[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006101132A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2006101132A1
WO2006101132A1 PCT/JP2006/305715 JP2006305715W WO2006101132A1 WO 2006101132 A1 WO2006101132 A1 WO 2006101132A1 JP 2006305715 W JP2006305715 W JP 2006305715W WO 2006101132 A1 WO2006101132 A1 WO 2006101132A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
proton conductive
diffusion region
fuel cell
force sword
Prior art date
Application number
PCT/JP2006/305715
Other languages
English (en)
French (fr)
Inventor
Akira Yajima
Yumiko Takizawa
Asako Satoh
Hirofumi Kan
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to JP2007509306A priority Critical patent/JPWO2006101132A1/ja
Priority to EP06729682A priority patent/EP1863111A1/en
Publication of WO2006101132A1 publication Critical patent/WO2006101132A1/ja
Priority to US11/858,162 priority patent/US20080014491A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell in which water generated in a force sword catalyst layer is supplied to an anode catalyst layer through a proton conductive membrane.
  • DMFC direct methanol fuel cell
  • DMFC uses a high energy density methanol as fuel, and can directly extract electric current from methanol on the electrode catalyst, eliminating the need for a reformer. Miniaturization is possible.
  • DMFC is also promising as a power source for small equipment because fuel handling is easier than hydrogen gas fuel.
  • DMFC fuel supply methods include a gas supply type DMFC in which liquid fuel is vaporized and then sent into the fuel cell with a blower, etc., and a liquid supply type DMFC in which the liquid fuel is directly supplied into the fuel cell with a pump or the like, Further, as disclosed in Japanese Patent Publication No. 3413111, an internal vaporization type DMFC or the like for vaporizing liquid fuel in a cell and supplying it to an anode is known.
  • Japanese Patent Application Laid-Open No. 5-190184 relates to a fuel cell using hydrogen gas fuel.
  • the electrode-electrolyte assembly in order to promote moisture supply to the electrolyte membrane, is formed with a portion where an electrode catalyst layer is formed and a portion consisting of only one solid polymer electrolyte membrane. It is disclosed that water having a water repellency and discharged to the outside is supplied to the solid polymer electrolyte membrane.
  • An object of the present invention is to allow water produced in the force sword catalyst layer to pass through the proton conductive membrane. It is to improve the output characteristics of the fuel cell supplied to the catalyst layer.
  • a proton conductive membrane an anode catalyst layer formed on one surface of the proton conductive membrane, and a portion on the opposite side of the proton conductive membrane
  • a fuel cell comprising a water diffusion region formed on the opposite surface of the proton conductive membrane so as to be in contact with the force sword catalyst layer.
  • a proton conductive membrane According to another aspect of the present invention, a proton conductive membrane
  • a force sword catalyst layer formed on the opposite surface of the proton conductive membrane so as to face the anode catalyst layer via the proton conductive membrane;
  • a fuel cell is provided.
  • a proton conductive membrane According to another aspect of the present invention, a proton conductive membrane
  • a force sword catalyst layer formed on the opposite surface of the proton conductive membrane so as to face the anode catalyst layer via the proton conductive membrane;
  • a fuel cell comprising: a water diffusion region formed in contact with the force sword catalyst layer and penetrating through the proton conductive membrane, and supplying water generated in the force sword catalyst layer to the anode catalyst layer Is done.
  • FIG. 1 is a schematic cross-sectional view showing a direct methanol fuel cell according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the MEA of the direct methanol fuel cell of FIG.
  • FIG. 3 is a schematic diagram showing an MEA of a direct methanol fuel cell according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing an MEA of a direct methanol fuel cell according to a third embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing an MEA of a direct methanol fuel cell according to a fourth embodiment of the present invention.
  • FIG. 6 is a characteristic diagram showing a change in cell voltage with time for the fuel cells of Example 1 and Comparative Example 1.
  • FIG. 7 is a schematic diagram showing an MEA of a direct methanol fuel cell according to a fifth embodiment of the present invention.
  • a state in which the water retention amount of the force sword catalyst layer is larger than the moisture retention amount of the anode catalyst layer is formed, and the osmotic pressure phenomenon is used to generate the state.
  • Water generated in the force sword catalyst layer is supplied to the anode catalyst layer through the proton conductive membrane.
  • the amount of water on the force sword side is larger than that on the anode side, for example, using a moisture retention plate that suppresses the transpiration of water generated in the force sword catalyst layer, or using liquid fuel with a high methanol concentration. Etc. can be achieved.
  • a water diffusion region is formed on the opposite surface of the proton conductive membrane so as to be in contact with the cathode catalyst layer, thereby generating a force sword catalyst layer.
  • the absorbed water can be absorbed by the water diffusion region, so that the pores of the force sword catalyst layer can be prevented from being clogged with water, and the diffusibility of the oxidizing gas can be suppressed from being reduced with power generation. be able to.
  • the embodiment of the present invention it is desirable to use vaporized fuel obtained by vaporizing liquid fuel in order to supply water generated in the force sword catalyst layer to the anode catalyst layer through the proton conductive membrane. Further, the embodiment of the present invention is preferably applied to an internal vaporization type fuel cell provided with vaporized fuel means for supplying a vaporized component of liquid fuel to the anode catalyst layer.
  • the liquid fuel to be vaporized include an aqueous methanol solution and pure methanol. It is desirable that the concentration of the aqueous methanol solution is higher than 50 mol%. The purity of pure methanol is desirably 95% by weight or more and 100% by weight or less.
  • Liquid fuel is not necessarily limited to methanol fuel.
  • ethanol fuel such as ethanol aqueous solution or pure ethanol
  • propanol fuel such as propanol aqueous solution or pure propanol
  • glycol aqueous solution or darcol fuel such as pure glycol, dimethyl ether, formic acid, Or other liquid fuel may be sufficient.
  • liquid fuel corresponding to the fuel cell is accommodated.
  • FIG. 1 and FIG. 2 show a first embodiment of an internal vaporization type fuel cell provided with a moisture retention plate.
  • FIG. 1 is a schematic cross-sectional view showing a direct methanol fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the MEA of the direct methanol fuel cell of FIG.
  • the membrane electrode assembly (MEA) 1 includes a force sword (air electrode) composed of a force sword catalyst layer 2 and a cathode gas diffusion layer 4, an anode catalyst layer 3 and an anode.
  • An anode (fuel electrode) composed of the gas diffusion layer 5 and a proton conductive electrolyte membrane 6 disposed between the force sword catalyst layer 2 and the anode catalyst layer 3 are provided.
  • a force sword catalyst layer 2 is formed in the vicinity of the center of the surface of the proton conductive membrane 6 opposite to the surface on which the anode catalyst layer 3 is formed.
  • the rectangular frame-shaped water diffusion region 2 a is formed on the proton conductive membrane 6 and covers the peripheral edge of the force sword catalyst layer 2.
  • the force sword gas diffusion layer 4 is laminated on the force sword catalyst layer 2 and the water diffusion region 2a.
  • the anode gas diffusion layer 5 is laminated on the anode catalyst layer 3.
  • Power sword gas diffusion The layer 4 plays a role of uniformly supplying the oxidizing agent to the force sword catalyst layer 2, but also serves as a current collector for the force sword catalyst layer 2.
  • the anode gas diffusion layer 5 serves to uniformly supply fuel to the anode catalyst layer 3 and also serves as a current collector for the anode catalyst layer 3.
  • the force sword conductive layer 7a and the anode conductive layer 7b are in contact with the force sword gas diffusion layer 4 and the anode gas diffusion layer 5, respectively.
  • porous layers for example, meshes
  • the rectangular frame-shaped force sword seal material 8a is located between the force sword conductive layer 7a and the proton conductive electrolyte membrane 6 and surrounds the periphery of the water diffusion region 2a and the force sword gas diffusion layer 4.
  • the rectangular frame-shaped anode seal material 8b is located between the anode conductive layer 7b and the proton conductive electrolyte membrane 6, and surrounds the anode catalyst layer 3 and the anode gas diffusion layer 5.
  • the force sword seal material 8a and the anode seal material 8b are O-rings for preventing fuel leakage and oxidant leakage of the membrane electrode assembly 1 force.
  • a liquid fuel tank 9 is disposed below the membrane electrode assembly 1.
  • liquid methanol or aqueous methanol solution is accommodated.
  • vaporized fuel supply means for supplying a vaporized component of the liquid fuel to the anode catalyst layer 3 is disposed.
  • the vaporized fuel supply means includes a gas-liquid separation membrane 10 that allows only the vaporized component of the liquid fuel to permeate and does not allow the liquid fuel to permeate.
  • the vaporized component of liquid fuel means methanol vapor when liquid methanol is used as the liquid fuel, and a mixed gas composed of methanol vapor and water vapor when methanol aqueous solution is used as the liquid fuel. means.
  • a resin frame 11 is laminated between the gas-liquid separation membrane 10 and the anode conductive layer 7b.
  • the space surrounded by the frame 11 functions as a vaporized fuel storage chamber 12 (so-called vapor reservoir) that temporarily stores the vaporized fuel that has diffused through the gas-liquid separation membrane 10. Due to the effect of suppressing the amount of permeated methanol in the vaporized fuel storage chamber 12 and the gas-liquid separation membrane 10, it is possible to prevent a large amount of vaporized fuel from being supplied to the anode catalyst layer 3 at a time, thereby preventing the occurrence of methanol crossover. It is possible to suppress.
  • the frame 11 is a rectangular frame and is formed of a thermoplastic polyester resin such as PET.
  • a moisturizing plate 13 is laminated on the force sword conductive layer 7 a laminated on the upper part of the membrane electrode assembly 1.
  • a cover 15 in which a plurality of air inlets 14 for taking in air as an oxidant is formed is laminated on the moisture retaining plate 13.
  • the cover 15 also serves to pressurize the stack including the membrane electrode assembly 1 and enhance its adhesion, and is made of, for example, a metal such as SU S304.
  • the moisturizing plate 13 serves to suppress the transpiration of the water generated in the power sword catalyst layer 2 and uniformly introduces the oxidant into the power sword gas diffusion layer 4 to thereby transfer the oxidant to the power sword catalyst layer 2. It also serves as an auxiliary diffusion layer that promotes uniform diffusion.
  • the liquid fuel (for example, methanol aqueous solution) in the liquid fuel tank 9 is vaporized, and the vaporized methanol and water diffuse through the gas-liquid separation membrane 10 and are temporarily stored in the vaporized fuel storage chamber 12, and gradually from there.
  • protons (H + ; also referred to as hydrogen ions) and electrons (e_) are generated by an oxidation reaction represented by the following formula (1).
  • Protons generated in the anode catalyst layer 3 diffuse to the force sword catalyst layer 2 through the proton conductive membrane 6. At the same time, the electrons generated in the anode catalyst layer 3 flow through the external circuit connected to the fuel cell, work against the load (resistance, etc.) of the external circuit, and flow into the force sword catalyst layer 2.
  • An oxidizing gas such as air is taken in from the air inlet 14 of the cover 15, diffuses through the moisture retention plate 13, the force sword conductive layer 7a, and the force sword gas diffusion layer 4, and supplies it to the force sword catalyst layer 2. It is done.
  • the supplied oxidizing gas causes a reduction reaction with the above-mentioned proton diffused through the proton conductive membrane 6 and the electrons flowing through the external circuit, thereby generating a reaction product.
  • the reaction in which oxygen contained in the air is generated in the force sword catalyst layer is expressed by the following equation (2).
  • the reaction product is water ( H ⁇ ).
