[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006021507A1 - Surface comprising a microstructure that reduces adhesion and associated production method - Google Patents

Surface comprising a microstructure that reduces adhesion and associated production method Download PDF

Info

Publication number
WO2006021507A1
WO2006021507A1 PCT/EP2005/053902 EP2005053902W WO2006021507A1 WO 2006021507 A1 WO2006021507 A1 WO 2006021507A1 EP 2005053902 W EP2005053902 W EP 2005053902W WO 2006021507 A1 WO2006021507 A1 WO 2006021507A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructure
nanostructure
pulses
produced
pulse
Prior art date
Application number
PCT/EP2005/053902
Other languages
German (de)
French (fr)
Inventor
Christian Hansen
Ursus KRÜGER
Manuela Schneider
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN2005800367999A priority Critical patent/CN101048537B/en
Priority to BRPI0514625-9A priority patent/BRPI0514625A/en
Priority to EP05787076A priority patent/EP1781841A1/en
Priority to US11/660,814 priority patent/US20080217180A1/en
Publication of WO2006021507A1 publication Critical patent/WO2006021507A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers

Definitions

  • the invention relates to a surface having a haftungsver ⁇ reducing microstructure and a method for producing such a surface elektroche ⁇ mix.
  • Adhesion-reducing surfaces of the type mentioned come z. B. as so-called lotus effect surfaces are used and are for example in DE 100 15 855 Al ⁇ written .
  • lotus effect surfaces are used and are for example in DE 100 15 855 Al ⁇ written .
  • such surfaces are characterized by a microstructure which can be obtained by a layer deposition from solutions, but also by an electrolytic deposition. This mimics an effect observed on the leaves of the lotus flower, according to which the microstructure produced, which for this purpose has elevations and depressions with a radius of 5 to 100 ⁇ m, reduces the adhesion of water and dirt particles. In this way, contamination of the corresponding surface can be counteracted.
  • z. B. lime deposits vermei ⁇ the.
  • the object of the invention is to specify a surface with an adhesion-reducing microstructure or a production method for this surface, wherein the effect of reducing the adhesion should be comparatively strongly pronounced.
  • a ge ⁇ solves in which the surface by electrochemical pulses Plating is prepared, wherein a microstructure on ⁇ overlapping nanostructure by reverse pulse plating is generated.
  • the superposition of the microstructure by a Na ⁇ carried nanostructure according to the invention characterized in that on the O- ber laketopologie with radii of curvature of heatnpro ⁇ fils is prepared in the micrometer range (microstructure) atrento ⁇ topology, whose radii of curvature preferably in the range of a few nanometers to 100 nanometers ( Nanostructure).
  • the formation of the nanostructure on the microstructure is achieved by reverse pulse plating with current pulses of a length in the millisecond range. Depending on the choice of process parameters such as pulse length and deposition density, the microstructure can be produced simultaneously or separately.
  • the nanostructure of the surface in combination with the microstructure advantageously improves the effect of reducing the adhesion of substances on the surface. As a result, the lotus effect of the surface is advantageously improved.
  • the pulse length in the method step for producing the nanostructure is less than 500 ms.
  • favorable deposition be set at the surface to be generated, so that the nanostructure generated in its dimensions ge sufficiently different from the microstructure produced.
  • the individual current pulses are advantageously in the range between 10 and 250 milliseconds in terms of their length. It has been found that the nanostructure of the surface is advantageously particularly pronounced in the case of the mentioned parameters.
  • the cathodic pulses have at least three times the length of the a nodonic pulses.
  • cathodic pulses within the meaning of He-making ⁇ those pulses are perceived, at which there is ei ⁇ ner deposition on the surface, while the view anodic pulses produce a resolution of the surface.
  • the needle-like basic elements of the nanostructure advantageously be generated with a high density on the microstructure, which favors to ER- targeting Lotus effect.
  • the reverse pulse plating the cathodic pulses are performed with a higher current density than the anodic see pulses.
  • the deposition rate of the cathodic pulses is increased in comparison to the removal rate of the anodic pulses, so that advantageously a layer ⁇ growth of the nanostructuring is generated.
  • NATURALLY The measures of a modification of the pulse duration and the variation of the current density can be combined with one another. In each case, an optimum is to be found by setting the mentioned parameters for the material to be deposited.
  • the pulse length is at least one second in an upstream process step for producing the microstructure.
  • the required time may advantageously Mikro ⁇ low electrochemically ⁇ chemical means are produced in the structure of the surface if it does not or not generation of sufficient severity in the process step for Er ⁇ arises the nanostructure.
  • the surface is additionally produced with a macrostructure which superimposes the microstructure.
  • the macrostructure can be electrochemically or by other means z. B. be made mechanically.
  • a topography of the surface of a macrostructure understood here logy whose geometric Abmes ⁇ solutions of the elementary structural components by at least ei ⁇ ne order of magnitude greater than that of the microstructure. For a wavy macrostructure, this would mean for the radius of the waves, for example, that this in corresponding
  • the macrostructure advantageously permits an additional increase in the adhesion-reducing properties of the surface.
  • the macrostructure of the surface can advantageously have additional functions, such. B. egg ⁇ ner improve the flow characteristics of the surface.
