[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006022344A1 - 癌の治療における抗モータリン2抗体と機能性核酸の使用 - Google Patents

癌の治療における抗モータリン2抗体と機能性核酸の使用 Download PDF

Info

Publication number
WO2006022344A1
WO2006022344A1 PCT/JP2005/015459 JP2005015459W WO2006022344A1 WO 2006022344 A1 WO2006022344 A1 WO 2006022344A1 JP 2005015459 W JP2005015459 W JP 2005015459W WO 2006022344 A1 WO2006022344 A1 WO 2006022344A1
Authority
WO
WIPO (PCT)
Prior art keywords
mortalin
cells
antibody
cancer
cell
Prior art date
Application number
PCT/JP2005/015459
Other languages
English (en)
French (fr)
Inventor
Renuwadhwa Kaul
Kazunari Taira
Sunil Kaul
Original Assignee
National Institute Of Advanced Industrial Scienceand Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Scienceand Technology filed Critical National Institute Of Advanced Industrial Scienceand Technology
Priority to US11/661,134 priority Critical patent/US7883702B2/en
Publication of WO2006022344A1 publication Critical patent/WO2006022344A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell

Definitions

  • the present invention relates to cancer treatment using an antibody that binds to mortalin 2 (mot-2) and to a functional nucleic acid.
  • Mortalin is a protein involved in various intracellular functions such as intracellular signal transduction, cell differentiation, and control of cell division.
  • Mortalin is one of the hsp70 family proteins present in the cytoplasmic fraction of normal fibroblasts derived from mice (Non-Patent Document 1), followed by immortal fibroblasts. It was revealed that this protein is not present in the cytoplasmic fraction.
  • Normal fibroblast power Full length of isolated mortalin When an antibody was produced against a protein (Non-patent Document 1) and immunofluorescent staining was performed using the antibody, the cytoplasm was stained in normal cells. In contrast, immortalized cells stained the periphery of the nucleus (Non-patent Document 2).
  • mot-1 and mot two mortalin genes that encode proteins that differ by only two amino acids at the carboxyl terminus by immunocloning of cDNA from mouse immortalized cells and comparison with sequences isolated from normal cells.
  • mot-1 mot-1
  • mot-2 mottalin 2
  • Non-Patent Documents 5 and 6 The final answer was the pedigree of the mouse, which showed the separation of the two loci in two generations, indicating that mot-1 and mot-2 are cognate alleles in mice. (Non-Patent Document 7).
  • Mortalin 2 was also identified as PBP74 (Non-patent document 8), mtHSP70 (Non-patent document 9), and GRP75 (Non-patent document 10).
  • Mortalin 2 is stress response (Non-Patent Document 10-15), intracellular transport (Non-Patent Document 11), antigen processing (Non-Patent Document 8), cell proliferation control (Non-Patent Documents 3, 4, 12), in Involvement in various functions such as regulation of nephrotoxicity in vivo (Non-Patent Documents 13 and 14), differentiation (Non-Patent Document 15), tumorigenesis (Non-Patent Documents 4 and 16) has been pointed out.
  • Non-patent Document 17 binds to p53, a tumor suppressor protein, and inactivates its transcriptional activity function.
  • Such inactivation of p53 is considered to be part of the cause of malignant mutations in NIH 3T3 cells (Non-patent Document 4) and prolonged life span of normal human fibroblasts (Non-patent Document 18).
  • mortalin 2 immortalizes human foreskin fibroblasts in cooperation with telomerase (Non-patent Document 19).
  • hmot-2 In contrast to mouse cells, human cells have only one type of mortalin, which is called hmot-2 because it has similar activity to mouse mortalin 2 (mot-2) (non-patent literature) Four).
  • Non-patent Document 21 When cell senescence was induced by introducing chromosome 7 into SUSM1 cells, the staining of mortalin changed from the whole cytoplasmic type to the whole cytoplasmic type (Non-patent Document 22).
  • Non-patent Documents 12 and 23 Changes in the mortalin staining pattern were also observed when human mutant cells stopped growing by treatment with rhodocyanine stain.
  • Non-Patent Documents 25 and 26 There are also research results showing that mortalin expression levels correlate with muscle and mitochondrial activities and differentiation. For example, human mutant cells and tumor cell lines show upregulation of motalin expression (4), whereas mortalin expression levels decreased during induction of HL-60 promyelocytic leukocyte cells. On the other hand, in cells overexpressing mortalin, differentiation induction was significantly reduced! /, (Non-patent Document 15).
  • Ssclp is a mortalin homolog in yeast. Ssclp is essential for cell viability
  • Non-patent document 27 plays an essential function in mitochondrial transport (Non-patent document 28).
  • Ssclp is a mitocon that binds to Tim-44, an internal mitochondrial membrane anchor. It is an essential component of the Doria transportation device (Non-Patent Documents 29 and 30). Insufficient mtsp70 / Sscl mobilization due to mutation in Tim-44 is lethal in the yeast Saccharomyces cerevisiae (Non-patent Document 28). Studies in yeast have estimated at least three different activities for mortalin.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-354564
  • Patent Document 2 Japanese Patent Application No. 11 272778
  • Patent Document 3 Japanese Patent Application No. 11-357545
  • Non-Patent Literature l Wadhwa, R "Kaul, S. C, Ikawa, Y” and Sugimoto, Y. (1993) J Biol C hem 268, 6615-6621
  • Non-Patent Document 2 Wadhwa, R "Kaul, S. C, Mitsui, Y” and Sugimoto, Y. (1993) Exp Cel 1 Res 207, 442-448
  • Non-Patent Document 3 Wadhwa, R "Kaul, S. C, Sugimoto, Y” and Mitsui, Y. (1993) J Biol Chem 268, 22239-22242
  • Non-Patent Document 4 Kaul, S. C, Duncan, E. L., Englezou, A., Takano, S., Reddel, R. R., Mitsui, Y., and Wadhwa, R. (1998) Oncogene 17, 907-911
  • Non-Patent Document 5 Michikawa, Y “Baba, T., Arai, Y” Sakakura, T “Tanaka, M., and Kus akabe, M. (1993) Biochem Biophys Res Commun 196, 223-232
  • Non-Patent Document 6 Wadhwa, R "Akiyama, S., Sugihara, T., Reddel, R. R” Mitsui, Y., and Kaul, S. C. (1996) Exp Cell Res 226, 381-386
  • Non-Patent Document 7 Kaul, SC, Duncan, E., Sugihara, T., Reddel, R.R., Mitsui, Y., and Wadhwa, R. (2000) DNA Res 7, 229-231
  • Non-Patent Document 8 Domanico, S. Z., DeNagel, D. C, Dahlseid, J. N "Green, J. M., and Pierce, S. K. (1993) Mol Cell Biol 13, 3598-3610
  • Non-Patent Document 9 Webster, T. J., Naylor, D. J., Hartman, D. J., Hoj, P. B., and Hoogen raad, N. J. (1994) DNA Cell Biol 13, 1213-1220
  • Non-Patent Document 10 Merrick, B.A., Walker, V.R., He, C, Patterson, R.M., and Selkirk, J.K. (1997) Cancer Lett 119, 185-190
  • Non-patent literature ll Mizukoshi, E., Suzuki, M., Loupatov, A., Uruno, T., Hayashi, H., Misono, T., Kaul, S. C, Wadhwa, R., and Imamura, T. (1999) Biochem J 343, 461-46 6
  • Non-Patent Document 12 Michishita, E., Nakabayashi, K., Suzuki, T "Kaul, S. C, Ogino, H"
  • Non-Patent Document 13 Bruschi, S. A “and Lindsay, J. G. (1994) Biochem Cell Biol 72, 663-
  • Non-Patent Document 14 Bruschi, S. A “West, K. A” Crabb, J. W “Gupta, R. S” and Stevens, J. (1993) J Biol Chem 268, 23157-23161
  • Non-Patent Document 15 Xu, J "Xiao, HH, and Sartorelli, AC (1999) Oncol Res 11, 429-435
  • Non-Patent Document 16 Takano, S., Wadhwa, R., Yoshii, Y., Nose, T., Kaul, S. C, and Mits ui, Y. (1997) Exp Cell Res 237, 38-45
  • Non-Patent Document 17 Wadhwa, R., Shyichi, T., Robert, M., Yoshida, A., Reddel, RR, No mura, H “Mitsui, Y” and Kaul, SC (1998) J Biol Chem 273, 29586-29591
  • Non-Patent Document 18 Kaul, S "Reddel, RR, Sugihara, T., Mitsui, Y” and Wadhwa, R. (2 000) in FEBS Letters Vol. 474, pp. 159-164
  • Non-Patent Document 19 Kaul, S. C, Yaguchi, T., Taira, K., Reddel, R. R., and Wadhwa, R. (2002) ECR submitted
  • Non-Patent Document 20 Ran, Q., Wadhwa, R., Kawai, R., Kaul, SC, Sifers, RN, Bick, RJ, Smith, JR, and Pereira-Smith, OM (2000) Biochem Biophys Res Commun 27 5, 174-179.
  • Non-Patent Document 21 Wadhwa, R., Pereira-Smith, O. M., Reddel, R. R., Sugimoto, Y., Mitsui, Y "and Kaul, S. C. (1995) Exp Cell Res 216, 101—106
  • Non-Patent Document 22 Nakabayashi, K., Ogata, T “Fujii, M., Tahara, H” Ide, T “Wadhwa, R., Kaul, S. C, Mitsui, Y., and Ayusawa, D. (1997 ) Exp Cell Res 235, 345-353
  • Non-Patent Document 23 Michishita, E., Nakabayashi, K., Ogino, H., Suzuki, T., Fujii, M., an d Ayusawa, D. (1998) Biochemical And Biophysical Research Communications 253, 667-671
  • Non-Patent Document 24 Wadhwa, R “Sugihara, T” Yoshida, A "Nomura, H., Reddel, R. R” Simpson, R., Maruta, H., and Kaul, SC (2000) Cancer Res 60, 6818 -6821
  • Non-patent literature 25 Ibi, T., Sahashi, K., Ling, J., Marui, K., and Mitsuma, T. (1996) Rins ho Shinkeigaku. Clinical Neurology 36, 61-64
  • Non-Patent Document 26 Ornatsky, O. I "Connor, M. K., and Hood, D. A. (1995) Biochemica 1 Journal 311 (Pt 1), 119-123
  • Non-Patent Document 27 Craig, E. A “Kramer, J., Shilling, J., Werner- Washburne, M., Holmes, S., Kosic-Smithers, J., and Nicolet, CM (1989) Mol Cell Biol 9, 3000—3008
  • Non-Patent Document 28 Merlin, A., Voos, W "Maarse, A. C, Meijer, M., Pfanner, N., and Rassow, J. (1999) J Cell Biol 145, 961-972
  • Non-Patent Document 29 Voos, W., von Ahsen, O., Muller, H., Guiard, B., Rassow, J., and Pfanner, N. (1996) Embo Journal 15, 2668-2677
  • Non-Patent Document 30 Krimmer, T., Rassow, J., Kunau, W. H., Voos, W., and Pfanner, N. (2000) Mol Cell Biol 20, 5879-5887
  • Non-Patent Document 31 Soltys, B. J "and Gupta, RS (2000) Int Rev Cytol 194, 133-196
  • Non-Patent Document 32 Soltys, BJ, and Gupta, RS (1999) Trends Biochem Sci 24, 174-1 77
  • Non-Patent Document 33 Hayflick, L., and Moorhead, PS (1961) Exp. Cell Res. 25, 585-621
  • Non-Patent Document 34 Bryan, TM, Englezou, A., Dalla-Pozza, L., Dunham, MA, and R eddel, RR (1997) Nat Med 3, 1271-1274
  • Non-Patent Document 35 Reddel, R.R. (1997) Jpn J Cancer Res 88, 1240-1241
  • Non-patent literature 36 Wei, S., and Sedivy, JM (1999) Cancer Res 59, 1539-1543
  • Non-patent literature 37 Oshimura, M., and Barrett, JC (1997) Eur J Cancer 33, 710-715
  • Patent Document 38 Carman, TA, Afshari, CA, and Barrett, JC (1998) Experiment al Cell Research 244, 33-42.
  • An object of the present invention is to provide a new means for cancer treatment.
  • the present inventors have found that mortalin is a useful target in the treatment of cancer, thereby solving the problem of providing a new means for the treatment of cancer.
  • antibodies against motalin have a cancer cell-selective internalization function, and devised means for applying such antibodies to cancer treatment and other uses. .
  • Mortalin is a useful target in the treatment of cancer.
  • Inhibition of mortalin 2 protein expression and neutralization are useful in cancer treatment. It provides a means for neutralizing, i) suppressing the expression of motalin-2 protein using functional nucleic acids (siRNA, shRNA, etc.).
  • 2) screening for anticancer substances using mortalin 2 protein is possible.
  • anti-mortalin 2 antibodies have a cancer cell-selective intracellular internalization function
  • 1) can be used as a carrier, and a) an anti-mortalin 2 antibody is loaded with a drug.
  • a) anti-mortalin 2 antibody can be used with a fluorescent substance added to it, and a) it can be used for live imaging of cancer cells.
  • the internalization function of anti-mortalin 2 antibody is promoted by suppressing or neutralizing IL-lRtypel expression.
  • antibodies having an internalization function can be used for various purposes by internalizing anti-motalin 2 antibody in living cells (live cells), such as use as a drug carrier for cancer cells, and live imaging of cancer cells. It can be used as a carrier in the event. Alternatively, it may or may not have an internalization function, but it can be used for various purposes by specifically binding to motalin, such as when normal cells are immunostained with anti-mortalin 2 antibody against fixed cells. It can be used for IJ that cancer cells have different staining patterns.
  • the present inventors have shown that the expression level of the mortalin gene is up-regulated in most of the tumor tissues and tumor cell lines derived from the clinic.
  • the present invention was completed by discovering that an antibody against the quality can be used to suppress tumor growth and that this antibody is internalized by the cells.
  • the present invention provides an anticancer agent containing a substance that neutralizes mortalin 2 as an active ingredient. Furthermore, the present invention provides an anticancer agent comprising, as a substance that neutralizes mortalin 2, an antibody that binds to mortalin 2 as an active ingredient.
  • the antibody that binds to mortalin 2 may be an antibody against the full-length protein of mortalin 2 or an antibody against a partial peptide of mortalin 2 consisting of 5 or more amino acids.
  • the antibody that binds to mortalin 2 may be an antibody that is taken into cells and binds to mortalin 2.
  • the present invention also provides, as a substance that neutralizes the mortalin 2, a functional nucleic acid that targets any site, including a mortalin 2 gene transcription region and a promoter region, and the functional nucleic acid as an active ingredient.
  • An anticancer agent is provided.
  • Such functional nucleic acids may be siRNA or double-stranded RNA, or siRNA or double-stranded RNA containing a modified RNA strand in at least one strand! /.
  • the present invention provides a method for evaluating the anticancer activity of a test substance using mortalin, which includes any one of the following steps (a) to (c):
  • the present invention provides a method for producing a pharmaceutical composition having anticancer activity, comprising the step of mixing a substance that neutralizes mortalin and a pharmaceutically acceptable carrier.
  • the substance that neutralizes mortalin is an antibody that binds to mortalin 2.
  • the antibody that binds to mortalin 2 may be an antibody against the full-length protein of mortalin 2 or an antibody against a partial peptide of mortalin 2 having 5 or more amino acids.
  • antibodies that bind to mortalin 2 are taken up into the cell and become mortalin 2. It may be an antibody that binds.
  • the substance that neutralizes mortalin 2 may be a functional nucleic acid that targets any site, including a mortalin 2 gene transcription region and a promoter region.
  • a functional nucleic acid may be either siRNA, double-stranded RNA, or siRNA or double-stranded RNA containing a modified RNA strand in at least one strand.
  • the present invention includes a step of mixing a substance evaluated as having anticancer activity by a method for evaluating anticancer activity using the above-mentioned mortalin and a pharmaceutically acceptable carrier.
  • a method for producing an active pharmaceutical composition is provided.
  • the present invention provides the use of anti-mortalin 2 antibodies and mortalin 2 binding substances as carriers of immunotoxins and peptides, nucleotides, organic molecules and other small molecules into cells.
  • the present invention provides the following artificial antibodies and conjugates:
  • Chimera provided as an antigen-recognition site of anti-mortalin 2 antibody and a peptide containing the antigen-recognition site as a complex with another antibody, a part of the antibody, or another protein by genetic and genetic engineering techniques Artificial antibodies;
  • Anti-mortalin 2 antibody antigen-recognition site and peptide containing antigen-recognition site were conjugated to drugs such as PEG (polyethylene glycol) and ribosome, and small molecules such as radioactive substances, toxins, and anticancer drugs. Complex.
  • the anti-mortalin 2 antibody internalized in a living cell selected from the following (a) to (d):
  • anti-mortalin 2 antibody having an internalization function Such an antibody is referred to as “anti-mortalin 2 antibody having an internalization function”.
  • an antibody that is created using a partial or full-length peptide of mortalin 2 protein as an antigen and specifically binds to mortalin 2 protein is referred to as an “antibody that specifically binds to mortalin 2”. Called.
  • An anticancer agent comprising “anti-mortalin 2 antibody having an internalizing function” as an active ingredient.
  • a method of transferring a small molecule into a cell comprising using an “anti-mortalin 2 antibody having an internalization function” as a carrier of a small molecule.
  • a method for promoting internalization of a “anti-mortalin 2 antibody having an internalizing function” into a living cell comprising a step of suppressing or neutralizing IL-lR'typel.
  • the method comprises suppressing expression of IL lR'typel using shRNA.
  • the shRNA can be (a) or (i) below, but is not limited thereto.
  • the anti-mortalin 2 antibody is used as a carrier of a substance having anticancer activity, which is a combination of "anti-mortalin 2 antibody having internalization function" and a substance having anticancer activity, Cancer target therapy kit.
  • IL-lR'typel selected from the group consisting of antisense nucleotide, siRNA, shRNA, miRNA, double-stranded RNA, ribozyme, antibody, and antagonist in the above cancer target therapy kit
  • a kit comprising a combination of substances that suppress or neutralize expression.
  • a 3 rt for cancer cell liveness comprising a combination of an “anti-mortalin 2 antibody having an internalization function” and a non-fluorescent substance or a fluorescent substance that is visualized for live imaging of cancer cells.
  • IL-lR'typel is also selected from the group consisting of antisense nucleotide, siRNA, shRNA, miRNA, double-stranded RNA, ribozyme, antibody, and antagonist.
  • a kit comprising a combination of substances that suppress or neutralize expression.
  • An agent for treating cancer metastasis including "anti-mortalin 2 antibody having an internalization function”.
  • Detecting senescent cells or normalized cells in a cancer cell population by distinguishing normal cells from cancer cells, characterized by immunostaining using an antibody that specifically binds to mortalin 2. Or a method of detecting cancer cells in a senescent cell or a normalized cell population.
  • kits comprising “an antibody that specifically binds to mortalin 2”, reagents necessary for immunostaining, and instructions, and distinguishes between normal cells and cancer cells, and causes aging in a cancer cell population.
  • a kit that can be used to detect cells or normalized cells, or to detect cancer cells in senescent cells or normalized cell populations.
  • anti-mortalin 2 antibody having an internalization function to form a live image of cancer cells By distinguishing normal cells from cancer cells, detect senescent cells or normalized cells in a cancer cell population, or detect cancer cells in senescent cells or a normalized cell population.
  • kits containing “anti-mortalin antibody with internalization function”, reagents necessary for live imaging, and instructions, distinguishing normal cells from cancer cells, and aging in cancer cell population A kit that can be used to detect cells or normalized cells, or to detect cancer cells in senescent cells or normalized cell populations.
  • a cancer cell obtained by contacting a test substance with a cancer cell, immunostaining the cancer cell with "an antibody that specifically binds to mortalin 2," and observing the immunostaining pattern.
  • a screening method for a substance that induces senescent cells or normalized cells and when the immunostaining pattern is a pattern specific to senescent cells or normalized cells, the test substance displays cancer cells as senescent cells or normalized cells.
  • a screening method that assumes that the substance induces the
  • kits that can be used for screening for a substance that induces cancer cells into senescent cells or normalized cells, including “an antibody that specifically binds to mortalin 2”, reagents necessary for immunostaining, and instructions.
  • a test substance is brought into contact with a cancer cell, and the cancer cell is subjected to a live image using an “anti-mortalin 2 antibody having an internalizing function”, and then the live image pattern is observed, thereby producing a cancer.
  • This is a screening method for substances that induce cells into senescent cells or normalized cells, and when the live image pattern is unique to senescent cells or normalized cells, the test substance causes cancer cells to become senescent cells.
  • a screening method wherein the substance induces normalized cells.
  • kits that can be used for screening for a substance that induces cancer cells into senescent cells or normalized cells, including “anti-mortalin 2 antibody having an internalizing function”, reagents necessary for live imaging, and instructions.
  • Mortalin has been shown to be a target for cancer therapy.
  • the present invention provides a novel and effective anticancer agent.
  • FIG. 1 shows the results of a dot blot analysis containing 2 g of polyARNA in which the expression of the mortalin gene was analyzed in various tumor tissues (Tumor) and matched normal tissues (Normal) as a control. (Example 1)
  • FIG. 2 shows the results of dot blots containing 2 g of polyARNA in each lane, in which the expression of the mortalin gene was analyzed in various tumor tissues (T) and matched normal tissues (N).
  • FIG. 3 Western blot analysis using a mortalin specific polyclonal antibody that analyzed mortalin gene expression in various tumor tissues (T) and normal tissues matched as controls (N). is there. Actin is used to control the loading amount.
  • FIG. 4 Normal foreskin fibroblasts (HFF5, lane 1), colon cancer cells (SW480, SW116, SW6 20, KM125M, HT29, LOVO, HCT116, LS174Tp4, LIM1215, LISP— 1, LIM2099p4, LS513, COLO- 16, lane 2-14), mortalin expression in prostate cancer cells (011145, PC3, CaoV-3, LNCaP, lanes 15-18). (Example 1)
  • FIG. 6 Normal lung fibroblasts (MRC5), SV40 transformed cells (MRC5-SV2 and U87MG), bone cancer (U20S), ovarian cancer (C33A and HeLa cells), breast cancer (MCF7), and It is the result of examining the expression of mortalin in neuroglioma (A172, U138MG, DBTRG, U118MG, U87MG). (Example 1)
  • FIG. 7 Mortalin, p53, mdm2, p21, pRb for human embryonic fibroblasts (WI-38) and immortalized cells derived from them (WB_1, WB-6, WB-7, WB-11) , E6E7 Western blot results.
  • MRC5 cells are normal human lung fibroblasts.
  • FIG. 9 shows the results of Western blotting of normal skin fibroblasts (MJ90), immortalized cells derived therefrom (MJT-6) and various subclones (MJT-61 to 66).
  • MRC5 cells are normal human lung fibroblasts.
  • FIG. 10 shows fingerprints of MJ90 and clones derived from MJ90. (Example 2)
  • FIG. 11 shows the results of western plots of normal (WI-38) and tumor cells (U20S, Saos-2) derived from mortalin K antibody. (Example 3)
