[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006034998A1 - Temperatursensorvorrichtung - Google Patents

Temperatursensorvorrichtung Download PDF

Info

Publication number
WO2006034998A1
WO2006034998A1 PCT/EP2005/054778 EP2005054778W WO2006034998A1 WO 2006034998 A1 WO2006034998 A1 WO 2006034998A1 EP 2005054778 W EP2005054778 W EP 2005054778W WO 2006034998 A1 WO2006034998 A1 WO 2006034998A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensor device
temperature sensor
energy storage
probe
Prior art date
Application number
PCT/EP2005/054778
Other languages
English (en)
French (fr)
Inventor
Eric Klemp
Leonard Reindl
Wolfgang Schnell
Original Assignee
BSH Bosch und Siemens Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeräte GmbH filed Critical BSH Bosch und Siemens Hausgeräte GmbH
Publication of WO2006034998A1 publication Critical patent/WO2006034998A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2207/00Application of thermometers in household appliances
    • G01K2207/02Application of thermometers in household appliances for measuring food temperature
    • G01K2207/06Application of thermometers in household appliances for measuring food temperature for preparation purposes

Definitions

  • the invention relates to a temperature sensor device according to the preamble of claim 1 and of a cooking appliance according to the preamble of claim 10.
  • a temperature sensor device with a Temperatur ⁇ probe for introduction into a food is known.
  • the temperature probe is provided for measuring an internal temperature of the food and for this purpose comprises a skewer-shaped extension and an energy storage unit designed as an electromagnetic resonant circuit for temporarily storing a vibrational energy in the temperature probe.
  • An integrated in the energy storage unit quartz crystal has a temperature-dependent natural frequency. Therefore, a natural frequency of the energy storage unit is temperature-dependent.
  • An excitation of the energy storage unit is made by an inductive coupling from the outside.
  • the invention is in particular the object of providing a Temperatursensorvorrich ⁇ device with a generic temperature probe that allows a safe determination of a core temperature of a food.
  • the invention is based on a temperature sensor device with a temperature probe for introduction into a food to be cooked, which is provided for wireless measurement of an internal temperature of the food and which comprises an energy storage unit.
  • the energy storage unit is provided for storing a vibrational energy in at least two temperature-dependent frequencies.
  • a temperature information contained in a first frequency can be completed, and a core temperature of a food can be reliably determined.
  • the second frequency can contribute through redundancy to the reduction of a measurement error, or it can be obtained by comparing the frequencies information about a spatial course of an internal temperature of a food, for example about a temperature gradient.
  • a device shall be considered “provided for storing vibration energy” if a decay time associated with an attenuation constant of the device is longer than at least one period of the oscillatory energy storing oscillations is.
  • An insight into a spatial progression of the internal temperature can be obtained with the aid of the temperature probe if the temperature-dependent frequencies are each assigned to a region of the temperature probe. If internal temperatures in two disjoint regions of the food or the temperature probe can be determined with the aid of the temperature probe, it is advantageously possible to obtain information about a temperature gradient. If the internal temperatures can be determined in at least three ranges, an extreme of the internal temperature profile can be determined extrapolatively. However, embodiments of the invention are also conceivable in which the detection of the internal temperature in various areas merely serves to spatially average the detected temperature.
  • At least one frequency depends substantially linearly on the temperature.
  • the temperature sensor device can be advantageously extrapolated by knowing the frequency at only two reference temperatures.
  • substantially linear a dependency is to be designated here which corresponds to a linear dependence at least within a measurement tolerance.
  • the energy storage unit comprises at least one quartz oscillator
  • a particularly low-loss, cost-effective and robust energy storage unit with high quality can be achieved, which permits an exact frequency determination.
  • a cutting angle relative to the crystal planes of the quartz it is possible to achieve a substantially linear temperature dependence of the frequency of the quartz in the relevant temperature range between 100 ° C. and 300 ° C.
  • a complete abandonment of electronic components in the energy storage unit can be achieved if the energy storage unit comprises at least one mechanically oscillatable system.
  • the oscillatory system can be given, for example, by a vibrating string, a torsion pendulum, a vibrating diaphragm, a vibrating blade clamped in on one side or by another oscillatable unit which appears meaningful to a person skilled in the art.
  • Embodiments of the invention are also conceivable in which a temperature-dependent damping behavior of the mechanically or electromechanically oscillatable system can be detected and used for temperature determination.
  • the temperature probe comprises a communication unit for communicating a signal modulated with at least one temperature-dependent frequency
  • a transmission of the internal temperature detected by the temperature probe can be achieved particularly reliably.
  • Expansive antennas can advantageously be dispensed with if the communication unit is provided for communicating a microwave signal.
  • the communication unit can communicate particularly advantageously by means of a microwave generator of a cooking appliance comprising the temperature sensor device, which can also advantageously be used for heating purposes.
  • thermo probe comprises a grip element which is provided for receiving the communication unit.
  • a falsification of a temperature measurement result due to contamination and / or damage to the energy storage unit can advantageously be avoided if the temperature probe has a sealed interior for receiving the energy storage unit.
