[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006027847A1 - Display - Google Patents

Display Download PDF

Info

Publication number
WO2006027847A1
WO2006027847A1 PCT/JP2004/013231 JP2004013231W WO2006027847A1 WO 2006027847 A1 WO2006027847 A1 WO 2006027847A1 JP 2004013231 W JP2004013231 W JP 2004013231W WO 2006027847 A1 WO2006027847 A1 WO 2006027847A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
optical filter
polarizing plate
treatment layer
light
Prior art date
Application number
PCT/JP2004/013231
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Kasahara
Kenichi Haruhara
Original Assignee
Kabushiki Kaisha Iiyama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Iiyama filed Critical Kabushiki Kaisha Iiyama
Priority to PCT/JP2004/013231 priority Critical patent/WO2006027847A1/en
Publication of WO2006027847A1 publication Critical patent/WO2006027847A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a display device provided with an optical filter.
  • display devices that display video information such as notebook computers, touch panel displays, etc.
  • CRT Cathode Ray Tube
  • LCD liquid crystal or plasma
  • display devices that use liquid crystals have a growing demand for low power consumption in addition to space saving.
  • a reflection reducing treatment layer such as an AR (anti-reflection) coating that coats the display surface with a plurality of thin films having different refractive indexes.
  • an antiglare treatment layer such as a silica coat that generates fine irregularities is often provided on the display surface.
  • the display device reflects outside light not only on the display surface but also on the inner side of the display surface. Therefore, as a method of reducing the reflection of these external lights, there is a technique of attaching a protective film for a display surface having a light transmittance of 30% to less than 80% in the wavelength range of 450 to 800 nm to the display surface. It is disclosed in Patent Document 1.
  • the protective film for the display surface is a laminate of a base film and a rubber film, and the impact resistance can be improved by adhering it directly to the display surface.
  • Patent Document 2 discloses a structure of an optical filter incorporated in an LCD module in a display device.
  • the LCD module is an LCD panel having a polarizing plate, a package component that also has a knocklight and the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-083886
  • Patent Document 2 Japanese Patent Laid-Open No. 7-253505
  • the protective film for display surface according to the prior art, the amount of light emitted from the display device passes through the protective film for display surface once in order to reduce the light transmittance over the entire visible light region. As a result, there is a problem that the brightness of the display device itself is lowered.
  • the protective film for display surface according to Patent Document 1 is a laminate having a thickness of several hundreds / zm—several mm, in which a base film and a rubber film are laminated, and is directly attached to the display surface. For this reason, external forces and impacts applied to the protective film for the display surface may propagate to the display surface and damage the display device.
  • the present invention has been made to solve such problems, and the object of the present invention is to reduce the amount of reflected light without reducing the amount of light emitted from a display device that emits linearly polarized light.
  • An object of the present invention is to provide an optical filter capable of improving the contrast of a display device and a display device having improved contrast.
  • optical filter according to the present invention is not provided in the LCD module inside the display device body as in Patent Document 2, but is provided outside the LCD module.
  • a display device comprises a display device body that emits linearly polarized light.
  • the optical filter having at least a linearly polarizing plate is provided on the front surface of the display device body so that the polarization axis of the linearly polarized light emitted from the display device body and the transmission axis of the linearly polarizing plate coincide with each other. It is characterized by that.
  • the external light incident on the display device main body that emits linearly polarized light absorbs the polarized light component that is orthogonal to the transmission axis of the linearly polarizing plate when transmitted through the optical filter. Then, the external light that has passed through the optical filter is reflected by the display device main body and is emitted to the outside again through the optical filter. In other words, when the external light is first transmitted through the optical filter, only the polarization component parallel to the transmission axis of the linear polarizing plate is transmitted. It is about half of.
  • the output light of the display device main body that emits linearly polarized light is hardly reduced by the optical filter because the transmission axis of the linearly polarizing plate is parallel to the polarization direction of the emitted light. That is, the optical filter hardly causes a decrease in luminance of the display device body itself.
  • contrast intensity can be improved by reducing the intensity of reflected light of external light and maintaining the intensity of light emitted from the display device main body as it is.
  • the optical filter is characterized by having a linearly polarizing plate and an optical member that does not have polarization and transmits light.
  • the optical member may include one or both of a resin plate and a glass plate.
  • the strength of the optical filter can be increased.
  • the optical member may have a function of a touch panel.
  • the display device can have a function as a touch panel.
  • the optical filter may be provided with at least one of a surface treatment layer of a reflection reduction treatment layer, an antiglare treatment layer, a hardening treatment layer, a conductive treatment layer, or an antifouling treatment layer.
  • the display device can improve or have low reflectivity, antiglare property, scratch resistance, conductivity, or antifouling property.
  • the optical filter is provided with the reflection reduction treatment layer on both sides, Experiments have shown that the contrast is improved.
  • the optical filter further improves the contrast by disposing the linearly polarizing plate and the optical member in the center and providing the reflection reduction processing layer on both surfaces thereof.
  • the reflection of external light is reduced compared to the case where no optical filter is provided without reducing the emitted light from the display device body that emits linearly polarized light.
  • the contrast of the display device can be improved.
  • the contrast is increased in the direction of darkening the whole, which is easy on the eyes.
  • FIG. 1 is a cross-sectional view showing an example of the present invention.
  • FIG. 2 is an explanatory diagram showing experimental conditions for verifying the effect of the AR coating and the optimum structure of the optical filter.
  • FIG. 3 is a table showing the results of experiments verifying the effects of AR coating.
  • FIG. 4 is a table showing the results of an experiment for verifying the optimum structure of an optical filter.
  • the side facing the liquid crystal display device which is the display device main body that emits the linearly polarized light of the optical filter, is the inside, and the other is the outside.
  • FIG. 1 shows a sectional view of a display device 1 which is an embodiment of the present invention.
  • the display device 1 includes an optical filter 10 and a liquid crystal display device (display device body in the claims) 70.
  • the LCD module inside the liquid crystal display device 70 is provided with a polarizing plate (not shown), and the liquid crystal display device 70 emits linearly polarized light.
  • the optical filter 10 includes a surface treatment layer 40, a linearly polarizing plate 20, an optical member 32, and a surface treatment layer 42 arranged in this order from the liquid crystal display device side (inner side). Installed in front of.
  • the relationship between external light and outgoing light in the display device 1 will be described.
  • the polarization direction of the outgoing light 60 from the liquid crystal display device 70 is parallel to the transmission axis of the linear polarizing plate 20, and the linear polarizing plate 20 hardly reduces the transmitted light amount of the outgoing light 60.
  • the external light 50 has a polarization component almost equal in both directions parallel and perpendicular to the transmission axis of the linear polarizing plate 20, and is transmitted through the linear polarizing plate 20.
  • the polarized light component orthogonal to the axis is absorbed and becomes transmitted external light 52 that is approximately half the amount of external light 50.
  • the transmitted external light 52 is reflected by the liquid crystal display device 70 to become reflected light 54.
  • the reflected light 54 is again transmitted through the linear polarizing plate 20 and is emitted from the optical filter 10 as transmitted reflected light 56.
  • each configuration of the optical filter 10 will be described.
  • the linearly polarizing plate 20 includes a polarizer 24 and optical films 26 and 28 provided on both the inside and outside of the polarizer 24.
  • optical films 26 and 28 made of a film-like resin having a thickness of several to several hundred m are adhered to both the inner and outer surfaces of the polarizer 24 to prevent the polarizer 24 from being damaged.
  • the optical member 32 having a thickness of several millimeters and having a glass plate force having no polarizing property is bonded to the outside of the linear polarizing plate 20 and forms a part of the configuration of the optical filter 10, thereby forming the optical filter 10.
  • the strength of the display device 1 provided with is improved.
  • the surface treatment layer 40 formed of a reflection reduction treatment layer and provided inside the linear polarizing plate 20 reduces reflection of reflected light 54 (external light reflected light) and outgoing light 60 on the inner surface of the linear polarizing plate 20. .
  • the surface treatment layer 42 formed of a reflection reduction treatment layer and provided on the outer side of the optical member 32 reduces the reflection of the external light 50 on the outer surface of the optical member 32.