  • FIG. 12 shows the results of immunoprecipitation of mortalin with mortalin-K antibody.
  • U20S cells were transfected with an expression plasmid encoding Mortalin-V5 protein.
  • the immunoprecipitation reaction of the V5-tagged protein with mortalin K antibody was detected by Western blot (Western withanti-V5 Ab) with anti-V5 tag antibody.
  • FIG. 13 Immunostaining of mortalin using mortalin K antibody in normal (Normal cells: TIG-1) and tumor (Cancer cells: U20S) cells.
  • the cells were fixed with methanol acetic acid (1: 1), stained with mortalin K antibody, and then detected with a secondary antibody with anti-rabbit fluorescent tag (rabbit Alexa 488, Molecular Probes).
  • a secondary antibody with anti-rabbit fluorescent tag (rabbit Alexa 488, Molecular Probes).
  • FIG. 14 is a photograph showing internalization of mortalin K antibody (mot-KAb) in normal (TIG-1) and mutant (U20S and MCF-7) human cells. (Example 3)
  • FIG. 15 is a photograph of mortalin in U20S cells stained with Qdot-K antibody. (Example 3)
  • FIG. 16 shows internalization (lower panel) of Qdot-K antibody (KAb-Qdot655conjugate) into cells.
  • Qdot control antibody CAb—Qdot655 conjugate
  • FIG. 16 shows internalization (lower panel) of Qdot-K antibody (KAb-Qdot655conjugate) into cells.
  • Qdot control antibody CAb—Qdot655 conjugate
  • FIG. 17 is a photograph showing the results of HT1080 cell nude mouse assembly after mortalin K antibody injection (MotK-Ab injection). When tumor buds (about 6 mm) were formed, control and mortalin K antibodies were injected and subsequent progression was observed. (Example 4)
  • FIG. 18 is a photograph showing the results of nude mouse assembly of HT1080 cells after mortalin K antibody injection (Mot K-Ab injection). When tumor buds (about 6-8 mm) were formed, control and mortalin K antibodies were injected and subsequent progression was observed.
  • FIG. 19 is a photograph showing the result of nude mouse assembly of HT1080 cells after mortalin K antibody injection (Mot K-Ab injection). The tumor was injected with mortalin K antibody. (Example 4)
  • FIG. 20 is a photograph showing the results of nude mouse assembly of HT1080 cells after mortalin K antibody (Mot K-Ab) injection. Mortalin K antibody was injected into the upper tumor. (Example 4)
  • FIG. 21 Western blotting of internalized K-antibody (Example 5).
  • FIG. 22 Suppression of expression of interleukin-1 receptor 1 'type 1 (IL-lR, type I) (Example 6).
  • FIG. 23 shows that suppression of interleukin-1 receptor 1 type 1 (IL-lR, type I) expression by shRNA promotes internalization of K-antibodies into cells (Example 6).
  • IL-lR, type I interleukin-1 receptor 1 type 1
  • FIG. 24 Production of monoclonal antibody against mortalin and selection of anti-mortalin monoclonal antibody having internalization function (Example 7).
  • FIG. 25 is a diagram in which a monoclonal antibody internalizing cells was detected by immunostaining using a FITC-conjugated secondary antibody (Example 7).
  • FIG. 26 shows that the cells were acid-washed to confirm that the anti-mortalin monoclonal antibody was internalized into the cells (Example 7).
  • FIG. 27 shows that anti-mortalin monoclonal antibody is selectively internalized in cancer cells (Example 8).
  • FIG. 28 Diagram showing that anti-mortalin monoclonal antibodies (clone 37-1, 37-6, 38-4) are internalized into cancer cells by anti-IL-lR, typel antibody ( Example 8).
  • FIG. 29 is a graph showing that the internalization of anti-mortalin monoclonal antibodies is selectively promoted by suppressing IL-lR, typel expression in cancer cells (HepG2) (Example 8).
  • IL-lR typel expression in cancer cells
  • FIG. 33 Analysis of the relationship between mortalin overexpression and proliferation / metastasis in cancer cells, part 4 (Example 9).
  • FIG. 34 Diagram of using anti-mortalin monoclonal antibody to detect senescent cells present in a cancer cell population (Example 10).
  • FIG. 35 shows changes in mortalin staining pattern in senescence-induced cancer cells (Example 10).
  • FIG. 36 Live image of anti-mortalin monoclonal antibody (Example 11).
  • mortalin or mortalin 2 refers to mouse motorin 2 (mot-2) or human mortalin (hmot-2). These are sometimes simply called mortalins.
  • Human mortalin has the same function as mouse mortalin 2 when cells are malignantly mutated.
  • Mouse and human mortalin genes and proteins are known.
  • Mouse mortalin (mot-2) is described in Wadhwa, R "Kaul, SC, Ikawa, Y” and Sugimot o, Y. (1993) J Biol Chem 268, 6615-6621.
  • Human motalin (hmot-2) is described in Bhattacnaryya, T. et al. Cloning and subcellular localization of human mitochondrial hsp70. J Biol Chem 270, 1705-10 (1995).
  • Mouse and human mortalins are highly homologous at the protein level of more than 95%.
  • a substance that neutralizes mortalin 2 means any substance that can inhibit the function of mortalin 2 in cells.
  • mortalin 2 has various functions in cells.
  • the function of inactivating the tumor suppressor p53 and the function of controlling cell division are particularly important.
  • the neutralization of mortalin 2 may be inhibition of the function of mortalin protein or inhibition of gene expression.
  • Inhibition of the function of the mortalin protein may be complete inhibition or partial inhibition.
  • Inhibition of gene expression is the inhibition of transcription and Z or translation of the mortalin gene.
  • the present inventors have reported that the level of transcription and expression of mortalin gene is clinically derived tumor tissue. And was found to be up-regulated in most of the tumor cell lines. We also found that injection of antibodies against mortalin 2 into tumors suppressed tumor growth. By neutralizing mortalin 2 in tumor cells, the function of mortalin 2 in the cells is inhibited, and the growth of tumor cells can be inhibited.
  • an antibody that binds to mortalin 2 can be used as a substance that neutralizes mortalin 2.
  • the antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using conventional techniques for antibody production using a full-length protein or partial peptide of mouse or human mortalin as an antigen.
  • mouse and human mortalin proteins have very high homology, antibodies raised against mouse mortalin 2 recognize human mortalin protein and vice versa.
  • the mortalin protein as an antigen, a certain isolated protein from mouse cells can be appropriately used a full-length protein produced by gene recombination, a partial peptide synthesized based on a known amino acid sequence, and the like.
  • the antigen is purified by a method such as HPLC or SDS-PAGE.
  • Polyclonal antibodies can be produced by a technique for immunizing a rabbit and collecting the blood to produce antibodies.
  • the polyclonal antibody referred to here is antiserum (IgG crude fraction) that has been centrifuged. If you want to further purify the antibody alone from this antiserum, use a commercially available column packed with protein A or protein G, or an affinity column that binds antigenic mortalin protein or peptide to an appropriate carrier. can do.
  • polyclonal antibody includes both antiserum (IgG crude fraction) and purified antibody.
  • Polyclonal antibodies can be prepared, for example, as follows. Immunize 1 to 1.5 mg of antigen per rabbit with 4 divided doses. Specifically, the antigen is prepared to an appropriate protein concentration (lmgZml) using physiological saline (0.9 w Zw% NaCl aqueous solution). Mix this with complete Freund's adjuvant in a volume ratio of 3: 2 to make a water-in-oil emulsion. The interval between each immunization is 1 week to 10 days. New Zealand White Itrabit (SPF (special pathogen free), 12 weeks old, female) As an initial immunization, 0.5 mg Zrabbit equivalent of the antigen is injected subcutaneously into the footpad and flank respectively.
  • SPF special pathogen free
  • an emulsion is prepared in the same manner using incomplete Freund's adjuvant, and 0.25 mg Zrabbit equivalent of the antigen is injected subcutaneously into the back of the rabbit in several locations. The booster is performed 3 times. Approximately 10 days after the final immunization, aseptically collect blood from the ear or carotid artery, and centrifuge to separate the plasma.
  • the obtained plasma was heat-treated in a warm bath at 56 ° C for 30 minutes, and converted to plasma at 2 to 15 ° C.
  • the present inventors created 6 different polyclonal antibodies that bind to mortalin (5 using partial peptides as antigens and 1 using full-length proteins expressed in bacteria as antigens). It was found that when K antibody, which is an antibody against the full-length protein, was added to the culture medium, it was taken up into living cells, that is, internalized into living cells. In addition, the present inventors also prepared a monoclonal antibody against mortalin, and similarly found one having an internalization function.
  • an antibody that binds to mortalin that can be used in the present invention, an antibody that is internalized in a living cell and binds to mortalin is particularly preferable.
  • Such an antibody (anti-mortalin 2 antibody having an internalization function) can be used as a carrier of a small molecule into tumor cells in addition to the purpose of neutralizing mortalin.
  • Such antibody carrier When used as, preferably, immunotoxins and peptides, nucleotides, organic molecules and other small molecules can be introduced into tumor cells.
  • IL-lreceptor type I
  • the inventors have constructed the following theory as a hypothesis for internalization.
  • the present invention is not bound by this theory, but is described here to make the invention easier to understand.
  • mortalin 2 protein is also present on the cell membrane surface.
  • an anti-mortalin 2 antibody having an internalizing function is placed in a cell culture medium and cultured, the anti-mortalin 2 antibody binds to the mortalin 2 protein on the cell membrane surface.
  • This anti-mortalin 2 antibody-motalin 2 protein complex also moves from the cell membrane into the cell, and as a result, the anti-mortalin 2 antibody is internalized in the cell.
  • IL-lreceptor (type 1) is a receptor protein present on the cell membrane surface.
  • mortalin 2 protein In cancer cells, mortalin 2 protein is also present on the cell membrane surface, but IL-1R and mortalin 2 protein interact (combine) on the cell membrane surface. Since the anti-mortalin 2 antibody cannot bind to the mortalin 2 protein bound to IL-1R, the anti-mortalin 2 antibody having an internalizing function cannot be transferred into cancer cells. However, inhibition of the interaction between IL-1R and mortalin 2 protein results in an increase in free mortalin 2 protein on the cell membrane surface (for example, suppression of IL-1R expression (knockdown) or anti-IL- 1R antibody is added to the culture medium to neutralize IL-1R on the cell membrane, etc.). “Anti-mortalin 2 antibody having an internalizing function” increases the chance of binding to free mortalin 2 protein on the cell membrane, and thus promotes its internalization.
  • a monoclonal antibody is preferable to a polyclonal antibody in that it can stably produce a homogeneous antibody.
  • Monoclonal antibodies can be prepared by any method that produces antibodies in a continuous cell culture system. These include, but are not limited to: the hybridoma method (Koehler and Milstein. (1975) Nature, 256, 495-497), the human B cell hybridoma method (Kosbor et al. (1983) Immunol Today, 4, 72; Cote et al. (1983) Proc. Natl. Acad. Sci. (USA) 80, 2026—2030), and EBV—hybridoma method (Col e et al.
  • a hybridoma producing a monoclonal antibody can be prepared, for example, as follows according to the method of Milstein et al. (Kohler. G. and Milstein, C, Methods Enzymol. (1981) 73: 3-46). That is, a desired antigen or a cell that expresses a desired antigen is used as a sensitizing antigen, and this is immunized according to a normal immunization method, and the resulting immune cell is combined with a known parent cell by a normal cell fusion method. It can be prepared by fusing and screening monoclonal antibody-producing cells (neubridoma) by conventional screening methods.
  • Hypridoma can also be produced by using a recombinant antibody that has been cloned using a hybridoma, cloned into an appropriate vector, introduced into a host, and produced using genetic recombination technology.
  • a recombinant antibody that has been cloned using a hybridoma, cloned into an appropriate vector, introduced into a host, and produced using genetic recombination technology.
  • V region variable region of the antibody is synthesized from the mRNA of the hyperidoma using reverse transcriptase.
  • DNA encoding the V region of the target antibody is obtained, it is ligated with DNA encoding the desired antibody constant region (C region) and incorporated into an expression vector.
  • DNA encoding the V region of an antibody may be incorporated into an expression vector containing DNA of the antibody C region. It is incorporated into an expression vector so that it is expressed under the control of an expression control region such as an enhancer or promoter.
  • host cells can be transformed with this expression vector to express the antibody.
  • a chimeric antibody can be prepared by, for example, splicing a mouse antibody gene into a human antibody gene by the method described in the following literature. (Morrison et al.
  • anti-mortalin 2 antibody bound to various molecules such as polyethylene glycol (PEG) can also be used.
  • PEG polyethylene glycol
  • Such an antibody modification product can be obtained by chemically modifying the obtained antibody by a technique already established in this field, and the function of the antibody can be enhanced.
  • the antibodies of the present invention also include artificial antibodies and complexes containing the antigen recognition site of anti-mortalin 2 antibody.
  • Antibody Provide peptide containing antigen recognition site and antigen recognition site of anti-mortalin 2 antibody as a complex with other antibody, part of antibody, or other protein by genetic and genetic engineering techniques Also included are chimeric artificial antibodies.
  • the antigen recognition site of anti-mortalin 2 antibody and the peptide containing the antigen recognition site are bound to intracellular drugs such as PEG (polyethylene glycol) and ribosome, and small molecules such as radioactive substances, toxins, and anticancer agents. Other complexes can also be used in the present invention.
  • a functional nucleic acid targeting an arbitrary site including a mortalin gene transcription region and a promoter region can also be used as a substance that neutralizes mortalin.
  • a functional nucleic acid is a nucleic acid molecule having a function of controlling the expression of a specific gene and the action of a product, such as siRNA, shRNA, miRNA, double-stranded RNA, ribozyme, and antisense. Functional nucleic acids can block gene expression and neutralize mortalin at the gene level. Based on the known sequence information of mortalin 2, those skilled in the art can design these functional nucleic acids based on, for example, the following documents. (Wadhwa, R., Kaul, b.
  • An anticancer agent comprising an antibody that binds to mortalin 2 as an active ingredient
  • Anti-cancer drugs containing an antibody that binds to mortalin 2 as an active ingredient are pharmaceutically acceptable (Remingtons Pharmaceutical science, latest edition, Mark Publis hing Company, Easton, USA) That contain both supported carriers and additives There may be.
  • saccharides such as polyethylene glycol; dextran, mannitol, sonorebitol, inositol, glucose, fructose, ratatose, xylose, mannose, maltose, and raffinose can be used as isotonic agents.
  • the anticancer agent of the present invention can further contain a surfactant.
  • Surfactants include nonionic surfactants such as sorbitan fatty acid esters such as sorbitan monocaprylate, sorbitan monolaurate, sorbitan monopalmitate; glycerin monocaprylate, glycerin monomylate, glycerin monostearate, etc.
  • Glycerin fatty acid esters of polyglycerin fatty acid esters such as decaglyceryl monostearate, decaglyceryl distearate, decaglyceryl monolinoleate; polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monooleate, polyoxy Polyethylene sorbitan monostearate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc.
  • Lioxyethylene sorbitan fatty acid ester such as polyoxyethylene sorbite tetrastearate and polyoxyethylene sorbit tetraoleate; polyoxyethylene glycerin fatty acid ester such as polyoxyethylene glyceryl monostearate; polyethylene glycol diester Polyethylene glycol fatty acid esters such as stearate; polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether; polyoxyethylene polyoxypropylene glycol ether, polyoxyethylene polyoxypropylene propyl ether, polyoxyethylene polyoxypropylene cetyl Polyoxyethylene polyoxypropylene alkyl ethers such as ethers; Polyoxyethylene alkyl phenyl ethers such as echelenonyl phenyl ether; Polyoxyethylene hydrogenated castor oil such as polyoxyethylene castor oil and polyoxyethylene hydrogenated castor oil (polyoxyethylene hydrogen castor oil); Polyoxyethylene sorbito
  • the anticancer agent of the present invention further contains a diluent, a solubilizing agent, an excipient, a pH adjuster, a soothing agent, a buffering agent, a sulfur-containing reducing agent, an anti-oxidation agent and the like as desired. Also good.
  • sulfur-containing reducing agents include N-acetyl cysteine, N-acetyl homocysteine, thiotate, thioglycol, thioethanolamine, thioglycerol, thiosorbitol, thioglycolic acid and its salts, sodium thiosulfate , Dartathione, and those having a sulfhydryl group such as a thioalkanoic acid having 1 to 7 carbon atoms.
  • Antioxidants include erythorbic acid, dibutylhydroxytoluene, butylhydroxylazole, a-tocopherol, tocopherol acetate, L-ascorbic acid and its salts, L-ascorbyl palmitate, L-ascorbic acid stearate, Chelating agents such as sodium hydrogen sulfite, sodium sulfite, triamyl gallate, propyl gallate or disodium ethylenediamin tetraacetate (EDTA), sodium pyrophosphate, sodium metaphosphate and the like can be mentioned.
  • Chelating agents such as sodium hydrogen sulfite, sodium sulfite, triamyl gallate, propyl gallate or disodium ethylenediamin tetraacetate (EDTA), sodium pyrophosphate, sodium metaphosphate and the like can be mentioned.
  • inorganic salts such as sodium chloride, potassium salt, calcium salt, sodium phosphate, potassium phosphate, and sodium bicarbonate; organic salts such as sodium citrate, potassium citrate, and sodium acetate Including normally added ingredients such as salt!
  • a buffer solution such as a phosphate buffer solution.
  • a preferred pH is 5-8.
  • the anticancer agent of the present invention is usually administered parenterally, for example, by injection (subcutaneous injection, intravenous injection, intramuscular injection, intraperitoneal injection, etc.), transdermal, transmucosal, nasal, transpulmonary, etc.
  • parenterally for example, by injection (subcutaneous injection, intravenous injection, intramuscular injection, intraperitoneal injection, etc.), transdermal, transmucosal, nasal, transpulmonary, etc.
  • oral administration is also possible.
  • the anticancer agent of the present invention can be lyophilized for dissolution and reconstitution before use, even if it is a solution formulation. It can be dry.
  • excipients for lyophilization sugar alcohols and saccharides such as mannitol and glucose can be used.
  • the amount of the antibody that binds to mortalin 2 contained in the preparation of the present invention is a force that can be determined according to the type of disease to be treated, the severity of the disease, the age of the patient, and the like. 1 ⁇ g to 200 ⁇ g / ml, preferably 0.1 ⁇ g to 2 mg / ml.
  • the K antibody provided in the present invention can be used as an example of an antibody that binds to mortalin 2. Details of the production of the K antibody are described in detail in Examples below.
  • mortalin is a molecule characteristic of cancer cells and can be a target for cancer treatment.
  • Substances that neutralize the expression of mortalin and substances that prevent mortalin from functioning in the cell may be substances having anticancer activity. Therefore, by analyzing the intensity of mortalin expression and the function of mortalin in the presence of the test substance, the anticancer activity of the test substance can be evaluated.
  • known standard means for analyzing gene expression such as Western analysis and Northern analysis can be used.
  • the function of mortalin can be analyzed by examining the activity of p53, GRP94 and other mortalin binding proteins.
  • the anticancer activity of the test substance can be evaluated as follows.
  • mortalin protein and a test substance are brought into contact, and the anticancer activity of the test substance can be evaluated based on the strength of the contact.
  • the mortalin protein may be produced by gene recombination or isolated from cultured cell force.
  • the strength of contact is measured as the amount of test substance bound to mortalin protein or the change in function of mortalin protein as a result of the test substance binding to mortalin protein.
  • the amount of the test substance bound to the mortalin protein can be measured, for example, by the im munoprecipitation method or immunodepletion method using an anti-mortalin antibody. These are methods based on the precipitation reaction of mortalin protein with specific antibodies.
  • the test substance may bind to mortalin, which may affect the precipitation reaction caused by the antibody.
  • test substance-mortalin complex bound to the protein can be directly precipitated, and in this case, the binding between mortalin and the test substance can be quantitatively determined on an SDS PAGE gel.
  • Examples using this method include Wadhwa, R., Sugihara, T., Yoshida, A., Nomura, H., Reddel, RR, Simpson, R., Maruta, H., and Kaul, SC ( 2000).
  • a cell overexpressing mortalin is prepared by introducing a mortalin gene by molecular biological means, and the cell or cell disruption solution thereof is used. It can be contacted with a test substance and evaluated by contact strength. Contact strength is evaluated by measuring the amount of test substance bound to mortalin using the immunoprecipitation method, immunodepletion method described above, or the direct precipitation method using a test substance tagged with Sepharose or agarose beads. be able to.
  • a cell having a reporter gene downstream of a mortalin gene promoter and a cell disruption solution are contacted with a test substance, and the expression of the reporter gene is used as an index.
  • the anticancer activity of the test substance can be evaluated.