  • FIG. 1 shows a cooking appliance with a temperature sensor device which comprises a temperature probe
  • Fig. 3 shows an alternative temperature probe with a mechanically oscillatable Sys ⁇ system.
  • FIG. 1 shows a cooking appliance 26a with a temperature sensor device for detecting an internal temperature of a food to be cooked 14a.
  • the temperature sensor device has an evaluation unit 28a, which detects temperature information from a temperature probe 10a, with which the evaluation unit 28a wirelessly communicates.
  • the evaluation unit 28a ver ⁇ operates the temperature information and uses them to regulate a cooking process of the food 14a.
  • the temperature information is utilized in different ways.
  • the evaluation unit 28a completes the cooking process when the internal temperature of the food item 14a reaches a predetermined minimum value.
  • the evaluation unit 28a changes a predetermined program duration of a cooking program as a function of a spatial and a temporal gradient of the internal temperature.
  • the evaluation unit displays the internal temperature on a display unit of the cooking appliance 26a.
  • the temperature probe 10a contains three energy storage units 12a-12a "which are designed as electromagnetic resonant circuits with quartz crystals 16a-16a” and each have an inductance and a capacitance connected in parallel with the quartz oscillator 16a-16a " 16a - 16a "is a few hundred.
  • the inductances and the capacities of the energy storage units 12a-12a are arranged in a gripping element 22a of the temperature probe 10a, while the oscillating crystals 16a-16a” are glued on a circuit carrier 30a on which printed conductors are printed.
  • a conductive, temperature-insensitive adhesive is used for bonding the oscillating crystals 16a-16a "on the circuit carrier 30a.
  • the circuit carrier 30a is arranged in a stainless steel tube sealed with inert gas under vacuum, sealed interior 24a, which forms a spike-shaped extension 36a of the temperature probe 10a, which is inserted during use into an interior of the item to be cooked 14a.
  • an antenna 32a is additionally arranged which receives a microwave signal which is generated by the evaluation unit 28a with the aid of a microwave generator 34a of the cooking appliance 26a.
  • the microwave signal comprises a broad spectrum of frequencies and is coupled via diodes into the energy storage units 12a-12a ", which are thereby excited to vibrate in their respective natural frequency.
  • the antenna 32a together with the diodes forms a communication unit 20a of the temperature
  • the oscillations of the energy storage units 12a-12a modulate a signal generated by the antenna 32a with the respective natural frequency.
  • the modulated signal represents an echo of the microwave signal generated by the evaluation unit 28a, is detected by the evaluation unit 28a and divided into its frequency spectrum by a programmable arithmetic unit integrated in the evaluation unit 28a by means of a fast Fourier transform algorithm.
  • the evaluation unit 28a determines the natural frequencies of the energy storage units 12a-12a "from the spectrum and the temperatures of the oscillating crystals 16a-16a" from these with the aid of assignment tables stored in a memory unit of the evaluation unit 28a.
  • the frequencies of the oscillating crystals 16a-16a "or of the energy storage units 12a-12a" are substantially dependent, i. H. except for deviations within a measuring accuracy of the temperature sensor device, linearly from the internal temperature of the cooking product 14a in the region of the respective quartz crystal 16a-16a ".
  • the evaluation unit 28a computationally by the three detected internal temperatures, a parabola, which describes a temperature profile in the interior of the food 14a along the extension 36a approximately. Subsequently, the evaluation unit 28a determines the temperature in a vertex of the parabola, which can be used as the core temperature of the item to be cooked 14a for controlling a cooking process.
  • FIG. 3 shows an alternative temperature probe 10b.
  • the description is intended to be essentially confined to differences from the temperature probe 10b shown in FIGS. 1 and 2, the description being given with regard to characteristics which remain the same Reference can be made to Figures 1 and 2. Analogous features are provided with the same reference numerals, the letters "a” and "b” being added to distinguish them.
  • FIG. 3 shows a temperature probe 10b with four mechanical energy storage units 12b-12b "which comprise oscillating wires 38b-38b", which form a mechanically oscillatable system.
  • the oscillating wires 38b-38b “are suspended in various regions along a spike-shaped extension 36b of the temperature probe 10b and extend into a gripping element 22b of the temperature probe 10b, wherein a web 40b is provided at the transition between the extension 36b and the gripping element 22b is arranged, on which the oscillating wires 38b - 38b '"rest.
  • the oscillating wires 38b-38b “have a 6.2 cm long, freely oscillating, antenna-like section, into which a microwave signal of an evaluation unit 28b of a cooking device 26b enclosing the temperature probe 10b is inserted
  • the upper sections of the oscillating wires 38b-38b "each oscillate in their natural frequency, which depends on a voltage of the respective vibrating wire 38b-38b" 38b - 38b '"in particular from a temperature in the region of the suspension of the vibrating wire 38b - 38b'" in the extension 36b from.
  • a portion of the microwave signal generated by the evaluation unit 28b is absorbed and / or emitted by the antenna-like sections of the oscillating wires 38b-38b '
  • the absorption rate depends on a vibration speed of the oscillating wire due to a Doppler shift caused by the oscillation of the respective section. such that a signal received by the evaluation unit 28b is modulated with the oscillation frequencies of the upper sections of the oscillating wires 38b-38b '".
  • the evaluation unit 28b analyzes the signal and calculates from the three detected, temperature-dependent frequencies a temperature profile in the interior of a food item 14b into which the extension 36b of the temperature probe 10b is inserted. reference numeral