  • the liquid crystal display device 70 of the external light 50 is compared with the case where the optical filter 10 that hardly reduces the emitted light 60 from the liquid crystal display device 70 by the linearly polarizing plate 20 is not provided.
  • the reflected light 54 from the light source is reduced.
  • the transmitted / reflected light 56 is reduced, the contrast of the display device 1 is improved, and the image can be easily viewed.
  • the strength of the display device 1 can be improved. Become.
  • the surface treatment layer 40 made of the reflection reduction treatment layer it is possible to suppress the decrease in the luminance of the display device 1, and similarly, by providing the surface treatment layer 42 made of the reflection reduction treatment layer, the display device 1 It becomes possible to further improve the contrast of 1. Further, when manufacturing such an optical filter 10, it is necessary to prevent air from entering between the layers. For this reason, when bonding each layer, use an adhesive glue to push out the air!
  • the reflected light 54 reflected by the transmitted external light 52 on the liquid crystal display device 70 is a combination of the display surface 72 of the liquid crystal display device 70 and the reflected light inside (not shown).
  • the optical member is a glass plate, but a resin plate may be used for the optical member.
  • a resin plate As the resin board, an acrylic resin resin that is light in weight and low in processing cost and excellent in impact resistance is preferable.
  • the optical member is composed of one or more resin plates and glass plates, and the stacking order and the number of the optical members are not limited.
  • the linear polarizing plate generally has the structure shown in the examples, and a film-like polarizer formed by stretching PVC (polybulal alcohol) is sandwiched between film-like optical films made of TAC (triacetyl cellulose).
  • PVC polybulal alcohol
  • TAC triacetyl cellulose
  • a film-like one is known.
  • the optical film made of TAC functions as a protective layer that prevents the polarizer from being scratched. This improves the workability when handling the linearly polarizing plate, and the effect is great even when the display device according to the present invention is manufactured.
  • the thickness of the optical film made of TAC is generally several tens to several hundreds; about zm, and the strength of the display device can be improved only by the film-like linearly polarizing plate having the structure shown in the examples. Not enough.
  • an optical member having a touch panel function and combining it with a linear polarizing plate, a display device capable of improving contrast and strength can be obtained, and a touch panel function can be provided.
  • the touch panel comes in various types, such as a resistive film method, an ultrasonic method, a capacitance method, and an electromagnetic induction method.
  • the optical filter according to the present invention can be configured without being limited to the touch panel system.
  • the touch panel detects position information and the like by contact with a finger or a dedicated pen, and the touch panel itself has sufficient strength to withstand such contact.
  • the reflection reduction treatment layer has been described as the surface treatment layer, but as the surface treatment layer, at least one of an antiglare treatment layer, a curing treatment layer, a conductive treatment layer, and an antifouling treatment layer is used. And can be provided on any surface of the linearly polarizing plate, the optical member, and the touch panel.
  • the surface treatment layer may be formed by stacking, and the stacking order, the number of layers, and the type thereof are not limited.
  • the surface treatment layer may be formed by stacking, and the stacking order, the number of layers, and the type thereof are not limited.
  • by providing a conductive treatment layer on the optical member and further providing a cured treatment layer thereon it is possible to improve the conductivity of the optical member provided with the surface treatment layer and improve the surface strength. .
  • the effect can be obtained or can be easily obtained depending on the kind of the surface treatment layer.
  • the reflection reduction processing layer for example, there is a layer formed by coating the surface of an optical filter with two types of thin films having different refractive indexes, which improves low reflectivity. Thereby, reflection on the surface of the optical filter is reduced, and the contrast of the display device is improved.
  • the antiglare layer includes, for example, a layer formed by spraying silica on the surface of an optical filter and baking it to generate fine irregularities on the surface, and has antiglare properties. Thereby, the specular reflection on the surface of the optical filter is reduced, the reflection of external light is reduced, and the contrast of the display device is improved.
  • the conductive treatment layer for example, there is a layer formed by coating a conductive metal oxide on the surface of the optical filter, which improves the conductivity. Thereby, an electromagnetic wave shield is formed on the surface of the optical filter, and electromagnetic waves radiated from the display device are reduced.
  • the antifouling treatment layer for example, there is a layer constituted by vacuum-depositing a fluorine chemical on the surface of the optical filter, which improves the antifouling property. This makes it easier to wipe off dirt such as fingerprints adhering to the surface of the optical filter.
  • the liquid crystal display device 70 (display device body) has a polarizing plate provided inside the LCD module to emit linearly polarized light. Therefore, the transmission axis of the linear polarizing plate of the optical filter must be arranged so as to be parallel to the polarization axis of the outgoing light of the liquid crystal display device 70. In particular, there are various types of polarization axes of emitted light, such as 0 °, 45 °, and 90 °, which need attention.
  • the optical filter is preferably configured so as to be easily attached to and detached from the liquid crystal display device 70 that emits linearly polarized light. As a result, the optical filter can be easily replaced when it is desired to change the specification of the optical filter or when the optical filter is contaminated.
  • the distance between the optical filter and the liquid crystal display device 70 that emits linearly polarized light is not limited.
  • an incandescent bulb was placed at a position where the central axial force of the liquid crystal display device 70 was off 45 ° so that the illuminance at the center of the liquid crystal display device 70 would be 500 lux. At this time, the distance from the front surface of the liquid crystal display device 70 to the incandescent bulb was 100 cm.
  • the luminance of the liquid crystal display device 70 was measured with three patterns: when a simple acrylic plate was provided on the front of 70, and (3) when an AR coating was provided on both sides of the acrylic plate.
  • the contrast is calculated by calculating the ratio of the brightness when the display of the liquid crystal display device 70 is all white and the brightness when it is all black (all white brightness Z all black brightness).
  • Figure 3 shows the results of the above experiment. From this result, the contrast is lower when a simple acrylic plate is provided on the front of the LCD 70 than when nothing is provided. When both sides of the acrylic plate are AR-coated, only a single acrylic plate is used. It was found that the contrast was improved.
  • the external light is changed to fluorescent light instead of using incandescent light.
  • the illuminance at the center of the monitor at this time was 830 lux.
  • a luminance measuring device is arranged on the central axis of the liquid crystal display device 70 that is 50 cm away from the front surface of the liquid crystal display device 70, and (1) nothing is provided on the front surface of the liquid crystal display device 70, (2) the liquid crystal display device When an acrylic plate with AR coating on both sides of an acrylic plate is installed on the front side of 70, (3) From the side of the liquid crystal display device 70 on the front side of the liquid crystal display device 70, the AR coating, linear polarizing plate, glass plate, and AR coating When the optical filters arranged in order were provided, (4) the optical filter arranged in the order of AR coating, glass plate, linear polarizing plate, AR coating was provided on the front surface of the liquid crystal display device 70 from the liquid crystal display device 70 side.
  • the brightness of the liquid crystal display device 70 was measured with the following four patterns.
  • the contrast is also calculated by calculating the ratio of the brightness when the display of the liquid crystal display device 70 is all white and the brightness when it is all black (all white brightness Z all black brightness).
  • the optical filter having the linearly polarizing plate and the optical member (glass plate) is compared with the case where no optical filter is provided and the case where the AR coating is provided on both sides of the simple acrylic plate. As a result, it was found that the contrast was improved to about 2 times. Further, in an optical filter having a linearly polarizing plate and an optical member (glass plate), when the order of the linearly polarizing plate and the optical member (glass plate) is changed, the linearly polarizing plate becomes a liquid crystal display device.
  • the contrast when the optical member (glass plate) is arranged closer to 70 is better than the case where the optical member (glass plate) is located closer to the liquid crystal display device 70 and closer to the liquid crystal display device 70.
  • Such an improvement in contrast is also effective when viewed from an oblique direction as viewed only from the front of the display device. That is, a clear and high-contrast image can be provided in a wider angle range than before.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

A display wherein contrast is enhanced by reducing reflection of external light. A display (1) comprising a display body (70) outputting a linearly polarized light is provided, in front of the display body (70), with an optical filter (10) having at least a linear polarizing plate (20) such that the polarization axis of a linearly polarized light outputted from the display body (70) coincides with the transmission axis of the linear polarizing plate (20). Consequently, the display has enhanced contrast.