  • the surface according to the invention solves the previously mentioned problem by superimposing on the microstructure a nanostructure produced by pulse-plating. With this surface construction according to the invention, the already mentioned advantages, in particular an improvement of the adhesion-reducing properties of the surface, can be achieved.
  • this is superhydrophobic.
  • the superhydrophobic properties cause insbe ⁇ sondere poor wettability of the surface for what ⁇ ser, so forming individual droplets on the surface befindliches water, by virtue of a contact angle for O berflache of more than 140 ° easily roll off, while also possibly on the Contain surface with dirt ⁇ tear. Therefore, surfaces with superhydrophobic properties are particularly suitable for forming the surface as a lotus effect surface.
  • FIG. 1 shows the schematic structure of an embodiment of the surface according to the invention in a schematic section
  • Figure 2 shows the surface profile of a lotus effect surface as an embodiment of the Ober ⁇ surface according to the invention in section
  • FIG. 3 shows perspective views of the lotus effect surface according to FIG. 2.
  • FIG. 1 shows a body 11 with a surface whose adhesion properties are reduced.
  • the surface 12 can be described schematically by a superposition of a macrostructure 12 having a microstructure 13 and a nanostructure 14.
  • the microstructure produces a waviness of the surface.
  • the microstructure is interpreted by semi-spherical elevations on the wavy macrostructure 12.
  • the nanostructure 14 is represented in FIG. 1 by nubs which are located on the hemispherical elevations (microstructure) and in the parts of the macrostructure 12 which form the depressions of the microstructure 13 and which are located between the elevations.
  • is a relatively large contact angle ⁇ , which is defined by an angle leg 16a, the paral ⁇ lel to the surface, and an angle leg 16b, which forms a tangent to the skin of the water droplet, through the edge of the contact surface of the water droplet 15 with the Surface (or more precisely the angle leg 16a) runs. Shown in FIG. 1 is a contact angle ⁇ of more than
  • Pulse length (reverse pulses): 240 ms at 10 A / dm 2 cathodic, 40 ms at 8 A / dm 2 anodic
  • Electrolyte contained 50 g / l Cu, 20 g / l free cyanide, 5 g / l KOH
  • the surface is electrochemically generated in the following with ⁇ means of an SPM (Scanning Probe Microscope - AFM or also called A- Tomic Force Microscope) has been studied.
  • SPM Sccanning Probe Microscope - AFM or also called A- Tomic Force Microscope
  • FIG. 2 A section of the generated surface is shown in section in FIG. 2 as a measurement result of the SPM, with the profile being excessively elevated.
  • a waveform 18 is entered in FIG. 2, which illustrates the macrostructure superimposed on the surface structure.
  • the microstructure 13 can be recognized as a sequence of needle-like elevations 19 and depressions 20.
  • the nanostructure 14 can be recognized, which results from a narrow sequence of elevations and depressions, which are no longer to be resolved in the scale shown in FIG. 2 and can therefore only be seen as a thickening of the profile line of the surface profile.
  • FIG. 3a shows a perspective view of the SPM receptacle of the copper surface.
  • a square area of 100x100 microns has been selected as a section, with the Microstructure 13 determining, needle-like elevations 19 are clearly visible.
  • the resulting image reminds the viewer of a "coniferous forest” with the interstices between the "conifers” (elevations 19) forming the depressions 20.
  • the surface according to FIG. 3 a too is shown elevated in order to illustrate the elevations 19 and the depressions 20 of the microstructure 13.
  • the microstructure 13 is furthermore superimposed on a nanostructure 14.
  • the ridges 19 and depressions 20 appear more like a waviness of the surface (but not ness of Figure 2 may be confused due to the different scale with the wavy ⁇ ).
  • This wavy ⁇ are superimposed ness further increases smallest recesses 19n and 20n which rakter imagine the nanostructure of the surface cha ⁇ .
  • These, too, are pronounced in their structure of the expression of a "coniferous forest" already explained with reference to FIG. 3a, the geometrical dimensions of which are smaller by approximately two orders of magnitude, that is to say can not be recognized at the scale selected in FIG.
  • the bracket always comprises only a section of the respective structure, which contains an elevation and a depression, so that the brackets allow one another in each case within a figure a comparison of the orders of magnitude of the structures in relation to one another.
  • the measured for a drop of water was sene contact angle 152 °.
  • the superhydrophobic properties of the copper layer shown, which act a lotus effect be ⁇ is achieved by a combination of at least the micro ⁇ structure 13 and the nanostructure 14, wherein the superposition of a macro-structure 12, the observed effects improved.
  • suitable process parameters such lotus effect surfaces can be produced for different layer materials (for example, silver coatings have also been successfully tested) and for liquids with different wetting behavior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The invention relates to a surface comprising a microstructure that reduces adhesion and to a method for producing said microstructure. Microstructures of this type that reduce adhesion are known and are used, for example, to configure self-cleaning surfaces that use the Lotus effect. According to the invention, the surface is produced electrochemically by means of reverse pulse plating, the known microstructure being first produced and a nanostructure that is overlaid on the microstructure is produced at the same time or in a subsequent step. To achieve this for example, the pulse length of the current pulse that is used during the reverse pulse plating lies in the millisecond range and has a pulse length ratio greater than 1:3 (anodic:cathodic). The microstructure that has been produced, consisting of peaks (19) and troughs (20) is then overlaid with peaks (19n) and troughs (20n) of a smaller size order belonging to the nanostructure, thus permitting the Lotus effect that is achieved by the surface to be greatly improved.