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Temperatursensorvorrichtung Die Erfindung geht aus von einer Temperatursensorvorrichtung mit einer Temperatursonde (10) zum Einbringen in ein Gargut (14), die zum drahtlosen Messen einer Innentemperatur des Garguts (14) vorgesehen ist und die eine Energiespeichereinheit (12) umfasst. Um eine Temperatursensorvorrichtung mit einer gattungsgemäßen Temperatursonde (10) bereitzustellen, die ein sicheres Bestimmen einer Kerntemperatur des Garguts (14) zulässt, wird vorgeschlagen, dass die Energiespeichereinheit (12) zum Speichern einer Schwingungsenergie in zumindest zwei temperaturabhängigen Frequenzen vorgesehen ist.

Description

Temperatursensorvorrichtung
Die Erfindung geht aus von einer Temperatursensorvorrichtung nach dem Oberbegriff des Anspruchs 1 und von einem Gargerät nach dem Oberbegriff des Anspruchs 10.
Aus der DE 29 35 271 C2 ist eine Temperatursensorvorrichtung mit einer Temperatur¬ sonde zum Einbringen in ein Gargut bekannt. Die Temperatursonde ist zum Messen einer Innentemperatur des Garguts vorgesehen und umfasst dazu einen spießförmigen Fort¬ satz und eine als elektromagnetischer Schwingkreis ausgebildete Energiespeichereinheit zum kurzzeitigen Speichern einer Schwingungsenergie in der Temperatursonde. Dadurch kann eine energetisch autonome und insbesondere batterielose Temperatursonde er¬ reicht werden. Ein in die Energiespeichereinheit integrierter Schwingquarz weist eine temperaturabhängige Eigenfrequenz auf. Daher ist auch eine Eigenfrequenz der Energie¬ speichereinheit temperaturabhängig. Eine Anregung der Energiespeichereinheit erfolgt durch eine induktive Kopplung von außen.
Der Erfindung liegt insbesondere die Aufgabe zugrunde, eine Temperatursensorvorrich¬ tung mit einer gattungsgemäßen Temperatursonde bereitzustellen, die ein sicheres Bestimmen einer Kerntemperatur eines Garguts zulässt.
Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteran¬ sprüchen entnommen werden können.
Die Erfindung geht aus von einer Temperatursensorvorrichtung mit einer Temperaturson- de zum Einbringen in ein Gargut, die zum drahtlosen Messen einer Innentemperatur des Garguts vorgesehen ist und die eine Energiespeichereinheit umfasst.
Es wird vorgeschlagen, dass die Energiespeichereinheit zum Speichern einer Schwin¬ gungsenergie in zumindest zwei temperaturabhängigen Frequenzen vorgesehen ist. Da- durch kann eine in einer ersten Frequenz enthaltene Temperaturinformation komplettiert werden, und eine Kerntemperatur eines Garguts kann sicher bestimmt werden. Dabei kann die zweite Frequenz durch Redundanz zur Reduktion eines Messfehlers beitragen, oder es kann durch einen Vergleich der Frequenzen eine Information über einen räumli¬ chen Verlauf einer Innentemperatur eines Garguts gewonnen werden, beispielsweise ü- ber einen Temperaturgradienten.
Unter „vorgesehen" soll in diesem Zusammenhang auch „ausgelegt" und „ausgestattet" verstanden werden. Eine Vorrichtung soll als „zum Speichern einer Schwingungsenergie vorgesehen" gelten, wenn eine einer Dämpfungskonstante der Vorrichtung zugeordnete Zerfallszeit länger als zumindest eine Periode der die Schwingungsenergie speichernden Schwingungen ist.