  • the water generated in the force sword catalyst layer 2 by the reaction of the above-described formula (2) diffuses in the force sword gas diffusion layer 4 and reaches the moisture retention plate 13, and the moisture retention plate 13 prevents transpiration and increases the amount of water stored in the power sword catalyst layer 2. Since the water diffusion region 2a formed around the force sword catalyst layer 2 has higher water absorption than the force sword catalyst layer 2, the water held in the force sword catalyst layer 2 diffuses into the water diffusion region 2a. On the other hand, on the anode side, vaporized water is supplied through the gas-liquid separation membrane 10 or no water is supplied.
  • the liquid fuel tank can be downsized by using these high-concentration liquid fuels.
  • Examples of the catalyst contained in the force sword catalyst layer 2 and the anode catalyst layer 3 include a platinum group. Elemental metals of elements (Pt, Ru, Rh, Ir, ⁇ s, Pd, etc.), alloys containing platinum group elements, etc. It is desirable to use strong Pt-Ru for methanol and carbon monoxide as the anode catalyst, and platinum or an alloy such as platinum and Co, Fe, Cr, etc. as the power sword catalyst. Not. Also, a supported catalyst using a conductive support such as a carbon material may be used, or an unsupported catalyst may be used.
  • porous carbon paper For the force sword gas diffusion layer 4 and the anode gas diffusion layer 5, for example, porous carbon paper can be used.
  • Examples of the proton conductive material constituting the proton conductive membrane 6 include a fluorine-based resin having a sulfonic acid group (for example, perfluorocarbon sulfonic acid) and a hydrated carbon-based resin having a sulfonic acid group.
  • a fluorine-based resin having a sulfonic acid group for example, perfluorocarbon sulfonic acid
  • a hydrated carbon-based resin having a sulfonic acid group for example, perfluorocarbon sulfonic acid
  • Inorganic materials such as tungstic acid and phosphotungstic acid are listed, but not limited to these.
  • the water diffusion region 2a can be formed of, for example, a porous material or a proton conductive material.
  • a material having water absorption is desirable.
  • the porous material having water absorption include a nonwoven fabric, a woven fabric, a synthetic resin porous body, and a natural porous body.
  • the fibers constituting the nonwoven fabric and the woven fabric include synthetic fibers such as polyester, nylon, and acrylic, inorganic fibers such as glass, and natural fibers such as cotton, wool, silk, and paper.
  • examples of the synthetic resin porous material include foamed polyurethane, foamed polystyrene, porous polyethylene, and porous polyester. As a natural porous body, sponge etc.
  • a water diffusion region can be formed by applying a slurry or paste obtained by kneading a powder of an insulating substance such as silicon dioxide or alumina with a resin solution to a base material (for example, a proton conductive membrane) and solidifying by drying. Is possible.
  • the proton conductive material for example, a fluorine-based resin having a sulfonic acid group (for example, perfluorocarbon sulfonic acid), a hydrated carbon-based resin having a sulfonic acid group (for example, a sulfonated polyimide resin, Inorganic substances such as sulfonated polyether ether ketone, styrene sulfonic acid polymer, etc.) and tandaster phosphotungstic acid.
  • a material obtained by impregnating a porous base material with these proton conductive materials can be used as the water diffusion region.
  • the water diffusion region formed from the proton conductive material Since it does not contain, water absorption becomes high compared with a force sword catalyst layer.
  • the proton conductive material is the same type as the proton conductive material contained in the proton conductive membrane 6.
  • FIG. 1 A second embodiment of the present invention is shown in FIG.
  • a plurality of water diffusion regions 2b are scattered.
  • the force sword catalyst layer 2 is interposed between the water diffusion regions 2b and surrounds the periphery of each water diffusion region 2b. As shown in FIG. 3, by dispersing the water diffusion region 2b in the force sword catalyst layer 2, water generated in the force sword catalyst layer 2 is easily diffused into the water diffusion region 2b. The oxidizing gas diffusibility of the catalyst layer 2 can be further improved.
  • FIG. 4 is an example in which a water diffusion region 2 c is formed in a frame shape at the peripheral portion of the force sword catalyst layer 2, and an end portion of the water diffusion region 2 c penetrates the proton conductive membrane 6 and is an anode catalyst layer. It is in contact with 3.
  • FIG. 5 is an example in which a plurality of water diffusion regions 2 d are scattered, and the end of the water diffusion region 2 d penetrates the proton conductive membrane 6 and is in contact with the anode catalyst layer 3.
  • water diffusion regions having various shapes have been shown. However, in any form, the water diffusion region when the area of the force sword catalyst layer 2 is 100% is shown. The area ratio should be in the range of:! -50%. This is for the reason explained below. If the area ratio of the water diffusion region is less than 1%, the oxidative gas diffusibility of the force sword catalyst layer 2 is lowered, and there is a fear that the output decrease when power generation is continued for a long period of time is increased. On the other hand, if the area ratio of the water diffusion region exceeds 50%, high output may not be obtained.
  • the area of the water diffusion region is the side opposite to the surface facing the force sword gas diffusion layer 4 The area of the surface.
  • the water diffusion region is formed of a solid porous material or a solid proton conductive material
  • the water diffusion region is formed by cutting out or punching the porous material or proton conductive material into a desired shape. obtain. Cut the force sword catalyst layer into a shape corresponding to the water diffusion area, or Alternatively, a force sword catalyst layer having a desired shape is obtained by performing masking on a force sword gas diffusion layer such as carbon paper, applying a slurry, drying and then removing the mask. Thereafter, an anode is laminated on one surface of the proton conductive membrane, and a force sword is laminated on the opposite surface so as to face the anode. In addition, the water diffusion region is disposed on the opposite surface so as to contact the force sword catalyst layer. The resulting laminate is heated and pressed to obtain MEA.
  • a precursor solution for example, a naphthion solution or alumina paste
  • a force sword having a force sword catalyst layer having a void portion provided in a desired portion and a proton conductive membrane having a void portion provided in a desired portion are prepared.
  • the force sword is laminated so that the void portion of the force sword catalyst layer and the void portion of the proton conductive membrane communicate with each other.
  • unify with a hot press is formed by pouring the precursor solution of the water diffusion region into the void portion of the force sword catalyst layer and the void portion of the proton conductive membrane and evaporating the solvent to solidify.
  • a plurality of MEAs can be connected in series or in parallel.
  • a water diffusion region (referred to as an anode water diffusion region) may be provided so as to be in contact with the anode catalyst layer.
  • An example of the fuel cell of the fifth embodiment is shown in FIG. In FIG. 7, a plurality of MEAs used in the first embodiment are connected in series.
  • a plurality of force swords composed of a force sword catalyst layer 2 and a force sword gas diffusion layer 4 are arranged on one surface of the proton conductive electrolyte membrane 6 at intervals.
  • the An anode composed of the anode catalyst layer 3 and the anode gas diffusion layer 5 is disposed at a position facing the force sword on the opposite surface of the proton conductive membrane 6.
  • the water diffusion region 16 covers the gap between the force swords on the proton conductive membrane 6 and covers the periphery of the force sword.
  • the water diffusion region 17 is also formed on the anode side.
  • the anode water diffusion region 17 covers the gap between the anodes on the proton conductive membrane 6 and covers the periphery of the anode.
  • the water that has diffused from the force sword catalyst layer 2 to the water diffusion region 16 It moves to the anode water diffusion region 17 through the conductive membrane 6.
  • the water retained in the anode water diffusion region 17 permeates the anode catalyst layer 3 by capillary action. As a result, a sufficient amount of water can be supplied to the anode catalyst layer 3 and water clogging of the force sword catalyst layer 2 can be suppressed, so that high output can be maintained over a long period of time.
  • the water diffusion region 16 may penetrate the proton conductive membrane 6 and contact the anode water diffusion region 17.
  • the water diffusion region 16 can supply the water in the force sword catalyst layer 2 to the anode catalyst layer 3 without passing through the proton conductive membrane 6.
  • the water diffusion region 16 and the anode water diffusion region 17 can be formed with the same material force as described in the first embodiment.
  • Perfluorocarbon sulfonic acid solution perfluorocarbon sulfonic acid concentration 20% by weight
  • Water and methoxypropanol were added as a medium, and the catalyst-supported carbon black was dispersed to prepare a paste.
  • the obtained paste was applied to porous carbon paper as an anode gas diffusion layer to obtain an anode catalyst layer having a thickness of 100 ⁇ .
  • Perfluorocarbon sulfonic acid solution concentration of 20% by weight of perfluorocarbon sulfonic acid
  • water as a dispersion medium
  • a paste was prepared by dispersing the catalyst-supporting carbon black.
  • a 1 mm wide rectangular frame-shaped water diffusion region made of porous polyester (trade name of Unitikax SB) was placed on the proton conductive membrane and surrounded the force sword catalyst layer.
  • the size of the surface in contact with the proton conductive membrane in the water diffusion region was set to the value shown in Table 1 below when the area of the force sword catalyst layer was 100%.
  • the thickness is 500 xm
  • the air permeability is 2 seconds / 100cm 3 (according to the measurement method specified in JIS P-8117)
  • the moisture permeability is 4000g / m 2 24h CFIS L-1099
  • a porous film made of polyethylene accordinging to the measurement method specified in -1) was prepared.
  • a polyethylene terephthalate (PET) film having a thickness of 25 ⁇ m was used for the frame.
  • PET polyethylene terephthalate
  • a silicone rubber sheet having a thickness of 200 ⁇ m was prepared as a gas-liquid separation membrane.
  • the membrane electrode assembly obtained was combined with a moisture retaining plate, a frame, a gas-liquid separation membrane, and a fuel tank to assemble the internal vaporization type direct methanol fuel cell shown in Fig. 1 described above.
  • a direct methanol fuel cell was assembled in the same manner as in Example 1 except that the water diffusion region was formed with perfluorocarbonsulfonic acid instead of porous polyester.
  • a direct methanol fuel cell was assembled in the same manner as in Example 2 except that the water diffusion region was formed with perfluorocarbonsulfonic acid instead of porous polyester.
  • a methanol fuel cell was assembled directly in the same manner as in Example 1 except that the space was made a gap.
  • a methanol fuel cell was assembled directly in the same manner as in Example 2 except that the space was made a gap.
  • the width of the water diffusion area is increased to 2.2mm, and the area of the force sword catalyst layer is 2.76cm X 3.76cm
  • the direct methanol type is used in the same manner as in Example 1, except that the size of the surface in contact with the proton conductive membrane in the water diffusion region is 30% (the area of the force sword catalyst layer is 100%), the direct methanol type is used.
  • a fuel cell was assembled. The output ratio of the fuel cell to the initial output was measured in the same manner as described above, and was 93%.
  • the width of the water diffusion region is increased to 3.3 mm, the area of the force sword catalyst layer is reduced to 2.54 cm x 3.54 cm, and the size of the surface in contact with the proton conductive membrane in the water diffusion region is 50% (force A direct methanol fuel cell was assembled in the same manner as in Example 1 except that the area of the sword catalyst layer was 100%. The output ratio with respect to the initial output of this fuel cell was measured in the same manner as described above, and it was 95%.
  • the present invention is not limited to the above-described embodiments as they are, but can be embodied by modifying the constituent elements without departing from the spirit of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

