[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006006430A1 - ストラップ、鋳造用金型、入子、鋳造装置及び鋳造方法 - Google Patents

ストラップ、鋳造用金型、入子、鋳造装置及び鋳造方法 Download PDF

Info

Publication number
WO2006006430A1
WO2006006430A1 PCT/JP2005/012213 JP2005012213W WO2006006430A1 WO 2006006430 A1 WO2006006430 A1 WO 2006006430A1 JP 2005012213 W JP2005012213 W JP 2005012213W WO 2006006430 A1 WO2006006430 A1 WO 2006006430A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
mold
cavity
forging
strap
Prior art date
Application number
PCT/JP2005/012213
Other languages
English (en)
French (fr)
Inventor
Kazuo Kamakura
Masayuki Morimoto
Original Assignee
Gs Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004203387A external-priority patent/JP2006021240A/ja
Priority claimed from JP2004203386A external-priority patent/JP2006024514A/ja
Application filed by Gs Yuasa Corporation filed Critical Gs Yuasa Corporation
Publication of WO2006006430A1 publication Critical patent/WO2006006430A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • B22D25/04Casting metal electric battery plates or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • H01M50/541Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to, for example, a lead die battery (battery) strap mounted on various vehicles such as a single car, a passenger car, a truck, and a forklift, a forging mold, a nest, and a forging used for forging a strap.
  • the present invention relates to an apparatus and a forging method.
  • COS method cast-on-strap method
  • Patent Documents 1 to 7 a cast-on-strap method
  • This COS method uses two methods. One of them is to immerse the bowl in molten metal (molten lead) in the melting tank manually or with an automatic machine to fill the melt in the cavity, and then lift the bowl from the melting tank to raise the ears of the electrode plate group. Is a method of forming a strap by immersing the material in a cavity to solidify the molten metal (see Patent Documents 1, 4, and 5).
  • a vertical mold is disposed in the vicinity of the melting tank, molten metal is injected into the cavity by transfer means such as a piston pump, and the injected molten metal is externally heated by heating means such as a heater (or a panner). While heating and keeping warm, the tip of the ear part of the electrode plate group that has been dried by flux treatment is immersed in the molten metal. In this state, the saddle is cooled to solidify the molten metal, and the ear part is strapped. (See Patent Documents 2, 3, 6, and 7).
  • a method for the method of pouring molten metal into the cavity, a method is provided in which a weir is provided, the molten metal is pumped from the melting tank and the excess molten metal is returned to the melting tank, and between the molten metal surface and the mold.
  • a method of creating a head hereinavy method
  • a method of pouring directly with a pan There are a method of creating a head (heavy method), a method of pouring directly with a pan, and so on.
  • the cavities of the strap forging mold used in the conventional COS method are generally formed into a bottomed shape by electric discharge machining.
  • FIGS. 51 is formed in an L shape so that the inter-cell connection portion 52 and the electrode plate group connection portion 53 correspond to substantially right angles, and the side surface of the inter-cell connection portion 52 has a good releasability.
  • the width of the inter-cell connection portion 52 is set to be larger than the connection portion 53 with the electrode plate group, and
  • the inter-cell connection part 52 was set to have a taper angle (draft angle) of 3 °.
  • the ears of the electrode plate group are integrally formed in the connecting portion 53 with the electrode plate group in the forging process, and the inter-cell connecting portion 52 is joined to each other with the partition walls of the cells adjacent to each other by resistance welding. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-122259
  • Patent Document 2 Japanese Patent Laid-Open No. 9 199103
  • Patent Document 3 Japanese Patent Laid-Open No. 9-164469
  • Patent Document 4 Japanese Patent Laid-Open No. 10-294096
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2002-0111562
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2002-279965
  • Patent Document 7 Japanese Patent Laid-Open No. 2002-025534
  • the strap 51 shown in FIGS. 11 (a) and 11 (b) has a stepped portion D that prevents a stable release operation, even if an expensive release agent is used, the strap 51 shown in FIG.
  • the corner portion R of the stepped portion D adhered to the mold and was difficult to release.
  • the inter-cell connection part 52 is provided with a taper angle with a taper of 3 ° (relative to the perpendicular drawn to the connection part 53 with the electrode plate group).
  • a tapered gap of 6 ° in total is generated across the cell partition wall.
  • connection portions 52, 52 between the cells are sandwiched between the electrode tips by the electrode tip and resistance welding is performed, the tapered gap is forcibly crushed and brought into a close contact state.
  • Deformation is forced between the connection parts 53, 53 with the electrode plate group and the ear part of the electrode plate group.
  • the draft angle of the inter-cell connection 52 must be set as small as possible.
  • the draft angle must be set to at least about 3 ° as described above.
  • the present invention has been made in view of such a situation, and there are few factors that hinder the mold release operation and a high weld quality between the connection portions between cells, and an expensive mold release agent and extrusion pipe.
  • the construction of the forging mold, insert, and the forging device that uses the forging mold and the pouring mechanism that can release the forged product without the need for a mold is simple and causes trouble. It is an object of the present invention to provide a float type forging apparatus and a forging method which can stably maintain the heating temperature and cooling temperature of the KUGUKU type and obtain a good forging quality.
  • the strap of the present invention is the lead-acid battery strap 1,
  • the inter-cell connection part 2 and the connection part 3 to the electrode plate group are formed in an L-shape corresponding to a substantially right angle, and both sides of the connection part 3 between the inter-cell connection part 2 and the electrode plate group 3 are strong. It is formed so as to be connected to the force straight, and the wall surfaces 2a, 2b, 2c of the inter-cell connecting part 2 are tapered taper angles. It is formed so that it may form.
  • the taper angle is particularly preferably set to 0.6 ° to 1.0 °. In this way, it becomes easy to release the forged product (Strap 1). In addition, when resistance-welding the inter-cell connecting portions 2 and 2 facing each other with a partition wall therebetween, the gap between the inter-cell connecting portions 2 and 2 is reduced, so that the welding workability is improved and the remaining in the welded portion. Stress is less likely to occur and welding quality is improved. If the taper angle is smaller than 0.6 °, for example, when the strap 1 is formed by forging, it may be difficult to release the forged product from the mold. In addition, high machining accuracy is required to form cavity 6 and the machining conditions are too severe. On the other hand, if the taper angle is greater than 1.0 °, residual stress is likely to occur when resistance-welding the cell connection parts 2 and 2 together.
  • a through hole 5a having a draft upward and having no stepped portion is formed in the die body.
  • the child 4 is detachably fitted upward, and a cavity 6 is formed on the child 4.
  • the insert 4 fitted in the through hole 5a becomes the bottom of the cavity 6, it is not necessary to form the bottom of the cavity 6 in the forging mold 5. Therefore, the fabrication die 5 can be easily manufactured, and the through hole 5a can be formed by, for example, wire cutting. In that case, the surface finishing accuracy is remarkably improved, the draft angle can be set smaller than when the bottomed cavity is formed by conventional electric discharge machining, and the cost can be reduced. Since the insert 4 fitted to the bottom of the through hole 5a is in contact (contact) with the entire bottom of the manufactured product 1, the operation of releasing the insert 4 makes the manufactured product 1 stable. It can be released with good quality.
  • the nesting of the present invention is the nesting 4 for forming the fabrication cavity 6;
  • the forging die 5 can be formed only by forming the through hole 5 a in the forging die 5.
  • the through hole 5a can be formed by wire cutting.
  • the surface finishing accuracy is significantly improved as compared with the case of the conventional discharge calorie, the draft angle can be set small, and the vertical shape can be formed at low cost.
  • the insert 4 can be detached from the through hole 5a in the mold release direction of the manufactured product 1, after the manufactured product 1 is manufactured, the insert 4 is removed from the through hole 5a (for example, by pushing up about 2 mm). With this operation, the manufactured product 1 can be released from the cavity 6. Since the insert 4 is in contact (contact) with the entire bottom of the manufactured product 1, the releasing operation of the manufactured product 1 when the insert 4 is released is stabilized, and the Releasability is greatly improved. Note that the forging die 5 may be moved downward to disengage the insert 4 from the through hole 5a.
  • the manufactured product 1 include a lead-acid battery strap and a pole pole, but may be other parts and the like without being limited thereto.
  • the forging apparatus of the present invention includes a mold supporting portion 23 for fixing and supporting the forging mold 5 described in the item (3), and a molten metal injection means 24 for injecting the molten metal 26 into the cavity 6.
  • surplus molten metal removing means 25 for removing excess molten metal after pouring the molten metal 26 into the cavity 6 from the surface of the mold 5 for cooling, and cooling for cooling the molten metal 26 injected into the cavity 6
  • Cooling water supply means 12 for supplying water and release means 27 for separating the insert 4 from the through hole 5a are provided.
  • the forging device of the present invention includes a melting tank 22 for storing the molten metal 26 in a heatable manner, and a mold support 23 for fixing and supporting the forging mold 5 in a floating island shape in the melting tank 22. And an elevating float 24 immersed in the molten metal 26 stored in the melting tank 22.
  • the molten metal 26 is poured into the cavity 6 by raising the molten metal surface by the operation of immersing the float 24 in the molten metal 26, so that the pouring mechanism is simple and the molten metal is pumped. Troubles such as clogging of molten metal in the pump and piping as in the conventional device that is pumped up and injected into the cavity do not occur.
  • the forging die 5 is fixed and supported in the melting tank 22, the operation of injecting the molten metal 26 into the cavity 6 is stabilized and the injection failure can be eliminated.
  • the molten metal 26 heated in the melting tank 22 is directly injected into the cavity 6, a heater (or a panner) for heating the molten metal 26 injected into the cavity 6 as in the prior art from outside. ) And other heating means are not required, the structure can be simplified, the occurrence of troubles can be reduced, and the heating temperature and cooling temperature of the forging mold 5 can be stably maintained. Quality is obtained. Since the molten metal 26 is not agitated, when the molten metal 26 is a Ca alloy, the generation of acid is suppressed. In addition, since all forging processes can be performed in the melting tank 22, the lead component (molten metal) is not taken out to the outside, and environmental measures are facilitated.
  • the forging device of the present invention includes a melting tank 22 for storing the molten metal 26 in a heatable manner, and a mold support portion 23 for fixing and supporting the forging mold 5 in a floating island shape in the melting tank 22.
  • the elevating float 24 that injects the molten metal 26 into the cavity 6 of the forging mold 5 by changing the degree of immersion in the molten metal 26 stored in the melting tank 22 and the cavity 6
  • a surplus melt removing means 25 for removing surplus melt after pouring the melt 26 from the surface of the mold 5 and cooling water for cooling the melt 26 poured into the cavity 6 are provided.
  • the cooling water supply means 12 to be supplied and the fabricated product 1 formed in the cavity 6 are released from the mold. And a release means 27.
  • the molten metal 26 is poured into the cavity 6 by raising the surface of the molten metal by the operation of immersing the float 24 in the molten metal 26, so that the pouring mechanism is simple and the molten metal is pumped. Troubles such as clogging of molten metal in pumps and pipes, as in the case of conventional devices that are pumped up and injected into cavity 6, are eliminated. Also, since the forging die 5 is fixedly supported in the melting tank 22, the pouring operation of the molten metal 26 into the cavity 6 is stabilized and the injection failure can be solved.
  • the molten metal 26 heated in the melting tank 22 is directly injected into the cavity 6, a heater (or burner) for heating the molten metal injected into the cavity as in the prior art from the outside. It is possible to simplify the structure and reduce the occurrence of trouble, and it is possible to stably maintain the heating temperature and cooling temperature of the forging mold 5, thereby achieving good forging. Quality is obtained. Further, the surplus molten metal removing means 25 removes the surplus molten metal after pouring the molten metal 26 into the cavity 6 from the surface of the mold 5 for molding. Improves the forging quality.
  • the contact area between the molten metal 26 and the atmosphere can be reduced.
  • the generation of coagulum such as is suppressed.
  • all forging processes can be performed in the melting tank 22, it is easy to take environmental measures to prevent the lead component (molten metal) from being taken out.
  • the float 24 is immersed in the molten metal 26 stored in the melting tank 22 so as to be heatable, so that the floating method is fixedly supported in the melting tank 22 in a floating island shape.
  • the molten metal 26 is injected into the cavity 6 of the mold 5.
  • the molten metal 26 is poured into the cavity 6 by raising the surface of the molten metal by the operation of immersing the float 24 in the molten metal 26, so that the pouring method is simple and the molten metal is pumped. Troubles such as clogging of molten metal in the pump and piping as in the conventional device that is pumped up and injected into the cavity do not occur. Since the forging mold 5 is fixedly supported in the melting tank 22, the mold is kept horizontal and the molten metal is poured into the cavity 6 by raising the molten metal surface. Because it can inject molten metal 26 around the whole area, The operation of pouring the molten metal 26 into the 6 is stable and the poor injection can be solved.