Ein Einblick in einen räumlichen Verlauf der Innentemperatur kann mit Hilfe der Tempera¬ tursonde gewonnen werden, wenn die temperaturabhängigen Frequenzen jeweils einem Bereich der Temperatursonde zugeordnet sind. Können mit Hilfe der Temperatursonde Innentemperaturen in zwei disjunkten Bereichen des Garguts bzw. der Temperatursonde bestimmt werden, können vorteilhaft Informationen über einen Temperaturgradienten ge- wonnen werden. Können die Innentemperaturen in zumindest drei Bereichen bestimmt werden, kann ein Extremum des Innentemperaturverlaufs extrapolativ bestimmbar sein. Es sind jedoch auch Ausgestaltungen der Erfindung denkbar, in denen das Erfassen der Innentemperatur in verschiedenen Bereichen lediglich der räumlichen Mittelung der er- fassten Temperatur dient.
Ferner wird vorgeschlagen, dass zumindest eine Frequenz im Wesentlichen linear von der Temperatur abhängt. Dadurch lässt sich die Temperatursensorvorrichtung durch Kenntnis der Frequenz bei lediglich zwei Referenztemperaturen vorteilhaft extrapolieren. Als „im Wesentlichen linear" soll hier eine Abhängigkeit bezeichnet werden, die zumindest innerhalb einer Messtoleranz einer linearen Abhängigkeit entspricht.
Umfasst die Energiespeichereinheit zumindest einen Schwingquarz, kann eine besonders dämpfungsarme, kostengünstige und robuste Energiespeichereinheit mit hoher Güte er¬ reicht werden, die eine exakte Frequenzbestimmung zulässt. Durch eine geeignete Wahl eines Schnittwinkels relativ zu den Kristallebenen des Quarzes kann eine im relevanten Temperaturbereich zwischen 100°C und 300°C im Wesentlichen lineare Temperaturab¬ hängigkeit der Frequenz des Quarzes erreicht werden. Ein vollständiger Verzicht auf elektronische Bauteile in der Energiespeichereinheit kann erreicht werden, wenn die Energiespeichereinheit zumindest ein mechanisch schwingfä¬ higes System umfasst. Dabei kann das schwingfähige System beispielsweise durch eine schwingende Saite, ein Torsionspendel, eine schwingende Membran, ein einseitig einge¬ spanntes schwingendes Blättchen oder durch eine andere, dem Fachmann als sinnvoll erscheinende schwingfähige Einheit gegeben sein. Es sind zudem Ausgestaltungen der Erfindung denkbar, in denen ein temperaturabhängiges Dämpfungsverhalten des mecha¬ nisch oder elektromechanisch schwingfähigen Systems erfassbar und zur Temperaturbe¬ stimmung nutzbar ist.
Umfasst die Temperatursonde eine Kommunikationseinheit zum Kommunizieren eines mit zumindest einer temperaturabhängigen Frequenz modulierten Signals, kann eine Über¬ mittlung der von der Temperatursonde erfassten Innentemperatur besonders sicher er¬ reicht werden. Auf raumgreifende Antennen kann vorteilhaft verzichtet werden, wenn die Kommunikationseinheit zum Kommunizieren eines Mikrowellensignals vorgesehen ist. Dabei kann die Kommunikationseinheit besonders vorteilhaft mittels eines Mikrowellenge¬ nerators eines die Temperatursensorvorrichtung umfassenden Gargeräts kommunizieren, der zudem vorteilhaft zu Heizzwecken einsetzbar sein kann.
Eine vorteilhaft klein bauende Temperatursonde ist erreichbar, wenn die Temperaturson- de ein Griffelement umfasst, das zur Aufnahme der Kommunikationseinheit vorgesehen ist.
Eine Verfälschung eines Temperaturmessergebnisses durch eine Verschmutzung und/oder Beschädigung der Energiespeichereinheit kann vorteilhaft vermieden werden, wenn die Temperatursonde einen versiegelten Innenraum zur Aufnahme der Energiespei¬ chereinheit aufweist.
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeich¬ nung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschrei- bung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weite¬ ren Kombinationen zusammenfassen. - A -
Es zeigen:
Fig. 1 ein Gargerät mit einer Temperatursensorvorrichtung, die eine Temperaturson¬ de umfasst,