 プロトン伝導性膜(6)と、前記プロトン伝導性膜(6)の一方の面に形成されたアノード触媒層(3)と、前記プロトン伝導性膜(6)の反対側の面に部分的に形成されたカソード触媒層(2)とを具備し、前記カソード触媒層(2)で生成した水が前記プロトン伝導性膜(6)を通して前記アノード触媒層(3)に供給される燃料電池であって、前記プロトン伝導性膜(6)の前記反対側の面に前記カソード触媒層(2)と接するように形成された水拡散領域(2a)を具備する燃料電池。

Description

明 細 書
燃料電池
技術分野
[0001] 本発明は、力ソード触媒層で生成する水がプロトン伝導性膜を通してアノード触媒 層に供給される燃料電池に関するものである。
背景技術
[0002] 近年、パーソナルコンピュータ、携帯電話等の各種電子機器は、半導体技術の発 達と共に小型化され、燃料電池をこれらの小型機器用の電源に用いることが試みら れている。燃料電池は、燃料と酸化剤を供給するだけで発電することができ、燃料の みを交換すれば連続して発電できるという利点を有しているため、小型化が出来れ ば携帯電子機器の作動に極めて有利なシステムといえる。特に、直接メタノール型燃 料電池(DMFC; direct methanol fuel cell)は、エネルギー密度の高レ、メタノー ルを燃料に用い、メタノールから電極触媒上で直接電流を取り出せるため、改質器が 不要で、小型化が可能である。また、 DMFCは、燃料の取り扱レ、も水素ガス燃料に 比べて容易なことから、小型機器用電源としても有望である。
[0003] DMFCの燃料の供給方法としては、液体燃料を気化してからブロワ等で燃料電池 内に送り込む気体供給型 DMFCと、液体燃料をそのままポンプ等で燃料電池内に 送り込む液体供給型 DMFC、更に、特許公報第 3413111号に開示されているよう に、セル内で液体燃料を気化させてアノードに供給する内部気化型 DMFC等が知 られている。
[0004] 特開平 5— 190184号公報は、水素ガス燃料を使用する燃料電池に関するもので ある。前記公報は、電解質膜への水分供給を促進するため、電極一電解質接合体 に、電極触媒層が形成されている部分と、固体高分子電解質膜一層のみの部分を 形成し、電極触媒層が持つ撥水性で外部に排出された水分を固体高分子電解質膜 に供給することを開示してレ、る。
発明の開示
[0005] 本発明の目的は、力ソード触媒層で生成した水がプロトン伝導性膜を通してァノー ド触媒層に供給される燃料電池の出力特性を改善することにある。
[0006] 本発明に係る態様によれば、プロトン伝導性膜と、前記プロトン伝導性膜の一方の 面に形成されたアノード触媒層と、前記プロトン伝導性膜の反対側の面に部分的に 形成された力ソード触媒層とを具備し、前記力ソード触媒層で生成した水が前記プロ トン伝導性膜を通して前記アノード触媒層に供給される燃料電池であって、
前記プロトン伝導性膜の前記反対側の面に前記力ソード触媒層と接するように形成 された水拡散領域を具備する燃料電池が提供される。
[0007] 本発明に係る別の態様によれば、プロトン伝導性膜と、
前記プロトン伝導性膜の一方の面に形成されたアノード触媒層と、
前記プロトン伝導性膜の反対側の面に前記プロトン伝導性膜を介して前記アノード 触媒層と対向するように形成された力ソード触媒層と、
前記プロトン伝導性膜の前記反対側の面に前記力ソード触媒層と接するように形成 され、前記力ソード触媒層で生成した水を前記プロトン伝導性膜を通して前記ァノー ド触媒層に供給する水拡散領域と
を具備する燃料電池が提供される。
[0008] 本発明に係る別の態様によれば、プロトン伝導性膜と、
前記プロトン伝導性膜の一方の面に形成されたアノード触媒層と、
前記プロトン伝導性膜の反対側の面に前記プロトン伝導性膜を介して前記アノード 触媒層と対向するように形成された力ソード触媒層と、
前記力ソード触媒層と接し、かつ前記プロトン伝導性膜を貫通するように形成され、 前記力ソード触媒層で生成した水を前記アノード触媒層に供給する水拡散領域と を具備する燃料電池が提供される。
図面の簡単な説明
[0009] [図 1]図 1は、本発明の第 1の実施形態に係る直接メタノール型燃料電池を示す模式 的な断面図である。
[図 2]図 2は、図 1の直接メタノール型燃料電池の MEAを示す模式図である。
[図 3]図 3は、本発明の第 2の実施形態に係る直接メタノール型燃料電池の MEAを 示す模式図である。 [図 4]図 4は、本発明の第 3の実施形態に係る直接メタノール型燃料電池の MEAを 示す模式図である。
[図 5]図 5は、本発明の第 4の実施形態に係る直接メタノール型燃料電池の MEAを 示す模式図である。
[図 6]図 6は、実施例 1および比較例 1の燃料電池についてのセル電圧の経時変化を 示す特性図である。
[図 7]図 7は、本発明の第 5の実施形態に係る直接メタノール型燃料電池の MEAを 示す模式図である。
発明を実施するための最良の形態
[0010] 本発明の実施形態に係る燃料電池では、前記力ソード触媒層の水分保持量が前 記アノード触媒層の水分保持量よりも多い状態を形成し、浸透圧現象を利用して前 記力ソード触媒層で生成した水を前記プロトン伝導性膜を通して前記アノード触媒層 に供給している。力ソード側の水分量をアノード側に比して多くするのは、例えば、力 ソード触媒層において生成した水の蒸散を抑止する保湿板の使用や、あるいはメタノ ール濃度の高い液体燃料の使用等により達成できる。
[0011] 上記のような力ソードからアノードに水供給する燃料電池では、発電を長期間続け ていると力ソード触媒層の気孔が水で塞がれ、力ソード触媒層における酸化性ガス( 例えば空気)の拡散性が劣化し、発電特性が低下するという問題点があった。
[0012] 本発明に係る実施形態のように、前記プロトン伝導性膜の反対側の面に前記カソ ード触媒層と接するように水拡散領域を形成することによって、力ソード触媒層で生 成した水を水拡散領域に吸収させることができるため、力ソード触媒層の気孔が水で 閉塞されるのを抑制することができ、発電に伴って酸化性ガスの拡散性が低下する のを抑えることができる。
[0013] また、水拡散領域に保持された水分は毛細管現象によってプロトン伝導性膜に拡 散してアノード触媒層に供給されるため、拡散の途中で水が気化により失われるのを 抑制することができ、十分な量を継続してアノード触媒層に供給することが可能にな る。これにより、高濃度な液体燃料で高出力を得ることができる。
[0014] なお、前述した特開平 5— 190184号公報では、電極触媒層に隙間を設け、その 隙間に水を溜めて固体高分子電解質膜に供給しているが、電解質膜に供給される 前に水が発電反応による温度上昇で気化しやすぐ十分な量を固体高分子電解質 膜に供給するのが難しぐまた、水の供給が安定しないという問題点がある。
[0015] 本発明の実施形態では、力ソード触媒層で生成した水をプロトン伝導性膜を通して アノード触媒層に供給するため、液体燃料を気化させた気化燃料の使用が望ましレ、 。また、本発明の実施形態は、液体燃料の気化成分をアノード触媒層に供給するた めの気化燃料手段を備えた内部気化型の燃料電池に適用することが好ましい。気化 させる液体燃料としては、例えば、メタノール水溶液、純メタノール等を挙げることが できる。メタノール水溶液の濃度は 50モル%を超える高濃度にすることが望ましい。 また、純メタノールの純度は、 95重量%以上 100重量%以下にすることが望ましい。 これにより、エネルギー密度が高ぐかつ出力特性に優れた小型の燃料電池を実現 すること力 Sできる。なお、液体燃料は必ずしもメタノール燃料に限られるものではなぐ 例えばエタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液 や純プロパノール等のプロパノール燃料、グリコール水溶液ゃ純グリコール等のダリ コール燃料、ジメチルエーテル、ギ酸、もしくはその他の液体燃料であってもよい。い ずれにしても、燃料電池に応じた液体燃料が収容される。
[0016] 保湿板を備えた内部気化型の燃料電池の第 1の実施形態を図 1及び図 2に示す。
[0017] 図 1は、本発明の一実施形態に係る直接メタノール型燃料電池を示す模式的な断 面図である。図 2は図 1の直接メタノール型燃料電池の MEAを示す模式図である。
[0018] 図 1及び図 2に示すように、膜電極接合体 (MEA) 1は、力ソード触媒層 2及びカソ ードガス拡散層 4からなる力ソード(空気極)と、アノード触媒層 3及びアノードガス拡 散層 5からなるアノード (燃料極)と、力ソード触媒層 2とアノード触媒層 3の間に配置さ れるプロトン伝導性の電解質膜 6とを備えるものである。