Description

Beschreibungdescription
Oberfläche mit einer haftungsvermindernden Mikrostruktur und Verfahren zu deren HerstellungSurface having an adhesion reducing microstructure and method of making the same
Die Erfindung betrifft eine Oberfläche mit einer haftungsver¬ mindernden Mikrostruktur sowie ein Verfahren zum elektroche¬ mischen Herstellen einer solchen Oberfläche.The invention relates to a surface having a haftungsver ¬ reducing microstructure and a method for producing such a surface elektroche¬ mix.
Haftungsvermindernde Oberflächen der eingangs genannten Art kommen z. B. als so genannte Lotus-Effekt-Oberflächen zum Einsatz und sind beispielsweise in der DE 100 15 855 Al be¬ schrieben. Gemäß dieser Druckschrift zeichnen sich derartige Oberflächen durch eine Mikrostruktur aus, welche durch eine Schichtabscheidung aus Lösungen, jedoch auch durch eine e- lektrolytische Abscheidung gewonnen werden kann. Hierdurch wird ein an den Blättern der Lotusblume beobachteter Effekt nachgeahmt, demgemäß die erzeugte Mikrostrukturierung, welche zu diesem Zweck Erhebungen und Vertiefungen mit einem Radius von 5 bis 100 μm aufweisen muss, die Haftung von Wasser sowie Schmutzpartikeln herabsetzt. Hierdurch kann einer Verschmut¬ zung der entsprechenden Oberfläche entgegengewirkt werden. Des Weiteren lassen sich z. B. auch Kalkablagerungen vermei¬ den.Adhesion-reducing surfaces of the type mentioned come z. B. as so-called lotus effect surfaces are used and are for example in DE 100 15 855 Al ¬ written . According to this document, such surfaces are characterized by a microstructure which can be obtained by a layer deposition from solutions, but also by an electrolytic deposition. This mimics an effect observed on the leaves of the lotus flower, according to which the microstructure produced, which for this purpose has elevations and depressions with a radius of 5 to 100 μm, reduces the adhesion of water and dirt particles. In this way, contamination of the corresponding surface can be counteracted. Furthermore, z. B. lime deposits vermei¬ the.
Die Aufgabe der Erfindung besteht darin, eine Oberfläche mit einer haftungsvermindernden Mikrostruktur bzw. ein Herstel¬ lungsverfahren für diese Oberfläche anzugeben, wobei die Wir¬ kung der Haftungsverminderung vergleichsweise stark ausge- prägt sein soll.The object of the invention is to specify a surface with an adhesion-reducing microstructure or a production method for this surface, wherein the effect of reducing the adhesion should be comparatively strongly pronounced.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren ge¬ löst, bei dem die Oberfläche durch elektrochemisches Pulse Plating hergestellt wird, wobei eine die Mikrostruktur über¬ lagernde Nanostruktur durch Reverse Pulse Plating erzeugt wird. Die Überlagerung der Mikrostruktur durch eine Na¬ nostruktur erfolgt erfindungsgemäß dadurch, dass auf der O- berflächentopologie mit Krümmungsradien des Oberflächenpro¬ fils im Mikrometerbereich (Mikrostruktur) eine Oberflächento¬ pologie hergestellt wird, deren Krümmungsradien bevorzugt im Bereich von wenigen Nanometern bis 100 Nanometern liegen (Na¬ nostruktur) . Die Ausbildung der Nanostruktur auf der Mikro- struktur wird durch das Reverse Pulse Plating mit Strompulsen einer Länge im Millisekungenbereich erreicht. Dabei kann je nach Wahl der Verfahrensparameter wie Pulslänge und Abschei- destromdichte die Mikrostruktur gleichzeitig oder gesondert hergestellt werden.This object is achieved by a ge ¬ solves, in which the surface by electrochemical pulses Plating is prepared, wherein a microstructure on ¬ overlapping nanostructure by reverse pulse plating is generated. The superposition of the microstructure by a Na¬ carried nanostructure according to the invention characterized in that on the O- berflächentopologie with radii of curvature of Oberflächenpro ¬ fils is prepared in the micrometer range (microstructure) a Oberflächento¬ topology, whose radii of curvature preferably in the range of a few nanometers to 100 nanometers ( Nanostructure). The formation of the nanostructure on the microstructure is achieved by reverse pulse plating with current pulses of a length in the millisecond range. Depending on the choice of process parameters such as pulse length and deposition density, the microstructure can be produced simultaneously or separately.
Die Nanostruktur der Oberfläche verbessert im Zusammenwirken mit der Mikrostruktur vorteilhaft den Effekt der Haftungsver¬ minderung von Stoffen auf der Oberfläche. Hierdurch wird vor¬ teilhaft der Lotuseffekt der Oberfläche verbessert.The nanostructure of the surface in combination with the microstructure advantageously improves the effect of reducing the adhesion of substances on the surface. As a result, the lotus effect of the surface is advantageously improved.
Es ist zwar aus der US 5,853,897 bekannt, Schichten mit einer rauen Oberfläche galvanisch mittels Pulse Plating herzustel¬ len, jedoch sollen die gemäß diesem Dokument erzeugten Schichten lediglich optischen Anwendungen dienen, da sie in einem weiten Wellenlinienspektrum des Lichtes hervorragende Licht schluckende Eigenschaften aufweisen. Hierzu genügt be¬ reits die Ausbildung einer so genannten dendritischen Mikro¬ struktur, ohne dass dieser eine Nanostruktur überlagert wer¬ den müsste.It is known indeed from US 5,853,897, electrically len layers with a rough surface by means of pulse plating herzustel ¬, but this document produced in accordance layers only optical applications are intended, since they have excellent light absorbing properties in a wide wave line spectrum of the light. Again, just be ¬ structure already the formation of a so-called dendritic Mikro¬ without these overlaid a nanostructure wer¬ the would.
Vorteilhaft liegt die Pulslänge beim Verfahrensschritt zum Herstellen der Nanostruktur bei weniger als 500 ms. Damit können bei diesem Verfahrensschritt günstige Abscheidungspa- rameter an der zu erzeugenden Oberfläche eingestellt werden, damit sich die erzeugte Nanostruktur in ihren Abmessungen ge¬ nügend von der erzeugten Mikrostruktur unterscheidet.Advantageously, the pulse length in the method step for producing the nanostructure is less than 500 ms. Thus, in this process step, favorable deposition be set at the surface to be generated, so that the nanostructure generated in its dimensions ge sufficiently different from the microstructure produced.