Fig. 2 die Temperatursonde aus Figur 1 in einer Schnittdarstellung,
Fig. 3 eine alternative Temperatursonde mit einem mechanisch schwingfähigen Sys¬ tem.
Figur 1 zeigt ein Gargerät 26a mit einer Temperatursensorvorrichtung zum Erfassen einer Innentemperatur eines Garguts 14a. Die Temperatursensorvorrichtung weist eine Aus¬ werteinheit 28a auf, die eine Temperaturinformation von einer Temperatursonde 10a er- fasst, mit der die Auswerteinheit 28a drahtlos kommuniziert. Die Auswerteinheit 28a ver¬ arbeitet die Temperaturinformation und nutzt sie zum Regeln eines Garprozesses des Garguts 14a. In verschiedenen Betriebsmodi des Gargeräts 26a wird die Temperaturin¬ formation dabei in unterschiedlicher weise genutzt. In einem ersten Betriebsmodus been¬ det die Auswerteinheit 28a den Garprozess, wenn die Innentemperatur des Garguts 14a einen vorgegebenen Minimalwert erreicht. In einem weiteren Betriebsmodus verändert die Auswerteinheit 28a eine vorgegebene Programmdauer eines Garprogramms abhängig von einem räumlichen und von einem zeitlichen Gradienten der Innentemperatur. In ei¬ nem weiteren Betriebsmodus stellt die Auswerteinheit die Innentemperatur auf einer An¬ zeigeeinheit des Gargeräts 26a dar.
Die Temperatursonde 10a enthält drei Energiespeichereinheiten 12a - 12a", die als elekt- romagnetische Schwingkreise mit Schwingquarzen 16a - 16a" ausgebildet sind und je¬ weils eine Induktivität und eine parallel zum Schwingquarz 16a - 16a" geschaltete Kapa¬ zität aufweisen. Eine Güte der Schwingquarze 16a - 16a" beträgt einige Hundert. Die Induktivitäten und die Kapazitäten der Energiespeichereinheiten 12a - 12a" sind in einem Griffelement 22a der Temperatursonde 10a angeordnet, während die Schwingquarze 16a - 16a" auf einem Schaltungsträger 30a verklebt sind, auf dem Leiterbahnen aufgedruckt sind. Zum Verkleben der Schwingquarze 16a - 16a" auf dem Schaltungsträger 30a kommt ein leitfähiger, temperaturunempfindlicher Klebstoff zum Einsatz. Der Schaltungsträger 30a ist in einem mit Edelgas unter Unterdruck gefüllten, versiegel¬ ten Innenraum 24a eines Edelstahlrohrs angeordnet, das einen spießförmigen Fortsatz 36a der Temperatursonde 10a bildet, der während einer Benutzung in ein Inneres des Garguts 14a eingeführt ist.
Im Griffelement 22a ist zudem eine Antenne 32a angeordnet, die ein Mikrowellensignal empfängt, das von der Auswerteinheit 28a mit Hilfe eines Mikrowellengenerators 34a des Gargeräts 26a erzeugt ist. Das Mikrowellensignal umfasst ein breites Spektrum von Fre¬ quenzen und wird über Dioden in die Energiespeichereinheiten 12a - 12a" eingekoppelt, die dadurch zum Schwingen in ihrer jeweiligen Eigenfrequenz angeregt werden. Die An- tenne 32a bildet zusammen mit den Dioden eine Kommunikationseinheit 20a der Tempe¬ ratursonde 10a. Die Schwingungen der Energiespeichereinheiten 12a - 12a" modulieren ein von der Antenne 32a erzeugtes Signal mit der jeweiligen Eigenfrequenz. Das modu¬ lierte Signal stellt ein Echo des von der Auswerteinheit 28a erzeugten Mikrowellensignals dar, wird von der Auswerteinheit 28a erfasst und von einer in der Auswerteinheit 28a in- tegrierten programmierbaren Recheneinheit mittels eines Fast-Fourier-Transform- Algorithmus in sein Frequenzspektrum zerlegt. Die Auswerteinheit 28a bestimmt aus dem Spektrum die Eigenfrequenzen der Energiespeichereinheiten 12a - 12a" und aus diesen mit Hilfe von in einer Speichereinheit der Auswerteinheit 28a gespeicherten Zuordnungs¬ tabellen die Temperaturen der Schwingquarze 16a - 16a". Die Frequenzen der Schwing- quarze 16a - 16a" bzw. der Energiespeichereinheiten 12a - 12a" hängen im Wesentli¬ chen, d. h. bis auf Abweichungen innerhalb einer Messgenauigkeit der Temperatursen¬ sorvorrichtung, linear von der Innentemperatur des Garguts 14a im Bereich des jeweiligen Schwingquarzes 16a - 16a" ab.