  • a heater for heating the molten metal injected into the cavity as in the prior art from the outside. It is possible to simplify the structure and reduce the occurrence of trouble, and it is possible to stably maintain the heating temperature and cooling temperature of the forging mold 5, thereby achieving good forging. Quality is obtained. Since the molten metal 26 is not agitated, when the molten metal 26 is a Ca alloy, the generation of acid is suppressed. In addition, since all the forging processes can be performed in the melting tank 22, the lead component (molten metal) is not taken out to the outside, and environmental measures are facilitated.
  • the insert 4 is detachably fitted upward at the bottom of the through hole 5a formed in the mold body, and the cavity 6 is formed thereon, After pouring the molten metal 26 into the cavity 6 and forging the fabricated product 1, the fabricated article 1 is released from the cavity 6 by removing the insert 4 from the through hole 5 a.
  • the insert 4 fitted in the through hole 5a is released from the through hole 5a, and the forged product 1 is released from the cavity 6. be able to . Since the insert 4 fitted to the bottom of the through-hole 5a is in contact (contact) with the entire bottom of the manufactured product 1, the mold 1 is released when the insert 4 is released. Will be stabilized and the releasability of the fabricated product 1 will be greatly improved. Further, since the through-hole 5a does not require a bottom, it is easy to form a saddle shape. For example, the through-hole 5a can be formed by wire cutting. In that case, the surface finishing accuracy is significantly improved compared to the case of forming a bottomed cavity by conventional electric discharge machining, the draft angle can be set small, and a vertical shape can be formed at a low cost. .
  • connection part between the inter-cell connection part and the electrode plate group are formed to be connected in a straight line.
  • the conventional releasing operation is performed. There are no corners or steps that obstruct the process, making mold release easier.
  • both sides of the connection part between the inter-cell connection part and the electrode plate group are straightened, it is easy to manufacture the cavity for forming the strap and the corner part (protrusion part) is eliminated. Therefore, the amount of lead (raw material) used can be reduced, and light weight can be achieved.
  • the through hole for forging the forged product is formed without a step portion having a draft, so that the forming of the die is facilitated.
  • the through hole can be formed by wire cutting.
  • the surface finishing accuracy can be significantly improved as compared with the case of the conventional electric discharge machining, and the cost can be reduced.
  • the insert fitted in the lower part of the through hole is in contact with the entire bottom of the manufactured product, the mold release operation of the manufactured product when the insert is released is stabilized. The releasability of the fabricated product is greatly improved. Therefore, a conventional extrusion pin and an expensive release agent are not required, and a forged product can be produced at a low cost.
  • the bottom portion of the through hole in which the cavity is formed is detachably fitted in the mold release direction of the manufactured product, so that the bottom portion is formed in the through hole. Therefore, it becomes easy to form a saddle shape, and for example, a through hole can be formed by wire cutting. In that case, the surface finishing accuracy is remarkably improved as compared with the case of the conventional electric discharge machining, and the saddle shape can be formed at a low cost.
  • the insert can be removed in the mold release direction, the forged product can be released from the through-hole after the forged product has been manufactured. .
  • the insert since the insert is in contact (contact) with the entire bottom of the manufactured product, the release operation of the manufactured product is stable when the insert is released, and the release property of the manufactured product is stable. There is a marked improvement. Therefore, the conventional extrusion pin and expensive release agent are not required.
  • the molten metal is poured into the fixedly supported forging mold, so that the molten metal spills and the molten metal is not poorly injected. Since the insert fitted in the lower part of the through hole of the forging mold is in contact with the entire bottom of the forged product, the mold release operation of the forged product when the insert is released is stabilized. In addition, the mold releasability of forged products is significantly improved. In addition, surplus molten metal removal means the surface strength of the mold for casting after pouring the molten metal. The excess molten metal is removed, so that the occurrence of burrs can be suppressed, and the mold releasability of the fabricated product is improved and the quality of the fabrication is improved. To do.
  • the molten metal is poured into the cavity by raising the molten metal surface by the operation of immersing the float in the molten metal, so that the molten metal is pumped up and injected into the cavity. Trouble that clogs molten metal in the pump and piping No longer occurs.
  • the forging mold is fixedly supported in the melting tank, the molten metal pouring operation is stabilized and the poor pouring can be solved.
  • the molten metal heated in the melting tank is directly injected into the cavity, there is a heating means such as a heater (or a panner) for heating the molten metal injected into the cavity from the outside as in the prior art.
  • a heating means such as a heater (or a panner) for heating the molten metal injected into the cavity from the outside as in the prior art.
  • the molten metal is not agitated, when the molten metal is a Ca alloy, the generation of acid is suppressed.
  • all the forging processes can be performed in the melting tank, it is easy to take environmental measures that prevent the lead component (molten metal) from being taken out.
  • the molten metal is pumped up by a pump and injected into the cavity to raise the molten metal surface by injecting the float into the molten metal and injecting the molten metal into the cavity. Therefore, the trouble that clogs the molten metal in the pump and the piping as in the conventional device does not occur.
  • the forging die is fixedly supported in the melting tank, the pouring operation of the molten metal into the cavity is stabilized and the injection failure can be eliminated.
  • a heating means such as a heater (or a panner) for heating the molten metal injected into the cavity from the outside as in the prior art.
  • a heating means such as a heater (or a panner) for heating the molten metal injected into the cavity from the outside as in the prior art.
  • surplus molten metal removal means removes the surplus molten metal after it has been poured into the cavity to remove the surface force of the mold, so that it is possible to suppress the occurrence of burrs and improve the mold releasability.
  • the forged quality is also improved.
  • the molten metal heated in the melting tank is directly injected into the cavity, there is a heating means such as a heater (or a panner) for heating the molten metal injected into the cavity from the outside as in the prior art.
  • a heating means such as a heater (or a panner) for heating the molten metal injected into the cavity from the outside as in the prior art.
  • the molten metal is not agitated, when the molten metal is a Ca alloy, the generation of acid is suppressed.
  • all the forging processes can be performed in the melting tank, it is easy to take environmental measures that prevent the lead component (molten metal) from being taken out.
  • the forged product is released by releasing the insert fitted in the through hole. Since the inserted insert is in contact (contact) with the entire bottom of the manufactured product, the release operation of the manufactured product is stable when the insert is released and the release of the manufactured product is remarkably improved. To improve. Therefore, a conventional extrusion pin and an expensive release agent are not required, and a high-quality manufactured product can be manufactured at a low cost.
  • the through hole does not require a bottom, it is easy to form a bowl shape.
  • the through hole can be formed by wire cutting. In that case, the surface finishing accuracy is remarkably improved as compared with the case of the conventional electric discharge machining, and the vertical shape can be formed at low cost.
  • FIG. 1 shows a strap according to an embodiment of the present invention, wherein (a) is a side view thereof, (b) is a front view, and (c) is a perspective view.
  • FIG. 2 shows the same insert, (a) is a side view thereof, and (b) is a perspective view.
  • FIG. 3 shows the strap, the insert and the forging mold, where (a) is a side view of the strap, (b) is a side view of the insert, and (c) is a cross-sectional view of the forging mold.
  • FIG. 4 is a plan view of the same forging mold.
  • FIG. 5 is a perspective view showing a state in which a strap is integrated with the electrode plate group.
  • FIG. 6 is a half sectional view of the battery.
  • FIG. 7 is a sectional view of the main part of the forging device.
  • FIG. 8 is a perspective view of the same.
  • FIG. 9 shows the lifting mechanism of the float, in which (a) is a front view and (b) is a side view.
  • FIG. 10 shows the releasing means, where (a) is a front view, (b) is a side view, and (c) is a plan view.
  • FIG. 11 shows an example of a conventional strap formed by electric discharge machining, where (a) is a side view and (b) is a perspective view.
  • FIG. 1 (a) is a side view
  • FIG. 1 (b) is a front view
  • FIG. 1 (c) is a perspective view.
  • the strap 1 is formed in an L-shape in which the inter-cell connection portion 2 and the electrode connection portion (connection portion to the electrode plate group of the present invention) 3 correspond to substantially right angles, and the inter-cell connection portion 2 and the electrode It is formed so as to be connected to the force S straight on both sides of the connection part 3 and eliminates the step that becomes a demolding inhibiting factor.
  • the back side 2a and the front side 2b of the inter-cell connecting portion 2 to be resistance-welded are the electrode connecting portion.
  • it has a draft angle with a taper angle of 1 ° (inclined taper angle) in the downward inward direction with respect to the perpendicular drawn to the connection surface 3a (or its back surface 3c), and is connected to the cell indirectly.
  • Both side portions 2c and 2c of the portion 2 and the electrode connecting portion 3 also have a draft angle with a taper angle (tapered taper angle) of 1 ° downward in the figure.
  • the front surface portion 3b of the electrode connection portion 3 has a draft angle that forms a taper angle of 2 ° inward in the figure. That is, all of the above-mentioned taper angles are formed so as to expand in the mold release direction (upward in the drawing) of the strap 1.
  • the connection surface 3a and the back surface 3c of the electrode connection part 3 are set in parallel.
  • the inter-cell connecting portions 2 and 2 facing each other across the partition wall 8b are connected to both sides.
  • the gap (2 °) between the cell connection parts 2 and 2 is reduced, so that the welding workability is improved and residual stress is generated in the welded part. , Welding quality is also improved. This point will be described later with reference to FIG.
  • FIG. 2 shows the insert 4, FIG. 2 (a) is a side view, and FIG. 2 (b) is a perspective view.
  • This insert 4 is an upper surface 4a that contacts (contacts) the rear surface 3c of the electrode connection 3 of the strap 1, and the front side 2b of the intercell connection 2 of the strap 1 connected to the upper surface 4a.
  • the side surface 4c described above has, for example, a taper angle of 1 ° inward in the figure with respect to the perpendicular drawn on the upper surface 4a, and the side surface 4d has 2 inward in the figure with respect to the perpendicular. It has a draft angle with a taper angle of °.
  • the side 4c and side 4d have different taper angles so that the insert 4 is inserted in the correct direction when inserted into the through hole 5a of the strap forging die 5 (see Fig. 3 (c)). be able to.
  • the side contact surface 4b that contacts (contacts) the front side 2b of the strap 1 is, for example, a pulling slope that forms a taper angle of 1 ° upward in the figure with respect to the perpendicular.
  • a pulling slope that forms a taper angle of 1 ° upward in the figure with respect to the perpendicular.
  • both side surfaces 4f, 4f have a taper angle of 1 ° downward. As described above, each taper angle is formed so as to expand in the direction of removal of the insert 4 (upward in the figure).
  • FIG. 3 shows the strap 1, the insert 4 and the strap forging die (forging die of the present invention) 5.
  • Fig. 3 (a) is a side view of the strap 1
  • Fig. 3 (b). 3 is a side view of the insert 4
  • FIG. 3 (c) is a side sectional view of the strap 1 and the insert 4 fitted into the through hole 5a of the strap forging die 5.
  • the through-hole 5a formed in the strap forging mold 5 is composed of four side walls, and two opposing side walls 5b and 5c are tapered inwardly by 1 ° and 2 ° respectively in the downward direction in the figure (strap Two side walls (unsigned) formed so as to face each other between the side walls 5b and 5c have a taper of 1 ° downward. Make a corner (taper angle that expands in the release direction of strap 1).
  • the insert 4 Prior to the fabrication of the strap 1, first, when the insert 4 is inserted into the through hole 5a, it is prevented from being removed by the taper angles of the side walls 5b, 5c (1 °, 2 ° inward in the figure). At this time, the bottom (4e) of the insert 4 slightly protrudes from the through hole 5a. In this state, the cavity 6 for forming (molding) the strap 1 is formed in the space surrounded by the upper surface 4a and the side surface 4b of the insert 4 and the side walls 5b, 5c of the through hole 5a.
  • the Fig. 3 (c) shows a state in which the strap 1 is fabricated in the cavity 6.
  • the through hole 5a can be formed in a penetrating shape without a step portion having a draft, and a strap forging die
  • the through hole 5a can be formed by wire cutting.
  • the surface finish accuracy is significantly improved compared to the case of conventional electric discharge machining, and as described above, the draft angle can be set small, and the strap forging die 5 is provided at a low cost. can do.