Die Strompulse beim Reverse Pulse Plating werden die Strom¬ pulse durch jeweilige Umkehrung der Polarität des Abschei¬ destromes erzeugt, so dass vorteilhaft ein starkes zeitliches Gefälle bei den Ladungsverschiebungen an der Oberfläche er¬ reicht werden kann. Vorteilhaft liegen die einzelnen Strom- pulse hinsichtlich ihrer Länge im Bereich zwischen 10 und 250 Millisekunden. Es hat sich gezeigt, dass sich bei den genann¬ ten Parametern die Nanostruktur der Oberfläche vorteilhaft besonders stark ausprägt.The current pulses at the reverse pulse plating, the current pulse through respective ¬ reversing the polarity of the coating's deposition ¬ destromes generated, so that advantageously a strong temporal gradient in the charge shifts to the surface can be sufficient er¬. The individual current pulses are advantageously in the range between 10 and 250 milliseconds in terms of their length. It has been found that the nanostructure of the surface is advantageously particularly pronounced in the case of the mentioned parameters.
Es ist besonders vorteilhaft, wenn beim Reverse Pulse Plating die kathodischen Pulse mindestens die dreifache Länge der a- nodischen Pulse haben. Als kathodische Pulse im Sinne der Er¬ findung werden diejenigen Pulse aufgefasst, bei der es zu ei¬ ner Abscheidung auf der Oberfläche kommt, während die anodi- sehen Pulse eine Auflösung der Oberfläche hervorrufen. Für das angegebene Verhältnis zwischen kathodischen und anodi¬ schen Pulsen hat es sich gezeigt, dass die nadelartigen Grundelemente der Nanostruktur vorteilhaft mit einer hohen Dichte auf der Mikrostruktur erzeugt werden, was den zu er- zielenden Lotuseffekt begünstigt.It is particularly advantageous if, during reverse pulse plating, the cathodic pulses have at least three times the length of the a nodonic pulses. As cathodic pulses within the meaning of He-making ¬ those pulses are perceived, at which there is ei ¬ ner deposition on the surface, while the view anodic pulses produce a resolution of the surface. For the specified ratio between cathodic and Anodi ¬ rule pulses it has been shown that the needle-like basic elements of the nanostructure advantageously be generated with a high density on the microstructure, which favors to ER- targeting Lotus effect.
Eine andere Möglichkeit besteht vorteilhafterweise darin, dass beim Reverse Pulse Plating die kathodischen Pulse mit einer höheren Stromdichte durchgeführt werden als die anodi- sehen Pulse. Auch durch diese Maßnahme wird die Abscheiderate der kathodischen Pulse im Vergleich zur Abtragungsrate der anodischen Pulse erhöht, so dass vorteilhaft ein Schicht¬ wachstum der Nanostrukturierung erzeugt wird. Selbstverständ- lieh können die Maßnahmen einer Modifikation der Pulsdauer und der Variation der Stromdichte untereinander kombiniert werden. Dabei ist unter Einstellung der genannten Parameter für das abzuscheidende Material jeweils ein Optimum zu fin- den.Another possibility is advantageously that the reverse pulse plating the cathodic pulses are performed with a higher current density than the anodic see pulses. Also by this measure, the deposition rate of the cathodic pulses is increased in comparison to the removal rate of the anodic pulses, so that advantageously a layer ¬ growth of the nanostructuring is generated. NATURALLY The measures of a modification of the pulse duration and the variation of the current density can be combined with one another. In each case, an optimum is to be found by setting the mentioned parameters for the material to be deposited.
Gemäß einer Ausgestaltung des Verfahrens ist vorgesehen, dass die Pulslänge bei einem vorgelagerten Verfahrensschritt zum Herstellen der Mikrostruktur mindestens eine Sekunde beträgt. Mit Pulslängen im Sekundenbereich kann die geforderte Mikro¬ struktur der Oberfläche vorteilhaft zeitgünstig auf elektro¬ chemischem Wege hergestellt werden, wenn diese nicht oder nicht mit genügender Ausprägung im Verfahrensschritt zur Er¬ zeugung der Nanostruktur entsteht.According to one embodiment of the method it is provided that the pulse length is at least one second in an upstream process step for producing the microstructure. With pulse lengths in the range of seconds, the required time may advantageously Mikro¬ low electrochemically ¬ chemical means are produced in the structure of the surface if it does not or not generation of sufficient severity in the process step for Er¬ arises the nanostructure.
Gemäß einer zusätzlichen Ausgestaltung des Verfahrens wird die Oberfläche zusätzlich mit einer Makrostruktur herge¬ stellt, die die Mikrostruktur überlagert. Die Makrostruktur kann elektrochemisch oder auf anderem Wege z. B. mechanisch hergestellt werden. Als Makrostruktur wird hierbei eine Topo- logie der Oberfläche verstanden, deren geometrischen Abmes¬ sungen der elementaren Strukturbestandteile um mindestens ei¬ ne Größenordnung größer ist als die der Mikrostruktur. Bei einer welligen Makrostruktur würde dies für den Radius der Wellen zum Beispiel bedeuten, dass dieser in entsprechendemAccording to an additional embodiment of the method, the surface is additionally produced with a macrostructure which superimposes the microstructure. The macrostructure can be electrochemically or by other means z. B. be made mechanically. A topography of the surface of a macrostructure understood here logy whose geometric Abmes¬ solutions of the elementary structural components by at least ei ¬ ne order of magnitude greater than that of the microstructure. For a wavy macrostructure, this would mean for the radius of the waves, for example, that this in corresponding
Maße größer ist als die Radien der Erhebungen bzw. Vertiefun¬ gen der Mikrostruktur. Die Makrostruktur erlaubt vorteilhaft eine zusätzliche Steigerung der haftungsvermindernden Eigen¬ schaften der Oberfläche. Weiterhin kann die Makrostruktur der Oberfläche vorteilhaft zusätzliche Funktionen, wie z. B. ei¬ ner Verbesserung der Strömungseigenschaften der Oberfläche übernehmen. Die Erfindungsgemäße Oberfläche löst die bereist erwähnte Aufgabe dadurch, dass der Mikrostruktur eine durch Pulse PIa- ting erzeugte Nanostruktur überlagert ist. Mit diesem erfin¬ dungsgemäßen Oberflächenaufbau lassen sich die bereits ge- nannten Vorteile, insbesondere eine Verbesserung der haf- tungsvermindernden Eigenschaften der Oberfläche erzielen.Measures larger than the radii of the elevations or Vertiefun¬ conditions of the microstructure. The macrostructure advantageously permits an additional increase in the adhesion-reducing properties of the surface. Furthermore, the macrostructure of the surface can advantageously have additional functions, such. B. egg ¬ ner improve the flow characteristics of the surface. The surface according to the invention solves the previously mentioned problem by superimposing on the microstructure a nanostructure produced by pulse-plating. With this surface construction according to the invention, the already mentioned advantages, in particular an improvement of the adhesion-reducing properties of the surface, can be achieved.
Gemäß einer besonderen Ausgestaltung der Oberfläche ist diese superhydrophob. Dies bedeutet, dass die Haftung von Wasser oder anderen hydrophilen Substanzen besonderes stark herabge¬ setzt ist. Die superhydrophoben Eigenschaften bewirken insbe¬ sondere eine schlechte Benetzbarkeit der Oberfläche für Was¬ ser, so dass auf der Oberfläche befindliches Wasser einzelne Tropfen ausbildet, die aufgrund eines Kontaktwinkels zur O- berflache von mehr als 140° leicht abperlen und dabei evtl. ebenfalls auf der Oberfläche befindliche Schmutzpartikel mit¬ reißen. Daher eignen sich Oberflächen mit superhydrophoben Eigenschaften besonderes gut zur Ausbildung der Oberfläche als Lotus-Effekt-Oberfläche.According to a particular embodiment of the surface, this is superhydrophobic. This means that the adhesion of water or other hydrophilic substances is particularly strong herabge¬ sets. The superhydrophobic properties cause insbe¬ sondere poor wettability of the surface for what ¬ ser, so forming individual droplets on the surface befindliches water, by virtue of a contact angle for O berflache of more than 140 ° easily roll off, while also possibly on the Contain surface with dirt ¬ tear. Therefore, surfaces with superhydrophobic properties are particularly suitable for forming the surface as a lotus effect surface.
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. In den einzelnen Figuren sind gleiche oder sich entsprechende Zeichnungselemente mit je¬ weils den gleichen Bezugszeichen versehen, wobei diese nur insoweit mehrfach erläutert werden, wie sich Unterschiede zwischen den Figuren ergeben. Es zeigenFurther details of the invention are described below with reference to the drawing. In the individual figures, identical or corresponding drawing elements are each provided with ¬ weils the same reference numerals, and these will only be explained more than once, such as differences arise between the figures. Show it
Figur 1 den schematischen Aufbau eines Ausführungsbeispiels der erfindungsgemäßen Oberfläche im schematischen Schnitt, Figur 2 das Oberflächenprofil einer Lotus-Effekt-Oberfläche als Ausführungsbeispiel der erfindungsgemäßen Ober¬ fläche im Schnitt und Figur 3 perspektivische Darstellungen der Lotus-Effekt- Oberfläche gemäß Figur 2.1 shows the schematic structure of an embodiment of the surface according to the invention in a schematic section, Figure 2 shows the surface profile of a lotus effect surface as an embodiment of the Ober¬ surface according to the invention in section and FIG. 3 shows perspective views of the lotus effect surface according to FIG. 2.
In Figur 1 ist ein Körper 11 mit einer Oberfläche darge- stellt, deren Haftungseigenschaften vermindert ist. Die Ober¬ fläche 12 lässt sich schematisch beschreiben durch eine Über¬ lagerung einer Makrostruktur 12 mit einer Mikrostruktur 13 und einer Nanostruktur 14. Die Mikrostruktur erzeugt eine Welligkeit der Oberfläche. Die Mikrostruktur ist durch halb- kugelförmige Erhebungen auf der welligen Makrostruktur 12 an¬ gedeutet. Die Nanostruktur 14 ist in Figur 1 durch Noppen dargestellt, welche sich auf den halbkugelförmigen Erhebungen (Mikrostruktur) sowie in den zwischen den Erhebungen befind¬ lichen Teilen der Makrostruktur 12, die die Vertiefungen der Mikrostruktur 13 bilden, befinden.FIG. 1 shows a body 11 with a surface whose adhesion properties are reduced. The surface 12 can be described schematically by a superposition of a macrostructure 12 having a microstructure 13 and a nanostructure 14. The microstructure produces a waviness of the surface. The microstructure is interpreted by semi-spherical elevations on the wavy macrostructure 12. The nanostructure 14 is represented in FIG. 1 by nubs which are located on the hemispherical elevations (microstructure) and in the parts of the macrostructure 12 which form the depressions of the microstructure 13 and which are located between the elevations.
Die haftungsvermindernden Eigenschaften der durch die Überla¬ gerung der Makrostruktur 12, der Mikrostruktur 13 und der Na¬ nostruktur 14 gebildeten Oberfläche werden anhand eines Was- sertropfens 15 deutlich, der auf der Oberfläche eine Wasser¬ perle bildet. Durch die geringe Benetzbarkeit der Oberfläche einerseits und die Oberflächenspannung des Wassertropfens an¬ dererseits bildet sich zwischen dem Wassertropfen 15 und derThe adhesion-properties by the Überla¬ delay of the macrostructure 12, the microstructure 13 and the nanostructure 14 Na¬ formed surface will be apparent from a water sertropfens 15 forming on the surface of a water ¬ pearl. Due to the low wettability of the surface on the one hand and the surface tension of the water droplet at ¬ other hand is formed between the water drop 15 and the
Oberfläche ein verhältnismäßig großer Kontaktwinkel γ aus, der definiert ist durch einen Winkelschenkel 16a, der paral¬ lel zur Oberfläche verläuft, und einen Winkelschenkel 16b, der eine Tangente an der Haut des Wassertropfens bildet, die durch den Rand der Kontaktfläche des Wassertropfens 15 mit der Oberfläche (bzw. genauer dem Winkelschenkel 16a) läuft. In Figur 1 dargestellt ist ein Kontaktwinkel γ von mehr alsSurface is a relatively large contact angle γ, which is defined by an angle leg 16a, the paral ¬ lel to the surface, and an angle leg 16b, which forms a tangent to the skin of the water droplet, through the edge of the contact surface of the water droplet 15 with the Surface (or more precisely the angle leg 16a) runs. Shown in FIG. 1 is a contact angle γ of more than
140°, so dass es sich bei der schematisch dargestellten Ober¬ fläche um eine superhydrophobe Oberfläche handelt . Im Rahmen eines Versuches ist mittels Reverse Pulse Platings eine Lotus-Effekt-Oberfläche durch Abscheidung von Kupfer auf einer durch Elektropolieren geglätteten Oberfläche erzeugt worden. Hierbei wurden folgende Verfahrensparameter gewählt.140 °, so that the surface shown schematically is a superhydrophobic surface. As part of an experiment, a lotus effect surface has been produced by means of reverse pulse platings by deposition of copper on a surface polished by electropolishing. The following process parameters were chosen.
Erzeugung der Nanostruktur in einem Verfahrensschritt: Pulslänge (Reverse Pulse) : 240 ms bei 10 A/dm2 kathodisch, 40 ms bei 8 A/dm2 anodischGeneration of the nanostructure in one process step: Pulse length (reverse pulses): 240 ms at 10 A / dm 2 cathodic, 40 ms at 8 A / dm 2 anodic
Elektrolyt enthielt 50 g/l Cu, 20 g/l freies Cyanid, 5 g/l KOHElectrolyte contained 50 g / l Cu, 20 g / l free cyanide, 5 g / l KOH
Die elektrochemisch erzeugte Oberfläche ist im Folgenden mit¬ tels eines SPM (Scanning Probe Microscope - auch AFM oder A- tomic Force Microscope genannt) untersucht worden. Mit einem SPM lassen sich Oberflächenstrukturen bis in den Nanometerbe- reich hin bestimmen und darstellen. Ein Ausschnitt der er¬ zeugten Oberfläche ist in Figur 2 als Messergebnis des SPM im Schnitt dargestellt, wobei das Profil überhöht ist. Im Bezug auf eine Nulllinie 17 ist ein Wellenverlauf 18 in Figur 2 eingetragen, der die Makrostruktur verdeutlicht, die der O- berflächenstruktur überlagert ist. Die Mikrostruktur 13 ist infolge der Überhöhung als eine Abfolge nadelartiger Erhöhun¬ gen 19 und Vertiefungen 20 zu erkennen. Weiterhin kann in be¬ stimmten Bereichen die Nanostruktur 14 erkannt werden, die sich aus einer engen Abfolge von Erhebungen und Vertiefungen ergibt, die im gemäß Figur 2 dargestellten Maßstab nicht mehr aufzulösen sind und daher nur als Verdickung der Profillinie des Oberflächenprofils zu erkennen sind.The surface is electrochemically generated in the following with ¬ means of an SPM (Scanning Probe Microscope - AFM or also called A- Tomic Force Microscope) has been studied. With an SPM, surface structures down to the nanometer range can be determined and displayed. A section of the generated surface is shown in section in FIG. 2 as a measurement result of the SPM, with the profile being excessively elevated. With reference to a zero line 17, a waveform 18 is entered in FIG. 2, which illustrates the macrostructure superimposed on the surface structure. As a result of the elevation, the microstructure 13 can be recognized as a sequence of needle-like elevations 19 and depressions 20. Furthermore, in certain areas, the nanostructure 14 can be recognized, which results from a narrow sequence of elevations and depressions, which are no longer to be resolved in the scale shown in FIG. 2 and can therefore only be seen as a thickening of the profile line of the surface profile.
Nähere Details lassen sich der Figur 3a entnehmen, die eine perspektivische Darstellung der SPM Aufnahme der Kupferober¬ fläche darstellt. Es ist ein quadratisches Gebiet von 100x100 μm als Ausschnitt ausgewählt worden, wobei die die Mikrostruktur 13 bestimmenden, nadelartigen Erhöhungen 19 deutlich zu erkennen sind. Das sich ergebende Bild erinnert den Betrachter an einen „Nadelwald", wobei die Zwischenräume zwischen den „Nadelbäumen" (Erhöhungen 19) die Vertiefungen 20 bilden. Auch die Oberfläche gemäß Figur 3a ist überhöht dargestellt, um die Erhöhungen 19 und die Vertiefungen 20 der Mikrostruktur 13 zu verdeutlichen.Further details can be taken from FIG. 3a, which shows a perspective view of the SPM receptacle of the copper surface. There is a square area of 100x100 microns has been selected as a section, with the Microstructure 13 determining, needle-like elevations 19 are clearly visible. The resulting image reminds the viewer of a "coniferous forest" with the interstices between the "conifers" (elevations 19) forming the depressions 20. The surface according to FIG. 3 a too is shown elevated in order to illustrate the elevations 19 and the depressions 20 of the microstructure 13.
Wie aus der perspektivischen Ansicht der Oberfläche gemäß 3b, die eine Ausschnittsvergrößerung der Darstellung gemäß Figur 3a darstellt, hervorgeht, ist der Mikrostruktur 13 weiterhin eine Nanostruktur 14 überlagert. In der weniger überhöhten Darstellung gemäß Figur 3b erscheinen die Erhöhungen 19 und Vertiefungen 20 eher wie eine Welligkeit der Oberfläche (die jedoch aufgrund des anderen Maßstabes nicht mit der Wellig¬ keit gemäß Figur 2 verwechselt werden darf) . Dieser Wellig¬ keit überlagert sind weiterhin kleinste Erhöhungen 19n und Vertiefungen 20n, welche die Nanostruktur der Oberfläche cha¬ rakterisieren. Auch diese erinnern in ihrem Aufbau der be- reits zu Figur 3a erläuterten Ausprägung eines „Nadelwaldes" wobei deren geometrische Abmessungen um ungefähr zwei Größen¬ ordnungen geringer ausfallen, also bei dem in Figur 3a ge¬ wählten Maßstab gar nicht zu erkennen ist.As can be seen from the perspective view of the surface according to FIG. 3 b, which shows a detail enlargement of the illustration according to FIG. 3 a, the microstructure 13 is furthermore superimposed on a nanostructure 14. In less excessive representation according to FIG 3b, the ridges 19 and depressions 20 appear more like a waviness of the surface (but not ness of Figure 2 may be confused due to the different scale with the wavy ¬). This wavy ¬ are superimposed ness further increases smallest recesses 19n and 20n which rakterisieren the nanostructure of the surface cha¬. These, too, are reminiscent in their structure of the expression of a "coniferous forest" already explained with reference to FIG. 3a, the geometrical dimensions of which are smaller by approximately two orders of magnitude, that is to say can not be recognized at the scale selected in FIG.
Um die Größenverhältnisse zu verdeutlichen, sind in den Figu¬ ren 2 und 3 die Makrostruktur 12, die Mikrostruktur 13 und die Nanostruktur 14 jeweils mit einer Klammer gekennzeichnet. Die Klammer umfasst jeweils immer nur einen Ausschnitt der jeweiligen Struktur, der eine Erhebung und eine Vertiefung enthält, so dass die Klammern untereinander jeweils innerhalb einer Figur einen Vergleich der Größenordnungen der Struktu¬ ren im Verhältnis zueinander zulassen. Bei dem dargestellten Ausführungsbeispiel betrug der für einen Wassertropfen gemes- sene Kontaktwinkel 152°. Die superhydrophoben Eigenschaften der dargestellten Kupferschicht, die einen Lotus-Effekt be¬ wirken, wird durch ein Zusammenspiel zumindest der Mikro¬ struktur 13 und der Nanostruktur 14 erreicht, wobei die Über- lagerung einer Makrostruktur 12 die beobachteten Effekte noch verbessert. Durch Auswahl geeigneter Prozessparameter können derartige Lotus-Effekt-Oberflächen für unterschiedliche Schichtmaterialien (erprobt wurden beispielsweise auch Sil¬ berschichten erfolgreich) und für Flüssigkeiten mit unter- schiedlichen Benetzungsverhalten erzeugt werden. To illustrate the size relationships are shown in Figu ¬ ren each characterized by a clamp 2 and 3, the macrostructure 12, the microstructure 13 and the nanostructure fourteenth The bracket always comprises only a section of the respective structure, which contains an elevation and a depression, so that the brackets allow one another in each case within a figure a comparison of the orders of magnitude of the structures in relation to one another. In the illustrated embodiment, the measured for a drop of water was sene contact angle 152 °. The superhydrophobic properties of the copper layer shown, which act a lotus effect be ¬ is achieved by a combination of at least the micro ¬ structure 13 and the nanostructure 14, wherein the superposition of a macro-structure 12, the observed effects improved. By selecting suitable process parameters, such lotus effect surfaces can be produced for different layer materials (for example, silver coatings have also been successfully tested) and for liquids with different wetting behavior.

Claims

Patentansprüche claims
1. Verfahren zum elektrochemischen Herstellen einer Oberflä¬ che mit einer haftungsvermindernden Mikrostruktur (13) dadurch gekennzeichnet, dass die Oberfläche durch elektrochemische Pulse Plating her¬ gestellt wird, wobei eine die Mikrostruktur (13) überlagernde Nanostruktur (14) durch Reverse Pulse Plating erzeugt wird.1. A method for the electrochemical production of a Oberflä¬ surface with a adhesion-reducing microstructure (13) characterized in that the surface is made by electrochemical pulses plating ¬ , wherein a microstructure (13) overlapping nanostructure (14) is generated by reverse pulse plating ,
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Pulslänge beim Verfahrensschritt zum Herstellen der Nanostruktur bei weniger als 500 ms liegt.2. The method according to claim 1, characterized in that the pulse length in the method step for producing the nanostructure is less than 500 ms.
3. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass beim Reverse Pulse Plating die kathodischen Pulse min¬ destens die dreifache Dauer der anodischen Pulse haben.3. The method according to any one of the preceding claims, characterized in that in the reverse pulse plating, the cathodic pulses have at least three times the duration of the anodic pulses.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass beim Reverse Pulse Plating die kathodischen Pulse mit einer höheren Stromdichte durchgeführt werden, als die anodi¬ schen Pulse.4. The method according to any one of the preceding claims, characterized in that the reverse pulse plating, the cathodic pulses are carried out with a higher current density, as the anodic ¬ rule pulses.
5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Pulslänge bei einem vorgelagerten Verfahrenschritt zum Herstellen der Mikrostruktur mindestens eine Sekunde be- trägt.5. The method according to any one of the preceding claims, characterized in that the pulse length at an upstream process step for producing the microstructure is at least one second.
6. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Oberfläche zusätzlich mit einer Makrostuktur (12) hergestellt wird, die die Mikrostruktur (13) überlagert.6. Method according to one of the preceding claims, characterized in that in that the surface is additionally produced with a macrostructure (12) which superimposes the microstructure (13).
7. Oberfläche mit einer haftungsvermindernden Mikrostruktur (13), dadurch gekennzeichnet, dass der Mikrostruktur (13) eine durch Pulse Plating erzeugteSurface with an adhesion-reducing microstructure (13), characterized in that the microstructure (13) generates a pulse-plating
Nanostruktur (14) überlagert ist.Nanostructure (14) is superimposed.
8. Oberfläche nach Anspruch 7, dadurch gekennzeichnet, dass die Oberfläche superhydrophob ist.8. Surface according to claim 7, characterized in that the surface is superhydrophobic.
9. Oberfläche nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass der Mikrostruktur (13) und der Nanostruktur (14) eine Makrostruktur (12) überlagert ist. 9. Surface according to one of claims 7 or 8, characterized in that the microstructure (13) and the nanostructure (14) is superimposed on a macrostructure (12).
PCT/EP2005/053902 2004-08-26 2005-08-08 Surface comprising a microstructure that reduces adhesion and associated production method WO2006021507A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800367999A CN101048537B (en) 2004-08-26 2005-08-08 Surface with an adhesion-reducing microstructure and method for its preparation
BRPI0514625-9A BRPI0514625A (en) 2004-08-26 2005-08-08 surface with an adhesion-reducing microstructure and process for its production
EP05787076A EP1781841A1 (en) 2004-08-26 2005-08-08 Surface comprising a microstructure that reduces adhesion and associated production method
US11/660,814 US20080217180A1 (en) 2004-08-26 2005-08-08 Surface with an Anti-Adhesion Microstructure and Method for Producing Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004041813.6 2004-08-26
DE102004041813A DE102004041813A1 (en) 2004-08-26 2004-08-26 Surface having an adhesion reducing microstructure and method of making the same

Publications (1)

Publication Number Publication Date
WO2006021507A1 true WO2006021507A1 (en) 2006-03-02

Family

ID=35445971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/053902 WO2006021507A1 (en) 2004-08-26 2005-08-08 Surface comprising a microstructure that reduces adhesion and associated production method

Country Status (6)

Country Link
US (1) US20080217180A1 (en)
EP (1) EP1781841A1 (en)
CN (1) CN101048537B (en)
BR (1) BRPI0514625A (en)
DE (1) DE102004041813A1 (en)
WO (1) WO2006021507A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113097A1 (en) 2014-09-11 2016-03-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method of reducing soil adhesion to a substrate

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005420B2 (en) * 2007-12-20 2015-04-14 Integran Technologies Inc. Variable property electrodepositing of metallic structures
US20100112286A1 (en) * 2008-11-03 2010-05-06 Bahadur Vaibhav A Superhydrophobic surfaces
US8545994B2 (en) * 2009-06-02 2013-10-01 Integran Technologies Inc. Electrodeposited metallic materials comprising cobalt
US8987632B2 (en) * 2009-10-09 2015-03-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Modification of surface energy via direct laser ablative surface patterning
CA2796965C (en) 2010-04-28 2019-04-16 Kimberly-Clark Worldwide, Inc. Method for increasing permeability of an epithelial barrier
US9526883B2 (en) * 2010-04-28 2016-12-27 Kimberly-Clark Worldwide, Inc. Composite microneedle array including nanostructures thereon
KR101794376B1 (en) 2010-04-28 2017-11-06 킴벌리-클라크 월드와이드, 인크. MEDICAL DEVICES FOR DELIVERY OF siRNA
ES2636673T3 (en) 2010-04-28 2017-10-06 Kimberly-Clark Worldwide, Inc. Device for the administration of rheumatoid arthritis medications
US8486319B2 (en) 2010-05-24 2013-07-16 Integran Technologies Inc. Articles with super-hydrophobic and/or self-cleaning surfaces and method of making same
US9303322B2 (en) * 2010-05-24 2016-04-05 Integran Technologies Inc. Metallic articles with hydrophobic surfaces
US20120143228A1 (en) 2010-08-30 2012-06-07 Agency For Science Technology And Research Adhesive structure with stiff protrusions on adhesive surface
US9492952B2 (en) 2010-08-30 2016-11-15 Endo-Surgery, Inc. Super-hydrophilic structures
US9550053B2 (en) 2011-10-27 2017-01-24 Kimberly-Clark Worldwide, Inc. Transdermal delivery of high viscosity bioactive agents
JP6535464B2 (en) 2011-10-27 2019-06-26 ソレント・セラピューティクス・インコーポレイテッド Implantable device for delivery of bioactive agents
US20170246439A9 (en) 2011-10-27 2017-08-31 Kimberly-Clark Worldwide, Inc. Increased Bioavailability of Transdermally Delivered Agents
RU2635453C2 (en) 2011-12-29 2017-11-13 Этикон, Инк. Adhesive structure with tissue puncturing protrusions on surface
US8969648B2 (en) 2012-04-06 2015-03-03 Ethicon, Inc. Blood clotting substrate and medical device
US8926881B2 (en) 2012-04-06 2015-01-06 DePuy Synthes Products, LLC Super-hydrophobic hierarchical structures, method of forming them and medical devices incorporating them
US9278374B2 (en) 2012-06-08 2016-03-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Modified surface having low adhesion properties to mitigate insect residue adhesion
DE102012112550A1 (en) 2012-12-18 2014-06-18 Lpkf Laser & Electronics Ag Method for metallizing a workpiece and a layer structure of a workpiece and a metal layer
CN104321034B (en) * 2013-01-11 2018-01-30 Bvw控股公司 Implantable super hydrophobic surface
DE102014006739B3 (en) * 2014-05-12 2015-06-25 Albert-Ludwigs-Universität Freiburg Process for coating surfaces with nanostructures, component produced by the process and use of the component
CN106591896A (en) * 2016-12-06 2017-04-26 南京理工大学 Method for preparing super-hydrophobic copper surface of plant leaf structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021294A2 (en) * 1999-09-24 2001-03-29 Semitool, Inc. Pattern dependent surface profile evolution of electrochemically deposited metal
US20020038764A1 (en) * 1999-10-15 2002-04-04 Taylor E. Jennings Sequential electrodeposition of metals using modulated electric fields for manufacture of circuit boards having features of different sizes
DE10064520A1 (en) * 2000-12-22 2002-07-04 Daimler Chrysler Ag Method for producing structured surface with self-cleaning effect on vehicles, comprises producing micro- or nano-structure on carrier by anodic oxidation and transferring this structure to the surface
US20030075450A1 (en) * 2001-10-15 2003-04-24 Taylor E. Jennings Electrodeposition of metals in high-aspect ratio cavities using modulated reverse electric fields
WO2004001102A1 (en) * 2002-06-25 2003-12-31 Integran Technologies Inc. Process for in-situ electroforming a structural layer of metallic material to an outside wall of a metal tube

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326454A (en) * 1987-08-26 1994-07-05 Martin Marietta Corporation Method of forming electrodeposited anti-reflective surface coatings
US5185073A (en) * 1988-06-21 1993-02-09 International Business Machines Corporation Method of fabricating nendritic materials
US6071398A (en) * 1997-10-06 2000-06-06 Learonal, Inc. Programmed pulse electroplating process
US6080504A (en) * 1998-11-02 2000-06-27 Faraday Technology, Inc. Electrodeposition of catalytic metals using pulsed electric fields
DE10015855A1 (en) * 2000-03-30 2001-10-11 Basf Ag Application of the lotus effect in process engineering
US6478943B1 (en) * 2000-06-01 2002-11-12 Roll Surface Technologies, Inc. Method of manufacture of electrochemically textured surface having controlled peak characteristics
US20040011432A1 (en) * 2002-07-17 2004-01-22 Podlaha Elizabeth J. Metal alloy electrodeposited microstructures
CN1182297C (en) * 2002-12-10 2004-12-29 华中师范大学 Superhydrophobic, self-cleaning nanostructured surface paper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021294A2 (en) * 1999-09-24 2001-03-29 Semitool, Inc. Pattern dependent surface profile evolution of electrochemically deposited metal
US20020038764A1 (en) * 1999-10-15 2002-04-04 Taylor E. Jennings Sequential electrodeposition of metals using modulated electric fields for manufacture of circuit boards having features of different sizes
DE10064520A1 (en) * 2000-12-22 2002-07-04 Daimler Chrysler Ag Method for producing structured surface with self-cleaning effect on vehicles, comprises producing micro- or nano-structure on carrier by anodic oxidation and transferring this structure to the surface
US20030075450A1 (en) * 2001-10-15 2003-04-24 Taylor E. Jennings Electrodeposition of metals in high-aspect ratio cavities using modulated reverse electric fields
WO2004001102A1 (en) * 2002-06-25 2003-12-31 Integran Technologies Inc. Process for in-situ electroforming a structural layer of metallic material to an outside wall of a metal tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113097A1 (en) 2014-09-11 2016-03-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method of reducing soil adhesion to a substrate
US10557196B2 (en) 2014-09-11 2020-02-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for reducing the adhesion of dirt to a substrate

Also Published As

Publication number Publication date
DE102004041813A1 (en) 2006-03-02
US20080217180A1 (en) 2008-09-11
CN101048537A (en) 2007-10-03
CN101048537B (en) 2010-06-16
BRPI0514625A (en) 2008-06-17
EP1781841A1 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
WO2006021507A1 (en) Surface comprising a microstructure that reduces adhesion and associated production method
EP1843864B1 (en) Component with a coating for reducing the wettability of the surfaces and method for production thereof
DE10256097A1 (en) Plastic powder for laser sintering
EP4182099B1 (en) Skin pass rolled sheet steel, skin pass roll and method for producing skin pass rolled sheet steel
EP0565070A1 (en) Electroplating process
DE1771323A1 (en) Process for coating metal surfaces with a fluorine-containing polymer
EP2026675A1 (en) Touch fastener
DE102011102986A1 (en) Interconnected diverse materials and processes
WO2021052812A1 (en) Sheet steel having a deterministic surface structure
EP4041467B1 (en) Sheet steel having a deterministic surface structure and method for manufacturing such steel sheet
EP2254709B1 (en) Non-wettable surfaces
EP3925713A1 (en) Skin pass rolled and coated steel sheet and method for producing the same
CH690273A5 (en) Method for galvanic deposition of a surface coating.
DE10344723B4 (en) Method and device for producing a workpiece having at least one bearing eye
DE3336374C2 (en) Method of making the surface of an ink transfer roller
WO2006082179A1 (en) Surface with a wettability-reducing microstructure and method for the production thereof
WO2006082218A1 (en) Surface comprising a microstructure that reduces wettability and method for the production thereof
DE102016001774A1 (en) Process for thermal coating and component
EP1714693A1 (en) Metal membrane
DE102012204748A1 (en) Wiping rubber for windscreen wiper of vehicle, has mounting portion and wiping lip portion comprising cross-section area that is changed along longitudinal direction of rubber, which is formed from liquid silicone in red- and blue colors
DE3717882A1 (en) METHOD FOR THE STRUCTUR-FREE APPLICATION OF DISPERSIONS ON FLEXIBLE CARRIER MATERIALS
DE102016201951A1 (en) Hybrid component and method for producing a hybrid component
EP3140438B1 (en) Zinc-plated workpiece with improved adhesion for cover layers
DE2247956C3 (en) Workpiece with galvanically applied nickel coating and bath for its deposition
DE102023126748A1 (en) Method for joining two joining partners and workpiece composite produced by the method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2005787076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005787076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11660814

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 694/KOLNP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580036799.9

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005787076

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0514625

Country of ref document: BR