Die Auswerteinheit 28a legt rechnerisch durch die drei erfassten Innentemperaturen eine Parabel, die einen Temperaturverlauf im Innern des Garguts 14a entlang des Fortsatzes 36a näherungsweise beschreibt. Anschließend bestimmt die Auswerteinheit 28a die Tem¬ peratur in einem Scheitelpunkt der Parabel, die als Kerntemperatur des Garguts 14a zum Steuern eines Garprozesses nutzbar ist.
Figur 3 zeigt eine alternative Temperatursonde 10b. Die Beschreibung soll sich im We¬ sentlichen auf Unterschiede zu der in den Figuren 1 und 2 dargestellten Temperatursonde 10b beschränken, wobei im Hinblick auf gleich bleibende Merkmale auf die Beschreibung zu den Figuren 1 und 2 verwiesen werden kann. Analoge Merkmale sind dabei mit glei¬ chen Bezugszeichen versehen, wobei zur Unterscheidung die Buchstaben „a" und „b" hinzugefügt sind.
Figur 3 zeigt eine Temperatursonde 10b mit vier mechanischen Energiespeichereinheiten 12b - 12b'", die Schwingdrähte 38b - 38b'" umfassen, die ein mechanisch schwingfähi- ges System bilden. Die Schwingdrähte 38b - 38b'" sind in verschiedenen Bereichen ent¬ lang eines spießförmigen Fortsatzes 36b der Temperatursonde 10b aufgehängt und rei¬ chen bis in ein Griffelement 22b der Temperatursonde 10b hinein, wobei am Übergang zwischen dem Fortsatz 36b und dem Griffelement 22b ein Steg 40b angeordnet ist, an dem die Schwingdrähte 38b - 38b'" anliegen. Oberhalb des Stegs 40b, im Innern des Griffelements 22b, weisen die Schwingdrähte 38b - 38b'" einen 6,2 cm langen, frei schwingenden, antennenartigen Abschnitt auf, in den ein Mikrowellensignal einer Aus¬ werteinheit 28b eines die Temperatursonde 10b umfassenden Gargeräts 26b eingekop¬ pelt werden kann. Angeregt durch Schallwellen aus der Umgebung schwingen die oberen Abschnitte der Schwingdrähte 38b - 38b'" jeweils in ihrer Eigenfrequenz, die von einer Spannung des jeweiligen Schwingdrahts 38b - 38b'" abhängig ist. Die Spannung hängt durch eine Temperaturausdehnung des Schwingdrahts 38b - 38b'" insbesondere von einer Temperatur im Bereich der Aufhängung des Schwingdrahts 38b - 38b'" im Fortsatz 36b ab.
Ein Anteil des von der Auswerteinheit 28b erzeugten Mikrowellensignals wird von den antennenartigen Abschnitten der Schwingdrähte 38b - 38b'" absorbiert und/oder emittiert. Dabei hängt die Absorptionsrate durch eine durch die Schwingung des jeweiligen Ab¬ schnitts bedingte Dopplerverschiebung von einer Schwingungsgeschwindigkeit des Schwingdrahts ab, so dass ein von der Auswerteinheit 28b empfangenes Signal mit den Schwingungsfrequenzen der oberen Abschnitte der Schwingdrähte 38b - 38b'" moduliert ist.
Die Auswerteinheit 28b analysiert das Signal und berechnet aus den drei erfassten, tem¬ peraturabhängigen Frequenzen einen Temperaturverlauf im Innern eines Garguts 14b, in welches der Fortsatz 36b der Temperatursonde 10b eingeführt ist. Bezugszeichen
10 Temperatursonde
12 Energiespeichereinheit
14 Gargut
16 Schwingquarz
20 Kommunikationseinheit
22 Griffelement
24 Innenraum
26 Gargerät
28 Auswerteinheit
30 Schaltungsträger
32 Antenne
34 Mikrowellengenerator
36 Fortsatz
38 Schwingdraht
40 Steg