Description

表示装置  Display device
技術分野  Technical field
[0001] 本発明は、光学フィルタが設けられた表示装置に関するものである。  [0001] The present invention relates to a display device provided with an optical filter.
背景技術  Background art
[0002] 表示装置を、外光が入射する明るいところで使用するとコントラストが低下して映像 が見に《なる。これは表示装置に入射した外光が表示装置の表示面或いは内部で 反射して反射光となり、表示装置力 の出射光と共に映像情報として視覚認識される 為である。  [0002] When a display device is used in a bright place where external light is incident, the contrast is lowered and the image is seen. This is because the external light incident on the display device is reflected on the display surface or inside of the display device to become reflected light, and is visually recognized as video information together with the emitted light of the display device power.
近年、ノ ソコンゃテレビ、タツチパネルディスプレイ等の映像情報を表示する表示装 置は、 CRT (Cathode Ray Tube)型から液晶やプラズマを用いた平面型への移行が 進んでいる。特に液晶を用いた表示装置は、省スペース性に加え、消費電力の低さ 力 その需要が高まっている。  In recent years, display devices that display video information, such as notebook computers, touch panel displays, etc., are moving from CRT (Cathode Ray Tube) type to flat type using liquid crystal or plasma. In particular, display devices that use liquid crystals have a growing demand for low power consumption in addition to space saving.
表示装置の表示面における外光の反射を低減若しくは拡散する方法として、 CRT 型表示装置では、表示面に屈折率の異なる複数の薄膜をコーティングする AR ( Anti-Reflection)コート等の反射低減処理層を設けることが一般ィ匕して 、る。これに対 し液晶を用 、た表示装置では、表示面に微細な凹凸を生成するシリカコート等の防 眩処理層を設けることが多く行われている。  As a method of reducing or diffusing the reflection of external light on the display surface of the display device, in the CRT type display device, a reflection reducing treatment layer such as an AR (anti-reflection) coating that coats the display surface with a plurality of thin films having different refractive indexes. Generally, it is necessary to provide On the other hand, in a display device using liquid crystal, an antiglare treatment layer such as a silica coat that generates fine irregularities is often provided on the display surface.
また、表示装置は、表示面以外に表示面の内側においても外光が反射する。そこ で、これらの外光の反射を低減する方法として、波長 450— 800nmの範囲での光線 透過率が 30%以上 80%未満である表示面用保護フィルムを表示面に貼着する技 術が特許文献 1に開示されて 、る。  In addition, the display device reflects outside light not only on the display surface but also on the inner side of the display surface. Therefore, as a method of reducing the reflection of these external lights, there is a technique of attaching a protective film for a display surface having a light transmittance of 30% to less than 80% in the wavelength range of 450 to 800 nm to the display surface. It is disclosed in Patent Document 1.
この従来技術によれば、例えば、表示装置の表示面に貼着する表示面用保護フィ ルムの可視光線透過率を 70%とした場合、外光の表示装置からの反射光量は、表 示面用保護フィルムを 2度透過することにより 0. 7 X 0. 7 = 0. 49となり、表示面用保 護フィルムがない場合の 49%となる。これにより表示装置力もの反射光量が少なくな り、コントラストを向上することが可能となる。 更にこの従来技術によれば、表示面用保護フィルムは、基材フィルムとゴムフィルム の積層体であり、これを表示面に直接貼着することによって耐衝撃性を向上すること が出来る。 According to this prior art, for example, when the visible light transmittance of the protective film for display surface attached to the display surface of the display device is 70%, the amount of reflected light from the display device of the external light is By passing through the protective film twice, it becomes 0.7 X 0.7 = 0.49, 49% of the case without the protective film for the display surface. As a result, the amount of light reflected by the display device is reduced, and the contrast can be improved. Furthermore, according to this prior art, the protective film for the display surface is a laminate of a base film and a rubber film, and the impact resistance can be improved by adhering it directly to the display surface.
なお、特許文献 2では、表示装置内の LCDモジュールに組み込まれる光学フィル タの構造が開示されて 、る。  Patent Document 2 discloses a structure of an optical filter incorporated in an LCD module in a display device.
この従来技術によれば、 LCDモジュールに波長選択性を持つ着色ガラスと偏光板 を設けた一体の LCDモジュールとすることによりコントラストを向上することが可能とな る。前記の LCDモジュールとは、偏光板を有する LCDパネル、ノ ックライト等力も成 るパッケージ部品である。  According to this conventional technique, it is possible to improve the contrast by forming an integrated LCD module in which a colored glass having wavelength selectivity and a polarizing plate are provided in the LCD module. The LCD module is an LCD panel having a polarizing plate, a package component that also has a knocklight and the like.
特許文献 1:特開 2001-083886号公報 Patent Document 1: Japanese Patent Laid-Open No. 2001-083886
特許文献 2:特開平 7 - 253505号公報 Patent Document 2: Japanese Patent Laid-Open No. 7-253505
発明の開示 Disclosure of the invention
し力しながら、前記従来技術による表示面用保護フィルムによれば、可視光全域に ぉ ヽて光線透過率を下げる為、表示装置からの出射光量が表示面用保護フィルム を 1度透過することによって 70%に減少し、表示装置そのものの輝度が低下するとい う課題が生じていた。  However, according to the protective film for display surface according to the prior art, the amount of light emitted from the display device passes through the protective film for display surface once in order to reduce the light transmittance over the entire visible light region. As a result, there is a problem that the brightness of the display device itself is lowered.
また、前記特許文献 1による表示面用保護フィルムは、基材フィルムとゴムフィルム が積層された、厚さが数百/ z m—数 mmの積層体であり、これが表示面に直接貼着 される為、表示面用保護フィルムに加えられた外力や衝撃が表示面に伝播し、表示 装置に損傷を与えるおそれもあった。  Further, the protective film for display surface according to Patent Document 1 is a laminate having a thickness of several hundreds / zm—several mm, in which a base film and a rubber film are laminated, and is directly attached to the display surface. For this reason, external forces and impacts applied to the protective film for the display surface may propagate to the display surface and damage the display device.
本発明は、この様な課題を解決する為になされたものであり、その目的とするところ は、直線偏光を出射する表示装置からの出射光量を低減することなく反射光量を低 減することによって、表示装置のコントラストを向上させることが出来る光学フィルタ、 およびコントラストを向上させた表示装置を提供することにある。  The present invention has been made to solve such problems, and the object of the present invention is to reduce the amount of reflected light without reducing the amount of light emitted from a display device that emits linearly polarized light. An object of the present invention is to provide an optical filter capable of improving the contrast of a display device and a display device having improved contrast.
なお、本発明による光学フィルタは、前記特許文献 2のように表示装置本体内部の LCDモジュールの内部に設けて!/、るものではなく、 LCDモジュールの外部に設けら れていている。  Note that the optical filter according to the present invention is not provided in the LCD module inside the display device body as in Patent Document 2, but is provided outside the LCD module.
本発明に係る表示装置は、直線偏光を出射する表示装置本体を具備する表示装 置において、少なくとも直線偏光板を有する光学フィルタが、前記表示装置本体の前 面に、表示装置本体から出射される直線偏光の偏光軸と直線偏光板の透過軸とが 一致するように設けられて 、ることを特徴として 、る。 A display device according to the present invention comprises a display device body that emits linearly polarized light. The optical filter having at least a linearly polarizing plate is provided on the front surface of the display device body so that the polarization axis of the linearly polarized light emitted from the display device body and the transmission axis of the linearly polarizing plate coincide with each other. It is characterized by that.