[0019] プロトン伝導性膜 6のアノード触媒層 3が形成されている面と反対側の面の中央付 近に、力ソード触媒層 2が形成されている。また、矩形枠状の水拡散領域 2aは、プロ トン伝導性膜 6上に形成され、力ソード触媒層 2の周縁部を覆っている。
[0020] 力ソードガス拡散層 4は、力ソード触媒層 2と水拡散領域 2a上に積層されている。一 方、アノードガス拡散層 5は、アノード触媒層 3上に積層されている。力ソードガス拡散 層 4は力ソード触媒層 2に酸化剤を均一に供給する役割を担うものであるが、力ソード 触媒層 2の集電体も兼ねている。一方、アノードガス拡散層 5はアノード触媒層 3に燃 料を均一に供給する役割を果たすと同時に、アノード触媒層 3の集電体も兼ねている 。力ソード導電層 7a及びアノード導電層 7bは、それぞれ、力ソードガス拡散層 4及び アノードガス拡散層 5と接している。力ソード導電層 7a及びアノード導電層 7bには、 例えば、金などの金属材料からなる多孔質層(例えばメッシュ)をそれぞれ使用するこ とが出来る。
[0021] 矩形枠状の力ソードシール材 8aは、力ソード導電層 7aとプロトン伝導性電解質膜 6 との間に位置すると共に、水拡散領域 2a及び力ソードガス拡散層 4の周囲を囲んで いる。一方、矩形枠状のアノードシール材 8bは、アノード導電層 7bとプロトン伝導性 電解質膜 6との間に位置すると共に、アノード触媒層 3及びアノードガス拡散層 5の周 囲を囲んでいる。力ソードシール材 8a及びアノードシール材 8bは、膜電極接合体 1 力 の燃料漏れ及び酸化剤漏れを防止するためのオーリングである。
[0022] 膜電極接合体 1の下方には、液体燃料タンク 9が配置されている。液体燃料タンク 9 内には、液体のメタノールあるいはメタノール水溶液が収容されている。液体燃料タ ンク 9の上方には、液体燃料の気化成分をアノード触媒層 3に供給するための気化 燃料供給手段が配置されている。気化燃料供給手段は、液体燃料の気化成分のみ を透過させて、液体燃料は透過できない、気液分離膜 10を備える。ここで、液体燃料 の気化成分とは、液体燃料として液体のメタノールを使用した場合、メタノール蒸気を 意味し、液体燃料としてメタノール水溶液を使用した場合にはメタノール蒸気と水の 蒸気からなる混合ガスを意味する。
[0023] 気液分離膜 10とアノード導電層 7bの間には、樹脂製のフレーム 11が積層されてい る。フレーム 11で囲まれた空間は、気液分離膜 10を拡散してきた気化燃料を一時的 に収容しておく気化燃料収容室 12 (いわゆる蒸気溜り)として機能する。この気化燃 料収容室 12及び気液分離膜 10の透過メタノール量抑制効果により、一度に多量の 気化燃料がアノード触媒層 3に供給されるのを回避することができ、メタノールクロス オーバーの発生を抑えることが可能である。なお、フレーム 11は、矩形のフレームで 、例えば PETのような熱可塑性ポリエステル樹脂から形成される。 [0024] 一方、膜電極接合体 1の上部に積層された力ソード導電層 7a上には、保湿板 13が 積層されている。酸化剤である空気を取り入れるための空気導入口 14が複数個形成 されたカバー 15は、保湿板 13の上に積層されている。カバー 15は、膜電極接合体 1 を含むスタックを加圧してその密着性を高める役割も果たしているため、例えば、 SU S304のような金属から形成される。保湿板 13は、力ソード触媒層 2において生成し た水の蒸散を抑止する役割をなすと共に、力ソードガス拡散層 4に酸化剤を均一に 導入することにより力ソード触媒層 2への酸化剤の均一拡散を促す補助拡散層として の役割も果たしている。
[0025] このような構成の燃料電池において、電流(電子の流れ)を生じるいわゆる発電反 応が起きる様子を詳述すると、以下のようになる。
[0026] 液体燃料タンク 9内の液体燃料 (例えばメタノール水溶液)が気化し、気化したメタノ ールと水が気液分離膜 10を拡散し、気化燃料収容室 12に一旦収容され、そこから 徐々にアノードガス拡散層 5を拡散してアノード触媒層 3に供給されると、下記(1)式 に示す酸化反応によってプロトン (H+;水素イオンともいう)と電子(e_)を生成する。
[0027] CH OH + H O → CO + 6H+ + 6e" (1)
3 2 2
なお、液体燃料として純メタノールを使用した場合には、燃料気化手段からの水の 供給がなレ、ため、力ソード触媒層 2に混入したメタノールの酸化反応で生成した水や プロトン伝導性膜 6中の水分等がメタノールと反応して前述した( 1 )式の酸化反応が 生じる力、あるいは前述した(1)式によらなレ、水不使用の反応機構で内部改質反応 が生じる。
[0028] アノード触媒層 3で生成したプロトンは、プロトン伝導性膜 6を通じて力ソード触媒層 2へ拡散する。また同時に、アノード触媒層 3で生成した電子は、燃料電池に接続さ れた外部回路を流れ、外部回路の負荷 (抵抗等)に対して仕事をし、力ソード触媒層 2に流入する。
[0029] 空気のような酸化性ガスは、カバー 15の空気導入口 14から取り入れられ、保湿板 1 3、力ソード導電層 7a及び力ソードガス拡散層 4を拡散し、力ソード触媒層 2に供給さ れる。供給された酸化性ガスは、上記の、プロトン伝導性膜 6を通じて拡散してきたプ 口トンと、外部回路を流れてきた電子と共に、還元反応を起こし、反応生成物を生成 する。例えば、力ソード触媒層に酸化性ガスとして空気を供給した場合、空気に含ま れる酸素が力ソード触媒層で生じる反応は下記(2)式の通りで、この場合は反応生 成物は水(H〇)である。
2
[0030] 〇 +4H+ + 4e— → 2H O (2)
2 2
この(1)式と(2)式の反応とが同時に生じることにより、燃料電池としての発電反応 が完結する。
[0031] 発電反応が進行すると、前述した(2)式の反応などによって力ソード触媒層 2中に 生成した水が、力ソードガス拡散層 4内を拡散して保湿板 13に到達し、保湿板 13に よって蒸散を阻害され、力ソード触媒層 2中の水分貯蔵量が増加する。力ソード触媒 層 2の周囲に形成された水拡散領域 2aは、力ソード触媒層 2よりも吸水性が高いため 、力ソード触媒層 2に保持された水は水拡散領域 2aに拡散する。一方、アノード側に おいては、気液分離膜 10を通して気化した水が供給されるか、あるいは水の供給が 全くない状態にある。その結果、発電反応の進行に伴って力ソード側の水分保持量 力 Sアノード側の水分保持量よりも多い状態を作り出すことができるため、浸透圧現象 によって、力ソード触媒層 2及び水拡散領域 2a中の水をプロトン伝導性膜 6を介して アノード触媒層 3に拡散させることができる。よって、力ソード触媒層 2で生成した水が 毛細管現象によってアノード触媒層 3に供給されるため、十分な量の水分をアノード 触媒層 3に安定して供給することができ、前述した(1)式に示すメタノールの酸化反 応を促すことができる。
[0032] また、力ソード触媒層 2で生成した水の多くが水拡散領域 2aに吸収されるため、力 ソード触媒層 2の気孔の水詰まりを抑制することができ、力ソード触媒層 2の酸化性ガ スの拡散性を良好に保つことができる。
[0033] 上記の結果、高出力特性を長期間に亘つて維持することができる。
[0034] さらに、アノード触媒層 3に十分な量の水を継続して供給することが可能となったた め、液体燃料として濃度が 50モル%を超えるメタノール水溶液や純メタノールを使用 した際にも高い出力特性を得ることができる。さらに、これら高濃度な液体燃料の使 用により液体燃料タンクの小型化を図ることも可能である。
[0035] 力ソード触媒層 2及びアノード触媒層 3に含有される触媒としては、例えば、白金族 元素の単体金属(Pt、 Ru、 Rh、 Ir、〇s、 Pd等)、白金族元素を含有する合金などを 挙げること力 Sできる。アノード触媒には、メタノールや一酸化炭素に対する耐性の強 レヽ Pt— Ru、力ソード触媒には、白金または白金と Co、 Fe、 Cr等の合金を用いること が望ましいが、これに限定されるものでは無い。また、炭素材料のような導電性担持 体を使用する担持触媒を使用しても、あるいは無担持触媒を使用しても良い。
[0036] 力ソードガス拡散層 4及びアノードガス拡散層 5には、例えば、多孔質のカーボンぺ ーパを使用することができる。
[0037] プロトン伝導性膜 6を構成するプロトン伝導性材料としては、例えば、スルホン酸基 を有するフッ素系樹脂(例えば、パーフルォロカーボンスルホン酸)、スルホン酸基を 有するハイド口カーボン系樹脂、タングステン酸やリンタングステン酸などの無機物等 が挙げられるが、これらに限定される物ではなレ、。