  • the insert 4 that forms the bottom of the cavity 6 can be detached in the direction of releasing the strap 1, after the strap 1 is manufactured, the insert 4 is detached upward from the through-hole 5a.
  • the forged strap 1 can be released by pushing up the nest 4 about 2 mm upward.
  • the nesting force 4 is in contact (contact) with the entire bottom of the strap 1 and the draft angle is set to be small.
  • the mold operation is stabilized and the releasability of the strap is greatly improved. Therefore expensive No mold release agent is required and no extrusion pin is required, so that the forging apparatus can be simplified.
  • FIG. 4 shows a plan view of a strap forging die as the forging die 5.
  • the mold body is provided with six through holes 5a in two rows (12 in total), and inserts 4 are fitted into the respective through holes 5a to form the cavity 6.
  • Two cooling water passages (1 Kl la, l ib) are formed on both sides of the two rows of through-holes 5a, and one end of each is closed with plugs 14 and 14 after drilling, and each cooling water passage 11a, l Lower end force of ib
  • Four cooling posts for supplying cooling water (cooling water supply means of the present invention) 12 are connected to the upper end opening of the cooling water passage 12a in the cooling water passage 12a.
  • Six guide pins 13 are erected on both side portions of the mold body, and the two guide pins 13 disposed in the central portion are used for positioning and formed in a stepped shape. As will be described later, the four guide bins 13 at both ends are hooked to a conveying means (not shown) so that each ear portion of the electrode plate group is uniformly immersed by a predetermined dimension (about 3 mm). A hooking piece 13a for projecting is provided. As described above, the through hole 5a of the strap forging mold 5 can be formed by wire cutting, but is not limited to this, and can be formed by other machining (milling, etc.). be able to.
  • FIG. 5 is a perspective view showing a state in which the strap 1 is integrated with the electrode plate group 7.
  • the electrode plate group 7 four positive electrode plates 71 and five negative electrode plates 72 are alternately overlapped with each other being insulated via separators 73.
  • 71a are integrally formed in the connection surface 3a of the electrode connection 3 of one strap 1
  • the ears 72a of the negative electrode plate 72 are integrated in the connection surface 3a of the electrode connection 3 of the other strap 1. I will be deceived.
  • the ears 71a and 72a are integrated in a state where about 3 mm of the tip part enters the electrode connection part 3.
  • FIG. 6 shows the battery 8 as a final product.
  • the casing 8a is partitioned by five partition walls 8b to form six cells 8c, and the inter-cell connection portions 2, 1 (back side of the straps 1, 1) facing each other across the partition walls 8b. 2a and 2a) are joined together by resistance welding.
  • the ears 71a of the positive electrode plate 71 of the electrode plate group 7 are integrated with the pole column 9, and in the cell 8c (not shown) on the other end, the electrode plate group 7
  • the ears 7 2a of the negative electrode plate 72 are integrally connected to the pole columns 9, and the terminals 10 are connected to the respective pole columns 9, Terminal 10 is a positive electrode and the other terminal 10 is a negative electrode.
  • the taper angle of the back side 2a is set to 1 ° when resistance-welding the back side 2a and 2a of the straps 1 and 1 between the cells 1 and 2 facing each other across the partition wall 8b. Therefore, a total of 2 ° taper gaps are generated between the opposing back sides 2a and 2a, but the gap is much smaller than the conventional 6 ° angle. Therefore, when the back surfaces 2a and 2a are pressed together with the electrode tip, the deformation generated between the electrode connecting portion 3 of the strap 1 and the ear portions 71a and 72a of the electrode plate group 7 is extremely reduced. Accordingly, the generation of residual stress after welding is reduced, so that the welding quality is improved and the durability is improved.
  • inter-cell connection section 2 is formed so as to have a taper angle of 0.6 ° to 1.0 °, the adjacent inter-cell connection sections 2 and 2 that face each other are resisted.
  • the gap between the connection parts 2 and 2 between the cells is reduced, so that the welding workability is improved, residual stress is generated in the welded part, and the welding quality is also improved.
  • the taper angle is smaller than 0.6 °, for example, when forming the strap 1 by forging, high processing accuracy is required for forming the cavity 6, and the processing conditions become too severe. If the taper angle is greater than 1.0 °, residual stress is likely to occur when resistance-welding the cell connection portions 2 and 2 together.
  • FIG. 7 is a cross-sectional view of a main part of a float type forging apparatus (forging apparatus of the present invention), and FIG. 8 is a perspective view thereof.
  • this float type forging apparatus is immersed in a melting tank 22 equipped with a heating device (not shown), a mold support 23 for fixing the forging mold 5, and a molten metal 26.
  • Lifted float 24 and surplus molten metal for removing surplus molten metal 26 from the surface of forging mold 5 after pouring molten metal 26 into the mold 6 of the forging mold 5 see FIG. 3 (c)
  • a removing means 25, a cooling post 12 see FIGS.
  • L1 indicates the lower limit position of the molten metal surface 26
  • L2 indicates the upper limit position of the molten metal surface
  • the molten metal surface of the molten metal 26 is at the lower limit position L1.
  • the molten metal surface of the molten metal 26 is at the upper limit position L2.
  • the above-mentioned mold support part 23 is a vertical pull-in device 2 for detaching the insert 4 from the cavity 6.
  • the mold 5 for casting is fixed and supported in a floating island shape between the lower surface level L1 and the upper surface level L2 of the molten metal 26.
  • the insert 4 see Fig. 1 (c)
  • the strap 1 is released from the cavity 6.
  • the molded strap 1 can be stably released from the cavity 6.
  • the configuration can be simplified.
  • a floating island portion for fixing and supporting the forging die 5 in a floating island shape is denoted by reference numeral 22a in FIGS. 7 and 10 (a) and 10 (b).
  • the surplus molten metal removing means 25 for removing the surplus molten metal after pouring the molten metal 26 into the cavity 6 from the surface of the forging die 5 is provided along the support portion 45 horizontally mounted on the apparatus body.
  • a removal plate 46, 46 that is driven back and forth in the horizontal direction by fluid pressure drive means such as hydraulic pressure (not shown) is provided, and the tip (lower end) of the removal plate 46 is in sliding contact with the surface of the forging die 5. It is configured to remove excess molten metal after the molten metal is injected.
  • the surplus molten metal removing means 25 removes the surplus molten metal after the molten metal 26 has been injected, so that the occurrence of drought burrs can be suppressed, and the releasability is improved and the forging quality is also improved.
  • the float 24 is formed in a rectangular parallelepiped shape with, for example, SUS304 and is filled with a heat insulating material.
  • the float 24 is installed on the apparatus body.
  • the lower end of the guide shafts 33 and 33 guided in the vertical direction by the slide bushes 32 and 32 provided in 31 and the jack 34 erected vertically between the two guide shafts 33 and 33 It is suspended at the lower end by bolt fastening or the like.
  • the driven gear 35 attached to the input shaft of the jack 34 is connected to the drive gear 38 attached to the output shaft of the motor 37 mounted on the gantry 31 via the chain 36, and is connected to the float 24. Can be moved up and down at a predetermined speed.
  • the self-weight of the float 24 is approximately 71Kgf (about volume 0. 08m 3), at a lifting speed of about 18 mm / sec, by setting the maximum stroke of about 140 mm, to ensure proper melt exclusion amount be able to.
  • the degree of immersion (immersion) in the molten metal 26 is changed (increased) to change (increase) the amount of molten metal discharged to raise the molten metal surface.
  • the molten metal 26 can be poured into the bitty 6 in a stable state. The initial amount of molten metal is set so that molten metal 26 does not overflow even when float 24 moves the maximum stroke.
  • a sensor bracket 39 is erected in the vicinity of one guide shaft 33, and proximity switches 40 and 41 are provided on the upper and lower portions, respectively, so that the collar fixed to one guide shaft 33 is fixed.
  • the position of 42 can be detected, and when the collar 42 is shown in the figure (shown by a solid line), it is detected that the float 24 is at the upper limit position, and the collar 42 is at the lower position shown by the two-dot chain line.
  • float 24 is in the alarm position just before the lower limit position (upward), and when float 24 descends to this position, an alarm is issued, prompting the worker to prepare for ingot injection, and continuing operation
  • the float 24 automatically stops at the lower limit position, preventing the production of forged products that could cause quality abnormalities.
  • the structure of the pouring mechanism is simple, and the conventional apparatus pumps the molten metal into the cavity by pumping it up. This prevents troubles such as clogging in the pump and piping.
  • a heating means such as a heater (or a panner) for heating the molten metal injected into the cavity as in the conventional case. This eliminates the need to simplify the configuration and reduce the occurrence of trouble in the heating system.
  • the heating temperature and cooling temperature of the forging die 5 can be stably maintained, and good forging quality can be obtained.
  • the vertical pull-in device 27 is shown, for example, in FIGS. 10 (a) and 10 (b), and has four cooling posts (cooling water supply means of the present invention) 12 that are movable up and down and have cooling water passages 12a therein.
  • the forging die 5 is fixed to the die support 23 provided on the upper side of the metal plate via a gasket, while the insert 4 (see FIG. 3 (c)) is fixed to the plate 45.
  • the strap 1 is configured to be released from the cavity 6 when the insert 4 is moved slightly upward and released from the through hole 5a of the forging die 5 by the pushing-up operation.
  • an under plate 47 is fixed to the lower part of the four cooling posts 12 and is erected at the center of the under plate 47.
  • a shaft 49 is passed through the linear bush 48 so as to be movable up and down.
  • a shaft for fixing and supporting the insert 4 via a connection plate 50 and a pipe 51 is provided above the shaft 49.
  • a rate 45 is connected, and a latch member 52 is connected to the lower part of the shaft 49, and the latch member 52 is latched by a latch member 53 fixed to the output shaft of the air cylinder 46. Yes.
  • a pair of hook plates 54 and 54 hang down at positions on both sides of the linear bush 48 of the under plate 47, and the other ends of the hooked ends 54a and 54a are arranged directly below the air cylinder 46. It is latched by latching members 56, 56 fixed to the output shaft of the air cylinder 55.
  • latching members 56, 56 fixed to the output shaft of the air cylinder 55.
  • the insert 4 is fitted into the through hole 5a of the forging die 5 to form the cavity 6, and the conveying means is used.
  • the forging die 5 is carried in and fixed to the die support 23 in a positioned state.
  • the cooling water passages 12a of the cooling posts 12 are respectively connected to the cooling water passages 11a, rib of the forging die 5 (see FIG. 4 and FIG. 10 (c)).
  • the float 24 is immersed in the molten metal 26 heated to a predetermined temperature to a predetermined depth to raise the molten metal surface, and the molten metal 26 is poured into the cavity 6.
  • the float 24 is pulled up to expose the surface of the forging mold 5, and the excess molten metal remaining on the surface is removed by the excess molten metal removing means 25. To do.
  • the ears (not shown) of the electrode plate group are immersed downward in the cavity 6 (about 3 mm) by the conveying means (not shown), and the cooling water is circulated in the cooling water passages 11a and ib.
  • the air cylinder 46 of the mold retractor 27 is operated, and the insert 4 is pushed upward to release from the through hole 5a of the mold 5
  • the strap 1 with the ears of the electrode plate group integrated can be released from the cavity 6 with the strap 1 placed on the insert 4.
  • the strap 1 is removed by detaching the insert 4 from the through hole 5a of the forging die 5 by the saddle drawing device 27. Because the mold is released, the mold release operation is stable, the uncured strap 1 can be released without being deformed, and the mold release failure can be minimized without using a mold release agent. . Book In the embodiment, the force that moves the insert 4 upward by the vertical pull-in device 27 and separates it from the forging die 5 The moving die 5 moves downward to release the insert 4 Please do it.
  • the molten metal 26 that does not require the forging die 5 to be moved during the forging process is provided. Spilling is less likely to prevent filling errors (lead molten metal has a high specific gravity, so there is a risk of spilling if the mold 5 is slightly inclined or vibrated).
  • the electrode plate ears are immersed in the molten metal 26, a part of the molten metal 26 crawls along the surface of the ear and forms a meniscus, so the molten metal 26 is filled in the cavity 6 and the ears are filled. Even if the group is immersed, the molten metal 26 does not overflow, and the poor bonding of the electrode group ear due to the lack of molten metal is resolved
  • the present invention is not limited to the embodiments, and it is free to make design changes and improvements as appropriate according to the use conditions and the like without departing from the spirit of the invention.
  • the forged product 1 forged by the forging die 5 is not limited to the strap, and may be, for example, a pole column or other parts.
  • the cavity 6 formed in the forging die 5 may be formed in a concave shape with a bottom instead of a through hole.
  • the present invention is used in a technical field for manufacturing a lead storage battery (battery) strap and other parts mounted on various vehicles such as a single car, a passenger car, a truck, and a forklift.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 離型動作の妨げ要因が少なく、かつ、セル間接続部同士の高い溶接品質が得られるストラップを提供する。即ち、鉛蓄電池用のストラップ1にあって、鉛蓄電池内で隔壁を隔てて隣接し合う同士が溶接されるセル間接続部2と、極板群の耳部と一体化される接続部3と、が略直角に対応するL型に形成され、かつ、前記セル間接続部2と接続部3の両側部がストレートに連なるように形成されると共に、前記セル間接続部2が0.6°~1.0°の先細りのテーパー角をなすように形成される。