この発明によれば、直線偏光を出射する表示装置本体に入射する外光は、光学フ ィルタを透過する際に直線偏光板の透過軸と直交する偏光成分が吸収される。そし て、光学フィルタを通過した外光が表示装置本体にぉ 、て反射して再度光学フィル タを経て外部へ出射される。つまり、外光は最初に光学フィルタを透過したときに直 線偏光板の透過軸に平行な偏光成分のみが透過することで、外光による表示装置 本体からの反射光強度は光学フィルタがない場合の凡そ半分となる。一方、直線偏 光を出射する表示装置本体力 の出射光は、直線偏光板の透過軸が出射光の偏光 方向と平行となっているので、光学フィルタによって低減されることは殆どない。つまり 、光学フィルタによって表示装置本体そのものの輝度の低下は殆ど生じない。このよ うに、本発明では外光の反射光強度を低減するとともに、表示装置本体からの出射 光強度はそのまま維持することで、コントラストの向上を図ることができる。  According to the present invention, the external light incident on the display device main body that emits linearly polarized light absorbs the polarized light component that is orthogonal to the transmission axis of the linearly polarizing plate when transmitted through the optical filter. Then, the external light that has passed through the optical filter is reflected by the display device main body and is emitted to the outside again through the optical filter. In other words, when the external light is first transmitted through the optical filter, only the polarization component parallel to the transmission axis of the linear polarizing plate is transmitted. It is about half of. On the other hand, the output light of the display device main body that emits linearly polarized light is hardly reduced by the optical filter because the transmission axis of the linearly polarizing plate is parallel to the polarization direction of the emitted light. That is, the optical filter hardly causes a decrease in luminance of the display device body itself. As described above, according to the present invention, contrast intensity can be improved by reducing the intensity of reflected light of external light and maintaining the intensity of light emitted from the display device main body as it is.
また、光学フィルタは、直線偏光板と、偏光性を有しておらず且つ光を透過する光 学部材とを有することを特徴としてもょ 、。  The optical filter is characterized by having a linearly polarizing plate and an optical member that does not have polarization and transmits light.
また、前記光学部材は、榭脂板若しくはガラス板のいずれか一方または双方を含 むことを特徴としてもよい。  The optical member may include one or both of a resin plate and a glass plate.
このように光学部材を光学フィルタの構成に含ませることによって、光学フィルタの 強度を増すことができる。  By including the optical member in the configuration of the optical filter in this way, the strength of the optical filter can be increased.
さらに、光学部材は、タツチパネルの機能を有することを特徴としてもよい。これによ り、光学部材を、直線偏光を出射する表示装置本体の前面に設けることによって、表 示装置にタツチパネルとしての機能を具備させることが出来る。  Furthermore, the optical member may have a function of a touch panel. Thus, by providing the optical member on the front surface of the display device main body that emits linearly polarized light, the display device can have a function as a touch panel.
また、光学フィルタに、反射低減処理層、防眩処理層、硬化処理層、導電処理層、 又は防汚処理層のうちの少なくとも何れかの表面処理層を設けても良い。これにより 、表示装置は低反射性、防眩性、耐傷性、導電性、或いは防汚性を、向上若しくは 具備することが出来る。  Further, the optical filter may be provided with at least one of a surface treatment layer of a reflection reduction treatment layer, an antiglare treatment layer, a hardening treatment layer, a conductive treatment layer, or an antifouling treatment layer. Thereby, the display device can improve or have low reflectivity, antiglare property, scratch resistance, conductivity, or antifouling property.
なお、光学フィルタは、両面に前記反射低減処理層が設けられていることによって、 コントラストが向上することが実験により判明した。 The optical filter is provided with the reflection reduction treatment layer on both sides, Experiments have shown that the contrast is improved.
また、光学フィルタは、前記直線偏光板および前記光学部材を中心に配置し、その 両面に前記反射低減処理層が設けられていることによって、コントラストがさらに向上 することが実験により判明した。  Further, it has been experimentally found that the optical filter further improves the contrast by disposing the linearly polarizing plate and the optical member in the center and providing the reflection reduction processing layer on both surfaces thereof.
[0004] 発明の効果  [0004] Effect of the Invention
以上の説明で明らかな通り、本発明によると、直線偏光を出射する表示装置本体か らの出射光を低減することなぐ光学フィルタを設けない場合に比して外光の反射を 低減することによって、表示装置のコントラストを向上することが可能となる。  As is clear from the above description, according to the present invention, the reflection of external light is reduced compared to the case where no optical filter is provided without reducing the emitted light from the display device body that emits linearly polarized light. The contrast of the display device can be improved.
また、本発明によれば、全体を暗くする方向でコントラストを上げているので、目に やさしい。  In addition, according to the present invention, the contrast is increased in the direction of darkening the whole, which is easy on the eyes.
図面の簡単な説明  Brief Description of Drawings
[0005] [図 1]本発明の実施例を示す断面図である。 FIG. 1 is a cross-sectional view showing an example of the present invention.
[図 2]ARコートの効果および光学フィルタの最適構造を検証する実験の条件を示す 説明図である。  FIG. 2 is an explanatory diagram showing experimental conditions for verifying the effect of the AR coating and the optimum structure of the optical filter.
[図 3]ARコートの効果を検証する実験の結果を示す表である。  FIG. 3 is a table showing the results of experiments verifying the effects of AR coating.
[図 4]光学フィルタの最適構造を検証する実験の結果を示す表である。  FIG. 4 is a table showing the results of an experiment for verifying the optimum structure of an optical filter.
発明を実施するための最良の実施の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0006] 以下、本発明に係る表示装置について、図に示す実施例に基づいて説明する。 [0006] Hereinafter, a display device according to the present invention will be described based on the embodiments shown in the drawings.
尚、以下の説明において、光学フィルタの直線偏光を出射する表示装置本体であ る液晶表示装置に面する側を内側、他方を外側とする。  In the following description, the side facing the liquid crystal display device, which is the display device main body that emits the linearly polarized light of the optical filter, is the inside, and the other is the outside.
図 1は、本発明の実施例である表示装置 1の断面図を示したものである。 表示装置 1は、光学フィルタ 10と、液晶表示装置 (特許請求の範囲でいう表示装置 本体) 70とから構成される。液晶表示装置 70内部にある LCDモジュールには偏光 板が設けられており(図示せず)、液晶表示装置 70は直線偏光を出射する。  FIG. 1 shows a sectional view of a display device 1 which is an embodiment of the present invention. The display device 1 includes an optical filter 10 and a liquid crystal display device (display device body in the claims) 70. The LCD module inside the liquid crystal display device 70 is provided with a polarizing plate (not shown), and the liquid crystal display device 70 emits linearly polarized light.
光学フィルタ 10は、液晶表示装置側(内側)から、表面処理層 40と、直線偏光板 2 0と、光学部材 32と、表面処理層 42とが順番に配置されて構成され、液晶表示装置 70の前面に設置される。  The optical filter 10 includes a surface treatment layer 40, a linearly polarizing plate 20, an optical member 32, and a surface treatment layer 42 arranged in this order from the liquid crystal display device side (inner side). Installed in front of.
表示装置 1における外光と出射光との関係を説明する。 液晶表示装置 70からの出射光 60の偏光方向は、直線偏光板 20の透過軸と平行 であり、直線偏光板 20は出射光 60の透過光量を殆ど低減しない。これに対し外光 5 0は、直線偏光板 20の透過軸に対して平行及び垂直な何れの方向にもほぼ等しく偏 光成分を有しており、直線偏光板 20を透過する際に、透過軸と直交する偏光成分が 吸収され、外光 50の凡そ半分の光量である透過外光 52となる。 The relationship between external light and outgoing light in the display device 1 will be described. The polarization direction of the outgoing light 60 from the liquid crystal display device 70 is parallel to the transmission axis of the linear polarizing plate 20, and the linear polarizing plate 20 hardly reduces the transmitted light amount of the outgoing light 60. On the other hand, the external light 50 has a polarization component almost equal in both directions parallel and perpendicular to the transmission axis of the linear polarizing plate 20, and is transmitted through the linear polarizing plate 20. The polarized light component orthogonal to the axis is absorbed and becomes transmitted external light 52 that is approximately half the amount of external light 50.