Claims

Patentansprüche
1. Temperatursensorvorrichtung mit einer Temperatursonde (10) zum Einbringen in ein Gargut (14), die zum drahtlosen Messen einer Innentemperatur des Garguts (14) vorgesehen ist und die eine Energiespeichereinheit (12) umfasst, dadurch gekenn- zeichnet, dass die Energiespeichereinheit (12) zum Speichern einer Schwingungs¬ energie in zumindest zwei temperaturabhängigen Frequenzen vorgesehen ist.
2. Temperatursensorvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die temperaturabhängigen Frequenzen jeweils einem Bereich der Temperatursonde (10) zugeordnet sind.
3. Temperatursensorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine Frequenz im Wesentlichen linear von der Temperatur abhängt.
4. Temperatursensorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Energiespeichereinheit (12) zumindest einen Schwing¬ quarz (16) umfasst.
5. Temperatursensorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Energiespeichereinheit (12) zumindest ein mechanisch schwingfähiges System (38 - 38'") umfasst.
6. Temperatursensorvorrichtung nach einem der vorhergehenden Ansprüche, gekenn- zeichnet durch eine Kommunikationseinheit (20) der Temperatursonde (10) zum
Kommunizieren eines mit zumindest einer temperaturabhängigen Frequenz modu¬ lierten Signals.
7. Temperatursensorvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Kommunikationseinheit (20) zum Kommunizieren eines Mikrowellensignals vorge¬ sehen ist.
8. Temperatursensorvorrichtung zumindest nach Anspruch 6, gekennzeichnet durch ein Griffelement (22) der Temperatursonde (10), das zur Aufnahme der Kommunika¬ tionseinheit (20) vorgesehen ist.
9. Temperatursensorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatursonde (10) einen versiegelten Innenraum (24) zur Aufnahme der Energiespeichereinheit (12) aufweist.
10. Gargerät mit einer Temperatursensorvorrichtung nach einem der vorhergehenden Ansprüche.
PCT/EP2005/054778 2004-09-30 2005-09-23 Temperatursensorvorrichtung WO2006034998A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004047758.2 2004-09-30
DE102004047758A DE102004047758B4 (de) 2004-09-30 2004-09-30 Temperatursensorvorrichtung

Publications (1)

Publication Number Publication Date
WO2006034998A1 true WO2006034998A1 (de) 2006-04-06

Family

ID=35539159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/054778 WO2006034998A1 (de) 2004-09-30 2005-09-23 Temperatursensorvorrichtung

Country Status (2)

Country Link
DE (1) DE102004047758B4 (de)
WO (1) WO2006034998A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056060B4 (de) 2009-08-19 2011-09-22 Vectron International Gmbh & Co.Kg Messsystem zur drahtlosen positionsunabhängigen Messung der Temperatur
DE102015109043A1 (de) * 2015-06-09 2016-12-15 Rational Aktiengesellschaft Kerntemperaturfühler für ein Gargerät
IT201900008436A1 (it) * 2019-06-10 2020-12-10 Sacet S R L Sonda, sistema, metodo di misurazione di temperatura per alimenti e sistema di trattamento per alimenti
US11579019B2 (en) 2019-08-15 2023-02-14 Te Connectivity Solutions Gmbh Wireless energy-harvesting sensor probe
DE102022204282A1 (de) 2022-05-02 2023-11-02 BSH Hausgeräte GmbH Messspieß für Temperaturen von Lebensmitteln

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582921A (en) * 1968-08-06 1971-06-01 Charles R Krieger Temperature transducer and telemetry system
DE2935271A1 (de) * 1978-08-31 1980-04-24 Sharp Kk Temperaturfuehler
DE3119496A1 (de) * 1981-05-15 1982-12-23 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Speisenthermometer, insbesondere fuer mikrowellenherde
US6363330B1 (en) * 1998-04-10 2002-03-26 Satnam Singh Sampuran Alag Thermocouple failure detection in power generation turbines
US6431750B1 (en) * 1999-12-14 2002-08-13 Sierra Lobo, Inc. Flexible temperature sensing probe
DE10306940A1 (de) * 2003-02-18 2004-09-09 Rational Ag Verfahren zum Steuern eines Backprozesses