Description

明 細 書
ストラップ、铸造用金型、入子、铸造装置及び铸造方法
技術分野
[0001] 本発明は、例えば、単車や乗用車、トラック、フォークリフト等の各種車両等に搭載 される鉛蓄電池 (バッテリ)用のストラップ、ストラップ等の铸造に用いられる铸造用金 型、入子、铸造装置及び铸造方法に関する。
背景技術
[0002] 各種車両等に搭載される鉛蓄電池においては、極板群の耳部同士をストラップを 介して接続するための方法としてキャストオンストラップ方式 (COS方式)が従来より 公知である(例えば、特許文献 1〜7参照)。この COS方式では 2通りの方法が行わ れている。その一つは、铸型を手作業または自動機で溶解槽内の溶湯 (溶融鉛)に 浸漬させてキヤビティ内に溶湯を満たした後、铸型を溶解槽から引き上げて極板群 の耳部をキヤビティ内に浸漬させて溶湯を凝固させることによりストラップを形成する 方法である (特許文献 1, 4, 5参照)。
[0003] 別の方法では、铸型を溶解槽近傍位置に配置し、ピストンポンプ等の移送手段で キヤビティ内に溶湯を注入し、この注入溶湯を外部からヒータ (又はパーナ)等の加熱 手段で加熱保温しつつ、その溶湯内に、予めフラックス処理して乾燥させた極板群 の耳部の先端部分を浸漬させ、この状態で前記铸型を冷却して溶湯を凝固させ、耳 部をストラップに一体ィ匕させるようにしていた (特許文献 2, 3, 6, 7参照)。なお、キヤ ビティ内への溶湯の注入方法にっ ヽては、堰を設けて溶湯を溶解槽からポンプで汲 み上げ、余分の溶湯を溶解槽に戻す方法、湯面と铸型の間に落差を設ける方法 (重 力方式)、トリべで直接注ぎ込む方法等々がある。
[0004] 一方、このような従来の COS方式で用いられるストラップ铸造用金型のキヤビティは 一般に放電加工により有底状に形成され、例えば、図 11 (a) (b)に示すように、ストラ ップ 51は、セル間接続部 52と極板群との接続部 53とが略直角に対応するような L型 に形成され、セル間接続部 52の側面に離型性を良好にするための抜き勾配を設け る必要上から、セル間接続部 52の幅が極板群との接続部 53より大に設定され、かつ 、そのセル間接続部 52が 3° の先細りのテーパー角(抜き勾配)をなすように設定さ れていた。なお、極板群との接続部 53には铸造工程で極板群の耳部が一体ィ匕され 、セル間接続部 52はセルの隔壁を隔てて隣接し合う同士が抵抗溶接により接合され る。
[0005] 特許文献 1 :日本国特開平 7— 122259号公報
特許文献 2 :日本国特開平 9 199103号公報
特許文献 3 :日本国特開平 9— 164469号公報
特許文献 4:日本国特開平 10— 294096号公報
特許文献 5 :日本国特開 2002— 011562号公報
特許文献 6 :日本国特開 2002— 279965号公報
特許文献 7 :日本国特開 2002— 025534号公報
発明の開示
発明が解決しょうとする課題
[0006] 上述のような従来の COS方式によるストラップの铸造方法では種々の問題があった 。即ち、(1)放電加工によって形成されるストラップ铸造用金型のキヤビティの形状に 起因して、高価なボロン系等の離型剤が必要とされ、キヤビティへの煩瑣な塗布工程 を必要とする上に、カゝかる離型剤を塗布しても離型不良がしばしば発生した。(2)溶 湯をポンプで汲み上げてキヤビティ内に注入する場合には、ポンプ内や配管内での 溶湯の詰まりに起因する注湯系統のトラブルが発生しやすぐメンテナンスに多大の 時間と手間を要し、そのために、稼働率が低下することもあり、ランニングコストも高く なるという問題があった。
[0007] (3)キヤビティ内に注入した溶湯をヒータで加熱する場合には、断線等のトラブルが 発生することがあった。また、铸型の加熱温度や冷却温度の安定保持が難しく温度 のバラツキに起因する品質不良が発生しやすぐ品質の安定化(品質管理)が容易 でな力つた。さらに、溶湯と大気が接触する機会が多い (接触面積が広い)ために、 酸化物や凝固物が生成しやす ヽと ヽぅ欠点があった。(4)铸造されたストラップを離 型させる際に、ストラップを铸型力 押し出すための円形又は板状等に形成された押 出当接部を有する押出ピンが必要とされ、装置の構造が複雑になる上に、その押出 当接部はストラップの底部全面に当接するものではなく部分的にしか当接させること ができないため、ストラップ底部に均等な押出力を作用させることができず離型動作 が不安定になりやすぐかつ、押出ピンが変形しやす力つた。
[0008] そして、図 11 (a) (b)に示されるストラップ 51は、安定な離型動作の妨げとなる段差 部分 Dがあるため、高価な離型剤を使用しても、特に、その段差部分 Dのコーナー部 Rが金型に付着して離型しにくぐ離型不良が発生するという問題 (上記(1)項と関連 )があった。また、離型性を良くするための抜き勾配として、セル間接続部 52に (極板 群との接続部 53に引いた垂線に対して) 3° の先細りのテーパー角を設けているた め、隣接し合うセル間接続部 52, 52の背面同士の間では、セル隔壁を隔てて合計 6 ° のテーパー状空隙が発生する。
[0009] 従って、両セル間接続部 52, 52が電極チップによって両側力 挟み付けられて抵 抗溶接される際に、そのテーパー状空隙が強制的に押し潰されて密着状態になるた め、極板群との接続部 53, 53と極板群の耳部の間で強制的に変形が発生する。セ ル間接続部 52, 52同士の溶接品質を向上させるためには、このような変形は少ない 方が好ましい。そのためには、セル間接続部 52の抜き勾配はできるだけ小さく設定し なければならない。し力しながら、放電カ卩ェでは高い加工精度を得ることができない ため、抜き勾配は、上述のように、少なくとも 3° 程度に設定せざるを得な力つた。
[0010] 本発明は、このような実情に鑑みてなされ、離型動作の妨げ要因が少なぐかつ、 セル間接続部同士の高い溶接品質が得られるストラップと、高価な離型剤や押出ピ ンを必要とすることなく铸造品を離型させることができる铸造用金型、入子、その铸造 用金型を用いた铸造装置、及び、注湯機構の構成が簡易でトラブルが発生しにくぐ 铸型の加熱温度や冷却温度の安定保持が可能で良好な铸造品質が得られるフロー ト式の铸造装置及び铸造方法を提供することを目的とする。
課題を解決するための手段
[0011] (1)本発明のストラップは、鉛蓄電池用のストラップ 1にあって、
セル間接続部 2と、極板群との接続部 3とが略直角に対応する L型に形成され、力 つ、前記セル間接続部 2と、極板群との接続部 3の両側部力ストレートに連なるように 形成されると共に、前記セル間接続部 2の壁面 2a, 2b, 2cが、先細りのテーパー角 をなすように形成されることを特徴とする。
[0012] このような構成によれば、セル間接続部 2と、極板群との接続部 3の両側部がストレ ートに連なるため、従来のような離型動作の妨げとなる段差がなくなり、離型が容易と なる。また、セル間接続部 2と極板群との接続部 3の両側部をストレートにしたことで、 ストラップ 1を形成するためのキヤビティ 6の製作が容易となる上に、角部(突出部)が なくなつたので、鉛 (原材料)の使用量を少なくすることができ、軽量ィ匕が可能となる。
[0013] (2)前記テーパー角を、 0. 6° 〜1. 0° に設定することが特に好ましい。このように すれば、铸造品 (ストラップ 1)の铸型カもの離型が容易となる。また、隔壁を隔てて対 向し合うセル間接続部 2, 2同士を抵抗溶接する際に、セル間接続部 2, 2間の隙間 が少なくなるため、溶接作業性が向上し溶接部に残留応力が発生しにくくなり、溶接 品質も向上する。なお、テーパー角が 0. 6° より小さくなると、ストラップ 1を、例えば、 铸造によって形成する場合、铸造品の铸型からの離型が難しくなることがある。また、 キヤビティ 6の形成に高い加工精度が要求され、加工条件がきびしくなり過ぎる。一 方、テーパー角が 1. 0° より大になると、セル間接続部 2, 2同士を抵抗溶接する際 に残留応力が発生しやすくなる。
[0014] (3)本発明の铸造用金型は、金型本体に、上方への抜き勾配を有して段部のない貫 通孔 5aが形成され、該貫通孔 5aの下部に、入子 4が上方に向けて離脱可能に嵌装 され、該入子 4の上にキヤビティ 6が形成されることを特徴とする。
[0015] このような構成によれば、貫通孔 5aに嵌装された入子 4がキヤビティ 6の底になるた め、铸造用金型 5にキヤビティ 6の底を形成しなくてもよくなる。従って、铸造用金型 5 の製作が容易となり、その貫通孔 5aは、例えば、ワイヤカットによって形成することが できる。その場合、従来の放電加工により有底のキヤビティを形成する場合よりも表面 仕上げ精度が格段に向上し、抜き勾配を小さく設定することができ、かつ、コスト安に 提供することができる。し力も、貫通孔 5aの底部に嵌装させた入子 4は、铸造品 1の 底部全体に当接 (接触)しているため、入子 4を離脱させる動作で、铸造品 1を安定 '性よく離型させることができる。
[0016] (4)本発明の入子は、铸造用のキヤビティ 6を形成するための入子 4であって、
铸造用金型 5に形成された貫通孔 5aの下部に、上方に向けて離脱可能に嵌装さ れてその上に前記キヤビティ 6を形成し、かつ、前記キヤビティ 6で铸造品 1を形成し た後に前記貫通孔 5aから入子 4を離脱される際に、前記铸造品 1を離型させることを 特徴とする。
[0017] このような構成によれば、入子 4によってキヤビティ 6の底部が形成されるため、铸造 用金型 5には貫通孔 5aを形成するのみでよぐ铸造用金型 5の形成が容易となり、例 えば、貫通孔 5aをワイヤカットにより形成することができる。その場合、従来の放電カロ ェによる場合よりも表面仕上げ精度が格段に向上し、抜き勾配を小さく設定すること ができ、かつ、コスト安に铸型の形成が可能となる。
[0018] 入子 4は铸造品 1の離型方向に貫通孔 5aから離脱可能であるため、铸造品 1の铸 造後、入子 4を貫通孔 5aから (例えば、 2mm程度押し上げて)離脱させる動作で、铸 造品 1をキヤビティ 6から離型させることができる。し力も、その入子 4は、铸造品 1の底 部全体に当接 (接触)しているため、入子 4を離脱させる際の铸造品 1の離型動作が 安定化し、铸造品 1の離型性が格段に向上する。なお、入子 4を上方に向けて移動さ せて貫通孔 5aから離脱させてもよぐ铸造用金型 5を下方に移動させて入子 4を貫通 孔 5aから離脱させてもよい。また、铸造品 1の例としては、鉛蓄電池用のストラップや 極柱等が挙げられるがこれに限定されることなぐその他の部品類等であってもよい。
[0019] (5)本発明の铸造装置は、(3)項に記載の铸造用金型 5を固定支持する金型支持 部 23と、前記キヤビティ 6に溶湯 26を注入する溶湯注入手段 24と、前記キヤビティ 6 に溶湯 26を注入した後の余剰溶湯を前記铸造用金型 5の表面から除去する余剰溶 湯除去手段 25と、前記キヤビティ 6内に注入された溶湯 26を冷却するための冷却水 を供給する冷却水供給手段 12と、前記入子 4を前記貫通孔 5aから離脱させる離型 手段 27と、を備えることを特徴とする。
[0020] このような構成によれば、固定支持された铸造用金型 5に溶湯 26が注入されるため 、注入された溶湯 26がこぼれに《なり、溶湯 26の注入不良がなくなる。铸造用金型 5の貫通孔 5aの底部に嵌装させた入子 4は、铸造品 1の底部全体に当接 (接触)して いるため、入子 4の離脱に伴う铸造品 1の離型動作が安定化し、铸造品 1の離型性が 格段に向上する。また、余剰溶湯除去手段 25によって、溶湯 26を注入した後に铸造 用金型 5の表面力 余剰溶湯を除去するので、铸バリの発生を抑えることができ铸造 品 1の離型性が向上する。なお、入子 4を貫通孔 5aから離脱させるための離型手段 2 7は、入子 4を固定して铸造用金型 5を移動させてもよぐ铸造用金型 5を固定して入 子 4を移動させるようにしてもょ ヽ。