  • the effect of the test substance on the mortalin promoter affects the expression level of mortalin.
  • Substances that affect the level of mortalin expression are substances that neutralize mortalin and may have anticancer activity.
  • DNA connected to a mortalin gene downstream of a promoter is connected to a commonly used reporter gene such as luciferase N / 3-gal based on a known mortalin gene sequence according to a conventional method in the field of molecular biology. It can be constructed as a plasmid prepared in
  • mortalin Since mortalin is specifically expressed in tumor cells, it enters cells and becomes mortalin. Substances that specifically bind can be used as carriers of small molecules into tumor cells.
  • a “mortalin 2-binding substance” such as MKT007 described in the following literature can also be used. Wadhwa, R., Colgin, L., Yaguchi, T., Taira, K., Reddel, RR, and Kaul, SC (2002).
  • Cancer Res 62, 4434-4438 Wadhwa, R., Sugihara, T., Yoshida, A., Nomura, H., Reddel, R. R "Simpson, R., Maruta, H” and Kaul, SC (2000).
  • Selective toxicity of MKT- 0 77 to cancer cells is mediated by its binding to the hsp70 family protein mot— 2 and reactivation of p53 function. Cancer Res 60, 6818-6821.
  • anti-mortalin antibodies are used to translocate small molecules, peptides, lipids, and oligonucleotides (siRNA, shRNA, miRNA, double-stranded RNA, ribozyme, aptamer, dumbbell DNA, etc.) into cells.
  • oligonucleotides siRNA, shRNA, miRNA, double-stranded RNA, ribozyme, aptamer, dumbbell DNA, etc.
  • 'Polychrome' or other substances that specifically bind to mortalin can be used.
  • substances that specifically bind to mortalin can be used as drug carriers for targeted therapies to transport immunotoxins and peptides, nucleotides, organic molecules, and other small molecules to tumor cells.
  • anti-mortalin antibodies (monochrome / polyclonal) Both) and other substances that specifically bind to mortalin can also be used as contrast medium carriers.
  • cells are labeled with Qdot using the property of intracellular internalization (or carrier) of anti-mortalin antibody, and the cells are injected into nude mice. The metastasis of the cells in vivo can be observed with a live image, and operations such as killing animals can be done!
  • Polyclonal or monoclonal antibodies that can be taken up (internalized) into living cells using full-length mortalin as an antigen can be prepared. Such an antibody is particularly suitable for use as a molecular carrier as described above. Why are anti-mortalin antibodies internalized? However, it is thought that there is some relationship in the interaction between mortalin expressed on the cell surface and interleukin 1 receptor 'type l (IL-lR'typel), and interleukin 1 The internalization of mortalin antibody can be further promoted by suppressing or neutralizing the expression of receptor 1. type 1.
  • anti-mortalin antibody anti-mortalin 2 antibody having an internalization function
  • an anti-mortalin antibody is specifically internalized in cancer cells, it can be used as a carrier for selectively delivering drugs to cancer cells or for cancer treatment purposes. It is useful for the application.
  • IL-lR'typel of silencing and neutralizing means (antibody, antagonist, s iRNA, etc. Ribozai beam) Can also be used.
  • an anti-mortalin monoclonal antibody or an anti-mortalin polyclonal antibody can be used to detect and sort senescent cells or normalized cells in a cancer cell population.
  • the use of such an anti-mortalin monoclonal antibody or anti-mortalin polyclonal antibody is specifically by using a motorin staining pattern.
  • the mortalin staining pattern can be used for screening test substances (low molecular compounds, peptides, nucleotides, antibodies, etc.) that induce cancer cells into senescent cells or normalized cells.
  • RNA was prepared from normal and transformed human cells using TrizoKLife Technologies, Inc). The obtained RNA was denatured on a 1% agarose gel containing 2.2M formaldehyde and size-fractionated, and transferred to a Hybond N + membrane (Amarsham Corp.). As a probe, a 0.5 kb fragment at the carboxyl end of human cDNA obtained from cDNA derived from Hela cells using mouse cDNA as a probe was used. Hybridization was performed at 65 ° C. in express hybridization buffer (CLONTECH). The membrane was washed with 2X SSC and 2X SSC containing 0.1% SDS for 10 minutes each and then twice with IX SSC containing 0.1% SDS. The amount of RNA loading on the blot was determined by actin or 18S liposomal probe.
  • Protein samples (10-20 ⁇ g) are separated on SDS polyacrylamide gels and transferred to a -cellulose membrane (BA85, Schleicher and Schuell) by electroblotting using a semidrite transfer blotter (Biometra, Tokyo). did. Immunoassay was performed using anti-mortalin antibodies (T antibody and K antibody described later). The antibody complexes formed were visualized using horseradish peroxidase (HRP) or alkaline phosphatase-conjugated anti-mouse Z rabbit immunoglobulin G (IgG) (ECL kit, Amersham pharmacia Biotech).
  • HRP horseradish peroxidase
  • IgG alkaline phosphatase-conjugated anti-mouse Z rabbit immunoglobulin G
  • FIG. 13 and Table 1 The results of examining the expression of the mortalin gene in the breast, brain, colon, ovarian tumor tissues and the corresponding normal tissues (control) are shown in FIG. 13 and Table 1.
  • FIG. 1 and FIG. 2 are dot blots showing expression in tumor tissue (Tumor) and corresponding normal tissue (Normal) in each part.
  • Figure FIG. 3 shows the results of Western blotting using a mortalin-specific polyclonal antibody showing expression in various tumor tissues (T) and corresponding normal tissues (N). Table 1 summarizes these results. In order of left column force, tumor type, number of specimens, number of specimens with mortalin up-regulated (Mot-UP), and mortalin downregulation.
  • FIGS. Figure 4 shows the results of examining the expression of the mortalin gene in tumor cell lines derived from various tissues.
  • Lane 1 is normal foreskin fibroblasts (HFF-5) as a control, and lanes 2-14 are colon cancer cells.
  • Lanes 15-18 are prostate cancer cells. Seven of the 13 colon cancer cells showed very high levels of mortalin gene expression, and the other six showed moderate increases compared to normal foreskin fibroblasts. 3 prostate cancer cells, normal foreskin It showed a high level of expression compared to fibroblasts.
  • lane 2 is normal lung fibroblasts (MRC5)
  • lanes 3-8 are breast cancer cells.
  • Figure 6 shows normal lung fibroblasts (MRC5), SV40 transformed cells (MRC5-SV2 and U 87MG), bone cancer (U20S), ovarian cancer (C33A and HeLa cells), breast cancer (MCF7), and Shows mortalin expression in neuroglioma (A172, U138MG, DBTRG, U118MG, U87MG). Mortalin expression was upregulated in 5 out of 7 breast cancer-derived cells, and was similar in cells derived from bone, ovarian, and neuroglioma ( Figures 5 and 6).
  • Human fibroblasts are immortalized and cell lines exhibiting various mortalin expression levels are taken, and these cell lines are subjected to an anchorage-independent colony assembly assay to determine mortalin expression levels and anchorage-independent growth ability. I investigated the relationship.
  • a common property of cancerous cells is the ability to grow in an anchorage-independent manner, that is, the ability to grow in a floating state without cell adhesion, such as in a soft flag.
  • telomerase catalytic subunit hTERT alone or a combination of hTERT and E6 and E7 expression plasmids (using expression plasmids distributed by Dr. Roger Reddel, Sydney, Australia).
  • Cells (delivered by the University of Texas, USA) were immortalized and subcloned by serial dilution. Subcloning enabled us to obtain cell lines with various levels of mortalin expression (Fig. 7). Colony formation
  • Cells were trypsinized, counted, suspended in 0.8% agar in DMEM and plated on an agar bed plate. Plates were incubated for 3-10 weeks in a 37 ° C CO incubator.
  • Fig. 7 ⁇ : L0 shows the results of the analysis of the expression levels of the genes and the anchorage-independent colony formation assay.
  • FIG. 7 shows immortalized cells (WB-1, WB-6, WB-7, WB-ll) transformed with human embryonic fibroblasts (WI-38) and hTERT, E6 and E7 derived from them.
  • CFE Western blotting and colony formation efficiency
  • Fig. 8 is a photograph showing the growth of WB-1 and WB-6 cells in a normal medium.
  • WB-6 is growing at a high density. That is, these cells exhibit a density-dependent growth inhibitory escape phenomenon and grow at high density in a normal medium.
  • FIG. 9 shows normal skin fibroblasts (MJ 90), immortalized cells (MJT-6) and various subclones (MJT_61-66) obtained from telomerase derived therefrom, and normal human lung fibroblasts This is the result of the stamp lot and colony formation of MRC5 cells. It can be seen that the subclone expressing mortalin at a high level showed a higher colony formation rate on the soft logger compared to the low level of mortalin expression. To eliminate the possibility of cross-contamination with other transforming cells, MJ90 and MJ90-derived subclones were analyzed by DNA fingerprinting, and these subclones were also correctly derived from each cell type. (Fig. 10).
  • the following antigens are used to immunize Usagi (New Zealand White Rabbit) An antibody against the antibody was prepared. Five antibodies against peptides that are part of the mouse mortalin 2 (named P, Q, R, S, T antibodies) and one antibody against the full-length mortalin 2 protein (anther antibody) were generated. Antibodies purified using antigenic mortalin protein or peptide affinity columns were used in the following experiments.
  • Antigen-Q mortalin peptide
  • Antigen-R mortalin peptide
  • Antigen-S mortalin peptide
  • Antigen-T mortalin peptide
  • Antigen-K A His-tagged full-length mortalin protein expressed in E. coli and purified by NTA-Ni agarose.
  • a 2.0-kb open reading frame (ORF) of a mortalin cDNA clone obtained by screening a cDNA library with an antibody against mouse cell-derived mortalin 2 protein was cloned into the pQE30 vector (Qiagen) and His-tagged protein. Got. Details on this antibody are described in Wadhwa, R., Kaul, SC, Ikawa, Y., and Sugimoto, Y. (1993) J Biol Chem 268, 6615-6621. E. coli strain M15 is transformed with the pQE30 / mortalin construct, grown to OD 6 and isopropyl-1-
  • IPTG o- ⁇ -D-galactopyranoside
  • PEG o- ⁇ -D-galactopyranoside
  • K-Ab K antibody
  • a cover glass was placed in a 12-well culture dish, and cells were seeded thereon. After 24 hours, 5 ⁇ 1 of K antibody (K-Ab), which is an anti-mortalin antibody obtained by immunization with the antigen K described above, was placed in the culture solution (1.0 ml). Cells were fixed after 12-24 hours and visualized by secondary staining with fluorescein isothiocyanate-hidge anti-mouse IgG and Texas red-anti-rabbit IgG (Amersham Corp.). The cells were observed with a fluorescence microscope (Carl Zeiss). The same experiment was performed for P, Q, R, S, and T antibodies.
  • Figure 14 shows very interesting results. That is, when the antibody is added to the culture medium, it is taken up into the cell. In both normal (TIG-1) and mutant (U20S and MCF-7) human cells, it can be seen that the mortalin antibody (mot-K Ab) is internalized in the cells. This staining pattern was the same as the staining pattern obtained by fixing cells and then staining with K antibody (see Non-Patent Document 2). Other antibodies were also used for Western plots and immunoprecipitation, but did not show any such internalization.
  • the present inventors prepared a Qdot-antibody conjugate using a Qdot655 antibody conjugation kit (Quantum Dot Corporation, USA). When cells were stained with Qdot Conjugate K antibody, the expected staining pattern was obtained (Fig. 15). Qdot-K antibody conjugate (approximately 5 ⁇ g / ml) was added to the medium of U20S cells.
  • Nude mice were purchased by CLEA Japan. Human fibrosarcoma cells (HT1080) were injected subcutaneously into nude mice. When small tumor buds appeared, the test tumors were injected with anti-mortalin antibody K antibody (K-Ab). Control tumors were injected with DMEM containing pre-immune serum (preserum). Subsequent tumor progression was observed.
  • K-Ab anti-mortalin antibody K antibody
  • Tumors injected with control antibody gradually increased in size, but tumors injected with Mot-K antibody shrunk (FIG. 19).
  • mice with two side-by-side tumors (upper large tumor and lower small tumor) were used.
  • K antibody was injected only into the upper tumor.
  • the upper tumor injected with K antibody shrinks, while the size of the lower tumor expands after 4 weeks ( Figure 20).
  • K-antibody polyclonal antibody against Mot-2 full-length protein
  • Figure 21 shows the detection of the internalized K-antibody by Western blotting.
  • K-antibodies and affinity-purified K-antibodies were internalized in the cells, whereas preimmune sera and T-antibodies were not.
  • IL-1R interleukin-1 receptor 'type 1
  • shRNA expression plasmid that suppresses the expression of IL-lR, type I was first constructed. Two types of shRNA expression plasmids were constructed for the two target sites 289-307 and 293-311 on the cDNA. This shRNA sequence is shown in FIG.
  • Each expression plasmid was transfected into cells, and suppression of IL-1R, type I expression was analyzed by Western blotting using anti-IL-1R, type I antibody.
  • IL-lR type I expression was suppressed by using the two shRNA expression plasmids shown in Fig. 22 (Fig. 22 gel photo).
  • the control plasmid or one of the two types of shRNA expression plasmids in Fig. 22 was transfected.
  • Excited cells HepG2 were cultured with K-antibody, and the antibody internalized in the cells was analyzed by Western blotting using HRP-conjugated anti-rabbit antibody.
  • Such an internalization promoting effect is considered to be more preferable when K-antibody is used as a carrier for drug delivery or as an anticancer agent component.
  • the effect of promoting internalization of cells is not only due to interleukin-1 receptor 'type 1 hairpin RNA as shown in Fig. 23, but also knocking by antisense nucleotide, siRNA, shRNA, miRNA, double-stranded RNA, and ribozyme. Whether it is down or neutralization with antibodies or antago-zute, IL-lR, type I expression suppression / neutralization by any method is considered to promote the uptake of mortalin antibodies by cells as shown in the data shown in FIG. It is done.
  • a mouse monoclonal antibody against recombinant human full-length mortalin was prepared.
  • the ability of the 50 anti-mortalin monoclonal antibodies prepared to meet the following three criteria was investigated: (1) reactivity and specificity for mortalin by analysis of Western 'blotting method, (2) normal Patterns of immunostaining of mortalin in cells and cancer cells (normal cells stain the entire cytoplasm, cancer cells have a pattern of staining around the nuclear membrane, and (3) internalization into cells) .
  • FIG. 24 is a diagram relating to the production of a new monoclonal antibody against mortalin and the selection of anti-mortalin monoclonal antibody having an internalization function.
  • Monoclonal antibody clones meeting the above three criteria were obtained. Such clones were 4 clones out of 50 clones. Many clones met criteria for reactivity / specificity and immunostaining patterns, but did not internalize into the cells. Eventually, cells (hybridoma) (37, 38, 71, 96) producing anti-mortalin monoclonal antibodies internalizing the cells were obtained. In addition, Hypridoma was prepared using a clone (No. 52) that meets the criteria for reactivity 'specificity and immunostaining but does not internalize in cells as a negative control.
  • Cells were cultured with the anti-mortalin monoclonal antibody shown in FIG. 25, immobilized after 24 hours, and immunostained with a FITC-conjugated secondary antibody.
  • Anti-mortalin monoclonal antibodies (37-1, 37-6, 38-4, 71-1, 96-5) were clearly internalized in the cells.
  • the anti-mortalin monoclonal antibody of clone 52-3 was not internalized.
  • the cells were acid-washed, and it was confirmed that the anti-mortalin monoclonal antibody was internalized into the cells (Fig. 26).
  • Cancer cells U20S were cultured together with the antibody clones shown in the figure, fixed, and the internalized antibody was detected by immunostaining with a FITC-conjugated secondary antibody.
  • the cells were fixed after washing with chilled PBS containing 0.2% acetic acid and 0.5% NaCl. The results of comparing the intensity of immunostaining of acid-washed cells with that of normal PBS-washed cells are summarized in FIG.
  • Cancer cells U20S or normal cells (TIG-1) were cultured with an anti-mortalin monoclonal antibody and an anti-IL-lR, typel antibody. The cells were cultured for 30 minutes with the antibody combination shown in FIG. 27 and fixed, and then the internalized anti-mortalin monoclonal antibody was detected with a FITC-conjugated anti-mouse secondary antibody.
  • Anti-mortalin monoclonal antibodies (37-1, 37-6, 38-4, 71-1, 96-5) were selectively internalized in cancer cells.
  • clones 37-1 and 37-6, 38-4 anti-IL-1
  • R'typel antibody Monoclonal Anti-human IL-IRtypel Antibody ⁇ R & D Sysytems Inc., Catalog Number: MAB269
  • Cancer cells (U20S) or normal cells (TIG-1) were cultured in the presence of anti-mortalin monoclonal antibody (clone 37-1, 37-6 or 38-4) and anti-IL-IR, ty pel antibody. 2 cells
  • Figure 28 shows that anti-IL-lR, typel antibody promotes the internalization of anti-mortalin monoclonal antibodies (clone 37-1, 37-6, 38-4) in cancer cells. is there.
  • FIG. 29 shows that when IL-lR, typel expression is suppressed in cancer cells (HepG2), the internalization of anti-mortalin monoclonal antibodies in cancer cells is selectively promoted.
  • cancer cells HepG2 with high IL-1R expression
  • IL-lR, typel expression was knocked down using an shRNA expression plasmid.
  • the transfected cells were cultured in the presence of a combination of anti-mortalin monoclonal antibody and anti-IL-lR, typel antibody shown in FIG. After fixing the cells, the cells were visualized using a FITC-conjugated mouse secondary antibody.
  • a cancer cell line for mortalin overexpression was prepared.
  • MCF7 breast cancer cells
  • mortalin was overexpressed using a retroviral expression vector.
  • Overexpression of mortalin with myc tag Detected by Western blotting using anti-myc antibody (Fig. 30). Endogenous mortalin and actin were used as internal controls to adjust the amount of protein migrated.
  • FIG. 31 a retroviral expression vector was used to overexpress mortalin in breast cancer cells (MCF7), and it was examined whether this breast cancer cell that constantly overexpresses mortalin would form a tumor in nude mice.
  • MCF7 Breast cancer cells overexpressing mortalin formed tumors in nude mice, whereas mortalin overexpressed, the original breast cancer cells formed tumors in nude mice. It was a powerful force.
  • mortalin causes malignant tumors to grow. In other words, mortalin appears to be a suitable target for cancer treatment.
  • FIG. 32 the relationship between mortalin overexpression and metastasis in cancer cells was analyzed.
  • MCF7 cells were overexpressed with mortalin, and the chemotaxis of cells that constantly overexpressed mortalin was investigated.
  • the chemotaxis test is a reliable indicator of cancer cell metastasis.
  • the chemotaxis activity was performed in experimental control cells and MCF7 cells overexpressing mortalin.
  • Cells with 60% to 70% confluency were washed with cold PBS, trypsinized, and resuspended in DMEM containing 0.5% FBS (Sigma) to a cell density of 2 ⁇ 10 5 cells / ml.
  • Cells were seeded at 2 ⁇ 10 4 cells / ml in the inner part of Transwel 1 (12 mm-pore, Costar), and invasion was performed according to the manufacturer's instructions.
  • fibronectin (Sigma) derived from human plasma was used.
  • mortalin has the property of metastasizing to cancer cells. In other words, mortalin appears to be a suitable target for cancer metastasis treatment.
  • Figure 33 further investigated the relationship between mortalin overexpression and proliferation / metastasis in cancer cells.
  • a retrovirus expression vector mortalin was overexpressed in MCF7 cells, mortalin was constantly overexpressed, and the motility of the cells was examined by scratch-wound assay.
  • Scratch 'Wind assay' is a reliable indicator of cancer cell metastasis.
  • Cells were cultured in monolayers on dishes coated with fibronectin (10 microg / ml). Trauma was formed by drawing a line with a P-200 pipette tip on the cells of this monolayer culture and completely squeezing the cells. To remove cell debris, the cells were washed several times with PBS and again supplemented with medium. The time when the scratch (wound) was created was set to zero. During the following 48 hours, the cells were allowed to grow and migrate to the trauma. Cell movement to the trauma was observed and recorded with a 10x objective lens of a phase contrast microscope.
  • MCF7 cells and U20S cells overexpressing mortalin showed high motility in scratch-on-the-fly.
  • Overexpression of mortalin has the potential to metastasize to cancer cells. In other words, mortalin appears to be a suitable target for cancer metastasis treatment.
  • the staining pattern was checked using anti-mortalin monoclonal antibody (FIG. 34) or anti-mortalin polyclonal antibody (FIG. 35).
  • FIG. 34 illustrates the use of anti-mortalin monoclonal antibodies to detect senescent cells present in a cancer cell population.
  • Normal cells TAG-1
  • cancer cells U20S Immunostaining was performed using a single talin monoclonal antibody.
  • FIG. 35 shows changes in mortalin staining patterns in senescence-induced cancer cells.
  • Senescence was induced in cancer cells by phytochemicals such as Uitaferin A (a component contained in a crude extract from Ash Ganda), hydrogen peroxide, or azacitidine.
  • the cells were fixed after drug treatment, and mortalin was immunostained using an anti-mortalin polyclonal antibody (K-antibody).
  • K-antibody anti-mortalin polyclonal antibody
  • FIG. 36 shows a live image of an anti-mortalin monoclonal antibody.
  • Cancer cells U20S were cultured in the presence of anti-mortalin monoclonal antibody (37-6) conjugated with Qdot (quantum dots). After culturing for 24 hours, the antibodies in the cells were visualized in cases where the cells were fixed and not fixed. In addition, the anti-mortalin monoclonal antibody to which Qdot was bound was removed and the cells were divided 1-2 times, then fixed and observed for Qdot.
  • the anti-mortalin monoclonal antibody to which Qdot was bound was internalized in the cells, and the cells were labeled with Qdot even after cell division.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Hospice & Palliative Care (AREA)