透過外光 52は液晶表示装置 70において反射し反射光 54となる。反射光 54は再 度直線偏光板 20を透過し、透過反射光 56として光学フィルタ 10から出射する。 以下、光学フィルタ 10の各構成について説明する。  The transmitted external light 52 is reflected by the liquid crystal display device 70 to become reflected light 54. The reflected light 54 is again transmitted through the linear polarizing plate 20 and is emitted from the optical filter 10 as transmitted reflected light 56. Hereinafter, each configuration of the optical filter 10 will be described.
直線偏光板 20は、偏光子 24と、偏光子 24の内側及び外側の両面に設けられる光 学膜 26及び 28とから構成されて 、る。  The linearly polarizing plate 20 includes a polarizer 24 and optical films 26 and 28 provided on both the inside and outside of the polarizer 24.
厚さが数 ^—数百 mでフィルム状の樹脂からなる光学膜 26及び 28は、偏光子 2 4の内側及び外側の両面に接着され、偏光子 24に傷が付くことを防止する。  The optical films 26 and 28 made of a film-like resin having a thickness of several to several hundred m are adhered to both the inner and outer surfaces of the polarizer 24 to prevent the polarizer 24 from being damaged.
厚さが数 mmであり、偏光性を有さないガラス板力もなる光学部材 32は、直線偏光 板 20の外側に接着され、光学フィルタ 10の構成の一部をなすことによって、光学フィ ルタ 10が設けられた表示装置 1の強度を向上する。  The optical member 32 having a thickness of several millimeters and having a glass plate force having no polarizing property is bonded to the outside of the linear polarizing plate 20 and forms a part of the configuration of the optical filter 10, thereby forming the optical filter 10. The strength of the display device 1 provided with is improved.
反射低減処理層からなり、直線偏光板 20の内側に設けられる表面処理層 40は、 直線偏光板 20の内側表面における反射光 54 (外光の反射光)及び出射光 60の反 射を低減する。反射低減処理層である表面処理層 40の反射率が小さ ヽほど表面処 理層 40における反射は低減され、光学フィルタ 10の透過に際して出射光 60は殆ど 低減されな!ヽ。よって表面処理層 40の反射率が小さ ヽほど液晶表示装置 70の輝度 の低下を抑えることが出来る。  The surface treatment layer 40 formed of a reflection reduction treatment layer and provided inside the linear polarizing plate 20 reduces reflection of reflected light 54 (external light reflected light) and outgoing light 60 on the inner surface of the linear polarizing plate 20. . The smaller the reflectance of the surface treatment layer 40, which is the reflection reduction treatment layer, is, the lower the reflection at the surface treatment layer 40 is, and the emission light 60 is hardly reduced upon transmission through the optical filter 10. Therefore, the lower the reflectance of the surface treatment layer 40, the more the decrease in the luminance of the liquid crystal display device 70 can be suppressed.
また反射低減処理層からなり、光学部材 32の外側に設けられる表面処理層 42は、 光学部材 32の外側表面における外光 50の反射を低減する。  Further, the surface treatment layer 42 formed of a reflection reduction treatment layer and provided on the outer side of the optical member 32 reduces the reflection of the external light 50 on the outer surface of the optical member 32.
この様に、本実施例では、直線偏光板 20によって液晶表示装置 70からの出射光 6 0を殆ど低減することなぐ光学フィルタ 10を設けない場合に比して、外光 50の液晶 表示装置 70からの反射光 54を低減する。これにより透過反射光 56が低減され、表 示装置 1のコントラストを向上し、映像を見やすくすることが可能となる。  Thus, in this embodiment, the liquid crystal display device 70 of the external light 50 is compared with the case where the optical filter 10 that hardly reduces the emitted light 60 from the liquid crystal display device 70 by the linearly polarizing plate 20 is not provided. The reflected light 54 from the light source is reduced. Thereby, the transmitted / reflected light 56 is reduced, the contrast of the display device 1 is improved, and the image can be easily viewed.
また、光学部材 32を設けることによって、表示装置 1の強度を向上することが可能と なる。 Further, by providing the optical member 32, the strength of the display device 1 can be improved. Become.
更にまた、反射低減処理層からなる表面処理層 40を設けることによって、表示装置 1の輝度の低下を抑えることが出来、同様に反射低減処理層からなる表面処理層 42 を設けることによって、表示装置 1のコントラストをより向上することが可能となる。 また、このような光学フィルタ 10を製造する際には、各層の間に空気が入らないよう にしなくてはならない。このため、各層を接着する際には、接着用ののりを使って空気 を押し出しつつ製造するとよ!/、。  Furthermore, by providing the surface treatment layer 40 made of the reflection reduction treatment layer, it is possible to suppress the decrease in the luminance of the display device 1, and similarly, by providing the surface treatment layer 42 made of the reflection reduction treatment layer, the display device 1 It becomes possible to further improve the contrast of 1. Further, when manufacturing such an optical filter 10, it is necessary to prevent air from entering between the layers. For this reason, when bonding each layer, use an adhesive glue to push out the air!
尚、上述した実施例において、透過外光 52が液晶表示装置 70において反射した 反射光 54は、液晶表示装置 70の表示面 72及び図示しない内部での反射光を併せ たものである。  In the above-described embodiment, the reflected light 54 reflected by the transmitted external light 52 on the liquid crystal display device 70 is a combination of the display surface 72 of the liquid crystal display device 70 and the reflected light inside (not shown).
また、上述した実施例では、光学部材をガラス板としたが、光学部材に榭脂板を用 いてもよい。榭脂板としては、軽量で、加工コストが低ぐ耐衝撃性に優れたアクリル 榭脂が好ましい。  In the above-described embodiments, the optical member is a glass plate, but a resin plate may be used for the optical member. As the resin board, an acrylic resin resin that is light in weight and low in processing cost and excellent in impact resistance is preferable.
また光学部材は、 1枚以上の榭脂板及びガラス板によって構成され、その積層順や 枚数は制限されない。  The optical member is composed of one or more resin plates and glass plates, and the stacking order and the number of the optical members are not limited.
直線偏光板は、実施例に示す構造が一般的であり、 PVC (ポリビュルアルコール) を延伸してなるフィルム状の偏光子を、 TAC (トリアセチルセルロース)よりなるフィル ム状の光学膜で挟み、フィルム状としたものが知られている。 TACよりなる光学膜は、 偏光子に傷が付くのを防止する保護層として機能する。これにより、直線偏光板を扱 う際の作業性が向上し、本発明による表示装置を製造する場合においても、その効 果は大きい。  The linear polarizing plate generally has the structure shown in the examples, and a film-like polarizer formed by stretching PVC (polybulal alcohol) is sandwiched between film-like optical films made of TAC (triacetyl cellulose). A film-like one is known. The optical film made of TAC functions as a protective layer that prevents the polarizer from being scratched. This improves the workability when handling the linearly polarizing plate, and the effect is great even when the display device according to the present invention is manufactured.
TACよりなる光学膜の厚さは一般的に数十一数百; z m程度であり、実施例に示す 構造よりなるフィルム状の直線偏光板のみによって、表示装置の強度を向上するに は強度が充分でない。  The thickness of the optical film made of TAC is generally several tens to several hundreds; about zm, and the strength of the display device can be improved only by the film-like linearly polarizing plate having the structure shown in the examples. Not enough.
さらに、タツチパネルの機能を有する光学部材を用い、直線偏光板と組み合わせる ことによって、コントラスト及び強度の向上が図れる表示装置とすることが出来ると共 に、タツチパネルの機能を具備することが出来る。  Furthermore, by using an optical member having a touch panel function and combining it with a linear polarizing plate, a display device capable of improving contrast and strength can be obtained, and a touch panel function can be provided.