[0021] (6)本発明の铸造装置は、溶湯 26を加熱可能に貯留する溶解槽 22と、铸造用金型 5を前記溶解槽 22内で浮島状に固定支持する金型支持部 23と、前記溶解槽 22内 に貯留された前記溶湯 26に浸漬される昇降式のフロート 24と、を備えることを特徴と する。
[0022] このような構成によれば、フロート 24を溶湯 26に浸漬させる動作で湯面を上昇させ てキヤビティ 6内に溶湯 26を注入するため、注湯機構が簡易であり、溶湯をポンプで 汲み上げてキヤビティ内に注入する従来装置のようなポンプ内や配管内で溶湯が詰 まるようなトラブルが発生しなくなる。し力も、铸造用金型 5が溶解槽 22内に固定支持 されているため、キヤビティ 6への溶湯 26の注入動作が安定ィ匕し、注入不良を解消 することができる。
[0023] また、溶解槽 22内で加熱された溶湯 26がそのままキヤビティ 6内に注入されるため 、従来のようなキヤビティ 6内に注入した溶湯 26を外部から加熱するためのヒータ (又 はパーナ)等の加熱手段が不要となり構成を簡素化することができ、トラブルの発生 を少なくすることができる上に、铸造用金型 5の加熱温度や冷却温度の安定保持が 可能となり、良好な铸造品質が得られる。そして、溶湯 26が撹拌されないため、溶湯 26が Ca合金の場合には酸ィ匕滓の発生が抑制される。また、全ての铸造工程を溶解 槽 22内で行えるため、鉛成分 (溶湯)の外部への持ち出しがなく環境対策が容易に なる。
[0024] (7)本発明の铸造装置は、溶湯 26を加熱可能に貯留する溶解槽 22と、铸造用金型 5を前記溶解槽 22内に浮島状に固定支持する金型支持部 23と、前記溶解槽 22内 に貯留された前記溶湯 26への浸漬度を変化させることで前記铸造用金型 5のキヤビ ティ 6内に溶湯 26を注入する昇降式のフロート 24と、前記キヤビティ 6に前記溶湯 26 を注入した後の余剰溶湯を前記铸造用金型 5の表面から除去する余剰溶湯除去手 段 25と、前記キヤビティ 6内に注入された前記溶湯 26を冷却するための冷却水を供 給する冷却水供給手段 12と、前記キヤビティ 6内に形成された铸造品 1を離型させる 離型手段 27と、を備えることを特徴とする。
[0025] このような構成によれば、フロート 24を溶湯 26に浸漬させる動作で湯面を上昇させ てキヤビティ 6内に溶湯 26を注入するため、注湯機構が簡易であり、溶湯をポンプで 汲み上げてキヤビティ 6内に注入する従来装置のようなポンプ内や配管内で溶湯が 詰まるようなトラブルが発生しなくなる。し力も、铸造用金型 5が溶解槽 22内に固定支 持されているため、キヤビティ 6への溶湯 26の注入動作が安定ィ匕し、注入不良を解 消することができる。
[0026] また、溶解槽 22内で加熱された溶湯 26がそのままキヤビティ 6内に注入されるため 、従来のようなキヤビティ内に注入した溶湯を外部から加熱するためのヒータ (又はバ ーナ)等の加熱手段が不要となり構成を簡素化することができ、トラブルの発生を少 なくすることができる上に、铸造用金型 5の加熱温度や冷却温度の安定保持が可能 となり、良好な铸造品質が得られる。さらに、余剰溶湯除去手段 25によって、溶湯 26 をキヤビティ 6に注入した後の余剰溶湯を铸造用金型 5の表面から除去するので、铸 バリの発生を抑えることができ、铸造品 1の離型性が向上し、铸造品質も向上する。 そして、溶湯 26が撹拌されず、かつ、溶湯 26にフロート 24を浸漬させているために、 溶湯 26と大気の接触面積を小さくすることができるので、特に、 Ca合金において発 生しやすい酸化滓等の凝固物の発生が抑制される。また、全ての铸造工程を溶解槽 22内で行えるため、鉛成分 (溶湯)の外部への持ち出しがなぐ環境対策が容易にな る。
[0027] (8)本発明の铸造方法は、溶解槽 22内に加熱可能に貯留された溶湯 26にフロート 24を浸漬させることにより、前記溶解槽 22内に浮島状に固定支持された铸造用金型 5のキヤビティ 6に対して前記溶湯 26を注入することを特徴とする。
[0028] このような方法によれば、フロート 24を溶湯 26に浸漬させる動作で湯面を上昇させ てキヤビティ 6内に溶湯 26を注入するため、注湯方法が簡易であり、溶湯をポンプで 汲み上げてキヤビティ内に注入する従来装置のようなポンプ内や配管内で溶湯が詰 まるようなトラブルが発生しなくなる。し力も、铸造用金型 5が溶解槽 22内に固定支持 されているため、金型の水平が保たれ、かつ、湯面を上昇させてキヤビティ 6内に溶 湯を注入するため、キヤビティ 6の周囲全体力ゝら溶湯 26を注入できるので、キヤビティ 6への溶湯 26の注入動作が安定ィ匕し、注入不良を解消することができる。
[0029] また、溶解槽 22内で加熱された溶湯 26がそのままキヤビティ 6内に注入されるため 、従来のようなキヤビティ内に注入した溶湯を外部から加熱するためのヒータ (又はバ ーナ)等の加熱手段が不要となり構成を簡素化することができ、トラブルの発生を少 なくすることができる上に、铸造用金型 5の加熱温度や冷却温度の安定保持が可能 となり、良好な铸造品質が得られる。そして、溶湯 26が撹拌されないため、溶湯 26が Ca合金の場合には酸ィ匕滓の発生が抑制される。また、全ての铸造工程を溶解槽 22 内で行えるため、鉛成分 (溶湯)の外部への持ち出しがなく環境対策が容易になる。
[0030] (9)本発明の铸造方法は、金型本体に形成された貫通孔 5aの底部に上方に向けて 離脱可能に入子 4を嵌装してその上にキヤビティ 6を形成し、該キヤビティ 6内に溶湯 26を注入して铸造品 1を铸造した後には、前記入子 4を前記貫通孔 5aから離脱させ ることにより、前記铸造品 1を前記キヤビティ 6から離型させることを特徴とする。
[0031] このような方法によれば、铸造品 1を铸造した後、貫通孔 5aに嵌装した入子 4を該 貫通孔 5aから離脱させる動作で、铸造品 1をキヤビティ 6から離型させることができる 。し力も、貫通孔 5aの底部に嵌装させた入子 4は、铸造品 1の底部全体に当接 (接触 )しているため、入子 4を離脱させる際の铸造品 1の離型動作が安定化し、铸造品 1の 離型性が格段に向上する。また、その貫通孔 5aには底が不要であるため铸型の形 成が容易となり、例えば、ワイヤカットによって貫通孔 5aを形成することができる。その 場合、従来の放電加工により有底のキヤビティを形成する場合よりも表面仕上げ精度 が格段に向上し、抜き勾配を小さく設定することができ、かつ、コスト安に铸型の形成 が可能となる。
発明の効果
[0032] 請求項 1に記載の本発明のストラップでは、セル間接続部と極板群との接続部の両 側部がストレートに連なるように形成されるため、従来のような離型動作の妨げとなる 角部乃至は段差がなくなり、離型が容易となる。また、セル間接続部と極板群との接 続部の両側部をストレートにしたことで、ストラップを形成するためのキヤビティの製作 が容易となる上に、角部 (突出部)がなくなつたので、鉛 (原材料)の使用量を少なく することができ、軽量ィ匕が可能となる。 [0033] 請求項 3に記載の本発明の铸造用金型では、铸造品を铸造するための貫通孔が、 抜き勾配を有して段部なく形成されるので、铸型の形成が容易となり、例えば、ワイヤ カットによって貫通孔を形成することができる。その場合、従来の放電加工による場合 よりも表面仕上げ精度が格段に向上し、かつ、コスト安に提供することができる。しか も、貫通孔の下部に嵌装させた入子は、铸造品の底部全体に当接 (接触)しているた め、入子を離脱させる際の铸造品の離型動作が安定化し、铸造品の離型性が格段 に向上する。従って、従来のような押出ピンや高価な離型剤が不要となり、コスト安に 铸造品を铸造することができる。
[0034] 請求項 4に記載の本発明の入子では、キヤビティが形成される貫通孔の底部に、铸 造品の離型方向に離脱可能に嵌装されるので、貫通孔に底部を形成する必要がな くなるため、铸型の形成が容易となり、例えば、貫通孔をワイヤカットにより形成するこ とができる。その場合、従来の放電加工による場合よりも表面仕上げ精度が格段に向 上し、かつ、コスト安に铸型の形成が可能となる。
[0035] この入子は、铸造品の離型方向に離脱可能であるため、铸造品を铸造した後、入 子を貫通孔から離脱させる動作で、铸造品をキヤビティカも離型させることができる。 し力も、その入子は、铸造品の底部全体に当接 (接触)しているため、入子を離脱さ せる際における铸造品の離型動作が安定ィ匕し、铸造品の離型性が格段に向上する 。従って、従来のような押出ピンや高価な離型剤が不要となる。
[0036] 請求項 5に記載の本発明の铸造装置では、固定支持された铸造用金型に溶湯が 注入されるため、溶湯がこぼれに《なり、溶湯の注入不良がなくなる。铸造用金型の 貫通孔の下部に嵌装させた入子は、铸造品の底部全体に当接 (接触)しているため 、入子を離脱させる際の铸造品の離型動作が安定化し、铸造品の離型性が格段に 向上する。また、余剰溶湯除去手段によって、溶湯を注入した後に铸造用金型の表 面力 余剰溶湯を除去するので、铸バリの発生を抑えることができ铸造品の離型性 が向上し铸造品質も向上する。
[0037] 請求項 6に記載の本発明の铸造装置では、フロートを溶湯に浸漬させる動作で湯 面を上昇させてキヤビティ内に溶湯を注入するので、溶湯をポンプで汲み上げてキヤ ビティ内に注入する従来装置のようなポンプ内や配管内で溶湯が詰まるようなトラブ ルが発生しなくなる。し力も、铸造用金型が溶解槽内に固定支持されているので、キ ャビティへの溶湯の注入動作が安定ィ匕し、注入不良を解消することができる。
[0038] また、溶解槽内で加熱された溶湯がそのままキヤビティ内に注入されるので、従来 のようなキヤビティ内に注入した溶湯を外部から加熱するためのヒータ (又はパーナ) 等の加熱手段が不要となり構成を簡素化することができ、トラブルの発生を少なくす ることができる上に、铸造用金型の加熱温度や冷却温度の安定保持が可能となり、 良好な铸造品質が得られる。そして、溶湯が撹拌されないので、溶湯が Ca合金の場 合には酸ィ匕滓の発生が抑制される。また、全ての铸造工程を溶解槽内で行えるので 、鉛成分 (溶湯)の外部への持ち出しがなぐ環境対策が容易になる。
[0039] 請求項 7に記載の本発明の铸造装置では、フロートを溶湯に浸漬させる動作で湯 面を上昇させてキヤビティ内に溶湯を注入するため、溶湯をポンプで汲み上げてキヤ ビティ内に注入する従来装置のようなポンプ内や配管内で溶湯が詰まるようなトラブ ルが発生しなくなる。し力も、铸造用金型が溶解槽内に固定支持されているため、キ ャビティへの溶湯の注入動作が安定ィ匕し、注入不良を解消することができる。
[0040] また、溶解槽内で加熱された溶湯がそのままキヤビティ内に注入されるので、従来 のようなキヤビティ内に注入した溶湯を外部から加熱するためのヒータ (又はパーナ) 等の加熱手段が不要となり構成を簡素化することができ、トラブルの発生を少なくす ることができる上に、铸造用金型の加熱温度や冷却温度の安定保持が可能となり、 良好な铸造品質が得られる。さらに、余剰溶湯除去手段によって、溶湯をキヤビティ に注入した後の余剰溶湯を铸造用金型の表面力 除去するので、铸バリの発生を抑 えることができ、铸造品の離型性が向上し、铸造品質も向上する。そして、溶湯が撹 拌されないので、溶湯力 SCa合金の場合には酸ィ匕滓の発生が抑制される。また、全て の铸造工程を溶解槽内で行えるので、鉛成分 (溶湯)の外部への持ち出しがなぐ環 境対策が容易になる。