Abstract

本発明は、モータリン2に結合する抗体を用いた癌の治療と機能性核酸に関する。 モータリンは不死化細胞や腫瘍組織において発現がアップレギュレートされていた。モータリンの高レベル発現した不死化ヒト細胞は、足場非依存性増殖を示した。特異的な抗モータリン抗体であるK抗体をヌードマウスの腫瘍に注射すると、対照と比べて腫瘍の成長が抑制されるか、腫瘍が縮小した。本発明は、特異的な抗モータリン抗体(K抗体)の腫瘍の治療のための使用、及び免疫毒素等の細胞内への輸送のためのキャリア分子としての使用を提供する。  モータリンが癌治療の標的となることが示された。本発明により、新規で有効な抗癌剤が提供される。また、細胞に内在化される抗モータリン抗体を開発し、これを用いた様々な用途を提供する。    

Description

癌の治療における抗モータリン 2抗体と機能性核酸の使用
技術分野
[0001] 本発明は、モータリン 2 (mot- 2)に結合する抗体を用いた癌の治療と機能性核酸に 関する。
背景技術
[0002] 細胞分裂の制御や不死化の機構の解明は、バイオテクノロジーの進歩及び癌の治 療において重要である。正常な細胞の細胞分裂の回数は有限であり、最後には分裂 的老化 (replicative senescence)と呼ばれる永久の増殖停止である代謝的に活性な 状態に至る(非特許文献 33)。ところが、何らかの機構により遺伝的あるいは後成的 な変化が誘発されると、細胞はこの分裂能の限界力 逃れて培養中で永久に分裂し 続けることができるようになる。これが、細胞の「不死化」とよばれる状態である。極ま れにではあるが、細胞は自然発生的に不死化することもある。細胞分裂の開始と停 止が分子レベルでどのように調節されているの力、現在、完全には解明されていない 。例えば、ウィルス性の癌遺伝子の発現の結果、細胞の寿命が伸び、その後細胞は「 危機 (crisis)」と呼ばれるステージに入る。「危機」を逃れることのできる細胞は僅かで あり(10_6から 10_9の頻度)、大抵は不死化されてしまう。細胞の不死化や悪性変異 、腫瘍の成長や発達における分子レベルの事象は未だ明確になっていない。テロメ ラーゼをはじめとする細胞内因子に関する研究が注目されている力 テロメラーゼ非 依存性のテロメァの維持を伴う不死化、さらにはテロメァとは無関係な何らかの老化メ 力-ズムの存在及びテロメラーゼ活性に依存しな ヽ遺伝子や経路の役割につ 、ても 多くの研究が示唆して 、る(非特許文献 34— 38)。
[0003] モータリンは、細胞内情報伝達や細胞分化、細胞分裂の制御等様々な細胞内機 能に関与するタンパク質である。モータリンは、マウス由来の正常な繊維芽細胞の細 胞質画分に存在する hsp70ファミリータンパク質の一つとして、先ず遺伝子が単離さ れ (非特許文献 1)、続いて、不死化繊維芽細胞の細胞質画分にはこのタンパク質が 存在しないことが明らかにされた。正常な繊維芽細胞力 単離したモータリンの全長 タンパク質に対して抗体を作成し (非特許文献 1)、その抗体を用いて免疫蛍光染色 を行うと、正常細胞では細胞質が染色された。これに対して、不死化細胞では、核周 辺部が染色された (非特許文献 2)。
そして、マウス不死化細胞の cDNAの免疫クローニングと、正常細胞から単離された 配列との比較により、カルボキシル末端のアミノ酸 2残基だけ異なるタンパク質をコー ドする 2つのモータリン遺伝子 (mot-1及び mot-2)の存在が明ら力となった (非特許文 献 3)。 mot-1 (モータリン 1)は正常細胞、 mot-2 (モータリン 2)は不死化細胞に存在し 、モータリンタンパク質の特徴的な局在に関与して 、る。
[0004] NIH 3T3細胞を用いた研究により、これら 2つの遺伝子の cDNAが対照的な生物学 的活性を生じることが示された。 mot-1 (モータリン 1)の発現は細胞老化様の表現型 を引き起こした。一方、 mot-2 (モータリン 2)の過剰発現は悪性変異を引き起こすこと 1S ヌードマウスアツセィにより明ら力となった (非特許文献 4)。
モータリンについての研究の初期には、 mot-1と mot-2が 2つの別の遺伝子なのか あるいは対立遺伝子なのかは明らかではな力 た (非特許文献 5、 6)。最終的な答え は、マウスの家系調査力 得られ、 2世代における 2つの遺伝子座の分離が示された ことから、 mot-1と mot-2はマウスにおいて同座の対立遺伝子であることが示された( 非特許文献 7)。
[0005] モータリン 2はまた、 PBP74 (非特許文献 8)、 mtHSP70 (非特許文献 9)、 GRP75 (非 特許文献 10)としても同定された。モータリン 2はストレス応答 (非特許文献 10— 15) 、細胞内輸送 (非特許文献 11)、抗原プロセッシング (非特許文献 8)、細胞増殖の制 御 (非特許文献 3、 4、 12)、 in vivo腎毒性の調節 (非特許文献 13、 14)、分化 (非特 許文献 15)、腫瘍形成 (非特許文献 4、 16)などの多岐にわたる機能における関与が 指摘されている。
特に、モータリン 2は腫瘍サブレッサータンパクである p53に結合してその転写活性 機能を不活性ィ匕することが示された (非特許文献 17)。このような p53の不活性化が、 NIH 3T3細胞の悪性変異 (非特許文献 4)や正常ヒト繊維芽細胞の寿命延長の原因 の一部であると考えられている(非特許文献 18)。モータリン 2がテロメラーゼと協力し てヒト包皮繊維芽細胞を不死化させることも示されている(非特許文献 19)。 [0006] マウス細胞とは対照的に、ヒト細胞には一種類のモータリンしかなぐそれはマウス モータリン 2 (mot-2)に類似の活性を有しているため hmot-2と呼ばれる(非特許文献 4)。マウス及びヒトの両方で、モータリンは複数の細胞内部位に配置されているため 、モータリンタンパク質の細胞内分布の局在化を司る少なくとも 2つのメカニズムの存 在が示唆されて 、る (非特許文献 20)。第一のメカニズムは相異なる cDNAの存在に よるものであり、マウスにおいて見出されている 2つの対立遺伝子である mot-1及び m ot—2による。
[0007] 第二のメカニズムは、マウス及びヒトの両方に見出される未だ不明のタンパク質修飾 か細胞因子によるものであろうと推測される。
抗体を用 Vヽた染色によりモータリンを検出すると、正常細胞では細胞質全体に分布 し、不死化細胞と腫瘍細胞では細胞核の周りに集まって存在して!/ヽることがヒト及び マウスで共通して確認された。ヒトの in vitro変異腫瘍由来細胞は非細胞質全体型の モータリン染色のパターンを示すのに対し、正常細胞は細胞質全体型の染色パター ンを示す (非特許文献 21)。 SUSM1細胞にクロモソーム 7を導入することにより細胞老 化を誘導すると、モータリンの染色が非細胞質全体型から細胞質全体型へと変化し た (非特許文献 22)。 5-プロモデォキシゥリジンによる細胞老化の誘導でも同様のモ 一タリン染色パターンの転換を示した (非特許文献 12、 23)。ローダシァニン染色剤 処理によってヒト変異細胞が増殖停止した場合にもモータリン染色パターンの変化が 見られた (非特許文献 24)。これらの研究によりモータリンの細胞内分布が細胞分裂 ヽての表現型と関連することが示された。
[0008] モータリンの発現レベルが筋肉やミトコンドリアの活性及び分ィ匕と相関することを示 す研究結果もある(非特許文献 25、 26)。例えば、ヒトの変異細胞や腫瘍細胞株がモ 一タリンの発現のアップレギュレーションを示すのに対し (4)、 HL-60前骨髄白血球 細胞の分ィ匕誘導中にはモータリンの発現レベルが減少しており(15)、一方、モータ リンの過剰発現した細胞は分化の誘導が顕著に減退して!/、た (非特許文献 15)。
[0009] Ssclpは酵母におけるモータリンの相同体である。 Ssclpは細胞生存能に必須であり
(非特許文献 27)、特にミトコンドリア輸送において不可欠な機能を担っている(非特 許文献 28)。 Ssclpは内部ミトコンドリア膜アンカーである Tim-44に結合する、ミトコン ドリア輸送装置の必須構成要素である(非特許文献 29、 30)。 Tim-44に変異が起こ つて mtsp70/Ssclの動員が不十分となるは、酵母 Saccharomyces cerevisiaeにおいて 致死的である (非特許文献 28)。酵母での研究から、モータリンに関して少なくとも 3 種類の活性が推定されている。これらに含まれるのは、(0ミトコンドリア外側のタンパク 質のアンフォールデイング、 GO膜電位 M Δ Ψによって開始される一方向のミトコンドリ ァ膜透過輸送、(iii)ATP駆動モーターとして作用して移入を完了させることである。モ 一タリンは、誤ってフォールディングされたペプチドの m-AAA及び PIM1プロテアーゼ によるミトコンドリア内での分解にも必要とされる。モータリンがミトコンドリア内で mtHS P60及び CPN10シャペロンと協力して、移入されたタンパク質をフォールデイングして 機能的に有用な形態にすること、そして mtHSP60のミトコンドリア外の場所での未知の 役割に関与することも示唆されている(非特許文献 31、 32)。これらの報告から、モー タリンの機能のうち、腫瘍サブレッサー p53の不活性化に加えて、ミトコンドリア輸送装 置及びシャぺ口ニンとしての機能も細胞分裂の表現型に寄与することが想像される。 モータリンは細胞内の異なる部位で分裂を制御する多様な機能を担うタンパク質で あると考えられている。
[0010] 細胞分裂、不死化、転移などに関係する癌細胞に特徴的な分子を標的とした、正 常細胞への副作用が少ない新規な抗癌剤が待望されている。また、抗癌剤のような 、正常細胞も殺してしまうような作用の強い薬剤において、患部の癌細胞だけに輸送 され、患部の癌細胞だけを攻撃するような性質を薬剤に持たせることにより、正常細 胞の破壊による副作用を防ぐことができるターゲット療法の開発も待望されている。 このような目的にかなう新しい抗癌剤として、有望なのが抗体医薬である。抗体医薬 は、患部の殺した 、癌細胞だけをその細胞の抗原タンパク質に対応する抗体で狙 ヽ 撃ちできる。また、目的とする抗原に対して薬剤を送り込むというターゲット療法にお ける利用も可能であり、高い治療効果が期待される。
[0011] 特許文献 1 :特開 2001— 354564号公報
特許文献 2:特願平 11 272778号
特許文献 3:特願平 11― 357545号
非特許文献 l :Wadhwa, R" Kaul, S. C, Ikawa, Y" and Sugimoto, Y. (1993) J Biol C hem 268, 6615-6621
非特許文献 2 :Wadhwa, R" Kaul, S. C, Mitsui, Y" and Sugimoto, Y. (1993) Exp Cel 1 Res 207, 442-448
非特許文献 3 :Wadhwa, R" Kaul, S. C, Sugimoto, Y" and Mitsui, Y. (1993) J Biol Chem 268, 22239-22242
非特許文献 4 : Kaul, S. C, Duncan, E. L., Englezou, A., Takano, S., Reddel, R. R., Mitsui, Y., and Wadhwa, R. (1998) Oncogene 17, 907-911
非特許文献 5 : Michikawa, Y" Baba, T., Arai, Y" Sakakura, T" Tanaka, M., and Kus akabe, M. (1993) Biochem Biophys Res Commun 196, 223-232
非特許文献 6 : Wadhwa, R" Akiyama, S., Sugihara, T., Reddel, R. R" Mitsui, Y., and Kaul, S. C. (1996) Exp Cell Res 226, 381-386
非特許文献 7 : Kaul, S. C, Duncan, E., Sugihara, T., Reddel, R. R., Mitsui, Y., and Wadhwa, R. (2000) DNA Res 7, 229-231
非特許文献 8 : Domanico, S. Z., DeNagel, D. C, Dahlseid, J. N" Green, J. M., and Pierce, S. K. (1993) Mol Cell Biol 13, 3598-3610
非特許文献 9 : Webster, T. J., Naylor, D. J., Hartman, D. J., Hoj, P. B., and Hoogen raad, N. J. (1994) DNA Cell Biol 13, 1213-1220
非特許文献 10 : Merrick, B. A., Walker, V. R., He, C, Patterson, R. M., and Selkirk , J. K. (1997) Cancer Lett 119, 185-190
非特許文献 l l : Mizukoshi, E., Suzuki, M., Loupatov, A., Uruno, T., Hayashi, H., M isono, T., Kaul, S. C, Wadhwa, R., and Imamura, T. (1999) Biochem J 343, 461-46 6
非特許文献 12 : Michishita, E., Nakabayashi, K., Suzuki, T" Kaul, S. C, Ogino, H"
Fujii, M., Mitsui, Y., and Ayusawa, D. (1999) J Biochem 126, 1052—1059
非特許文献 13 : Bruschi, S. A" and Lindsay, J. G. (1994) Biochem Cell Biol 72, 663-
667
非特許文献 14 : Bruschi, S. A" West, K. A" Crabb, J. W" Gupta, R. S" and Steven s, J.し(1993) J Biol Chem 268, 23157-23161 非特許文献 15 : Xu, J" Xiao, H. H., and Sartorelli, A. C. (1999) Oncol Res 11, 429- 435
非特許文献 16 : Takano, S., Wadhwa, R., Yoshii, Y., Nose, T., Kaul, S. C, and Mits ui, Y. (1997) Exp Cell Res 237, 38-45
非特許文献 17 : Wadhwa, R., Shyichi, T., Robert, M., Yoshida, A., Reddel, R. R., No mura, H" Mitsui, Y" and Kaul, S. C. (1998) J Biol Chem 273, 29586-29591 非特許文献 18 : Kaul, S" Reddel, R. R., Sugihara, T., Mitsui, Y" and Wadhwa, R. (2 000) in FEBS Letters Vol. 474, pp. 159-164
非特許文献 19 : Kaul, S. C, Yaguchi, T., Taira, K., Reddel, R. R., and Wadhwa, R. ( 2002) ECR submitted
非特許文献 20 : Ran, Q., Wadhwa, R., Kawai, R., Kaul, S. C, Sifers, R. N., Bick, R. J., Smith, J. R., and Pereira- Smith, O. M. (2000) Biochem Biophys Res Commun 27 5, 174-179.
非特許文献 21 : Wadhwa, R., Pereira- Smith, O. M., Reddel, R. R., Sugimoto, Y., Mit sui, Y" and Kaul, S. C. (1995) Exp Cell Res 216, 101—106
非特許文献 22 : Nakabayashi, K., Ogata, T" Fujii, M., Tahara, H" Ide, T" Wadhwa, R., Kaul, S. C, Mitsui, Y., and Ayusawa, D. (1997) Exp Cell Res 235, 345—353 非特許文献 23 : Michishita, E., Nakabayashi, K., Ogino, H., Suzuki, T., Fujii, M., an d Ayusawa, D. (1998) Biochemical And Biophysical Research Communications 253, 667-671
非特許文献 24 : Wadhwa, R" Sugihara, T" Yoshida, A" Nomura, H., Reddel, R. R" Simpson, R., Maruta, H., and Kaul, S. C. (2000) Cancer Res 60, 6818-6821 非特許文献 25 : Ibi, T., Sahashi, K., Ling, J., Marui, K., and Mitsuma, T. (1996) Rins ho Shinkeigaku. Clinical Neurology 36, 61 - 64
非特許文献 26 : Ornatsky, O. I" Connor, M. K., and Hood, D. A. (1995) Biochemica 1 Journal 311 ( Pt 1), 119-123
非特許文献 27 : Craig, E. A" Kramer, J., Shilling, J., Werner- Washburne, M., Holm es, S., Kosic-Smithers, J., and Nicolet, C. M. (1989) Mol Cell Biol 9, 3000—3008 非特許文献 28 : Merlin, A., Voos, W" Maarse, A. C, Meijer, M., Pfanner, N., and R assow, J. (1999) J Cell Biol 145, 961—972
非特許文献 29 : Voos, W., von Ahsen, O., Muller, H., Guiard, B., Rassow, J., and Pf anner, N. (1996) Embo Journal 15, 2668-2677
非特許文献 30 : Krimmer, T., Rassow, J., Kunau, W. H., Voos, W., and Pfanner, N. ( 2000) Mol Cell Biol 20, 5879-5887
非特許文献 31 : Soltys, B. J" and Gupta, R. S. (2000) Int Rev Cytol 194, 133-196 非特許文献 32 : Soltys, B. J., and Gupta, R. S. (1999) Trends Biochem Sci 24, 174-1 77
非特許文献 33 : Hayflick, L., and Moorhead, P. S. (1961) Exp. Cell Res. 25, 585-621 非特許文献 34 : Bryan, T. M., Englezou, A., Dalla- Pozza, L., Dunham, M. A., and R eddel, R. R. (1997) Nat Med 3, 1271-1274
非特許文献 35 : Reddel, R. R. (1997) Jpn J Cancer Res 88, 1240-1241
非特許文献 36 : Wei, S., and Sedivy, J. M. (1999) Cancer Res 59, 1539-1543 非特許文献 37 : Oshimura, M., and Barrett, J. C. (1997) Eur J Cancer 33, 710-715 非特許文献 38 : Carman, T. A., Afshari, C. A., and Barrett, J. C. (1998) Experiment al Cell Research 244, 33-42.
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、癌の治療のための新たな手段を提供することを目的とする。
課題を解決するための手段
[0013] 本発明者らは、モータリンが癌の治療において有用なターゲットとなることを見出し 、これにより癌の治療のための新たな手段を提供するという課題を解決した。また、モ 一タリンに対する抗体に、癌細胞選択的な細胞内内在化機能を有するものが存在す ることを見出し、このような抗体の癌の治療及びその他の用途への適用させる手段を 考案した。
[0014] 詳細には、以下の通りである。
モータリンの癌の治療におけるターゲットとしての有用性という観点から、 (1)モータリンは癌の治療において有用なターゲットであり、 1)モータリン 2タンパク 質の発現抑制や中和が癌の治療法に有用であることから、ァ)抗モータリン 2抗体で モータリン 2タンパク質を中和する、ィ)機能性核酸 (siRNA、 shRNA、など)を用いてモ 一タリン 2タンパク質の発現を抑制する、ための手段を提供する。また、 2)モータリン 2タンパク質を利用した抗癌性物質のスクリーニングができる。さらに、 3)正常細胞と 癌細胞でモータリン 2タンパク質の局在が異なることから、抗モータリン 2抗体を用い た時の染色パターンの違いから正常細胞と癌細胞の峻別が可能であり、ァ)被験物 質が癌細胞力 正常細胞 ·老化細胞へ誘導する効果を有する力否かの判定に利用 可能 (被験物質のスクリーニング)、及び、ィ)正常細胞と癌細胞を峻別するキットが提 供される。
[0015] (2)抗モータリン 2抗体に癌細胞選択的な細胞内内在化の機能があるものが存在 することから、 1)キャリア一として利用でき、ァ)抗モータリン 2抗体に薬剤を担持させ て用いることができ、具体的には、 a)薬剤として任意の癌遺伝子の発現を抑制する機 能性核酸、 b)薬剤として任意のタンパク質機能を抑制する (低分子)化合物、を担持 させて用いることができる。また、ィ)抗モータリン 2抗体に蛍光物質等をつけて用いる こともでき、 a)癌細胞のライブイメージ化に利用できる。さら〖こ、 2) IL-lRtypelを発現 抑制ないし中和すると抗モータリン 2抗体の内在化機能が促進されること、も有用であ る。
[0016] また、本発明の別の側面として、モータリンに対する抗体 (抗モータリン 2抗体)及び その用途という観点からは以下のようになる。特に内在化機能を有する抗体は、抗モ 一タリン 2抗体を生細胞 (ライブセル)に内在化させることによる様々な用途、例えば、 癌細胞に対する薬剤キャリアーとしての利用、癌細胞のライブイメージィ匕の際のキヤリ ァ一としての利用が可能である。あるいは、内在化機能があってもなくてもよいが、モ 一タリンに特異的に結合させることによる様々な用途、例えば、固定した細胞に対し て抗モータリン 2抗体で免疫染色した時に正常細胞と癌細胞で染色パターンが異な ることを禾 IJ用することができる。
[0017] 本発明者らはモータリン遺伝子の発現レベルが、臨床由来の腫瘍組織及び腫瘍細 胞株の大部分にぉ 、てアップレギュレートされて 、ること、全長モータリン 2タンパク 質に対する抗体を使用して腫瘍の成長を抑制できること、そしてこの抗体が細胞に内 在化されることを発見して本発明を完成した。
[0018] すなわち、本発明は、モータリン 2を中和する物質を有効成分として含む抗癌剤を 提供する。さらに本発明は、モータリン 2を中和する物質として、モータリン 2に結合す る抗体を有効成分として含む抗癌剤を提供する。ここで、モータリン 2に結合する抗 体は、モータリン 2の全長タンパク質に対する抗体であっても、 5個以上のアミノ酸か らなるモータリン 2の部分ペプチドに対する抗体であってもよい。また、モータリン 2に 結合する抗体は、細胞内に取り込まれてモータリン 2に結合する抗体であってもよい
[0019] 本発明はまた、上記モータリン 2を中和する物質として、モータリン 2遺伝子の転写 領域、プロモーター領域を含む、任意の部位を標的とする機能性核酸、及びかかる 機能性核酸を有効成分として含む抗癌剤を提供する。このような機能性核酸は、 siR NA、二本鎖 RNA、または、修飾された RNA鎖を少なくとも片方の鎖に含む siRNAまた は二本鎖 RNAの!、ずれであってもよ!/、。
[0020] さらに、本発明は、モータリンを用いて被験物質の抗癌活性を評価する方法であり 、以下の(a)〜(c)の 、ずれかの工程を含むものを提供する:
(a) モータリン 2タンパク質と被験物質を接触させ、接触の強度により評価する工程;
(b) モータリン 2遺伝子を発現させた細胞またはその細胞破砕液を、被験物質に接 触させ、接触の強度により評価する工程;
(c) モータリン 2遺伝子のプロモーターの下流にレポーター遺伝子をつないだ DNAを 有する細胞、および細胞破砕液を、被験物質に接触させ、レポーター遺伝子の発現 を指標として評価する工程。
[0021] さらに、本発明は、モータリンを中和する物質と医薬上許容される担体とを混合する 工程を含む、抗癌活性を有する医薬組成物の製造方法を提供する。この製造方法 の一態様において、モータリンを中和する物質は、モータリン 2に結合する抗体であ る。モータリン 2に結合する抗体は、モータリン 2の全長タンパク質に対する抗体であ つても、 5個以上のアミノ酸力 なるモータリン 2の部分ペプチドに対する抗体であつ てもよい。また、モータリン 2に結合する抗体は、細胞内に取り込まれてモータリン 2に 結合する抗体であってもよい。別の態様において、モータリン 2を中和する物質は、 モータリン 2遺伝子の転写領域、プロモーター領域を含む、任意の部位を標的とする 機能性核酸でありうる。このような機能性核酸は、 siRNA、二本鎖 RNA、または、修飾 された RNA鎖を少なくとも片方の鎖に含む siRNAまたは二本鎖 RNAのいずれであつ てもよい。
[0022] さらに、本発明は、上述のモータリンを用いて抗癌活性を評価する方法によって抗 癌活性を有すると評価された物質と医薬上許容される担体とを混合する工程を含む 、抗癌活性を有する医薬組成物の製造方法を提供する。
さらに、本発明は、免疫毒及びペプチド、ヌクレオチド、有機分子その他の小分子 の細胞内へのキャリアとしての、抗モータリン 2抗体およびモータリン 2結合物質の使 用を提供する。
[0023] さらに、本発明は以下の人工抗体及び複合体を提供する:
抗モータリン 2抗体の抗原認識部位及び抗原認識部位を含むペプチドの単量体、 もしくはその単量体を化学的及び遺伝子工学的手法により二量体及び三量体を含 む多量体化した人工抗体;