タツチパネルは、抵抗膜方式、超音波方式、静電容量方式、電磁誘導方式等様々 な方式があるが、本発明による光学フィルタは、タツチパネルの方式に制限されること なく構成することが可能である。タツチパネルは、指や専用ペンの接触によって位置 情報等を検知するものであり、タツチパネル自体でこれらの接触に耐え得る充分な強 度を備えている。 The touch panel comes in various types, such as a resistive film method, an ultrasonic method, a capacitance method, and an electromagnetic induction method. However, the optical filter according to the present invention can be configured without being limited to the touch panel system. The touch panel detects position information and the like by contact with a finger or a dedicated pen, and the touch panel itself has sufficient strength to withstand such contact.
さらに上述した実施例では、表面処理層として反射低減処理層のみについて説明 したが、表面処理層としては防眩処理層、硬化処理層、導電処理層、又は防汚処理 層のうちの少なくとも何れかからなり、直線偏光板、光学部材、及びタツチパネルの何 れの表面にも設けることが出来る。  Further, in the above-described embodiments, only the reflection reduction treatment layer has been described as the surface treatment layer, but as the surface treatment layer, at least one of an antiglare treatment layer, a curing treatment layer, a conductive treatment layer, and an antifouling treatment layer is used. And can be provided on any surface of the linearly polarizing plate, the optical member, and the touch panel.
また、表面処理層は積層して構成してもよぐその積層順や層数、種類は制限され ない。例えば、光学部材に導電処理層を設け、更にその上に硬化処理層を設けるこ とによって、表面処理層を設けた光学部材の導電性を向上すると共に、表面強度を 向上することが可能となる。但し、表面処理層の種類によってその効果を得られる、 若しくは得やす!、箇所に設けることが好ま 、。  Further, the surface treatment layer may be formed by stacking, and the stacking order, the number of layers, and the type thereof are not limited. For example, by providing a conductive treatment layer on the optical member and further providing a cured treatment layer thereon, it is possible to improve the conductivity of the optical member provided with the surface treatment layer and improve the surface strength. . However, the effect can be obtained or can be easily obtained depending on the kind of the surface treatment layer.
反射低減処理層としては、例えば、光学フィルタの表面に屈折率の異なる 2種類の 薄膜をコーティングすることによって構成されるものがあり、低反射性を向上する。こ れにより、光学フィルタの表面における反射が低減され、表示装置のコントラストが向 上する。  As the reflection reduction processing layer, for example, there is a layer formed by coating the surface of an optical filter with two types of thin films having different refractive indexes, which improves low reflectivity. Thereby, reflection on the surface of the optical filter is reduced, and the contrast of the display device is improved.
防眩処理層としては、例えば、光学フィルタの表面にシリカを吹き付け、これを焼き 付けることで表面に微細な凹凸を生成することによって構成されるものがあり、防眩性 が具備される。これにより、光学フィルタの表面における鏡面反射が低減され、外光 の映り込みを低減すると共に、表示装置のコントラストが向上する。  The antiglare layer includes, for example, a layer formed by spraying silica on the surface of an optical filter and baking it to generate fine irregularities on the surface, and has antiglare properties. Thereby, the specular reflection on the surface of the optical filter is reduced, the reflection of external light is reduced, and the contrast of the display device is improved.
硬化処理層としては、例えば、光学フィルタの表面にアクリル系榭脂をコーティング することによって構成されるものがあり、耐傷性を向上する。これにより、光学フィルタ の表面の硬度が向上され、傷が付きに《なる。  As a hardening process layer, there exists a thing comprised by coating the surface of an optical filter with acrylic resin, for example, and scratch resistance is improved. As a result, the hardness of the surface of the optical filter is improved and the surface becomes scratched.
導電処理層としては、例えば、光学フィルタの表面に導電性の金属酸ィ匕物をコーテ イングすることによって構成されるものがあり、導電性を向上する。これにより、光学フ ィルタの表面に電磁波シールドが形成され、表示装置から輻射される電磁波を低減 する。 防汚処理層としては、例えば、光学フィルタの表面にフッ素系薬品を真空蒸着する ことによって構成されるものがあり、防汚性を向上する。これにより、光学フィルタの表 面に付着した指紋等の汚れを拭き取りやすくする。 As the conductive treatment layer, for example, there is a layer formed by coating a conductive metal oxide on the surface of the optical filter, which improves the conductivity. Thereby, an electromagnetic wave shield is formed on the surface of the optical filter, and electromagnetic waves radiated from the display device are reduced. As the antifouling treatment layer, for example, there is a layer constituted by vacuum-depositing a fluorine chemical on the surface of the optical filter, which improves the antifouling property. This makes it easier to wipe off dirt such as fingerprints adhering to the surface of the optical filter.
なお、液晶表示装置 70 (表示装置本体)は、 LCDモジュールの内部に偏光板が設 けられて直線偏光を出射している。よって、光学フィルタの直線偏光板の透過軸が、 その液晶表示装置 70の出射光の偏光軸と平行になるように配置しなくてはならない 。特に、出射光の偏光軸には、 0° 、45° 、90° 等様々な種類があり注意が必要とな る。  The liquid crystal display device 70 (display device body) has a polarizing plate provided inside the LCD module to emit linearly polarized light. Therefore, the transmission axis of the linear polarizing plate of the optical filter must be arranged so as to be parallel to the polarization axis of the outgoing light of the liquid crystal display device 70. In particular, there are various types of polarization axes of emitted light, such as 0 °, 45 °, and 90 °, which need attention.
つまり、液晶表示装置 70に光学フィルタを取り付ける前に、 LCDモジュールの前面 に予め設けられている偏光板の透過軸の向きと、光学フィルタの直線偏光板の透過 軸に関する情報が必要となる。  That is, before attaching the optical filter to the liquid crystal display device 70, information on the direction of the transmission axis of the polarizing plate provided in front of the LCD module and the transmission axis of the linear polarizing plate of the optical filter is required.
光学フィルタは、直線偏光を出射する液晶表示装置 70への着脱が容易である様に 構成すると好適である。これにより、光学フィルタの仕様を変更したい場合や、光学フ ィルタが汚損した場合に、光学フィルタを容易に交換することが出来る。  The optical filter is preferably configured so as to be easily attached to and detached from the liquid crystal display device 70 that emits linearly polarized light. As a result, the optical filter can be easily replaced when it is desired to change the specification of the optical filter or when the optical filter is contaminated.
尚、直線偏光を出射する液晶表示装置 70の前面に光学フィルタを設ける場合、光 学フィルタと直線偏光を出射する液晶表示装置 70の間隔は制限されない。  When an optical filter is provided in front of the liquid crystal display device 70 that emits linearly polarized light, the distance between the optical filter and the liquid crystal display device 70 that emits linearly polarized light is not limited.
次に、 ARコートの効果について実験を行なったのでそれについて説明する。 図 2に実験の条件の概要を示す。  Next, an experiment was conducted on the effect of AR coating. Figure 2 outlines the experimental conditions.
実験では、液晶表示装置 70の中心の照度が 500ルックスになるように、白熱電球 を液晶表示装置 70の前面の中心軸線力 45° 外れた位置に配置した。このときの 液晶表示装置 70の前面から白熱電球までの距離は 100cmであった。  In the experiment, an incandescent bulb was placed at a position where the central axial force of the liquid crystal display device 70 was off 45 ° so that the illuminance at the center of the liquid crystal display device 70 would be 500 lux. At this time, the distance from the front surface of the liquid crystal display device 70 to the incandescent bulb was 100 cm.
