 - 1154, XP002997549 *
NAGAO H.: "Fabrication of Dense Carbon Nanotube Film Using Microwave Plasma-Enhanced CVD", vol. P2-075, 26 January 2005 (2005-01-26), pages 367 - 368, XP002997550 *
SHIMIZU Y.: "Fabrication of carbon nanotube assemblies on Ni-Mo substrates mimics law of natural forest growth", CHEMICAL PHYSICS LETTERS, vol. 370, 2003, pages 774 - 780, XP002997551 *
TAN C.K.: "Plasma synthesis of well-aligned carbon nanocones", DIAMOND AND RELATED MATERIALS, vol. 14, 19 January 2005 (2005-01-19), pages 902 - 906, XP004857188 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234973A (en) * 2007-03-20 2008-10-02 Ulvac Japan Ltd Electron emission source, its formation method, and manufacturing method of image display device
JP2012052282A (en) * 2010-03-02 2012-03-15 Showa Denko Kk Carbon fiber aggregate

Also Published As

Publication number Publication date
JP4834818B2 (en) 2011-12-14
JP2006315882A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
KR100615103B1 (en) Nanotubes, field emission cathode and cathode ray tube having nanotubes and method for forming them
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
WO2006120780A1 (en) Carbon nanotube aggregate and method for producing same
Thapa et al. Direct synthesis of micropillars of vertically aligned carbon nanotubes on stainless-steel and their excellent field emission properties
WO2006025393A1 (en) Process for producing nano-scale low-dimensional quantum structure, and process for producing integrated circuit using said process
Roy et al. Synthesis of single-walled, bamboo-shaped and Y-junction carbon nanotubes using microwave plasma CVD on low-temperature and chemically processed catalysts
Thapa et al. Density control of vertically aligned carbon nanotubes and its effect on field emission properties
JP5028606B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
JP5042482B2 (en) Method for producing aggregate of carbon nanotubes
Cappelli et al. Nano-structured oriented carbon films grown by PLD and CVD methods
JP4872042B2 (en) High-density carbon nanotube aggregate and method for producing the same
Zajíčková et al. Synthesis of carbon nanotubes by plasma-enhanced chemical vapor deposition in an atmospheric-pressure microwave torch
Cojocaru et al. Synthesis of multi-walled carbon nanotubes by combining hot-wire and dc plasma-enhanced chemical vapor deposition
Malekimoghadam et al. Carbon nanotubes processing
Mann et al. Direct growth of multi-walled carbon nanotubes on sharp tips for electron microscopy
JP2005032542A (en) Electron reflection suppressing material and its manufacturing method
Roy et al. Low temperature growth of carbon nanotubes with aligned multiwalls by microwave plasma-CVD
Sarangi et al. Bias-enhanced growth of carbon nanotubes directly on metallic wires
Chen et al. Large current carbon nanotube emitter growth using nickel as a buffer layer
Jain et al. Copper nanowire–carbon nanotube hierarchical structure for enhanced field emission
JP6476759B2 (en) Method of manufacturing aligned carbon nanotube assembly
JP2005035841A (en) Metallic wire or capillary equipped with carbon nanotube and method of depositing carbon nanotube
Jašek et al. Synthesis of carbon nanostructures by plasma enhanced chemical vapour deposition at atmospheric pressure
Roy et al. Growth of multiwall carbon nanotubes at 300° C using CO2 as a weak oxidant to (CH4+ H2) microwave plasma
Park et al. Atmospheric Plasmas for Carbon Nanotubes (CNTs)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06712197

Country of ref document: EP

Kind code of ref document: A1