抗モータリン 2抗体の抗原認識部位及び抗原認識部位を含むペプチドをィ匕学的及 び遺伝子工学的手法により他の抗体、抗体の一部、または他のタンパク質等との複 合体として提供されるキメラ人工抗体;
抗モータリン 2抗体の抗原認識部位及び抗原認識部位を含むペプチドを PEG (ポリ エチレングリコール)及びリボソームなどの細胞内への薬物導入物質、及び、放射性 物質、毒素、抗癌剤などの小分子に結合させた複合体。
[0024] さらに、以下の発明も本願の範囲に入る。
以下の(a)〜(d)の 、ずれ力から選択される、生細胞に内在化される抗モータリン 2 抗体:
(a)全長モータリン 2タンパク質を抗原として作製されたポリクローナル抗体
(b) 5個以上のアミノ酸力もなるモータリン 2タンパク質の部分ペプチドを抗原として作 製されたポリクローナル抗体
(c)全長モータリン 2タンパク質を抗原として作製されたモノクローナル抗体、又は (d) 5個以上のアミノ酸力もなるモータリン 2タンパク質の部分ペプチドを抗原として作 製されたモノクローナル抗体
であって、且つ、以下の(1)〜(3)の基準を満たす抗モータリン 2抗体:
(1)ウェスタン .ブロッテイング法の解析によりモータリン 2への反応性と特異性を有す ること、
(2)正常細胞は細胞質全体が染色され、癌細胞では核膜周辺が染色される免疫染 色のパターンがみられること、及び
(3)細胞内へ内在化されること。
このような抗体を「内在化機能を有する抗モータリン 2抗体」と称する。
[0025] また、別途、内在化機能を有して!/、ても!、なくてもよ!、が、モータリン 2タンパク質の 部分ペプチド又は全長ペプチドを抗原として作成され、モータリン 2タンパク質に特 異的に結合するような抗体を、「モータリン 2に特異的に結合する抗体」と称する。
[0026] これらの抗体を用いて以下の発明を提供する。
「内在化機能を有する抗モータリン 2抗体」を有効成分として含む抗癌剤。
「内在化機能を有する抗モータリン 2抗体」を小分子のキャリアとして使用することを 特徴とする、小分子を細胞内へ移行させる方法。
「内在化機能を有する抗モータリン 2抗体」の生細胞への内在化を促進する方法で あって、 IL— lR'typelを発現抑制あるいは中和する工程を含むことを特徴とする方 法。
上記方法中、 IL lR'typelを発現抑制あるいは中和する工程において、 shRNA を使用して IL lR'typelを発現抑制することを特徴とする方法。
[0027] 具体的には、 shRNAは以下(ァ)または (ィ)であることができるが、これらに限定さ れない。
(ァ) shRNAのターゲットサイトの配列:
5' -AC A AGC CUC CAG GAU UCA U- 3'
該ターゲットサイト 1)に対応する shRNAの配列:
5' -AC A AGU CUC UAG GAU UCA UGU GUG CUG UCC AUG AAU CCU GGA GGC UUG UUU-3';又は (ィ) shRNAのターゲットサイトの配列:
5, - GCC UCC AGG AUU CAU CAA C- 3'
該ターゲットサイト 1)に対応する shRNAの配列:
5, - GCU UUC AGG AUU CAU CAA CGU GUG CUG UCC GUU GAU GAA UCC UGG AGG CUU-3' ο
[0028] 「内在化機能を有する抗モータリン 2抗体」及び抗癌活性を有する物質を組合わせ てなる、抗癌活性を有する物質のキャリア一として抗モータリン 2抗体を使用すること を特徴とする、癌のターゲット療法用キット。
上記の癌のターゲット療法用キットにおいて、さらに、アンチセンスヌクレオチド、 siR NA、 shRNA、 miRNA、二本鎖 RNA、リボザィム、抗体、及びアンタゴ-ストからな る群から選択される、 IL— lR'typelを発現抑制あるいは中和する物質を組合わせて なるキット。
[0029] 「内在化機能を有する抗モータリン 2抗体」及び癌細胞をライブイメージ化するため に可視化せしめる非蛍光物質又は蛍光物質を組合わせてなる、癌細胞のライブィメ 一シ用3 rット。
上記の癌細胞のライブイメージ用キットにおいて、さらに、アンチセンスヌクレオチド 、 siRNA、 shRNA、 miRNA、二本鎖 RNA、リボザィム、抗体、及びアンタゴ-ストか らなる群力も選択される、 IL— lR'typelを発現抑制あるいは中和する物質を組合わ せてなるキット。
[0030] 「内在化機能を有する抗モータリン 2抗体」を含む、癌の転移治療のための薬剤。
「モータリン 2に特異的に結合する抗体」を用いて免疫染色を行うことを特徴とする、 正常細胞と癌細胞を峻別して、癌細胞集団中にある老化細胞又は正常化細胞を検 出する、又は老化細胞又は正常化細胞集団中にある癌細胞を検出する方法。
[0031] 「モータリン 2に特異的に結合する抗体」、免疫染色に必要な試薬、及び説明書を 含む、キットであって、正常細胞と癌細胞を峻別して、癌細胞集団中にある老化細胞 又は正常化細胞を検出する、又は老化細胞又は正常化細胞集団中にある癌細胞を 検出するために使用可能なキット。
[0032] 「内在化機能を有する抗モータリン 2抗体」を用 、て癌細胞をライブイメージ化する ことを特徴とする、正常細胞と癌細胞を峻別して、癌細胞集団中にある老化細胞又 は正常化細胞を検出する、又は老化細胞又は正常化細胞集団中にある癌細胞を検 出する方法。
「内在化機能を有する抗モータリン抗体」、ライブイメージィ匕に必要な試薬、及び説 明書を含む、キットであって、正常細胞と癌細胞を峻別して、癌細胞集団中にある老 化細胞又は正常化細胞を検出する、又は老化細胞又は正常化細胞集団中にある癌 細胞を検出するために使用可能なキット。
[0033] 被検物質を癌細胞と接触させ、癌細胞を「モータリン 2に特異的に結合する抗体」を 用いて免疫染色を行い、そして、その免疫染色パターンを観察することによる、癌細 胞を老化細胞又は正常化細胞に誘導する物質のスクリーニング方法であって、当該 免疫染色パターンが老化細胞又は正常化細胞に特有のパターンである場合に披検 物質が癌細胞を老化細胞又は正常化細胞に誘導する物質であるとする、スクリー二 ング方法。
「モータリン 2に特異的に結合する抗体」、免疫染色に必要な試薬、及び説明書を 含む、癌細胞を老化細胞又は正常化細胞に誘導する物質のスクリーニングのために 使用可能なキット。
[0034] 被検物質を癌細胞と接触させ、癌細胞を「内在化機能を有する抗モータリン 2抗体」 を用いてライブイメージィ匕を行い、そして、そのライブイメージパターンを観察すること による、癌細胞を老化細胞又は正常化細胞に誘導する物質のスクリ一二ング方法で あって、当該ライブイメージパターンが老化細胞又は正常化細胞に特有のパターン である場合に披検物質が癌細胞を老化細胞又は正常化細胞に誘導する物質である とする、スクリーニング方法。
「内在化機能を有する抗モータリン 2抗体」、ライブイメージィ匕に必要な試薬、及び 説明書を含む、癌細胞を老化細胞又は正常化細胞に誘導する物質のスクリーニング のために使用可能なキット。
発明の効果
[0035] モータリンが癌治療の標的となることが示された。本発明により、新規で有効な抗癌 剤が提供される。また、細胞に内在化される抗モータリン抗体を開発した。これを用い た様々な用途を提供する。
図面の簡単な説明
[図 1]各種の腫瘍組織 (Tumor)及び対照としてマッチさせた正常組織 (Normal)にお けるモータリン遺伝子の発現を分析した、 2 gのポリ ARNAを含むドットブロットの結 果である。 (実施例 1)
[図 2]各種の腫瘍組織 (T)及びマッチさせた正常組織 (N)におけるモータリン遺伝子 の発現を分析した、各レーン中に 2 gのポリ ARNAを含むドットブロットの結果である 。 (実施例 1)
[図 3]各種の腫瘍組織 (T)及び対照としてマッチさせた正常組織 (N)におけるモータ リン遺伝子の発現を分析した、モータリン (mortalin)に特異的なポリクローナル抗体を 用いたウェスタンブロットの結果である。ローデイング量コントロールのためにァクチン (Actin)を使用している。(実施例 1)
[図 4]正常な包皮繊維芽細胞(HFF5、レーン 1)、結腸癌細胞(SW480、 SW116、 SW6 20、 KM125M, HT29、 LOVO、 HCT116、 LS174Tp4、 LIM1215, LISP— 1、 LIM2099p4、 LS513、 COLO- 16、レーン2—14)、前立腺癌細胞(011145、 PC3、 CaoV- 3、 LNCaP 、レーン 15— 18)におけるモータリンの発現を調べた結果である。(実施例 1)
[図 5]正常な包皮繊維芽細胞 (HFF5、レーン 1)、正常な肺繊維芽細胞 (MRC5p21、 レーン 2)、乳癌細胞(MDA- MB- 415、 MDA- MB- 157、 MDA- MB- 436、 MDA- MB- 13 4V、 MDCT、 MDA- MB361、レーン 3— 8)におけるモータリンの発現を調べた結果で ある。(実施例 1)
[図 6]正常な肺繊維芽細胞 (MRC5)、 SV40で形質転換された細胞 (MRC5-SV2及び U87MG)、骨癌(U20S)、卵巣癌(C33A及びヒーラ細胞)、乳癌 (MCF7)及び、神経 グリア芽腫 (A172、 U138MG、 DBTRG、 U118MG、 U87MG)におけるモータリンの発現 を調べた結果である。 (実施例 1)
[図 7]ヒト胚性繊維芽細胞 (WI-38)及びこれに由来する不死化細胞 (WB_1、 WB-6, WB- 7、 WB-11)についての、モータリン、 p53、 mdm2、 p21、 pRb、 E6E7のウェスタンブ ロットの結果である。 MRC5細胞は正常なヒト肺繊維芽細胞である。(実施例 2)
[図 8]WB-1及び WB-6細胞の増殖の特徴を示す写真であり、 WB-6が高密度で増殖 していることがわかる。(実施例 2)
[図 9]正常な皮膚繊維芽細胞 (MJ90)及びこれに由来する不死化細胞 (MJT-6)及び 各種サブクローン(MJT- 61〜66)のウェスタンブロットの結果である。 MRC5細胞は正 常なヒト肺繊維芽細胞である。(実施例 2)
[図 10]MJ90及び MJ90由来のクローンのフィンガープリントである。 (実施例 2)
[図 11]モータリン K抗体による正常 (WI-38)及び腫瘍細胞(U20S、 Saos-2)由来のヒ ト細胞のウェスタンプロットの結果である。(実施例 3)
[図 12]モータリン K抗体(Mortalin-K antibody)によるモータリンの免疫沈降の結果で ある。 U20S細胞はモータリン V5 (Mortalin- V5)タンパクをコードする発現プラスミドで トランスフエタトした。 V5タグ付タンパクのモータリン K抗体による免疫沈降反応を抗 V 5タグ抗体によりウェスタンブロット (Western withanti-V5 Ab)で検出した。(実施例 3) [図 13]正常(Normal cells: TIG- 1)及び腫瘍(Cancer cells:U20S)細胞におけるモー タリン K抗体を用いたモータリンの免疫染色である。細胞をメタノール 酢酸(1: 1)で 固定し、モータリン K抗体で染色した後、抗ゥサギ蛍光タグ付二次抗体 (rabbit Alexa 488,Molecular Probes)で検出した。(実施例 3)
[図 14]正常 (TIG-1)及び変異(U20S及び MCF-7)ヒト細胞におけるモータリン K抗体 (mot-KAb)の内在化を示す写真である。(実施例 3)
[図 15]Qdot— K抗体により、 U20S細胞内のモータリンを染色した写真である。(実施 例 3)
[図 16]Qdot—K抗体(KAb— Qdot655conjugate)の細胞内への内在化(下のパネル )を示す。 Qdot 対照抗体(CAb— Qdot655 conjugate) (上のパネル)は細胞内に入 つていない。(実施例 3)
[図 17]モータリン K抗体の注射後(MotK-Ab injection)の HT1080細胞のヌードマウス アツセィの結果を示す写真である。腫瘍芽 (約 6mm)が形成されたときに、対照及び モータリン K抗体を注射し、その後の進行を観察した。 (実施例 4)
[図 18]モータリン K抗体の注射後(Mot K-Ab injection)の HT1080細胞のヌードマウ スアツセィの結果を示す写真である。腫瘍芽 (約 6— 8mm)が形成されたときに、対照 及びモータリン K抗体を注射し、その後の進行を観察した。 (実施例 4) [図 19]モータリン K抗体の注射後(Mot K-Ab injection)の HT1080細胞のヌードマウ スアツセィの結果を示す写真である。腫瘍にモータリン K抗体を注射した。(実施例 4 )
[図 20]モータリン K抗体(Mot K-Ab)の注射後の HT1080細胞のヌードマウスアツセィ の結果を示す写真である。上側の腫瘍にモータリン K抗体を注射した。(実施例 4)
[図 21]内在化した K-抗体のウェスタン ·ブロッテイング (実施例 5)。
[図 22]インターロイキン- 1レセプタ一'タイプ 1 (IL-lR,typeI)の発現抑制(実施例 6)。
[図 23]shRNAによるインターロイキン- 1レセプタ一'タイプ 1 (IL- lR,typeI)の発現抑制 によって K-抗体の細胞内への内在化が促進されることを示した (実施例 6)。
[図 24]モータリンに対するモノクローナル抗体の作製及び内在化機能をもつ抗モー タリンモノクローナル抗体の選別(実施例 7)。
[図 25]FITC結合 2次抗体を用いた免疫染色により細胞内に内在化するモノクローナ ル抗体を検出した図(実施例 7)。
[図 26]細胞を酸洗浄処理し、抗モータリンモノクローナル抗体が細胞内へ内在化す ることを確認した図(実施例 7)。
[図 27]抗モータリンモノクローナル抗体が癌細胞に選択的に内在化することを示した 図(実施例 8)。
[図 28]抗 IL-lR,typel抗体により抗モータリンモノクローナル抗体(クローン 37— 1、 3 7— 6、 38— 4)の癌細胞内への内在化が促進されることを示した図(実施例 8)。
[図 29]癌細胞(HepG2)において、 IL-lR,typelを発現抑制すると、抗モータリンモノ クローナル抗体の癌細胞内内在化が選択的に促進されることを示した図(実施例 8) 圆 30]癌細胞におけるモータリン過剰発現と増殖 ·転移の関係分析一その 1 (実施例 9)。
圆 31]癌細胞におけるモータリン過剰発現と増殖 ·転移の関係分析一その 2 (実施例 9)。
圆 32]癌細胞におけるモータリン過剰発現と増殖 ·転移の関係分析一その 3 (実施例 9)。 [図 33]癌細胞におけるモータリン過剰発現と増殖 ·転移の関係分析一その 4 (実施例 9)。
[図 34]癌細胞集団中に存在する老化細胞の検出に抗モータリンモノクローナル抗体 を使用することについての図(実施例 10)。
[図 35]老化誘導された癌細胞におけるモータリン染色パターンの変化についての図 (実施例 10)。
[図 36]抗モータリンモノクローナル抗体のライブイメージ(実施例 11)。
発明を実施するための最良の形態
[0037] (1)モータリン 2遺伝子及びタンパク質
本発明において、特に断らない限り、モータリンあるいはモータリン 2とは、マウスモ 一タリン 2 (mot- 2)あるいはヒトモータリン (hmot- 2)を指す。これらを単にモータリンと称 することもある。ヒトモータリンは細胞を悪性変異させると 、うマウスモータリン 2と同様 の機能を有する。マウス及びヒトモータリンの遺伝子及びタンパク質は公知である。マ ウスモータリン(mot- 2)については、 Wadhwa, R" Kaul, S. C, Ikawa, Y" and Sugimot o, Y. (1993) J Biol Chem 268, 6615- 6621. (非特許文献 1)に記載されている。ヒトモ ~~タリン (hmot— 2)につ ヽては、 Bhattacnaryya, T. et al. Cloning and subcellular local ization of human mitochondrial hsp70. J Biol Chem 270, 1705-10 (1995)に記載され て 、る。マウスとヒトのモータリンはタンパク質レベルで 95%以上の高!、相同性を有し ている。
[0038] (2)モータリン 2を中和する物質
モータリン 2を中和する物質とは、モータリン 2の細胞内における機能を阻害しうる任 意の物質を意味する。上述の通り、モータリン 2は細胞内において様々な機能を有す るが、本発明においては、腫瘍サブレッサー p53を不活性ィ匕する機能及び細胞分裂 を制御する機能が特に重要である。モータリン 2の中和は、モータリンタンパク質の果 たす機能の阻害であっても、遺伝子発現の阻害であってもよい。モータリンタンパク 質の果たす機能の阻害は、完全な阻害でも部分的な阻害でもよい。遺伝子発現の 阻害とは、モータリン遺伝子の転写および Zまたは翻訳の阻止である。
本発明者らはモータリン遺伝子の転写及び発現のレベルが、臨床由来の腫瘍組織 及び腫瘍株細胞の大部分においてアップレギュレートされていることを見出した。ま た、モータリン 2に対する抗体を腫瘍に注射すると腫瘍の成長が抑制されることを見 出した。腫瘍細胞においてモータリン 2を中和することにより、モータリン 2の細胞内に おける機能が阻害され、腫瘍細胞の増殖を阻害することができる。
[0039] (3)モータリン 2に結合する抗体
本発明の一態様において、モータリン 2を中和する物質として、モータリン 2に結合 する抗体を用いることができる。本発明で使用する抗体は、マウスあるいはヒトモータ リンの全長タンパク質あるいは部分ペプチドを抗原として、抗体作成のための慣用技 術を用いて、ポリクローナルまたはモノクローナル抗体として得ることができる。上述の ように、マウスとヒトのモータリンタンパク質は非常に高い相同性を有することから、マ ウスモータリン 2に対して作成した抗体はヒトのモータリンタンパク質を認識し、その逆 も同様である。
抗原としてのモータリンタンパク質としては、マウス細胞から単離されたある ヽは遺 伝子組換えにより生産された全長タンパク質、公知のアミノ酸配列に基き合成された 部分ペプチド等を適宜用いることができる。モノクローナル抗体のみを得る場合には 、必ずしも精製する必要性はないが、ポリクローナル抗体を得る場合は、 HPLC, SDS -PAGEなどの方法により抗原を精製する。
[0040] ポリクローナル抗体は、ゥサギに免疫し、その血液を回収し抗体を作製する技術に より作製できる。ここで言うポリクローナル抗体とは、遠心分離した抗血清 (IgG粗画分 )のことである。この抗血清からさらに抗体のみを精製したい場合には、プロテイン A やプロテイン Gが充填されてある市販のカラムや、抗原であるモータリンタンパク質や ペプチドを適当な担体に結合させたァフニティカラムを用いて精製することができる。 本発明にお 、て「ポリクローナル抗体」と 、う場合は、抗血清 (IgG粗画分)並びに精 製された抗体の両方を含む。
[0041] ポリクローナル抗体は、例えば以下のようにして作製可能である。 1匹のゥサギ当り 抗原 1〜1. 5mgを 4回に分けて免疫する。具体的には、抗原を生理食塩液 (0. 9w Zw%NaCl水溶液)を用いて適当な蛋白質濃度(lmgZml)に調製する。これを完 全フロイントアジュバントと容量 3: 2の比率で混合して油中水型乳剤を作成する。 それぞれの免疫の間隔は、 1週間から 10日間の間隔で行う。ニュージーランドホヮ イトラビット(SPF (special pathogen free) , 12週齢、雌) 2匹に初回免疫として抗原 0. 5mgZrabbit相当量を足躕及び側腹部皮下にそれぞれ注射する。追加免疫は、不 完全フロイントアジュバントを用いて同様に乳剤を作成して抗原 0. 25mgZrabbit相 当量を家兎の背部皮下に数力所に分けて注射する。追加免疫は、 3回実施する。最 終免疫の約 10日後に耳動脈又は頸動脈から無菌的に全採血を行い、遠心分離機 にかけて血漿を分離する。
[0042] 次に、得られた血漿を温浴中で 56°C、 30分間加熱処理し、 2〜15°Cで血漿に 0.
01M PBS (—)緩衝液(0. l%NaNを含む 0. 01Mリン酸緩衝化生理食塩水、 pH
3
7. 4)を等容量加えて希釈する。そこへ、予めアンモニア水で調製した飽和硫酸アン モ -ゥム水溶液 (pH7. 4)を希釈液と等容量加える。これを高速冷却遠心機に掛け た後(4°C、 30分間、 14000rpm ; 1000 X G)、上清を除去する。沈渣に生理食塩液を 加えて完全に溶解させてから、透析又は Sephadex G25Mカラムに掛けて残存する硫 酸アンモ-ゥムを除去する。硫酸アンモ-ゥムの除去の確認は、ネスラー試薬 (ナカ ライテスタ社製)を用いて行う。次に、冷却した清透化剤 (Friegen, Behringwerke; trie hlorotrifluoroethane)を用いて透析内液と等量の清透化剤を混合し、振盪後遠心し、 内液層を分取する。この脱脂操作を 3回繰り返し、 IgG粗画分 (ポリクローナル抗体) を得る。
[0043] 本発明者らはモータリンに結合する 6つの異なるポリクローナル抗体を作成した(5 つは部分ペプチドを抗原とし、 1つは細菌で発現させた全長タンパク質を抗原とした) 。全長タンパク質に対する抗体である K抗体を培養液に加えると生細胞内に取り込ま れること、すなわち生細胞に内在化されることを見出した。また、本発明者らは、モー タリンに対するモノクローナル抗体も作成し、同様に内在化機能を有するものを見出 した。
本発明で用いることのできるモータリンと結合する抗体として、このように生細胞に 内在化されてモータリンと結合する抗体は特に好ましい。このような抗体(内在化機 能を有する抗モータリン 2抗体)は、モータリンを中和するという目的以外にも、腫瘍 細胞内への小分子のキャリアとしても使用することができる。このような抗体をキャリア として用いることにより、好適には、免疫毒及びペプチド、ヌクレオチド、有機分子そ の他の小分子を腫瘍細胞内へ導入することができる。
[0044] また、本発明者らは、細胞膜表面に存在するレセプタータンパクである IL-lrecepto r (type I)の発現が抑制されると抗体の細胞内内在化が促進されることを見出した。 発明者らは、内在化についての仮説として、以下の理論を構築している。本発明は この理論に拘束されるものではな 、が、発明の理解をより容易にするためにここに記 載する。
癌細胞ではモータリン 2タンパク質が細胞膜表面にも存在して 、る。内在化機能を 有する抗モータリン 2抗体を細胞培養液に入れて細胞培養すると、抗モータリン 2抗 体は細胞膜表面上のモータリン 2タンパク質と結合する。この抗モータリン 2抗体-モ 一タリン 2タンパク質力もなる複合体が細胞膜から細胞内に移行し、結果的に抗モー タリン 2抗体が細胞内に内在化する。
[0045] IL-lreceptor (type 1)は細胞膜表面に存在するレセプタータンパクである。癌細胞 ではモータリン 2タンパク質が細胞膜表面にも存在して 、るが、 IL-1Rとモータリン 2タ ンパク質はその細胞膜表面上で相互作用(結合)する。 IL-1Rに結合しているモータ リン 2タンパク質に、抗モータリン 2抗体は結合できないため、内在化機能を有する抗 モータリン 2抗体は癌細胞内に移行することができない。しかし、 IL-1Rとモータリン 2 タンパク質の相互作用を阻害すると細胞膜表面上のフリーのモータリン 2タンパク質 が増加する(例えば、阻害方法として IL-1Rの発現を抑制(ノックダウン)したり、抗 IL- 1R抗体を培養液に添加して細胞膜上の IL-1Rを中和する、など)。「内在化機能を有 する抗モータリン 2抗体」は、細胞膜上でフリーのモータリン 2タンパク質と結合できる チャンスが増加し、従って、その細胞内内在化が促進される。
[0046] モノクローナル抗体は、均質な抗体を安定に生産できる点で、ポリクローナル抗体 よりも好ましい。モノクローナル抗体は、連続細胞培養系により抗体を産生する任意 の方法で調製できる。これらには下記のものが含まれる力 これらに限定されない:ハ イブリドーマ法(Koehler and Milstein. (1975)Nature, 256, 495— 497)、ヒト B細胞ハ イブリドーマ法(Kosbor et al. (1983) Immunol. Today, 4, 72 ; Cote et al. (1983) Proc. Natl. Acad. Sci. (USA) 80, 2026— 2030)、および EBV—ハイブリドーマ法(Col e et al. (1985) Monoclonal Antibody and Cancer Therapy, Alan R Liss社, p. 77— 96)。モノクローナル抗体を産生するハイブリドーマは、たとえば、ミルスティンら の方法(Kohler. G. and Milstein, C, Methods Enzymol. (1981) 73: 3-46 )等に準じ て、以下のようにして作製できる。すなわち、所望の抗原や所望の抗原を発現する細 胞を感作抗原として使用して、これを通常の免疫方法にしたがって免疫し、得られる 免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリー二 ング法により、モノクローナルな抗体産生細胞 (ノヽイブリドーマ)をスクリーニングする こと〖こよって作製できる。