[0041] 請求項 8に記載の本発明の铸造方法では、フロートを溶湯に浸漬させる動作で湯 面を上昇させてキヤビティ内に溶湯を注入するので、溶湯をポンプで汲み上げてキヤ ビティ内に注入する従来装置のようなポンプ内や配管内で溶湯が詰まるようなトラブ ルが発生しなくなる。し力も、铸造用金型が溶解槽内に固定支持されているので、キ ャビティへの溶湯の注入動作が安定ィ匕し、注入不良を解消することができる。
[0042] また、溶解槽内で加熱された溶湯がそのままキヤビティ内に注入されるので、従来 のようなキヤビティ内に注入した溶湯を外部から加熱するためのヒータ (又はパーナ) 等の加熱手段が不要となり構成を簡素化することができ、トラブルの発生を少なくす ることができる上に、铸造用金型の加熱温度や冷却温度の安定保持が可能となり、 良好な铸造品質が得られる。そして、溶湯が撹拌されないので、溶湯が Ca合金の場 合には酸ィ匕滓の発生が抑制される。また、全ての铸造工程を溶解槽内で行えるので 、鉛成分 (溶湯)の外部への持ち出しがなぐ環境対策が容易になる。
[0043] 請求項 9に記載の本発明の铸造方法では、铸造品を铸造した後、貫通孔に嵌装し た入子を離脱させる動作で铸造品を離型させるので、貫通孔の下部に嵌装させた入 子は铸造品の底部全体に当接 (接触)しているため、入子を離脱させる際の铸造品 の離型動作が安定ィ匕し、铸造品の離型性が格段に向上する。従って、従来のような 押出ピンや高価な離型剤が不要となり、コスト安に高品質の铸造品を铸造することが できる。また、その貫通孔には底が不要であるため、铸型の形成が容易となり、例え ば、ワイヤカットによって貫通孔を形成することができる。その場合、従来の放電加工 による場合よりも表面仕上げ精度が格段に向上し、かつ、コスト安に铸型の形成が可 能となる。
図面の簡単な説明
[0044] [図 1]本発明の実施の形態に係るストラップを示し、(a)はその側面図、(b)は正面図 、(c)は斜視図である。
[図 2]同入子を示し、(a)はその側面図、(b)は斜視図である。
[図 3]同ストラップ、入子及び铸造用金型を示し、(a)はストラップの側面図、(b)は入 子の側面図、(c)は铸造用金型の断面図である。
[図 4]同铸造用金型の平面図である。
[図 5]同電極板群にストラップが一体化された状態の斜視図である。
[図 6]同バッテリの半断面図である。
[図 7]同铸造装置の要部断面図である。
[図 8]同斜視図である。 [図 9]同フロートの昇降機構を示し、(a)は正面図、(b)は側面図である。
[図 10]同離型手段を示し、(a)は正面図、(b)は側面図、(c)は平面図である。
[図 11]放電加工によって形成された従来のストラップの一例を示し、(a)は側面図、( b)は斜視図である。
符号の説明
[0045] 1…铸造品
2· · ·セル間接続部
3…極板群との接続部
4…入子
5…铸造用金型
5a…; 通孔
6· ··キヤビティ
12· · ·冷却水供給手段
22…溶解槽
23· · ·金型支持部
24· ··溶湯注入手段
25· ··余剰溶湯除去手段
26· ··溶湯
27…離型手段
発明を実施するための最良の形態
[0046] 以下に、本発明の最良の実施の形態に係るストラップ、入子、铸造用金型、铸造装 置及び铸造方法について図面を参照しつつ詳細に説明する。
図 1はストラップ 1を示し、図 1 (a)は側面図、図 1 (b)は正面図、図 1 (c)は斜視図で ある。このストラップ 1は、セル間接続部 2と電極接続部 (本発明の極板群との接続部 ) 3とが略直角に対応する L型に形成され、かつ、そのセル間接続部 2と電極接続部 3 の両側部力 Sストレートに連なるように形成され、離型阻害要因となる段差をなくしてい る。
[0047] そして、セル間接続部 2の抵抗溶接される背面側 2a及び正面側 2bが、電極接続部 3の接続面 3a (又はその裏面 3c)に引いた垂線に対して、例えば、図示下方内向き に 1° のテーパー角(先細りのテーパー角)をなす抜き勾配を有し、また、セル間接 続部 2と電極接続部 3の両側部 2c, 2cも図示下向きに 1° のテーパー角(先細りのテ 一パー角)なす抜き勾配を有する。そして、電極接続部 3の前面部 3bは図示下方内 向きに 2° のテーパー角をなす抜き勾配を有する。つまり、上述のテーパー角は何れ もストラップ 1の離型方向(図示上方)に拡がるように形成される。なお、電極接続部 3 の接続面 3aと裏面 3cは平行に設定される。
[0048] 上述のように、セル間接続部 2と電極接続部 3の両側部がストレートに連なっている ため、従来のような離型動作の妨げとなる段差がなくなりキヤビティカもの離型が容易 となる。また、ストラップ 1を形成するためのキヤビティの製作が容易となる上に、突出 部がなくなつたので、セル間接続部 2と電極接続部 3の厚みを従来と同じにした場合 、鉛 (原材料)の使用量を少なくすることができ、軽量ィ匕が可能となる。
[0049] そして、セル間接続部 2の背面側 2aが 1° の先細りのテーパー角をなすので、隔壁 8b (図 6参照)を隔てて対向し合うセル間接続部 2, 2同士を両側カゝら高圧で挟み付 けて抵抗溶接する際に、セル間接続部 2, 2間の隙間(2° )が少なくなるため、溶接 作業性が向上し溶接部に残留応力が発生しに《なり、溶接品質も向上する。この点 については、図 6に基づいて後述する。
[0050] 図 2は入子 4を示し、図 2 (a)は側面図、図 2 (b)は斜視図である。この入子 4はストラ ップ 1の電極接続部 3の裏面 3cに当接 (接触)する上接面 4a、その上接面 4aに連な りストラップ 1のセル間接続部 2の正面側 2bに当接 (接触)する側接面 4b、その下部 に連なる側面 4c、その側面 4cと対向する側面 4d、その両側面 4c, 4d間に形成され る側面 4f, 4f及び底面 4eからなる。
[0051] 上述の側面 4cは、例えば、上接面 4aに引いた垂線に対して図示下方内向きに 1° のテーパー角をなし、側面 4dは、同垂線に対して図示下方内向きに 2° のテーパー 角をなす抜き勾配を有する。なお、側面 4c,側面 4dのテーパー角を異ならせること で、入子 4をストラップ铸造用金型 5 (図 3 (c)参照)の貫通孔 5aに挿入する際に正し い向きに挿入することができる。また、ストラップ 1の正面側 2bに当接 (接触)する側接 面 4bは、例えば、同垂線に対して図示上方内向きに 1° のテーパー角をなす抜き勾 配を有する。一方、両側面 4f, 4fは下向きに 1° のテーパー角をなしている。上述の ように、各テーパー角は入子 4の離脱方向(図示上方)に拡がるように形成される。
[0052] 図 3は、ストラップ 1、入子 4及びストラップ铸造用金型 (本発明の铸造用金型) 5を示 し、図 3 (a)はストラップ 1の側面図、図 3 (b)は入子 4の側面図、図 3 (c)はストラップ 1 及び入子 4がストラップ铸造用金型 5の貫通孔 5aに嵌装された状態の側断面図であ る。このストラップ铸造用金型 5に形成される貫通孔 5aは、 4つの側壁からなり、対向 し合う 2つの側壁 5b, 5cが、それぞれ図示下方内向きにそれぞれ 1° , 2° のテーパ 一角(ストラップ 1の離型方向に拡がるテーパー角)をなす抜き勾配を有し、その両側 壁 5b, 5c間に対向し合うように形成される 2つの側壁 (符号なし)は下向きに 1° のテ 一パー角(ストラップ 1の離型方向に拡カ Sるテーパー角)をなす。
[0053] ストラップ 1の铸造に先立って、まず、入子 4を貫通孔 5aに嵌入すると、側壁 5b, 5c のテーパー角(図示下方内向きに 1° , 2° )によって抜け止めされた状態で底部に 嵌装され、このとき、入子 4の底部 (4e)が貫通孔 5aから若干突出する。この状態にて 、入子 4の上接面 4aと側接面 4b及び貫通孔 5aの側壁 5b, 5c等によって囲まれた空 間にストラップ 1を铸造 (成形)するためのキヤビティ 6が形成される。なお、図 3 (c)は キヤビティ 6内でストラップ 1が铸造された状態を示す。
[0054] この貫通孔 5aは、入子 4の嵌装によってキヤビティ 6の底部が形成されるため、抜き 勾配を有する段部のな!ヽ貫通状に形成することができ、ストラップ铸造用金型 5の形 成が容易となり、例えば、その貫通孔 5aをワイヤカットにより形成することができる。そ の場合、従来の放電加工による場合よりも表面仕上げ精度が格段に向上するため、 上述のように、抜き勾配を小さく設定することができ、かつ、コスト安にストラップ铸造 用金型 5を提供することができる。
[0055] そして、キヤビティ 6の底部を形成する入子 4が、ストラップ 1の離型方向に離脱可能 であるため、ストラップ 1を铸造した後、入子 4を貫通孔 5aから上方に離脱させる動作 (入子 4を約 2mm程上方に押し上げる動作)で、铸造されたストラップ 1を離型させる ことができる。し力も、その入子 4は、ストラップ 1の底部全体に当接 (接触)しているた め、及び、抜き勾配が小さく設定されているため、入子 4を離脱させる際におけるスト ラップの離型動作が安定化し、ストラップの離型性が格段に向上する。従って、高価 な離型剤を必要とせず、また、押出ピンが不要となるため、铸造装置の簡素化を図る ことができる。
[0056] 図 4は、铸造用金型 5としてのストラップ铸造用金型の平面図を示す。図示の例で は、金型本体に貫通孔 5aを 6個 2列 (計 12個)に設け、各貫通孔 5aに入子 4を嵌装し てキヤビティ 6を形成している。その 2列の貫通孔 5a群の両側に、 2つの冷却水通路 1 Kl la, l ib)が形成され、その一端側は穿孔後にプラグ 14, 14で閉栓され、各冷 却水通路 11a, l ibの両端下部力 冷却水を供給するための 4本のクーリングポスト( 本発明の冷却水供給手段) 12内の冷却水通路 12aの上端開口に接続される。
[0057] そして、金型本体の両側部には、 6本のガイドピン 13が立設され、中央部に配設さ れる 2本のガイドピン 13は位置決め用とされ段付き状に形成され、両端の 4本のガイ ドビン 13には、後述するように、極板群の各耳部を一様に所定の寸法(3mm程度) だけ浸漬させるように搬送手段(図示省略)に掛止されるための被掛止片 13aが突設 されている。このようなストラップ铸造用金型 5の貫通孔 5aは、前述したように、ワイヤ カットにより形成することができるが、これに限らず、その他の機械加工 (フライス加工 等)〖こよっても形成することができる。
[0058] 図 5は、極板群 7にストラップ 1が一体化された状態の斜視図を示す。極板群 7は、 4 枚の正極板 71と 5枚の負極板 72がそれぞれセパレータ 73を介して絶縁された状態 で交互に重ね合わされ、後述するストラップ 1の铸造過程で、正極板 71の耳部 71a 同士が一方のストラップ 1の電極接続部 3の接続面 3a内に一体ィ匕され、負極板 72の 耳部 72a同士が他方のストラップ 1の電極接続部 3の接続面 3a内に一体ィ匕される。な お、各耳部 71a, 72aは、その先端部の 3mm程が電極接続部 3内に入り込んだ状態 で一体化される。
[0059] 図 6は、最終製品としてのバッテリ 8を示す。図示の例では、ケーシング 8aは 5枚の 隔壁 8bによって仕切られて 6つのセル 8cが形成され、各隔壁 8bを隔てて対向し合う ストラップ 1, 1のセル間接続部 2, 2 (の背面側 2a, 2a)同士が抵抗溶接によって接合 される。一端側(図示右端)のセル 8cでは、極板群 7の正極板 71の耳部 71a同士が 極柱 9に一体ィ匕され、他端のセル 8c (図示省略)では、極板群 7の負極板 72の耳部 7 2a同士が極柱 9に一体ィ匕され、各極柱 9にはそれぞれ端子 10が接続され、一方の 端子 10が正極、他方の端子 10が負極となる。
