[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006016457A1 - 通信制御方法、無線通信システム、基地局及び移動局 - Google Patents

通信制御方法、無線通信システム、基地局及び移動局 Download PDF

Info

Publication number
WO2006016457A1
WO2006016457A1 PCT/JP2005/012563 JP2005012563W WO2006016457A1 WO 2006016457 A1 WO2006016457 A1 WO 2006016457A1 JP 2005012563 W JP2005012563 W JP 2005012563W WO 2006016457 A1 WO2006016457 A1 WO 2006016457A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
transmission
base station
data
retransmission
Prior art date
Application number
PCT/JP2005/012563
Other languages
English (en)
French (fr)
Inventor
Nahoko Kuroda
Jinsock Lee
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to CN2005800344639A priority Critical patent/CN101040557B/zh
Priority to JP2006531338A priority patent/JP4677988B2/ja
Priority to EP05757896A priority patent/EP1784036B1/en
Priority to US11/659,927 priority patent/US20080081651A1/en
Publication of WO2006016457A1 publication Critical patent/WO2006016457A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel

Definitions

  • the present invention relates to a base station and a mobile station as well as a control signal transmission method in a radio communication system such as a cellular system, and in particular, retransmission of packet transmission on the uplink, ie, a line from the mobile station to the base station.
  • a radio communication system such as a cellular system
  • ARQ Automatic Repeat reQuest
  • Automatic retransmission control is one of the widely used data transmission methods in wired communication systems and wireless communication systems, and if the data transmitted by the transmitting side is detected by the receiving side as an error, the data can be received correctly.
  • the receiving side notifies the transmitting side of ACK (Acknowledgement) as a delivery confirmation signal indicating that it has been correctly received. If the receiving side can not receive the data correctly, the receiving side notifies the transmitting side of a NACK (Non- Acknowledgement) as a transmission confirmation signal indicating that the data can not be received correctly, that is, an incorrect reception.
  • ACK Acknowledgement
  • NACK Non- Acknowledgement
  • the transmitter When the transmitter receives NACK, it retransmits the same data at a predetermined timing.
  • the receiving side also performs error detection on the retransmitted data in the same manner, and sends ACK or NACK to the transmitting side.
  • the above retransmission control is repeated until the receiving side receives power correctly or a predefined condition is reached.
  • predetermined conditions for example, the maximum number of retransmissions and the maximum retransmission time are used. As a result, it is possible to reduce the data packet loss rate due to some reason in the communication path, for example, a collision of packets or an increase in propagation loss in the wireless transmission path.
  • a base station (BTS) is disposed in a predetermined service area, and each base station communicates with a plurality of mobile stations (MSs) in a cell in its charge. Is set.
  • a base station controller (RNC: Radio Network Controller) is often provided which connects to a plurality of base stations and controls each base station and each mobile station subordinate to the base station. Effective use of radio resources for such radio communication systems In order to be able to do this, there is a system in which a base station which sets up a line with a plurality of mobile stations performs scheduling of uplink line data transmission of the mobile station.
  • a WCDMA (Wideband Code Division Multiple Access) system has been studied as an example of a wireless communication system in which ARQ is provided and a base station schedules uplink data transmission of a mobile station.
  • EUDCH Extra Channel
  • EUDC H 3GPP TR25 896 v6 0. 0 (2004-03) 3 rd Ge neration Partnersnip Project;.. Cited Feasibility Study for Enhanced Uplink for UTRA FDD (Release 6); Technical Specification Group Radio Access Network. The following describes EUDCH.
  • the desired wave power in the receiving unit is controlled to be equal to or higher than a predetermined quality threshold with respect to noise and interference power so that the desired signal can be received correctly.
  • noise rise at the base station is used as one of the indicators indicating reception quality.
  • the noise is the ratio of the total received power to the noise power.
  • the base station measures the noise rise at a predetermined timing and reports the measured noise rise to the base station controller (RNC).
  • the RNC restricts the addition of a new call so that the noise rise is less than a predetermined quality threshold, or restricts the transport format combination (TFC), which is a combination of transmission formats permitted to the mobile station. Therefore, it manages that wireless communication at each mobile station can be performed normally.
  • TFC transport format combination
  • TFC is a combination of parameters that defines the transmission interval of each physical channel and the amount of information bits within the transmission interval, and the TFC selection also determines the uplink transmission rate.
  • the RNC notifies each mobile station of a plurality of T FCs as a TFC set (TFCS).
  • TFCS TFC set
  • the mobile station selects the TFC to be used for transmission, from among the TFCs included in the TFCS, according to the power conditions at the time of transmission and the amount of data in the buffer.
  • the required power is increased, which results in an increase in base station noise rise. Therefore, when the noise rise at the base station becomes higher than a predetermined quality threshold, it is possible to reduce the noise rise by prohibiting the mobile station from using the high transmission rate TFC.
  • the control load is high.
  • the control delay is greater than the control delay of the base station.
  • the noise rise changes in bursts as the uplink transmission rate changes and transmission starts / stops. It is difficult for the RNC to control each mobile station's TFC at high speed in response to these bursty noise rise variations. Therefore, in order to ensure that the noise rise always falls below the predetermined quality threshold, the target value is set so that the average value of the noise rise is sufficiently smaller than the predetermined quality threshold to prepare for rapid noise rise increase. Therefore, it is necessary to increase the noise rise margin.
  • the larger the noise rise margin the lower the utilization efficiency of uplink resources, and the lower the uplink capacity.
  • the base station controls the TFCS of each mobile station. That is, the base station controls the maximum TFC or maximum transmission rate permitted to the mobile station according to the noise rise fluctuation.
  • the maximum TFC is the TFC for which the required power is the largest.
  • the base station performs scheduling in order to efficiently or fairly allocate limited uplink capacity to a plurality of mobile stations.
  • the EUDCH is roughly divided into two types of scheduling: one is transmission rate scheduling, which specifies the maximum transmission rate to allow transmission or the maximum TFC to the mobile station, and the other is transmission.
  • Transmission rate scheduling is the time to specify the permitted transmission time and maximum transmission rate or maximum TFC for the mobile station.
  • HARQ Hybrid Automatic Repeat Control
  • the base station transmits ACK or NACK according to the reception result of the data block, and the mobile station discards the corresponding data block upon receiving the ACK, and holds the corresponding data block upon receiving the NACK. Retransmit at the timing of.
  • the base station combines the data block in the middle of reception with the retransmission data block and performs decoding. By combining data blocks in this way, it is possible to increase the energy per bit and improve the probability of correct decoding.
  • FIG. 1 and FIG. 2 show HARQ processes or transmission processes in the mobile station and the base station, respectively.
  • the HARQ process is one HARQ control unit, and the base station returns one ACK or NACK to one HARQ process. It is assumed that mobile stations 1 to N exist corresponding to the base station.
  • Each mobile station can have multiple HARQ processes, as shown in FIG. 1, and these HARQ processes are distinguished by the HARQ ID uniquely assigned to each HARQ process.
  • the base station holds one or more HARQ processes of each mobile station, as shown in FIG.
  • the initial state of the HARQ process is free, and data is transmitted. If the base station transmits NACK, if the mobile station receives NACK, it enters the retransmission state.
  • the HARQ process in the retransmission state retransmits data, transmits an ACK if it is the base station, and the mobile station remains in the retransmission state until it receives the ACK, and the HARQ process in the retransmission state is a new one. It can not be used for data transmission.
  • communication methods using a plurality of HARQ processes include synchronous transmission and asynchronous transmission.
  • Synchronous transmission is one in which the timing of retransmission is fixed in advance for each HARQ process.
  • FIG. 3 shows the relationship between the temporal arrangement of each HARQ process and ACK, N ACK in synchronous transmission.
  • the timing of each HARQ process is fixed by j injection of H ARQ1 ⁇ HARQ 2 ⁇ HARQ 3 ⁇ HARQ 1 ⁇ ⁇ ⁇ '! /.
  • the feature of this method is that it is not necessary to explicitly indicate the HARQ process number at each data block transmission since the timing at which each HARQ process is transmitted is known in the base station and the mobile station. Therefore, the overhead of control signals can be reduced.
  • transmission frequency or transmission timing can not be controlled according to the priority.
  • the transmission timing of the HARQ process is not fixed.
  • FIG. 4 shows the relationship between the temporal arrangement of each HARQ process and ACK and NACK in asynchronous transmission.
  • overhead increases by the control signal indicating the HARQ process number at the time of data block transmission, but transmission is performed according to the priority. It can control the frequency and transmission timing.
  • SHO Soft Hand Over
  • SHO base stations a plurality of base stations
  • each base station performs HARQ as described above, but each SHO base station transmits a delivery confirmation signal at SHO, and the mobile station receives multiple delivery confirmation signals.
  • the mobile station combines a plurality of received acknowledgments according to a predetermined rule, and discards or retransmits the corresponding data block according to the combined result.
  • a specific rule there is a method of discarding the data block as if it were correctly received, even if it receives ACK.
  • the transmission of the data block is completed, and the packet transmission delay on the physical channel can be minimized.
  • the upper layer weakens to the error of the delivery confirmation signal (ACK or N ACK). The probability of requiring re-transmission is high.
  • FIG. 5 shows signals exchanged between a base station and a mobile station.
  • SI Stuling Information
  • the amount of knockout data is the amount of data to be transmitted by the EUDCH, which is stored in the mobile station's dispatcher. In the case of a mobile station having a plurality of knockers, the total data amount of all buffers may be notified as the knocker data amount, or the data amount of each buffer may be notified.
  • the transmission power information is information on the transmission power status, and is information serving as an indicator of transmission power that the mobile station can currently use for the EUDCH. As transmit power information, the power value that can be used for EUDCH is It may be known or the power currently used may be notified.
  • SA Stuling Assignment
  • the transmission timing indicates the time for which the mobile station is permitted to transmit.
  • a frame number which may start transmission and the number of frames which may continue transmission may be notified. Since a synchronous transmission method is assumed here as HARQ, the frame number and the HARQ ID are linked. Therefore, instead of notifying the frame number of the start of transmission, the HARQ ID may be designated.
  • the maximum transmission rate is an indicator of the maximum transmission rate permitted for use within the transmission time allocated to the mobile station.
  • the base station controller notifies the mobile station and base station of the maximum TFC, the maximum transmission rate, the maximum power, etc. among the TFCSs notified in advance.
  • Transmission data information is NDI (New Data Indicator), TFCI (Transport Format)
  • NDI is 3-bit information for instructing the mobile station to transmit new data in the corresponding HAR Q process, and it takes a value from “0” to “7” as a decimal value.
  • the mobile station transmits NDI by one more than the previous transmission by the corresponding HARQ process. Also, in the case of retransmission, the mobile station transmits the same NDI value as at the first transmission of that data block.
  • TFCI is an indicator indicating TFC used for transmission
  • RV is information on parity bit pattern.
  • FIG. 6 is a sequence chart showing exchange of signals between the base station and the mobile station.
  • F and R in FIG. 6 indicate the states of the HARQ process used for data transmission / reception, F is a free state, and R is a retransmission state.
  • the initial HARQ process state is free for both the base station and the mobile station.
  • step S601 the mobile station transmits the SI on the E-DPCCH (Enhanced Dedicated Physical Control channel), and notifies the base station of information on the amount of data in the buffer and the transmission power status.
  • SI shall be transmitted when new data arrives at the mobile station buffer.
  • the base station performs a scan based on the notified SI information.
  • Carry-up is performed, and in step S602, an SA is transmitted to each mobile station using E-DPCCH (DL).
  • DL stands for downlink (downlink)! / ⁇ .
  • the mobile station transmits data at a transmission rate lower than the maximum transmission rate indicated in the indicated transmission time in step S603. At this time, the mobile station transmits transmission data information along with data via E-DPCCH.
  • NDI 0 and transmit.
  • the base station receives data, it performs reception processing and decoding, and performs reception error determination from CRC (cyclic redundancy check) bits.
  • CRC cyclic redundancy check
  • neither the mobile station nor the base station performs processing in the corresponding HARQ process, and therefore, this HARQ process can not be used, so it is neither in the free state nor in the retransmission state.
  • the base station transmits an ACK to the mobile station at a predetermined ACKZNACK transmission timing in step S604.
  • the base station transmits NACK at a predetermined timing in step S607, and puts the corresponding HARQ process in the retransmission state, It can not be used for sending new data.
  • the mobile station receives the NACK, and regards the corresponding HARQ process as the retransmission state.
  • the base station transmits an SA to instruct retransmission of this data block.
  • the mobile station transmits the same data block as the first time at the indicated transmission timing. At this time, the mobile station sets NDI to 1 for NDI, as in the first transmission, and transmits.
  • the base station combines the retransmission data with the data being received, and as a result of the error determination, it is determined that the data has been correctly received. Therefore, in step S610, the base station transmits an ACK at a predetermined timing. As described above, data transmission proceeds when the base station and the mobile station talk in a one-to-one correspondence.
  • FIG. 7 shows the procedure of signal exchange between the base station and the mobile station at the time of SHO.
  • the mobile station transmits the SI to the scheduling base station in step S601c, and only the scheduling base station transmits the mobile station SA in step S602c.
  • Each base station processes a received data block and transmits an ACK or NACK at a predetermined transmission timing. At this time, it is assumed that the scheduling base station transmits NACK in step 605 c and the non-scheduling base station transmits ACK in step S 606 c.
  • the scheduling base station retransmits, but the non-scheduling base station and the mobile station return to the free state. Therefore, a mismatch occurs in the HARQ process state.
  • the scheduling base station transmits, to the mobile station, an SA for allocating resources for retransmission in step S 607 c.
  • this mobile station transmits new data to each base station instead in steps S608c and S609c.
  • a control signal may be erroneously received due to a change in propagation path or the like.
  • step S604a it is assumed that the base station has transmitted NACK, and the mobile station has determined to be ACK. In this case, the mobile station determines that the data block has been correctly received, discards the corresponding data, and considers the corresponding HARQ process as free. Therefore, a mismatch in recognition of the HARQ process state occurs between the base station and the mobile station.
  • step S605a the base station transmits SA again to cause the mobile station to retransmit, and instructs transmission of the corresponding HARQ process.
  • the mobile station since the HARQ process is free, the mobile station transmits new data in step S606a. At this time, since the mobile station transmits NDI increased by one from the previous time, the base station recognizes that this is new data, discards the previous data block during reception, and performs reception processing as new data. In this way, if there is data to be sent next, NDI notifies that it is new data and resolves the mismatch in HARQ process state.
  • step S604b it is assumed that the base station has transmitted ACK, and the mobile station has determined that it is NACK. In this case, the mobile station recognizes that it is in the retransmission state and holds the data. Since the base station is in the free state, no resource for retransmission is allocated. Therefore, when the base station allocates resources for new data transmission in step S605b, the mobile station retransmits the previous data block in step S606b.
  • the base station since the mobile station transmits the same NDI as in the previous case, the base station recognizes that the transmitted data block is the previous data block and discards it, and, in step S607b, Send an ACK. Therefore, the mobile station's HARQ state can be corrected to the free state, and the HARQ process state mismatch can be resolved.
  • HARQ uses asynchronous transmission, and the mobile station shall decide on retransmission. Do. That is, it is assumed that a spontaneous retransmission method is used.
  • FIG. 10 shows signals exchanged between a base station and a mobile station when using time scheduling.
  • RR Ring Request
  • UP increase
  • DOWN decrease
  • the mobile station compares the knocker amount with the current maximum transmission rate and determines the RR based on a predetermined condition.
  • BV buffer amount
  • R current maximum transmission rate
  • D target delay
  • a D is a constant that is determined according to the service characteristics of the data being transmitted.
  • RG Ring Grant
  • UP increase
  • DOWN decrease
  • Transmission data information includes the above-mentioned NDI (New Data Indicator) and TFCI (Transport).
  • RV Redundance Version contains a Carro, H ARQ ID.
  • the HARQ ID is included here using the asynchronous transmission method, and the mobile station has no relation to the frame number. To determine the HARQ process to be transmitted.
  • FIG. 11 is a sequence chart showing exchange of signals between a base station and a mobile station when using time scheduling.
  • the mobile station measures the amount of data in the buffer at a predetermined timing, and transmits RR to the base station using E-DPCCH in step S1101.
  • the base station performs scheduling based on the notified RR and, in step S1102, transmits an RG to each mobile station using E-DPCCH (DL).
  • the base station When the base station receives data, it performs reception processing and decoding to determine whether there is a CRC reception error. In this case, since the reception was correct, in step S1104, the base station ACK is sent to the mobile station at the specified transmission timing. Therefore, both the base station and the mobile station return the HARQ process to the free state, and the mobile station transmits new data at any timing using this HARQ process in step S1107. If an error is detected in this data block as a result of reception error determination in the base station, the base station transmits NACK at a predetermined transmission timing in step S1108. Accordingly, in step S1109, the mobile station retransmits the same data block as the previous one at an arbitrary timing.
  • the mobile station transmits NDI with the same value as the previous time. If the base station receives correctly, it sends an ACK to the mobile station in step S1110, and both the base station and the mobile station return the HARQ process to the free state.
  • Non-Patent Document 1 3GPP TR25. 896 v6. 0. 0 (2004- 03) 3rd Generation Partnership Project; Technical Speciation uroup Radio Access Network; Feasibility Study for Enhanced Uplink for UTRA FDD (R elease 6)
  • the base station When the base station performs uplink scheduling, such as EUDCH, the amount of data generation can not be detected, and the receiver side, ie, the base station S scheduling is performed.
  • the operation of the system will be fundamentally different from the case where the sender that can detect the amount of generation performs scheduling.
  • the base station In the EUDCH, the base station must estimate the amount of data at the mobile station from resource rate increase requests from the mobile station and notify of buffer information, and perform resource allocation.
  • EUDCH although HARQ is introduced, since data that was not received correctly is held in the buffer as retransmission data in HARQ, a gap in recognition of the HARQ process state occurs between the base station and the mobile station. If this happens, appropriate scheduling can not be performed. In this case, although there are unused resources, situations such as being unable to allocate resources to a mobile station requiring resources may occur, resulting in degradation of throughput.
  • One of the states that can not resolve the mismatch of HARQ process states is the SHO state as shown in FIG.
  • the mobile station transmits an SI to the scheduling base station at step S601e, and only the scheduling base station powers the SA at step S602e.
  • the mobile station transmits new data to each base station in steps S603e and S604e using the time and transmission rate designated by the SA.
  • the scheduling base station transmits NACK at step S 605 e to the data block initially transmitted by the mobile station, and the non-scheduling base station transmits ACK at step S 606 e.
  • NACK NACK at step S 605 e to the data block initially transmitted by the mobile station
  • the non-scheduling base station transmits ACK at step S 606 e.
  • the mobile station does not have a new data block to be transmitted.
  • the scheduling base station transmits the SA instructing retransmission in step S 607 e
  • the mobile station can not transmit the NDI which is to be transmitted along with the data block.
  • the scheduling base station can not receive the data block at the transmission time instructed for retransmission at the SA, and can not recognize that the mobile station has returned to the free state. Therefore, the scheduling base station transmits an SA requesting retransmission again to the mobile station in steps S608e and S609e.
  • the mobile station can not transmit anything as before, so the HARQ process mismatch can not be resolved!
  • Such a state continues until transmission of the SA is completed up to a predetermined maximum number of retransmissions of the scheduling base station power.
  • the maximum number of retransmissions is set to a value sufficiently larger than the average number of retransmissions. The reason is that the base station gives up retransmissions if it can not receive within the maximum number of retransmissions, and the data block is lost due to the power loss, which requires retransmission in the upper layer protocol. It is not preferable to set the maximum number of retransmissions close to the average number of retransmissions, which causes a large delay due to the increase in the data block loss rate and retransmissions in the upper layer.
  • the maximum number of retransmissions needs to be large enough, and is set to, for example, several tens of frames. Therefore, when the above-mentioned HARQ process state mismatch occurs, the scheduling base station continues to transmit a large number of useless retransmission requests. In such a situation, resources are reserved for mobile stations that do not have data to be transmitted, and resources that can not be allocated to mobile stations waiting for data to be transmitted are considered as wireless. The utilization efficiency of resources is reduced and the system throughput is degraded.
  • the probability of occurrence of such a situation is not small. For example, if it is assumed that the scheduling base station transmits NACK and the non-scheduling base station transmits an ACK at a probability of about 50%, such a case occurs at a ratio of 20 to 30% of the total. In fact, the probability that the scheduling base station transmits NACK and the non-scheduling base station transmits ACK depends on the balance of propagation loss to each mobile station, but switching of the scheduling base station follows the fluctuation of the propagation loss.
  • the propagation loss force with the non-scheduling base station will be much smaller than the propagation loss with the S scheduling base station, and most data blocks will be received by the non-scheduling base station only Occurs. In such a case, the HARQ process mismatch will be chronically occurring, and the scheduling characteristics will be significantly degraded.
  • radio resources may continue to be allocated continuously despite data being transmitted only intermittently, and will not benefit from packet switching. This is a big problem in terms of system throughput.
  • the mobile station receives an ACK as a reception error due to a reception error although the base station has transmitted NACK.
  • the mobile station transmits the SI to the base station in step S301a, and the base station At step S302a, the SA is transmitted, and the mobile station transmits data at step S303a accordingly.
  • the base station since the base station can not receive correctly, in step S304a, the base station receives an NACK, and due to a reception error by the mobile station, the mobile station receives an ACK. Since the mobile station has received the ACK, it discards the data block, and this HARQ process becomes free.
  • the scheduler allocates resources for retransmission to the H ARQ process in step S305a.
  • the mobile station does not transmit anything and NDI is not transmitted
  • the HARQ process state at the base station remains in the retransmission state, and the scheduler
  • resources for retransmission are repeatedly allocated up to the maximum number of retransmissions. Therefore, as with the SHO case, resource use efficiency is degraded.
  • the mobile station receives a NACK due to a reception error despite the base station transmitting an ACK as shown in FIG.
  • the mobile station transmits the SI to the base station in step S301b, the base station transmits the SA in step S302b, and the mobile station transmits data to / in step S303b accordingly. Since the base station has correctly received, in step S304 b, the base station transmits an ACK. Due to a reception error by the mobile station, the mobile station receives NACK as a NACK. The mobile station holds the data block because it has received NACK, and puts this HARQ process in the retransmission state.
  • the base station transmits an SA instructing transmission of new data in step S305 b.
  • the mobile station can not transmit retransmission data. Therefore, the mobile station transmits nothing and the base station can not receive anything at the specified transmission timing.
  • the mobile station has transmitted data, but determines that the base station has caused a reception error, and puts the HARQ process in the base station into a retransmission state;
  • the mobile station has received the SA. For some reason, for example, It is determined that transmission has not been performed by foot, and the HARQ process at the mobile station is made free.
  • Whether or not the mobile station has transmitted a data block may be determined by detecting the TFCI. That is, if the base station detects TFCI but can not receive data, it is assumed as (a). If the base station can not detect TFCI, it is assumed as (b) or (c). In the example described here, since the mobile station does not transmit anything, the base station can not detect TFCI, and determines that it is the case of (b) or (c), and puts this HARQ process in a free state. As a result, the base station may send SA again to request new data, or it may be able to prioritize resource allocation to other mobile stations.
  • step S306b even if the SA instructs to transmit new data again, the base station does not recognize that the mobile station still holds retransmission data, so the base station can not transmit the maximum data. Set the speed appropriately according to the situation at that time. Therefore, there is a possibility that transmission data required for retransmission data can not be transmitted even if radio resources are allocated. As a result, the utilization efficiency of radio resources is reduced, and the mobile station can not transmit even though it holds the data to be transmitted, so the transmission delay is significantly increased. Therefore, if system throughput and user throughput both deteriorate!
  • the base stations can not distinguish each other.
  • the base station may increase the transmission power of the SA and reallocate the same resource, but in the case of (c), the data can not be transmitted again even if the same resource allocation is performed. It will be useless. If these distinctions can not be made at the base station, it is not preferable because inappropriate processing will be performed to reduce the resource usage efficiency.
  • An object of the present invention is to provide a mobile station that has data by allocating unnecessary resources to the mobile station, having data to be transmitted due to the mismatch of the HARQ process state as described above. It is an object of the present invention to provide a communication control method, a radio communication system, a base station and a mobile station which can solve the problem that radio resources can not be allocated and can improve both the system throughput and the user throughput.
  • a base station and a mobile station in which a radio channel is set up for the base station And controlling the transmission resource allocation information indicating allocation of transmission resources to the mobile station, and the mobile station transmitting the resource allocation information to the mobile station. Therefore, transmitting a data block, transmitting an acknowledgment signal (ACK and NACK) indicating whether the data block has been correctly received, and an acknowledgment signal indicating a false reception (NACK).
  • ACK and NACK acknowledgment signal
  • NACK acknowledgment signal
  • the mobile station retransmits the data block when it receives a message, the mobile station terminates the data block transmission when it receives a delivery acknowledgment signal (ACK) indicating that it has been received correctly, the mobile station Transmitting a transmission process status notification to notify the mobile station whether it is in a retransmission state in which it is waiting for retransmission or a free state in which it is not in retransmission waiting; In accordance with the transmission process state that has a stage for determining the allocation of transmission resources to the mobile station.
  • ACK delivery acknowledgment signal
  • the mobile station may transmit (1) transmission process status notification in a predetermined cycle (2) in response to reception of the delivery confirmation signal, the transmission process status notification. (3) Time to receive delivery acknowledgment signal (ACK) indicating correct reception T1 (ie, data to be transmitted in the buffer of the own station at ACK reception time) and time T1 The transmission process status notification may be transmitted when data to be transmitted does not occur within a predetermined time period T2, and (4) a time T3 when a delivery acknowledgment signal (NACK) indicating a false reception is received.
  • ACK delivery acknowledgment signal
  • NACK delivery acknowledgment signal
  • a transmission process status notification may be transmitted. Or (5) Receive transmission resource assignment information If there is no data to be transmitted in the buffer of the local station at time T5, ie allocated reception time, and no data to be transmitted within a predetermined time period T6 from time T5, the transmission process You may send a status notification.
  • NACK delivery acknowledgment signal
  • the mobile station transmits a transmission process status notification, and then, upon receiving a delivery confirmation signal (ACK) indicating that reception has been correctly performed at a predetermined timing, data in the middle of transmission Let's throw away and stop re-sending.
  • ACK delivery confirmation signal
  • the mobile station transmits the first transmission process status notification when transmission resource allocation information is received but there is no data to be transmitted, and the transmission resource is transmitted.
  • the second transmission process status notification may be sent when the source assignment information is received and the data to be sent is present but not sent.
  • the base station may lower the priority of transmission resource allocation for the data block.
  • the base station transmits transmission resource assignment information and then neither the data block nor the transmission process status notification is received from the mobile station for a predetermined period
  • the transmission power of the transmission resource assignment information may be increased by a predetermined value before transmission.
  • the transmission resource for example, the maximum transmission rate and transmission time for which the mobile station is permitted to use may be assigned, or the maximum transmission rate for which the mobile station is permitted to use may be assigned. Good.
  • a base station and a wireless link for the base station are set, and a data block is transmitted to the base station according to transmission resource assignment information from the base station, Upon receipt of a delivery acknowledgment signal (NACK) indicating incorrect reception, the data block is retransmitted, and upon receipt of a delivery acknowledgment signal (ACK) indicating correct reception, transmission of the data block is ended, and the local station waits for retransmission.
  • the mobile station transmitting the transmission process status notification notifying the free status power which is the retransmission status or the retransmission non-waiting status, and the base station confirms the delivery depending on whether or not the data block is correctly received. It sends signals (ACK and NACK), and determines the allocation of transmission resources to the mobile station according to the transmission process status at the mobile station.
  • the base station of the present invention is a base station in which a radio channel is set to the mobile station, and a transmission process for notifying the data block and whether the mobile station is in a retransmission wait state or not from the mobile station.
  • the mobile station of the present invention is a mobile station in which a radio channel is set up for the base station, and transmission Data in the storage means as a data block according to the transmission resource allocation information, storage means for storing data to be stored, means for receiving base station transmission resource allocation information and delivery confirmation signal, and transmission resource allocation information.
  • a delivery confirmation signal (NACK) indicating reception is made to retransmit the data block, and a delivery confirmation signal (ACK) indicating the correct reception is received means for ending transmission of the data block, and whether or not it is in a retransmission waiting state
  • reception delay ie, base station power scheduling
  • a system using automatic retransmission control such as HARQ
  • the transmission delay of data packets is reduced, and system throughput and user throughput are reduced. It is possible to improve
  • the scheduler can not directly detect the amount of data in the transmitter's or mobile station's knocker, so the amount of data in the buffer can be determined by the control signal from the transmitter.
  • the resource allocation must be determined while estimating the Also, if HARQ is used, data that can not be received correctly is stored as retransmission data, and therefore, if there is a mismatch in HARQ process state between the base station and the mobile station due to an error in the control signal, etc., appropriate scheduling can not be performed. . In this case, even though there are unused resources, it requires resources and can not allocate unused resources to the mobile station, which degrades system throughput.
  • the base station recognizes that it is in the retransmission state, even though there is no data to be transmitted to the mobile station. It is possible to avoid continuing to allocate resources for retransmission. Also, since the mobile station recognizes that the base station is in the re-transmission state even though the base station is in the free state, it is possible to avoid a situation where the allocated resources are not sufficient for retransmission and data blocks can not be transmitted. . Therefore, according to the present invention, the user throughput is improved, and the utilization efficiency of resources is also increased, so that the system throughput is also improved.
  • the transmission power of the resource assignment signal should be an appropriate value. Can be controlled. Therefore, according to the present invention, it is possible to reduce the error rate of the resource assignment signal and to increase the probability that the resources assigned by the base station are appropriately used. That is, resource utilization efficiency increases, system throughput increases, user throughput increases, and transmission delay decreases.
  • SA resource assignment signal
  • FIG. 1 is a diagram for explaining an HARQ process state at a mobile station.
  • FIG. 2 is a diagram for explaining the state of an HARQ process at a base station.
  • FIG. 3 is a timing chart showing transmission timings of HARQ in the synchronous transmission type.
  • FIG. 4 is a timing chart showing transmission timings of HARQ in an asynchronous transmission type.
  • FIG. 5 is a diagram showing signals exchanged between a base station and a mobile station.
  • FIG. 6 is a sequence chart showing exchange of signals between a base station and a mobile station.
  • FIG. 7 is a sequence chart showing exchange of signals between a base station and a mobile station in the SHO (soft handover) state.
  • Fig. 8 is a sequence chart showing a process when NACK is erroneously received as ACK.
  • FIG. 9 is a sequence chart showing processing when ACK is erroneously received as NACK.
  • FIG. 10 is a diagram showing signals exchanged between a base station and a mobile station when using time scheduling.
  • FIG. 11 is a sequence chart showing exchange of signals between a base station and a mobile station when using time scheduling.
  • FIG. 12 is a sequence chart illustrating a problem that occurs in the SHO state.
  • FIG. 13 is a diagram for explaining the problem that occurs when NACK is mistaken for ACK.
  • FIG. 14 is a diagram for explaining a problem that occurs when an ACK is mistaken for a NACK.
  • FIG. 15 is a diagram showing an example of the configuration of a cellular system to which the present invention is applied.
  • FIG. 16 is a sequence chart showing exchange of signals between the base station and the mobile station in the SHO state in the first embodiment.
  • FIG. 17 is a flowchart showing processing in a mobile station in the first embodiment.
  • FIG. 18 is a flowchart showing processing at a base station in the first embodiment.
  • FIG. 19 is a block diagram showing the configuration of a base station in the first embodiment.
  • FIG. 20 is a block diagram showing a configuration of a mobile station in the first embodiment. 21) A sequence chart showing exchange of signals between a base station and a mobile station in the SHO state in the second embodiment.
  • FIG. 22 is a flowchart showing processing in a mobile station in the second embodiment.
  • FIG. 23 is a flowchart showing processing at a base station in the second embodiment.
  • ⁇ 24] is a block diagram showing a configuration of a base station in the second embodiment.
  • FIG. 25 A block diagram showing a configuration of a mobile station in the second embodiment.
  • FIG. 26 A diagram for explaining an example of transmission of HARQ process status notification in the fourth embodiment.
  • FIG. 15 shows an example of the configuration of a cellular system to which the communication control method of the present invention is applied. ing. The first to sixth embodiments described later are all described as the cellular system shown in FIG. 15 to which the communication control method of the embodiment is applied.
  • two base stations (BTS) 411 and 412 are provided, and the base stations 411 and 412 correspond to /! And senores 401 and 402, respectively.
  • MS mobile station
  • SHO soft handover between the base station 411 and the base station 412.
  • the mobile station 421 in the cell 401 is connected only to the base station 411, and the mobile station 423 in the cell 402 is connected only to the base station 412, and the E-DPDCH (UL) for transmitting EUDCH data.
  • E-DPCCH (ULZDL) is sent and received to send control signals.
  • the mobile station 422 is connected to both base stations 411 and 412 to transmit and receive an E-DPDCH (UL) for transmitting EUDCH data and an E-DPCCH (UL / DL) for transmitting control signals.
  • a base station controller (RNC) 430 is provided to connect to the base stations 411 and 412.
  • the suffix "UL" represents uplink (uplink)
  • suffix LJ represents downlink (downlink)! /.
  • the base station controller (RNC) 430 notifies the mobile station and the base station of a set of transport format combinations (TFCs), which is a combination of transmission formats permitted to be used for each mobile station. .
  • the set of TFCs is called TFCS.
  • TFC includes parameters such as transmission interval (TTI) and the number of information bits included in TTI.
  • TTI transmission interval
  • the transmission rate of EUDCH differs according to TFC, and the higher the transmission rate, the higher the noise rise given to the base station. Therefore, the base station controls the maximum TFC that is permitted to be used by the mobile station to control the noise rise fluctuation in the base station. Control information for this purpose It is transmitted and received between the base station and the mobile station using E-DPCCH (UL / DL).
  • HARQ is used.
  • the mobile stations 421, 422, 423 transmit data blocks at predetermined transmission intervals using the E-DPDCH.
  • Base station 4 11, 412 determines from the CRC of the received data block whether the data block has been decoded correctly or not, and ACK, which is a delivery confirmation signal indicating that reception was correctly performed on the downlink E-DPCCH.
  • ACK which is a delivery confirmation signal indicating that reception was correctly performed on the downlink E-DPCCH.
  • NACK which is a delivery confirmation signal indicating false reception.
  • mobile station 422 has set up two base stations and the EUDCH link, so both Receive an ACKZ NACK signal from the base station of If the mobile station 422 receives an ACK from any one of the base stations, it discards the data as if the corresponding data block was correctly received, and if both base station power and power receive NACK as well. Only do the resend.
  • time'transmission rate scheduling is used, and HARQ uses synchronous transmission. Furthermore, for the retransmission, the base station instructs, that is, a base station controlled retransmission method is used.
  • TFCI is a bit sequence indicating TFC that defines the transmission data format, but two of this bit sequence are defined as free status notification and retransmission status notification, respectively.
  • 5-bit TFCI is used as shown in the table below. That is, TFCIO is defined as a free state, and TFCI 1 is defined as a retransmission state.
  • the mobile station uses HARQ process status notification in the following cases:
  • the mobile station transmits TFCI notifying the state of the corresponding HARQ process and current NDI at designated transmission timing.
  • ACK is transmitted in the case of the base station, or ACK is received in the case of the mobile station, and when it is determined that transmission of the data packet is completed, NDI is increased by one. Update the NDI and prepare for the next new data transmission.
  • the base station When the base station receives the TFCI notifying the HARQ process state, the base station confirms the HA RQ process state in the own station and corrects to match the mobile station if a mismatch occurs, or Report the station's HARQ process status.
  • FIG. 16 is a sequence chart showing exchange of signals between the base station and the mobile station in the SHO state in the first embodiment.
  • the exchange of signals in the prior art corresponding to the exchange of signals shown in FIG. 16 is shown in FIG. 12 described above.
  • the scheduling base station transmits an SI to the scheduling base station in step S501
  • the scheduling base station transmits an SA to the mobile station in step S502
  • the mobile station receives the SA.
  • the mobile station receives a NACK from the scheduling base station in step S505, and also receives an ACK for the non-scheduling base station power in step S506. Since the mobile station has received at least one ACK, it returns its own HARQ process to the free state and increments NDI by one.
  • FIG. 17 is a flowchart showing a flow of processing of the mobile station until the reception timing strength HARQ process state of SA is updated in the present embodiment.
  • step S501a the mobile station determines whether SA has been received at SA reception timing, and if it can be received, it proceeds to step S51 la and can not receive it.
  • step S502a The processing in the mobile station will be described below separately for the case where reception was not possible and the case where reception was possible.
  • the mobile station determines in step S502 a whether the own station is in the free state. If the mobile station is in the free state, the mobile station remains in the free state, as shown in step S503a, and returns to the first step S501a. If the mobile station is not in the free state at step S502a, that is, if it is in the retransmission state, the mobile station increments the counter by one at step S504a, and at step S505a, the value of the counter and the predetermined maximum number N of retransmission waits are set. Compare.
  • step S508a the mobile station determines whether or not an ACK has been received at a predetermined A CKZ NACK transmission timing. If an ACK is received, this means that the base station is in the free state, so the mobile station also returns the HARQ process state of its own to the free state in step S509a, and the NDI is made. Increase by one.
  • step S508a if the ACK is not received in step S508a, that is, if the NACK is received, it means that the base station is still in the retransmission state, so the mobile station resets the counter in step S510, Go to step S 506 a and keep in the retransmission state.
  • step S511a Determine whether the own station is in a free state. If not, that is, if it is in the retransmission state, the mobile station determines in step S 512 a whether the assigned transmission rate is sufficient for the transmission of retransmission data, and if it is sufficient, the mobile station determines the state. In step S513a, the retransmission data is transmitted, and if it is not sufficient, step S514a transmits a retransmission status notification and an NDI. Then, in step S515a, the mobile station determines whether or not an ACK has been received at a predetermined ACKZ NACK transmission timing.
  • step S516a the mobile station frees up the state of its own HARQ process. Return to, increase NDI by 1, and return to the first step S501a.
  • step S515a the mobile station remains in the re-transmission state as shown in step S517a, and returns to the first step S501a.
  • the mobile station transmits a retransmission status notification, and the base station indicates that the mobile station is in a retransmission state. It can be detected. Then, the base station transmits an ACK, so that the mobile station can confirm that the data waiting for retransmission has already been correctly received, and the mobile station can be corrected to the free state.
  • step S518a determines in step S518a whether there is data to be transmitted, and if there is data to be transmitted, step S519a is performed. After that, new data is transmitted, and it is determined in step S520a whether an ACK has been received at a predetermined timing. If an ACK is received, the mobile station returns its own state to the free state, increments the NDI by one in step S521a, and returns to the first step S501a. On the other hand, if ACK is not received in step 520a, that is, if NACK is received, the mobile station changes its state to the retransmission state in step S522a, and returns to the first step S501a.
  • the mobile station If there is no data to be transmitted in step S518a, the mobile station transmits a free status notification and an NDI in step S523a, and returns to the first step S501a. As a result, the base station can detect that the mobile station is in the free state, and can stop useless resource allocation.
  • FIG. 18 shows that in this embodiment, the reception timing strength of the SA and the HARQ process state are updated. It is the flowchart which showed the flow of processing of the base station until it renews. The flow of processing at this base station is paired with the flow of processing at the mobile station shown in FIG.
  • step S501b the processing of the base station differs depending on whether the SA has been transmitted at SA transmission timing or not, and when transmitted, the process proceeds to step S506b, and when not transmitted, the step It transfers to S502 b.
  • the processing in the base station will be described below separately for the case of transmission failure and the case of transmission.
  • step S502 b determines in step S502 b whether or not the retransmission status notification has been received, and if the retransmission status notification has been received, next, in step S503 b, It is determined whether the state in the base station is the retransmission state, and if it is in the retransmission state, NACK is sent to the mobile station in step S 504 b, and this HARQ process remains in the retransmission state, and the process is terminated. . If the state in the base station in step S503b is a free state, the base station transmits an ACK in step S505b, leaves the state in the base station in a free state, and ends the processing. If it is determined in step S502 b that the retransmission status notification has not been received, the base station ends the processing.
  • step S506b determines whether or not the TFCI has been received at the indicated transmission timing, and if the TFCI has not been received, the base station determines in step S507b. , Increase the transmission power of SA, and return to step S501 b. Such a situation occurs when the mobile station receives an error in receiving an SA, so increasing the power can reduce the error rate of the SA. If the TFCI can be received in step S506b, the base station determines in step S508b whether the TFCI is an HARQ process status notification.
  • the base station judges whether or not it reports a free status in step S509b, and if it reports a free status in step S510b,
  • the NDI notified together is checked to determine whether it is the same as the value managed by the base station.
  • the base station proceeds to step S.
  • the mobile station judges that there is no data to be transmitted and sets it free, stops scheduling of this mobile station until a new data generation notification is received, and ends the processing.
  • the base station determines in step S512b that the mobile station has data but can not transmit data, and the priority of this mobile station is low. It becomes free and ends the process. When receiving the free status notification in this way, it is possible to stop useless resource allocation.
  • step S509b determines in step S513b that the HARQ process state in the base station is in the retransmission state. If it is in the retransmission state, NACK is transmitted in step S514b, and this HARQ process ends the process as a retransmission state. Also, in step S513b, if the HARQ process in the base station is not in the retransmission state, ie, in the free state, in step S515b, the base station transmits an ACK, leaves it in the free state, and ends the processing. As described above, when the mobile station is in a retransmitted state and the base station is in a free state, the base station corrects the HARQ process of the mobile station to a free state by transmitting an ACK.
  • step S508b the received TFCI is not an HARQ status notification !, and in the case where the base station performs data block reception processing in step S518b, and corrects the reception in step S51 9b. It is determined whether or not the power can be received, and if the power can be correctly received, an ACK is transmitted in step S520b to set the free state, and the process ends. If the base station fails to receive correctly in step S519b, the base station transmits NAC K in step S521b to put it in the retransmission state, and ends the process.
  • the base station updates the state of each HARQ process according to the flow as described above, and calculates the amount of unreceived data calculated from the HARQ process state and the difference between the notification size of each mobile station and the received data size. And scheduling in consideration of
  • FIG. 19 is a block diagram showing a configuration of a base station used in the present embodiment.
  • the base station performs a process such as despreading of the received signal, a control signal separating unit 802 that separates the despread received signal into a control signal and data, and the separated data.
  • a decoding processing unit 803 for decoding, one or more prepared for each mobile station, and data after decoding An anchor 804 for storing data, an error detection unit 805 for detecting an error in decoded data, an HARQ control unit 806 provided corresponding to each mobile station to manage HARQ process state, and scheduling for each mobile station
  • a transmission processing unit 810 which performs a diffusion process or the like on the output signal of to make a transmission signal.
  • processing such as despreading of the received signal is performed in the reception processing unit 801, and the control signal separation unit 802 transmits the received signal processed in the reception processing unit 801 to the control signal and data.
  • SI including information for scheduling is sent to the scheduler unit 807, and HARQ process status notification and NDI are sent to the HARQ control unit 806.
  • the separated data is decoded by the decoding processing unit 803 and then stored in one or more prepared buffers 804 for each mobile station.
  • the error detection unit 805 performs error detection on the decoded data, and notifies the HARQ control unit 806 prepared for each mobile station of the result.
  • the HARQ control unit 806 manages the state for each HARQ process, and updates the HARQ process state according to the procedure shown in FIG. 18 when receiving the HARQ process state notification. Also, information on the HARQ state of the HARQ control unit 806 and information on the buffer state are periodically sent to the scheduler unit 807, and when there is a signal of ACKZNAC K to be transmitted, those signals are the control signal combining unit 809. Sent to
  • the scheduler unit 807 performs scheduling of each mobile station based on the SI and HARQ state that received each mobile station power, the state of the buffer, the priority of the data flow notified by the upper layer, and the like.
  • a scheduling method a generally known scheduling method, for example, a method of sequentially assigning transmission opportunities to mobile stations having data, or a transmission opportunity given priority to mobile stations having data of high priority. Any method may be used, such as the method of assigning.
  • Information on scheduling is combined with downlink data for each mobile station in control signal combining section 809, and transmission processing such as spreading for the combined data is performed in transmission processing section 810, and then transmitted in downlink.
  • Ru FIG. 20 is a block diagram showing a configuration of a mobile station used in the present embodiment.
  • the mobile station includes a reception processing unit 1001 that performs reception processing such as despreading on the reception signal, a control signal separation unit 1002 that separates the despread reception signal into data and a control signal, and the mobile station.
  • a HARQ control unit 1003 that controls the HARQ process in TFC, a TFC selection unit 1004 that selects a TFC from among the notified TFCS, a buffer 1005 that stores data to be transmitted, and an encoding process for data to be transmitted
  • the transmission processing unit 1009 performs spreading processing or the like on the signal from the combining unit 1008 to obtain a transmission signal, and a retransmission waiting counter 1010 that counts retransmission waiting.
  • the reception processing unit 1001 performs reception processing such as despreading on the reception signal
  • the control signal separation unit 1002 separates the despread reception signal power from the data and the control signal.
  • ACKZ NACK and SA are sent to the HARQ control unit 1003.
  • the HARQ control unit 1003 updates the state of the corresponding HARQ process according to ACKZ NACK.
  • the TFC selection unit 1004 selects a TFC according to a predetermined criterion from among TFCs less than or equal to the maximum TFC indicated by the maximum transmission rate information.
  • a TFC is selected such that the higher the data flow is, the higher the transmission rate is, and the corresponding TFCI is Send to 1008
  • the TFC selection unit 1004 sends TFCI0, which is a free state notification, to the control signal synthesis unit 1008.
  • the selected TFC is notified to buffer 1005, and from buffer 1005 to TFC Accordingly, the data is taken out and sent to the encoding processing unit 1006. At this time, a copy of the fetched data block is stored in the retransmission buffer 1007.
  • the state of the process instructed by the SA is the retransmission state
  • the state of the process is notified from the HARQ control unit 1003 to the retransmission buffer 1007 together with the maximum transmission rate information included in the SA. .
  • the maximum transmission rate is higher than the transmission rate of the corresponding retransmission data
  • the data to be retransmitted is sent from the retransmission buffer 1007 to the encoding processing unit 100 8, and the data is encoded, and then the control signal combining unit At 1008, the signal is synthesized with a control signal such as TFC I, NDI, etc., subjected to processing such as spreading at the transmission processing unit 1009 and transmitted.
  • the H ARQ control unit 1003 notifies the TFC selection unit 1004 to that effect, and the TFC selection unit 1004 selects TFCI 1 which is a retransmission status notification. And sends it to the control signal synthesis unit 1008.
  • the HARQ control unit 1003 checks whether or not there is a retransmission instruction at each transmission timing of the corresponding HARQ process, and if there is no retransmission instruction, HARQ Increase the value of the counter for retransmission waiting 1010 provided for each process by one. Furthermore, when the retransmission waiting counter 1010 becomes larger than the predetermined maximum number of retransmission waiting times N, the TFC selecting unit 1004 is notified of that and the TFC selecting unit 1004 transmits the TFCI1 which is the retransmission status notification to the control signal combining unit 1008. send.
  • Control signal combining section 1008 combines TFCI and NDI with the data block to be transmitted, and the combined data is subjected to spreading processing and the like in transmission processing section 1009, and is then transmitted via the uplink. Will be sent.
  • the scheduling base station transmits NACK in the SHO state, and the other SHO base stations transmit ACK, and the mobile station transmits. Inconsistencies in HARQ process state that occur when there is no new data to be resolved can be eliminated.
  • the relative strength of the SHO region is approximately 0 to 60%, and it is difficult to switch the scheduling base station at high speed according to fluctuations in the propagation loss. It can occur.
  • the base station allocates unnecessary resources to mobile stations that have no data to transmit, and resources can not be allocated to mobile stations that have data to be transmitted, which lowers resource utilization efficiency. System throughput is degraded. According to the present embodiment, such a situation can be resolved, thereby improving system throughput. Also
  • the same situation is caused by false reception of NACK or ACK at the mobile station
  • it is possible to eliminate the mismatch of HARQ process state in the case of false reception of NACK or ACK at the mobile station. Furthermore, resource utilization efficiency is improved and system throughput is improved.
  • the base station can detect an SA reception error at the mobile station. That is, the base station can not receive the SA if the mobile station can not receive the data block or the HARQ process status notification at the designated timing even though the data block transmission is instructed by the SA. It can be judged. Therefore, in such a case, the base station can increase the transmission power of SA and retransmit SA, which makes it possible to reduce the error rate of SA. If the SA is wrong, the mobile station can not transmit the data block even though the base station reserves resources for the mobile station that sent the SA.
  • the transmission delay of the mobile station increases and the user throughput decreases, and the reserved resources can not be allocated to other mobile stations waiting for data transmission, so the throughput of the entire system also decreases.
  • both system throughput and user throughput can be increased, and transmission delay can be reduced.
  • HARQ process status notification is transmitted using TFCI. That is, TFCIO is defined as free state, and TFCI1 as retransmission state.
  • the ACKZ NACK can not be received at a predetermined timing T even though the data block is transmitted, and the maximum transmission rate is continuously smaller than the transmission rate required for retransmission between T and W frames.
  • the mobile station transmits a TFCI for notifying the state of the corresponding HARQ process to the base station.
  • the base station receives the TFCI for notifying the HARQ process state
  • the base station confirms the HARQ process state in the own station, and if there is a mismatch, the H ARQ process in the own station is adjusted to the mobile station.
  • the ability to modify the state informs the mobile station of the base station's HARQ process state.
  • FIG. 21 is a sequence chart showing the exchange of signals between the base station and the mobile station in the SHO state in the second embodiment.
  • the mobile station and the base station transmit and receive RR and RG in a predetermined cycle.
  • the mobile station receives NACK from the scheduling base station in step S1405, and receives ACK from the non-scheduling base station in step S1406. Therefore, although in the retransmission state in the scheduling base station, the mobile station is in the free state, and a mismatch occurs in the HARQ process state.
  • the mobile station Upon receiving ACK, the mobile station confirms the data in its own buffer, and if there is no data to be transmitted, transmits a free state notification, ie, TFCIO, in step S1407.
  • a free state notification ie, TFCIO
  • the base station recognizes that the mobile station is in a free state, and determines that the mobile station does not hold data to be transmitted. Then, the HA RQ process is returned to the free state, and resource allocation to this mobile station is stopped.
  • the HARQ process between the scheduling base station and the mobile station Mismatch can be eliminated, and wasteful resource allocation can be avoided.
  • FIG. 22 is a flowchart showing a process of updating the HARQ process state in the mobile station in the present embodiment.
  • step S 1401 a the mobile station transmits data blocks at an arbitrary time, at a transmission rate lower than the maximum transmission rate permitted, and in step S 1402 a, ACKs from the base station at a predetermined timing. Determine if the car received. If an ACK is received at a predetermined timing, the mobile station checks the amount of data in its own buffer in step S1403a to determine whether there is data to be transmitted, and the data to be transmitted. If there is, the process returns to step S1401a to continue transmitting data blocks, and if there is no data to be transmitted, a free status notification is transmitted in step S1404a, and the process ends.
  • the base station can detect that the mobile station has sent all the data in the buffer, and if the base station is in a retransmit state, it can be corrected to avoid unnecessary resource allocation. Thus, system throughput is increased.
  • step S 1405 a data for which the maximum transmission rate permitted is to be retransmitted. Determine if it is sufficient to send a block.
  • the process returns to step S1401a in order to transmit retransmission data at an arbitrary timing.
  • the mobile station increases the timer by a predetermined time in step S1406 and compares the value of the timer with the predetermined maximum retransmission waiting time W in step S1407a.
  • the mobile station returns to step S1405a if the timer value is less than or equal to W, and transmits a retransmission status notification in step S1408a if the timer value is greater than W. Thereafter, in step S1409a, the mobile station determines whether or not an ACK has been received at a predetermined timing, and in the case of receiving an ACK, discards the data block being transmitted in step S1410a, and proceeds to step S1411a. , Determine whether there is data to be transmitted. If there is data to be transmitted in step S14 11a, the mobile station returns to step S1401a to continue data block transmission at an arbitrary timing, and if there is no data to be transmitted, it proceeds to step 1404a. Send a free status notification and end the process. Step S14 If no ACK is received at 09a, that is, if NACK is received at a predetermined timing, the processing of the mobile station returns to step 1405a.
  • FIG. 23 is a flow chart showing a process related to data reception at the base station in the present embodiment.
  • the base station receives data in step 1401b, and checks in step S1402b whether the TFCI sent together is a HARQ process status notification. If the TF CI is an HARQ process status notification, the base station determines in step S1403b whether the HARQ process status notification is a free status notification, and if the free status notification is received. In step S 1404 b, this H ARQ process state at the base station is also freed, and returns to step S 1401 b for the next data reception. Therefore, when the mobile station is in the free state but the base station is in the retransmission state, it is possible to avoid allocating unnecessary resources for the retransmission and to improve the system throughput.
  • step S1403b if no notification is made in the free state notification, ie, if the retransmission state notification is received, in step S1405b, the base station confirms the HA RQ process state in the base station and determines whether it is in the retransmission state. To judge. The base station transmits an ACK in step S 1406 b if it is not in the retransmission state, that is, in the free state, and sends an NACK in step S 1407 b if it is in the retransmission state.
  • step S1401b The process returns to step S1401b to receive data of Therefore, when the mobile station waits for retransmission for a data block that has already been received, the base station can correct the state of the mobile station to the free state, and the mobile station wastes resource allocation. Waiting for can avoid the situation where other data can not be sent and user throughput improves.
  • the base station receives the data block in step S 1408 b, and in step S 1409 b, whether the power has successfully received the data block To judge. If the base station successfully receives the data block, it sends an ACK in step S 1410 b. If the base station did not correctly receive the data block, it sends an NACK at step S 141 lb and sends a V of If so, return to step S 140 lb for the next data reception. The base station repeats the above operation.
  • FIG. 24 shows the configuration of a base station used in this embodiment.
  • the base station controls the reception processing unit 1501 that performs processing such as despreading of the received signal, and separates the despread received signal into a control signal and data.
  • a coding processing unit 1508 that performs processing, a control signal combining unit 1509 that combines the encoded downlink data and the control signal, and spreading processing etc. on the output signal from the control signal combining unit 1509 Transmission processing as transmission signal It is provided with a 1510, a.
  • the reception signal is subjected to processing such as despreading in the reception processing unit 1501 and then separated into control signal and data in the control signal separation unit 1502.
  • the separated data is decoded by the decoding processing unit 1503 and accumulated in one or more prepared buffers 1504 for each mobile station.
  • the error detection unit 1505 performs error detection on the decoded data, and the result is notified to the HARQ control unit 1506 prepared for each mobile station.
  • RR is sent to the scheduler unit 1507, and HARQ process status notification and NDI are sent to the HARQ control unit 1506.
  • the HARQ control unit 1506 manages the state for each HARQ process, and changes the state of the corresponding HARQ process to the free state when receiving the free state notification, and when receiving the retransmission state notification, the corresponding HARQ process. The status of the process is confirmed, ACK is generated if it is free, and NACK is generated if it is resent, and these are sent to the control signal combining unit 1509. Information on the HARQ state of the HARQ control unit 1506 and information on the buffer state are periodically transmitted to the scheduler unit 1507.
  • the scheduler unit 1507 schedules each mobile station based on the RR, HARQ state, buffer state, priority of data flow notified by the upper layer, etc. which each mobile station power is also received.
  • a scheduling method a generally known scheduling method, for example, a method of sequentially assigning transmission opportunities to mobile stations with data, or preferentially assigning transmission opportunities to mobile stations having data with high priority Any method may be used.
  • Information on scheduling is combined with downlink data for each mobile station in control signal combining unit 1509, and transmission processing such as diffusion for the combined data is performed in transmission processing unit 1510. , Sent by downlink.
  • FIG. 25 shows the configuration of a mobile station used in this embodiment.
  • the mobile station includes a reception processing unit 1601 that performs reception processing such as despreading on the reception signal, a control signal separation unit 1602 that separates the despread reception signal into data and a control signal, and a mobile station.
  • HARQ control section 1603 that controls the HARQ process in TFC
  • TFC selection section 1604 that selects TFC from the notified TFCS
  • buffer 1605 that stores data to be transmitted
  • An encoding processing unit 1606 that performs the transmission, a retransmission buffer 1607 that stores transmission data for retransmission, a control signal combining unit 1608 that combines data for which encoding processing has been performed and a control signal, a control signal And a transmission processing unit 1609 that performs spreading processing or the like on the signal from the combining unit 1608 to generate a transmission signal.
  • the reception processing unit 1601 performs reception processing such as despreading on the reception signal
  • the control signal separation unit 1602 separates the despread reception signal power from the data and the control signal.
  • ACK and NACK are sent to HARQ control section 1603. .
  • the HARQ control unit 1603 updates the state of the corresponding HARQ process according to ACKZ NACK.
  • HARQ control section 1603 notifies TFC selection section 1604 to that effect, TFC selection section 1604 confirms the amount of data in buffer 1605, and there is no new data to be transmitted.
  • the free state notification TFCI0 is sent to the control signal combining unit 1608.
  • RG is sent to the TFC selector 1604, which updates the maximum transmission rate in the TFC selector 1604. Further, the TFC selection unit 1604 decides to transmit retransmission data if retransmission data exists, and transmits new data otherwise, from the information on presence / absence of retransmission data notified by the HARQ control unit 1603.
  • the TFC selection unit 1604 checks whether the use of the same TFC as in the first transmission is permitted, and whether or not the retransmission wait timer is permitted. Advance one (not shown) for a predetermined time. Furthermore, when the value of the timer reaches or exceeds the predetermined maximum waiting time, it transmits TFCI 1, which is a retransmission status notification, to the control signal combining unit 1608. If the same TFC as in the first transmission can be used, the retransmission data block is taken out from the retransmission buffer 1607 and sent to the code processing unit 1606.
  • the TFC selection unit 1604 selects a TFC according to a predetermined criterion from among TFCs less than or equal to the maximum TFC updated in the RG. At this time, referring to the priority set for each data flow as a selection criterion, select a TFC with a higher transmission rate as data flows with higher priority. The TFC selection unit 1604 notifies the selected TFC to the buffer 1605, and the buffer power is also taken out and sent to the encoding processing unit 1606. At this time, a copy of the extracted data block is stored in the retransmission buffer 1607.
  • the data block sent to the coding processing unit 1606 is coded, and is synthesized with a control signal such as TFCI, NDI, RV, HARQ ID or the like in the control signal synthesis unit 16 08, and is spread or the like in the transmission processing unit 1609. Is processed and sent.
  • a control signal such as TFCI, NDI, RV, HARQ ID or the like in the control signal synthesis unit 16 08, and is spread or the like in the transmission processing unit 1609. Is processed and sent.
  • the scheduling base station in the SHO state, the scheduling base station sends NACK and the other SHO base stations send ACK. And if there is new data to be transmitted by the mobile station! Inconsistencies in ARQ process status can be resolved.
  • the base station allocates useless resources to mobile stations that have no data to transmit, and resources can not be allocated to mobile stations that have data to transmit accordingly.
  • the utilization efficiency of resources is reduced and the system throughput is degraded.
  • it is possible that the same situation may occur even if the mobile station receives a NACK or ACK incorrectly.
  • it is possible to eliminate the mismatch in HARQ process state in the case of a false reception of NACKZACK at the mobile station. Furthermore, resource utilization efficiency is improved and system throughput is improved.
  • the base station shall give instructions for retransmission. That is, it is assumed that a base station controlled retransmission method is used.
  • the mobile station receives a scheduling base station power NACK, and the other SHO base stations also receive an ACK, and when there is no data in the buffer, the H ARQ process state.
  • TFCIO is used, and when the base station receives mobile station power TFCIO, the corresponding HARQ process is corrected to a free state, and no resource for retransmission is allocated.
  • a zero size may be defined and used for BOI included in the power SI using TFCI as a no-data notification.
  • time'transmission rate scheduling is used and HARQ uses synchronous transmission.
  • the base station shall give instructions for retransmission. That is, it is assumed that a base station controlled retransmission method is used.
  • the mobile station is notified of the state of the HARQ process at a predetermined cycle.
  • FIG. 26 shows an example of transmission of HA RQ process status notification in a state where four HARQ processes are configured in the mobile station.
  • each HARQ process sends HARQ process status notification once in five times.
  • the HARQ process for which the status notification is sent is shown in the figure as a shaded frame.
  • T FCIO and TFCI 1 are used, TFCIO is free status notification, and TFCI 1 is resend status notification.
  • the mobile station reports the current status to the base station using these HARQ process status notifications. In the other frames, the mobile station transmits data as instructed by the base station. Since the transmission timing of the HARQ process status notification is known to the base station, the data transmission is not scheduled at that timing.
  • the base station receives the HARQ process status notification, it confirms the current status of the corresponding HARQ process, and if different, it corrects it to the status notified from the mobile station.
  • the base station and the mobile station can correct the non-matching of the HARQ process state in a predetermined cycle. Therefore, unnecessary resource allocation can be avoided, and throughput can be improved.
  • time'transmission rate scheduling is used, and HARQ uses synchronous transmission.
  • the base station shall give instructions for retransmission. That is, it is assumed that a base station controlled retransmission method is used.
  • the mobile station when the mobile station receives an SA, the mobile station transmits an HARQ process status notification at a transmission timing designated by the SA.
  • the time when the SA is received If there is no data to be transmitted at T and no data is generated to be transmitted within a predetermined time from time T, the HARQ process status notification is transmitted.
  • the sixth embodiment uses time scheduling as in the second embodiment, and HAR Q uses asynchronous transmission. Furthermore, the mobile station shall determine the retransmission. That is, it is assumed that a spontaneous retransmission method is used.
  • the mobile station transmits the HARQ process status notification immediately upon receiving the ACK.
  • the data to be transmitted at time T when the ACK is received is lost and When no data to be transmitted occurs within a predetermined time from time T, HARQ process state notification is transmitted.
  • the base station of the cellular system is equipped with a computer for controlling the operation of the base station, in addition to the antenna and the radio transmitting / receiving unit. Therefore, the base station in each of the above-described embodiments may be realized by a computer that configures the base station reading and executing a program for realizing the above-mentioned function! /. Similarly, the mobile station in each of the above-described embodiments may be realized by a computer constituting the mobile station reading and executing a program for realizing the above-described functions.
  • Such a program is recorded, for example, in a computer readable recording medium, and is loaded into the computer by mounting the recording medium on the computer.
  • a program may be read into a computer via a network such as the Internet. Therefore, such a program, a recording medium recording such a program, a program processor including such a program Tat is also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)

Abstract

 HARQ(ハイブリッド自動再送制御)を行う無線通信システムにおいて、移動局は、ACKの受信により、自局のHARQプロセス状態をフリー状態に戻す。この状態で、スケジューリング基地局から、再送のためのリソースを割当てるためのSA(Scheduling assignment)を受信すると、移動局は、送信すべき新データがない場合には、自局はフリー状態であることを通知する送信プロセス状態通知を送信する。これにより、基地局は、移動局がフリー状態であることを認識し、自局のHARQプロセス状態をフリー状態に戻し、この移動局へのリソース割当てを停止する。

Description

明 細 書
通信制御方法、無線通信システム、基地局及び移動局
技術分野
[0001] 本発明は、セルラシステムなどの無線通信システムにおける基地局及び移動局並 びに制御信号送信方法に関し、特に、上り回線、すなわち移動局から基地局に向か う回線でのパケット送信の再送制御に関する。
背景技術
[0002] 各種の通信システムは、伝送上発生した誤り(エラー)の影響をなくすために、一般 に、自動再送制御(ARQ : Automatic Repeat reQuest)機能を備えている。自 動再送制御とは、有線通信システム並びに無線通信システムで広く用いられて 、る データ送信方法の 1つであり、送信側が送信したデータを受信側で誤り検出し正しく 受信できた場合には、受信側は、正しく受信できたことを示す送達確認信号として A CK (Acknowledgement)を送信側に通知する。受信側がデータを正しく受信でき なかった場合には、受信側は、正しく受信できな力つたことすなわち誤受信を示す送 達確認信号として NACK(Non— Acknowledgement)を送信側に通知する。送信 側は NACKを受信すると所定のタイミングで同じデータを再送する。受信側は、再送 データに対しても同様に誤り検出を行い、 ACKまたは NACKを送信側に通知する。 ARQでは、受信側が正しく受信する力、または予め規定された条件に達するまで、 以上のような再送制御が繰り返される。予め規定された条件としては、例えば、最大 再送回数や最大再送時間が用いられる。これにより、通信路における何らかの理由、 例えばパケットの衝突や無線伝送路での伝搬ロス増加などの理由によるデータパケ ットのロス率を低くすることが可能である。
[0003] 一方、セルラシステムなどの無線通信システムでは、所定のサービスエリア内に基 地局(BTS)が配置され、各基地局はその担当するセル内の複数の移動局(MS)と 無線回線を設定している。さらに、複数の基地局に接続して基地局や基地局の配下 の各移動局を制御する基地局制御装置(RNC : Radio Network Controller)が 設けられることが多い。このような無線通信システムには、無線リソースを有効に利用 できるようにするため、複数の移動局と回線を設定している基地局が移動局の上り回 線データ送信のスケジューリングを行うものがある。
[0004] ARQを備え、さらに基地局が移動局の上り回線データ送信のスケジューリングを行 う無線通信システムの一例として、 WCDMA (広帯域符号分割多元接続: Wideban d Code Division Multiple Access)システムにおいて検討されている「Enhan ced Uplink DCH (Dedicated Channel)」、いわゆる EUDCHがある。 EUDC Hに関する参考文献として、 3GPP TR25. 896 v6. 0. 0 (2004-03) 3rd Ge neration Partnersnip Project; Technical Specification Group Radio Access Network; Feasibility Study for Enhanced Uplink for UTRA FDD (Release 6)を挙げる。以下、 EUDCHについて説明する。
[0005] 無線通信では、一般に、受信部での希望波電力が雑音や干渉電力に対して所定 の品質閾値以上となるように制御し、希望信号を正しく受信できるようする。 WCDM Aでは、受信品質を示す指標の一つとして、基地局におけるノイズライズを用いる。ノ ィズライズとは、総受信電力と雑音電力の比のことである。基地局は、所定のタイミン グでノイズライズを測定し、測定されたノイズライズを基地局制御装置 (RNC)に報告 する。 RNCは、ノイズライズが所定の品質閾値以下となるように、新規呼の追加を制 限したり、移動局に許可する送信形式の組み合わせであるトランスポートフォーマット コンビネーション(TFC ; transport format combination)を制限したりして、各移 動局での無線通信が正常に行われるように管理する。 TFCは、各物理チャネルの送 信間隔や送信間隔内の情報ビット量を規定するパラメータの組み合わせであり、 TF Cの選択により、上り回線の伝送速度も決まる。 RNCは、各移動局に対して複数の T FCを TFCセット(TFCS)として通知する。移動局は、 TFCSに含まれる TFCの中か ら、送信時の電力状況やバッファ内のデータ量に応じて、送信に使用する TFCを選 択する。一般に、高伝送速度の TFCを使用する場合、所要電力は大きくなり、その 結果、基地局のノイズライズを増加させる。したがって、基地局におけるノイズライズ が所定の品質閾値に対して高くなつた場合、移動局に高伝送速度の TFCの使用を 禁止することにより、ノイズライズを低減することが可能である。
[0006] しかし、 RNCは複数の基地局を制御するため制御負荷が高ぐそのため RNCの制 御遅延は基地局の制御遅延よりも大きい。ノイズライズの変動は、上り回線の伝送速 度の変更、送信開始'停止などに伴って、バースト的に変化している。これらのバース ト的なノイズライズの変動に応じて RNCが高速に各移動局の TFCを制御することは、 困難である。そのため、ノイズライズが常に所定の品質閾値以下となるようにするには 、ノイズライズの平均値が所定の品質閾値よりも十分小さくなるように目標値を設定し 、急激なノイズライズ増カロに備えてノイズライズマージンを大きくとる必要がある。しか しながら、ノイズライズマージンが大きいほど上り回線リソースの使用効率は低減し、 上り回線容量は低下する。
[0007] そこで EUDCHでは、基地局が各移動局の TFCSを制御するようにする。すなわち 、基地局が、ノイズライズ変動に応じて、移動局に使用許可する最大 TFCまたは最 大伝送速度を制御する。最大 TFCとは、所要電力が最大となる TFCのことである。こ の制御によって各移動局がノイズライズ変動に高速に対応できるようになるため、ノィ ズライズの目標平均値を高めに設定することができ、上り回線容量が向上する。
[0008] さらに基地局は、限られた上り回線容量を効率よぐまたは公平に複数の移動局に 割当てるために、スケジューリングを行う。 EUDCHでは大きく分けて 2種類のスケジ ユーリングが検討されており、 1つは、送信を許可する最大伝送速度または最大 TFC を移動局に対して指定する伝送速度スケジューリング、もう 1つは、送信を許可する 送信時間と最大伝送速度または最大 TFCとを移動局に対して指定する時間,伝送 速度スケジューリングである。
[0009] EUDCHでは、 ARQの一種である HARQ (ハイブリッド自動再送制御)が導入され る。したがって、基地局は、データブロックの受信結果に応じて ACKまたは NACKを 送信し、移動局は、 ACKを受信すると該当するデータブロックを破棄し、 NACKを受 信すると該当するデータブロックを保持し所定のタイミングで再送を行う。基地局は、 受信途中のデータブロックと再送データブロックとを合成し、復号を行う。このようにデ 一タブロックを合成することによって、ビット当たりのエネルギーを高め、正しく復号で きる確率を向上することができる。基地局において以上のような HARQを用いること により、 RNCで再送を要求する場合に比べて高速な再送を実現し、パケット送信遅 延を低減でき、スループットが向上する。 [0010] 図 1及び図 2は、それぞれ、移動局と基地局とにおける HARQプロセスすなわち送 信プロセスを示している。 HARQプロセスとは 1つの HARQ制御単位であり、基地局 は、 HARQプロセス 1つに対し 1つの ACKまたは NACKを返す。基地局に対応して 移動局 1〜Nが存在するものとする。各移動局は、図 1に示すように、複数の HARQ プロセスを持つことが可能であり、これらの HARQプロセスは、各 HARQプロセスに 一意に割当てられた HARQ IDによって区別される。基地局は、図 2に示すように、 各移動局ごとにそれら移動局の 1または複数の HARQプロセスを保持している。
[0011] HARQプロセスには、フリー状態と再送状態の 2つの状態がある。 HARQプロセス の初期状態はフリー状態であり、データ送信をして、基地局であれば NACKを送信 し移動局であれば NACKを受信すると、再送状態となる。再送状態の HARQプロセ スは、データを再送して基地局であれば ACKを送信し移動局であれば ACKを受信 するまでは再送状態のままであり、再送状態にある HARQプロセスは、新たなデータ 送信には使用できない。
[0012] また、複数の HARQプロセスを用いた通信方法には、同期型送信と非同期型送信 がある。
[0013] 同期型送信とは、 HARQプロセスごとに再送のタイミングが予め固定されているも のである。図 3は、同期型送信における各 HARQプロセスの時間的配置と ACK, N ACKとの関係を示している。図示されるように、各 HARQプロセスのタイミングは、 H ARQ1→HARQ 2→HARQ 3→HARQ 1→ · · 'の j噴で固定されて!/、る。この方法の 特徴は、各 HARQプロセスが送信されるタイミングが基地局と移動局とにおいて既知 であるため、各データブロック送信時に HARQプロセス番号を明示的に示す必要が ないことである。したがって制御信号のオーバヘッドを削減できる。しかし、送信タイミ ングの自由度は制限されるため、優先度に応じた送信頻度または送信タイミングの制 御が行えない。
[0014] 一方、非同期型送信の場合、 HARQプロセスの送信タイミングは固定されていない
。図 4は、非同期型送信における各 HARQプロセスの時間的配置と ACK, NACKと の関係を示している。非同期型送信の場合は、データブロック送信時に HARQプロ セス番号を示す制御信号の分だけオーバヘッドが増加するが、優先度に応じて送信 頻度や送信タイミングを制御することができる。
[0015] また、 EUDCHではソフトハンドオーバ(SHO : Soft Hand Over)の導入も検討 されている。ソフトハンドオーバとは、セル境界などで、移動局において隣接するセル 力 の電波の電界強度と通信中のセルからの電波の電界強度との差が所定の閾値 以内である場合には、その移動局と両方のセルとの間に同時に回線を設定し、移動 局や RNCにおいて受信信号を合成することにより、受信品質を高めるものである。こ のとき移動局は複数の基地局(以下、 SHO基地局と呼ぶ)と通信する。 EUDCHで は、上述の通り各基地局で HARQを行うが、 SHO時も各々の SHO基地局が送達確 認信号を送信し、移動局は複数の送達確認信号を受信する。したがって移動局は、 受信した複数の送達確認を所定の規則にしたがって合成し、合成結果にしたがって 該当するデータブロックの破棄や再送を行う。具体的な規則の例として、 1つでも AC Kを受信した場合は、そのデータブロックは正しく受信されたものとみなして破棄する という方法がある。この場合、 SHO基地局のうち 1局でも正しく受信できればそのデ 一タブロックの送信は完了するため、物理チャネルでのパケット送信遅延は最も小さ くできる。ただし、移動局はたった 1つでも ACKを受信するとそのデータブロックは正 しく受信できたものとみなしてデータを破棄するため、送達確認信号 (ACKまたは N ACK)の誤りには弱ぐ上位レイヤでの再送を要する確率は高くなる。
[0016] 以下に時間'伝送速度スケジューリングを用いた場合のシステム構成について詳し く説明する。ここでは、 HARQは同期型送信を用い、再送に関しては基地局が指示 をするものとする。すなわち、基地局制御型再送方法が使用されるものとする。
[0017] 図 5は、基地局と移動局がやり取りをする信号を示している。
[0018] SI (Scheduling Information)は、移動局のバッファ内のデータ量と送信電力情 報とを含んでいる、上り回線で送信する信号である。ノ ッファデータ量は、移動局の ノ ッファ内に蓄積されている、 EUDCHによって送信すべきデータ量である。複数の ノ ッファを持つ移動局の場合は、ノッファデータ量として、全バッファの合計データ量 を通知してもよいし、各バッファのデータ量を通知してもよい。送信電力情報は、送信 電力状況に関する情報であって、移動局が、現在、 EUDCHに使用できる送信電力 の指標となる情報である。送信電力情報として、 EUDCHに使用できる電力値を通 知してもよいし、現在使用している電力を通知してもよい。
[0019] SA (Scheduling Assignment)は、送信タイミングと最大伝送速度に関する情報 とを含んでいる、下り回線で送信する信号である。送信タイミングは移動局に送信を 許可する時間を示すものである。送信タイミングとしては、送信を開始してよいフレー ム番号と送信を継続してよいフレーム数などを通知する。ここでは HARQとして同期 型送信方法を想定しているため、フレーム番号と HARQ IDはリンクされている。し たがって、送信開始のフレーム番号を通知する代わりに HARQ IDを指定してもよ い。最大伝送速度は、移動局に割当てた送信時間内で使用許可する最大伝送速度 の指標となるものである。最大伝送速度としては、予め基地局制御装置 (RNC)が移 動局と基地局に通知した TFCSの中の最大 TFCや最大伝送速度、最大電力などを 通知する。
[0020] 送信データ情報は、 NDI (New Data Indicator)、 TFCI (Transport Format
Combination Indicator)、 RV (Redundancy Version)などを含む上り回線の 信号であり、データブロックに付随して送信される。 NDIは、移動局が該当する HAR Qプロセスで新たなデータを送信すること指示するための 3ビットの情報であって、 10 進値で表して「0」から「7」までの値をとる。移動局は、新たなデータ送信を開始する 場合、前回の該当する HARQプロセスによる送信時よりも NDIを 1増加して送信する 。また、再送の場合は、移動局は、そのデータブロックの初回送信時と同じ NDI値を 送信する。 TFCIは、送信に使用している TFCを示す指示子であり、 RVはパリティビ ットパターンに関する情報である。
[0021] 図 6は、基地局と移動局との間の信号のやり取りを示すシーケンスチャートである。
また、図 6中の Fと Rは、このデータ送受信に用いる HARQプロセスの状態を示して おり、 Fはフリー状態、 Rは再送状態である。初めの HARQプロセス状態は、基地局、 移動局ともにフリー状態である。
[0022] 移動局は、ステップ S601において、 SIを E— DPCCH (Enhanced Dedicated Physical Controlチャネル)において送信し、バッファ内のデータ量や送信電力状 況に関する情報を基地局に通知する。ここでは、 SIは、新たなデータが移動局バッフ ァに届いた場合に送信するものとする。基地局は、通知された SI情報に基づいてス ケジユーリングを行い、ステップ S602において、各移動局に対して E— DPCCH (D L)を使用して SAを送信する。サフィックス「DL」は下り回線 (ダウンリンク)を表して!/ヽ る。移動局は、 SAを受信すると、ステップ S603において、指示された送信時間内に 指示された最大伝送速度以下の伝送速度でデータを送信する。このとき、移動局は 、データとともに送信データ情報を E— DPCCHによって送信する。このとき、 NDI = 0と設定して送信する。基地局は、データを受信すると受信処理、復号を行い、 CRC (巡回冗長検査)ビットから受信誤り判定を行う。この間は、移動局、基地局ともに該 当する HARQプロセスにおいて処理を行っており、そのためこの HARQプロセスを 使用できないので、フリー状態でも、再送状態でもない。誤り判定の結果、データを 正しく受信できた場合は、基地局は、ステップ S604〖こおいて、所定の ACKZNAC K送信タイミングで、 ACKを移動局に送信する。
以上で 1つのデータブロックの送受信が正常に完了し、 HARQプロセスはフリー状 態に戻るので、基地局は、ステップ S605において、 SAを移動局に送信し、次のデ ータ送信を指示する。これに応答して移動局は、ステップ S606において、新たなデ ータを送信するが、このデータブロックとともに送信する制御信号については、新デ ータであることを示すため NDIを 1つ増加させ NDI= 1として送信する。基地局は、指 示した送信タイミングでデータブロックと制御信号とを送信し、制御信号に含まれる N DIが前回の送信より 1つ増加していることを確認し、新データとして受信処理を開始 する。誤り判定の結果、このデータブロックが正しく受信できな力つたと判定された場 合、基地局は、ステップ S607において、所定のタイミングで NACKを送信するととも に、該当する HARQプロセスを再送状態とし、新データ送信には使用できない状態 とみなす。移動局では NACKを受信し、同様に該当する HARQプロセスを再送状 態とみなす。その後、基地局は、ステップ S608において、 SAを送信してこのデータ ブロックの再送を指示する。ステップ 609において移動局は、指示された送信タイミン グで初回と同じデータブロックを送信する。このとき移動局は、 NDIについては、初回 送信時と同じく NDI= 1と設定して送信する。基地局は、再送データを受信途中のデ ータと合成し、誤り判定の結果、正しく受信されたと判定されたため、ステップ S610 において、所定のタイミングで ACKを送信する。 [0024] 以上のようにして、基地局と移動局とが 1対 1に対応して ヽる場合のデータ送信が進 行する。
[0025] これに対し図 7は、 SHO時における基地局と移動局との間の信号のやりとりの手順 を示している。
[0026] SHO中は、スケジューリングは 1つの基地局のみが行い、他方の基地局はデータ を受け取るのみとする。したがって、ステップ S601cにおいて移動局は SIをスケジュ 一リング基地局に送信し、ステップ S602c〖こおいて、スケジューリング基地局のみが 移動局【こ SAを送信する。移動局 ίま、ステップ S603c, S604c【こお!ヽて、 SAで旨定 された時間と伝送速度を用いて新データを各基地局に送信する。このとき、移動局は 、 NDIについては NDI = 0に設定して送信する。各基地局は、受信データブロックを 処理し、所定の送信タイミングで ACKまたは NACKを送信する。このとき、ステップ 6 05cにおいてスケジューリング基地局が NACKを送信し、ステップ S606cにおいて 非スケジューリング基地局が ACKを送信したとする。その結果、スケジューリング基 地局では再送状態となるが、非スケジューリング基地局と移動局はフリー状態に戻る 。したがって、 HARQプロセス状態に不一致が生じる。このような場合、スケジユーリ ング基地局は、ステップ S607cにおいて、再送のためのリソースを割当てる SAを移 動局に送信する。しかし移動局では再送すべきデータがないため、この移動局は、ス テツプ S608c, S609cにおいて、代わりに新たなデータを各基地局に送信する。こ のとき、移動局は、 NDIについては、 1つ増加させて NDI= 1と設定して送信する。し たがって、スケジューリング基地局は新しいデータブロックであることを認識し、前回ま でのデータを破棄し、新データとして受信処理を行う。そして、各基地局は、ステップ S610c, S611cにおいて、誤り判定結果を移動局に通知する。この場合、どちらも A CKであったため、全ての HARQプロセス状態はフリー状態に戻っている。
[0027] 以上のように、 SHO中は、基地局と移動局との間で HARQプロセス状態に不一致 が生じる場合がある。しかし、 NDIを用いることにより不一致は解消できるようになって いる。
[0028] また無線通信では、伝搬路の変化などにより、制御信号が誤って受信されることが ある。以下に、 ACKまたは NACKが受信誤りを生じた場合の基地局と移動局との間 の送信手順を説明する。
[0029] 図 8に示したものでは、ステップ S601a, S602a, S603aとして示すように、基地局 と移動局との間で図 6に示した場合と同様に、 SI、 SA,新データが送信されている。 そして、ステップ S604aにおいて、基地局は NACKを送信した力 移動局は ACKと 判定したものとする。この場合、移動局はこのデータブロックは正しく受信されたと判 断し、該当するデータを破棄するとともに、該当する HARQプロセスをフリー状態とみ なす。したがって、基地局と移動局との間で、 HARQプロセス状態に対する認識の 不一致が生じる。基地局は、ステップ S605aにおいて、移動局に再送をさせるために 再度 S Aを送信し、該当する HARQプロセスの送信を指示する。しかし、移動局では 、この HARQプロセスはフリー状態であるため、移動局は、ステップ S606aにおいて 、新データを送信する。このとき、移動局は NDIを前回より 1増加して送信するため、 基地局ではこれが新データであることを認識し、受信途中の前データブロックを破棄 し、新たなデータとして受信処理を行う。このようにして、次に送るデータがある場合 は、 NDIによって新データであることを通知して、 HARQプロセス状態の不一致を解 消する。
[0030] また、図 9に示したもので ίま、ステップ S601b, S602b, S603bに示すように、基地 局と移動局との間で図 6に示した場合と同様に、 SI、 SA,新データが送信されている 。そして、ステップ S604bにおいて、基地局は ACKを送信した力 移動局は NACK と判定したものとする。この場合、移動局は再送状態と認識しデータを保持しておく 力 基地局はフリー状態であるため再送のリソースは割当てない。したがって、ステツ プ S605bにおいて基地局が新データ送信のためのリソースを割当てたときに、移動 局は、ステップ S606b〖こおいて、前回のデータブロックを再送する。し力し、この場合 は移動局は前回と同じ NDIを送信するため、基地局は送信されてきたデータブロック が前回のデータブロックであることを認識して破棄するとともに、ステップ S607bにお いて、 ACKを送信する。したがって、移動局の HARQ状態をフリー状態に修正でき 、 HARQプロセス状態の不一致を解消できる。
[0031] 次に、時間スケジューリングを用いた場合のシステム構成について詳しく説明する。
この場合、 HARQは非同期型送信を用い、再送に関しては移動局が決定するものと する。すなわち、自発型再送方法が用いられるものとする。
[0032] 図 10は、時間スケジューリングを用いる場合に基地局と移動局がやり取りをする信 号を示している。
[0033] RR (Rate Request)は、最大伝送速度の増加(UP)または減少 (DOWN)を要 求する、上り回線で送信される信号である。移動局は、ノッファ量と現在の最大伝送 速度とを比較し、所定の条件に基づいて RRを決定する。ここでは、バッファ量 (BV) 、現在の最大伝送速度 (R)、目標遅延 (D)を用いて、
BVZR> (D+ A D)の場合は最大伝送速度増加要求 … A
BVZRく(D— A D)の場合は最大伝送速度減少要求 … B
を送り、それ以外の場合は伝送速度要求を送らないものとする。ここで A Dは、送信 しているデータのサービス特性などに応じて定められる定数である。
[0034] RG (Rate Grant)は、現在の最大伝送速度の増加(UP)または減少 (DOWN)を 指示する、下り回線で送信される信号である。
[0035] 送信データ情報には、上述の NDI (New Data Indicator)、 TFCI (Transport
Format Combination Indicatorノ、 RV (Redundancy Versionノにカロ 、 H ARQ IDが含まれる。 HARQ IDが含まれているのは、ここでは非同期型送信方法 を用いており、移動局が、フレーム番号とは無関係に、送信する HARQプロセスを決 定するためである。
[0036] 図 11は、時間スケジューリングを用いる場合における、基地局と移動局との間での 信号のやり取りを示すシーケンスチャートである。
[0037] 移動局は、所定のタイミングでバッファ内のデータ量を測定し、ステップ S1101にお いて、 E— DPCCHを用いて RRを基地局に送信する。基地局は、通知された RRに 基づいてスケジューリングを行い、ステップ S1102において、各移動局に対して E— DPCCH (DL)を使用して RGを送信する。移動局は、ステップ S1103において、任 意のタイミングで、最大伝送速度以下の伝送速度でデータを送信する。このとき、移 動局は、データブロックとともに、 NDI = 0と設定して送信データ情報を送信する。
[0038] 基地局は、データを受信すると、受信処理、復号を行い CRC力 受信誤り有無を 判定する。この場合、正しく受信できたため、基地局は、ステップ S1104において、 所定の送信タイミングで ACKを移動局に送信する。したがって、基地局、移動局とも にこの HARQプロセスはフリー状態に戻され、移動局は、ステップ S1107において、 この HARQプロセスを使って任意のタイミングで新データの送信を行う。基地局にお ける受信誤り判定の結果、このデータブロックに誤りを検知すると、基地局は、ステツ プ S1108において、所定の送信タイミングで NACKを送信する。したがって移動局 は、ステップ S1109において、任意のタイミングで前回と同じデータブロックを再送す る。このとき移動局は、 NDIについては前回と同じ値で送信する。基地局は、正しく 受信できると、ステップ S1110において、 ACKを移動局に送信し、基地局、移動局と もにこの HARQプロセスはフリー状態に戻る。
[0039] 時間'伝送速度スケジューリングの場合と同様に、時間スケジューリングにおいても 、 SHO中や ACKZNACKの受信誤りにより、基地局と移動局の HARQプロセス状 態の不一致が生じる場合がある。しかし、これらの HARQプロセス状態の不一致は、 上述したように、 NDIによって新データである力否かを通知することにより、解消する ことができるようになって!/、る。
非特許文献 1 : 3GPP TR25. 896 v6. 0. 0 (2004— 03) 3rd Generation Partnership Project; Technical Speciiication uroup Radio Access N etwork; Feasibility Study for Enhanced Uplink for UTRA FDD (R elease 6)
発明の開示
発明が解決しょうとする課題
[0040] EUDCHなどのように基地局が上り回線のスケジューリングを行う場合、データの発 生量を検知できな 、受信側すなわち基地局力 Sスケジューリングを行って 、るので、送 信すべきデータの発生量を検知できる送信側がスケジューリングを行う場合と、シス テムの動作が根本的に異なることになる。例えば、 EUDCHにおいては、基地局は、 移動局からの伝送レート増減要求やバッファ情報の通知から、移動局におけるデー タ量を推定し、リソース割当てを行わなければならない。 EUDCHでは HARQを導入 しているが、 HARQでは、正しく受信されなかったデータは再送データとしてバッファ に保持されるため、基地局と移動局との間で HARQプロセス状態の認識のずれが生 じると、適切なスケジューリングが行えなくなる。この場合、使われていないリソースが 存在するにも関わらず、リソースを必要としている移動局にリソースを割当てられない 等の状況が生じ、スループットが劣化してしまう。
[0041] 以上で説明したように、 EUDCHにおいては、 HARQプロセス状態の不一致は N DIを用いて解消できるようになつている力 このような仕組みを備えていても、なお、 HARQプロセス状態の不一致を解消できない状態が生じる。
[0042] HARQプロセス状態の不一致を解消できない状態の 1つとして、図 12に示すような SHO状態が挙げられる。
[0043] 図 12では、図 7に示した場合と同様に、移動局が、ステップ S601eにおいて SIをス ケジユーリング基地局に送信し、スケジューリング基地局のみ力 ステップ S602eに おいて、移動局に SAを送信し、移動局が、 SAで指定された時間と伝送速度を用い て、ステップ S603e, S604eにおいて、新データを各基地局に送信する。そして、移 動局が初めに送信したデータブロックに対して、スケジューリング基地局がステップ S 605eにおいて NACKを送信し、非スケジューリング基地局がステップ S606eにおい て ACKを送信している。ここでは、移動局は、送信すべき新たなデータブロックを持 つていないとする。すると、ステップ S607eにおいてスケジューリング基地局が再送を 指示する SAを送信するものの、移動局は、データブロックとともに送信することになつ ている NDIを送信できない。その結果、スケジューリング基地局は SAで再送を指示 した送信時間にデータブロックを受信できず、移動局がフリー状態に戻っていること を認知できない。したがって、スケジューリング基地局は、ステップ S608e、 S609eに おいて、再度、再送を要求する SAを移動局に送信する。移動局は先ほどと同様に 何も送信できな 、ため、 HARQプロセスの不一致は解消できな!/、ままとなる。
[0044] このような状態は、スケジューリング基地局力 予め定められている最大再送回数ま で SAを送信し終えるまで、継続する。一般に最大再送回数は、平均再送回数に比 ベて十分大きい値に設定されている。なぜなら、最大再送回数内で受信できないと、 基地局は再送を断念し、そのデータブロックは失われる力、上位層プロトコルでの再 送を要するためである。平均再送回数に近い最大再送回数を設定すると、データブ ロックの消失率増加や上位層での再送による大きな遅延を引き起こし、好ましくない。 したがって、最大再送回数は十分に大きくとる必要があり、例えば、数十フレーム程 度に設定される。そのため、上述のような HARQプロセス状態の不一致が生じた場 合は、スケジューリング基地局は、多大な回数の無駄な再送要求を送信し続けること になる。このような状態は、送信すべきデータを持っていない移動局のためにリソース を確保し、送信すべきデータを待って ヽる移動局にはリソースを割当てられな ヽと ヽ うことなので、無線リソースの使用効率を低下させ、システムスループットが劣化する。
[0045] 一般に、 WCDMAセルラシステムにおける SHO状態の割合は 40〜60%程度で あることを考えると、このような状況が発生する確率は小さくないと考えられる。例えば 、スケジューリング基地局が NACK、非スケジューリング基地局が ACKを送信する確 率が 50%程度とすると、全体の 20〜30%の割合でこのようなケースが生じていること になる。実際、スケジューリング基地局が NACK、非スケジューリング基地局が ACK を送信する確率は、各々の基地局の移動局への伝搬ロスのバランスにより決まるが、 スケジューリング基地局の切り替えが伝搬ロスの変動に追従して高速に行えない場 合は、非スケジューリング基地局との伝搬ロス力 Sスケジューリング基地局との伝搬ロス よりも非常に小さくなり、ほとんどのデータブロックは非スケジューリング基地局のみで 受信されるような状況が発生する。このような場合、 HARQプロセスの不一致が慢性 的に生じていることになり、スケジューリングの特性は著しく劣化する。
[0046] さらに、ストリーミングなどの比較的小さいパケットを所定の時間間隔で送信するよう なサービスの場合、各々のパケット送信後に常に数十フレームほどの無線リソースの 無駄時間が生じるため、無線リソースの使用効率の劣化率は非常に大きい。最悪の 場合、データは間欠的にしか送信されないにも関わらず、無線リソースは連続的に割 当てられ続ける可能性があり、パケット交換の恩恵を受けられないことになる。これは 、システムスループットの観点からは大きな問題である。
[0047] HARQプロセスの不一致が解消できないような状況は、 ACKまたは NACKの誤り の場合にも起こりうる。
[0048] 図 13に示したように、時間 '伝送速度スケジューリングを用いたシステムにおいて、 基地局が NACKを送信したにも関わらず、受信誤りにより移動局は ACKと受信した 場合を考える。移動局がステップ S301aにおいて SIを基地局に送信し、基地局はス テツプ S302aにおいて SAを送信し、移動局はそれに応じてステップ S303aにおい てデータを送信する。ここで、基地局では正しく受信できな力つたため、ステップ S30 4aにおいて、基地局は NACKを送信している力 移動局による受信誤りにより、移動 局では ACKと受信される。移動局は、 ACKを受信したため、そのデータブロックを破 棄し、この HARQプロセスはフリー状態となる。し力し、基地局ではこの HARQプロ セスは再送状態のままであるため、スケジューラは、ステップ S305aにおいて、この H ARQプロセスに再送用のリソースを割当てる。このとき、移動局に送信すべき新たな データがない場合は、移動局は何も送信しないため NDIも送信されず、基地局にお ける HARQプロセス状態は再送状態のままとなり、スケジューラは、ステップ S306a, S307aに示すように、最大再送回数まで再送用のリソースを繰り返し割当てる。した がって、 SHOの場合と同様にリソースの使用効率が劣化する。
次に、図 14に示したような、基地局が ACKと送信したにも関わらず、受信誤りにより 移動局は NACKと受信した場合を考える。移動局がステップ S301bにおいて SIを基 地局に送信し、基地局はステップ S302bにおいて SAを送信し、移動局はそれに応 じてステップ S303bにお!/、てデータを送信する。基地局では正しく受信できたため、 ステップ S304bにおいて、基地局は ACKを送信する力 移動局による受信誤りによ り、移動局では NACKと受信される。移動局は NACKを受信したためそのデータブ ロックを保持し、この HARQプロセスを再送状態とする。し力し、基地局ではこの HA RQプロセスはフリー状態であるため、基地局は、ステップ S305bにおいて、新デー タの送信を指示する SAを送信する。しかし、この S Aにおいて割当てた最大伝送速 度が前回の最大伝送速度よりも小さかった場合、移動局では再送データを送信でき ない。したがって、移動局は何も送信せず、基地局は指定した送信タイミングで何も 受信できない。このとき、基地局の処理としていくつか考えられる:
(a) 移動局はデータを送信したが基地局が受信誤りを起こしたと判断し、基地局 での HARQプロセスを再送状態とする;
(b) 移動局が SAを受信誤りしたと判断し、移動局での HARQプロセスをフリー状 態とする;
(c) 移動局は SAを受信した力 なんらかの理由、例えば、移動局の送信電力不 足により送信を行わな力つたと判断し、移動局での HARQプロセスをフリー状態とす る。
[0050] 移動局がデータブロックを送信したカゝ否かは、 TFCIを検知することにより判断すれ ばよい。すなわち、基地局が TFCIを検知したがデータは受信できな力つた場合は (a )とし、 TFCIを検知できな力つた場合に (b)または (c)とする。ここで述べて 、る例で は、移動局は何も送信しないので、基地局は TFCIを検知できず、(b)または (c)の 場合と判断し、この HARQプロセスをフリー状態にする。その結果、基地局は、 SAを 再度送信して新データの要求をするかもしれないし、他の移動局へのリソース割当て を優先する力もしれない。例えば、ステップ S306bに示すように再度、 SAで新データ の送信を指示しても、基地局では移動局が再送データを依然として保持していること を認識していないため、基地局は、最大伝送速度をそのときの状況により適当に設 定する。したがって、再送データに必要な伝送速度が割当てられる確証はなぐ無線 リソースを割当てられても送信できない可能性がある。そのため、無線リソースの使用 効率が低下し、さらに移動局は送信すべきデータを保持しているにも関わらず送信 できないため、送信遅延が著しく増加する。したがって、システムスループット、ユー ザスループットともに劣化すると!/、う問題点が生じる。
[0051] また、上述の(b) , (c)の場合は、基地局において相互に区別ができない。(b)の場 合は、基地局は SAの送信電力を上げて同じリソースを再度割当てればよいが、 (c) の場合は、同じリソース割当てを行っても再びデータ送信できず、リソースの無駄に なってしまう。基地局においてこれらの区別ができないと、不適切な処理を行ってリソ ースの使用効率が低減することとなるので、好ましくない。
[0052] 本発明の目的は、以上に述べたような HARQプロセス状態の不一致により送信す べきデータを持って 、な 、移動局に無駄なリソース割当てることにより、データを持つ て ヽる移動局に対して無線リソースを割当てられなくなる、という問題点を解決でき、 システムスループット及びユーザスループットをともに向上させることができる通信制 御方法、無線通信システム、基地局並びに移動局を提供することにある。
課題を解決するための手段
[0053] 本発明の通信制御方法は、基地局と基地局に対して無線回線が設定される移動 局とを有する無線通信システムにおける通信制御方法であって、基地局が、移動局 に対して、送信リソースの割当てを示す送信リソース割当て情報を通知する段階と、 移動局が、送信リソース割当て情報にしたがって、データブロックを送信する段階と、 基地局が、データブロックが正しく受信できたか否かを示す送達確認信号 (ACK及 び NACK)を送信する段階と、誤受信を示す送達確認信号 (NACK)を受信した場 合に移動局がデータブロックを再送する段階と、正しく受信したことを示す送達確認 信号 (ACK)を受信した場合に移動局がデータブロックの送信を終了する段階と、移 動局が、自局が再送待ちの状態である再送状態か再送待ちでない状態であるフリー 状態かを通知する送信プロセス状態通知を送信する段階と、基地局が、移動局にお ける送信プロセス状態に応じて、移動局に対する送信リソースの割当てを決定する段 階と、を有する。
[0054] 本発明の通信制御方法では、移動局は、(1)送信プロセス状態通知を所定の周期 で送信してもよぐ(2)送達確認信号の受信に応じて、送信プロセス状態通知を送信 してもよく、(3)正しく受信したことを示す送達確認信号 (ACK)を受信した時刻 T1す なわち ACK受信時刻において自局のバッファ内に送信すべきデータがなぐかつ、 時刻 T1から所定の時間期間 T2内に送信すべきデータが発生しな力つた場合に、送 信プロセス状態通知を送信してもよく、(4)誤受信を示す送達確認信号 (NACK)を 受信した時刻 T3すなわち NACK受信時刻から所定の時間期間 T4の間に、誤受信 を示す送達確認信号 (NACK)に対応する再送に必要なリソースを割当てられなか つた場合に、送信プロセス状態通知を送信してもよぐあるいは、(5)送信リソース割 当て情報を受信した時刻 T5すなわち割当て受信時刻において自局のバッファ内に 送信すべきデータがなぐかつ、時刻 T5から所定の時間期間 T6内に送信すべきデ ータが発生しなカゝつた場合に、送信プロセス状態通知を送信してもよ ヽ。
[0055] 本発明の通信制御方法では、移動局は、送信プロセス状態通知を送信し、その後 、所定のタイミングで、正しく受信したことを示す送達確認信号 (ACK)を受信すると、 送信途中のデータを破棄し、再送を停止するようにしてもょ 、。
[0056] また、本発明の通信制御方法では、移動局は、送信リソース割当て情報を受信した が送信すべきデータがな!ヽ場合に第一の送信プロセス状態通知を送信し、送信リソ ース割当て情報を受信し送信すべきデータはあるが送信しない場合には第二の送 信プロセス状態通知を送信するようにしてもよい。この場合、基地局は、第二の送信 プロセス状態通知を受信した場合、データブロックに対する送信リソース割当ての優 先度を低くするとよい。
[0057] 本発明の通信制御方法では、基地局は、送信リソース割当て情報を送信し、その 後、所定の期間にわたって移動局からデータブロックも送信プロセス状態通知も受信 しな力つた場合には、送信リソース割当て情報の送信電力を所定値だけ増カロさせて 送信するとよい。
[0058] 本発明においては、送信リソースとして、例えば、移動局に使用を許可する最大伝 送速度と送信時間を割当てもよいし、あるいは、移動局に使用を許可する最大伝送 速度を割当ててもよい。
[0059] 本発明の無線通信システムは、基地局と、基地局に対して無線回線が設定され、 基地局からの送信リソース割当て情報にしたがってデータブロックを基地局に送信し 、基地局からの、誤受信を示す送達確認信号 (NACK)を受信するとデータブロック を再送し、正しく受信したことを示す送達確認信号 (ACK)を受信するとデータブロッ クの送信を終了し、自局が再送待ちの状態である再送状態か再送待ちでない状態 であるフリー状態力を通知する送信プロセス状態通知を送信する移動局と、を有し、 基地局は、データブロックが正しく受信できたか否かに応じて送達確認信号 (ACK 及び NACK)を送信し、移動局における送信プロセス状態に応じて、移動局に対す る送信リソースの割当てを決定する。
[0060] 本発明の基地局は、移動局に対して無線回線が設定される基地局であって、移動 局から、データブロックと、その移動局が再送待ち状態か否力を通知する送信プロセ ス状態通知を受信する手段と、データブロックが正しく受信できた力否かを判定する 手段と、送信プロセス状態通知に応じて移動局に対する送信リソースの割当てを決 定する手段と、移動局に対して送信リソース割当て情報を通知するとともに、データ ブロックが正しく受信できたか否かを示す送達確認信号を送信する手段と、を有する
[0061] 本発明の移動局は、基地局に対して無線回線が設定される移動局であって、送信 すべきデータを格納する格納手段と、基地局力 送信リソース割当て情報と送達確 認信号とを受信する手段と、送信リソース割当て情報に応じて、格納手段中のデータ をデータブロックとして送信させ、誤受信を示す送達確認信号 (NACK)を受信する とデータブロックを再送させ、正しく受信したことを示す送達確認信号 (ACK)を受信 するとデータブロックの送信を終了させる手段と、再送待ち状態か否かを通知する送 信プロセス状態通知を送信する手段と、を有する。
[0062] 本発明を適用することにより、受信側すなわち基地局力スケジューリングを行い、か つ HARQのような自動再送制御を用いるシステムにおいて、データパケットの送信遅 延を低減し、システムスループットやユーザスループットを向上することが可能となる。
[0063] 受信側力スケジューリングを行う場合、スケジューラは、直接は、送信側すなわち移 動局のノ ッファ内のデータ量を検知することができないため、送信側からの制御信号 によりバッファ内のデータ量を推定しながらリソースの割当てを決定しなければならな い。また、 HARQを用いると、正しく受信できな力つたデータは再送データとして保持 されるため、制御信号の誤り等で基地局と移動局間の HARQプロセス状態の不一致 が生じると適切なスケジューリングが行えなくなる。この場合、使われていないリソース が存在するにも関わらず、リソースを必要として 、る移動局に未使用のリソースを割当 てられない状況が生じ、システムスループットが劣化する。本発明によると、このような HARQプロセス状態の不一致を解消することを可能とし、移動局には送信すべきデ ータがないにも関わらず、基地局が再送状態と認識してこの移動局に再送用のリソ ースを割当て続けることを回避できる。また、基地局はフリー状態であるにも関わらず 移動局は再送状態と認識しているために、割当てられたリソースが再送には不十分 でデータブロックの送信が行えなくなるような状況を回避できる。したがって、本発明 によれば、ユーザスループットが向上するとともに、リソースの使用効率も増加するた めシステムスループットも向上する。
[0064] また本発明によれば、基地局は、移動局がリソース割当て信号 (SA)を受信誤りし たことが検知できるようになるため、リソース割当て信号の送信電力が適切な値になる ように制御可能となる。したがって、本発明によれば、リソース割当て信号の誤り率が 低減し、基地局が割当てたリソースが適切に使用される確率を高めることができる。 すなわち、リソースの使用効率が増加し、システムスループットが増加するとともに、ュ 一ザスループットが増加し、送信遅延が低減する。
図面の簡単な説明
[図 1]移動局での HARQプロセス状態を説明する図である。
[図 2]基地局での HARQプロセス状態を説明する図である。
[図 3]同期送信型での HARQの送信タイミングを示すタイミングチャートである。
[図 4]非同期送信型での HARQの送信タイミングを示すタイミングチャートである。
[図 5]基地局と移動局とがやり取りする信号を示した図である。
[図 6]基地局と移動局との間の信号のやり取りを示すシーケンスチャートである。
[図 7]SHO (ソフトハンドオーバ)状態のときの基地局と移動局との間の信号のやり取 りを示すシーケンスチャートである。
[図 8]NACKが ACKとして誤って受信された場合の処理を示すシーケンスチャート である。
[図 9]ACKが NACKとして誤って受信された場合の処理を示すシーケンスチャート である。
[図 10]時間スケジューリングを用いる場合における、基地局と移動局とがやり取りする 信号を示した図である。
[図 11]時間スケジューリングを用いる場合における、基地局と移動局との間の信号の やり取りを示すシーケンスチャートである。
[図 12]SHO状態で生じる問題を説明するシーケンスチャートである。
[図 13]NACKを ACKと誤ることにより発生する問題を説明する図である。
[図 14]ACKを NACKに誤ることにより発生する問題を説明する図である。
[図 15]本発明が適用されるセルラシステムの構成の一例を示す図である。
[図 16]第一の実施形態における、 SHO状態での基地局と移動局との間の信号のや り取りを示すシーケンスチャートである。
[図 17]第一の実施形態における移動局での処理を示すフローチャートである。
[図 18]第一の実施形態における基地局での処理を示すフローチャートである。
[図 19]第一の実施形態における基地局の構成を示すブロック図である。 [図 20]第一の実施形態における移動局の構成を示すブロック図である。 圆 21]第二の実施形態における、 SHO状態での基地局と移動局との間の信号のや り取りを示すシーケンスチャートである。
[図 22]第二の実施形態における移動局での処理を示すフローチャートである。
[図 23]第二の実施形態における基地局での処理を示すフローチャートである。 圆 24]第二の実施形態における基地局の構成を示すブロック図である。
圆 25]第二の実施形態における移動局の構成を示すブロック図である。
圆 26]第四の実施形態における HARQプロセス状態通知の送信例を説明する図で ある。
符号の説明
[0066] 801, 1001, 1501, 1601 受信処理部
802, 1002, 1502, 1602 制御信号分離部
803, 1503 復号処理部
804, 1005, 1504, 1605 ノッファ
805, 1505 誤り検出部
806, 1003, 1506, 1603 HARQ制御部
807, 1507 スケジューラ部
808, 1006, 1508, 1606 符号化処理部
809, 1008, 1509, 1608 制御信号合成部
810, 1009, 1510, 1609 送信処理部
1004, 1604 TFC選択部
1007, 1607 再送バッファ
1010 再送待ちカウンタ
発明を実施するための最良の形態
[0067] 次に、本発明の好ましい実施の形態について、図面を参照して説明する。以下で は、例として WCDMAにおける EUDCHに本発明の通信制御方法を適用した場合 を用いて、本発明を説明する。
[0068] 図 15は、本発明の通信制御方法が適用されるセルラシステムの構成の一例を示し ている。後述する第一乃至第六の実施形態は、いずれも、図 15に示したセルラシス テムにその実施形態の通信制御方法が適用されたものとして、説明されている。
[0069] 図示したものでは 2つの基地局(BTS) 411、 412が設けられており、基地局 411, 412は、それぞれセノレ 401、 402に対応して!/ヽる。セノレ 401とセノレ 402と力 ^重複する 領域が存在し、この領域内に位置する移動局(MS) 422に対しては、基地局 411と 基地局 412との間での SHO (ソフトハンドォーノ)が提供されるようになっている。セ ル 401内の移動局 421は基地局 411のみと接続し、セル 402内の移動局 423は基 地局 412のみと接続して、 EUDCHのデータを送信するための E— DPDCH (UL)と 制御信号を送信するための E— DPCCH (ULZDL)を送受信している。また、移動 局 422は両方の基地局 411, 412と接続して、 EUDCHのデータを送信するための E-DPDCH (UL)と制御信号を送信するための E— DPCCH (UL/DL)を送受信 している。さらに、基地局 411、 412と接続する基地局制御装置 (RNC) 430が設けら れている。ここで、サフィックス「UL」は上り回線 (アップリンク)を表し、サフィックスお LJは下り回線 (ダウンリンク)を表して!/、る。
[0070] 基地局制御装置 (RNC) 430は、移動局と基地局とに対し、各移動局に対して使用 を許可する送信形式の組み合わせである TFC (Transport Format Combinatio n)のセットを通知する。 TFCのセットを TFCSと呼ぶ。 TFCは、送信間隔(TTI)や T TIに含まれる情報ビット数等のパラメータを含む。 TFCに応じて EUDCHの伝送速 度は異なり、伝送速度が高いほど基地局に与えるノイズライズは高くなる。したがって 、移動局に対して使用を許可する最大 TFCを基地局が制御することにより、基地局 におけるノイズライズ変動を制御する。このための制御情報力 E-DPCCH (UL/ DL)を用いて基地局と移動局との間で送受信される。
[0071] また、このセルラシステムでは、 HARQが用いられている。移動局 421、 422、 423 は、 E— DPDCHを用いて、所定の送信間隔でデータブロックを送信する。基地局 4 11、 412は、受信データブロックの CRCからデータブロックが正しく復号されたか否 かを判定し、下り回線の E— DPCCHにおいて、正しく受信できたことを示す送達確 認信号である ACK、あるいは、誤受信を示す送達確認信号である NACKを送信す る。また、移動局 422は、 2つの基地局と EUDCHの回線を設定しているため、両方 の基地局から ACKZNACKの信号を受信する。移動局 422は、いずれか 1つの基 地局からでも ACKを受信した場合には、該当するデータブロックは正しく受信された ものとしてそのデータは破棄し、両方の基地局力も力も NACKを受信した場合だけ、 再送を行う。
[0072] 第一の実施形態:
以下、第一の実施形態による通信制御方法について説明する。
[0073] 第一の実施形態では、時間'伝送速度スケジューリングを用い、 HARQは同期型 送信を用いるものとする。さらに、再送に関しては基地局が指示をする、すなわち基 地局制御型再送方法が用いられるものとする。
[0074] この実施の形態では、 TFCIを利用して移動局の HARQプロセス状態を通知でき るように構成されて ヽる。 TFCIは送信データ形式を規定する TFCを示すビット系列 であるが、このビット系列のうちの 2つを、それぞれ、フリー状態通知と再送状態通知 として定義しておく。ここでは、下表のように、 5ビットの TFCIを使用しているとする。 すなわち、 TFCIOをフリー状態、 TFCI 1を再送状態と定義する。
[0075] [表 1]
Figure imgf000024_0001
移動局は、以下のような場合に、 HARQプロセス状態通知を使用する:
(a)フリー状態のときに SAを受信し、かつ、送信すべきデータがバッファ内にない
(b)フリー状態のときに SAを受信し、送信すべきデータはあるが送信しない場合;
(c)再送状態のときに、再送に要する伝送速度より小さい SAが割当てられた場合;
(d)再送状態のときに、 NACKを受信してカゝら連続 N回の該当する HARQプロセ スの送信タイミングにおいて、リソースを割当てられな力つた場合。
[0076] 以上の条件(a)〜(d)のいずれ力 1つを満たすと、移動局は、該当する HARQプロ セスの状態を通知する TFCIと現在の NDIとを指定された送信タイミングで送信する 。ここで、基地局の場合であれば ACKを送信し、あるいは移動局の場合であれば A CKを受信し、そのデータパケットの送信が終了したと判断した時点で、 NDIを 1つ増 カロさせることによって NDIを更新し、次の新たなデータ送信に備えるものとする。
[0077] 基地局は、 HARQプロセス状態を通知する TFCIを受信すると、自局における HA RQプロセス状態を確認し、不一致が生じている場合は移動局に合わせるように修正 するか、移動局に基地局の HARQプロセス状態を通知する。
[0078] 図 16は、第一の実施形態における、 SHO状態での基地局と移動局との間の信号 のやり取りを示すシーケンスチャートである。なお、図 16に示した信号のやり取りに対 応する、従来技術での信号のやり取りは、上述した図 12に示されている。
[0079] 移動局が、ステップ S501において、スケジューリング基地局に対して SIを送信する と、スケジューリング基地局は、ステップ S502において、その移動局に対して SAを 送信し、移動局は、受信した SAにしたがって、ステップ S503, S504において、 NDI =0と設定してデータブロックを各基地局に送信する。その後、ここで示す場合では、 移動局は、ステップ S505においてスケジューリング基地局から NACKを受信し、ス テツプ S506において非スケジューリング基地局力も ACKを受信する。移動局は、少 なくとも 1つの ACKを受信しているので、 自局の HARQプロセスをフリー状態に戻し 、 NDIを 1つ増加させる。しかし、スケジューリング基地局は、再送状態であるため、 再送のためのリソースを割当てるため、ステップ S507〖こおいて、 SAを移動局に送信 する。このとき移動局には送信すべきデータがないとすると、上述の(a)の条件を満 たすため、移動局は、ステップ S508において、フリー状態であることを通知する TFC 10と NDI= 1を送信する。すると、スケジューリング基地局は、移動局がフリー状態で あることを認識し、さらに NDIがそのスケジューリング基地局で管理して 、る NDIより も 1大きいため、移動局は送信すべきデータを保持していない、と判断する。そして、 スケジューリング基地局は、自局の HARQプロセスをフリー状態に戻し、その移動局 へのリソース割当てを停止する。このようにして本実施形態によれば、スケジユーリン グ基地局と移動局間の HARQプロセスの不一致を解消することができ、無駄なリソー ス割当てを回避できる。
[0080] 図 17は、本実施形態において、 SAの受信タイミング力 HARQプロセス状態を更 新するまでの、移動局の処理の流れを示したフローチャートである。
[0081] まず、移動局は、ステップ S501aに示すように、 SA受信タイミングで、 SAを受信で きたかどうかを判断し、受信できた場合にはステップ S51 laに移行し、受信できなか つた場合には、ステップ S502aに移行する。以下、受信できなかった場合と受信でき た場合とに分けて、移動局での処理を説明する。
[0082] SA受信タイミングで SAを受信できなかった場合:
移動局が SAの受信タイミングで SAを受信できな力つた場合は、移動局は、ステツ プ S502aにおいて、自局がフリー状態であるかどうかを判断する。フリー状態であつ た場合には、移動局は、ステップ S503aに示すように、フリー状態のままとし、最初の ステップ S501aに戻る。ステップ S502aでフリー状態でない場合、すなわち再送状 態であった場合には、移動局は、ステップ S504aにおいてカウンタを 1つ増加させ、 ステップ S505aにおいて、カウンタの値と所定の最大再送待ち回数 Nとを比較する。 カウンタの値が N以下である場合には、移動局は、ステップ S56に示すようにそのま ま再送状態として、最初のステップ S501aに戻る。一方、ステップ S505aにおいて、 カウンタの値が Nよりも大きい場合には、移動局は、ステップ S507aにおいて、再送 状態通知と NDIを送信する。ここで、移動局は、ステップ S508aにおいて、所定の A CKZNACK送信タイミングにお!/、て ACKを受信したかどうかを判定する。 ACKを 受信している場合には、それは、基地局ではフリー状態であることを意味しているた め、移動局は、ステップ S509aにおいて、 自局の HARQプロセス状態もフリー状態 に戻し、 NDIを 1つ増加させる。一方、ステップ S508aにおいて、 ACKを受信せず、 すなわち NACKを受信した場合は、それは基地局でも依然として再送状態であるこ とを意味しているので、移動局は、ステップ S510において、カウンタをリセットし、ステ ップ S 506aに移行して再送状態のままとする。
[0083] SA受信タイミングで SAを受信した場合:
移動局が SAの受信タイミングで SAを受信した場合は、移動局は、ステップ S511a において、自局がフリー状態であるかどうかを判断する。フリー状態でない場合、すな わち再送状態である場合には、移動局は、ステップ S512aにおいて、割当てられた 伝送速度が再送データの送信に十分であるかどうかを判定し、十分であればステツ プ S513aにおいて再送データを送信し、十分でない場合には、ステップ S514a〖こお いて、再送状態通知と NDIを送信する。そして、移動局は、ステップ S515aにおいて 、所定の ACKZNACK送信タイミングで ACKを受信したかどうかを判定し、 ACKを 受信している場合には、ステップ S516aにおいて、自局の HARQプロセス状態をフリ 一状態に戻し、 NDIを 1つ増加させ、最初のステップ S501aに戻る。一方、ステップ S 515aにおいて、 ACKを受信せず、すなわち NACKを受信した場合は、移動局は、 ステップ S517aに示すように、再送状態のままとし、最初のステップ S501aに戻る。こ のように、移動局が再送状態であるが再送に必要なリソースを割当てられな力つた場 合は、移動局は再送状態通知を送信し、基地局において移動局が再送状態である ことを検知できる。そして、基地局が ACKを送信することにより、移動局は、再送待ち 中のデータは既に正しく受信されていることを確認でき、自局をフリー状態へと修正 できる。
[0084] また、ステップ S51 laにおいてフリー状態だった場合には、移動局は、ステップ S5 18aにおいて、送信すべきデータがあるかどうかを判断し、送信すべきデータがある 場合にはステップ S519aにお ヽて新データを送信し、所定のタイミングで ACKを受 信したかどうかをステップ S520aにおいて判断する。 ACKを受信した場合には、移 動局は、ステップ S521aにおいて、自局の状態をフリー状態へと戻して NDIを 1つ増 加させ、最初のステップ S501aに戻る。一方、ステップ 520aにおいて、 ACKを受信 せず、すなわち NACKを受信した場合は、移動局は、ステップ S522aにおいて、自 局の状態を再送状態とし、最初のステップ S501aに戻る。また、ステップ S518aにお いて送信すべきデータがない場合には、移動局は、ステップ S523aにおいて、フリー 状態通知と NDIを送信し、最初のステップ S501aに戻る。これにより、基地局は、移 動局がフリー状態であることを検知でき、無駄なリソース割当てを停止することができ る。
[0085] 図 18は、本実施形態において、 SAの受信タイミング力 HARQプロセス状態を更 新するまでの、基地局の処理の流れを示したフローチャートである。この基地局での 処理の流れは、図 17に示した移動局における処理の流れと対をなすものである。
[0086] 基地局の処理は、ステップ S501bに示すように、 SA送信タイミングで SAを送信し たカゝどうかによって異なり、送信した場合にはステップ S506bに移行し、送信しなかつ た場合にはステップ S502bに移行する。以下、送信しなカゝつた場合と送信した場合と に分けて、基地局での処理を説明する。
[0087] SAを送信しなカゝつた場合:
基地局が SAを送信しなかった場合は、基地局は、ステップ S502bにおいて、再送 状態通知を受信したかどうかを判断し、再送状態通知を受信した場合は、次に、ステ ップ S503bにおいて、基地局における状態が再送状態かどうかを判断し、ここで再 送状態であれば、ステップ S504bにおいて、 NACKを移動局に送信するとともに、こ の HARQプロセスは再送状態のままとし、処理を終了する。ステップ S503bにおい て基地局における状態がフリー状態であれば、基地局は、ステップ S505bにおいて 、 ACKを送信し、基地局における状態はフリー状態のままとし、処理を終了する。ス テツプ S502bで再送状態通知を受信しな力つた場合には、基地局は処理を終了す る。
[0088] SAを送信した場合:
基地局が SAを送信した場合には、基地局は、ステップ S506bにおいて、指示した 送信タイミングで TFCIを受信したカゝどうかを判断し、 TFCIを受信しなカゝつた場合に は、ステップ S507bにおいて、 SAの送信電力を増加させ、ステップ S501bに戻る。 このような状況は、移動局が SAを受信誤りした場合に生じるので、電力を増加させる ことにより、 SAの誤り率を低減できる。ステップ S506bにおいて TFCIを受信できた 場合には、基地局は、ステップ S508bにおいて、その TFCIが HARQプロセス状態 通知であるかを判断する。基地局は、 HARQプロセス状態通知であった場合には、 ステップ S509bにおいて、それがフリー状態を通知するものかどうかを判断し、フリー 状態を通知するものであった場合には、ステップ 510bにおいて、一緒に通知された NDIを確認して基地局で管理している値と同じであるかどうかを判断する。ここで、通 知された NDIが基地局で管理しているものと異なる場合には、基地局は、ステップ S 51 lbにおいて、移動局に送信すべきデータがないと判断してフリー状態とし、この移 動局のスケジューリングを新たなデータ発生通知があるまで停止し、処理を終了する 。また、ステップ S510bにおいて NDIが同じである場合には、基地局は、ステップ S5 12bにおいて、移動局はデータは持っているが送信できない状況であると判断し、こ の移動局の優先度を低くしフリー状態とし、処理を終了する。このようにフリー状態通 知を受信すると、無駄なリソース割当てを停止できる。
[0089] ステップ S509bにおいてフリー状態でなかった場合、すなわち、受信した HARQプ ロセス状態通知が再送状態であった場合には、基地局は、ステップ S513bにおいて 、基地局における HARQプロセス状態が再送状態であるかどうかを確認し、再送状 態である場合は、ステップ S514bにおいて、 NACKを送信し、この HARQプロセス は再送状態として、処理を終了する。また、ステップ S513bにおいて、基地局におけ る HARQプロセスが再送状態でない、すなわちフリー状態であれば、基地局は、ステ ップ S515bにおいて、 ACKを送信しフリー状態のままとし、処理を終了する。このよう に、移動局が再送状態で基地局はフリー状態の場合は、基地局は ACKを送信する ことにより、移動局の HARQプロセスをフリー状態に修正する。
[0090] ステップ S508bにお!/、て、受信した TFCIが HARQ状態通知でな!、場合には、基 地局は、ステップ S518bにおいて、データブロックの受信処理を行い、ステップ S51 9bにおいて、正しく受信できた力どうかを判断し、正しく受信できた場合にはステップ S520bにおいて ACKを送信してフリー状態とし、処理を終了する。ステップ S519b において正しく受信できなかった場合は、基地局は、ステップ S521bにおいて NAC Kを送信して再送状態とし、処理を終了する。
[0091] 基地局は、以上のようなフローによって各 HARQプロセスの状態を更新し、 HARQ プロセス状態と、各移動局が通知するノ ッファサイズと受信済みのデータサイズの差 から計算した未受信データ量とを考慮して、スケジューリングを行う。
[0092] 図 19は、本実施形態で用いる基地局の構成を示すブロック図である。
[0093] 基地局は、受信信号の逆拡散等の処理を行う受信処理部 801と、逆拡散後の受信 信号を制御信号とデータとに分離する制御信号分離部 802と、分離されたデータを 復号する復号処理部 803と、移動局ごとに 1または複数準備され、復号後のデータを 蓄積するノ ッファ 804と、復号したデータにおける誤りを検出する誤り検出部 805と、 移動局ごとに対応して設けられ、 HARQプロセス状態を管理する HARQ制御部 806 と、移動局ごとにスケジューリングを行うスケジューラ部 807と、下り回線データに対し て符号化処理を行う符号化処理部 808と、符号化後の下り回線データと制御信号と を合成する制御信号合成部 809と、制御信号合成部 809からの出力信号に対して 拡散処理などを行って送信信号とする送信処理部 810と、を備えて!/ヽる。
[0094] このような基地局では、受信処理部 801において受信信号の逆拡散等の処理が行 なわれ、受信処理部 801で処理された受信信号を制御信号分離部 802が制御信号 とデータとに分離する。分離された制御信号のうち、スケジューリングのための情報を 含む SIがスケジューラ部 807へ送られ、 HARQプロセス状態通知と NDIとは HARQ 制御部 806へ送られる。分離されたデータは、復号処理部 803において復号され、 その後、移動局ごとに 1つまたは複数準備されているバッファ 804に蓄積される。復 号処理部 803での復号処理に際し、誤り検出部 805は、復号されたデータに対する 誤り検出を行い、その結果を、移動局ごとに準備された HARQ制御部 806に通知す る。
[0095] HARQ制御部 806は、 HARQプロセスごとに状態を管理するとともに、 HARQプ ロセス状態通知を受け取ると、図 18で示した手順によって、 HARQプロセス状態を 更新する。また、 HARQ制御部 806の HARQ状態に関する情報やバッファ状態の 情報は、周期的にスケジューラ部 807へ送られるとともに、送信すべき ACKZNAC Kの信号がある場合は、それらの信号は制御信号合成部 809へ送られる。
[0096] スケジューラ部 807は、各移動局力も受信した SIや HARQ状態、ノ ッファ状態、ま た上位レイヤが通知するデータフローの優先度等から、各移動局のスケジューリング を行う。スケジューリング方法としては、一般に知られているスケジューリング方法、例 えばデータのある移動局に対して順番に送信機会を割当てる方法や、優先度の高 いデータを持っている移動局に優先して送信機会を割当てる方法など、どのようなも のを用いてもよい。スケジューリングに関する情報は、制御信号合成部 809において 、各移動局に対する下り回線のデータと合成され、合成後のデータに対する拡散等 の送信処理が送信処理部 810において行なわれた後、下り回線によって送信される [0097] 図 20は、本実施形態で用いる移動局の構成を示すブロック図である。
[0098] 移動局は、受信信号に対して逆拡散等の受信処理を施す受信処理部 1001と、逆 拡散後の受信信号をデータと制御信号とに分離する制御信号分離部 1002と、移動 局における HARQプロセスの制御を行う HARQ制御部 1003と、通知された TFCS の中から TFCを選択する TFC選択部 1004と、送信すべきデータを格納するバッフ ァ 1005と、送信すべきデータに対する符号化処理を行う符号化処理部 1006と、再 送のために送信データを格納する再送バッファ 1007と、符号化処理が行われたデ ータと制御信号とを合成する制御信号合成部 1008と、制御信号合成部 1008からの 信号に対して拡散処理等を施して送信信号とする送信処理部 1009と、再送待ちを カウントする再送待ちカウンタ 1010と、を備えている。
[0099] 移動局では、受信信号に対し受信処理部 1001が逆拡散等の受信処理を施し、制 御信号分離部 1002が、逆拡散後の受信信号力もデータと制御信号とを分離する。 分離された制御信号のうち、 ACKZNACKと SAは、 HARQ制御部 1003へ送られ る。 HARQ制御部 1003は、 ACKZNACKにしたがって該当する HARQプロセス の状態を更新する。ここで、 SAによって指示された HARQプロセスの状態がフリー 状態がか再送状態であるか応じて移動局での処理は大きく異なるので、以下では、 この 2つの場合を分けて説明する。
[0100] SAによって指示された HARQプロセスの状態がフリー状態であった場合:
SAによって指示された HARQプロセスの状態がフリー状態である場合には、その プロセスの状態は、 SAに含まれる最大伝送速度情報とともに、 TFC選択部 1004へ 通知される。 TFC選択部 1004は、最大伝送速度情報で指示される最大 TFC以下 の TFCの中から、所定の基準にしたがって TFCを選択する。このとき、選択基準とし てデータフローごとに設定されている優先度を参照し、優先度の高いデータフローほ ど高 ヽ伝送速度になるような TFCを選択し、対応する TFCIを制御信号合成部 1008 に送る。また、バッファ 1005を参照し、バッファ 1005内に送信すべきデータがない 場合は、 TFC選択部 1004は、フリー状態通知である TFCI0を制御信号合成部 100 8に送る。また、選択した TFCをバッファ 1005へ通知し、バッファ 1005から TFCにし たがってデータを取り出し、符号化処理部 1006に送る。このとき、取り出されたデー タブロックのコピーは再送バッファ 1007に格納される。
[0101] SAによって指示された HARQプロセスの状餱が再送状餱であった場合:
SAによって指示された HARQプロセスの状態が再送状態である場合には、そのプ 口セスの状態は、 SAに含まれる最大伝送速度情報とともに、 HARQ制御部 1003か ら再送バッファ 1007へと通知される。該当する再送データの伝送速度よりも最大伝 送速度が高い場合は、再送するデータが再送バッファ 1007から符号化処理部 100 8へ送られ、そのデータは、符号化された後、制御信号合成部 1008において、 TFC I、 NDI等の制御信号と合成しされ、送信処理部 1009において拡散等の処理が施さ れ、送信される。また、再送データの伝送速度よりも最大伝送速度が低い場合は、 H ARQ制御部 1003は、その旨を TFC選択部 1004に通知し、 TFC選択部 1004は、 再送状態通知である TFCI 1を選択し、制御信号合成部 1008に送る。
[0102] 再送状態の HARQプロセスがある場合:
さらに、移動局において再送状態の HARQプロセスがある場合には、 HARQ制御 部 1003は、該当する HARQプロセスの送信タイミングごとに再送指示がある力否か を確認し、再送指示がない場合は、 HARQプロセスごとに設けられている再送待ち カウンタ 1010の値を 1つ増加させる。さらに、再送待ちカウンタ 1010が所定の最大 再送待ち回数 Nよりも大きくなると、 TFC選択部 1004にその旨が通知され、 TFC選 択部 1004は、再送状態通知である TFCI1を制御信号合成部 1008に送る。
[0103] 制御信号合成部 1008は、 TFCI、 NDIと送信すべきデータブロックとを合成し、合 成されたデータは、送信処理部 1009において拡散処理などを施された後、上り回線 を介して送信される。
[0104] 以上説明したように、本実施の形態によると、 SHO状態のときにスケジューリング基 地局が NACKを送りそれ以外の SHO基地局が ACKを送った場合であって、かつ 移動局が送信すべき新たなデータがない場合に生じる HARQプロセス状態の不一 致を、解消することができる。一般に WCDMAシステムでは、 SHO領域の割合力 0 〜60%程度であり、また伝搬ロスの変動に応じて高速にスケジューリング基地局を切 り替えることが困難なため、上述したような状況は高い確率で生じうる。このような状況 では、基地局は、送信すべきデータがない移動局に無駄なリソースを割当て、その分 、送信すべきデータを持っている移動局にリソースを割当てられなくなるため、リソー スの使用効率が低下し、システムスループットが劣化する。本実施の形態によると、こ のような状況を解消することが可能となるため、システムスループットが向上する。また
、同様な状況は移動局における NACKまたは ACKの誤受信でも生じる力 本発明 の形態によれば、移動局における NACKまたは ACKの誤受信の場合の HARQプ ロセス状態の不一致も解消することが可能となり、さらにリソース使用効率を高め、シ ステムスループットが向上する。
[0105] また、本実施形態のさらなる利点として、基地局は、移動局における SAの受信誤り を検知できるようになる。すなわち、基地局は、 SAによってデータブロック送信を指 示したにも関わらず、指示したタイミングでデータブロックも HARQプロセス状態通知 も受信できな力つた場合は、移動局が SAを受信できな力つたと判断できる。したがつ て、このような場合は、基地局は、 S Aの送信電力を増加して S Aを再度送信すること ができ、 SAの誤り率を低減することが可能となる。 SAが誤った場合、基地局が SAを 送信した移動局のためにその基地局がリソースを確保しているにも関わらず、その移 動局は、データブロックを送信できないことになる。したがって、その移動局の送信遅 延が増加しユーザスループットが低下するとともに、確保したリソースを他のデータ送 信待ちの移動局にも割当てられな 、ため、システム全体のスループットも低下する。 本実施の形態によると、このような状態が生じる確率を低減することが可能となるため 、システムスループット、ユーザスループットがともに増加し、送信遅延を低減すること が可能となる。
[0106] 第二の実施形態:
以下、第二の実施形態による通信制御方法について説明する。
[0107] 第二の実施形態では、時間スケジューリングを用い、 HARQは非同期型送信を用 いることとし、さらに、再送に関しては移動局が決定するものとする。すなわち、自発 型再送方法が用いられるものとする。この第二の実施形態でも、第一の実施形態と 同様に、 TFCIを利用して HARQプロセス状態通知を送信する。すなわち、 TFCIO をフリー状態、 TFCI1を再送状態と定義する。 [0108] 移動局は、以下のような場合に HARQプロセス状態通知を使用する:
(a) ACKを受信し、かつ送信すべきデータがバッファ内にな 、場合;
(b) NACKを受信し、かつ NACKの受信後、 Wフレームの間にわたって連続的に 最大伝送速度が再送に要する伝送速度より小さ 、場合;
(c)データブロックを送信したにも関わらず、所定タイミング Tで ACKZNACKを受 信できず、かつ Tから Wフレーム間連続的に最大伝送速度が再送に要する伝送速度 よりも小さい場合。
[0109] 以上の条件 (a)〜(c)のいずれ力 1つが満たされると、移動局は、該当する HARQ プロセスの状態を通知するための TFCIを基地局に送信する。基地局は、 HARQプ ロセス状態を通知するための TFCIを受信すると、自局における HARQプロセス状態 を確認し、不一致が生じている場合には、移動局に合わせるように、 自局における H ARQプロセス状態を修正する力、移動局に基地局の HARQプロセス状態を通知す る。
[0110] 図 21は、第二の実施形態における、 SHO状態での基地局と移動局との間の信号 のやり取りを示すシーケンスチャートである。
[0111] 移動局と基地局は、ステップ S1401, S1402で示すよう〖こ、所定の周期で RRと RG を送受信する。移動局は、ステップ S1403, S1404において、任意のタイミングで指 定された最大伝送速度以下の伝送速度で、 NDI = 0として、データブロックを各基地 局に送信する。ここでは、移動局は、ステップ S1405においてスケジューリング基地 局から NACKを受信し、ステップ S 1406において非スケジューリング基地局から AC Kを受信するものとする。したがって、スケジューリング基地局では再送状態であるが 、移動局はフリー状態となり、 HARQプロセス状態に不一致が生じる。移動局は、 A CKを受信すると、 自局のバッファ内のデータを確認し、送信すべきデータがない場 合には、ステップ S1407において、フリー状態通知、すなわち TFCIOを送信する。こ の場合は、上述の条件 (a)に適合するので、基地局は、移動局がフリー状態であるこ とを認識し、移動局は送信すべきデータを保持していない、と判断する。そして、 HA RQプロセスをフリー状態に戻し、この移動局へのリソース割当てを停止する。このよう にしてこの実施形態では、スケジューリング基地局と移動局との間の HARQプロセス の不一致を解消することができ、無駄なリソース割当てを回避できる。
[0112] 図 22は、本実施形態における、移動局での HARQプロセス状態の更新の処理を 示したフローチャートである。
[0113] 移動局は、ステップ S 1401aにおいて、任意の時間で、許可されている最大伝送速 度以下の伝送速度でデータブロックを送信し、ステップ S1402aにおいて、基地局か ら所定のタイミングで ACKを受信したカゝどうかを判断する。所定のタイミングで ACK を受信した場合には、移動局は、ステップ S1403aにおいて、自局のバッファ内のデ 一タ量を確認して送信すべきデータがあるかどうかを判断し、送信すべきデータがあ れば、引き続きデータブロックを送信するためにステップ S1401aに戻り、送信すべき データがなければ、ステップ S1404aにおいてフリー状態通知を送信して、処理を終 了する。基地局は、移動局がバッファ内の全データを送り終えたことを検知でき、基 地局が再送状態であった場合はこれを修正して無駄なリソース割当てを回避できる。 したがって、システムスループットが増加する。
[0114] ステップ 1402aで ACKを受信しなかった場合、すなわち、所定のタイミングで NAC Kを受信した場合には、移動局は、ステップ S 1405aにおいて、許可されている最大 伝送速度が再送すべきデータブロックを送信するのに十分であるかどうかを判断する 。ここで、十分であると判断した場合は、任意のタイミングで再送データを送信するた めに、ステップ S1401aに戻る。一方、十分でない場合は、移動局は、ステップ S140 6において、タイマーを所定時間だけ増加させ、ステップ S 1407aにおいて、タイマー の値と所定の最大再送待ち時間 Wとを比較する。移動局は、タイマーの値が W以下 である場合には、ステップ S 1405aまで戻り、タイマーの値が Wより大きい場合には、 ステップ S1408aにおいて再送状態通知を送信する。その後、移動局は、ステップ S 1409aにおいて、所定のタイミングで ACKを受信したかどうかを判断し、 ACKを受 信した場合には、ステップ S1410aにおいて、送信途中のデータブロックを破棄し、ス テツプ S1411aにおいて、送信すべきデータがあるかどうかを判断する。ステップ S14 11aで送信すべきデータがある場合には、移動局は、任意のタイミングでデータプロ ック送信を続けるためにステップ S1401aに戻り、送信すべきデータがない場合は、 ステップ 1404aに移行してフリー状態通知を送信し、処理を終了する。ステップ S14 09aで ACKを受信しなかった場合、すなわち、所定のタイミングで NACKを受信した 場合は、移動局の処理は、ステップ 1405aに戻る。
[0115] 図 23は、本実施形態における、基地局でのデータ受信に関する処理を示すフロー チャートである。
[0116] 基地局は、ステップ 1401bにおいて、データを受信し、ステップ S1402bにおいて、 一緒に送られてくる TFCIが HARQプロセス状態通知であるかどうかを確認する。 TF CIが HARQプロセス状態通知であった場合には、基地局は、ステップ S1403bにお いて、その HARQプロセス状態通知がフリー状態通知であるかどうかを判断し、フリ 一状態通知を受信した場合には、ステップ S 1404bにおいて、基地局におけるこの H ARQプロセス状態もフリー状態とし、次のデータ受信のためにステップ S 1401bに戻 る。したがって、移動局がフリー状態であるが基地局は再送状態になっていた場合は 、再送のために無駄なリソースを割当てることを回避しシステムスループットが向上す る。
[0117] ステップ S1403bにおいてフリー状態通知でな力つた場合、すなわち再送状態通 知を受信した場合には、基地局は、ステップ S1405bにおいて、基地局における HA RQプロセス状態を確認して再送状態かどうかを判断する。基地局は、再送状態でな い場合すなわちフリー状態であればステップ S 1406bにおいて ACKを送信し、再送 状態であればステップ S1407bにお!/、て NACKを送信し、 V、ずれの場合も次のデー タ受信のためにステップ S1401bに戻る。したがって、基地局ではすでに受信完了し ているデータブロックに対して移動局が再送待ちをしているような場合には、移動局 の状態をフリー状態に修正でき、移動局が無駄に再送リソース割当てを待つことによ り他のデータを送信できなくなるような状況を回避でき、ユーザスループットが向上す る。
[0118] ステップ S 1402bにおいて TFCIが HARQプロセス状態通知でなかった場合には、 基地局は、ステップ S 1408bにおいてデータブロックを受信し、ステップ S1409bに おいて、そのデータブロックを正しく受信できた力どうかを判断する。基地局は、デー タブロックを正しく受信できた場合にはステップ S 1410bにおいて ACKを送信し、正 しく受信できなかった場合はステップ S 141 lbにお!/、て NACKを送信し、 V、ずれの 場合も次のデータ受信のためにステップ S 140 lbに戻る。基地局は、以上の動作を 繰り返し行っている。
[0119] このようにして、移動局は再送状態であるが基地局はそれを認識しておらず再送に 十分なリソースを割当てないような場合に、移動局は自局が再送待ちであることを基 地局に通知し、基地局で既に正しく受信できている場合には基地局は ACKを送って 移動局に通知し、移動局の HARQプロセスを修正することができる。したがって、本 実施形態によれば、再送データが送信できな!、ために他の新たなデータが送信でき なくなることを回避でき、ユーザスループットが向上する。また、基地局が無駄にこの 移動局にリソース割当てをすることを回避できるため、リソース使用効率も高まりシス テムスループットが向上する。
[0120] 図 24は、この実施形態で用いる基地局の構成を示している。
[0121] 基地局は、図 19に示したものと同様に、受信信号の逆拡散等の処理を行う受信処 理部 1501と、逆拡散後の受信信号を制御信号とデータとに分離する制御信号分離 部 1502と、分離されたデータを復号する復号処理部 1503と、移動局ごとに 1または 複数準備され、復号後のデータを蓄積するバッファ 1504と、復号したデータにおけ る誤りを検出する誤り検出部 1505と、移動局ごとに対応して設けられ、 HARQプロ セス状態を管理する HARQ制御部 1506と、移動局ごとにスケジューリングを行うスケ ジユーラ部 1507と、下り回線データに対して符号化処理を行う符号化処理部 1508 と、符号化後の下り回線データと制御信号とを合成する制御信号合成部 1509と、制 御信号合成部 1509からの出力信号に対して拡散処理などを行って送信信号とする 送信処理部 1510と、を備えている。
[0122] 基地局では、受信信号は、受信処理部 1501において逆拡散等の処理を施され、 その後、制御信号分離部 1502において制御信号とデータとに分離される。分離され たデータは、復号処理部 1503において復号され、移動局ごとに 1つまたは複数準備 されているバッファ 1504に蓄積される。それと同時に、復号したデータに対して誤り 検出部 1505は誤り検出を行い、その結果は、移動局ごとに準備されている HARQ 制御部 1506に通知される。分離された制御信号のうち RRはスケジューラ部 1507へ 送られ、 HARQプロセス状態通知と NDIは HARQ制御部 1506へ送られる。 [0123] HARQ制御部 1506は、 HARQプロセスごとに状態を管理するとともに、フリー状 態通知を受け取ると、該当する HARQプロセスの状態をフリー状態に変更し、再送 状態通知を受け取ると、該当する HARQプロセスの状態を確認し、フリー状態であれ ば ACKを、再送状態であれば NACKを生成して、これらを制御信号合成部 1509へ 送る。 HARQ制御部 1506の HARQ状態に関する情報やバッファ状態の情報は、周 期的にスケジューラ部 1507に送られる。
[0124] スケジューラ部 1507は、各移動局力も受信した RRや HARQ状態、バッファ状態、 また上位レイヤが通知するデータフローの優先度等から、各移動局のスケジユーリン グを行う。スケジューリング方法としては、一般に知られているスケジューリング方法、 例えばデータのある移動局に対して順番に送信機会を割当てる方法や、優先度の 高いデータを持っている移動局に優先して送信機会を割当てる方法など、どのような ものを用いてもよい。スケジューリングに関する情報は、制御信号合成部 1509にお いて、各移動局に対する下り回線のデータと合成され、合成後のデータに対する拡 散等の送信処理が送信処理部 1510にお 、て行なわれた後、下り回線によって送信 される。
[0125] 図 25は、本実施形態で用いる移動局の構成を示している。
[0126] 移動局は、受信信号に対して逆拡散等の受信処理を施す受信処理部 1601と、逆 拡散後の受信信号をデータと制御信号とに分離する制御信号分離部 1602と、移動 局における HARQプロセスの制御を行う HARQ制御部 1603と、通知された TFCS の中から TFCを選択する TFC選択部 1604と、送信すべきデータを格納するバッフ ァ 1605と、送信すべきデータに対する符号化処理を行う符号化処理部 1606と、再 送のために送信データを格納する再送バッファ 1607と、符号化処理が行われたデ ータと制御信号とを合成する制御信号合成部 1608と、制御信号合成部 1608からの 信号に対して拡散処理等を施して送信信号とする送信処理部 1609と、を備えている
[0127] 移動局では、受信信号に対し受信処理部 1601が逆拡散等の受信処理を施し、制 御信号分離部 1602が、逆拡散後の受信信号力もデータと制御信号とを分離する。 分離された制御信号のうち、 ACKおよび NACKは HARQ制御部 1603へ送られる 。 HARQ制御部 1603は、 ACKZNACKにしたがって該当する HARQプロセスの 状態を更新する。さらに、 ACKを受信した場合は、 HARQ制御部 1603は、その旨 を TFC選択部 1604へ通知し、 TFC選択部 1604は、バッファ 1605内のデータ量を 確認し、送信すべき新たなデータがない場合は、フリー状態通知である TFCI0を制 御信号合成部 1608へ送る。分離された制御信号のうち、 RGは TFC選択部 1604に 送られ、この RGによって、 TFC選択部 1604内の最大伝送速度が更新される。さら に、 TFC選択部 1604は、 HARQ制御部 1603が通知する再送データの有無の情 報から、再送データがある場合は再送データを、それ以外の場合は新データを送信 するよう決定する。
[0128] 再送データを送信する場合には、 TFC選択部 1604は、初回送信時と同じ TFCを 使用することが許可されて 、るかを確認し、許可されて 、な 、場合は再送待ちタイマ 一(不図示)を所定時間だけ進める。さらに、タイマーの値が所定の最大待ち時間以 上になつた場合は、再送状態通知である TFCI 1を制御信号合成部 1608に送信す る。初回送信時と同じ TFCを使用できる場合は、再送バッファ 1607から再送データ ブロックが取り出されて符号ィ匕処理部 1606に送られるようにする。
[0129] 一方、新データを送信する場合には、 TFC選択部 1604は、 RGで更新された最大 TFC以下の TFCの中から、所定の基準にしたがって TFCを選択する。このとき、選 択基準としてデータフローごとに設定されている優先度を参照し、優先度の高いデー タフローほど高い伝送速度になるような TFCを選択する。 TFC選択部 1604は、選択 した TFCをバッファ 1605へ通知し、バッファ力もデータを取り出されて符号化処理部 1606に送られるようにする。このとき、取り出したデータブロックのコピーは、再送バッ ファ 1607に格納される。
[0130] 符号化処理部 1606へ送られたデータブロックは符号化され、制御信号合成部 16 08において、 TFCI、 NDI、 RV、 HARQ ID等の制御信号と合成され、送信処理部 1609で拡散等の処理を施されて、送信される。
[0131] 以上、説明したように本実施の形態によると、第一の実施形態と同様に、 SHO状態 のときにスケジューリング基地局が NACKを送りそれ以外の SHO基地局が ACKを 送った場合であって、かつ移動局が送信すべき新たなデータがな!、場合に生じる H ARQプロセス状態の不一致を、解消することができる。 HARQプロセス状態の不一 致が生じると、基地局は送信すべきデータがない移動局に無駄なリソースを割当て、 その分、送信すべきデータを持っている移動局にリソースを割当てられなくなるため、 リソースの使用効率が低下し、システムスループットが劣化する。本実施の形態による と、このような状況を解消することを可能となるため、システムスループットが向上する 。また、同様な状況は移動局における NACKまたは ACKの誤受信でも生じる力 本 発明の形態によれば、移動局における NACKZACKの誤受信の場合の HARQプ ロセス状態の不一致も解消することが可能となり、さらにリソース使用効率を高め、シ ステムスループットが向上する。
[0132] 第三の実施形態:
以下、第三の実施形態の通信制御方法について説明する。
[0133] 第三の実施形態では、第一の実施形態と同様に、時間'伝送速度スケジューリング を用い、 HARQは同期型送信を用いるものとする。さらに、再送に関しては基地局が 指示をするものとする。すなわち、基地局制御型再送方法が用いられるものとする。
[0134] 第三の実施形態では、移動局は、スケジューリング基地局力 NACKを受信し、そ れ以外の SHO基地局力も ACKを受信し、かつバッファ内にデータがない場合に、 H ARQプロセス状態通知として、無データ通知を送信する。無データ通知としては、 T FCIOを使用し、基地局は移動局力 TFCIOを受信すると、該当する HARQプロセ スをフリー状態に修正し、再送のリソースを割当てないようにする。
[0135] 以上のような無データ通知を導入することにより、スケジューリング基地局と移動局 との間の HARQプロセスの不一致による、無駄なリソース割当てを回避することがで きる。また、第一の実施形態の場合と異なり、 ACKまたは NACKの誤りにより生じる 問題は解決できないが、 ACKZNACKの誤り率は、 ACKZNACKの送信電力や 冗長度の増加など、他の方策を講じて下げることは可能である。一方、 SHO時に生 じる HARQプロセスの不一致は、他の方法では避けられな 、根本的な問題である。 したがって、本実施の形態によると、移動局が送信するプロセス状態通知の量を低減 しつつ、 SHO中にスケジューリング基地局が無駄なリソース割当てをすることを回避 することができ、システムスループットが向上する。 [0136] なお、本実施の形態では無データ通知として TFCIを利用した力 SIに含まれる B OIに 0サイズを定義して利用してもよい。
[0137] 第四の実施形態:
以下、第四の実施形態の通信制御方法について説明する。
[0138] 第四の実施形態では、第一の実施形態と同様に、時間 '伝送速度スケジューリング を用い、 HARQは同期型送信を用いるものとする。さらに、再送に関しては基地局が 指示をするものとする。すなわち、基地局制御型再送方法が用いられるものとする。
[0139] 第四の実施形態では、移動局が所定の周期で HARQプロセスの状態を通知する ようにする。図 26は、移動局に 4つの HARQプロセスが設定されている状態での HA RQプロセス状態通知の送信例を示して 、る。
[0140] 本実施形態では、各 HARQプロセスは、 5回に 1回、 HARQプロセス状態通知を 送る。状態通知が送信される HARQプロセスは、図においては、網掛けのフレームと して示されている。 HARQプロセス状態通知としては、第一の実施形態と同様に、 T FCIOと TFCI1を使用し、 TFCIOをフリー状態通知、 TFCI1を再送状態通知とする。 移動局は、 HARQプロセス状態通知の送信タイミングが来ると、その時点での状態を これらの HARQプロセス状態通知を用いて基地局に通知する。それ以外のフレーム では、移動局は、基地局の指示にしたカ^、、データを送信する。 HARQプロセス状 態通知の送信タイミングは基地局にも既知であるため、そのタイミングではデータ送 信をスケジューリングしないようにする。基地局は、 HARQプロセス状態通知を受信 すると、該当する HARQプロセスの現在の状態を確認し、異なっていれば移動局か ら通知があった状態に修正する。
[0141] 本実施形態によると、基地局と移動局は所定の周期で HARQプロセス状態の不一 致を修正させることができる。したがって、無駄なリソース割り当てを回避でき、スルー プットが向上する。
[0142] 第五の実施形態:
第五の実施形態は、第一の実施形態と同様、時間'伝送速度スケジューリングを用 い、 HARQは同期型送信を用いるものとする。さらに、再送に関しては基地局が指示 をするものとする。すなわち、基地局制御型再送方法が用いられるものとする。 [0143] 第一の実施形態では、移動局は、 SAを受信すると、 SAで指定された送信タイミン グで HARQプロセス状態通知を送信していた力 第五の実施形態では、 SAを受信 した時刻 Tにお ヽて送信すべきデータがなく、かつ時刻 Tから所定時間内に送信す べきデータが発生しな力つた場合に、 HARQプロセス状態通知を送信する。
[0144] したがって、この実施形態では、第一の実施形態による利点に加え、 HARQプロセ ス状態通知の送信が頻発することを回避できる。
[0145] 第六の実施形態:
第六の実施形態は、第二の実施形態と同様、時間スケジューリングを用い、 HAR Qは非同期型送信を用いる。さらに、再送に関しては移動局が決定するものとする。 すなわち、 自発型再送方法が用いられるものとする。
[0146] 第二の実施形態では、移動局は、 ACKを受信すると直ちに HARQプロセス状態 通知を送信していた力 第六の実施形態では、 ACKを受信した時刻 Tにおいて送信 すべきデータがなぐかつ時刻 Tから所定時間内に送信すべきデータが発生しなか つた場合に、 HARQプロセス状態通知を送信する。
[0147] したがって、この実施形態では、第二の実施形態による利点に加え、 HARQプロセ ス状態通知の送信が頻発することを回避できる。
[0148] 一般にセルラシステムの基地局は、アンテナや無線送受信部の他に、基地局の動 作を制御するコンピュータを備えて ヽる。したがって上述した各実施形態における基 地局は、基地局を構成するコンピュータが上述の機能を実現するためのプログラムを 読み込んで実行することによって実現されるものであってもよ!/、。同様に上述した各 実施形態における移動局は、移動局を構成するコンピュータが上述の機能を実現す るためのプログラムを読み込んで実行することによって実現されるものであってもよい
[0149] このようなプログラムは、例えば、コンピュータが読み取り可能な記録媒体に記録さ れており、その記録媒体をコンピュータに装着することによってコンピュータに読み込 まれる。あるいはそのようなプログラムは、インターネットなどのネットワークを介してコ ンピュータに読み込まれるものであってもよい。したがって、そのようなプログラム、そ のようなプログラムを記録した記録媒体、そのようなプログラムを含むプログラムプロダ タトも本発明の範疇に含まれる。

Claims

請求の範囲
[1] 基地局と前記基地局に対して無線回線が設定される移動局とを有する無線通信シ ステムにおける通信制御方法であって、
前記基地局が、前記移動局に対して、送信リソースの割当てを示す送信リソース割 当て情報を通知する段階と、
前記移動局が、前記送信リソース割当て情報にしたがって、データブロックを送信 する段階と、
前記基地局が、前記データブロックが正しく受信できた力否かを示す送達確認信 号を送信する段階と、
誤受信を示す前記送達確認信号を受信した場合に前記移動局が前記データプロ ックを再送する段階と、
正しく受信したことを示す前記送達確認信号を受信した場合に前記移動局が前記 データブロックの送信を終了する段階と、
前記移動局が、自局が再送待ちの状態である再送状態か再送待ちでな 、状態で あるフリー状態力を通知する送信プロセス状態通知を送信する段階と、
前記基地局が、前記移動局における送信プロセス状態に応じて、前記移動局に対 する前記送信リソースの割当てを決定する段階と、
を有する通信制御方法。
[2] 前記移動局は前記送信プロセス状態通知を所定の周期で送信する、請求項 1に記 載の通信制御方法。
[3] 前記移動局は、前記送達確認信号の受信に応じて、前記送信プロセス状態通知を 送信する、請求項 1に記載の通信制御方法。
[4] 前記移動局は、正しく受信したことを示す前記送達確認信号を受信した時刻である ACK受信時刻において自局のバッファ内に送信すべきデータがなぐかつ、前記 A CK受信時刻から所定の時間期間内に送信すべきデータが発生しな力つた場合に、 前記送信プロセス状態通知を送信する、請求項 1乃至 3のいずれか 1項に記載の通 信制御方法。
[5] 前記移動局は、誤受信を示す前記送達確認信号を受信した時刻である NACK受 信時刻から所定の時間期間間に、前記誤受信を示す前記送達確認信号に対応する 再送に必要なリソースを割当てられな力つた場合に、前記送信プロセス状態通知を 送信する、請求項 1乃至 4のいずれか 1項に記載の通信制御方法。
[6] 前記移動局は、前記送信プロセス状態通知を送信し、その後、所定のタイミングで 、正しく受信したことを示す前記送達確認信号を受信すると、送信途中のデータを破 棄し、再送を停止する、請求項 1乃至 5のいずれ力 1項に記載の通信制御方法。
[7] 前記移動局は、前記送信リソース割当て情報を受信した時刻である割当て受信時 刻において自局のバッファ内に送信すべきデータがなぐかつ、 SA受信時刻から所 定の時間期間内に送信すべきデータが発生しな力つた場合に、前記送信プロセス状 態通知を送信する、請求項 1乃至 6のいずれ力 1項に記載の通信制御方法。
[8] 前記移動局は、前記送信リソース割当て情報を受信したが送信すべきデータがな い場合に第一の送信プロセス状態通知を送信し、前記送信リソース割当て情報を受 信し送信すべきデータはあるが送信しな!ヽ場合には、第二の送信プロセス状態通知 を送信する、請求項 1乃至 7のいずれ力 1項に記載の通信制御方法。
[9] 前記基地局は、前記送信リソース割当て情報を送信し、その後、所定の期間にわ たって前記移動局力 データブロックも前記送信プロセス状態通知も受信しな力つた 場合には、前記送信リソース割当て情報の送信電力を所定値だけ増加させて送信 する、請求項 1乃至 8のいずれか 1項に記載の通信制御方法。
[10] 前記基地局は、前記第二の送信プロセス状態通知を受信した場合、前記データブ ロックに対する送信リソース割当ての優先度を低くする、請求項 8に記載の通信制御 方法。
[11] 前記送信リソースとして、前記移動局に使用を許可する最大伝送速度と送信時間 を割当てる、請求項 1乃至 10のいずれ力 1項に記載の通信制御方法。
[12] 前記送信リソースとして、前記移動局に使用を許可する最大伝送速度を割当てる、 請求項 1乃至 10のいずれか 1項に記載の通信制御方法。
[13] 基地局と、
前記基地局に対して無線回線が設定され、前記基地局力 の送信リソース割当て 情報にしたがってデータブロックを前記基地局に送信し、前記基地局からの、誤受信 を示す前記送達確認信号を受信すると前記データブロックを再送し、正しく受信した ことを示す前記送達確認信号を受信すると前記データブロックの送信を終了し、自局 が再送待ちの状態である再送状態か再送待ちでない状態であるフリー状態力を通知 する送信プロセス状態通知を送信する移動局と、
を有し、
前記基地局は、前記データブロックが正しく受信できた力否かに応じて前記送達確 認信号を送信し、前記移動局における送信プロセス状態に応じて、前記移動局に対 する前記送信リソースの割当てを決定する、無線通信システム。
[14] 移動局に対して無線回線が設定される基地局であって、
前記移動局から、データブロックと、当該移動局が再送待ち状態か否かを通知する 送信プロセス状態通知を受信する手段と、
前記データブロックが正しく受信できた力否かを判定する手段と、
前記送信プロセス状態通知に応じて前記移動局に対する送信リソースの割当てを 決定する手段と、
前記移動局に対して送信リソース割当て情報を通知するとともに、前記データプロ ックが正しく受信できたか否かを示す送達確認信号を送信する手段と、
を有する、基地局。
[15] 基地局に対して無線回線が設定される移動局であって、
送信すべきデータを格納する格納手段と、
前記基地局力 送信リソース割当て情報と送達確認信号とを受信する手段と、 前記送信リソース割当て情報に応じて、前記格納手段中のデータをデータブロック として送信させ、誤受信を示す前記送達確認信号を受信すると前記データブロックを 再送させ、正しく受信したことを示す前記送達確認信号を受信すると前記データプロ ックの送信を終了させる手段と、
再送待ち状態か否かを通知する送信プロセス状態通知を送信する手段と、 を有する移動局。
[16] 移動局に対して無線回線が設定される基地局を構成するコンピュータで実行可能 なプログラムであって、 前記コンピュータに、
前記移動局から、データブロックと、当該移動局が再送待ち状態か否かを通知する 送信プロセス状態通知を受信する処理と、
前記データブロックが正しく受信できた力否かを判定する処理と、
前記送信プロセス状態通知に応じて前記移動局に対する送信リソースの割当てを 決定する処理と、
前記移動局に対して送信リソース割当て情報を通知するとともに、前記データプロ ックが正しく受信できたか否かを示す送達確認信号を送信する処理と、
を実行させるプログラム。
基地局に対して無線回線が設定される移動局を構成するコンピュータで実行可能 なプログラムであって、
前記コンピュータに、
送信すべきデータを格納部に格納する処理と、
前記基地局から送信リソース割当て情報と送達確認信号とを受信する処理と、 前記送信リソース割当て情報に応じて、前記格納部中のデータをデータブロックと して送信させ、誤受信を示す前記送達確認信号を受信すると前記データブロックを 再送させ、正しく受信したことを示す前記送達確認信号を受信すると前記データプロ ックの送信を終了させる処理と、
再送待ち状態か否かを通知する送信プロセス状態通知を送信する処理と、 を実行させるプログラム。
PCT/JP2005/012563 2004-08-10 2005-07-07 通信制御方法、無線通信システム、基地局及び移動局 WO2006016457A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800344639A CN101040557B (zh) 2004-08-10 2005-07-07 通信控制方法、无线电通信系统、基站和移动站
JP2006531338A JP4677988B2 (ja) 2004-08-10 2005-07-07 通信制御方法、無線通信システム、基地局及び移動局
EP05757896A EP1784036B1 (en) 2004-08-10 2005-07-07 Communication control method, radio communication system, base station, and mobile station
US11/659,927 US20080081651A1 (en) 2004-08-10 2005-07-07 Communication Control Method, Radio Communication System, Base Station, and Mobile Station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004233314 2004-08-10
JP2004-233314 2004-08-10

Publications (1)

Publication Number Publication Date
WO2006016457A1 true WO2006016457A1 (ja) 2006-02-16

Family

ID=35839233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012563 WO2006016457A1 (ja) 2004-08-10 2005-07-07 通信制御方法、無線通信システム、基地局及び移動局

Country Status (6)

Country Link
US (1) US20080081651A1 (ja)
EP (1) EP1784036B1 (ja)
JP (1) JP4677988B2 (ja)
KR (1) KR100882057B1 (ja)
CN (1) CN101040557B (ja)
WO (1) WO2006016457A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129645A1 (ja) * 2006-05-01 2007-11-15 Ntt Docomo, Inc. 移動局、基地局及び通信制御方法
JP2007300508A (ja) * 2006-05-01 2007-11-15 Ntt Docomo Inc 基地局、移動局および通信方法
WO2007139188A1 (ja) * 2006-06-01 2007-12-06 Sharp Kabushiki Kaisha 移動局と基地局との間の接続処理方法、移動局、基地局、マルチキャリア移動体通信システムおよびランダムアクセスチャネルのマッピング方法
JP2007336225A (ja) * 2006-06-14 2007-12-27 Nec Corp 移動体通信システムおよびハンドオーバ時のデータ伝送方法
JP2008035526A (ja) * 2006-07-28 2008-02-14 Motorola Inc 無線通信システムにおける特別な送信内容の表示
JP2008103862A (ja) * 2006-10-18 2008-05-01 Nec Corp 移動体通信システム、基地局装置及びそれらに用いるアップリンクパケット再送回数推定方法
WO2008096877A1 (ja) * 2007-02-09 2008-08-14 Ntt Docomo, Inc. 再送制御方法及び受信側装置
WO2008108143A1 (ja) * 2007-03-06 2008-09-12 Ntt Docomo, Inc. 移動局、基地局装置、無線通信システム及び通信制御方法
WO2008114662A1 (ja) * 2007-03-19 2008-09-25 Ntt Docomo, Inc. 移動通信システムで使用される基地局装置、ユーザ装置及び方法
JP2009539278A (ja) * 2006-04-25 2009-11-12 エルジー エレクトロニクス インコーポレイティド ハイブリッド自動再転送要求動作で資源を用いてデータを転送する方法
WO2010001570A1 (ja) * 2008-06-30 2010-01-07 パナソニック株式会社 基地局及び通信方法
JP2010509883A (ja) * 2006-11-15 2010-03-25 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおけるバッファ状態報告のための方法及び装置
WO2010035496A1 (ja) * 2008-09-29 2010-04-01 パナソニック株式会社 無線送信装置及び無線送信方法
JP2010536278A (ja) * 2007-08-10 2010-11-25 アルカテル−ルーセント 基地局で移動局のデータ送信及び再送信を制御する通信方法及び装置
JP2011097569A (ja) * 2009-09-30 2011-05-12 Fujitsu Ltd 再送制御を行う装置及び方法
JP2011525340A (ja) * 2008-06-19 2011-09-15 クゥアルコム・インコーポレイテッド 受信機によって受信されるハンドオーバ・メッセージの確率を高める方法
JP2012054966A (ja) * 2006-03-07 2012-03-15 Panasonic Corp 移動通信システムにおけるアップリンク制御シグナリングのオーバヘッド削減
JP5020952B2 (ja) * 2006-06-20 2012-09-05 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用される無線通信装置及び方法
JP2012531171A (ja) * 2009-06-22 2012-12-06 クゥアルコム・インコーポレイテッド ロバストなue受信機
RU2485700C2 (ru) * 2007-09-14 2013-06-20 Нокиа Сименс Нетворкс Ой Способ циклического распределения ширины полосы с обеспечением возможности гибридного автоматического запроса повторения
JP2014017821A (ja) * 2007-08-13 2014-01-30 Qualcomm Incorporated ワイヤレス通信システムにおける制御情報の符号化および多重化
CN101197640B (zh) * 2006-12-07 2014-05-07 电信科学技术研究院 Harq剩余错误检测方法和系统
US8817633B2 (en) 2009-05-12 2014-08-26 Mitsubishi Electric Corporation Terminal switching method, base station, and communication system
US9172513B2 (en) 2010-10-11 2015-10-27 Qualcomm Incorporated Resource assignments for uplink control channel
US9220089B2 (en) 2010-01-07 2015-12-22 Samsung Electronics Co, Ltd Resource indexing for acknowledgement signals in response to receptions of multiple assignments
US9467974B2 (en) 2009-08-21 2016-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Controlling a transmission of information in a wireless communication network with a relay node
RU2605440C2 (ru) * 2012-10-12 2016-12-20 Нек Корпорейшн Узел связи
WO2017199984A1 (ja) * 2016-05-18 2017-11-23 株式会社Nttドコモ ユーザ端末及び無線通信方法
TWI749039B (zh) * 2016-09-15 2021-12-11 日商索尼股份有限公司 無線電信設備和方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804211B1 (en) 1999-08-03 2004-10-12 Wi-Lan Inc. Frame structure for an adaptive modulation wireless communication system
CA2825592C (en) 2000-11-15 2016-04-19 An Chen Improved frame structure for communication system using adaptive modulation
US8009667B1 (en) 2001-01-16 2011-08-30 Wi—LAN, Inc. Packing source data packets into transporting packets with fragmentation
US8942716B2 (en) * 2005-02-24 2015-01-27 Ntt Docomo, Inc. Radio resource control method, radio base station, and radio network controller
US7437161B2 (en) * 2005-03-16 2008-10-14 Lucent Technologies Inc. Method of fast data transmission of mobile stations via the same base station
KR100770847B1 (ko) * 2005-09-29 2007-10-26 삼성전자주식회사 이동통신 시스템에서 패킷을 재전송하는 방법 및 장치와 그시스템
US7729715B2 (en) * 2005-12-30 2010-06-01 Motorola, Inc. Method and apparatus for power reduction for E-TFC selection
CN100508634C (zh) * 2006-01-27 2009-07-01 上海贝尔阿尔卡特股份有限公司 基于动态统计复用的Abis传输资源优化配置方法及相关设备
US20070242653A1 (en) * 2006-04-13 2007-10-18 Futurewei Technologies, Inc. Method and apparatus for sharing radio resources in an ofdma-based communication system
KR100943590B1 (ko) * 2006-04-14 2010-02-23 삼성전자주식회사 이동 통신 시스템에서 상태 보고의 송수신 방법 및 장치
EP3104544B1 (en) * 2006-10-09 2019-07-03 Telefonaktiebolaget LM Ericsson (publ) Ndi-less protocol synchronization for harq
US20080228878A1 (en) * 2007-03-15 2008-09-18 Tao Wu Signaling Support for Grouping Data and Voice Users to Share the Radio Resources in Wireless Systems
US20080227449A1 (en) * 2007-03-15 2008-09-18 Qualcomm Incorporated Pich-hs timing and operation
KR101480189B1 (ko) 2007-03-29 2015-01-13 엘지전자 주식회사 무선통신 시스템에서 사운딩 기준신호 전송 방법
CN101296165B (zh) 2007-04-27 2011-09-21 华为技术有限公司 发送控制信令的方法和装置
EP2158714B1 (en) * 2007-05-04 2019-08-21 Nokia Solutions and Networks Oy Aggregated harq report
ATE441259T1 (de) * 2007-06-19 2009-09-15 Alcatel Lucent Verfahren zur zuweisung von ressourcen in einem mobilen funkkommunikationsnetzwerk sowie dazu passende sende- und empfangsgeräte
KR101380558B1 (ko) 2007-06-19 2014-04-02 엘지전자 주식회사 사운딩 기준신호의 전송방법
EP2017997B1 (en) * 2007-07-19 2010-10-06 Telefonaktiebolaget L M Ericsson (publ) Method and device for controlling transmission resources for automatic repeat request processes
JP2009044581A (ja) * 2007-08-10 2009-02-26 Fujitsu Ltd 通信装置、送信方法、受信方法
US7965760B2 (en) * 2007-08-13 2011-06-21 Panasonic Corporation Radio communication device and response signal diffusion method
KR101397039B1 (ko) 2007-08-14 2014-05-20 엘지전자 주식회사 전송 다이버시티를 사용하는 다중안테나 시스템에서 채널예측 오류의 영향을 감소시키기 위한 cdm 방식 신호전송 방법
WO2009022790A1 (en) 2007-08-14 2009-02-19 Lg Electronics Inc. Method of transmitting data in a wireless communication system
EP4099596A1 (en) 2007-08-14 2022-12-07 LG Electronics, Inc. Method for acquiring resource region information for phich and method of receiving pdcch
EP2190224A4 (en) * 2007-08-14 2015-01-14 Ntt Docomo Inc COMMUNICATION CONTROL METHOD FOR A MOBILE COMMUNICATION SYSTEM, SIGNAL GENERATING DEVICE AND RADIO COMMUNICATION DEVICE WITH THE SIGNAL GENERATING DEVICE
KR101507785B1 (ko) 2007-08-16 2015-04-03 엘지전자 주식회사 다중 입출력 시스템에서, 채널품질정보를 송신하는 방법
KR101405974B1 (ko) 2007-08-16 2014-06-27 엘지전자 주식회사 다중입력 다중출력 시스템에서 코드워드를 전송하는 방법
TWM350926U (en) * 2007-09-28 2009-02-11 Interdigital Patent Holdings Apparatus for terminating transmission of a message in a enhanced random access channel
US9507669B2 (en) * 2007-11-15 2016-11-29 Lg Electronics Inc. Method of transmitting data using HARQ
US8194588B2 (en) * 2007-12-13 2012-06-05 Qualcomm Incorporated Coding block based HARQ combining scheme for OFDMA systems
US8665857B2 (en) 2007-12-18 2014-03-04 Qualcomm Incorporated Method and apparatus for sending and receiving random access response in a wireless communication system
KR20160140967A (ko) 2008-01-02 2016-12-07 시그널 트러스트 포 와이어리스 이노베이션 셀 재선택을 위한 방법 및 장치
KR20090078723A (ko) * 2008-01-15 2009-07-20 삼성전자주식회사 무선 이동 통신 시스템에서 복합 자동 재송신 요구 방식에 기반한 신호 송수신 방법
US9281922B2 (en) * 2008-03-20 2016-03-08 Nokia Corporation Data indicator for persistently allocated packets in a communications system
MX2010013338A (es) * 2008-06-06 2011-02-22 Research In Motion Ltd Señalizacion de informacion de solicitud de repeticion automatica hibrida reservada para programacion semipersistente de enlace descendente.
WO2010002130A2 (en) * 2008-07-03 2010-01-07 Lg Electronics Inc. Method for processing ndi in random access procedure and a method for transmitting and receiving a signal using the same
US9094202B2 (en) * 2008-08-08 2015-07-28 Qualcomm Incorporated Utilizing HARQ for uplink grants received in wireless communications
US8780816B2 (en) 2008-08-12 2014-07-15 Qualcomm Incorporated Handling uplink grant in random access response
US9100179B2 (en) * 2008-09-10 2015-08-04 Qualcomm Incorporated Method and apparatus for managing a new data indicator in a wireless communication system
ES2388407T3 (es) 2008-09-19 2012-10-15 Telefonaktiebolaget L M Ericsson (Publ) Métodos y aparatos en un sistema de telecomunicaciones
CN101505200B (zh) * 2009-01-21 2012-04-18 中兴通讯股份有限公司 一种无线网络中反向公用信道的接入方法及系统
US8730799B2 (en) 2010-03-03 2014-05-20 Akamai Technologies, Inc. Dynamic adjustment of receive window utilized by a transmitting device
JP5522255B2 (ja) * 2010-05-07 2014-06-18 富士通株式会社 無線通信システム、管理装置、無線通信方法及び無線通信プログラム
CN102571298B (zh) * 2010-12-31 2015-01-07 华为技术有限公司 一种确定传输数据块的方法及设备
KR101835387B1 (ko) * 2011-04-29 2018-03-08 삼성전자주식회사 단말기 및 그 단말기에서 자원 스케줄링 방법
US9119064B2 (en) * 2013-11-20 2015-08-25 At&T Intellectual Property I, L.P. Method and apparatus for providing broadcast channel encryption to enhance cellular network security
US10893509B2 (en) * 2015-02-11 2021-01-12 Qualcomm Incorporated Multiple tri-state HARQ processes
GB2547030B (en) * 2016-02-05 2018-04-18 Tcl Communication Ltd Uplink resource allocation
WO2018084644A1 (en) * 2016-11-03 2018-05-11 Lg Electronics Inc. Method and apparatus for transmitting and receiving data in wireless communication system
CN108282896B (zh) * 2017-01-06 2019-08-30 电信科学技术研究院 一种上行数据重传方法及终端
CN108809541B (zh) * 2017-05-05 2021-08-03 华为技术有限公司 上行数据的传输方法和装置
JP7560446B2 (ja) * 2019-04-25 2024-10-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、基地局、受信方法及び送信方法
US11593281B2 (en) * 2019-05-08 2023-02-28 Hewlett Packard Enterprise Development Lp Device supporting ordered and unordered transaction classes
US11991641B2 (en) * 2019-09-09 2024-05-21 Qualcomm Incorporated Network-controlled power control on side-link communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096598A1 (en) * 2002-05-13 2003-11-20 Qualcomm, Incorporated Method to check communication link reliability
JP2004007030A (ja) * 2002-04-03 2004-01-08 Nec Corp セルラシステム、基地局及び移動局並びに通信制御方法
JP2004064691A (ja) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd 通信装置及びデータの再送制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI112842B (fi) * 1999-01-11 2004-01-15 Nokia Corp Menetelmä ja laitteet jatketun pakettikytkentäisen radioyhteyden toteuttamiseksi
US6330435B1 (en) * 1999-03-18 2001-12-11 Telefonaktiebolaget Lm Ericsson (Publ) Data packet discard notification
CA2370670C (en) * 2000-02-17 2007-06-19 Samsung Electronics Co., Ltd. Apparatus and method for assigning a common packet channel in a cdma communication system
DE60135430D1 (de) * 2000-11-17 2008-10-02 Lg Electronics Inc Verfahren zur blinder Verbindungsanpassung unter Verwendung von Rückquittierungsnachrichten in ARQ-Übertragungssystem
JP3866506B2 (ja) * 2000-12-04 2007-01-10 株式会社エヌ・ティ・ティ・ドコモ 電子メールの配信制御方法及びメールサーバ
WO2003032566A1 (fr) * 2001-10-04 2003-04-17 Mitsubishi Denki Kabushiki Kaisha Procede de communication, systeme de communication et appareil de communication
KR100533205B1 (ko) * 2001-10-17 2005-12-05 닛본 덴끼 가부시끼가이샤 이동 통신 시스템, 통신 제어 방법, 이것에 사용되는기지국 및 이동국
CN1245041C (zh) * 2002-02-01 2006-03-08 华硕电脑股份有限公司 利用harq进程的接收状态避免停顿的方法
US7764624B2 (en) * 2002-07-18 2010-07-27 Alcatel-Lucent Usa Inc. Methods and devices for preventing protocol stalling
KR100480800B1 (ko) * 2002-11-14 2005-04-07 엘지전자 주식회사 패킷 데이터 서비스 망에서 도어먼트 처리 방법
KR100606008B1 (ko) * 2003-01-04 2006-07-26 삼성전자주식회사 부호 분할 다중 접속 통신 시스템에서 역방향 데이터재전송 요청 송수신 장치 및 방법
KR100584431B1 (ko) * 2003-02-14 2006-05-26 삼성전자주식회사 부호 분할 다중 접속 통신 시스템에서 역방향 데이터재전송 시스템 및 방법
US7414989B2 (en) * 2003-05-07 2008-08-19 Motorola, Inc. ACK/NACK determination reliability for a communication device
RU2325045C2 (ru) * 2003-06-10 2008-05-20 Нокиа Корпорейшн Способ и устройство для переключения мобильной станции между автономной и планируемой передачами
US7126928B2 (en) * 2003-08-05 2006-10-24 Qualcomm Incorporated Grant, acknowledgement, and rate control active sets
US20050237932A1 (en) * 2004-04-23 2005-10-27 Jung-Tao Liu Method and system for rate-controlled mode wireless communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007030A (ja) * 2002-04-03 2004-01-08 Nec Corp セルラシステム、基地局及び移動局並びに通信制御方法
WO2003096598A1 (en) * 2002-05-13 2003-11-20 Qualcomm, Incorporated Method to check communication link reliability
JP2004064691A (ja) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd 通信装置及びデータの再送制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1784036A4 *

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054966A (ja) * 2006-03-07 2012-03-15 Panasonic Corp 移動通信システムにおけるアップリンク制御シグナリングのオーバヘッド削減
US8948122B2 (en) 2006-04-25 2015-02-03 Lg Electronics Inc. Method of transmitting data by utilizing resources in hybrid automatic request operations
JP4940296B2 (ja) * 2006-04-25 2012-05-30 エルジー エレクトロニクス インコーポレイティド ハイブリッド自動再転送要求動作で資源を用いてデータを転送する方法
JP2009539278A (ja) * 2006-04-25 2009-11-12 エルジー エレクトロニクス インコーポレイティド ハイブリッド自動再転送要求動作で資源を用いてデータを転送する方法
US8385273B2 (en) 2006-05-01 2013-02-26 Ntt Docomo, Inc. Mobile station, base station, and communication control method
JP2011199911A (ja) * 2006-05-01 2011-10-06 Ntt Docomo Inc 移動局、基地局及び通信制御方法
JP2007300508A (ja) * 2006-05-01 2007-11-15 Ntt Docomo Inc 基地局、移動局および通信方法
KR101193105B1 (ko) 2006-05-01 2012-10-19 가부시키가이샤 엔티티 도코모 이동국, 기지국 및 통신제어방법
WO2007129645A1 (ja) * 2006-05-01 2007-11-15 Ntt Docomo, Inc. 移動局、基地局及び通信制御方法
US8447312B2 (en) 2006-06-01 2013-05-21 Sharp Kabushiki Kaisha Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method
US9125187B2 (en) 2006-06-01 2015-09-01 Huawei Technologies Co., Ltd. Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method
WO2007139188A1 (ja) * 2006-06-01 2007-12-06 Sharp Kabushiki Kaisha 移動局と基地局との間の接続処理方法、移動局、基地局、マルチキャリア移動体通信システムおよびランダムアクセスチャネルのマッピング方法
US7978654B2 (en) 2006-06-01 2011-07-12 Sharp Kabushiki Kaisha Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method
US8000294B2 (en) 2006-06-01 2011-08-16 Sharp Kabushiki Kaisha Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method
JP2007336225A (ja) * 2006-06-14 2007-12-27 Nec Corp 移動体通信システムおよびハンドオーバ時のデータ伝送方法
US8781470B2 (en) 2006-06-14 2014-07-15 Nec Corporation Mobile communications system and method for transmitting data when handover occurs
JP5020952B2 (ja) * 2006-06-20 2012-09-05 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用される無線通信装置及び方法
JP2008035526A (ja) * 2006-07-28 2008-02-14 Motorola Inc 無線通信システムにおける特別な送信内容の表示
JP2008103862A (ja) * 2006-10-18 2008-05-01 Nec Corp 移動体通信システム、基地局装置及びそれらに用いるアップリンクパケット再送回数推定方法
US11601918B2 (en) 2006-11-15 2023-03-07 Samsung Electronies Co., Ltd Method and apparatus for buffer status report in mobile communication system
JP2010509883A (ja) * 2006-11-15 2010-03-25 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおけるバッファ状態報告のための方法及び装置
US9025444B2 (en) 2006-11-15 2015-05-05 Samsung Electronics Co., Ltd. Method and apparatus for buffer status report in mobile communication system
US10225822B2 (en) 2006-11-15 2019-03-05 Samsung Electronics Co., Ltd. Method and apparatus for buffer status report in mobile communication system
US9736818B2 (en) 2006-11-15 2017-08-15 Samsung Electronics Co., Ltd Method and apparatus for buffer status report in mobile communication system
US10694502B2 (en) 2006-11-15 2020-06-23 Samsung Electronics Co., Ltd Method and apparatus for buffer status report in mobile communication system
US11259282B2 (en) 2006-11-15 2022-02-22 Samsung Electronics Co., Ltd Method and apparatus for buffer status report in mobile communication system
CN101197640B (zh) * 2006-12-07 2014-05-07 电信科学技术研究院 Harq剩余错误检测方法和系统
WO2008096877A1 (ja) * 2007-02-09 2008-08-14 Ntt Docomo, Inc. 再送制御方法及び受信側装置
JPWO2008096877A1 (ja) * 2007-02-09 2010-05-27 株式会社エヌ・ティ・ティ・ドコモ 再送制御方法及び受信側装置
WO2008108143A1 (ja) * 2007-03-06 2008-09-12 Ntt Docomo, Inc. 移動局、基地局装置、無線通信システム及び通信制御方法
US8817768B2 (en) 2007-03-06 2014-08-26 Ntt Docomo, Inc. Mobile station, base station, radio communication system, and communication control method
WO2008114662A1 (ja) * 2007-03-19 2008-09-25 Ntt Docomo, Inc. 移動通信システムで使用される基地局装置、ユーザ装置及び方法
KR101167116B1 (ko) * 2007-03-19 2012-07-20 가부시키가이샤 엔티티 도코모 이동통신 시스템에서 사용되는 기지국장치, 유저장치 및 방법
US8036110B2 (en) 2007-03-19 2011-10-11 Ntt Docomo, Inc. Base station apparatus, user equipment, and method used in mobile communication system
US10110351B2 (en) 2007-08-10 2018-10-23 Nokia Technologies Oy Communication method and apparatus for controlling data transmission and retransmission of mobile station at base station
US8897233B2 (en) 2007-08-10 2014-11-25 Alcatel Lucent Communication method and apparatus for controlling data transmission and retransmission of mobile station at base station
JP2010536278A (ja) * 2007-08-10 2010-11-25 アルカテル−ルーセント 基地局で移動局のデータ送信及び再送信を制御する通信方法及び装置
US9794012B2 (en) 2007-08-13 2017-10-17 Qualcomm Incorporated Coding and multiplexing of control information in a wireless communication system
JP2014017821A (ja) * 2007-08-13 2014-01-30 Qualcomm Incorporated ワイヤレス通信システムにおける制御情報の符号化および多重化
RU2485700C2 (ru) * 2007-09-14 2013-06-20 Нокиа Сименс Нетворкс Ой Способ циклического распределения ширины полосы с обеспечением возможности гибридного автоматического запроса повторения
JP2011525340A (ja) * 2008-06-19 2011-09-15 クゥアルコム・インコーポレイテッド 受信機によって受信されるハンドオーバ・メッセージの確率を高める方法
US9113429B2 (en) 2008-06-19 2015-08-18 Qualcomm Incorporated Method to increase the probability of handover message being received by receiver
US8515477B2 (en) 2008-06-30 2013-08-20 Panasonic Corporation Base station and communication method
WO2010001570A1 (ja) * 2008-06-30 2010-01-07 パナソニック株式会社 基地局及び通信方法
CN101855923A (zh) * 2008-06-30 2010-10-06 松下电器产业株式会社 基站及通信方法
JP5351159B2 (ja) * 2008-06-30 2013-11-27 パナソニック株式会社 基地局及び通信方法
WO2010035496A1 (ja) * 2008-09-29 2010-04-01 パナソニック株式会社 無線送信装置及び無線送信方法
US8817633B2 (en) 2009-05-12 2014-08-26 Mitsubishi Electric Corporation Terminal switching method, base station, and communication system
JP2012531171A (ja) * 2009-06-22 2012-12-06 クゥアルコム・インコーポレイテッド ロバストなue受信機
US9467974B2 (en) 2009-08-21 2016-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Controlling a transmission of information in a wireless communication network with a relay node
US10348455B2 (en) 2009-08-21 2019-07-09 Telefonaktiebolaget Lm Ericsson (Publ Controlling a transmission of information in a wireless communication network with a relay node
JP2011097569A (ja) * 2009-09-30 2011-05-12 Fujitsu Ltd 再送制御を行う装置及び方法
US9655096B2 (en) 2010-01-07 2017-05-16 Samsung Electronics Co., Ltd. Resource indexing for acknowledgement signals in response to receptions of multiple assignments
US9648604B2 (en) 2010-01-07 2017-05-09 Samsung Electronics Co., Ltd Resource indexing for acknowledgement signals in response to receptions of multiple assignments
US9572150B2 (en) 2010-01-07 2017-02-14 Samsung Electronics Co., Ltd Resource indexing for acknowledgement signals in response to receptions of multiple assignments
US9432988B2 (en) 2010-01-07 2016-08-30 Samsung Electronics Co., Ltd Resource indexing for acknowledgement signals in response to receptions of multiple assignments
US9432987B2 (en) 2010-01-07 2016-08-30 Samsung Electronics Co., Ltd Resource indexing for acknowledgement signals in response to receptions of multiple assignments
US9220089B2 (en) 2010-01-07 2015-12-22 Samsung Electronics Co, Ltd Resource indexing for acknowledgement signals in response to receptions of multiple assignments
US9860881B2 (en) 2010-10-11 2018-01-02 Qualcomm Incorporated Resource assignments for uplink control channel
US9172513B2 (en) 2010-10-11 2015-10-27 Qualcomm Incorporated Resource assignments for uplink control channel
US9699781B2 (en) 2012-10-12 2017-07-04 Nec Corporation Communications node
RU2605440C2 (ru) * 2012-10-12 2016-12-20 Нек Корпорейшн Узел связи
WO2017199984A1 (ja) * 2016-05-18 2017-11-23 株式会社Nttドコモ ユーザ端末及び無線通信方法
TWI749039B (zh) * 2016-09-15 2021-12-11 日商索尼股份有限公司 無線電信設備和方法

Also Published As

Publication number Publication date
JPWO2006016457A1 (ja) 2008-07-31
CN101040557A (zh) 2007-09-19
EP1784036A4 (en) 2011-07-06
CN101040557B (zh) 2010-12-08
KR100882057B1 (ko) 2009-02-09
JP4677988B2 (ja) 2011-04-27
KR20070040411A (ko) 2007-04-16
EP1784036B1 (en) 2012-12-05
EP1784036A1 (en) 2007-05-09
US20080081651A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4677988B2 (ja) 通信制御方法、無線通信システム、基地局及び移動局
US11259228B2 (en) Supporting uplink transmissions
US7818647B2 (en) Method for switching between asynchronous and synchronous HARQ retransmission mode
EP1557967B1 (en) Method of HARQ retransmission timing control
JP4694459B2 (ja) 無線通信方法および無線通信システム
US7783949B2 (en) Method and apparatus for controlling a transport format of a retransmission
US8817636B2 (en) Method, system, and equipment for information processing
KR101574334B1 (ko) 복수 기지국에 의한 조인트 상향링크 데이터 처리
US20170041104A1 (en) Method of transmitting data using harq
JP5482900B2 (ja) 多地点協調伝送を用いて受信されるパケットに対するnack送信への遅延導入
JP2016504798A (ja) 通信装置及び通信方法
EP2341685A1 (en) Method and apparatus for scheduling an acknowledgement in a wireless communication system
JP2010536278A (ja) 基地局で移動局のデータ送信及び再送信を制御する通信方法及び装置
EP4104343B1 (en) Telecommunications apparatus and methods

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531338

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11659927

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077005314

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005757896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580034463.9

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005757896

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11659927

Country of ref document: US