ハイプリドーマの作製は、また、抗体遺伝子をノヽイブリドーマ力もクローユングし、適 当なベクターに組み込んで、これを宿主に導入し、遺伝子組換え技術を用いて産生 させた遺伝子組換え型抗体を用いることができる(例えば、 Carl, A. K. Borrebaeck, J ames, W. Larrick, THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990参照)。具体的には、 ハイプリドーマの mRNAから逆転写酵素を用いて抗体の可変領域 (V領域)の cDNAを 合成する。 目的とする抗体の V領域をコードする DNAが得られれば、これを所望の 抗体定常領域 (C領域)をコードする DNAと連結し、これを発現ベクターへ組み込む 。または、抗体の V領域をコードする DNAを、抗体 C領域の DNAを含む発現べクタ 一へ組み込んでもよい。発現制御領域、例えば、ェンハンサー、プロモーターの制御 のもとで発現するよう発現ベクターに組み込む。次に、この発現ベクターにより宿主細 胞を形質転換し、抗体を発現させることができる。さら〖こ、適切な抗原特異性および 生物活性をもつ分子を得るためには、キメラ抗体とすることも望ましい。キメラ抗体は、 例えば以下の文献に記載の方法により、マウス抗体遺伝子をヒト抗体遺伝子にスプラ イシングして調製することができる。 (Morrison et al. (1984) Proc. Natl. Acad. Sci. (USA) 81, 6851— 6855 ; Neuberger et al. (1984) Nature, 312, 604— 608 ;Takeda et al. (1985) Nature, 314, 452— 454)。また、ポリエチレングリコール(PEG)等の各 種分子と結合した抗モータリン 2抗体を使用することもできる。このような抗体修飾物 は、この分野においてすでに確立された手法により、得られた抗体に化学的な修飾 を施すことによって得ることができ、抗体の高機能化を図ることができる。 [0048] 本発明の抗体には、抗モータリン 2抗体の抗原認識部位を含む人工抗体や複合体 も包含される。すなわち、抗モータリン 2抗体の抗原認識部位及び抗原認識部位を 含むペプチドの単量体、もしくはその単量体を化学的及び遺伝子工学的手法により 二量体及び三量体を含む多量体化した人工抗体;抗モータリン 2抗体の抗原認識部 位及び抗原認識部位を含むペプチドをィ匕学的及び遺伝子工学的手法により他の抗 体、抗体の一部、または他のタンパク質等との複合体として提供されるキメラ人工抗 体も含まれる。また、抗モータリン 2抗体の抗原認識部位及び抗原認識部位を含む ペプチドを PEG (ポリエチレングリコール)及びリボソームなどの細胞内への薬物導入 物質、及び、放射性物質、毒素、抗癌剤などの小分子に結合させた複合体も本発明 において使用可能である。
[0049] (4)モータリン遺伝子の任意の部位を標的とする機能性核酸
本発明の別の態様において、モータリンを中和する物質として、モータリン遺伝子 の転写領域、プロモーター領域を含む、任意の部位を標的とする機能性核酸を用い ることもできる。機能性核酸とは、 siRNA、 shRNA、 miRNA、二本鎖 RNA、リボザィム 、アンチセンス等、特定遺伝子の発現や産物の作用をコントロールする機能を有する 核酸分子である。機能性核酸により、遺伝子発現を阻止し、モータリンを遺伝子レべ ルで中和することができる。モータリン 2の公知の配列情報に基き、当業者は例えば 以下の文献に基き、これらの機能性核酸を設計することができる。 (Wadhwa, R., Kaul , b. C, iyagishi, M., Taira, K. (2004) Know-how of RNA interference ana its appn cations in research and therapy. Reviews in Mutat. Res. (in press). Wadhwa, R., K aul, S. C, Miyagishi, M. and Taira, K. (2004) Vectors for RNA interference. Curren t Opinions in Molecular Therapeutics (in press). Wadhwa, R., Ando, H., Kawasaki, H., Taira, K., and Kaul, S. C. (2003); Conventional and RNA helicase coupled hamm erhead ribozymes for mortalin. EMBO Reports, 4, 595-601)
[0050] (5)モータリン 2に結合する抗体を有効成分として含む抗癌剤
モータリン 2に結合する抗体を有効成分として含む抗癌剤は、常法にしたがって製 剤ィ匕すること力 eさ (Remington s Pharmaceutical science, latest edition, Mark Publis hing Company, Easton,米国)、医薬的に許容される担体や添加物を共に含むもので あってもよい。
本発明の抗癌剤には等張化剤として、ポリエチレングリコール;デキストラン、マン- トーノレ、ソノレビトーノレ、イノシトール、グルコース、フラクトース、ラタトース、キシロース、 マンノース、マルトース、ラフイノースなどの糖類を用いることができる。
本発明の抗癌剤には界面活性剤をさらに含むことができる。界面活性剤としては、 非イオン界面活性剤、例えばソルビタンモノカプリレート、ソルビタンモノラウレート、ソ ルビタンモノパルミテート等のソルビタン脂肪酸エステル;グリセリンモノカプリレート、 グリセリンモノミリテート、グリセリンモノステアレート等のグリセリン脂肪酸エステル;デ カグリセリルモノステアレート、デカグリセリルジステアレート、デカグリセリルモノリノレ ート等のポリグリセリン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、 ポリオキシエチレンソルビタンモノォレエート、ポリオキシエチレンソルビタンモノステ アレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタ ントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシェチレ ンソルビタン脂肪酸エステル;ポリオキシエチレンソルビットテトラステアレート、ポリオ キシエチレンソルビットテトラオレエート等のポリオキシエチレンソルビット脂肪酸エス テル;ポリオキシエチレングリセリルモノステアレート等のポリオキシエチレングリセリン 脂肪酸エステル;ポリエチレングリコールジステアレート等のポリエチレングリコール脂 肪酸エステル;ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキル エーテル;ポリオキシエチレンポリオキシプロピレングリコールエーテル、ポリオキシェ チレンポリオキシプロピレンプロピルエーテル、ポリオキシエチレンポリオキシプロピレ ンセチルエーテル等のポリオキシエチレンポリオキシプロピレンアルキルエーテル;ポ リオキシェチェレンノニルフエニルエーテル等のポリオキシエチレンアルキルフエニル エーテル;ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油(ポリオキシ エチレン水素ヒマシ油)等のポリオキシエチレン硬化ヒマシ油;ポリオキシエチレンソ ルビットミツロウ等のポリオキシエチレンミツロウ誘導体;ポリオキシエチレンラノリン等 のポリオキシエチレンラノリン誘導体;ポリオキシエチレンステアリン酸アミド等のポリオ キシエチレン脂肪酸アミド等の HLB6〜18を有するもの;陰イオン界面活性剤、例え ばセチル硫酸ナトリウム、ラウリル硫酸ナトリウム、ォレイル硫酸ナトリウム等の炭素原 子数 10〜 18のアルキル基を有するアルキル硫酸塩;ポリオキシエチレンラウリル硫 酸ナトリウム等の、エチレンォキシドの平均付加モル数が 2〜4でアルキル基の炭素 原子数が 10〜 18であるポリオキシエチレンアルキルエーテル硫酸塩;ラウリルスルホ コハク酸エステルナトリウム等の、アルキル基の炭素原子数が 8〜18のアルキルスル ホコハク酸エステル塩;天然系の界面活性剤、例えばレシチン、グリセ口リン脂質;ス フインゴミエリン等のフィンゴリン脂質;炭素原子数 12〜18の脂肪酸のショ糖脂肪酸 エステル等を典型的例として挙げることができる。本発明の製剤には、これらの界面 活性剤の 1種または 2種以上を組み合わせて添加することができる。
[0052] 本発明の抗癌剤には、所望によりさらに希釈剤、溶解補助剤、賦形剤、 pH調整剤 、無痛化剤、緩衝剤、含硫還元剤、酸ィ匕防止剤等を含有してもよい。例えば、含硫還 元剤としては、 N—ァセチルシスティン、 N—ァセチルホモシスティン、チォタト酸、チ ォジグリコール、チォエタノールァミン、チォグリセロール、チォソルビトール、チォグ リコール酸及びその塩、チォ硫酸ナトリウム、ダルタチオン、並びに炭素原子数 1〜7 のチオアルカン酸等のスルフヒドリル基を有するもの等が挙げられる。また、酸化防止 剤としては、エリソルビン酸、ジブチルヒドロキシトルエン、ブチルヒドロキシァ二ソール 、 a—トコフエロール、酢酸トコフエロール、 L—ァスコルビン酸及びその塩、 L—ァス コルビン酸パルミテート、 Lーァスコルビン酸ステアレート、亜硫酸水素ナトリウム、亜 硫酸ナトリウム、没食子酸トリァミル、没食子酸プロピルあるいはエチレンジァミン四酢 酸ニナトリウム (EDTA)、ピロリン酸ナトリウム、メタリン酸ナトリウム等のキレート剤が 挙げられる。さらには、塩ィ匕ナトリウム、塩ィ匕カリウム、塩ィ匕カルシウム、リン酸ナトリウ ム、リン酸カリウム、炭酸水素ナトリウムなどの無機塩;クェン酸ナトリウム、クェン酸カリ ゥム、酢酸ナトリウムなどの有機塩などの通常添加される成分を含んで!、てよ 、。 本発明の抗癌剤は、これらの成分をリン酸緩衝液などの緩衝液に溶解して調製す ることができる。好ましい pHは 5〜8である。
[0053] 本発明の抗癌剤は通常非経口投与経路で、例えば注射剤 (皮下注、静注、筋注、 腹腔内注など)、経皮、経粘膜、経鼻、経肺などで投与されるが、経口投与も可能で ある。
本発明の抗癌剤は、溶液製剤であっても、使用前に溶解再構成するために凍結乾 燥したものであってもよ 、。凍結乾燥のための賦形剤としては例えばマン-トール、 ブドウ糖などの糖アルコールや糖類を使用することが出来る。
[0054] 本発明の製剤中に含まれるモータリン 2に結合する抗体の量は、治療すべき疾患 の種類、疾患の重症度、患者の年齢などに応じて決定できる力 一般には最終投与 濃度で 0. 1 μ g〜200 μ g/ml、好ましくは 0. 1 μ g〜2mg/mlである。
モータリン 2に結合する抗体の一例として、本発明において提供される K抗体を用 いることができる。 K抗体の作成の詳細は、後述の実施例に詳しく説明されている。
[0055] (6)物質の抗癌活性を評価する方法
本発明者らは、モータリンが癌細胞に特徴的な分子であり、癌治療の標的となりうる ことを見出した。モータリンの発現を中和する物質やモータリンが細胞内で機能する のを妨げるような物質は、抗癌活性を有する物質である可能性がある。したがって、 被験物質の存在下でモータリンの発現の強度やモータリンの機能を解析することに より、当該被験物質の抗癌活性を評価することができる。モータリンの発現の強度を 解析するためには、ウェスタン分析、ノーザン分析等の遺伝子の発現を解析するため の公知の標準的な手段を用いることができる。モータリンの機能は、 p53や GRP94そ の他のモータリン結合タンパク質の活性を調べることにより解析することができる。
[0056] 被験物質の抗癌活性は、具体的には以下のようにして評価することができる。
一態様として、モータリンタンパク質と被験物質を接触させ、その接触の強度により 被験物質の抗癌活性を評価することができる。モータリンタンパク質は、遺伝子組換 えにより産生されたものでも培養細胞力ゝら単離されたものでもよい。接触の強度は、 被験物質のモータリンタンパク質への結合量あるいは被験物質のモータリンタンパク 質への結合の結果としてのモータリンタンパク質の機能の変化として測定される。被 験物質のモータリンタンパク質への結合量は、例えば、抗モータリン抗体を用いた im munoprecipitation法や immunodepletion法により測定することができる。これらは特異 的な抗体によるモータリンタンパク質の沈降反応に基く方法である。被験物質がモー タリンに結合することにより抗体による沈降反応が影響を受ける場合があり、免疫複 合体についての SDS PAGEによりその影響を可視化できる。また別の方法としては、 被験物質にセファロースビーズのタグを付けることにより、被験物質とモータリンタン ノ^質とが結合した"被験物質—モータリン複合体"を直接沈降させることができ、こ の場合にも、モータリンと被験物質との結合を SDS PAGEゲル上で定量ィ匕できる。こ のような方法を用いた例として、 Wadhwa, R., Sugihara, T., Yoshida, A., Nomura, H., Reddel, R. R., Simpson, R., Maruta, H., and Kaul, S. C. (2000). Selective toxicity o f MKT— 077 to cancer cells is mediated by its Dinding to the hsp70 family protein mo t-2 and reactivation of p53 lunction. Cancer Res 60, 6818— 6821.には、 MKT007のモ 一タリンへの結合量の測定が記載されて 、る。モータリンタンパク質の機能の変化は 、例えば、被験物質がモータリンタンパク質に結合してその機能が中和される結果と しての p53の活性の上昇や、さらにその結果としての細胞増殖の阻害の程度により評 価できる。
[0057] 被験物質の抗癌活性を評価する方法の別の態様として、分子生物学的手段により モータリン遺伝子を導入してモータリンを過剰発現する細胞を作製し、その細胞また はその細胞破砕液を、被験物質に接触させ、接触の強度により評価することができる 。接触の強度は、上述の immunoprecipitation法、 immunodepletion法や、セファロース ゃァガロースのビーズでタグ付された被験物質による直接沈降法を用いて、被験物 質のモータリンへの結合量を測定することにより評価することができる。
[0058] さらに別の態様としては、モータリン遺伝子のプロモーターの下流にレポーター遺 伝子をつないだ DNAを有する細胞、および細胞破砕液を、被験物質に接触させ、レ ポーター遺伝子の発現を指標として、被験物質の抗癌活性を評価することができる。 被験物質がモータリンプロモーターに対して何らかの作用を及ぼすことにより、モータ リンの発現レベルが影響を受ける。モータリンの発現レベルを低下させるような影響を 与える物質は、モータリンを中和する物質であり、抗癌活性を有する物質である可能 性がある。モータリン遺伝子のプロモーターの下流にレポーター遺伝子をつないだ D NAは、分子生物学の分野における慣用法に従い、公知のモータリン遺伝子配列に 基きルシフェラーゼゃ /3 -gal等の通常用いられるレポーター遺伝子をつな 、で作製 したプラスミドとして構築することが可能である。
[0059] (7)小分子キャリアとしてのモータリン 2結合物質の使用
モータリンが腫瘍細胞に特異的に発現することから、細胞に入り込んでモータリンに 特異的に結合する物質を、腫瘍細胞内への小分子のキャリアとして使用することがで きる。モータリンに特異的に結合する物質としては、上述の生細胞内に内在化される 抗モータリン抗体の他に、以下の文献に記載される MKT007等の「モータリン 2結合 物質」も用いることができる。 Wadhwa, R., Colgin, L., Yaguchi, T., Taira, K., Reddel, R. R., and Kaul, S. C. (2002). Rhodacyanine Dye MKT— 077 Inhibits in Vitro Telom erase Assay But Has No Detectable Effects on Telomerase Activity in Vivo. Cancer Res 62, 4434-4438 ; Wadhwa, R., Sugihara, T., Yoshida, A., Nomura, H., Reddel, R. R" Simpson, R., Maruta, H" and Kaul, S. C. (2000). Selective toxicity of MKT- 0 77 to cancer cells is mediated by its binding to the hsp70 family protein mot— 2 and r eactivation of p53 function. Cancer Res 60, 6818 - 6821。
[0060] 例えば、低分子化合物、ペプチド、脂質、オリゴヌクレオチド(siRNA、 shRNA、 miRN A、二本鎖 RNA、リボザィム、ァプタマ一、ダンベル DNAなど)を細胞内移行させる ために、抗モータリン抗体 (モノクロ 'ポリクロどちらでも)やその他のモータリンに特異 的に結合する物質を使用することができる。
例えば、モータリンに特異的に結合する物質を、ターゲット療法の薬剤キャリアとし て用いて、免疫毒及びペプチド、ヌクレオチド、有機分子その他の小分子を腫瘍細 胞に輸送することができる。
[0061] また、 in vitro又は in vivoで細胞をライブイメージ化するために、可視化可能せしめ る非蛍光物質 (Qdot)や蛍光物質を細胞内に内在化させるにあたり、抗モータリン抗 体 (モノクロ ·ポリクロどちらでも)やその他のモータリンに特異的に結合する物質を、 造影物質のキャリアとして使用することもできる。例えば、生体内における癌転移調査 のために、抗モータリン抗体の細胞内内在化 (あるいはキャリアー)の性質を利用して 細胞を Qdotでラベルイ匕し、当該細胞をヌードマウスに注射する。生体内での当該細 胞の転移をライブイメージで観察でき、動物のと殺などのオペが!/ヽらな!、。
[0062] (8)細胞内に内在化する抗モータリン抗体の使用
全長モータリンを抗原として、生細胞内に取り込まれる(内在化される)ポリクローナ ルあるいはモノクローナル抗体が作製可能である。このような抗体は、上述のような分 子キャリアとしての用途に特に適する。抗モータリン抗体が内在化される理由ははつ きりとは判明して 、な ヽが、細胞表面で発現するモータリンとインターロイキン 1レセプ ター'タイプ l (IL-lR'typel)との相互作用に何らかの関係があるものと考えられ、イン ターロイキン 1レセプタ一.タイプ 1の発現抑制又は中和によりモータリン抗体の内在 化をさらに促進することができる。
また、このような抗モータリン抗体(内在化機能を有する抗モータリン 2抗体)は癌細 胞に特異的に内在化されるため、癌細胞へ選択的にドラッグ 'デリバリーするキャリア 一または癌治療目的とする用途に有用である。
さらに、このような内在化機能を有する抗モータリン 2抗体は単独での使用するのみ ならず、 IL-lR'typelの発現抑制や中和手段(抗体、アンタゴニスト、 siRNA、リボザィ ムなど)と組み合わせても使用できる。
[0063] (9)細胞の免疫染色のための抗モータリン抗体の使用
抗モータリン抗体により細胞を免疫染色すると、正常細胞では細胞質全体に広範 に染色が見られるが、癌細胞では核の周囲に染色が見られる。また、老化を誘導した 細胞では、モータリンの染色が核膜周囲での集中したパターンから、細胞質全体に 広がるパターンに変わる。
このような染色パターンに着目して、抗モータリンポリクローナル抗体 (K-抗体)同 様に、ハイプリドーマクローン由来の抗モータリンモノクローナル抗体を使用すれば、 老化細胞を検出するキットを設計することができる。つまり、癌細胞集団中にある老化 細胞又は正常化細胞を検出'選別するために抗モータリンモノクローナル抗体又は 抗モータリンポリクローナル抗体を使用することができる。このような抗モータリンモノ クローナル抗体又は抗モータリンポリクローナル抗体の使用とは、具体的には、モー タリン染色パターンを使用することによる。老化細胞又は正常化細胞を検出'選別す ることにより、癌細胞力 老化細胞又は正常化細胞への被験物質による誘導の検査 を行うことができる。具体的には、癌細胞を老化細胞又は正常化細胞に誘導する被 験物質 (低分子化合物、ペプチド、ヌクレオチド、抗体など)のスクリーニングにモータ リン染色パターンを使用することができる。
[0064] 本発明を以下の実施例でさらに詳しく説明するが、本発明はこれに限定されない。
種々の変更、修飾が当業者には可能であり、これらの変更、修飾も本発明に含まれ る。
実施例 1
[0065] (腫瘍及び腫瘍由来株細胞におけるモータリン遺伝子の発現)
ノーザン及びサザンブロットにより、ヒト形質転換細胞、腫瘍由来株細胞及び腫瘍 組織におけるモータリン遺伝子の発現を解析した。
[0066] (試験方法)
ノーザンブロット
TrizoKLife Technologies, Inc)を用いて、正常ヒト細胞及び形質転換ヒト細胞から全 RNAを調製した。得られた RNAを 2.2Mのホルムアルデヒドを含む 1%ァガロースゲル 上で変性してでサイズ分画したものを Hybond N+メンブラン (Amarsham Corp.)に転写 した。プローブとしては、マウス cDNAをプローブとして Hela細胞由来の cDNAから得ら れたヒト cDNAのカルボキシル末端の 0.5kb断片を用いた。ハイブリダィゼーシヨンは 6 5°Cでエキスプレスハイブリダィゼーシヨンバッファー(CLONTECH)中で行った。メン ブランを 2X SSCと 0.1% SDS含有 2X SSCでそれぞれ 10分間洗浄し、次いで 0.1% SDS 含有 IX SSCで 2回洗浄した。ブロット上の RNAローデイング量はァクチン又は 18Sリ ポソームプローブにより決定した。
ウェスタンブロット
タンパク質サンプル(10-20 μ g)を SDSポリアクリルアミドゲル上で分離し、セミドライト ランスファーブロッター(Biometra, Tokyo)を用いたエレクトロブロッテイングにより-ト ロセルロースメンブラン(BA85、 Schleicher and Schuell)に移した。抗モータリン抗体( 後述の T抗体及び K抗体)を用いてィムノアツセィを行った。形成された抗体複合体 は西洋わさびペルォキシダーゼ (HRP)かアルカリホスファターゼ結合抗マウス Zゥサ ギ免疫グロブリン G(IgG)を用いて可視化した(ECL kit, Amersham pharmacia Biotech
) o
[0067] (結果)
胸部、脳、結腸、卵巣の腫瘍組織、及び対応する正常組織 (対照)でモータリン遺 伝子の発現を調べた結果を図 1 3及び表 1に示す。図 1と図 2は各部の腫瘍組織 ( Tumor)及び対応する正常組織 (Normal)における発現を示すドットブロットである。図 3は、各種の腫瘍組織 (T)及び対応する正常組織 (N)における発現を示す、モータリ ンに特異的なポリクローナル抗体を用いたウェスタンブロットの結果である。表 1はこ れらの結果をまとめたものであり、左の列力 順に、腫瘍の種類、検体の数、モータリ ンがアップレギュレーションしていた検体の数(Mot-UP)、モータリンがダウンレギユレ ーシヨンしていた検体の数(Mot- DOWN)、モータリンの発現に変化がなかった検体 の数 (Mot-NO- CHANGE)である。これらの結果から、殆どの腫瘍組織において対照 の正常組織よりもモータリン遺伝子の発現が亢進していたことがわかる。
[0068] [表 1]
Figure imgf000031_0001
[0069] 次に、腫瘍由来の株細胞におけるモータリン遺伝子の発現を調べた結果を図 4〜 図 6に示す。図 4は、各部組織由来の腫瘍株細胞におけるモータリン遺伝子の発現 を調べた結果であり、レーン 1は対照としての正常な包皮繊維芽細胞 (HFF-5)、レー ン 2— 14は結腸癌細胞、レーン 15— 18は前立腺癌細胞である。 13の結腸癌細胞の うち 7つが非常に高レベルのモータリン遺伝子の発現を示し、他の 6つが正常の包皮 繊維芽細胞と比較して中程度の増加を示した。前立腺癌細胞 3つも、正常な包皮繊 維芽細胞と比較して高レベルの発現を示した。図 5のレーン 1は正常な包皮細胞 (HF F-5)、レーン2は正常な肺繊維芽細胞(MRC5)、レーン3— 8は乳癌細胞でぁる。図 6は正常な肺繊維芽細胞 (MRC5)、 SV40で形質転換された細胞 (MRC5-SV2及び U 87MG)、骨癌(U20S)、卵巣癌(C33A及びヒーラ細胞)、乳癌 (MCF7)及び、神経グ リア芽腫 (A172、 U138MG、 DBTRG、 U118MG、 U87MG)におけるモータリンの発現を 示す。モータリンの発現は 7つの乳癌由来細胞のうち 5つにおいてアップレギュレート され、骨癌、卵巣癌、神経グリア芽腫由来の細胞においても同様であった(図 5、図 6
) o
実施例 2
[0070] (形質転換されたヒト細胞におけるモータリンの発現レベルと足場非依存性増殖の解 析)
ヒト繊維芽細胞を不死化して、様々なモータリンの発現レベルを示す細胞株を取り 、これらの細胞株を足場非依存性コロニー形成アツセィに供し、モータリンの発現レ ベルと足場非依存性増殖能の関連を調べた。足場非依存性増殖能、すなわちソフト ァガ一中などの細胞接着のない浮遊状態でも増殖することができることは癌化した細 胞に共通の性質である。
[0071] (試験方法)
ヒト不死化細胞のサブクローニング
テロメラーゼの触媒サブユニット hTERT単独又は hTERT及び E6及び E7発現プラスミ ドの組合せ (オーストラリア国シドニー Dr. Roger Reddel研究室より分譲された発現プ ラスミドを用いた)のいずれ力を導入することによりヒト繊維芽細胞 (米国テキサス大学 より分譲された)を不死化して、段階希釈によりサブクローユングした。サブクローニン グにより、様々なモータリン発現レベルを示す細胞株を得ることができた(図 7)。 コロニー形成アツセィ
細胞をトリプシン処理し、計数し、 DMEM中の 0.8%寒天に懸濁して寒天ベッドプレー ト上に蒔いた。プレートを 37°Cの COインキュベータ一中で 3〜10週間培養した。
2
[0072] (結果)
サブクロー-ングした不死化細胞について、上述のウェスタンブロットによるモータリ ン発現レベルの分析、及び足場非依存性コロニー形成アツセィを行った結果を図 7 〜: L0に示す。
足場非依存性コロニー形成アツセィの結果、正常細胞はソフトァガー上で増殖しな かったが、ヒト繊維芽細胞腫由来細胞 HT1080は高い効率でコロニーを形成した。図 7にヒト胚性繊維芽細胞 (WI-38)とそれに由来する hTERT、 E6及び E7で形質転換さ れた不死化細胞(WB-1、 WB-6、 WB- 7、 WB-ll)、及び正常なヒト肺繊維芽細胞(M RC5)に対する、ウェスタンブロットの結果及びコロニー形成効率 (CFE)を示す。不死 化細胞のソフトァガー上での増殖は悪かった力 高レベルのモータリンの発現を示す サブクローンはより高い増殖又はコロニー形成効率を顕著に示した(図 7)。
図 8は WB-1及び WB-6細胞の通常の培地での増殖の様子を示す写真であり、特に WB-6が高密度で増殖していることがわかる。すなわち、これらの細胞は密度依存性 の増殖阻害力 のエスケープ現象を示し、通常の培地で高密度で増殖する。
[0073] ヒト不死化細胞の他の系統も同様に解析した。図 9は、正常な皮膚繊維芽細胞 (MJ 90)及びこれに由来するテロメラーゼ導入により得た不死化細胞 (MJT-6)及び各種 サブクローン (MJT_61〜66)、及び正常なヒト肺繊維芽細胞である MRC5細胞のゥェ スタンプロット及びコロニー形成の結果である。モータリンが高レベルで発現して 、る サブクローンは、モータリンの発現が低レベルなものと比較してソフトァガー上で高い コロニー开成効率(Colony Formation Rate)を示したことがわかる。他の开質転換細 胞とのクロスコンタミネーシヨンの可能性を排除するため、 MJ90及び MJ90由来のサブ クローンを DNAフィンガープリントにより分析したところ、これらのサブクローンは各細 胞型カも正しく由来したものであることが確認された(図 10)。