[0060] 隔壁 8bを隔てて対向し合うストラップ 1, 1のセル間接続部 2, 2の背面側 2a, 2a同 士を抵抗溶接する際に、背面側 2aのテーパー角が 1° に設定されているため、対向 し合う背面側 2a, 2a同士間には計 2° のテーパーの隙間が発生するが、その隙間は 、従来の 6° に比して格段に少なくなつている。従って、電極チップで背面側 2a, 2a 同士を加圧するときに、ストラップ 1の電極接続部 3と電極板群 7の耳部 71a, 72aとの 間に発生する変形はきわめて少なくなる。従って、溶接後の残留応力の発生も少なく なるため、溶接品質が向上し耐久性も向上する。
[0061] 上述のセル間接続部 2は、 0. 6° 〜1. 0° の先細りのテーパー角をなすように形 成すれば、対向し合う隣接するセル間接続部 2, 2同士を抵抗溶接する際に、セル間 接続部 2, 2間の隙間が少なくなるため、溶接作業性が向上し溶接部に残留応力が 発生しに《なり、溶接品質も向上する。なお、テーパー角が 0. 6° より小さくなると、 ストラップ 1を、例えば、铸造によって形成する場合、キヤビティ 6の形成に高い加工 精度が要求され、加工条件がきびしくなり過ぎる。テーパー角が 1. 0° より大になると 、セル間接続部 2, 2同士を抵抗溶接する際に残留応力が発生しやすくなる。
[0062] 図 7はフロート式铸造装置 (本発明の铸造装置)の要部断面図、図 8はその斜視図 である。これらの図に示すように、このフロート式铸造装置は、加熱装置(図示省略) 付きの溶解槽 22と、铸造用金型 5を固定するための金型支持部 23と、溶湯 26に浸 漬される昇降式のフロート 24と、铸造用金型 5のキヤビティ 6 (図 3 (c)参照)に溶湯 26 を注入した後の余剰溶湯を铸造用金型 5の表面から除去するための余剰溶湯除去 手段 25と、キヤビティ 6内に注入された溶湯 26を冷却するための冷却水を供給する クーリングポスト 12 (図 4,図 10 (a) (b)参照)と、前記キヤビティ 6内に形成された铸 造品(例えば、ストラップ) 1を離型させる離型手段としての铸型引き込み装置 27と、 を備えている。なお、図 7中、符号 L1は溶湯 26の湯面の下限位置、 L2は湯面の上 限位置を示し、フロート 24が実線の位置にある時は、溶湯 26の湯面は下限位置 L1 にあり、フロート 24が二点鎖線の位置にある時は、溶湯 26の湯面は上限位置 L2に なる。
[0063] 上述の金型支持部 23は、入子 4をキヤビティ 6から離脱させる铸型引き込み装置 2 7の上部に設けられ、铸造用金型 5を、溶湯 26の湯面下限 L1と湯面上限 L2の間に 浮島状に固定支持し、铸造終了後には、铸型引き込み装置 27によって、铸造用金 型 5の貫通孔 5aから入子 4 (図 1 (c)参照)を離脱させることで、ストラップ 1をキヤビテ ィ 6から離型させる。このように、入子 4を貫通孔 5aから離脱させる動作で、成形され たストラップ 1をキヤビティ 6から安定性よく離型させることができるため、従来のような 押出ピンは必要としなくなり、装置の構成を簡素化することができる。なお、铸造用金 型 5を浮島状に固定支持するための浮島部を図 7及び図 10 (a) (b)に符号 22aで示 す。
[0064] キヤビティ 6に溶湯 26を注入した後の余剰溶湯を铸造用金型 5の表面から除去す るための余剰溶湯除去手段 25は、装置本体に横架された支持部 45に沿ってエア又 は油圧等の流体圧駆動手段等(図示省略)によって水平方向に往復駆動される除去 板 46, 46を備え、その除去板 46の先端 (下端)を铸造用金型 5の表面に摺接させて 溶湯注入後の余剰溶湯の除去を行うように構成される。このような余剰溶湯除去手段 25によって、溶湯 26を注入した後の余剰溶湯を除去するので、铸バリの発生を抑え ることができ離型性が向上し铸造品質も向上する。
[0065] フロート 24は、例えば、 SUS304で直方体状に形成されて内部に断熱材が充填さ れており、例えば、図 9 (a) (b)に示すように、装置本体に架設された架台 31に設けら れているスライドブッシュ 32, 32に上下方向に案内されるガイドシャフト 33, 33の下 端、及び、その両ガイドシャフト 33, 33の中間に上下可動に立設されたジャッキ 34の 下端に、ボルト締結等により吊持される。ジャッキ 34の入力軸に取り付けられた被動 ギヤ 35は、チェーン 36を介して、架台 31に載設されたモータ 37の出力軸に取り付 けられた駆動ギヤ 38に伝動連結されており、フロート 24を所定の速度で昇降動作さ せることができる。
[0066] 例えば、フロート 24の自重が約 71kgf (体積 0. 08m3程度)の場合、 18mm/sec 程度の昇降速度で、最大ストロークを 140mm程度に設定すれば、適切な溶湯排斥 量を確保することができる。このようなフロート 24の昇降動作によって、溶湯 26に対 する浸漬度 (没入度)を変化 (増大)させることで溶湯排斥量を変化 (増大)させて湯 面を上昇させ、溶解槽 22内の浮島部 22aに固定支持されている铸造用金型 5のキヤ ビティ 6内に溶湯 26を安定な状態で注入することができる。なお、フロート 24が最大 ストローク移動しても溶湯 26が溢出しな 、ように初期の溶湯量を設定する。
[0067] また、一方のガイドシャフト 33に近接させてセンサブラケット 39が立設され、その上 部と下部に、それぞれ近接スィッチ 40, 41が設けられ、一方のガイドシャフト 33に固 定されたカラー 42の位置を検出できるようになっており、カラー 42が図示の位置(実 線で示す)では、フロート 24が上限位置にあることが検知され、カラー 42が二点鎖線 で示す下方の位置にあるときには、フロート 24が下限位置の少し手前(上方)の警報 位置にあり、この位置にフロート 24が降下すると警報が発せられ、作業者にインゴット 投入準備を促し、さらに運転を続行した場合には、フロート 24が下限位置で自動的 に停止し、品質異常となるおそれのある铸造品の発生が防止される。
[0068] このようなフロート 24によって湯面を上昇させてキヤビティ 6内に溶湯 26を注入する ため、注湯機構の構成が簡易であり、溶湯をポンプで汲み上げてキヤビティ内に注 入する従来装置のようなポンプ内や配管内で溶湯が詰まるようなトラブルが発生しな くなる。また、溶解槽 22内で加熱された溶湯 26がそのままキヤビティ 6に注入される ため、従来のようなキヤビティ内に注入した溶湯を外部から加熱するためのヒータ (又 はパーナ)等の加熱手段が不要となり、構成を簡素化することができ、加熱系統のト ラブルの発生を少なくすることもできる。また、铸造用金型 5の加熱温度や冷却温度 の安定保持が可能となり、良好な铸造品質を得ることができる。
[0069] 铸型引き込み装置 27は、例えば、図 10 (a) (b)に示され、内部に冷却水通路 12a を有する上下可動な 4本のクーリングポスト (本発明の冷却水供給手段) 12の上部に 設けた金型支持部 23にガスケットを介して铸造用金型 5を固定する一方、入子 4 (図 3 (c)参照)をプレート 45に固定し、铸造終了後にエアシリンダ 46の押し上げ動作に よって、入子 4を少し上方に移動させて铸造用金型 5の貫通孔 5aから離脱させる際 に、ストラップ 1をキヤビティ 6から離型させるように構成される。
[0070] より詳しく説明すると、図 10 (a) (b)に示すように、 4本のクーリングポスト 12の下部 にはアンダープレート 47が固定され、そのアンダープレート 47の中央部に立設され たリニアブッシュ 48には、シャフト 49が上下に移動自在に揷通されており、そのシャ フト 49の上部には、接続プレート 50及びパイプ 51を介して入子 4を固定支持するプ レート 45が接続されており、シャフト 49の下部には被掛止部材 52が接続され、その 被掛止部材 52は、エアシリンダ 46の出力軸に固定された掛止部材 53に掛止されて いる。
[0071] 一方、アンダープレート 47のリニアブッシュ 48を挟む両側の位置に、一対のフック プレート 54, 54が垂下され、その被掛止端 54a, 54a力 エアシリンダ 46の直下に配 設された他方のエアシリンダ 55の出力軸に固定された掛止部材 56, 56に掛止され ている。このような構成により、铸造工程では、図示のように、両方のエアシリンダ 46, 55によって铸造用金型 5及び入子 4が初期位置に引き込まれた状態となっている。 なお、 57は铸造用金型 5の温度を計測するための熱電対である。
[0072] 次いで、フロート式铸造装置によるストラップ 1の铸造方法について説明すると、ま ず、铸造用金型 5の貫通孔 5a内に入子 4を嵌装してキヤビティ 6を形成し、搬送手段 によって铸造用金型 5を搬入し金型支持部 23に位置決め状態に固定する。このとき 、铸造用金型 5の冷却水通路 11a, l ibにクーリングポスト 12の冷却水通路 12aをそ れぞれ接続する(図 4,図 10 (c)参照)。次いで、フロート 24を所定の温度に加熱され た溶湯 26に所定の深さまで浸漬させて湯面を上昇させ、キヤビティ 6内に溶湯 26を 注入する。
[0073] 铸造用金型 5が所定の温度に達した後、フロート 24を引き上げて铸造用金型 5の 表面を露出させ、表面に残留している余剰溶湯を余剰溶湯除去手段 25によって除 去する。次いで、搬送手段(図示省略)により電極板群の耳部(図示省略)を下に向 けてキヤビティ 6内に(3mm程度)浸漬させ、冷却水通路 11a, l ibに冷却水を流通 させて铸造用金型 5を所定の温度まで冷却した後、铸型引き込み装置 27のエアシリ ンダ 46を作動させて、入子 4を上方に押し上げて铸造用金型 5の貫通孔 5aから離脱 させることで、極板群の耳部が一体化された状態のストラップ 1を入子 4に載せた状態 でキヤビティ 6から離型させることができる。
[0074] このような入子 4を用いた铸造用金型 5による COS方式では、铸型引き込み装置 2 7によって入子 4を铸造用金型 5の貫通孔 5aから離脱させることでストラップ 1を離型 させるため、その離型動作が安定し、未硬化のストラップ 1を変形させることなく離型さ せることができ、離型剤を用いなくても、離型不良を極減することができる。なお、本 実施の形態では、铸型引き込み装置 27によって入子 4を上方に移動させて铸造用 金型 5から離脱させている力 铸造用金型 5を下方に移動させて、入子 4を離脱させ るようにしてちょい。
[0075] また、フロート式铸造装置により、铸造用金型 5を溶解槽 22内に浮島状に固定支持 させているため、铸造工程中に铸造用金型 5を移動させる必要がなぐ溶湯 26がこ ぼれにくくなり充填ミスをなくすことができる(鉛の溶湯は、比重が大であるため、铸造 用金型 5に僅かの傾斜や振動があるとこぼれる虞がある)。そして、溶湯 26中に極板 群耳部を浸漬させたときに、溶湯 26の一部が耳の表面を伝わって這い上がりメニス カスを形成するので、キヤビティ 6内に溶湯 26を満杯状態として耳群を浸漬させても 溶湯 26が溢出することがなぐ溶湯不足による極板群耳部の接合不良が解消される
[0076] 尚、本発明は、実施の形態に限定されることなぐ発明の趣旨を逸脱しない限りに おいて、適宜、使用条件等に応じて、設計変更や改良等を行うことは自由であり、例 えば、铸造用金型 5で铸造される铸造品 1は、ストラップに限られることなぐ例えば、 極柱であってもよぐその他の部品類であってもよい。また、铸造用金型 5に形成され るキヤビティ 6は、貫通孔ではなく有底の凹状に形成されてもよい。
産業上の利用可能性
[0077] 本発明は、例えば、単車や乗用車、トラック、フォークリフト等の各種車両等に搭載 される鉛蓄電池 (バッテリ)用のストラップやその他の部品類を铸造する技術分野で利 用される。