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688294A (en) * 1979-12-21 1981-07-17 Tokyo Shibaura Electric Co Electronic range
DE4421373A1 (de) * 1994-06-18 1995-12-21 Wiesheu Wiwa Gmbh Ofen zur Wärmebehandlung von stückförmigen Lebensmitteln
DE19945021C2 (de) * 1999-09-20 2003-10-23 Rational Ag Verfahren zum Steuern eines Garprozesses und hierzu verwendbare Garprozeßfühlereinrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582921A (en) * 1968-08-06 1971-06-01 Charles R Krieger Temperature transducer and telemetry system
DE2935271A1 (de) * 1978-08-31 1980-04-24 Sharp Kk Temperaturfuehler
DE3119496A1 (de) * 1981-05-15 1982-12-23 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Speisenthermometer, insbesondere fuer mikrowellenherde
US6363330B1 (en) * 1998-04-10 2002-03-26 Satnam Singh Sampuran Alag Thermocouple failure detection in power generation turbines
US6431750B1 (en) * 1999-12-14 2002-08-13 Sierra Lobo, Inc. Flexible temperature sensing probe
DE10306940A1 (de) * 2003-02-18 2004-09-09 Rational Ag Verfahren zum Steuern eines Backprozesses

Also Published As

Publication number Publication date
DE102004047758A1 (de) 2006-04-06
DE102004047758B4 (de) 2011-09-15

Similar Documents

Publication Publication Date Title
DE69323995T2 (de) Verfahren zum Abstimmen von elektronischen Antwortgeräten
DE19535543C2 (de) Identifizierungs- und/oder Sensorsystem
EP2335035B1 (de) VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS
DE102007041154A1 (de) RFID Transponder mit einer PLL
EP3502604A1 (de) Gefriertrocknungsprodukt-sensor, set von gefriertrocknungsprodukt-sensoren, trocknungsgefäss und verfahren zum betrieb eines gefriertrocknungsprodukt-sensors
EP1285284A1 (de) Verfahren und vorrichtung zur drahtlosen positions- und/oder lagebestimmung wenigstens eines objektes
DE10010846A1 (de) Erzeugnis mit einem Sensor und einem Oberflächenwellenelement sowie Verfahren und Anordnung zum Bestimmen einer einem reaktiven Widerstand entsprechenden Meßgröße von einem Sensor
DE10025502A1 (de) Sensorsystem zur Erfassung von Meßgrößen an einem rotierenden Gegenstand
EP1675041A1 (de) Backscatter transponder
DE69713897T2 (de) Impedanzmessgerät für resonanzstruktur
DE10253278B4 (de) Reifenmessung mit einem energieautark modulierten Backscatter-Transponder
DE19953334C2 (de) Fernauslesbare Identifikationsmarke und Verfahren zum Betrieb mehrerer solcher Identifikationsmarken
DE19619311C2 (de) Abfragegerät für passive Resonatoren als frequenzanaloge Sensoren mit Funkregelung
DE102004045199B4 (de) Messvorrichtung und Verfahren zur Bestimmung von Temperatur und/oder Druck und Verwendung der Messvorrichtung
EP1290663B1 (de) Sensor, sensorsystem und verfahren zur fernerfassung einer messgrösse
WO2006034998A1 (de) Temperatursensorvorrichtung
JP2011028424A (ja) センサ機能付きrfidタグ、およびそのrfidタグを用いたrfidシステム
DE4413211C2 (de) Identifizierungs- und/oder Sensorsystem
EP3772706B1 (de) Auf hochfrequenzidentifizierung basierendes, intelligentes befestigungselement
EP1026492A2 (de) Drahtlose Drehmoment-Messeinrichtung und Sensor für dieselbe
DE10258845A1 (de) Sensoreinrichtung zur Ermittlung von Temperaturen
Kalinin Modelling of a wireless SAW system for multiple parameter measurement
DE19851002A1 (de) Elektronische Baugruppe mit Identifikations- und/oder Sensorfunktion
EP0830617B1 (de) Abfragegerät für passive resonatoren als frequenzanaloge sensoren mit funkregelung
DE102004059050A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05801534

Country of ref document: EP

Kind code of ref document: A1