[0038] 水拡散領域 2aは、例えば、多孔性材料またはプロトン伝導性材料から形成すること ができる。多孔性材料としては、吸水性を有するものが望ましい。吸水性を持つ多孔 性材料としては、例えば、不織布、織布、合成樹脂多孔質体、天然多孔質体等を挙 げること力 Sできる。不織布及び織布を構成する繊維としては、例えば、ポリエステル、 ナイロン、アクリルなどの合成繊維、ガラスなどの無機物繊維、綿、毛、絹、紙等の天 然繊維などを挙げることができる。また、合成樹脂多孔質体としては、例えば、発泡ポ リウレタン、発泡ポリスチレン、多孔性ポリエチレン、多孔質ポリエステルなどを挙げる こと力 Sできる。天然多孔質体としては、例えば、海綿などを挙げることができる。また、 二酸化珪素やアルミナ等の絶縁性物質の粉末を樹脂溶液と混練したスラリーもしくは ペーストを基材 (例えばプロトン伝導性膜)に塗布し、乾燥により固化することによって も水拡散領域を形成することが可能である。一方、プロトン伝導性材料としては、例え ば、スルホン酸基を有するフッ素系樹脂(例えば、パーフルォロカーボンスルホン酸) 、スルホン酸基を有するハイド口カーボン系樹脂(例えば、スルホン化ポリイミド樹脂、 スルホン化ポリエーテルエーテルケトン、スチレンスルホン酸重合体等)、タンダステ ン酸ゃリンタングステン酸などの無機物等が挙げられる。この他に、これらプロトン伝 導性材料を多孔性基材に含浸させたものを水拡散領域として使用することができる。 プロトン伝導性材料から形成された水拡散領域は、力ソード触媒層と異なり、触媒を 含まないため、力ソード触媒層に比して吸水性が高くなる。アノード触媒層 3への水 拡散を更に良好なものにするためには、プロトン伝導性材料は、プロトン伝導性膜 6 に含まれるプロトン伝導性材料と同種類であることが望ましい。
[0039] 前述した図 1〜図 2では、力ソード触媒層 2の周縁部に水拡散領域 2aが接している 例を説明したが、水拡散領域の形態はこれに限らず、例えば、力ソード触媒層 2で水 拡散領域を囲むことも可能である。本発明の第 2の実施形態を図 3に示す。
[0040] プロトン伝導性膜 6のアノード触媒層 3が形成されている面と反対側の面には、複数 の水拡散領域 2bが点在している。力ソード触媒層 2は、水拡散領域 2b間に介在され 、それぞれの水拡散領域 2bの周縁部を囲んでいる。この図 3に示すように、水拡散 領域 2bを力ソード触媒層 2中に分散させることによって、力ソード触媒層 2中に生成し た水が水拡散領域 2bに拡散しやすくなるため、力ソード触媒層 2の酸化性ガス拡散 性をさらに向上することができる。
[0041] なお、前述した図 1〜図 2に示すように、力ソード触媒層 2の周縁部に水拡散領域 2 aを形成すると、 MEAの作製方法を簡素化することが可能である。
[0042] また、水拡散領域の少なくとも一部が、プロトン伝導性膜 6を貫通してアノード触媒 層 3と接していることが望ましい。これにより、アノード触媒層 3への水供給量をさらに 十分なものとすることができる。本発明の第 3、第 4の実施形態を図 4、図 5に示す。
[0043] 図 4は、力ソード触媒層 2の周縁部に水拡散領域 2cを枠状に形成した例で、水拡 散領域 2cの端部がプロトン伝導性膜 6を貫通してアノード触媒層 3と接している。
[0044] 図 5は、複数の水拡散領域 2dを点在させた例で、水拡散領域 2dの端部がプロトン 伝導性膜 6を貫通してアノード触媒層 3と接している。
[0045] 前述した第 1〜第 4の実施形態では、様々形状の水拡散領域を示したが、いずれ の形態においても、力ソード触媒層 2の面積を 100%にした際の水拡散領域の面積 比率は、:!〜 50%の範囲にすることが望ましい。これは以下に説明する理由によるも のである。水拡散領域の面積比率を 1 %未満にすると、力ソード触媒層 2の酸化性ガ ス拡散性が低下し、発電を長期間継続させた際の出力低下が大きくなる恐れがある 。一方、水拡散領域の面積比率が 50%を超えると、高い出力を得られない可能性が ある。ここで、水拡散領域の面積とは、力ソードガス拡散層 4と対向する面とは反対側 の面の面積をいう。具体的には、第 1、第 2の実施形態では、プロトン伝導性膜 6と対 向する面の面積であり、第 3,第 4の実施形態では、アノード触媒層 3と対向する面の 面積である。力ソード触媒層 2の面積を 100%とした際の水拡散領域の面積比率の 更に望ましい範囲は、 3〜30%である。
[0046] 第 1〜第 4の実施形態の燃料電池で用いられる MEAの製造方法の一例を以下に 説明する。
[0047] 水拡散領域が固体の多孔性材料か、固体のプロトン伝導性材料から形成される場 多孔性材料もしくはプロトン伝導性材料を所望の形に切り抜くか、打ち抜くことによ り水拡散領域を得る。力ソード触媒層を水拡散領域に対応した形に切り取る、または 肖 |Jり取る。あるいは、カーボンペーパーなどの力ソードガス拡散層にマスキングを行つ た後、スラリーを塗布し、乾燥させた後にマスキングを除去することにより所望の形状 の力ソード触媒層を得る。その後、プロトン伝導性膜の一方の面にアノードを積層し、 かつ反対側の面にアノードと対向するように力ソードを積層する。また、この反対側の 面に水拡散領域を力ソード触媒層と接するように配置する。得られた積層物を加熱プ レスすることにより MEAを得る。
[0048] なお、第 3, 4の実施形態のように水拡散領域がプロトン伝導性膜を貫通する形状 を有する場合、単に積層しプレスしただけでは部材間に隙間が出来てしまい完全に ガスを遮断できない恐れがある。よって、次に述べるような溶液流し込みを採用するこ とが望ましい。
[0049] 水拡散領域である多孔性材料及びプロトン伝導性材料を、溶液中の溶媒 (分散媒) を蒸発させて固化することにより形成する場合:
(A)まず、アノードのアノード触媒層の表面の所望の箇所に、水拡散領域の前駆体 溶液 (例えばナフイオン溶液や、アルミナペースト等)を塗布し、溶媒を蒸発させて固 化させることにより、水拡散領域を形成する。アノード触媒層の表面にプロトン伝導性 膜を積層した後、力ソードを力ソード触媒層がプロトン伝導性膜を介してアノード触媒 層と対向するように積層する。プロトン伝導性膜の表面に水拡散領域を力ソード触媒 層と隣接するように配置する。得られた積層物に加熱プレスを施すことにより、 MEA を得る。
[0050] (B)まず、所望の箇所に空隙部が設けられた力ソード触媒層を有する力ソードと、 所望の箇所に空隙部が設けられたプロトン伝導性膜を用意する。アノードのアノード 触媒層の表面にプロトン伝導性膜を積層した後、力ソードを力ソード触媒層の空隙部 とプロトン伝導性膜の空隙部が連通するように積層する。その後、加熱プレスにより一 体化する。力ソード触媒層の空隙部とプロトン伝導性膜の空隙部に、水拡散領域の 前駆体溶液を流し込み、溶媒を蒸発させて固化させることにより、水拡散領域を形成 する。
[0051] (C)力ソード触媒層の表面全面に上記前駆体溶液を塗布した後、これにプロトン伝 導性膜とアノードを積層し、これらに加熱プレスを施す。この加熱プレスの結果、表面 に塗布した前駆体溶液の一部が、力ソード触媒層の周囲にはみ出し、それが固化す ることによって、力ソード触媒層の周囲に水拡散領域が形成される。はみ出さずに表 面 (力ソード触媒層とプロトン伝導性膜の界面)に残った溶液は、接着剤として機能す るので特に問題とならない。
[0052] 前述した第 1〜第 4の実施形態の燃料電池では、複数の MEAを直列もしくは並列 に接続することが可能である。また、アノード触媒層と接するように水拡散領域 (ァノ ード水拡散領域と称す)を設けても良い。この第 5の実施形態の燃料電池の一例を 図 7に示す。図 7では、第 1の実施形態で使用する MEAが複数直列に接続されてい る。
[0053] 図 7に示すように、プロトン伝導性の電解質膜 6の一方の面に、力ソード触媒層 2及 び力ソードガス拡散層 4からなる力ソードが複数、互いに間隔を開けて配置されてい る。また、プロトン伝導性膜 6の反対側の面の力ソードと対向する位置に、アノード触 媒層 3及びアノードガス拡散層 5からなるアノードが配置されている。水拡散領域 16 は、プロトン伝導性膜 6上の力ソード間の隙間を坦め、かつ力ソードの周縁部を覆つ ている。
[0054] 第 5の実施形態では、アノード側にも水拡散領域 17を形成する。アノード水拡散領 域 17は、プロトン伝導性膜 6上のアノード間の隙間を坦め、かつアノードの周縁部を 覆っている。力ソード触媒層 2から水拡散領域 16に拡散してきた水は、プロトン伝導 性膜 6を介してアノード水拡散領域 17に移動する。アノード水拡散領域 17に保持さ れた水は、毛細管現象によってアノード触媒層 3に浸透する。その結果、アノード触 媒層 3に十分な量の水を供給することができると共に、力ソード触媒層 2の水詰まりが 抑制されるため、高出力を長期間に亘つて維持することができる。
[0055] なお、水拡散領域 16の一部もしくは全部力 プロトン伝導性膜 6を貫通してアノード 水拡散領域 17と接していても良い。この場合、水拡散領域 16は、力ソード触媒層 2 中の水を、プロトン伝導性膜 6を介さずにアノード触媒層 3に供給することが可能であ る。また、水拡散領域 16及びアノード水拡散領域 17は、前述した第 1の実施形態で 説明したのと同様な材料力 形成することができる。
[0056] 以下、本発明の実施例を図面を参照して詳細に説明する。
[0057] (実施例 1)
<アノード触媒層の作製 >
アノード用触媒粒子(Pt : Ru= l: 1)を担持したカーボンブラックに、プロトン伝導性 樹脂としてパーフルォロカーボンスルホン酸溶液(パーフルォロカーボンスルホン酸 の濃度 20重量%)と、分散媒として水及びメトキシプロパノールを添加し、前記触媒 担持カーボンブラックを分散させてペーストを調製した。得られたペーストをアノード ガス拡散層としての多孔質カーボンペーパーに塗布することにより、厚さが 100 μ ΐη のアノード触媒層を得た。
[0058] <力ソード触媒層の作製 >
力ソード用触媒粒子(Pt)を担持したカーボンブラックに、プロトン伝導性樹脂として パーフルォロカーボンスルホン酸溶液(パーフルォロカーボンスルホン酸の濃度 20 重量%)と、分散媒として水を添加し、前記触媒担持カーボンブラックを分散させてぺ 一ストを調製した。得られたペーストを力ソードガス拡散層としての多孔質カーボンぺ 一パーに塗布することにより、厚さ力 00 x mで、 3cm X 4cmの力ソード触媒層を得 た。
[0059] く膜電極接合体 (MEA)の作製 >
上記のようにして作製したアノード触媒層と力ソード触媒層の間に、プロトン伝導性 膜として厚さが 30 μ mで、含水率が 10〜20重量0 /0のパーフルォロカーボンスルホン 酸膜 (商品名 nafion膜 (登録商標)、デュポン社製)を配置した。多孔質ポリエステル (ュニチカ株式会社の商品名;ュニベックス SB)からなる lmm幅の矩形枠状の水拡 散領域を、プロトン伝導性膜上に配置し、力ソード触媒層の周囲を囲んだ。水拡散領 域のプロトン伝導性膜と接する面の大きさは、力ソード触媒層の面積を 100%とした 際に下記表 1に示す値となるように設定した。これらにホットプレスを施すことにより、 膜電極接合体 (MEA)を得た。
[0060] 保湿板として、厚さが 500 x mで、透気度が 2秒/ 100cm3 (JIS P— 8117に規定 の測定方法による)で、透湿度が 4000g/m224h CFIS L—1099 A—1に規定の 測定方法による)のポリエチレン製多孔質フィルムを用意した。
[0061] フレームには、厚さ 25 μ mのポリエチレンテレフタレート(PET)製フィルムを使用し た。また、気液分離膜として、厚さが 200 x mのシリコーンゴムシートを用意した。
[0062] 得られた膜電極接合体を、保湿板、フレーム、気液分離膜、燃料タンクと組み合わ せて、前述した図 1に示す内部気化型の直接メタノール型燃料電池を組みたてた。
[0063] (実施例 2)
前述した図 3に示すように 3cm X 4cmの力ソード触媒層の内部に直径 2mmの円柱 形状の水拡散領域を 20個点在させると共に、水拡散領域のプロトン伝導性膜と接す る面の大きさを下記表 1に示すように設定すること以外は、実施例 1と同様にして直接 メタノール型燃料電池を組みたてた。
[0064] (実施例 3)
多孔質ポリエステルの代わりにパーフルォロカーボンスルホン酸で水拡散領域を形 成すること以外は、実施例 1と同様にして直接メタノール型燃料電池を組みたてた。
[0065] (実施例 4)
多孔質ポリエステルの代わりにパーフルォロカーボンスルホン酸で水拡散領域を形 成すること以外は、実施例 2と同様にして直接メタノール型燃料電池を組みたてた。
[0066] (実施例 5)
多孔質ポリエステルの代わりにパーフルォロカーボンスルホン酸で水拡散領域を形 成し、図 4に示すように水拡散領域の端部をプロトン伝導性膜に貫通させてアノード 触媒層と接触させること以外は、実施例 1と同様にして直接メタノール型燃料電池を 組みたてた。なお、表 1には、水拡散領域のアノード触媒層と接する面の大きさ(カソ ード触媒層の面積を 100%とする)を、水拡散領域の面積比率として表示した。
[0067] (実施例 6)
多孔質ポリエステルの代わりにパーフルォロカーボンスルホン酸で水拡散領域を形 成し、図 5に示すように水拡散領域の端部をプロトン伝導性膜に貫通させてアノード 触媒層と接触させること以外は、実施例 2と同様にして直接メタノール型燃料電池を 組みたてた。なお、表 1には、水拡散領域のアノード触媒層と接する面の大きさ(カソ ード触媒層の面積を 100%とする)を、水拡散領域の面積比率として表示した。
[0068] (比較例 1)
水拡散領域を形成する代わりに、その箇所を隙間とした以外は、実施例 1と同様に して直接メタノール型燃料電池を組みたてた。
[0069] (比較例 2)
水拡散領域を形成する代わりに、その箇所を隙間とした以外は、実施例 2と同様に して直接メタノール型燃料電池を組みたてた。
[0070] 実施例:!〜 6および比較例:!〜 2の燃料電池について、燃料タンクに純度 99. 9重 量%の純メタノールを供給し、燃料としてのメタノール蒸気がアノード触媒層に供給さ れるようにした。力ソード触媒層に空気を供給して、室温にて一定電流で発電を行つ た際のセル電圧の経時変化を測定した。そのうち、実施例 1及び比較例 1の結果を 図 6に示すと共に、実施例:!〜 6および比較例:!〜 2についての一定時間経過後のセ ル電圧(初期のセル電圧を 100%とする)を下記表 1に示す。なお、図 6では、縦軸が 燃料電池の出力(一定電流を流した際のセル電圧を指標として表している)で、横軸 が発電時間である。
[表 1]
Figure imgf000017_0001
[0071] 図 6及び表 1から明らかなように、水拡散領域を備えた実施例 i〜6の燃料電池によ ると、水拡散領域の代わりに隙間を設けた比較例 1, 2の燃料電池に比較して、一定 時間発電を継続した際のセル電圧の低下が小さくなることが理解できる。
[0072] (実施例 7)
水拡散領域の幅を 2. 2mmと太くし、力ソード触媒層の面積を 2. 76cm X 3. 76cm と小さくし、水拡散領域のプロトン伝導性膜と接する面の大きさを 30% (力ソード触媒 層の面積を 100%とする)にすること以外は、実施例 1と同様にして直接メタノール型 燃料電池を組み立てた。この燃料電池の初期出力に対する出力比を前述したのと同 様にして測定したところ、 93%であった。
[0073] (実施例 8)
水拡散領域の幅を 3. 3mmと太くし、力ソード触媒層の面積を 2. 54cm X 3. 54cm と小さくし、水拡散領域のプロトン伝導性膜と接する面の大きさを 50% (力ソード触媒 層の面積を 100%とする)にすること以外は、実施例 1と同様にして直接メタノール型 燃料電池を組み立てた。この燃料電池の初期出力に対する出力比を前述したのと同 様にして測定したところ、 95%であった。
[0074] 実施例 7, 8に示す通り、水拡散領域の面積比率を 30%、 50%と高くすると、初期 出力に対する出力比が実施例 1に比して向上した。その反面、初期出力は実施例 1 を 100とした際に、実施例 7が 86、実施例 8が 75になった。よって、初期出力と初期 出力に対する出力比の双方を優れたものとするには、水拡散領域の力ソード触媒層 に対する面積比率を 30%以下にすることが望ましい。
[0075] なお、本発明は上記実施形態そのままに限定されるものではなぐ実施段階ではそ の要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態 に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成で きる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても よい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。

Claims

請求の範囲
[1] プロトン伝導性膜と、前記プロトン伝導性膜の一方の面に形成されたアノード触媒 層と、前記プロトン伝導性膜の反対側の面に部分的に形成された力ソード触媒層とを 具備し、前記力ソード触媒層で生成した水が前記プロトン伝導性膜を通して前記ァノ ード触媒層に供給される燃料電池であって、
前記プロトン伝導性膜の前記反対側の面に前記力ソード触媒層と接するように形成 された水拡散領域を具備する燃料電池。
[2] 前記水拡散領域は、多孔性材料またはプロトン伝導性材料力 形成されている請 求項 1記載の燃料電池。
[3] 前記プロトン伝導性材料は、前記プロトン伝導性膜に含まれるプロトン伝導性材料 と同種類である請求項 2記載の燃料電池。
[4] 前記水拡散領域の少なくとも一部は、前記プロトン伝導性膜を貫通して前記ァノー ド触媒層と接している請求項 1〜3いずれ力 1項記載の燃料電池。
[5] 前記水拡散領域は、前記力ソード触媒層の周縁部と接している請求項:!〜 3いずれ 力 1項記載の燃料電池。
[6] 前記力ソード触媒層が前記水拡散領域を囲んでいる請求項:!〜 3いずれか 1項記 載の燃料電池。
[7] 前記水拡散領域は、前記プロトン伝導性膜の反対側の面に点在している請求項 1
〜 3いずれか 1項記載の燃料電池。
[8] 前記力ソード触媒層の面積を 100%にした際の前記水拡散領域の面積比率は、 1
〜 50 %である請求項 1記載の燃料電池。
[9] 前記力ソード触媒層の面積を 100%にした際の前記水拡散領域の面積比率は、 3
〜 30 %である請求項 1記載の燃料電池。
[10] プロトン伝導性膜と、
前記プロトン伝導性膜の一方の面に形成されたアノード触媒層と、
前記プロトン伝導性膜の反対側の面に前記プロトン伝導性膜を介して前記アノード 触媒層と対向するように形成された力ソード触媒層と、
前記プロトン伝導性膜の前記反対側の面に前記力ソード触媒層と接するように形成 され、前記力ソード触媒層で生成した水を前記プロトン伝導性膜を通して前記ァノー ド触媒層に供給する水拡散領域と
を具備する燃料電池。
[11] 前記水拡散領域は、前記プロトン伝導性膜を介して前記アノード触媒層と対向して いる請求項 10記載の燃料電池。
[12] 前記プロトン伝導性膜の一方の面に前記アノード触媒層と接するように形成された アノード水拡散領域をさらに備え、前記水拡散領域は前記プロトン伝導性膜を介して 前記アノード水拡散領域と対向している請求項 10記載の燃料電池。
[13] 前記水拡散領域は、前記力ソード触媒層の周縁部と接している請求項 11記載の燃 料電池。
[14] 前記力ソード触媒層が前記水拡散領域を囲んでいる請求項 11記載の燃料電池。
[15] 前記水拡散領域は、前記プロトン伝導性膜の反対側の面に点在している請求項 1
1記載の燃料電池。
[16] プロトン伝導性膜と、
前記プロトン伝導性膜の一方の面に形成されたアノード触媒層と、
前記プロトン伝導性膜の反対側の面に前記プロトン伝導性膜を介して前記アノード 触媒層と対向するように形成された力ソード触媒層と、
前記力ソード触媒層と接し、かつ前記プロトン伝導性膜を貫通するように形成され、 前記力ソード触媒層で生成した水を前記アノード触媒層に供給する水拡散領域と を具備する燃料電池。
[17] 前記水拡散領域は、前記アノード触媒層と接している請求項 16記載の燃料電池。
[18] 前記アノード触媒層と接するように形成されたアノード水拡散領域をさらに備え、前 記水拡散領域は前記アノード水拡散領域と接している請求項 16記載の燃料電池。
[19] 前記水拡散領域は、前記力ソード触媒層の周縁部と接している請求項 16記載の燃 料電池。
[20] 前記力ソード触媒層が前記水拡散領域を囲んでいる請求項 16記載の燃料電池。
PCT/JP2006/305715 2005-03-23 2006-03-22 燃料電池 WO2006101132A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007509306A JPWO2006101132A1 (ja) 2005-03-23 2006-03-22 燃料電池
EP06729682A EP1863111A1 (en) 2005-03-23 2006-03-22 Fuel cell
US11/858,162 US20080014491A1 (en) 2005-03-23 2007-09-20 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005084464 2005-03-23
JP2005-084464 2005-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/858,162 Continuation US20080014491A1 (en) 2005-03-23 2007-09-20 Fuel cell

Publications (1)

Publication Number Publication Date
WO2006101132A1 true WO2006101132A1 (ja) 2006-09-28

Family

ID=37023792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305715 WO2006101132A1 (ja) 2005-03-23 2006-03-22 燃料電池

Country Status (6)

Country Link
US (1) US20080014491A1 (ja)
EP (1) EP1863111A1 (ja)
JP (1) JPWO2006101132A1 (ja)
KR (1) KR100877273B1 (ja)
CN (1) CN101147287A (ja)
WO (1) WO2006101132A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198384A (ja) * 2007-02-08 2008-08-28 Sharp Corp 燃料電池
EP1973185A1 (en) * 2007-03-23 2008-09-24 Kabushiki Kaisha Toshiba Fuel cell
JP2008243696A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 燃料電池モジュール
WO2009060604A1 (ja) * 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba 燃料電池
US20100086826A1 (en) * 2007-02-26 2010-04-08 Hideyuki Oozu Fuel cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012011441A1 (de) * 2011-07-02 2013-01-03 Volkswagen Aktiengesellschaft Membran-Elektroden-Einheit für eine Brennstoffzelle
BR112014031220A2 (pt) 2012-06-12 2017-06-27 Univ Monash estrutura de eletrodo com capacidade de respiração e método e sistema para uso em separação da água
AU2014295913A1 (en) 2013-07-31 2016-02-11 Aquahydrex Pty Ltd Method and electrochemical cell for managing electrochemical reactions
CN111509258B (zh) * 2019-01-31 2021-08-20 长城汽车股份有限公司 膜电极组件和膜电极组件的装配方法与燃料电池模组
EP3918112A4 (en) 2019-02-01 2022-10-26 Aquahydrex, Inc. CONTAINED ELECTROLYTE ELECTROCHEMICAL SYSTEM

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283094A (ja) * 1992-03-31 1993-10-29 Toshiba Corp 燃料電池
JPH09283162A (ja) * 1996-04-12 1997-10-31 Mazda Motor Corp 固体高分子型燃料電池
JP2000294260A (ja) * 1999-04-08 2000-10-20 Sony Corp イオン伝導体及びその製造方法、並びに燃料電池
JP2003242998A (ja) * 2002-02-19 2003-08-29 Nissan Motor Co Ltd 固体高分子型燃料電池
JP2003317747A (ja) * 2002-04-23 2003-11-07 Natl Space Development Agency Of Japan 固体高分子電解質形燃料電池
JP2004206915A (ja) * 2002-12-24 2004-07-22 Nippon Sheet Glass Co Ltd 固体高分子電解質型燃料電池セルおよびそれを用いた燃料電池
JP2004296175A (ja) * 2003-03-26 2004-10-21 Seiko Instruments Inc 燃料電池及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495281B1 (en) 2000-07-24 2002-12-17 Microcell Corporation Microcell electrochemical devices assemblies with corrosion management subsystem, and method of making and using the same
US7473490B2 (en) 2002-07-02 2009-01-06 Microcell Corporation Fuel cell structures and assemblies with channeled current collectors, and method of making the same
US7695843B2 (en) 2004-02-13 2010-04-13 Microcell Corporation Microfibrous fuel cell assemblies comprising fiber-supported electrocatalyst layers, and methods of making same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283094A (ja) * 1992-03-31 1993-10-29 Toshiba Corp 燃料電池
JPH09283162A (ja) * 1996-04-12 1997-10-31 Mazda Motor Corp 固体高分子型燃料電池
JP2000294260A (ja) * 1999-04-08 2000-10-20 Sony Corp イオン伝導体及びその製造方法、並びに燃料電池
JP2003242998A (ja) * 2002-02-19 2003-08-29 Nissan Motor Co Ltd 固体高分子型燃料電池
JP2003317747A (ja) * 2002-04-23 2003-11-07 Natl Space Development Agency Of Japan 固体高分子電解質形燃料電池
JP2004206915A (ja) * 2002-12-24 2004-07-22 Nippon Sheet Glass Co Ltd 固体高分子電解質型燃料電池セルおよびそれを用いた燃料電池
JP2004296175A (ja) * 2003-03-26 2004-10-21 Seiko Instruments Inc 燃料電池及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198384A (ja) * 2007-02-08 2008-08-28 Sharp Corp 燃料電池
US20100086826A1 (en) * 2007-02-26 2010-04-08 Hideyuki Oozu Fuel cell
US8765311B2 (en) * 2007-02-26 2014-07-01 Murata Manufacturing Co., Ltd. Fuel cell
EP1973185A1 (en) * 2007-03-23 2008-09-24 Kabushiki Kaisha Toshiba Fuel cell
JP2008243696A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 燃料電池モジュール
US8795911B2 (en) 2007-03-28 2014-08-05 Jx Nippon Oil & Energy Corporation Fuel cell module with a water reservoir including a water storing portion expanding from a cell unit to an anode side
WO2009060604A1 (ja) * 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba 燃料電池

Also Published As

Publication number Publication date
EP1863111A1 (en) 2007-12-05
CN101147287A (zh) 2008-03-19
JPWO2006101132A1 (ja) 2008-09-04
US20080014491A1 (en) 2008-01-17
KR100877273B1 (ko) 2009-01-07
KR20070103068A (ko) 2007-10-22

Similar Documents

Publication Publication Date Title
WO2006101132A1 (ja) 燃料電池
US20110091778A1 (en) Fuel cell and fuel cell stack
JPWO2005112172A1 (ja) 燃料電池
JP2006523936A (ja) 直接メタノール燃料電池における受動的水管理技術
JP4876914B2 (ja) 固体電解質型燃料電池
TWI332726B (ja)
JP2008210581A (ja) 燃料電池
US20110275003A1 (en) Fuel cell
TWI328899B (ja)
JPWO2006085619A1 (ja) 燃料電池
JPWO2006106969A1 (ja) 燃料電池
JPWO2008023632A1 (ja) 膜電極接合体及びその製造方法と燃料電池
JP2008293705A (ja) 膜電極接合体および燃料電池
JP2003331900A (ja) 燃料電池
JP4894385B2 (ja) パッシブ型水素製造装置及びそれを用いたパッケージ型燃料電池発電装置
WO2006104128A1 (ja) 燃料電池
US20090263688A1 (en) Fuel cell
JP2008276990A (ja) 燃料電池用電極および燃料電池
JP2009231195A (ja) 燃料電池及び電子装置
JP2010277782A (ja) 膜電極接合体及び燃料電池並びにそれらの製造方法
JPWO2008068887A1 (ja) 燃料電池
JPWO2008068886A1 (ja) 燃料電池
JP2007042600A (ja) 燃料電池
WO2011052650A1 (ja) 燃料電池
JP2011096468A (ja) 燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009402.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007509306

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077020965

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11858162

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006729682

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729682

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11858162

Country of ref document: US