この結果により、腫瘍の特徴である足場非依存性の細胞増殖とモータリンの高レべ ルの発現との関連とが明らかとなつた。
実施例 3
[0074] (モータリンに特異的な抗体)
(試験方法)
抗体の作成
以下の抗原を用いて、ゥサギ (ニュージーランドホワイトラビット)を免疫し、モータリ ンに対する抗体を作成した。マウスのモータリン 2の一部分であるペプチドに対する 5 つの抗体 (P、 Q、 R、 S、 T抗体と名付けた)、及び全長モータリン 2タンパク質に対す る 1つの抗体 (Κ抗体)を作成した。抗原であるモータリンタンパク質やペプチドのァフ 二ティカラムを用 、て精製した抗体を以下の実験に用 ヽた。
1.抗原- Ρ : モータリンペプチド
^et-Ile-Ser-Ala-Ser-Arg-Ala-Ala-Ala-Ala-Arg-Leu-Val-Gly-Thr-Ala-Ala-Ser- Arg-Ser-Cys —OH
2.抗原- Q : モータリンペプチド
487Cys-Gln-Gly-Glu-Arg-Glu-Met-Ala-Gly-Asp-Asn-Lys498-OH
3.抗原- R: モータリンペプチド
'Cys-Glu-Glu-Ile-Ser-Lys-Val-Arg- Ala-Leu-Leu- Ala- Arg-Lys -OH
4.抗原- S : モータリンペプチド
613Cys- Glu- Glu- lie- Ser- Lys- Met- Arg- Ala- Leu- Leu- Ala- Gly- Lys625- OH
5.抗原- T: モータリンペプチド
469Ser- Gin- Va Phe- Ser- Thr- Ala- Ala- Asp- Gly- Gin- Thr- Gin- Va Glu- lie- Lys- Val - Cys487— OH
6.抗原- K: 大腸菌で発現させて NTA-Niァガロースにより精製した、 Hisタグ付全長 モータリンタンパク質。
マウス細胞由来のモータリン 2タンパク質に対する抗体で cDNAライブラリーをスクリ 一ユングして得たモータリン cDNAクローンの 2.0kbのオープンリーディングフレーム( ORF)を pQE30ベクター(Qiagen)中にクローン化して、 Hisタグ付タンパク質を得た。 この抗体についての詳細は、 Wadhwa, R., Kaul, S. C, Ikawa, Y., and Sugimoto, Y. ( 1993) J Biol Chem 268, 6615- 6621に記載されている。 pQE30/モータリン構築物を用 いて大腸菌 M15株を形質転換し、 OD 力 6になるまで増殖させ、イソプロピル- 1-チ
580
ォ- β -D-ガラクトピラノシド (IPTG) (0.2mM)で 37°Cで 5時間誘導をかけた。菌の溶解 物(IPTGで誘導を受けたもの、及び受けて ヽな 、もの)を SDS-ポリアクリルアミドゲル 電気泳動で分析してから、抗 His抗体(Qiagen)によるウェスタンブロットを行った。 His タグ付組換タンパク質を用いて、ゥサギポリクローナル抗体である抗モータリン抗体 (a nti— mortalin antibody) :K抗体を作成した。
[0076] (細胞内への抗体の取り込み)
12穴培養デッシュ内にカバーグラスを置き、その上に細胞を蒔いた。 24時間後に 、上述の抗原 Kにより免疫して得られた抗モータリン抗体である K抗体 (K-Ab)の 5 μ 1 を培養液(1.0ml)にカ卩えた。 12〜24時間後に細胞を固定し、フルォレセインイソチォ シァネートーヒッジ抗マウス IgG及びテキサスレッドー抗ゥサギ IgG (Amersham Corp.) で二次染色を行って可視化した。細胞を蛍光顕微鏡 (Carl Zeiss)で観察した。 P、 Q 、 R、 S、 T抗体についても同様に実験を行った。
[0077] (結果)
まず、モータリンペプチドに対する 5つの抗体(P、 Q、 R、 S、 T抗体)、及び全長モ 一タリンタンパク質に対する 1つの抗体 (Κ抗体)のモータリンへの特異性を確認した 。ウェスタンブロットと免疫沈降法により、 R、 S、 T、 Κ抗体がヒト及びマウスのモータリ ンと特異的に反応することがわ力つた。ウェスタンプロット上で、 Κ抗体は予想された サイズの一つのバンドだけを認識した(図 11)。免疫沈降法で、 Κ抗体によるモータリ ンの特異的な沈降を検出した(図 12)。
正常細胞と形質転換細胞においては異なるモータリンの染色パターンが観察され た(図 13)。これは既に報告されて!、る通りである(非特許文献 2参照)。
図 14は非常に興味深 ヽ結果を示す。それは Κ抗体を培養中の培地に加えると細 胞内に取り込まれたと 、うものである。正常(TIG-1)及び変異(U20S及び MCF-7)ヒ ト細胞において、いずれもモータリン Κ抗体 (mot- K Ab)が細胞に内在化されている 様子がわかる。この染色パターンは、細胞を固定してから K抗体で染色して得られた 染色パターンと同じであった (非特許文献 2参照)。他の抗体もウェスタンプロットと免 疫沈降法に用いたが、このような内在化を全く示さな力つた。
[0078] 本発明者らは、 Qdot655抗体コンジユゲーシヨンキット(Quantum Dot Corporation, USA)を用いて Qdot—抗体コンジュゲートを作製した。 Qdotコンジユゲートー K抗体を 用いて細胞を抗体染色すると、予想通りの染色パターンが得られた(図 15)。 Qdot- K抗体コンジュゲート(約 5 μ g/ml)を U20S細胞の培地に加えた。細胞をメタノール Z アセトン (50/50, v/v)中で 10分間氷上で固定し、 Qdotフィルターセット XF 305-1 (励 起フィルター 425DF45、ダイクロイツク 475DCLP、ェミッションフィルター 655DF20) を装着した Carl Zeiss顕微鏡により観察した(Omega Optical, Inc.)。図 16に示すよう に、 Qdot655は、 K抗体と結合した場合のみ、細胞内に見られた。このデータにより、 K抗体及びそれと結合した Qdotの内在化が明確に示された。他の抗体については、 ウェスタン及び免疫沈降アツセィにおいては特異的結合が示されたにも関わらず、内 在化は見られなかった。
実施例 4
[0079] (腫瘍の治療のための K抗体の使用)
上述の実験の結果、腫瘍細胞においてモータリンがアップレギュレートされているこ と、そしてモータリンに対する抗体である K抗体が細胞内に内在化されることを見出し た。次に、 K抗体を用いて、腫瘍において in vivoでモータリンを中和することにより、 腫瘍の成長に何らかの影響を与えることができるか検討した。
[0080] (試験方法)
ヌードマウスにおける腫瘍形成
ヌードマウスは日本クレア力 購入した。ヒト線維肉腫細胞(HT1080)をヌードマウス に皮下注射した。小さな腫瘍芽が現れたとき、試験用の腫瘍に抗モータリン抗体であ る K抗体 (K-Ab)を注射した。対照用の腫瘍には免疫前血清 (preserum)を含有する DMEMを注射した。その後の腫瘍の進行を観察した。
[0081] (結果)
実験 1では、 lxlO6個の HT1080細胞を注射し、 5日後に小さな腫瘍芽が現れた。こ の腫瘍にモータリン K抗体 (Mot-K Ab)ある ヽは免疫前血清(Control)を注射した (5 00 μ 1の DMEM中に 5 μ 1)。抗体を注射していない腫瘍は 12〜 15日間で 2cm以上に 成長したが、抗体を注射した腫瘍は 4週間で lcmにしかならな力つた(図 17、図 18) 実験 2では、 lxlO5個の HT1080細胞を注射して、抗体の注射は腫瘍芽がまだ 1 2mmの頃に開始した。その後 1ヶ月間、 5日毎に注射を繰り返しながら、腫瘍の進行 を観察した。対照の抗体を注射された腫瘍のサイズは徐々に大きくなつたが、 Mot-K 抗体を注射された腫瘍は縮小した(図 19)。 実験 3では、 2つの横に並んだ腫瘍 (上部の大きな腫瘍及び下部の小さな腫瘍)を 有するマウスを用いた。 K抗体を上部腫瘍のみに注射した。注目すべきは、 K抗体を 注射された上部腫瘍が縮小する一方、 4週間後に下部の腫瘍の大きさが拡大したこ とである(図 20)。
実施例 5
[0082] (K抗体)
別ロットの K-抗体 (Mot-2全長タンパク質に対するポリクローナル抗体)を調整し、 Vヽ ずれのロットの抗体も細胞内へ取り込まれることをチェックした。
3つの濃度の異なる K-抗体 (A-C)、免疫前血清、ァフィ二ティー精製した K-抗体( AP)、対照の T-抗体(モータリンの一部のペプチド469 Ser- Gin- Va卜 Phe- Ser- Thr- Ala- Ala- Asp- Gly- Gin- Thr- Gin- Vaト Glu- lie- Lys- Vaト Cys487— OHに対する抗体)を A549 細胞 (肺癌細胞)の培養液に添加し、 24時間培養した。細胞溶解物は、培養細胞を トリプシン処理して回収した細胞力 調整した。細胞内に内在化した抗体を、ウェスタ ン.ブロッテイング法により、 HRP結合抗ゥサギ抗体によって検出した。モータリンとァ クチンを内部コントロールとして、各レーンに流したサンプル量を同量に調整した。
[0083] (結果)
図 21に内在化した K-抗体のウェスタン 'ブロッテイング法による検出の図を示す。 K -抗体及びァフィユティー精製した K-抗体は細胞内に内在化したのに対し、免疫前 血清および T-抗体は内在化しな力つた。
実施例 6
[0084] (インターロイキン- 1レセプタ一'タイプ 1の発現の抑制)
モータリンが癌細胞の細胞表面にも存在することが報告されている(Shin, B. K., W ang, H., Yim, A. M., Le Naour, F., Bnchory, F., Jang, J. H., Zhao, R., Puravs, E., Tra, J., Michael, C. W., Misek, D. E., and Hanash, S. M. (2003) J Biol Chem 278, 7 607- 7616 ; Dundas, S. R., Lawrie, L. C, Rooney, P. H., and Murray, G. I. (2005) J Pathol)。
また、モータリンがインターロイキン- 1レセプタ一'タイプ 1 (以下、 IL- lR,typeIと記載 することもある)と相互作用することが知られている(Sacht, G., Brigelius-Flohe, R., Ki ess, M., Sztajer, H., and Flohe, L. (1999) Biofactors 9, 49—60)。
[0085] K-抗体が細胞内に取り込まれる内在化現象は、モータリンが細胞表面で発現し IL- lR,typeIと結合することに関係すると我々は予想した。
この点を調べるために、まず IL-lR,typeIの発現を抑制する shRNA発現プラスミドを 構築した。 cDNA上の 2つの標的部位 289-307、 293-311に対して、 2種類の shRNA発 現プラスミドを構築した。この shRNA配列を図 22に示した。
今回構築したプラスミド (2種類)より細胞内で発現される shRNA配列は、
UU-3'
及び
CUU-3'
である。細胞に各々の発現プラスミドをトランスフエクシヨンし、 IL-lR,typeIの発現抑制 を抗 IL- lR,typeI抗体を用いたウェスタン'ブロッテイング法によって解析した。
[0086] (結果)
IL-lR,typeIの発現は、図 22に示した 2種類の shRNA発現プラスミドの使用によって 抑制された(図 22ゲル写真)
[0087] (インターロイキン- 1レセプタ一'タイプ 1の発現の抑制による K抗体内在化の促進)
2種類の shRNA発現プラスミドは、効果的に IL-lR,typeIの発現を抑制した(図 22ゲ ル写真)ので、コントロールプラスミド又は図 22の 2種類のうちのいずれかの shRNA発 現プラスミドがトランスフエクシヨンされた細胞 (HepG2)を、 K-抗体とともに培養し、細 胞内に内在化した抗体を HRP結合抗ゥサギ抗体を用いてウェスタン 'ブロッテイング 法によって解析した。
[0088] (結果)
2種類の shRNA発現プラスミドにより効果的に IL-lR,typeIの発現が抑制されている 一方(図 23下段写真)、 K-抗体の細胞内への内在化は促進されていた(図 23上段 写真)。 IL_lR,typeIは K-抗体の内在化を妨害し、この IL_lR,typeIの発現が抑制され ると K-抗体の細胞内内在化が促進されることをこの実験結果が裏付けている。細胞 表面でのモータリンと IL-1 R,typelの結合が、モータリン -K抗体(抗モータリン抗体)複 合体の細胞内内在化を妨げていると考えられる。
このような細胞内内在化の促進効果は、 K-抗体をドラッグデリバリーなどのキャリア として利用したり、抗がん剤成分として利用する場合に、より好ましいと考えられる。細 胞内内在化の促進効果は、図 23のようなインターロイキン- 1レセプタ一'タイプ 1の ヘアピン型 RNAのみならず、アンチセンスヌクレオチド、 siRNA、 shRNA、 miRNA、 二本鎖 RNA、リボザィムによるノックダウンでも、抗体やアンタゴ -ズトによる中和でも 、いかなる方法による IL-lR,typeI発現抑制 ·中和も、図 23に示されるデータのように 、細胞によるモータリン抗体の摂取を促進するものと考えられる。
実施例 7
[0089] (K抗体が持つ 3つの性質を有するモノクローナル抗体)
組み換えヒト全長モータリンに対するマウスモノクローナル抗体を作製した。作製し た抗モータリンモノクローナル抗体 50クローンについて、以下の 3つの基準を満たす か否力、調査した:(1)ウェスタン 'ブロッテイング法の解析によるモータリンへの反応性 と特異性、(2)正常細胞と癌細胞におけるモータリンの免疫染色のパターン (正常細 胞は細胞質全体が染色され、癌細胞では核膜周辺が染色されるパターンがみられる 力 、(3)細胞内への内在化、である。
[0090] (結果)
図 24は、モータリンに対する新しいモノクローナル抗体の作製及び内在化機能をも っ抗モータリンモノクローナル抗体選別に関する図である。上記 3つの基準を満たす モノクローナル抗体のクローンが得られた。そのようなクローンは 50クローンのうち 4ク ローンであった。数多くのクローンが、反応性 ·特異性や免疫染色パターンに関する 基準を満たしたが、細胞内へ内在化しなかった。最終的に、細胞内に内在化する抗 モータリンモノクローナル抗体を産生する細胞(ハイブリドーマ)(37番、 38番、 71番 、 96番)を得た。また、反応性'特異性および免疫染色に関する基準を満たすものの 細胞内に内在化しないクローン(52番)をネガティブコントロールとするハイプリドーマ を作製した。
最も細胞内内在化効率の高い抗モータリン 2モノクローナル抗体を産生するクロー ン (37— 6)を、独立行政法人産業技術総合研究所特許生物寄託センターに寄託し た。
(受託番号: FERM ABP— 10408、寄託日:平成 17年 8月 23日)
[0091] (モノクローナル抗体の細胞内内在化の確認)
図 25に示す抗モータリンモノクローナル抗体とともに細胞を培養し、 24時間後に固 定化のち、 FITC結合 2次抗体によって免疫染色した。
抗モータリンモノクローナノレ抗体(37— 1、 37— 6、 38-4, 71— 1、 96— 5) ίま、明 瞭に細胞内に内在化していた。クローン 52— 3の抗モータリンモノクローナル抗体は 内在化しなかった。
さらに、細胞を酸洗浄処理し、抗モータリンモノクローナル抗体が細胞内へ内在化 することを確認した(図 26)。癌細胞 (U20S)を図に示された抗体クローンとともに培 養し、固定した後、内在化した抗体を FITC結合 2次抗体による免疫染色によって検 出した。細胞表面に付着した抗体の非特異的な検出を無くすために、 0.2Μ酢酸一 0. 5Μ NaClを含む冷却した PBSで細胞を洗浄した後に細胞を固定した。酸洗浄処理し た細胞の免疫染色の強度と通常の PBS洗浄処理した細胞の免疫染色の強度を比較 した結果を図 26にまとめた。
酸によって洗浄された細胞に染色が変ることなく見られたことは、その免疫染色が 確かに細胞内に内在化した抗体によるものであることを支持しており、その染色が細 胞表面に非特異的に存在する抗体によるものではないことを示す。
実施例 8
[0092] (抗モータリンモノクローナル抗体の癌細胞選択的な細胞内内在化促進)
癌細胞(U20S)または正常細胞 (TIG- 1)を、抗モータリンモノクローナル抗体と抗 I L-lR,typel抗体とともに培養した。細胞を図 27に示す抗体の組み合わせで 30分培 養し、固定した後、内在化した抗モータリンモノクローナル抗体を FITC結合抗マウス 2次抗体で検出した。
[0093] (結果)
抗モータリンモノクローナノレ抗体(37— 1、 37— 6、 38—4、 71— 1、 96— 5) ίま、選 択的に癌細胞の細胞内に内在化した。クローン 37—1、 37-6, 38— 4では、抗 IL-1 R'typel抗体 (Monoclonal Anti-human IL- IRtypel Antibody ^ R&D Sysytems Inc.製、 Catalog Number :MAB269)とともに培養したとき、癌細胞内への内在化の促進が見 られた。正常細胞においては、どのクローンも内在化の促進は見られず、むしろ、減 少が見られた。
[0094] (抗 IL-lR,typel抗体共存ィ匕における抗モータリンモノクローナル抗体の癌細胞選択 的細胞内内在化促進)
抗モータリンモノクローナル抗体(クローン 37— 1、 37— 6又は 38— 4)と抗 IL- lR,ty pel抗体の共存下で、癌細胞 (U20S)または正常細胞 (TIG-1)を培養した。細胞を 2
4時間後に固定した後、 FITC結合抗マウス抗体で抗モータリンモノクローナル抗体 を検出した。
[0095] (結果)
図 28に示すのは、抗 IL-lR,typel抗体により抗モータリンモノクローナル抗体(クロ ーン 37— 1、 37-6, 38— 4)の癌細胞内への内在化が促進されることである。
癌細胞では 3つ全ての抗モータリンモノクローナル抗体において細胞内内在化が 見られたのに対し、正常細胞では細胞内内在化が見られな力つた。
[0096] (IL_lR,typelの発現抑制及び中和による抗モータリンモノクローナル抗体の癌細胞 選択的細胞内内在化促進)
図 29では、癌細胞(HepG2)において、 IL-lR,typelを発現抑制すると、抗モータリ ンモノクローナル抗体の癌細胞内内在化が選択的に促進されることを示した。 IL-1R の発現が高い癌細胞(HepG2)に対し、 shRNA発現プラスミドを用いて IL-lR,typel の発現をノックダウンした。このトランスフエクシヨンした細胞を、図 29に示す抗モータ リンモノクローナル抗体及び抗 IL-lR,typel抗体の組合せ存在下のもと培養した。細 胞を固定した後に、 FITC結合マウス 2次抗体を用いて細胞を可視化した。
[0097] (結果)
shRNAによる IL- lR,typelの発現抑制により、及び、 IL- lR,typel特異的な抗体によ るレセプターの中和により、癌細胞での抗モータリンモノクローナル抗体の細胞内内 在化が促進された。 IL-lR,typelに対する shRNAまたは特異的な中和抗体は、抗モ 一タリンモノクローナル抗体の正常細胞への内在化には影響を及ぼさな力つた。 実施例 9
[0098] (癌細胞におけるモータリン過剰発現と増殖 ·転移の関係 その 1)
まず、モータリン過剰発現用癌細胞株を準備した。ヌードマウスに腫瘍形成しない 乳癌細胞(MCF7)において、レトロウイルス発現ベクターを用いてモータリンを過剰発 現させた。 mycタグの付いたモータリンの過剰発現力 抗 myc抗体を用いたウェスタン .ブ口ティング法により、検出された(図 30)。泳動するタンパク質量の調整には、内在 性モータリンとァクチンを内部対照として用いた。
[0099] (癌細胞におけるモータリン過剰発現と増殖 ·転移の関係 その 2)
次に、モータリン過剰発現による悪性腫瘍の増殖性への影響をチェックした。図 31 では、レトロウイルス発現ベクターを用いて乳癌細胞(MCF7)にモータリンを過剰発 現させ、定常的にモータリンを過剰発現するこの乳癌細胞がヌードマウスにおいて腫 瘍形成するかどうか調べた。
[0100] (結果)
モータリンを過剰発現して 、る乳癌細胞 (MCF7)はヌードマウスにお 、て腫瘍形成 したのに対し、モータリンを過剰発現して ヽな 、元の乳癌細胞はヌードマウスにお ヽ て腫瘍形成しな力 た。
上記より、モータリンの過剰発現は、悪性腫瘍を増殖させる。つまり、モータリンは癌 治療にふさわしい標的であると考えられる。
[0101] (癌細胞におけるモータリン過剰発現と増殖 ·転移の関係 その 3)
図 32において、癌細胞におけるモータリン過剰発現と転移の関係を分析した。レト ロウィルス発現ベクターを用いて MCF7細胞にモータリンを過剰発現させ、モータリ ンを定常的に過剰発現している細胞の走ィ匕性を調査した。尚、走ィ匕性テストは、癌細 胞の転移にっ 、て信頼性のある指標となる。
走ィ匕性アツセィは実験対照細胞とモータリンを過剰発現させた MCF7細胞で行った 。 60%〜70%コンフレンシ一の細胞を冷 PBSで洗浄し、トリプシン処理した後に、細胞 密度 2 X 105 cells/mlになるよう 0.5%FBS(Sigma)を含む DMEMに再懸濁した。 Transwel 1(12 mm- pore, Costar )の内部部分に 2 X 104 cells/mlになるように細胞を撒き、製造 者の使用説明書にしたがって、インべイジヨン'アツセィを行った。化学誘引物質とし ては、ヒト血漿由来のフイブロネクチン (Sigma)を使用した。
[0102] (結果)
モータリンを過剰発現して!/、る MCF7細胞では走化性が見られたが、元の MCF7細 胞では見られな力つた。
モータリンの過剰発現は、癌細胞に転移する性質をもたらしている。つまり、モータ リンが癌の転移治療にふさわしい標的であると考えられる。
[0103] (癌細胞におけるモータリン過剰発現と増殖 ·転移の関係 その 4)
図 33で、癌細胞におけるモータリン過剰発現と増殖 ·転移の関係をさらに調べた。 レトロウイルス発現ベクターを用いて MCF7細胞にモータリンを過剰発現させ、モー タリンを定常的に過剰発現して 、る細胞の運動性をスクラッチ ·ウーンドアッセィによ つて調べた。尚、スクラッチ 'ウーンドアッセィは、癌細胞の転移についての信頼性で きる指標になる。フイブロネクチン(10マイクロ g/ml)で表面をコートされたディッシュ上 に、細胞を単層培養した。この単層培養の細胞に P-200ピペットチップで線を引き、 完全に細胞を力きとることで、外傷を形成させた。細胞残屑を除去するために細胞を PBSで数回洗浄し、再び培地を足した。引つ力き傷 (スクラッチ 'ウーンド)を作った時 間を 0とした。続く 48時間の間、細胞を増殖させ、外傷へと移動させた。外傷への細 胞の移動は、位相差顕微鏡の 10倍対物レンズによって観察し記録した。
[0104] (結果)
モータリンを過剰発現して!/、る MCF7細胞と U20S細胞は、スクラッチ ·ウーンドアツ セィにおいて、高い運動性を示した。モータリンの過剰発現は、癌細胞に転移する性 質をもたらしている。つまり、モータリンが癌の転移治療にふさわしい標的であると考 えられる。
実施例 10
[0105] (抗モータリン抗体による正常細胞と癌細胞の免疫染色パターン)
抗モータリンモノクローナル抗体(図 34)又は抗モータリンポリクローナル抗体(図 3 5)を使用して染色パターンをチェックした。
図 34は、癌細胞集団中に存在する老化細胞の検出に抗モータリンモノクローナル 抗体を使用することについての図である。正常細胞 (TIG- 1)と癌細胞 (U20S)を抗モ 一タリンモノクローナル抗体用いて免疫染色した。
図 34に示されるように、正常細胞では細胞質全体に広範に染色が見られるが、癌 細胞では核の周囲に染色が見られた。このような染色パターンの違いは、ポリクロー ナル抗体を用いたときにも見られたものである。
図 35は、老化誘導された癌細胞におけるモータリン染色パターンの変化について の図である。ウイタフエリン A (ァシュヮガンダからの粗抽出物に含まれる成分)などの ファイトケミカル、過酸化水素、又は、ァザシチジンによって、癌細胞に老化を誘導し た。細胞は薬剤処理後に固定し、抗モータリンポリクローナル抗体 (K-抗体)を用い てモータリンを免疫染色した。
老化を誘導した細胞 (老化は細胞の増殖停止と P53の誘導(図 35中のグリーン染色 部分)で確認済)では、モータリンの染色が核膜周囲での集中したパターンから、細 胞質全体に広がるパターンに変わって ヽた(図 35中の赤色染色部分)。
実施例 11
[0106] (抗モータリンモノクローナル抗体をキャリア一とし、 Qdotで細胞をライブイメージ化さ せた実験)
図 36は、抗モータリンモノクローナル抗体のライブイメージに関する図である。 Qdot (量子ドット)を結合させた抗モータリンモノクローナル抗体 (37-6)存在下で癌 細胞 (U20S)を培養した。 24時間の培養後、細胞を固定ィ匕するケースと固定ィ匕しない ケースに分けて細胞内の抗体を可視化した。また、 Qdotを結合させた抗モータリンモ ノクローナル抗体を除去し 1-2回細胞分裂させた後、固定ィ匕し Qdotを観察した。
[0107] (結果)
Qdotを結合させた抗モータリンモノクローナル抗体は細胞内に内在化し、細胞分 裂後であっても細胞は Qdotラベルされて 、た。
産業上の利用可能性
[0108] 本発明者らは、モータリンが細胞分裂の制御に関与し、腫瘍の成長と密接に関係し ていることを明らかにした。モータリンは癌治療の新たな標的として有用である。モー タリンを中和する物質を用いることにより、癌の治療のための新たな手段が提供でき る。 配列表フリーテキスト
〈210〉 1
〈223〉 抗原 P
〈210〉 2
〈223〉 抗原。
〈210〉 3
〈223〉 抗原 R
〈210〉 4
〈223〉 抗原 S
〈210〉 5
〈223〉 抗原 T
〈210〉 6
〈223〉 ヒトヒートショック 70kDa蛋白質 9B (モータリン 2XHSPA9B)
(.nuclear gene encoding mitochondrial protein; ACし ESSION NM— 004134 〈210〉 7
〈223〉 IL-lR-type 1ターゲットサイト
〈210〉 8
〈223〉 shRNA
〈210〉 9
〈223〉 IL-lR-type 1ターゲットサイト
〈210〉 10
〈223〉 shRNA

Claims

請求の範囲
[I] モータリン 2を中和する物質を有効成分として含む抗癌剤。
[2] モータリン 2を中和する物質力 モータリン 2に結合する抗体である、請求項 1の抗 癌剤。
[3] モータリン 2に結合する抗体力 全長モータリン 2タンパク質に対する抗体である、 請求項 2の抗癌剤。
[4] モータリン 2に結合する抗体力 5個以上のアミノ酸力 なるペプチドに対する抗体 である、請求項 2の抗癌剤。
[5] モータリン 2に結合する抗体が、細胞内に取り込まれてモータリン 2に結合する抗体 である、請求項 2の抗癌剤。
[6] モータリン 2を中和する物質力 モータリン 2遺伝子の転写領域、プロモーター領域 を含む、任意の部位を標的とする機能性核酸である、請求項 1に記載の抗癌剤。
[7] 機能性核酸が、 siRNA、二本鎖 RNA、または、少なくとも片方の鎖が RNAあるいは修 飾 RNAである二本鎖キメラ RNAである、請求項 6記載の抗癌剤。
[8] モータリン 2遺伝子の転写領域、プロモーター領域を含む、任意の部位を標的とす る機能性核酸である、 siRNA、二本鎖 RNA、修飾された RNA鎖を少なくとも片方の鎖 に含む siRNAまたは二本鎖 RNA。
[9] 以下のいずれかの工程を含む、被験物質の抗癌活性を評価する方法:
(a)モータリン 2タンパク質と被験物質を接触させ、接触の強度により評価する工程
(b)モータリン 2を発現させた細胞またはその細胞破砕液を、被験物質に接触させ、 接触の強度により評価する工程
(c)モータリン 2遺伝子のプロモーターの下流にレポーター遺伝子をつな!/、だ DNAを 有する細胞、および細胞破砕液を、被験物質に接触させ、レポーター遺伝子の発現 を指標として評価する工程。
[10] モータリン 2を中和する物質と医薬上許容される担体とを混合する工程を含む、抗 癌活性を有する医薬組成物の製造方法。
[II] モータリン 2を中和する物質力 モータリン 2に結合する抗体である、請求項 9の製 造方法。
[12] モータリン 2を中和する物質力 モータリン 2遺伝子の転写領域、プロモーター領域 を含む、任意の部位を標的とする機能性核酸である、請求項 9の製造方法。
[13] 請求項 9記載の方法によって、抗癌活性を有すると評価された物質と医薬上許容さ れる担体とを混合する工程を含む、抗癌活性を有する医薬組成物の製造方法。
[14] 免疫毒及びペプチド、ヌクレオチド、有機分子その他の小分子の細胞内へのキヤリ ァとしての抗モータリン 2抗体およびモータリン 2結合物質の使用。
[15] 抗モータリン 2抗体の抗原認識部位及び抗原認識部位を含むペプチドの単量体、 もしくはその単量体を化学的及び遺伝子工学的手法により二量体及び三量体を含 む多量体化した人工抗体。
[16] 抗モータリン 2抗体の抗原認識部位及び抗原認識部位を含むペプチドをィ匕学的及 び遺伝子工学的手法により他の抗体、抗体の一部、または他のタンパク質等との複 合体として提供されるキメラ人工抗体。
[17] 抗モータリン 2抗体の抗原認識部位及び抗原認識部位を含むペプチドを PEG (ポリ エチレングリコール)及びリボソームなどの細胞内への薬物導入物質、及び、放射性 物質、毒素、抗癌剤などの小分子に結合させた複合体。
[18] 以下の(a)〜(d)のいずれ力から選択される、生細胞に内在化される抗モータリン 2 抗体:
(a)全長モータリン 2タンパク質を抗原として作製されたポリクローナル抗体
(b) 5個以上のアミノ酸力もなるモータリン 2タンパク質の部分ペプチドを抗原として作 製されたポリクローナル抗体
(c)全長モータリン 2タンパク質を抗原として作製されたモノクローナル抗体、又は
(d) 5個以上のアミノ酸力もなるモータリン 2タンパク質の部分ペプチドを抗原として作 製されたモノクローナル抗体
であって、且つ、以下の(1)〜(3)の基準を満たす抗モータリン 2抗体:
(1)ウェスタン .ブロッテイング法の解析によりモータリン 2への反応性と特異性を有す ること、
(2)正常細胞は細胞質全体が染色され、癌細胞では核膜周辺が染色される免疫染 色のパターンがみられること、及び (3)細胞内へ内在化されること。
[19] モータリン 2に結合する抗体が、請求項 18に記載の抗モータリン 2抗体である、請 求項 2の抗癌剤。
[20] 請求項 18に記載の抗モータリン 2抗体を小分子のキャリアとして使用することを特 徴とする、小分子を細胞内へ移行させる方法。
[21] 請求項 18に記載の抗モータリン 2抗体の生細胞への内在化を促進する方法であつ て、 IL— lR'typelを発現抑制あるいは中和する工程を含むことを特徴とする方法。
[22] IL lR.typelを発現抑制あるいは中和する工程において、 shRNAを使用して IL lR'typelを発現抑制することを特徴とする、請求項 21に記載の方法。
[23] shRNAが以下のものである、請求項 22の方法:
(ァ) shRNAのターゲットサイトの配列:
5' -AC A AGC CUC CAG GAU UCA U- 3'
該ターゲットサイト 1)に対応する shRNAの配列:
5' -AC A AGU CUC UAG GAU UCA UGU GUG CUG UCC AUG AAU CCU GGA
GGC UUG UUU-3';又は
(ィ) shRNAのターゲットサイトの配列:
5, - GCC UCC AGG AUU CAU CAA C- 3'
該ターゲットサイト 1)に対応する shRNAの配列:
5, - GCU UUC AGG AUU CAU CAA CGU GUG CUG UCC GUU GAU GAA UCC
UGG AGG CUU-3'
[24] 請求項 18に記載の抗モータリン 2抗体及び抗癌活性を有する物質を組合わせてな る、抗癌活性を有する物質のキャリア一として抗モータリン 2抗体を使用することを特 徴とする、癌のターゲット療法用キット。
[25] さらに、アンチセンスヌクレオチド、 siRNA、 shRNA, miRNA、二本鎖 RNA、リボ ザィム、抗体、及びアンタゴ-ストからなる群力 選択される、 IL— lR'typelを発現 抑制あるいは中和する物質を組合わせてなる、請求項 24に記載のキット。
[26] 請求項 18に記載の抗モータリン 2抗体及び癌細胞をライブイメージィ匕するために可 視化せしめる非蛍光物質又は蛍光物質を組合わせてなる、癌細胞のライブイメージ 用キット。
[27] さらに、アンチセンスヌクレオチド、 siRNA、 shRNA、 miRNA、二本鎖 RNA、リボ ザィム、抗体、及びアンタゴ-ストからなる群力 選択される、 IL—lR'typelを発現 抑制あるいは中和する物質を組合わせてなる、請求項 26に記載のキット。
[28] 請求項 18に記載の抗モータリン 2抗体を含む、癌の転移治療のための薬剤。
[29] モータリン 2に特異的に結合する抗体を用いて免疫染色を行うことを特徴とする、正 常細胞と癌細胞を峻別して、癌細胞集団中にある老化細胞又は正常化細胞を検出 する、又は老化細胞又は正常化細胞集団中にある癌細胞を検出する方法。
[30] モータリン 2に特異的に結合する抗体、免疫染色に必要な試薬、及び説明書を含 む、キットであって、正常細胞と癌細胞を峻別して、癌細胞集団中にある老化細胞又 は正常化細胞を検出する、又は老化細胞又は正常化細胞集団中にある癌細胞を検 出するために使用可能なキット。
[31] 請求項 18に記載の抗モータリン 2抗体を用いて癌細胞をライブイメージィ匕すること を特徴とする、正常細胞と癌細胞を峻別して、癌細胞集団中にある老化細胞又は正 常化細胞を検出する、又は老化細胞又は正常化細胞集団中にある癌細胞を検出す る方法。
[32] 請求項 18に記載の抗モータリン 2抗体、ライブイメージィ匕に必要な試薬、及び説明 書を含む、キットであって、正常細胞と癌細胞を峻別して、癌細胞集団中にある老化 細胞又は正常化細胞を検出する、又は老化細胞又は正常化細胞集団中にある癌細 胞を検出するために使用可能なキット。
[33] 被検物質を癌細胞と接触させ、癌細胞をモータリン 2に特異的に結合する抗体を用 いて免疫染色を行い、そして、その免疫染色パターンを観察することによる、癌細胞 を老化細胞又は正常化細胞に誘導する物質のスクリーニング方法であって、当該免 疫染色パターンが老化細胞又は正常化細胞に特有のパターンである場合に披検物 質が癌細胞を老化細胞又は正常化細胞に誘導する物質であるとする、スクリーニン グ方法。
[34] モータリン 2に特異的に結合する抗体、免疫染色に必要な試薬、及び説明書を含 む、癌細胞を老化細胞又は正常化細胞に誘導する物質のスクリーニングのために使 用可能なキット。
[35] 被検物質を癌細胞と接触させ、癌細胞を請求項 18に記載の抗モータリン 2抗体を 用いてライブイメージィ匕を行い、そして、そのライブイメージパターンを観察することに よる、癌細胞を老化細胞又は正常化細胞に誘導する物質のスクリーニング方法であ つて、当該ライブイメージパターンが老化細胞又は正常化細胞に特有のパターンで ある場合に披検物質が癌細胞を老化細胞又は正常化細胞に誘導する物質であると する、スクリーニング方法。
[36] 請求項 18に記載の抗モータリン 2抗体、ライブイメージィ匕に必要な試薬、及び説明 書を含む、癌細胞を老化細胞又は正常化細胞に誘導する物質のスクリーニングのた めに使用可能なキット。
PCT/JP2005/015459 2004-08-26 2005-08-25 癌の治療における抗モータリン2抗体と機能性核酸の使用 WO2006022344A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/661,134 US7883702B2 (en) 2004-08-26 2005-08-25 Use of anti-mortalin 2 antibody and functional nucleic acid for cancer therapies

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-246891 2004-08-26
JP2004246891 2004-08-26
JP2005242063A JP2006089471A (ja) 2004-08-26 2005-08-24 癌の治療における抗モータリン2抗体と機能性核酸の使用
JP2005-242063 2005-08-24

Publications (1)

Publication Number Publication Date
WO2006022344A1 true WO2006022344A1 (ja) 2006-03-02

Family

ID=35967551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015459 WO2006022344A1 (ja) 2004-08-26 2005-08-25 癌の治療における抗モータリン2抗体と機能性核酸の使用

Country Status (3)

Country Link
US (1) US7883702B2 (ja)
JP (1) JP2006089471A (ja)
WO (1) WO2006022344A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032324A3 (en) * 2006-09-14 2008-05-15 Univ Ramot Combination therapy for tumoral disease treatment
JP2010117350A (ja) * 2008-10-17 2010-05-27 National Institute Of Advanced Industrial Science & Technology モータリン結合物質を用いた未分化細胞標識方法
WO2011071099A1 (ja) 2009-12-10 2011-06-16 独立行政法人産業技術総合研究所 抗癌性抗モータリンペプチド抗体
US20110257251A1 (en) * 2008-10-07 2011-10-20 Presidents And Fellows Of Harvard College Telomerase inhibitors and methods of use thereof
WO2012057328A1 (ja) * 2010-10-29 2012-05-03 株式会社ペルセウスプロテオミクス 高い内在化能力を有する抗cdh3抗体
US8293716B2 (en) 2005-05-26 2012-10-23 Ramot At Tel Aviv University Ltd. Method of treating cancer by modulation of mortalin
US8470793B2 (en) 2007-09-25 2013-06-25 Ramot At Tel-Aviv University Ltd. Down-regulation of mortalin by siRNA
US11427826B2 (en) 2017-08-11 2022-08-30 City of Hopw RNA aptamers against transferrin receptor (TfR)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142265B2 (ja) 2007-05-28 2013-02-13 独立行政法人産業技術総合研究所 抗モータリン抗体のパラトープ及びエピトープ
WO2008146854A1 (ja) * 2007-05-28 2008-12-04 National Institute Of Advanced Industrial Science And Technology 抗モータリン抗体のパラトープ及びエピトープ
JP5008097B2 (ja) * 2007-05-28 2012-08-22 独立行政法人産業技術総合研究所 癌細胞内へ核酸を導入するための核酸用キャリア
KR101555926B1 (ko) 2007-06-20 2015-09-25 고쿠리츠겐큐가이하츠호진 산교기쥬츠소고겐큐쇼 모르탈린 siRNA를 포함하는 암치료제
KR20130138802A (ko) * 2010-10-20 2013-12-19 옥스포드 바이오테라퓨틱스 리미티드 항체
US11105809B2 (en) 2012-10-09 2021-08-31 Ramot At Tel-Aviv University Ltd. Methods and kits for predicting prognosis of cancer using soluble mortalin in blood
EP3221350A4 (en) * 2014-11-20 2018-08-08 Ramot at Tel-Aviv University Ltd. Mortalin peptides and antibodies and uses thereof for inhibiting mortalin activity and treating a disease associated with a pathological cell
KR20170081962A (ko) * 2016-01-05 2017-07-13 한양대학교 산학협력단 켈로이드 또는 비후성 반흔 예방 또는 치료용 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627039A (en) * 1994-03-18 1997-05-06 Baylor College Of Medicine Mortalin and methods for determining complementation group assignment of cancer cells
WO2001044807A1 (fr) * 1999-12-16 2001-06-21 Chugai Seiyaku Kabushiki Kaisha Methode de selection d'un remede contre le cancer utilisant des domaines d'interaction de p53 et de la mortaline
JP2001354564A (ja) * 2000-06-14 2001-12-25 Chugai Bunshi Igaku Kenkyusho:Kk カチオン性ローダシアニン系色素誘導体を有効成分とする、mot−2蛋白質とp53蛋白質の相互作用阻害剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780052A (en) * 1995-04-24 1998-07-14 Northeastern University Compositions and methods useful for inhibiting cell death and for delivering an agent into a cell
WO2000061114A1 (fr) * 1999-04-08 2000-10-19 Mitsubishi Chemical Corporation Particules fines ciblant des cellules, et procede de production correspondant
EP1237581A1 (en) * 1999-12-17 2002-09-11 Gene Therapy Systems, Inc. Use of cationic lipids for intracellular protein delivery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627039A (en) * 1994-03-18 1997-05-06 Baylor College Of Medicine Mortalin and methods for determining complementation group assignment of cancer cells
WO2001044807A1 (fr) * 1999-12-16 2001-06-21 Chugai Seiyaku Kabushiki Kaisha Methode de selection d'un remede contre le cancer utilisant des domaines d'interaction de p53 et de la mortaline
JP2001354564A (ja) * 2000-06-14 2001-12-25 Chugai Bunshi Igaku Kenkyusho:Kk カチオン性ローダシアニン系色素誘導体を有効成分とする、mot−2蛋白質とp53蛋白質の相互作用阻害剤

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KAUL Z. ET AL: "Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates", CELL RES., vol. 13, no. 6, 2003, pages 503 - 507, XP002996885 *
MURATA K. ET AL: "RNA Kogaku kara no Ganchiryo eno Chosen", IGAKU NO AYUMI, vol. 209, no. 2, 10 April 2004 (2004-04-10), pages 119 - 120, XP002996886 *
TAKANO S. ET AL: "Elevated levels of mortalin expression in human brain tumors", EXP. CELL RES., vol. 237, no. 1, 1997, pages 38 - 45, XP002996887 *
UI-TEI K. ET AL: "Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference", NUCLEIC ACIDS RES., vol. 32, no. 3, 9 February 2004 (2004-02-09), pages 936 - 948, XP002329955 *
WADHWA R. ET AL: "Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype", J.BIOL.CHEM., vol. 268, no. 9, 1993, pages 6615 - 6621, XP002996884 *
WADHWA R. ET AL: "Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function", CANCER RES., vol. 60, no. 24, 2000, pages 6818 - 6821, XP002271905 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293716B2 (en) 2005-05-26 2012-10-23 Ramot At Tel Aviv University Ltd. Method of treating cancer by modulation of mortalin
WO2008032324A3 (en) * 2006-09-14 2008-05-15 Univ Ramot Combination therapy for tumoral disease treatment
US8470793B2 (en) 2007-09-25 2013-06-25 Ramot At Tel-Aviv University Ltd. Down-regulation of mortalin by siRNA
US20110257251A1 (en) * 2008-10-07 2011-10-20 Presidents And Fellows Of Harvard College Telomerase inhibitors and methods of use thereof
AU2009302385B2 (en) * 2008-10-07 2015-12-03 President And Fellows Of Harvard College Telomerase inhibitors and methods of use thereof
JP2010117350A (ja) * 2008-10-17 2010-05-27 National Institute Of Advanced Industrial Science & Technology モータリン結合物質を用いた未分化細胞標識方法
WO2011071099A1 (ja) 2009-12-10 2011-06-16 独立行政法人産業技術総合研究所 抗癌性抗モータリンペプチド抗体
US8586042B2 (en) 2009-12-10 2013-11-19 National Institute Of Advanced Industrial Science And Technology Hybridomas producing monoclonal anti-mortalin peptide antibodies
WO2012057328A1 (ja) * 2010-10-29 2012-05-03 株式会社ペルセウスプロテオミクス 高い内在化能力を有する抗cdh3抗体
US9328160B2 (en) 2010-10-29 2016-05-03 Perseus Proteomics Inc. Anti-CDH3 antibody having high internalization capacity
JP2016175945A (ja) * 2010-10-29 2016-10-06 株式会社ペルセウスプロテオミクス 高い内在化能力を有する抗cdh3抗体
JP6006640B2 (ja) * 2010-10-29 2016-10-12 株式会社ペルセウスプロテオミクス 高い内在化能力を有する抗cdh3抗体
US11427826B2 (en) 2017-08-11 2022-08-30 City of Hopw RNA aptamers against transferrin receptor (TfR)

Also Published As

Publication number Publication date
US20080260739A1 (en) 2008-10-23
US7883702B2 (en) 2011-02-08
JP2006089471A (ja) 2006-04-06

Similar Documents

Publication Publication Date Title
US7883702B2 (en) Use of anti-mortalin 2 antibody and functional nucleic acid for cancer therapies
US8486903B2 (en) TAZ/WWTR1 for diagnosis and treatment of cancer
DK2888283T3 (en) ANTIBODIES AND VACCINES FOR TREATING ROR1 CANCER AND INHIBITIVE METASTASE
JP2015007045A (ja) 胆管癌治療用薬学的組成物、胆管癌の成長または浸潤抑制方法、および胆管癌の治療方法
CN103562403A (zh) 识别肿瘤起始细胞的抗体和抗原及其应用
JP2018199676A (ja) 悪性腫瘍の治療薬
Riedel et al. Urothelial umbrella cells of human ureter are heterogeneous with respect to their uroplakin composition: different degrees of urothelial maturity in ureter and bladder?
US20200138915A1 (en) Use of Upstream Open Reading Frame 45aa-uORF Nucleotide Sequence of PTEN Gene and Polypeptide Coded by 45aa-uORF
CN102160895A (zh) Pitpnm3基因在制备抑制乳腺癌浸润和转移的药物中的应用
Arias-Pinilla et al. Development of novel monoclonal antibodies against CD109 overexpressed in human pancreatic cancer
US8691229B2 (en) Method of PLSCR inhibition for cancer therapy
EP2596025B1 (en) Methods for cancer management targeting co-029
JP5843170B2 (ja) グリオーマの治療方法、グリオーマの検査方法、所望の物質をグリオーマに送達させる方法、及びそれらの方法に用いられる薬剤
US20070269452A1 (en) Methods and compositions for the diagnosis and treatment of cancer
US20110027297A1 (en) Methods Involving MS4A12 and Agents Targeting MS4A12 for Therapy, Diagnosis and Testing
WO2023157776A1 (ja) PKCδとE-Syt1との相互作用阻害剤を含む新規肝癌治療薬
Zuo et al. TCP10L acts as a tumor suppressor by inhibiting cell proliferation in hepatocellular carcinoma
JP4712692B2 (ja) 癌の診断と治療において有用な新規ポリペプチド
US20050265997A1 (en) Cancer treatment method by inhibiting MAGE gene expression or function
JP2011105669A (ja) 抗腫瘍剤および抗腫瘍剤のスクリーニング方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11661134

Country of ref document: US

122 Ep: pct application non-entry in european phase