そして、液晶表示装置 70の前面から 50cm離れた液晶表示装置 70の中心軸線上 に輝度測定器を配置し、 (1)液晶表示装置 70の前面に何も設けない場合、 (2)液晶 表示装置 70の前面に単なるアクリル板を設けた場合、(3)アクリル板の両面に ARコ ートを施したものを設けた場合、の 3つのパターンで液晶表示装置 70の輝度を測定 した。ちなみにコントラストは、液晶表示装置 70の表示が全白のときの輝度と全黒の ときの輝度との比(全白の輝度 Z全黒の輝度)力 算出して 、る。  When a luminance measuring device is arranged on the central axis of the liquid crystal display device 70 that is 50 cm away from the front surface of the liquid crystal display device 70, and (1) nothing is provided on the front surface of the liquid crystal display device 70, (2) the liquid crystal display device The luminance of the liquid crystal display device 70 was measured with three patterns: when a simple acrylic plate was provided on the front of 70, and (3) when an AR coating was provided on both sides of the acrylic plate. Incidentally, the contrast is calculated by calculating the ratio of the brightness when the display of the liquid crystal display device 70 is all white and the brightness when it is all black (all white brightness Z all black brightness).
図 3に上記実験の結果を示す。 この結果から、液晶表示装置 70の前面に単なるアクリル板を設けると、何も設けな い場合よりもコントラストは低下する力 アクリル板の両面が ARコートされていると単な るアクリル板だけの場合よりもコントラストが向上することが判明した。 Figure 3 shows the results of the above experiment. From this result, the contrast is lower when a simple acrylic plate is provided on the front of the LCD 70 than when nothing is provided. When both sides of the acrylic plate are AR-coated, only a single acrylic plate is used. It was found that the contrast was improved.
次に、実際のオフィス環境と同様の環境を設定し、光学フィルタの構成を様々に変 更した場合のコントラストの変化について実験したので、それについて説明する。 実験の条件の概要は図 2に示した場合と同様である。  Next, an environment similar to the actual office environment is set, and an experiment is performed on the change in contrast when the configuration of the optical filter is changed variously. The outline of the experimental conditions is the same as that shown in Fig. 2.
ただし、図 2とは異なり、外光としては白熱電球の光を用いるのではなぐ蛍光灯の 光に変更している。このときのモニタ中心の照度は 830ルックスになっていた。  However, unlike Fig. 2, the external light is changed to fluorescent light instead of using incandescent light. The illuminance at the center of the monitor at this time was 830 lux.
そして、液晶表示装置 70の前面から 50cm離れた液晶表示装置 70の中心軸線上 に輝度測定器を配置し、 (1)液晶表示装置 70の前面に何も設けない場合、 (2)液晶 表示装置 70の前面にアクリル板の両面に ARコートを施したものを設けた場合、 (3) 液晶表示装置 70の前面に液晶表示装置 70側から、 ARコート、直線偏光板、ガラス 板、 ARコートの順に配置した光学フィルタを設けた場合、(4)液晶表示装置 70の前 面に液晶表示装置 70側から、 ARコート、ガラス板、直線偏光板、 ARコートの順に配 置した光学フィルタを設けた場合、の 4つのパターンで液晶表示装置 70の輝度を測 定した。ちなみにコントラストは、液晶表示装置 70の表示が全白のときの輝度と全黒 のときの輝度との比(全白の輝度 Z全黒の輝度)力も算出して 、る。  When a luminance measuring device is arranged on the central axis of the liquid crystal display device 70 that is 50 cm away from the front surface of the liquid crystal display device 70, and (1) nothing is provided on the front surface of the liquid crystal display device 70, (2) the liquid crystal display device When an acrylic plate with AR coating on both sides of an acrylic plate is installed on the front side of 70, (3) From the side of the liquid crystal display device 70 on the front side of the liquid crystal display device 70, the AR coating, linear polarizing plate, glass plate, and AR coating When the optical filters arranged in order were provided, (4) the optical filter arranged in the order of AR coating, glass plate, linear polarizing plate, AR coating was provided on the front surface of the liquid crystal display device 70 from the liquid crystal display device 70 side. In this case, the brightness of the liquid crystal display device 70 was measured with the following four patterns. Incidentally, the contrast is also calculated by calculating the ratio of the brightness when the display of the liquid crystal display device 70 is all white and the brightness when it is all black (all white brightness Z all black brightness).
実験結果を図 4に示す。  Figure 4 shows the experimental results.
結果をみると、モニタ OFF時の輝度力 液晶表示装置 70の前面に何も設けない場 合およびアクリル板の両面に ARコートを施したものを設けた場合 ((1)および (2))と比 較して、直線偏光板を有する光学フィルタを設けた場合 ((3)および (4))にはおよそ半 分になっている。  The results show that the luminance power when the monitor is OFF.When the front surface of the liquid crystal display device 70 is not provided, and when both are provided with AR coating on both sides of the acrylic plate ((1) and (2)) In comparison, when an optical filter having a linear polarizing plate is provided ((3) and (4)), it is approximately half.
この結果より、上述してきたように、外光が直線偏光板に入力して、これが液晶表示 装置 70で反射して透過反射光となったときの反射光強度が、直線偏光板を設けな!/、 場合のおよそ半分になるという説明を検証することができた。  From this result, as described above, the reflected light intensity when external light is input to the linear polarizing plate and reflected by the liquid crystal display device 70 to become transmitted reflected light is not provided with the linear polarizing plate! /, I was able to verify the explanation about half of the case.
また、図 4の結果から、直線偏光板と光学部材 (ガラス板)とを有する光学フィルタは 、光学フィルタを何も設けな 、場合および単なるアクリル板の両面に ARコートを設け た場合と比較して、コントラストが約 2倍弱まで向上することが判明した。 また、直線偏光板と光学部材 (ガラス板)とを有する光学フィルタにおいて、直線偏 光板と光学部材 (ガラス板)の順番を入れ替えた場合、直線偏光板が液晶表示装置Further, from the results of FIG. 4, the optical filter having the linearly polarizing plate and the optical member (glass plate) is compared with the case where no optical filter is provided and the case where the AR coating is provided on both sides of the simple acrylic plate. As a result, it was found that the contrast was improved to about 2 times. Further, in an optical filter having a linearly polarizing plate and an optical member (glass plate), when the order of the linearly polarizing plate and the optical member (glass plate) is changed, the linearly polarizing plate becomes a liquid crystal display device.
70に近い方に配置されている場合の方が、光学部材 (ガラス板)が液晶表示装置 70 に近 、方に配置されて 、る場合よりもコントラストが良 、ことも判明した。 It was also found that the contrast when the optical member (glass plate) is arranged closer to 70 is better than the case where the optical member (glass plate) is located closer to the liquid crystal display device 70 and closer to the liquid crystal display device 70.
なお、図 3の実験結果と図 4の実験結果とを比較することで、以下のような点も判明 した。  By comparing the experimental results in Fig. 3 with the experimental results in Fig. 4, the following points were also found.
すなわち、図 3の (2)の結果と図 4の (2)の結果とを比較すると、外光の強度が大きい 図 4の実験の方がよりコントラストが良いので、本発明も外光の強度が大きいほど効果 が高まると考えられる。またこのような結果より、表示装置の画面を上向きにすることで 通常はより外光の強度が大きくなるので、画面を上向きにして用いる場合、例えばタ ツチパネル用途に用いる場合ほど効果が高まると考えられる。  That is, comparing the results of (2) in Fig. 3 with the results of (2) in Fig. 4, the intensity of external light is larger, and the experiment in Fig. 4 has better contrast. The effect is considered to increase as the value increases. In addition, from these results, since the intensity of external light is usually increased when the screen of the display device is faced upward, it is considered that the effect increases as the screen is faced upward, for example, when used for a touch panel. It is done.
このようなコントラストの改善は、表示装置正面から見た場合だけでなぐ斜め方向 から見たときにも効果を有する。すなわち、従来よりも広い角度領域でコントラストの 高 、綺麗な画像を提供することができる。  Such an improvement in contrast is also effective when viewed from an oblique direction as viewed only from the front of the display device. That is, a clear and high-contrast image can be provided in a wider angle range than before.
以上本発明につき好適な実施例を挙げて種々説明したが、本発明はこの実施例に 限定されるものではなぐ発明の精神を逸脱しない範囲内で多くの改変を施し得るの は勿論である。  While the present invention has been described in detail with reference to preferred embodiments, it is needless to say that the present invention is not limited to these embodiments, and many modifications can be made without departing from the spirit of the invention.

Claims

請求の範囲 The scope of the claims
[1] 直線偏光を出射する表示装置本体を具備する表示装置において、  [1] In a display device comprising a display device body that emits linearly polarized light,
少なくとも直線偏光板を有する光学フィルタが、前記表示装置本体の前面に、表示 装置本体から出射される直線偏光の偏光軸と直線偏光板の透過軸とがー致するよう に設けられて!/ヽることを特徴とする表示装置。  An optical filter having at least a linearly polarizing plate is provided on the front surface of the display device body so that the polarization axis of the linearly polarized light emitted from the display device body and the transmission axis of the linearly polarizing plate coincide with each other! / ヽA display device.
[2] 前記光学フィルタは、直線偏光板と、偏光性を有しておらず且つ光を透過する光学 部材とを有することを特徴とする請求項 1記載の表示装置。  2. The display device according to claim 1, wherein the optical filter includes a linearly polarizing plate and an optical member that does not have polarization and transmits light.
[3] 前記光学部材は、榭脂板若しくはガラス板のいずれか一方または双方を含むことを 特徴とする請求項 2記載の表示装置。 3. The display device according to claim 2, wherein the optical member includes one or both of a resin plate and a glass plate.
[4] 前記光学部材は、タツチパネルの機能を有することを特徴とする請求項 2または請求 項 3記載の表示装置。 4. The display device according to claim 2, wherein the optical member has a touch panel function.
[5] 前記光学フィルタにお!ヽて、反射低減処理層、防眩処理層、硬化処理層、導電処理 層、又は防汚処理層のうちの少なくとも一つの表面処理層が設けられることを特徴と する請求項 1一請求項 4のうちのいずれか 1項記載の表示装置。  [5] For the optical filter! 5. At least one surface treatment layer of a reflection reduction treatment layer, an antiglare treatment layer, a hardening treatment layer, a conductive treatment layer, or an antifouling treatment layer is provided. The display device according to any one of the above.
[6] 前記光学フィルタは、両面に前記反射低減処理層が設けられていることを特徴とする 請求項 5記載の表示装置。  6. The display device according to claim 5, wherein the optical filter is provided with the reflection reduction processing layer on both surfaces.
[7] 前記光学フィルタは、前記直線偏光板および前記光学部材を中心に配置し、その両 面に前記反射低減処理層が設けられていることを特徴とする請求項 6記載の表示装 置。  7. The display device according to claim 6, wherein the optical filter is arranged around the linearly polarizing plate and the optical member, and the reflection reduction processing layer is provided on both surfaces thereof.
PCT/JP2004/013231 2004-09-10 2004-09-10 Display WO2006027847A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013231 WO2006027847A1 (en) 2004-09-10 2004-09-10 Display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013231 WO2006027847A1 (en) 2004-09-10 2004-09-10 Display

Publications (1)

Publication Number Publication Date
WO2006027847A1 true WO2006027847A1 (en) 2006-03-16

Family

ID=36036144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013231 WO2006027847A1 (en) 2004-09-10 2004-09-10 Display

Country Status (1)

Country Link
WO (1) WO2006027847A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139497A (en) * 2006-11-30 2008-06-19 Optrex Corp Display device
EP2372409A1 (en) * 2010-03-25 2011-10-05 Samsung Corning Precision Materials Co., Ltd. Display filter and digital information display including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186136A (en) * 1996-11-11 1998-07-14 Dowa Mining Co Ltd Optical filter
JP2001060144A (en) * 1999-08-24 2001-03-06 Nissha Printing Co Ltd High durability input device
JP2001091926A (en) * 1999-09-21 2001-04-06 Citizen Watch Co Ltd Liquid crystal display device
JP2001324707A (en) * 2000-05-15 2001-11-22 Gunze Ltd Touch panel for liquid crystal display
JP2002250914A (en) * 2001-02-27 2002-09-06 Sharp Corp Transmission type display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186136A (en) * 1996-11-11 1998-07-14 Dowa Mining Co Ltd Optical filter
JP2001060144A (en) * 1999-08-24 2001-03-06 Nissha Printing Co Ltd High durability input device
JP2001091926A (en) * 1999-09-21 2001-04-06 Citizen Watch Co Ltd Liquid crystal display device
JP2001324707A (en) * 2000-05-15 2001-11-22 Gunze Ltd Touch panel for liquid crystal display
JP2002250914A (en) * 2001-02-27 2002-09-06 Sharp Corp Transmission type display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139497A (en) * 2006-11-30 2008-06-19 Optrex Corp Display device
EP2372409A1 (en) * 2010-03-25 2011-10-05 Samsung Corning Precision Materials Co., Ltd. Display filter and digital information display including the same

Similar Documents

Publication Publication Date Title
JP6122450B2 (en) Mirror display and electronic equipment
US7589798B2 (en) Touch panel having upper electrode plate including electrode, polarizing plate, quarter wave plate and heat-resistant transparent resin plate
JP5340594B2 (en) Optical compensation of stacks with cover glass, air gap and display for strong ambient light
JP3854392B2 (en) Optical filter
US8508703B2 (en) Display device
WO2010007716A1 (en) Liquid crystal display device
JP2019105842A (en) Polarizing plate, image display device, and method for improving bright-place contrast in image display device
KR20160063964A (en) flexible display device
JP3197142U (en) Mirror display panel
US9891766B2 (en) Display device
KR20090115028A (en) Optical multilayer and the display device having the same
US20020154250A1 (en) Touch panel with light guide and manufacturing method thereof
US7948565B2 (en) Liquid crystal display device
JP2020020960A (en) Protective sheet, display device and electronic apparatus
US20120120023A1 (en) Touch-screen display apparatus and cover lens and assembling method thereof
WO2000070550A1 (en) Low reflection touch panel
US11294243B2 (en) Display device
WO2006027847A1 (en) Display
JP2002189565A (en) Touch panel and display device
JP2003279950A (en) Display device
TW201535020A (en) Mirror display panel
WO2018179772A1 (en) Reflective liquid crystal cell
JP3989750B2 (en) Liquid crystal display
KR101295857B1 (en) Backlight unit including an attachment tape for assembling back light unit to lcd
JP2005025079A (en) Display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP