WO2006009767A1 - Wireless electrode for biopotential measurement - Google Patents
Wireless electrode for biopotential measurement Download PDFInfo
- Publication number
- WO2006009767A1 WO2006009767A1 PCT/US2005/021257 US2005021257W WO2006009767A1 WO 2006009767 A1 WO2006009767 A1 WO 2006009767A1 US 2005021257 W US2005021257 W US 2005021257W WO 2006009767 A1 WO2006009767 A1 WO 2006009767A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- biopotential
- electrode
- wireless
- data transmission
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims description 24
- 239000000853 adhesive Substances 0.000 claims description 16
- 230000001070 adhesive effect Effects 0.000 claims description 16
- 230000005540 biological transmission Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 230000003321 amplification Effects 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 238000012216 screening Methods 0.000 claims 6
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000013481 data capture Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 210000001061 forehead Anatomy 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 208000002982 auditory neuropathy Diseases 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0006—ECG or EEG signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1112—Global tracking of patients, e.g. by using GPS
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/282—Holders for multiple electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/30—Input circuits therefor
- A61B5/307—Input circuits therefor specially adapted for particular uses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/33—Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/683—Means for maintaining contact with the body
- A61B5/6832—Means for maintaining contact with the body using adhesives
- A61B5/6833—Adhesive patches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2503/00—Evaluating a particular growth phase or type of persons or animals
- A61B2503/20—Workers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2505/00—Evaluating, monitoring or diagnosing in the context of a particular type of medical care
- A61B2505/01—Emergency care
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0406—Constructional details of apparatus specially shaped apparatus housings
- A61B2560/0412—Low-profile patch shaped housings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/16—Details of sensor housings or probes; Details of structural supports for sensors
- A61B2562/166—Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted on a specially adapted printed circuit board
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/24—Hygienic packaging for medical sensors; Maintaining apparatus for sensor hygiene
- A61B2562/242—Packaging, i.e. for packaging the sensor or apparatus before use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0008—Temperature signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
- A61B5/02055—Simultaneously evaluating both cardiovascular condition and temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/30—Input circuits therefor
Definitions
- the present invention relates generally to a method and apparatus for capturing biopotential voltage signals such as electroencephalograms (EEG' s), electrocardiograms (ECG' s) or electromyograms (EMG' s). More particularly, the present invention provides a method and describes a battery powered device which uses a digital amplification circuit attached to a disposable adhesive electrode strip to capture voltage potentials from the surface of the skin and a digital wireless transceiver tightly integrated with respect to the amplification circuit to send the voltage potential signals to a remote receiver for datalogging.
- EEG' s electroencephalograms
- ECG' s electrocardiograms
- EMG' s electromyograms
- ECG' s Voltage potentials generated by the beating heart
- EMG' s are often detected from electrodes affixed to the skin near muscles to evaluate a subject's neuromuscular activity and may be used to identify muscular dystrophy, peripheral nerve damage or other diseases.
- EEG's are voltage potentials generated by activity within the brain. EEG's are detected by placing electrodes on the scalp and are often used to detect neurological conditions such as schizophrenia, auditory neuropathy, or the effects of anesthesia.
- Electrodes are commonly made from a conductive material such as silver/silverchloride (Ag/ AgCl) or gold (Au) and are often wetted with a conduction enhancing solution such as saline or a conductive gel.
- a conduction enhancing solution such as saline or a conductive gel.
- the voltage differential between the reference electrode and the signal electrodes is extremely small, on the order of millivolts (10 ⁇ 3 volt) or microvolts (10 ⁇ 6 volt).
- To detect the small physiological signal in the presence of background electrical noises requires amplification and filtering.
- the amplification and filtering is usually accomplished via an amplifier box connected to the electrodes with long wires.
- EEG' s ECG' s
- EMG' s EMG' s
- a clinical environment such as an ambulance, an emergency room, an operating room, or a recovery room.
- These environments are often cluttered with tubes and wires from the various life support or physiological monitoring equipment attached to the patient. Reducing the number of physical connections from the equipment to the patient, thereby decreasing the tangle of tubes and wires, would permit care givers to work more efficiently around the patient.
- the wires act as an antenna which will pick up stray background electrical noise.
- This background noise could come from other powered equipment or from electrosurgical devices used to cauterize wounds.
- Electrical filters in the amplifier box are used to limit the degradation caused by background noise but in doing so, also mask or modify a certain amount of the signal.
- the second reason that long wires limit the accuracy of the detected signals is that because the signals are very small, on the order of millivolts (10 "3 volt) or microvolts (10 ⁇ 6 volt), there is a certain amount of signal loss due to the impedance of the wire.
- the wires are often disturbed. Disturbing the wires can create noise and cause signal degradation.
- Physiometrix likewise markets the PSA 4000 system.
- This system also includes an adhesive electrode strip connected by a long wire to an interface box then into a monitor.
- This system suffers from many of the same shortcomings previously mentioned.
- BioSemi markets a preamplified electrode for biopotential measurements.
- BioSemi has developed an electrode contact with integrated amplifiers.
- This system has the advantage of amplifying the signal close to the contact point. The signals are then sent along a wire to a junction box where the signal is amplified again and then converted to a digital signal. While this system amplifies a cleaner signal, the long wires between the electrode and the junction box are still problematic.
- This system also requires an additional amplification step before the signal is digitized so that any noise picked up from the long wire will be included in the digitized signal.
- the BioSemi system requires an additional wire attached to a separate reference electrode.
- MyoScan-Pro MyoScan, and EEG-Z. These are preamplified electrodes which can be attached to an integrated electrode strip.
- This system like the BioSemi system, amplifies the signal close to the electrode contact but uses long electrode wires to send the signal to an interface box for analog to digital conversion.
- the Crystal Monitor is a wireless interface/junction box which accepts standard, non- amplified, wired electrodes.
- This system described in U.S. Pat. No. 5,755,230 eliminates the need for the wires between the junction box and the monitor but still uses discrete wired electrodes affixed to the skin. This system does not amplify the signal close to the skin contact point. Instead, standard wired electrodes are affixed to the skin and are attached by long electrode wires to the wireless junction box. This does not eliminate the problems associated with the clutter of wires and signal degradation can occur because of the long electrode wires.
- the BioRadio Jr. does include a signal amplifier, an analog to digital converter, and a radio transmitter, and is battery powered, but this system does not utilize a preformed, adhesive electrode strip.
- the device as described in their marketing literature, does not include a practical packaging arrangement. There is also no discussion of a method to automatically identify the specific biopotential measurement taken and therefore there is no method to preset the signal gain, filtering, or data capture or transmit rate.
- U.S. Pat. No. 6,577,893 describes a wireless sensor device which can include sensors for biopotential measurement. This device is deficient for biopotential measurements for several reasons. First, the sensors are packaged close together and do not provide enough separation between the signal and reference electrodes to get an accurate measurement of voltage potential. Next, the device does not include a disposable contact to ensure sterility. The device also does not include an identification chip to facilitate automatic system configuration.
- U.S. Pat. No. 6,611,705 describes a system and method to measure the biopotential signals related to an electrocardiograph (ECG).
- ECG electrocardiograph
- This system is primarily a replacement for the wires between the electrode junction box and the monitor commonly used in existing ECG systems. While this system does eliminate this wired connection, other issues of usability are not addressed.
- the invention overcomes the above-noted and other deficiencies of the prior art by providing a wireless biopotential measuring device with improved signal detection that is simple to set up and use in a clinical environment.
- a device which includes a means to automatically configure biopotential measurement parameters, a means to detect biopotential signals from the surface of skin, a means to amplify the biopotential signals, and a means to wirelessly transmit the signals to a remote monitor.
- a method of transmitting biopotential signals from a patient comprising the steps: sampling voltage differentials between a reference electrode and a signal electrode; amplifying the voltage differentials; converting the voltage differentials to a digital format; storing a plurality of digital samples in a memory device; and transmitting the stored samples via a wireless transmitter while continuing to sample.
- a biopotential measurement device affixable to skin of a patient, comprising: an adhesive substrate; a disposable electrode strip disposed on the adhesive substrate to position a pair of electrode contacts; voltage potential detection circuitry responsive to a biopotential signal across the pair of electrode contacts; processing circuitry operatively configured to signal amplify and digital convert the sensed biopotential signal; and wireless data transmission circuitry operatively configured to transmit the amplified, digitized biopotential signal.
- FIG. 1 is a perspective view of a wireless biopotential measurement device.
- FIG. 2 is an exploded view of the device in FIG. 1.
- FIG. 3 is a close-up view of an unfolded flex circuit which is used in the device in FIG 1.
- FIG. 4 is a perspective view of an alternative embodiment of the electrode strip used in the device in FIG 1.
- FIG. 5 is a perspective view of a battery charging and wireless receiver.
- FIG. 6 is a cross-section view from FIG. 1 of an electrode pad used in the device in FIG. 1.
- FIG. 7 is a cross-section view from FIG. 1 of an alternative embodiment of an electrode pad used in the device in FIG. 1.
- FIG. 8 is a functional block diagram of the circuit used in the device in FIG. 1.
- FIG. 9 is a functional block diagram showing the signal communication path.
- FIG. 10 is a functional block diagram of an alternative signal communication path.
- a sealed electronics module which encloses a flexible printed circuit with various integrated circuit devices attached. These integrated circuits include amplifiers, analog to digital converters, a microcontroller, random access memory, and a digital radio. Also included in the module are a battery and an antenna integrated onto the flexible circuit.
- the invention also includes a flexible electrode strip with at least one electrode contact affixed to each end.
- a memory chip containing a digital identifier is affixed to the electrode strip.
- Contact plugs are affixed to the electrode strip and are electrically connected to electrode pads and to the identifier memory chip.
- the electrode strip has an adhesive backing so that it can be adhesively affixed to a location on a subject's skin, such as the forehead.
- the electrode contacts may be impregnated with an electrolytic substance to enhance the skin conductance.
- the wireless electrode module 20 is a sealed package which can be attached to an electrode strip 21.
- electrode module cover 22 has been separated from electrode module base 25 to reveal the flexible circuit assembly 23.
- the flexible circuit assembly 23 has electrical contacts 36 which are electrically connected to the integrated circuit components 37.
- An antenna 34 and a battery 24 are also electrically connected to the integrated circuit components 37.
- the flexible circuit assembly 23 is assembled to the electrode module base 25 with the use of solder or conductive glue between electrical contacts 36 and electrode receptacles 38 which are permanently affixed to electrode module base 25.
- the wireless electrode module 20 is connected to the electrode strip 35 by inserting contact conductor plugs 26-28 into electrode receptacles 38 which are electrically connected to reference contact 32, signal contact 34, and the identification memory chip 29.
- the identification memory chip 29 stores the parameters for the specific desired biopotential measurement.
- the signal conductive adhesive pad 30 is affixed to the skin of a test subject in close proximity to the location desired for the biopotential measurement.
- the reference conductive adhesive pad 33 is affixed to the skin at a location of minimal electrophysiological activity such as the forehead.
- FIG. 3 shows flexible circuit assembly 23 in its unfolded configuration.
- Battery 24 is shown before being attached to flexible circuit assembly 23.
- FIG. 4 shows an alternative configuration of electrode strip 35 where the reference conductive adhesive pad 33 has been replaced with a reference conductive clip 50 attached to a tab 51 on electrode strip 35.
- the signal conductive adhesive pad 30 is affixed to the skin of a test subject in close proximity to the location desired for the biopotential measurement.
- the reference conductor clip 50 is clipped to the skin at a location of minimal electrophysiological activity such as the ear lobe.
- FIG. 5 shows the charging stand and wireless receiver 52.
- the electrode module 23 is placed in the charging sockets 53 when needing to be recharged.
- the charge state of the electrode module 23 is shown on charge display 55.
- the biopotential signals transmitted from the electrode module 23 are received through the receiving antenna 54 and converted and sent to a patient monitor 71 through the signal output ports 56.
- FIG. 6 shows a section through the electrode pad 32 from FIG. 2.
- the contact pad 33 may be impregnated with a conduction enhancing substance such as saline.
- Adhesive flanges 41 surrounding the contact pad 33 on the electrode strip 35 may be coated with an adhesive 40 to facilitate the contact pad 33 maintaining constant pressure on the skin.
- FIG. 7 shows a section through the electrode pad 32 from FIG. 2 in an alternative configuration.
- the electrode pad 33' is coated with an adhesive which also enhances the skin conduction.
- FIG. 8 shows a functional block diagram of electrode module 23 and electrode strip 35.
- the microcontroller unit detects the electrical connection with identification memory chip 29 and energizes the combined system.
- Reference contact 32 and signal contact 27 become electrically connected to amplifier/filter module 61 which is connected to A/D converter 64, flash memory 65, microcontroller unit 66, and radio transceiver module 63.
- Identification memory chip 29 affixed to electrode strip 35 is electrically connected to microcontroller unit 66.
- Rechargeable battery 24 is connected to power management unit 62, amplifier/filter module 61, A/D converter 64, flash memory 65, microcontroller unit 66, and radio transceiver module 63.
- identification memory chip 29 is read by microcontroller unit 66 which sets parameters for signal gain, filter settings, sampling rate, and transmission rate thus completing system initialization.
- Microcontroller unit 29 then activates the electrode by sending a Chip Select command and then clocks the data out.
- the amplified voltage potentials are then either transmitted wirelessly via radio transceiver module 63 or are temporarily stored in flash memory 65 and then transmitted in short bursts to increase battery life.
- FIG. 10 shows a functional block diagram of the communication path of the detected biopotential signals using the described device.
- Electrode module 23 is electrically connected to electrode strip 35 which is placed on the skin.
- the voltage differentials are detected, amplified, and digitized in electrode module 23.
- the digital signal is then transmitted wirelessly 72 to wireless receiver 52.
- the signal is then converted to a signal which can be read by existing systems and sent via wire to an existing patient monitor 71.
- FIG. 11 shows a functional block diagram of an alternative configuration for the communication path.
- Electrode module 23 is electrically connected to electrode strip 35 which is placed on the skin.
- the voltage differentials are detected, amplified, and digitized in electrode module 23.
- the digital signal is then transmitted wirelessly 72 to the combination wireless receiver and patient monitor 70.
- NEURO ELECTRODES FOR EEG, ECG, EMG APPLICATIONS Serial No. 60/557,230, filed on 29 March 2004, subsequently filed as U.S. Pat. Appln. Ser. No. 11/092,395 and WO 05/010515 both on 29 March 2005, the disclosures of which are hereby incorporated by reference in their entirety, all describe a novel amplified digital electrode for biopotential measurements.
- the disclosed electrode detects, amplifies, and digitizes the voltage potential at the point of skin contact, thereby minimizing signal noise and degradation.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/570,626 US20070270678A1 (en) | 2004-06-18 | 2005-06-16 | Wireless Electrode for Biopotential Measurement |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US58077604P | 2004-06-18 | 2004-06-18 | |
US58077204P | 2004-06-18 | 2004-06-18 | |
US60/580,776 | 2004-06-18 | ||
US60/580,772 | 2004-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006009767A1 true WO2006009767A1 (en) | 2006-01-26 |
Family
ID=34981170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/021257 WO2006009767A1 (en) | 2004-06-18 | 2005-06-16 | Wireless electrode for biopotential measurement |
Country Status (2)
Country | Link |
---|---|
US (2) | US20070270678A1 (en) |
WO (1) | WO2006009767A1 (en) |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7860557B2 (en) | 2001-07-17 | 2010-12-28 | Lifesync Corporation | Radiolucent chest assembly |
WO2015048309A1 (en) * | 2013-09-25 | 2015-04-02 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography monitoring circuit |
USD744659S1 (en) | 2013-11-07 | 2015-12-01 | Bardy Diagnostics, Inc. | Extended wear electrode patch |
WO2016044484A1 (en) * | 2014-09-16 | 2016-03-24 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch |
WO2016044472A1 (en) * | 2014-09-16 | 2016-03-24 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch |
WO2016044477A1 (en) * | 2014-09-16 | 2016-03-24 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor recorder |
US9345414B1 (en) | 2013-09-25 | 2016-05-24 | Bardy Diagnostics, Inc. | Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer |
US9364155B2 (en) | 2013-09-25 | 2016-06-14 | Bardy Diagnostics, Inc. | Self-contained personal air flow sensing monitor |
WO2016121592A1 (en) * | 2015-01-30 | 2016-08-04 | 株式会社村田製作所 | Biosignal transmission device |
US9408545B2 (en) | 2013-09-25 | 2016-08-09 | Bardy Diagnostics, Inc. | Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor |
US9408551B2 (en) | 2013-11-14 | 2016-08-09 | Bardy Diagnostics, Inc. | System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer |
US9433367B2 (en) | 2013-09-25 | 2016-09-06 | Bardy Diagnostics, Inc. | Remote interfacing of extended wear electrocardiography and physiological sensor monitor |
US9433380B1 (en) | 2013-09-25 | 2016-09-06 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
USD766447S1 (en) | 2015-09-10 | 2016-09-13 | Bardy Diagnostics, Inc. | Extended wear electrode patch |
US9504423B1 (en) | 2015-10-05 | 2016-11-29 | Bardy Diagnostics, Inc. | Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer |
US9545204B2 (en) | 2013-09-25 | 2017-01-17 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
US9619660B1 (en) | 2013-09-25 | 2017-04-11 | Bardy Diagnostics, Inc. | Computer-implemented system for secure physiological data collection and processing |
US9615763B2 (en) | 2013-09-25 | 2017-04-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation |
US9655537B2 (en) | 2013-09-25 | 2017-05-23 | Bardy Diagnostics, Inc. | Wearable electrocardiography and physiology monitoring ensemble |
US9700227B2 (en) | 2013-09-25 | 2017-07-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation |
US9717432B2 (en) | 2013-09-25 | 2017-08-01 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch using interlaced wire electrodes |
US9717433B2 (en) | 2013-09-25 | 2017-08-01 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation |
USD793566S1 (en) | 2015-09-10 | 2017-08-01 | Bardy Diagnostics, Inc. | Extended wear electrode patch |
US9737224B2 (en) | 2013-09-25 | 2017-08-22 | Bardy Diagnostics, Inc. | Event alerting through actigraphy embedded within electrocardiographic data |
US9775536B2 (en) | 2013-09-25 | 2017-10-03 | Bardy Diagnostics, Inc. | Method for constructing a stress-pliant physiological electrode assembly |
USD801528S1 (en) | 2013-11-07 | 2017-10-31 | Bardy Diagnostics, Inc. | Electrocardiography monitor |
USD831833S1 (en) | 2013-11-07 | 2018-10-23 | Bardy Diagnostics, Inc. | Extended wear electrode patch |
US10154795B2 (en) | 2005-08-19 | 2018-12-18 | Neuronetrix Solutions, Llc | Controller for neuromuscular testing |
US10165946B2 (en) | 2013-09-25 | 2019-01-01 | Bardy Diagnostics, Inc. | Computer-implemented system and method for providing a personal mobile device-triggered medical intervention |
USD838370S1 (en) | 2013-11-07 | 2019-01-15 | Bardy Diagnostics, Inc. | Electrocardiography monitor |
CN109219388A (en) * | 2016-05-25 | 2019-01-15 | 埃尔瓦有限公司 | The positioning applicator equipment and correlation technique being used together with scalable electronic equipment |
US10251576B2 (en) | 2013-09-25 | 2019-04-09 | Bardy Diagnostics, Inc. | System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer |
US10433748B2 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and physiological sensor monitor |
US10433751B2 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data |
US10463269B2 (en) | 2013-09-25 | 2019-11-05 | Bardy Diagnostics, Inc. | System and method for machine-learning-based atrial fibrillation detection |
US10624551B2 (en) | 2013-09-25 | 2020-04-21 | Bardy Diagnostics, Inc. | Insertable cardiac monitor for use in performing long term electrocardiographic monitoring |
US10667711B1 (en) | 2013-09-25 | 2020-06-02 | Bardy Diagnostics, Inc. | Contact-activated extended wear electrocardiography and physiological sensor monitor recorder |
USD892340S1 (en) | 2013-11-07 | 2020-08-04 | Bardy Diagnostics, Inc. | Extended wear electrode patch |
US10736529B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnostics, Inc. | Subcutaneous insertable electrocardiography monitor |
US10736531B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnostics, Inc. | Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection |
US10799137B2 (en) | 2013-09-25 | 2020-10-13 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10806360B2 (en) | 2013-09-25 | 2020-10-20 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US10820801B2 (en) | 2013-09-25 | 2020-11-03 | Bardy Diagnostics, Inc. | Electrocardiography monitor configured for self-optimizing ECG data compression |
US10888239B2 (en) | 2013-09-25 | 2021-01-12 | Bardy Diagnostics, Inc. | Remote interfacing electrocardiography patch |
US11096579B2 (en) | 2019-07-03 | 2021-08-24 | Bardy Diagnostics, Inc. | System and method for remote ECG data streaming in real-time |
US11116451B2 (en) | 2019-07-03 | 2021-09-14 | Bardy Diagnostics, Inc. | Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities |
US11213237B2 (en) | 2013-09-25 | 2022-01-04 | Bardy Diagnostics, Inc. | System and method for secure cloud-based physiological data processing and delivery |
US11324441B2 (en) | 2013-09-25 | 2022-05-10 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor |
US11678830B2 (en) | 2017-12-05 | 2023-06-20 | Bardy Diagnostics, Inc. | Noise-separating cardiac monitor |
US11723575B2 (en) | 2013-09-25 | 2023-08-15 | Bardy Diagnostics, Inc. | Electrocardiography patch |
Families Citing this family (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005006024A1 (en) * | 2005-02-08 | 2006-10-05 | Deutsche Telekom Ag | Device for monitoring vital signs frail |
US20070041424A1 (en) * | 2005-08-16 | 2007-02-22 | Mordechai Lev | Axillary thermometer |
US7978081B2 (en) | 2006-01-09 | 2011-07-12 | Applied Technology Holdings, Inc. | Apparatus, systems, and methods for communicating biometric and biomechanical information |
ES2426483T3 (en) * | 2006-07-05 | 2013-10-23 | Elcam Medical Agricultural Cooperative Association Ltd. | Wireless medical monitoring system |
US20080097177A1 (en) * | 2006-09-29 | 2008-04-24 | Doug Music | System and method for user interface and identification in a medical device |
US7925511B2 (en) | 2006-09-29 | 2011-04-12 | Nellcor Puritan Bennett Llc | System and method for secure voice identification in a medical device |
US7706896B2 (en) | 2006-09-29 | 2010-04-27 | Nellcor Puritan Bennett Llc | User interface and identification in a medical device system and method |
US20080097176A1 (en) * | 2006-09-29 | 2008-04-24 | Doug Music | User interface and identification in a medical device systems and methods |
US7698002B2 (en) | 2006-09-29 | 2010-04-13 | Nellcor Puritan Bennett Llc | Systems and methods for user interface and identification in a medical device |
US20080081956A1 (en) | 2006-09-29 | 2008-04-03 | Jayesh Shah | System and method for integrating voice with a medical device |
US8214007B2 (en) | 2006-11-01 | 2012-07-03 | Welch Allyn, Inc. | Body worn physiological sensor device having a disposable electrode module |
AU2007342218A1 (en) * | 2007-01-10 | 2008-07-17 | Camillo Ricordi | Mobile emergency alert system |
US20090062670A1 (en) * | 2007-08-30 | 2009-03-05 | Gary James Sterling | Heart monitoring body patch and system |
EP2194858B1 (en) * | 2007-09-14 | 2017-11-22 | Corventis, Inc. | Medical device automatic start-up upon contact to patient tissue |
WO2009036306A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Adherent cardiac monitor with advanced sensing capabilities |
WO2009036369A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | System and methods for wireless body fluid monitoring |
WO2009036316A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Energy management, tracking and security for adherent patient monitor |
US8249686B2 (en) | 2007-09-14 | 2012-08-21 | Corventis, Inc. | Adherent device for sleep disordered breathing |
US9186089B2 (en) | 2007-09-14 | 2015-11-17 | Medtronic Monitoring, Inc. | Injectable physiological monitoring system |
EP2194847A1 (en) | 2007-09-14 | 2010-06-16 | Corventis, Inc. | Adherent device with multiple physiological sensors |
US8343065B2 (en) * | 2007-10-18 | 2013-01-01 | Innovative Surgical Solutions, Llc | Neural event detection |
US8343079B2 (en) | 2007-10-18 | 2013-01-01 | Innovative Surgical Solutions, Llc | Neural monitoring sensor |
US8942797B2 (en) * | 2007-10-18 | 2015-01-27 | Innovative Surgical Solutions, Llc | Neural monitoring system |
US9084550B1 (en) | 2007-10-18 | 2015-07-21 | Innovative Surgical Solutions, Llc | Minimally invasive nerve monitoring device and method |
US20090105788A1 (en) * | 2007-10-18 | 2009-04-23 | Innovative Surgical Solutions, Llc | Minimally invasive nerve monitoring device and method |
KR101365591B1 (en) * | 2007-12-17 | 2014-02-21 | 삼성전자주식회사 | Body temperature measuring device and system with the same |
US20090171175A1 (en) * | 2007-12-31 | 2009-07-02 | Nellcor Puritan Bennett Llc | Personalized Medical Monitoring: Auto-Configuration Using Patient Record Information |
DK2242522T3 (en) | 2008-01-08 | 2012-06-18 | Bluesky Medical Group Inc | Wound treatment with uninterrupted variable pressure and methods for controlling it |
WO2009114548A1 (en) | 2008-03-12 | 2009-09-17 | Corventis, Inc. | Heart failure decompensation prediction based on cardiac rhythm |
US8945030B2 (en) | 2008-03-12 | 2015-02-03 | Bluesky Medical Group, Inc. | Negative pressure dressing and method of using same |
US8412317B2 (en) | 2008-04-18 | 2013-04-02 | Corventis, Inc. | Method and apparatus to measure bioelectric impedance of patient tissue |
US7880884B2 (en) | 2008-06-30 | 2011-02-01 | Nellcor Puritan Bennett Llc | System and method for coating and shielding electronic sensor components |
US8257274B2 (en) * | 2008-09-25 | 2012-09-04 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
EP2344029B1 (en) * | 2008-11-14 | 2017-09-27 | Neuronetrix Solutions, LLC | Electrode system |
WO2010077851A2 (en) | 2008-12-15 | 2010-07-08 | Corventis, Inc. | Patient monitoring systems and methods |
WO2010105053A2 (en) * | 2009-03-13 | 2010-09-16 | Corventis, Inc. | Acute patient management for military and emergency applications |
AU2010298299B2 (en) | 2009-09-25 | 2014-11-20 | Neuronetrix Solutions, Llc | Electrode system with rigid-flex circuit |
US8790259B2 (en) | 2009-10-22 | 2014-07-29 | Corventis, Inc. | Method and apparatus for remote detection and monitoring of functional chronotropic incompetence |
US9451897B2 (en) * | 2009-12-14 | 2016-09-27 | Medtronic Monitoring, Inc. | Body adherent patch with electronics for physiologic monitoring |
US11545052B1 (en) * | 2009-12-30 | 2023-01-03 | Equalizer Technology LLC | Insulative rescue cap containing emergency response procedures |
EP2362367A1 (en) * | 2010-02-18 | 2011-08-31 | HergFinanz AG | Localization system comprising at least one localization device and one display device |
US10206570B2 (en) * | 2010-02-28 | 2019-02-19 | Covidien Lp | Adaptive wireless body networks |
US8874180B2 (en) * | 2010-02-28 | 2014-10-28 | Covidien Lp | Ambient electromagnetic energy harvesting with wireless sensors |
US8428676B2 (en) | 2010-03-31 | 2013-04-23 | Covidien Lp | Thermoelectric energy harvesting with wireless sensors |
US8965498B2 (en) | 2010-04-05 | 2015-02-24 | Corventis, Inc. | Method and apparatus for personalized physiologic parameters |
US8319401B2 (en) | 2010-04-30 | 2012-11-27 | Nellcor Puritan Bennett Llc | Air movement energy harvesting with wireless sensors |
JP5559425B2 (en) | 2010-05-12 | 2014-07-23 | イリズム・テクノロジーズ・インコーポレイテッド | Equipment mechanism and components for long-term adhesion |
US8814792B2 (en) | 2010-07-27 | 2014-08-26 | Carefusion 303, Inc. | System and method for storing and forwarding data from a vital-signs monitor |
US9585620B2 (en) * | 2010-07-27 | 2017-03-07 | Carefusion 303, Inc. | Vital-signs patch having a flexible attachment to electrodes |
US9420952B2 (en) | 2010-07-27 | 2016-08-23 | Carefusion 303, Inc. | Temperature probe suitable for axillary reading |
US9055925B2 (en) | 2010-07-27 | 2015-06-16 | Carefusion 303, Inc. | System and method for reducing false alarms associated with vital-signs monitoring |
US9357929B2 (en) | 2010-07-27 | 2016-06-07 | Carefusion 303, Inc. | System and method for monitoring body temperature of a person |
US9017255B2 (en) | 2010-07-27 | 2015-04-28 | Carefusion 303, Inc. | System and method for saving battery power in a patient monitoring system |
JP2013539997A (en) | 2010-09-10 | 2013-10-31 | ニューロントリックス・ソリューションズ・エルエルシー | Electrode system using in-band impedance detection |
US9662034B2 (en) | 2010-09-10 | 2017-05-30 | Neuronetrix Solutions, Llc | Biomarker fusion system and method |
WO2012034161A1 (en) * | 2010-09-13 | 2012-03-22 | Hear Ip Pty Ltd | A signal processing device for use in electroencephalography and a cable system incorporating the device |
US9131888B2 (en) * | 2010-09-21 | 2015-09-15 | Alexander B. Grey | Metrics and algorithms for interpretation of muscular use |
WO2012050847A2 (en) * | 2010-09-28 | 2012-04-19 | Masimo Corporation | Depth of consciousness monitor including oximeter |
US8657758B2 (en) | 2010-12-02 | 2014-02-25 | Welch Allyn, Inc. | Devices and methods for temperature determination |
TWI433625B (en) | 2011-07-04 | 2014-04-01 | Ind Tech Res Inst | Method for fabricating the flexible electronic device |
US20130030267A1 (en) * | 2011-07-29 | 2013-01-31 | Nellcor Puritan Bennett Llc | Multi-purpose sensor system |
US9301711B2 (en) | 2011-11-10 | 2016-04-05 | Innovative Surgical Solutions, Llc | System and method for assessing neural health |
US8983593B2 (en) | 2011-11-10 | 2015-03-17 | Innovative Surgical Solutions, Llc | Method of assessing neural function |
US9700222B2 (en) | 2011-12-02 | 2017-07-11 | Lumiradx Uk Ltd | Health-monitor patch |
US9734304B2 (en) | 2011-12-02 | 2017-08-15 | Lumiradx Uk Ltd | Versatile sensors with data fusion functionality |
US9626612B2 (en) | 2011-12-21 | 2017-04-18 | Avery Dennison Retail Information Services, Llc | Radio frequency identification sensor assembly |
US20130225967A1 (en) * | 2012-02-29 | 2013-08-29 | Anthony Esposito | Small wireless portable ekg system |
US8855822B2 (en) | 2012-03-23 | 2014-10-07 | Innovative Surgical Solutions, Llc | Robotic surgical system with mechanomyography feedback |
US9277864B2 (en) | 2012-05-24 | 2016-03-08 | Vital Connect, Inc. | Modular wearable sensor device |
US9814426B2 (en) | 2012-06-14 | 2017-11-14 | Medibotics Llc | Mobile wearable electromagnetic brain activity monitor |
US9039630B2 (en) | 2012-08-22 | 2015-05-26 | Innovative Surgical Solutions, Llc | Method of detecting a sacral nerve |
US8892259B2 (en) | 2012-09-26 | 2014-11-18 | Innovative Surgical Solutions, LLC. | Robotic surgical system with mechanomyography feedback |
GB201317746D0 (en) | 2013-10-08 | 2013-11-20 | Smith & Nephew | PH indicator |
US10039460B2 (en) * | 2013-01-22 | 2018-08-07 | MiSleeping, Inc. | Neural activity recording apparatus and method of using same |
KR102145450B1 (en) | 2013-01-24 | 2020-08-18 | 아이리듬 테크놀로지스, 아이엔씨 | Physiological monitoring device |
JP2016508400A (en) * | 2013-02-15 | 2016-03-22 | アカシア・デザインズ・ベスローテン・フェンノートシャップ | Electrode system for use in medical monitoring systems |
US10265019B2 (en) * | 2013-03-29 | 2019-04-23 | Oxystrap Int'l, Inc. | Electronic headwear |
WO2014168841A1 (en) | 2013-04-08 | 2014-10-16 | Irhythm Technologies, Inc | Skin abrader |
US10478097B2 (en) | 2013-08-13 | 2019-11-19 | Innovative Surgical Solutions | Neural event detection |
US10478096B2 (en) | 2013-08-13 | 2019-11-19 | Innovative Surgical Solutions. | Neural event detection |
US9622684B2 (en) | 2013-09-20 | 2017-04-18 | Innovative Surgical Solutions, Llc | Neural locating system |
US9795299B2 (en) * | 2013-09-27 | 2017-10-24 | Covidien Lp | Modular physiological sensing patch |
CN105813557A (en) * | 2013-10-14 | 2016-07-27 | 诺罗维吉尔公司 | Localized collection of biological signals, cursor control in speech-assistance interface based on biological electrical signals and arousal detection based on biological electrical signals |
KR101490811B1 (en) * | 2013-12-04 | 2015-02-06 | 주식회사 케이헬쓰웨어 | Electrical Impedance Tomography Apparatus |
US10398369B2 (en) | 2014-08-08 | 2019-09-03 | Medtronic Xomed, Inc. | Wireless stimulation probe device for wireless nerve integrity monitoring systems |
WO2016057553A1 (en) | 2014-10-07 | 2016-04-14 | Masimo Corporation | Modular physiological sensors |
CN107249451A (en) | 2014-10-15 | 2017-10-13 | 外分泌腺系统公司 | Sweat sensing device communications security and compliance |
CN113057649B (en) | 2014-10-31 | 2023-04-11 | 意锐瑟科技公司 | Wireless physiological monitoring device and system |
US9332940B1 (en) | 2015-01-05 | 2016-05-10 | Analog Devices, Inc. | Compact wearable biological sensor modules |
US11980465B2 (en) | 2015-04-03 | 2024-05-14 | Medtronic Xomed, Inc. | System and method for omni-directional bipolar stimulation of nerve tissue of a patient via a bipolar stimulation probe |
US10039915B2 (en) | 2015-04-03 | 2018-08-07 | Medtronic Xomed, Inc. | System and method for omni-directional bipolar stimulation of nerve tissue of a patient via a surgical tool |
CN104887384B (en) * | 2015-05-28 | 2017-12-08 | 京东方科技集团股份有限公司 | A kind of intelligence is defervescence plaster used |
US10646142B2 (en) | 2015-06-29 | 2020-05-12 | Eccrine Systems, Inc. | Smart sweat stimulation and sensing devices |
US10398335B2 (en) * | 2015-08-05 | 2019-09-03 | Preventice Technologies, Inc. | Bridge connectors employing flexible planar bodies having signal pathways coupling control devices with biometric sensors |
CN108697322A (en) | 2015-10-23 | 2018-10-23 | 外分泌腺系统公司 | The device that can carry out sample concentration of extension sensing for sweat analyte |
US10055948B2 (en) | 2015-11-30 | 2018-08-21 | Nike, Inc. | Apparel with ultrasonic position sensing and haptic feedback for activities |
US10674946B2 (en) | 2015-12-18 | 2020-06-09 | Eccrine Systems, Inc. | Sweat sensing devices with sensor abrasion protection |
US9781494B1 (en) * | 2015-12-28 | 2017-10-03 | Wells Fargo Bank, N.A. | Systems and methods for activity monitoring |
AU2016382973B2 (en) * | 2015-12-30 | 2021-07-15 | Raydiant Oximetry, Inc. | Systems, devices, and methods for performing trans-abdominal fetal oximetry and/or trans-abdominal fetal pulse oximetry |
US11375926B2 (en) | 2015-12-30 | 2022-07-05 | Raydiant Oximetry, Inc. | Systems, devices, and methods for performing trans-abdominal fetal oximetry and/or trans-abdominal fetal pulse oximetry using a heartbeat signal for a pregnant mammal |
CN105534501A (en) * | 2016-01-30 | 2016-05-04 | 深圳市易特科信息技术有限公司 | Sick-person or wounded-person rescuing system and method based on intelligent watch |
US11020035B2 (en) | 2016-02-01 | 2021-06-01 | Epitel, Inc. | Self-contained EEG recording system |
GB201603793D0 (en) | 2016-03-04 | 2016-04-20 | Heartlight Systems Ltd And University Of Nottingham The | Hat and monitoring system |
AU2017264907A1 (en) | 2016-05-13 | 2018-12-20 | Smith & Nephew Plc | Sensor enabled wound monitoring and therapy apparatus |
CN110035690A (en) | 2016-07-19 | 2019-07-19 | 外分泌腺系统公司 | Sweat conductivity, volume perspiration rate and electrodermal response equipment and application |
US10849517B2 (en) | 2016-09-19 | 2020-12-01 | Medtronic Xomed, Inc. | Remote control module for instruments |
US10321833B2 (en) | 2016-10-05 | 2019-06-18 | Innovative Surgical Solutions. | Neural locating method |
US10154805B2 (en) * | 2016-10-13 | 2018-12-18 | Verily Life Sciences Llc | Disposable glucose biosensor including an activity sensor |
US10736565B2 (en) | 2016-10-14 | 2020-08-11 | Eccrine Systems, Inc. | Sweat electrolyte loss monitoring devices |
EP3497275A4 (en) * | 2016-11-01 | 2020-05-06 | Medicomp, INC. | Patch stack-up |
US10646120B2 (en) * | 2017-01-03 | 2020-05-12 | Vytal Corporation | Body-worn biometric sensor |
KR102700049B1 (en) * | 2017-02-03 | 2024-08-29 | 삼성전자주식회사 | Electronic device for authenticating biometric data and system |
US11896393B1 (en) * | 2017-03-01 | 2024-02-13 | CB Innovations, LLC | Wearable diagnostic electrocardiogram garment |
WO2018162736A1 (en) | 2017-03-09 | 2018-09-13 | Smith & Nephew Plc | Wound dressing, patch member and method of sensing one or more wound parameters |
EP3592230A1 (en) | 2017-03-09 | 2020-01-15 | Smith & Nephew PLC | Apparatus and method for imaging blood in a target region of tissue |
JP7235673B2 (en) | 2017-04-11 | 2023-03-08 | スミス アンド ネフュー ピーエルシー | Component placement and stress relief for sensor-enabled wound dressings |
EP3635733A1 (en) | 2017-05-15 | 2020-04-15 | Smith & Nephew plc | Negative pressure wound therapy system using eulerian video magnification |
JP7272962B2 (en) | 2017-05-15 | 2023-05-12 | スミス アンド ネフュー ピーエルシー | wound analyzer |
CA3066073A1 (en) | 2017-06-23 | 2018-12-27 | Smith & Nephew Plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
GB201809007D0 (en) | 2018-06-01 | 2018-07-18 | Smith & Nephew | Restriction of sensor-monitored region for sensor-enabled wound dressings |
GB201804502D0 (en) | 2018-03-21 | 2018-05-02 | Smith & Nephew | Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings |
EP3664859A2 (en) | 2017-08-10 | 2020-06-17 | Smith & Nephew plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
GB201718870D0 (en) | 2017-11-15 | 2017-12-27 | Smith & Nephew Inc | Sensor enabled wound therapy dressings and systems |
EP3681376A1 (en) | 2017-09-10 | 2020-07-22 | Smith & Nephew PLC | Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings |
GB201804971D0 (en) | 2018-03-28 | 2018-05-09 | Smith & Nephew | Electrostatic discharge protection for sensors in wound therapy |
GB201718859D0 (en) | 2017-11-15 | 2017-12-27 | Smith & Nephew | Sensor positioning for sensor enabled wound therapy dressings and systems |
WO2019063481A1 (en) | 2017-09-27 | 2019-04-04 | Smith & Nephew Plc | Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses |
WO2019072531A1 (en) | 2017-09-28 | 2019-04-18 | Smith & Nephew Plc | Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus |
US11515594B2 (en) | 2017-09-29 | 2022-11-29 | Maxell, Ltd. | Waterproof device with air cell power source |
CN111343950A (en) | 2017-11-15 | 2020-06-26 | 史密夫及内修公开有限公司 | Integrated wound monitoring and/or therapy dressing and system implementing sensors |
US10433756B1 (en) | 2018-05-31 | 2019-10-08 | CeriBell, Inc. | Adjustable geometry wearable electrodes |
US10869616B2 (en) | 2018-06-01 | 2020-12-22 | DePuy Synthes Products, Inc. | Neural event detection |
US11944418B2 (en) | 2018-09-12 | 2024-04-02 | Smith & Nephew Plc | Device, apparatus and method of determining skin perfusion pressure |
US10870002B2 (en) | 2018-10-12 | 2020-12-22 | DePuy Synthes Products, Inc. | Neuromuscular sensing device with multi-sensor array |
GB201820927D0 (en) | 2018-12-21 | 2019-02-06 | Smith & Nephew | Wound therapy systems and methods with supercapacitors |
JP7529681B2 (en) | 2019-03-18 | 2024-08-06 | スミス アンド ネフュー ピーエルシー | Design rules for sensor integrated boards |
US11696681B2 (en) | 2019-07-03 | 2023-07-11 | Bardy Diagnostics Inc. | Configurable hardware platform for physiological monitoring of a living body |
US11399777B2 (en) | 2019-09-27 | 2022-08-02 | DePuy Synthes Products, Inc. | Intraoperative neural monitoring system and method |
GB201914443D0 (en) | 2019-10-07 | 2019-11-20 | Smith & Nephew | Sensor enabled negative pressure wound monitoring apparatus with different impedances inks |
US20210228089A1 (en) * | 2020-01-29 | 2021-07-29 | Demetrice Williams | Emergency health monitoring system and wearable vital sign monitor |
KR102563372B1 (en) | 2020-02-12 | 2023-08-03 | 아이리듬 테크놀로지스, 아이엔씨 | Method for Inferring Patient Physiological Characteristics Using Non-Invasive Cardiac Monitors and Recorded Cardiac Data |
US20210307672A1 (en) | 2020-04-05 | 2021-10-07 | Epitel, Inc. | Eeg recording and analysis |
US11246523B1 (en) | 2020-08-06 | 2022-02-15 | Irhythm Technologies, Inc. | Wearable device with conductive traces and insulator |
US11350864B2 (en) | 2020-08-06 | 2022-06-07 | Irhythm Technologies, Inc. | Adhesive physiological monitoring device |
EP4380428A1 (en) * | 2021-08-06 | 2024-06-12 | BIOTRONIK SE & Co. KG | Sensing system for sensing biological signals externally on a patient |
US11857330B1 (en) | 2022-10-19 | 2024-01-02 | Epitel, Inc. | Systems and methods for electroencephalogram monitoring |
US20240225444A1 (en) * | 2023-01-09 | 2024-07-11 | Rany M. Saleh | Wireless multi-lead electrocardiogram system |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5305746A (en) | 1992-09-29 | 1994-04-26 | Aspect Medical Systems, Inc. | Disposable, pre-gelled, self-prepping electrode |
US5360971A (en) * | 1992-03-31 | 1994-11-01 | The Research Foundation State University Of New York | Apparatus and method for eye tracking interface |
US5511553A (en) * | 1989-02-15 | 1996-04-30 | Segalowitz; Jacob | Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously |
US5755230A (en) | 1995-09-18 | 1998-05-26 | Cleveland Medical Devices Inc. | Wireless EEG system for effective auditory evoked response |
EP1070479A2 (en) * | 1999-07-19 | 2001-01-24 | Altec Incorporated | Biosignal monitoring system and method |
US6298255B1 (en) | 1999-06-09 | 2001-10-02 | Aspect Medical Systems, Inc. | Smart electrophysiological sensor system with automatic authentication and validation and an interface for a smart electrophysiological sensor system |
US6416471B1 (en) * | 1999-04-15 | 2002-07-09 | Nexan Limited | Portable remote patient telemonitoring system |
US6577893B1 (en) | 1993-09-04 | 2003-06-10 | Motorola, Inc. | Wireless medical diagnosis and monitoring equipment |
US20030109905A1 (en) * | 2001-12-07 | 2003-06-12 | Swee Mok | Wireless electromyography sensor and system |
US6611705B2 (en) | 2000-07-18 | 2003-08-26 | Motorola, Inc. | Wireless electrocardiograph system and method |
US6654626B2 (en) | 1996-10-11 | 2003-11-25 | Aspect Medical Systems, Inc. | Electrode array system for measuring electrophysiological signals |
US20040030258A1 (en) * | 2000-10-09 | 2004-02-12 | Williams Christopher Edward | Sensor assembly for monitoring an infant brain |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5038782A (en) * | 1986-12-16 | 1991-08-13 | Sam Technology, Inc. | Electrode system for brain wave detection |
US5307818A (en) * | 1989-02-15 | 1994-05-03 | Jacob Segalowitz | Wireless electrocardiographic and monitoring system and wireless electrode assemblies for same |
US5168874A (en) * | 1989-02-15 | 1992-12-08 | Jacob Segalowitz | Wireless electrode structure for use in patient monitoring system |
US5458117A (en) * | 1991-10-25 | 1995-10-17 | Aspect Medical Systems, Inc. | Cerebral biopotential analysis system and method |
US5320109A (en) * | 1991-10-25 | 1994-06-14 | Aspect Medical Systems, Inc. | Cerebral biopotential analysis system and method |
US5353793A (en) * | 1991-11-25 | 1994-10-11 | Oishi-Kogyo Company | Sensor apparatus |
US5368041A (en) * | 1992-10-15 | 1994-11-29 | Aspect Medical Systems, Inc. | Monitor and method for acquiring and processing electrical signals relating to bodily functions |
US5381798A (en) * | 1993-11-02 | 1995-01-17 | Quinton Instrument Company | Spread spectrum telemetry of physiological signals |
US5813404A (en) * | 1995-10-20 | 1998-09-29 | Aspect Medical Systems, Inc. | Electrode connector system |
US5929777A (en) * | 1996-05-16 | 1999-07-27 | Mci World Com, Inc. | Radio activated personal infrared distress beacon |
US6032064A (en) * | 1996-10-11 | 2000-02-29 | Aspect Medical Systems, Inc. | Electrode array system for measuring electrophysiological signals |
US6198394B1 (en) * | 1996-12-05 | 2001-03-06 | Stephen C. Jacobsen | System for remote monitoring of personnel |
US5792069A (en) * | 1996-12-24 | 1998-08-11 | Aspect Medical Systems, Inc. | Method and system for the extraction of cardiac artifacts from EEG signals |
US6032072A (en) * | 1998-01-30 | 2000-02-29 | Aspect Medical Systems, Inc. | Method for enhancing and separating biopotential signals |
US6434410B1 (en) * | 1998-06-19 | 2002-08-13 | Aspect Medical Systems, Inc. | Electrode for measuring electrophysiological signals using liquid electrolytic gel with a high salt concentration |
AU2491300A (en) * | 1999-01-06 | 2000-07-24 | Ball Semiconductor Inc. | Wireless ekg |
US6494829B1 (en) * | 1999-04-15 | 2002-12-17 | Nexan Limited | Physiological sensor array |
US6470893B1 (en) * | 2000-05-15 | 2002-10-29 | Peter V. Boesen | Wireless biopotential sensing device and method with capability of short-range radio frequency transmission and reception |
US6496705B1 (en) * | 2000-04-18 | 2002-12-17 | Motorola Inc. | Programmable wireless electrode system for medical monitoring |
US6757558B2 (en) * | 2000-07-06 | 2004-06-29 | Algodyne, Ltd. | Objective pain measurement system and method |
CN1292702C (en) * | 2000-12-21 | 2007-01-03 | 茵斯莱特有限公司 | Medical apparatus remote control and method |
US20030069510A1 (en) * | 2001-10-04 | 2003-04-10 | Semler Herbert J. | Disposable vital signs monitor |
US20040030365A1 (en) * | 2001-11-30 | 2004-02-12 | Leo Rubin | Medical device to restore functions of a fibrillating heart by cardiac therapies remotely directed by a physician via two-way communication |
-
2005
- 2005-06-16 US US11/570,626 patent/US20070270678A1/en not_active Abandoned
- 2005-06-16 WO PCT/US2005/021257 patent/WO2006009767A1/en active Application Filing
- 2005-06-16 US US11/154,192 patent/US20050280531A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5511553A (en) * | 1989-02-15 | 1996-04-30 | Segalowitz; Jacob | Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously |
US5360971A (en) * | 1992-03-31 | 1994-11-01 | The Research Foundation State University Of New York | Apparatus and method for eye tracking interface |
US5305746A (en) | 1992-09-29 | 1994-04-26 | Aspect Medical Systems, Inc. | Disposable, pre-gelled, self-prepping electrode |
US6577893B1 (en) | 1993-09-04 | 2003-06-10 | Motorola, Inc. | Wireless medical diagnosis and monitoring equipment |
US5755230A (en) | 1995-09-18 | 1998-05-26 | Cleveland Medical Devices Inc. | Wireless EEG system for effective auditory evoked response |
US6654626B2 (en) | 1996-10-11 | 2003-11-25 | Aspect Medical Systems, Inc. | Electrode array system for measuring electrophysiological signals |
US6416471B1 (en) * | 1999-04-15 | 2002-07-09 | Nexan Limited | Portable remote patient telemonitoring system |
US6298255B1 (en) | 1999-06-09 | 2001-10-02 | Aspect Medical Systems, Inc. | Smart electrophysiological sensor system with automatic authentication and validation and an interface for a smart electrophysiological sensor system |
EP1070479A2 (en) * | 1999-07-19 | 2001-01-24 | Altec Incorporated | Biosignal monitoring system and method |
US6611705B2 (en) | 2000-07-18 | 2003-08-26 | Motorola, Inc. | Wireless electrocardiograph system and method |
US20040030258A1 (en) * | 2000-10-09 | 2004-02-12 | Williams Christopher Edward | Sensor assembly for monitoring an infant brain |
US20030109905A1 (en) * | 2001-12-07 | 2003-06-12 | Swee Mok | Wireless electromyography sensor and system |
Cited By (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7933642B2 (en) | 2001-07-17 | 2011-04-26 | Rud Istvan | Wireless ECG system |
US7860557B2 (en) | 2001-07-17 | 2010-12-28 | Lifesync Corporation | Radiolucent chest assembly |
US10154795B2 (en) | 2005-08-19 | 2018-12-18 | Neuronetrix Solutions, Llc | Controller for neuromuscular testing |
US11213237B2 (en) | 2013-09-25 | 2022-01-04 | Bardy Diagnostics, Inc. | System and method for secure cloud-based physiological data processing and delivery |
US9730593B2 (en) | 2013-09-25 | 2017-08-15 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US11918364B2 (en) | 2013-09-25 | 2024-03-05 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US11826151B2 (en) | 2013-09-25 | 2023-11-28 | Bardy Diagnostics, Inc. | System and method for physiological data classification for use in facilitating diagnosis |
US9345414B1 (en) | 2013-09-25 | 2016-05-24 | Bardy Diagnostics, Inc. | Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer |
US9364155B2 (en) | 2013-09-25 | 2016-06-14 | Bardy Diagnostics, Inc. | Self-contained personal air flow sensing monitor |
US11793441B2 (en) | 2013-09-25 | 2023-10-24 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US9408545B2 (en) | 2013-09-25 | 2016-08-09 | Bardy Diagnostics, Inc. | Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor |
US11786159B2 (en) | 2013-09-25 | 2023-10-17 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography and physiological sensor monitor |
US9433367B2 (en) | 2013-09-25 | 2016-09-06 | Bardy Diagnostics, Inc. | Remote interfacing of extended wear electrocardiography and physiological sensor monitor |
US9433380B1 (en) | 2013-09-25 | 2016-09-06 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
US11744513B2 (en) | 2013-09-25 | 2023-09-05 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor |
US11723575B2 (en) | 2013-09-25 | 2023-08-15 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US9545204B2 (en) | 2013-09-25 | 2017-01-17 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
US9545228B2 (en) | 2013-09-25 | 2017-01-17 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and respiration-monitoring patch |
US9554715B2 (en) | 2013-09-25 | 2017-01-31 | Bardy Diagnostics, Inc. | System and method for electrocardiographic data signal gain determination with the aid of a digital computer |
US9619660B1 (en) | 2013-09-25 | 2017-04-11 | Bardy Diagnostics, Inc. | Computer-implemented system for secure physiological data collection and processing |
US9615763B2 (en) | 2013-09-25 | 2017-04-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation |
US9642537B2 (en) | 2013-09-25 | 2017-05-09 | Bardy Diagnostics, Inc. | Ambulatory extended-wear electrocardiography and syncope sensor monitor |
US9655538B2 (en) | 2013-09-25 | 2017-05-23 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography monitoring circuit |
US9655537B2 (en) | 2013-09-25 | 2017-05-23 | Bardy Diagnostics, Inc. | Wearable electrocardiography and physiology monitoring ensemble |
US9700227B2 (en) | 2013-09-25 | 2017-07-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation |
US9717432B2 (en) | 2013-09-25 | 2017-08-01 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch using interlaced wire electrodes |
US9717433B2 (en) | 2013-09-25 | 2017-08-01 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation |
US11701044B2 (en) | 2013-09-25 | 2023-07-18 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US10463269B2 (en) | 2013-09-25 | 2019-11-05 | Bardy Diagnostics, Inc. | System and method for machine-learning-based atrial fibrillation detection |
US9730641B2 (en) | 2013-09-25 | 2017-08-15 | Bardy Diagnostics, Inc. | Monitor recorder-implemented method for electrocardiography value encoding and compression |
US9737224B2 (en) | 2013-09-25 | 2017-08-22 | Bardy Diagnostics, Inc. | Event alerting through actigraphy embedded within electrocardiographic data |
US9737211B2 (en) | 2013-09-25 | 2017-08-22 | Bardy Diagnostics, Inc. | Ambulatory rescalable encoding monitor recorder |
US9775536B2 (en) | 2013-09-25 | 2017-10-03 | Bardy Diagnostics, Inc. | Method for constructing a stress-pliant physiological electrode assembly |
US11701045B2 (en) | 2013-09-25 | 2023-07-18 | Bardy Diagnostics, Inc. | Expended wear ambulatory electrocardiography monitor |
US11678832B2 (en) | 2013-09-25 | 2023-06-20 | Bardy Diagnostics, Inc. | System and method for atrial fibrillation detection in non-noise ECG data with the aid of a digital computer |
US9820665B2 (en) | 2013-09-25 | 2017-11-21 | Bardy Diagnostics, Inc. | Remote interfacing of extended wear electrocardiography and physiological sensor monitor |
US9901274B2 (en) | 2013-09-25 | 2018-02-27 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US11678799B2 (en) | 2013-09-25 | 2023-06-20 | Bardy Diagnostics, Inc. | Subcutaneous electrocardiography monitor configured for test-based data compression |
US9955885B2 (en) | 2013-09-25 | 2018-05-01 | Bardy Diagnostics, Inc. | System and method for physiological data processing and delivery |
US9955911B2 (en) | 2013-09-25 | 2018-05-01 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor recorder |
US9955888B2 (en) | 2013-09-25 | 2018-05-01 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor recorder optimized for internal signal processing |
US10004415B2 (en) | 2013-09-25 | 2018-06-26 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
US10045709B2 (en) | 2013-09-25 | 2018-08-14 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10052022B2 (en) | 2013-09-25 | 2018-08-21 | Bardy Diagnostics, Inc. | System and method for providing dynamic gain over non-noise electrocardiographic data with the aid of a digital computer |
US11660037B2 (en) | 2013-09-25 | 2023-05-30 | Bardy Diagnostics, Inc. | System for electrocardiographic signal acquisition and processing |
US10111601B2 (en) | 2013-09-25 | 2018-10-30 | Bardy Diagnostics, Inc. | Extended wear electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation |
US11660035B2 (en) | 2013-09-25 | 2023-05-30 | Bardy Diagnostics, Inc. | Insertable cardiac monitor |
US10154793B2 (en) | 2013-09-25 | 2018-12-18 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch with wire contact surfaces |
US11653870B2 (en) | 2013-09-25 | 2023-05-23 | Bardy Diagnostics, Inc. | System and method for display of subcutaneous cardiac monitoring data |
US10165946B2 (en) | 2013-09-25 | 2019-01-01 | Bardy Diagnostics, Inc. | Computer-implemented system and method for providing a personal mobile device-triggered medical intervention |
US10172534B2 (en) | 2013-09-25 | 2019-01-08 | Bardy Diagnostics, Inc. | Remote interfacing electrocardiography patch |
US11653869B2 (en) | 2013-09-25 | 2023-05-23 | Bardy Diagnostics, Inc. | Multicomponent electrocardiography monitor |
US11653868B2 (en) | 2013-09-25 | 2023-05-23 | Bardy Diagnostics, Inc. | Subcutaneous insertable cardiac monitor optimized for electrocardiographic (ECG) signal acquisition |
US10251575B2 (en) | 2013-09-25 | 2019-04-09 | Bardy Diagnostics, Inc. | Wearable electrocardiography and physiology monitoring ensemble |
US10251576B2 (en) | 2013-09-25 | 2019-04-09 | Bardy Diagnostics, Inc. | System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer |
US10265015B2 (en) | 2013-09-25 | 2019-04-23 | Bardy Diagnostics, Inc. | Monitor recorder optimized for electrocardiography and respiratory data acquisition and processing |
US10264992B2 (en) | 2013-09-25 | 2019-04-23 | Bardy Diagnostics, Inc. | Extended wear sewn electrode electrocardiography monitor |
US10271756B2 (en) | 2013-09-25 | 2019-04-30 | Bardy Diagnostics, Inc. | Monitor recorder optimized for electrocardiographic signal processing |
US10271755B2 (en) | 2013-09-25 | 2019-04-30 | Bardy Diagnostics, Inc. | Method for constructing physiological electrode assembly with sewn wire interconnects |
US10278603B2 (en) | 2013-09-25 | 2019-05-07 | Bardy Diagnostics, Inc. | System and method for secure physiological data acquisition and storage |
US10278606B2 (en) | 2013-09-25 | 2019-05-07 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation |
US11647941B2 (en) | 2013-09-25 | 2023-05-16 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10478083B2 (en) | 2013-09-25 | 2019-11-19 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US11647939B2 (en) | 2013-09-25 | 2023-05-16 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10413205B2 (en) | 2013-09-25 | 2019-09-17 | Bardy Diagnostics, Inc. | Electrocardiography and actigraphy monitoring system |
US10433743B1 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | Method for secure physiological data acquisition and storage |
US10433748B2 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and physiological sensor monitor |
US10631748B2 (en) | 2013-09-25 | 2020-04-28 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch with wire interconnects |
US11457852B2 (en) | 2013-09-25 | 2022-10-04 | Bardy Diagnostics, Inc. | Multipart electrocardiography monitor |
US10398334B2 (en) | 2013-09-25 | 2019-09-03 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography monitoring circuit |
US10499812B2 (en) | 2013-09-25 | 2019-12-10 | Bardy Diagnostics, Inc. | System and method for applying a uniform dynamic gain over cardiac data with the aid of a digital computer |
US10561328B2 (en) | 2013-09-25 | 2020-02-18 | Bardy Diagnostics, Inc. | Multipart electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation |
US10561326B2 (en) | 2013-09-25 | 2020-02-18 | Bardy Diagnostics, Inc. | Monitor recorder optimized for electrocardiographic potential processing |
US10602977B2 (en) | 2013-09-25 | 2020-03-31 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor |
US10624552B2 (en) | 2013-09-25 | 2020-04-21 | Bardy Diagnostics, Inc. | Method for constructing physiological electrode assembly with integrated flexile wire components |
US10624551B2 (en) | 2013-09-25 | 2020-04-21 | Bardy Diagnostics, Inc. | Insertable cardiac monitor for use in performing long term electrocardiographic monitoring |
US10433751B2 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data |
US10667711B1 (en) | 2013-09-25 | 2020-06-02 | Bardy Diagnostics, Inc. | Contact-activated extended wear electrocardiography and physiological sensor monitor recorder |
US10716516B2 (en) | 2013-09-25 | 2020-07-21 | Bardy Diagnostics, Inc. | Monitor recorder-implemented method for electrocardiography data compression |
US11445908B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Subcutaneous electrocardiography monitor configured for self-optimizing ECG data compression |
US10736529B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnostics, Inc. | Subcutaneous insertable electrocardiography monitor |
US10736531B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnostics, Inc. | Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection |
US10736532B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnotics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10799137B2 (en) | 2013-09-25 | 2020-10-13 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10806360B2 (en) | 2013-09-25 | 2020-10-20 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US10813567B2 (en) | 2013-09-25 | 2020-10-27 | Bardy Diagnostics, Inc. | System and method for composite display of subcutaneous cardiac monitoring data |
US10813568B2 (en) | 2013-09-25 | 2020-10-27 | Bardy Diagnostics, Inc. | System and method for classifier-based atrial fibrillation detection with the aid of a digital computer |
US10820801B2 (en) | 2013-09-25 | 2020-11-03 | Bardy Diagnostics, Inc. | Electrocardiography monitor configured for self-optimizing ECG data compression |
US10849523B2 (en) | 2013-09-25 | 2020-12-01 | Bardy Diagnostics, Inc. | System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders |
US11445970B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | System and method for neural-network-based atrial fibrillation detection with the aid of a digital computer |
US10888239B2 (en) | 2013-09-25 | 2021-01-12 | Bardy Diagnostics, Inc. | Remote interfacing electrocardiography patch |
US10939841B2 (en) | 2013-09-25 | 2021-03-09 | Bardy Diagnostics, Inc. | Wearable electrocardiography and physiology monitoring ensemble |
US11006883B2 (en) | 2013-09-25 | 2021-05-18 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and physiological sensor monitor |
US11013446B2 (en) | 2013-09-25 | 2021-05-25 | Bardy Diagnostics, Inc. | System for secure physiological data acquisition and delivery |
US11051754B2 (en) | 2013-09-25 | 2021-07-06 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor |
US11051743B2 (en) | 2013-09-25 | 2021-07-06 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US11445969B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | System and method for event-centered display of subcutaneous cardiac monitoring data |
US11103173B2 (en) | 2013-09-25 | 2021-08-31 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US11445966B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and physiological sensor monitor |
US11179087B2 (en) | 2013-09-25 | 2021-11-23 | Bardy Diagnostics, Inc. | System for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
WO2015048309A1 (en) * | 2013-09-25 | 2015-04-02 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography monitoring circuit |
US11272872B2 (en) | 2013-09-25 | 2022-03-15 | Bardy Diagnostics, Inc. | Expended wear ambulatory electrocardiography and physiological sensor monitor |
US11324441B2 (en) | 2013-09-25 | 2022-05-10 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor |
US11445961B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography and physiological sensor monitor |
US11445962B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor |
US11445967B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US11445964B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | System for electrocardiographic potentials processing and acquisition |
US11445965B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Subcutaneous insertable cardiac monitor optimized for long-term electrocardiographic monitoring |
US11445907B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Ambulatory encoding monitor recorder optimized for rescalable encoding and method of use |
USD744659S1 (en) | 2013-11-07 | 2015-12-01 | Bardy Diagnostics, Inc. | Extended wear electrode patch |
USD831833S1 (en) | 2013-11-07 | 2018-10-23 | Bardy Diagnostics, Inc. | Extended wear electrode patch |
USD892340S1 (en) | 2013-11-07 | 2020-08-04 | Bardy Diagnostics, Inc. | Extended wear electrode patch |
USD838370S1 (en) | 2013-11-07 | 2019-01-15 | Bardy Diagnostics, Inc. | Electrocardiography monitor |
USD801528S1 (en) | 2013-11-07 | 2017-10-31 | Bardy Diagnostics, Inc. | Electrocardiography monitor |
US9408551B2 (en) | 2013-11-14 | 2016-08-09 | Bardy Diagnostics, Inc. | System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer |
WO2016044477A1 (en) * | 2014-09-16 | 2016-03-24 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor recorder |
WO2016044484A1 (en) * | 2014-09-16 | 2016-03-24 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch |
EP3536228A1 (en) | 2014-09-16 | 2019-09-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor recorder |
WO2016044472A1 (en) * | 2014-09-16 | 2016-03-24 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch |
WO2016121592A1 (en) * | 2015-01-30 | 2016-08-04 | 株式会社村田製作所 | Biosignal transmission device |
USD766447S1 (en) | 2015-09-10 | 2016-09-13 | Bardy Diagnostics, Inc. | Extended wear electrode patch |
USD793566S1 (en) | 2015-09-10 | 2017-08-01 | Bardy Diagnostics, Inc. | Extended wear electrode patch |
US10390700B2 (en) | 2015-10-05 | 2019-08-27 | Bardy Diagnostics, Inc. | Health monitoring apparatus for initiating a treatment of a patient based on physiological data with the aid of a digital computer |
US9936875B2 (en) | 2015-10-05 | 2018-04-10 | Bardy Diagnostics, Inc. | Health monitoring apparatus for initiating a treatment of a patient with the aid of a digital computer |
US10869601B2 (en) | 2015-10-05 | 2020-12-22 | Bardy Diagnostics, Inc. | System and method for patient medical care initiation based on physiological monitoring data with the aid of a digital computer |
US9788722B2 (en) | 2015-10-05 | 2017-10-17 | Bardy Diagnostics, Inc. | Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer |
US9504423B1 (en) | 2015-10-05 | 2016-11-29 | Bardy Diagnostics, Inc. | Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer |
US10123703B2 (en) | 2015-10-05 | 2018-11-13 | Bardy Diagnostics, Inc. | Health monitoring apparatus with wireless capabilities for initiating a patient treatment with the aid of a digital computer |
CN109219388A (en) * | 2016-05-25 | 2019-01-15 | 埃尔瓦有限公司 | The positioning applicator equipment and correlation technique being used together with scalable electronic equipment |
US11678830B2 (en) | 2017-12-05 | 2023-06-20 | Bardy Diagnostics, Inc. | Noise-separating cardiac monitor |
US11678798B2 (en) | 2019-07-03 | 2023-06-20 | Bardy Diagnostics Inc. | System and method for remote ECG data streaming in real-time |
US11096579B2 (en) | 2019-07-03 | 2021-08-24 | Bardy Diagnostics, Inc. | System and method for remote ECG data streaming in real-time |
US11653880B2 (en) | 2019-07-03 | 2023-05-23 | Bardy Diagnostics, Inc. | System for cardiac monitoring with energy-harvesting-enhanced data transfer capabilities |
US11116451B2 (en) | 2019-07-03 | 2021-09-14 | Bardy Diagnostics, Inc. | Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities |
Also Published As
Publication number | Publication date |
---|---|
US20050280531A1 (en) | 2005-12-22 |
US20070270678A1 (en) | 2007-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070270678A1 (en) | Wireless Electrode for Biopotential Measurement | |
US11937946B2 (en) | Wearable cardiac monitor | |
US20110009729A1 (en) | Apparatus for measuring physiological signals | |
US20060047215A1 (en) | Combined sensor assembly | |
US6117077A (en) | Long-term, ambulatory physiological recorder | |
US9192337B2 (en) | Detachable biological signal measuring pad and biological signal measuring apparatus using the same | |
CN106994008B (en) | Measuring system | |
US7672714B2 (en) | Miniature wireless apparatus for collecting physiological signals | |
AU2010315468B2 (en) | Head harness and wireless EEG monitoring system | |
US7197357B2 (en) | Wireless ECG system | |
US8738139B2 (en) | Wireless system for epilepsy monitoring and measurement | |
US20050215916A1 (en) | Active, multiplexed digital electrodes for EEG, ECG and EMG applications | |
KR102026740B1 (en) | Electrode for measuring bio-signal and a method thereof, and system for measuring bio-signal | |
US11020035B2 (en) | Self-contained EEG recording system | |
KR100821919B1 (en) | Patch for monitoring cardio-vascular-system | |
US20080281163A1 (en) | Apparatus and method for acquiring medical data | |
CN212307856U (en) | Electrocardiosignal acquisition circuit, module, equipment, system and clothing | |
WO2007018419A2 (en) | Device for measurement of physiological signals of an object | |
CN210541536U (en) | Human body bioelectric signal conduction device | |
RU220696U1 (en) | WEARABLE DEVICE FOR CONTINUOUS CARDIAC MONITORING | |
CN113842148B (en) | Three-lead patch type L-shaped long-time-path dynamic electrocardiograph and three-lead connection method | |
CN213640934U (en) | Electronic stethoscope | |
CN118924274A (en) | Intracranial pressure data display system and method | |
Ayyaswamy | Design of a wearable wireless electrocardiograph (Quick Doc) | |
CN110897636A (en) | Electrocardiosignal acquisition circuit, module, equipment, system and clothing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11570626 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase | ||
WWP | Wipo information: published in national office |
Ref document number: 11570626 Country of ref document: US |