Claims

請求の範囲
[1] 鉛蓄電池用のストラップ(1)であって、
セル間接続部(2)と、極板群との接続部(3)とが略直角に対応する L型に形成され 、かつ、前記セル間接続部(2)と、極板群との接続部(3)の両側部がストレートに連 なるように形成されると共に、前記セル間接続部(2)の壁面(2a, 2b, 2c)が、先細り のテーパー角をなすように形成されることを特徴とするストラップ。
[2] 前記テーパー角は、 0. 6° 〜1. 0° に設定されることを特徴とする請求項 1に記載 のストラップ。
[3] 金型本体に、上方への抜き勾配を有して段部のな 、貫通孔(5a)が形成され、該貫 通孔(5a)の下部に、入子 (4)が上方に向けて離脱可能に嵌装され、該入子 (4)の 上にキヤビティ (6)が形成されることを特徴とする铸造用金型。
[4] 铸造用のキヤビティ(6)を形成するための入子 (4)であって、
铸造用金型(5)に形成された貫通孔(5a)の下部に、上方に向けて離脱可能に嵌 装されてその上に前記キヤビティ(6)を形成し、かつ、前記キヤビティ(6)で铸造品(1 )を形成した後に前記貫通孔(5a)から離脱される際に、前記铸造品(1)を離型させ ることを特徴とする入子。
[5] 請求項 3に記載の铸造用金型 (5)を固定支持する金型支持部(23)と、前記キヤビ ティ (6)に溶湯 (26)を注入する溶湯注入手段(24)と、前記キヤビティ (6)に溶湯 (2 6)を注入した後の余剰溶湯を前記铸造用金型 (5)の表面から除去する余剰溶湯除 去手段(25)と、前記キヤビティ(6)内に注入された溶湯(26)を冷却するための冷却 水を供給する冷却水供給手段(12)と、前記入子 (4)を前記貫通孔 (5a)から離脱さ せる離型手段 (27)と、を備えたことを特徴とする铸造装置。
[6] 溶湯 (26)を加熱可能に貯留する溶解槽 (22)と、铸造用金型 (5)を前記溶解槽 (2 2)内で浮島状に固定支持する金型支持部(23)と、前記溶解槽 (22)内に貯留され た前記溶湯 (26)に浸漬される昇降式のフロート (24)と、を備えたことを特徴とする铸 造装置。
[7] 溶湯 (26)を加熱可能に貯留する溶解槽 (22)と、铸造用金型 (5)を前記溶解槽 (2 2)内に浮島状に固定支持する金型支持部(23)と、前記溶解槽 (22)内に貯留され た前記溶湯 (26)への浸漬度を変化させることで前記铸造用金型(5)のキヤビティ (6 )内に溶湯 (26)を注入する昇降式のフロート (24)と、前記キヤビティ (6)に前記溶湯 (26)を注入した後の余剰溶湯を前記铸造用金型(5)の表面から除去する余剰溶湯 除去手段(25)と、前記キヤビティ(6)内に注入された前記溶湯(26)を冷却するため の冷却水を供給する冷却水供給手段(12)と、前記キヤビティ(6)内に形成された铸 造品(1)を離型させる離型手段 (27)と、を備えたこと特徴とする铸造装置。
[8] 溶解槽 (22)内に加熱可能に貯留された溶湯 (26)にフロート(24)を浸漬させること により、前記溶解槽 (22)内に浮島状に固定支持された铸造用金型(5)のキヤビティ (6)に対して前記溶湯 (26)を注入することを特徴とする铸造方法。
[9] 金型本体に形成された貫通孔(5a)の底部に上方に向けて離脱可能に入子 (4)を 嵌装してその上にキヤビティ(6)を形成し、該キヤビティ(6)内に溶湯(26)を注入して 铸造品(1)を铸造した後、前記入子 (4)を前記貫通孔(5a)力も離脱させることにより 前記铸造品(1)を前記キヤビティ (6)から離型させることを特徴とする铸造方法。
PCT/JP2005/012213 2004-07-09 2005-07-01 ストラップ、鋳造用金型、入子、鋳造装置及び鋳造方法 WO2006006430A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004203387A JP2006021240A (ja) 2004-07-09 2004-07-09 フロート式鋳造方法及びフロート式鋳造装置
JP2004203386A JP2006024514A (ja) 2004-07-09 2004-07-09 ストラップ、鋳造用金型、入子、鋳造装置及び鋳造方法
JP2004-203386 2004-07-09
JP2004-203387 2004-07-09

Publications (1)

Publication Number Publication Date
WO2006006430A1 true WO2006006430A1 (ja) 2006-01-19

Family

ID=35783773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012213 WO2006006430A1 (ja) 2004-07-09 2005-07-01 ストラップ、鋳造用金型、入子、鋳造装置及び鋳造方法

Country Status (2)

Country Link
TW (1) TW200607588A (ja)
WO (1) WO2006006430A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064718A (zh) * 2013-08-16 2014-09-24 超威电源有限公司 一种铅酸蓄电池及应用该蓄电池的电动车
GB2531533A (en) * 2014-10-20 2016-04-27 Tbs Eng Ltd Apparatus for moulding battery components

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662646A (en) * 1979-10-29 1981-05-28 Hitachi Metals Ltd Metal mold for preventing of camber
JPH02220732A (ja) * 1989-02-23 1990-09-03 Bridgestone Corp タイヤモールドのスモールセグメント鋳造用分割金型
JPH06344115A (ja) * 1993-06-10 1994-12-20 Toyota Motor Corp 鋳造装置
JPH0929409A (ja) * 1995-07-18 1997-02-04 Kobe Steel Ltd 電磁鋳造における溶湯レベル制御方法
JPH10175051A (ja) * 1996-12-13 1998-06-30 Toshiba Mach Co Ltd 定湯面保持炉
JP2002042776A (ja) * 2000-07-28 2002-02-08 Shin Kobe Electric Mach Co Ltd 負極ストラップ形成用金型及びそれを用いた極板群の製造方法
JP2002103013A (ja) * 2000-09-22 2002-04-09 Japan Steel Works Ltd:The 金属成形用金型及び金属成形方法
JP2002273564A (ja) * 2001-03-21 2002-09-25 Aisin Seiki Co Ltd 溶湯供給装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662646A (en) * 1979-10-29 1981-05-28 Hitachi Metals Ltd Metal mold for preventing of camber
JPH02220732A (ja) * 1989-02-23 1990-09-03 Bridgestone Corp タイヤモールドのスモールセグメント鋳造用分割金型
JPH06344115A (ja) * 1993-06-10 1994-12-20 Toyota Motor Corp 鋳造装置
JPH0929409A (ja) * 1995-07-18 1997-02-04 Kobe Steel Ltd 電磁鋳造における溶湯レベル制御方法
JPH10175051A (ja) * 1996-12-13 1998-06-30 Toshiba Mach Co Ltd 定湯面保持炉
JP2002042776A (ja) * 2000-07-28 2002-02-08 Shin Kobe Electric Mach Co Ltd 負極ストラップ形成用金型及びそれを用いた極板群の製造方法
JP2002103013A (ja) * 2000-09-22 2002-04-09 Japan Steel Works Ltd:The 金属成形用金型及び金属成形方法
JP2002273564A (ja) * 2001-03-21 2002-09-25 Aisin Seiki Co Ltd 溶湯供給装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064718A (zh) * 2013-08-16 2014-09-24 超威电源有限公司 一种铅酸蓄电池及应用该蓄电池的电动车
GB2531533A (en) * 2014-10-20 2016-04-27 Tbs Eng Ltd Apparatus for moulding battery components
GB2531533B (en) * 2014-10-20 2018-10-10 Tbs Eng Ltd Apparatus for moulding battery components
US10668530B2 (en) 2014-10-20 2020-06-02 Tbs Engineering Limited Apparatus for moulding battery components

Also Published As

Publication number Publication date
TW200607588A (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US8061404B2 (en) Mold for a battery cast on strap
CN103846392B (zh) 球墨铸铁转向节的铸造方法
KR101761678B1 (ko) 배터리용 냉각장치의 제조방법
EP3365129B1 (en) Apparatus for moulding battery components
JP2006024514A (ja) ストラップ、鋳造用金型、入子、鋳造装置及び鋳造方法
CN101301681A (zh) 一种板状球铁件的浇注方法及其浇注系统
WO2006006430A1 (ja) ストラップ、鋳造用金型、入子、鋳造装置及び鋳造方法
US5924471A (en) Method of fabricating lead bushings and batteries using same
KR101030223B1 (ko) 다이캐스팅 전극 터미널 성형 장치
JP4966354B2 (ja) 鋳造装置
US6216764B1 (en) Method and apparatus for making lead-acid batteries
JP2006021240A (ja) フロート式鋳造方法及びフロート式鋳造装置
JP4463760B2 (ja) 鉛蓄電池用鉛部品の製造方法
CN111906250B (zh) 消除铅零件内部气孔的模具及方法
CN116571693B (zh) 空心叶片制备装置及空心叶片制备方法
US4230241A (en) Ladle for delivering a plurality of aliquots of molten metal
US10497961B2 (en) Integrated metal-and-plastic molded article and method for manufacturing integrated metal-and-plastic molded article
JP3672154B2 (ja) 鉛蓄電池の製造方法
CN212792940U (zh) 一种提高凸台结构铸件产品内部质量的压铸装置
WO2005070590A1 (ja) 鋳造機用金網製フィルタ
JP5151608B2 (ja) 鉛蓄電池
CN210208608U (zh) 一种自动上料的卧式冷室合金压铸机
CN106312022A (zh) 一种铅酸蓄电池汇流排定量成型方法及定量成型模具
US20040154780A1 (en) Method and apparatus for casting straps onto storage battery plates
US1308103A (en) parkhurst

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580021303.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase