[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006098381A1 - Process for producing magnesium alloy - Google Patents

Process for producing magnesium alloy Download PDF

Info

Publication number
WO2006098381A1
WO2006098381A1 PCT/JP2006/305161 JP2006305161W WO2006098381A1 WO 2006098381 A1 WO2006098381 A1 WO 2006098381A1 JP 2006305161 W JP2006305161 W JP 2006305161W WO 2006098381 A1 WO2006098381 A1 WO 2006098381A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
ingot
solidification
magnesium alloy
solidification time
Prior art date
Application number
PCT/JP2006/305161
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Aoki
Hitohisa Yamada
Masahiko Muro
Yuuichi Ienaga
Original Assignee
The Japan Steel Works, Ltd.
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Japan Steel Works, Ltd., Honda Motor Co., Ltd. filed Critical The Japan Steel Works, Ltd.
Priority to EP06729182A priority Critical patent/EP1859878A4/en
Publication of WO2006098381A1 publication Critical patent/WO2006098381A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals

Definitions

  • the present invention relates to a method for producing an Mg alloy containing, for example, an Mg alloy containing 0.5 to 20% by mass of Y while suppressing component segregation.
  • Mg alloys are light and have adequate strength, and are therefore widely used in applications such as automobile parts.
  • This Mg alloy is manufactured by a batch method or a continuous forging method in which a raw material for melting is melted in a melting crucible and poured into a mold.
  • Patent Document 1 discloses a method of pouring into a sand mold
  • Patent Document 2 discloses a forging method using die casting.
  • Patent Documents 3 and 4 disclose Mg alloys to which rare earth elements such as Y are added.
  • Patent Document 1 Japanese Patent Laid-Open No. 06-279890
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-305554
  • Patent Document 3 Japanese Patent Laid-Open No. 05-070880
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-099941
  • the present invention has been made against the background of the above circumstances, and when producing an Mg alloy containing Y, an ingot is produced by suppressing component segregation and making the components as uniform as possible.
  • the purpose is to provide a manufacturing method that makes it possible to obtain high-quality Mg products.
  • the Mg alloy production method of the present invention is characterized in that after molten Mg alloy containing Y is left to stand, it is solidified within a solidification time of 200 seconds or less to form an ingot.
  • the Mg alloy has a soot content of 0.5 to 20% by mass.
  • the Mg alloy production method of the present invention is characterized in that the solidification time is 10 seconds or more.
  • Segregation rate (%) ((Yield)-(Target content)) Z (Target content) * 100 ⁇ ⁇ ⁇ (Formula)
  • the solidification time is the time from the release of the molten metal temperature maintenance until the solidification in the mold starts and the solidification ends.
  • the stirring method of the molten metal is not particularly limited, and known methods such as stirring blades and electromagnetic stirring can be employed. After stirring the molten metal, it is allowed to stand to start the solidification. The completion of solidification shall mean the time when the solid phase ratio reaches 0.67.
  • the raw material is melted in a melting furnace, and after the molten metal is melted and sufficiently stirred, the molten metal is solidified within the solidification time as shown above. Plug into the saddle type designed for. It is also possible to shorten the coagulation time by placing it in a well-cooled bowl.
  • the content of Y in the Mg alloy is not limited to a specific amount, but it is desirable that the lower limit of the mass ratio of Y is 0.5% and the upper limit is 20%. By containing Y in this range, mechanical strength can be improved. On the other hand, if it is less than 0.5%, the mechanical strength is not improved. If it exceeds 20%, the material becomes brittle, and the prayer at the time of fabrication becomes remarkable. For the same reason, it is more desirable to set the lower limit to 1% and the upper limit to 15%.
  • the solidification time has an upper limit as described above, the lower limit is not limited to a specific one in the present invention. However, it is desirable to set a solidification time of 10 seconds as the lower limit for the purpose of reducing manufacturing costs when manufacturing large ingots. When the solidification time is below the lower limit, a problem of an increase in production cost tends to occur.
  • the Mg alloy containing Y is melted and then solidified in a solidification time of 200 seconds or less to form an ingot. It is effective to obtain a Mg alloy. For this reason, in the production of alloys such as functional materials whose performance varies greatly depending on the component concentration, high quality products can be produced with high yield.
  • FIG. 1 is a process diagram in one embodiment of the present invention.
  • FIG. 2 is a view showing a dissolution test apparatus used in the same example.
  • FIG. 3 is a drawing-substituting photograph of a test material obtained by a solidification test of an example.
  • FIG. 4 is a graph showing the relationship between the solidification rate of the test material obtained by the solidification test of the example and the deviation of the Y content.
  • FIG. 5 is a drawing-substituting photograph of a test material obtained by a solidification test of an example.
  • FIG. 6 is a graph showing the relationship between the solidification rate of the specimen obtained by the solidification test of the example and the deviation of the Y content.
  • FIG. 7 is a diagram showing the relationship between the inner diameter of the saddle and the solidification time in the saddle obtained by solidification calculation.
  • FIG. 8 is a diagram showing the relationship between Y bias and solidification time in an example of the present invention. Explanation of symbols
  • the Mg alloy used in the present invention contains at least Y, and a preferable content of Y can be 0.5% to 20% by mass ratio. When no other additive elements are contained, the balance is Mg and inevitable impurities. Further, the invention of the present application may contain other additive elements.
  • Illustrative examples of the additive element include, in mass%, Zn: 0.1 to 10%, Zr: 0.1 to 2%, A1: 0.1 to 10%, Ca: 0.1 to 10%, ⁇ : 0.1-2%, Mm (Misch metal;): 0.1-10%, Sr: 0.001-0.1%, Si: 0.1-2%, Sn: 0.1-10%, Ge: 0.1 to 10%, Ce: 0.1 to 10%, La: 0.1 to 10%, Nd: 0.1 to 10%, Gd: 0.1 to 10%, and the like.
  • the present invention is particularly suitable for suppressing component segregation in Mg alloys containing Zn, rare earth elements, and the like as components.
  • the Mg alloy whose components have been adjusted is melted by heating in, for example, a melting furnace 1 to obtain a molten Mg alloy 2.
  • the melting method of the Mg alloy is not particularly limited as the present invention, and for example, it can be carried out using a known melting furnace by a conventional method.
  • the molten Mg alloy is preferably stirred and mixed.
  • the method and means for stirring and mixing are not particularly limited, and appropriate methods can be adopted.
  • the molten Mg alloy 2 is stirred by the stirring blade 3.
  • the molten Mg alloy 2 is usually solidified in the mold 4 in a stationary state after being poured into the mold 4.
  • the solidification rate and solidification of the molten metal are caused by the components of the Mg alloy (the freezing point varies depending on the components), the temperature of the molten Mg alloy, the cooling capacity of the vertical mold, the mass effect of the Mg alloy, etc.
  • Time, that is, the coagulation time is determined. Since the component segregation rate of Y greatly depends on this solidification time, it matches the desired component segregation rate. The longest coagulation time is determined. If the segregation rate is 10% or less, set the solidification time within 200 seconds.
  • the segregation rate is within 5%, set the solidification time within 100 seconds. It is necessary to determine the material and size of the bowl, the temperature of the molten metal, the presence or absence of forced cooling of the bowl, and the method so that it is within this solidification time.
  • the ingot 5 is obtained by solidifying the molten Mg alloy 2 within a predetermined solidification time.
  • This ingot has a segregation rate power of Y that is equal to or lower than a predetermined segregation rate, and an ingot in which the components are homogeneous can be obtained.
  • Mg products using this ingot as a raw material, it is possible to obtain an excellent quality product with little component prayer.
  • the process up to obtaining the Mg product using the ingot as a starting material is not particularly limited as the present invention, and a known processing method can be employed.
  • a small dissolution test apparatus 10 as shown in Fig. 2 was prepared.
  • the melting test apparatus 10 is made of a heat-resistant material, and a furnace body 11 having a cylindrical inner space inside is vertically arranged with the axis being vertical, and a cylindrical heating element 12 is placed in the furnace body 11. Is disposed, and a core tube 13 is concentrically disposed inside the heating element 12.
  • a crucible 14 is disposed as a melting furnace in the core tube 13, and the crucible 14 is placed on a support 13 a installed in the core tube 13. The temperature of the crucible 14 is raised by operating the heating element 12 to heat the core tube 13.
  • the upper and lower ends of the core tube 13 project outside the furnace body 11 and are closed by water cooling caps 15 and 16.
  • the water cooling caps 15 and 16 are provided with cooling water introduction pipes 15a and 16a and cooling water discharge pipes 15b and 16b, respectively. Cooling water introduced from the cooling water introduction pipes 15a and 16a passes through the water cooling cap. Water is discharged and discharged from the cooling water discharge pipes 15b and 16b. The cooling water is passed during heating to prevent damage to the members in the water cooling caps 15 and 16.
  • the water cooling cap 16 is provided with an Ar gas introduction pipe 17a, and the Ar gas introduction pipe 17a communicates with the reactor core pipe 13.
  • the water cooling cap 15 has an Ar gas discharge pipe 17b.
  • the Ar gas discharge pipe 17b is also communicated with the reactor core pipe 13.
  • the atmosphere in the reactor core tube 13 can be changed to an Ar gas atmosphere.
  • the Mg alloy is melted by the crucible 14, the alloy is oxidized. To prevent.
  • the furnace body 11 is provided with a furnace control thermometer 18 for measuring the temperature of the furnace body space, and the water cooling cap 15 is provided with a thermocouple 19 for measuring the temperature of the molten metal in the crucible 14.
  • the solidification time of a cylindrical bowl of 20 mm thickness correlates with the inner diameter of the solidification calculation force, and from Fig. 7, it was determined that it should be ⁇ 230 mm or less for an air-cooled bowl. Based on this result, a ⁇ 200mm bowl was produced.
  • Figure 8 shows the relationship between the Y component prayer and the solidification time of each part of the ingot. The component segregation ratio of Y was suppressed to 10% or less, and a uniform ingot could be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

In producing an yttrium-containing magnesium alloy through melting, yttrium segregation is inhibited to obtain an ingot even in chemical composition. An yttrium-containing magnesium alloy is melted and then solidified within a solidification time of 200 seconds to produce an ingot. Desirably, the magnesium alloy melt is stirred and allowed to stand before being subjected to the solidification. The magnesium alloy contains yttrium in an amount of, e.g., 0.5-20 mass%. This process less causes segregation and is effective in producing a magnesium alloy even in chemical composition. Because of this, in producing, e.g., an alloy which considerably changes in performance with ingredient concentration, such as, e.g., a functional material, a high-quality product can be produced in a satisfactory yield. For accomplishing this, the process comprises melting raw materials in a melting furnace, sufficiently stirring the melt after complete melting, allowing the melt to stand, and then casting it into a casting mold designed so as to solidify it within the solidification time shown above. It is also possible to shorten the solidification time by casting into a casting mold sufficiently cooled with water.

Description

Mg合金の製造方法  Manufacturing method of Mg alloy
技術分野  Technical field
[0001] この発明は、例えば Yを 0. 5〜20質量%含有するような Mg合金を、成分偏析を抑 えて製造する Mg合金の方法に関するものである。  The present invention relates to a method for producing an Mg alloy containing, for example, an Mg alloy containing 0.5 to 20% by mass of Y while suppressing component segregation.
背景技術  Background art
[0002] Mg合金は、軽量で適度な強度を有するため、自動車部品などの用途に広く使用さ れつつある。この Mg合金は、溶解用坩堝内で溶解原材料を溶解し、铸型へ铸込む バッチ方式や連続铸造方式より製造されている。例えば、特許文献 1では砂型に铸 込む方法が開示され、特許文献 2では、ダイカストを用いた铸造方法が開示されてい る。  [0002] Mg alloys are light and have adequate strength, and are therefore widely used in applications such as automobile parts. This Mg alloy is manufactured by a batch method or a continuous forging method in which a raw material for melting is melted in a melting crucible and poured into a mold. For example, Patent Document 1 discloses a method of pouring into a sand mold, and Patent Document 2 discloses a forging method using die casting.
また、 Mg合金では、合金としての特性を改善することを目的にして種々の元素を添 加することが提案されている。例えば特許文献 3、 4では、 Yなどの希土類元素を添加 した Mg合金が開示されている。  For Mg alloys, it has been proposed to add various elements for the purpose of improving the properties of the alloy. For example, Patent Documents 3 and 4 disclose Mg alloys to which rare earth elements such as Y are added.
特許文献 1:特開平 06— 279890号公報  Patent Document 1: Japanese Patent Laid-Open No. 06-279890
特許文献 2:特開 2003 - 305554号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-305554
特許文献 3:特開平 05— 070880号公報  Patent Document 3: Japanese Patent Laid-Open No. 05-070880
特許文献 4:特開 2004— 099941号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-099941
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、 Yのように原子量の大き!/、元素を含有する Mg合金を铸型に铸造すると、 Y 成分が铸型下方へ沈殿して、インゴット上部と下部とで Yの濃度差が大きくなるという 現象が起こる。最近、 Mg合金を用いた用途で、品質に対する要求基準は益々高くな つており、この Yの成分偏析により品質が劣化した Mg合金では、高い製品品質要求 に応えることができない。  [0003] However, when an Mg alloy containing a large atomic weight such as Y! /, And an element, is formed into a vertical shape, the Y component precipitates downward in the vertical shape, and there is a difference in Y concentration between the upper and lower portions of the ingot. The phenomenon of becoming larger occurs. Recently, requirements for quality have been increasing for applications using Mg alloys, and Mg alloys whose quality has deteriorated due to this component segregation of Y cannot meet the high product quality requirements.
[0004] 本発明は上記事情を背景としてなされたものであり、 Yを含有する Mg合金を製造 する際に、成分偏析を抑えて成分をできるだけ均一にしたインゴットを製造して品質 の高い Mg製品を得ることを可能にする製造方法を提供することを目的としている。 課題を解決するための手段 [0004] The present invention has been made against the background of the above circumstances, and when producing an Mg alloy containing Y, an ingot is produced by suppressing component segregation and making the components as uniform as possible. The purpose is to provide a manufacturing method that makes it possible to obtain high-quality Mg products. Means for solving the problem
[0005] すなわち、本発明の Mg合金の製造方法は、 Yを含有する Mg合金を溶解した後、[0005] That is, in the Mg alloy production method of the present invention, after dissolving the Mg alloy containing Y,
200秒以内の凝固時間で凝固させてインゴットとすることを特徴とする。 It is characterized by solidifying into an ingot with a solidification time within 200 seconds.
[0006] また、本発明の Mg合金の製造方法は、 Yを含有する Mg合金溶湯を撹拌して静置 した後、 200秒以内の凝固時間で凝固させてインゴットとすることを特徴とする。 [0006] In addition, the Mg alloy production method of the present invention is characterized in that after molten Mg alloy containing Y is left to stand, it is solidified within a solidification time of 200 seconds or less to form an ingot.
[0007] また、本発明の Mg合金の製造方法は、前記 Mg合金は、質量%で丫を 0. 5〜20[0007] Further, in the method for producing an Mg alloy of the present invention, the Mg alloy has a soot content of 0.5 to 20% by mass.
%含有することを特徴とする。 % Content.
[0008] また、本発明の Mg合金の製造方法は、前記凝固時間を 10秒以上とすることを特 徴とする。 [0008] Further, the Mg alloy production method of the present invention is characterized in that the solidification time is 10 seconds or more.
[0009] すなわち、本発明によれば、 Yを含有する Mg合金において、インゴット製造時に Y の沈殿が顕著になる前に凝固を進行させて Yの沈降を抑制し、よって Yの成分偏析 を防止して成分の均一なインゴットを得ることができる。この際に凝固時間が 200秒を 越えると、 Yの成分偏析を抑制する効果が十分に得られず、偏析による品質劣化が 顕著になる。なお、 200秒以内の凝固時間であれば、偏析許容量に応じて凝固させ ることができ、 200秒以内の凝固時間とすることで、 10%以下の偏析率に制御するこ とができる。ここで、偏析率は下記の式で表わされる。ただし、偏析率を比較する場合 は、その絶対値を比較する。  [0009] That is, according to the present invention, in a Mg alloy containing Y, solidification is allowed to proceed before the precipitation of Y becomes prominent during ingot production, thereby suppressing the precipitation of Y, thus preventing the segregation of Y components. Thus, an ingot having a uniform component can be obtained. At this time, if the solidification time exceeds 200 seconds, the effect of suppressing Y component segregation cannot be sufficiently obtained, and the quality deterioration due to segregation becomes remarkable. The solidification time within 200 seconds can be solidified according to the segregation allowance, and the solidification time within 200 seconds can be controlled to a segregation rate of 10% or less. Here, the segregation rate is expressed by the following equation. However, when comparing the segregation rates, the absolute values are compared.
偏析率 (%) = ( (産出量)—(目標含有量)) Z (目標含有量) * 100· · · (式) また、 5%以下の偏析率を得ようとする場合には、凝固時間を 100秒以内とするの が望ましい。凝固時間は、溶湯の温度維持を解除した後、铸型内での凝固が開始さ れてカも凝固終了するに至るまでの時間をいう。また、冷却開始前には、溶融されて いる Mg合金溶湯を撹拌して、成分の均一化を図るのが望ましい。溶湯の撹拌方法 は特に限定されるものではなぐ撹拌羽根、電磁撹拌などの既知の方法を採用する ことができる。溶湯の撹拌後は、静置して上記凝固を開始させる。なお、凝固終了は 、固相率が 0. 67に達した時点をいうものとする。  Segregation rate (%) = ((Yield)-(Target content)) Z (Target content) * 100 · · · (Formula) Also, if you want to obtain a segregation rate of 5% or less, solidify It is desirable to keep the time within 100 seconds. The solidification time is the time from the release of the molten metal temperature maintenance until the solidification in the mold starts and the solidification ends. In addition, it is desirable to stir the molten Mg alloy before starting cooling to make the components uniform. The stirring method of the molten metal is not particularly limited, and known methods such as stirring blades and electromagnetic stirring can be employed. After stirring the molten metal, it is allowed to stand to start the solidification. The completion of solidification shall mean the time when the solid phase ratio reaches 0.67.
[0010] 上記の目的を達成する手段としては、例えば、溶解炉で原材料を溶解し、溶落ち 後に十分に溶湯を攪拌、沈静した後、上記に示したような凝固時間内で凝固するよう に設計された铸型に铸込む。また、十分水冷された铸型に铸込むことによって凝固 時間を短くすることも可能である。 [0010] As a means for achieving the above object, for example, the raw material is melted in a melting furnace, and after the molten metal is melted and sufficiently stirred, the molten metal is solidified within the solidification time as shown above. Plug into the saddle type designed for. It is also possible to shorten the coagulation time by placing it in a well-cooled bowl.
[0011] なお、上記 Mg合金における Yの含有量は特定量のものに限定しないが、 Yにおい ては質量比で下限を 0. 5%、上限を 20%とするのが望ましい。この範囲の Y含有に よって、機械強度の向上が得られる。これに対し、 0. 5%未満では、機械強度が向上 せず、 20%を越えると、材料の脆化が起こり、さらに铸造時の偏祈が顕著になる。な お、同様の理由で、さらに下限を 1%、上限を 15%とするのが一層望ましい。  [0011] The content of Y in the Mg alloy is not limited to a specific amount, but it is desirable that the lower limit of the mass ratio of Y is 0.5% and the upper limit is 20%. By containing Y in this range, mechanical strength can be improved. On the other hand, if it is less than 0.5%, the mechanical strength is not improved. If it exceeds 20%, the material becomes brittle, and the prayer at the time of fabrication becomes remarkable. For the same reason, it is more desirable to set the lower limit to 1% and the upper limit to 15%.
[0012] また、上記凝固時間は、上記のように上限を定めているが、本発明としては下限は 特定のものに限定されない。ただし大型インゴットを製造する場合の製造コストを抑え るという理由で、下限として凝固時間 10秒を定めるのが望ましい。上記下限を下回る 凝固時間においては、製造コスト高騰の問題が生じやすくなる。  [0012] Although the solidification time has an upper limit as described above, the lower limit is not limited to a specific one in the present invention. However, it is desirable to set a solidification time of 10 seconds as the lower limit for the purpose of reducing manufacturing costs when manufacturing large ingots. When the solidification time is below the lower limit, a problem of an increase in production cost tends to occur.
発明の効果  The invention's effect
[0013] 以上のように、この発明によれば、 Yを含有する Mg合金を溶融させた後、 200秒以 内の凝固時間で凝固させてインゴットとするので、 Y偏祈が少なく成分の均一な Mg 合金を得られる効果がある。このため、機能材料など成分濃度で性能が大きく変化 する合金などの製造において、高品質な製品を歩留まり良く製造することができる。 図面の簡単な説明  [0013] As described above, according to the present invention, the Mg alloy containing Y is melted and then solidified in a solidification time of 200 seconds or less to form an ingot. It is effective to obtain a Mg alloy. For this reason, in the production of alloys such as functional materials whose performance varies greatly depending on the component concentration, high quality products can be produced with high yield. Brief Description of Drawings
[0014] [図 1]本発明の一実施形態における工程図である。 FIG. 1 is a process diagram in one embodiment of the present invention.
[図 2]同じぐ実施例に用いる溶解試験装置を示す図である。  FIG. 2 is a view showing a dissolution test apparatus used in the same example.
[図 3]実施例の凝固試験により得られた供試材の図面代用写真である。  FIG. 3 is a drawing-substituting photograph of a test material obtained by a solidification test of an example.
[図 4]実施例の凝固試験により得られた供試材の凝固速度と Y含有量のずれとの関 係を示すグラフである。  FIG. 4 is a graph showing the relationship between the solidification rate of the test material obtained by the solidification test of the example and the deviation of the Y content.
[図 5]実施例の凝固試験により得られた供試材の図面代用写真である。  FIG. 5 is a drawing-substituting photograph of a test material obtained by a solidification test of an example.
[図 6]実施例の凝固試験により得られた供試材の凝固速度と Y含有量のずれとの関 係を示すグラフである。  FIG. 6 is a graph showing the relationship between the solidification rate of the specimen obtained by the solidification test of the example and the deviation of the Y content.
[図 7]凝固計算により得られる铸型における铸型内径と凝固時間との関係を示す図で ある。  FIG. 7 is a diagram showing the relationship between the inner diameter of the saddle and the solidification time in the saddle obtained by solidification calculation.
[図 8]本発明の実施例における Y偏祈と凝固時間との関係を示す図である。 符号の説明 FIG. 8 is a diagram showing the relationship between Y bias and solidification time in an example of the present invention. Explanation of symbols
[0015] 1 溶解炉  [0015] 1 melting furnace
2 Mg合金溶湯  2 Mg alloy molten metal
3 撹拌装置  3 Stirrer
4 铸型  4 Vertical
5 インゴット  5 Ingot
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下に、本発明の一実施形態を説明する。  [0016] One embodiment of the present invention will be described below.
本発明で用いられる Mg合金では、少なくとも Yを含有しており、 Yの好適な含有量 としては、質量比で 0. 5%〜20%を示すことができる。その他に添加元素を含有しな い場合、残部は Mgと不可避不純物となる。また、本願発明としては、その他の添カロ 元素を含むものであっても良い。該添加元素を例示すれば、質量%において、 Zn: 0 . l〜10%、Zr: 0. 1〜2%、A1: 0. 1〜10%、 Ca: 0. 1〜10%、Μη: 0. 1〜2%、 Mm (ミッシュメタル;): 0. l〜10%、Sr: 0. 001〜0. 1%、 Si: 0. 1〜2%、 Sn: 0. 1 〜10%、Ge : 0. l〜10%、Ce : 0. l〜10%、La : 0. l〜10%、Nd: 0. 1〜10%、 Gd: 0. 1〜 10%などが挙げられる。本発明は、特に、 Zn、希土類元素などを成分と して含有する Mg合金において成分偏析を抑制するものとして好適である。  The Mg alloy used in the present invention contains at least Y, and a preferable content of Y can be 0.5% to 20% by mass ratio. When no other additive elements are contained, the balance is Mg and inevitable impurities. Further, the invention of the present application may contain other additive elements. Illustrative examples of the additive element include, in mass%, Zn: 0.1 to 10%, Zr: 0.1 to 2%, A1: 0.1 to 10%, Ca: 0.1 to 10%, Μη: 0.1-2%, Mm (Misch metal;): 0.1-10%, Sr: 0.001-0.1%, Si: 0.1-2%, Sn: 0.1-10%, Ge: 0.1 to 10%, Ce: 0.1 to 10%, La: 0.1 to 10%, Nd: 0.1 to 10%, Gd: 0.1 to 10%, and the like. The present invention is particularly suitable for suppressing component segregation in Mg alloys containing Zn, rare earth elements, and the like as components.
[0017] 成分調整がなされた Mg合金は、図 1 (a)に示すように、例えば溶解炉 1内で加熱溶 解されて Mg合金溶湯 2とされる。 Mg合金の溶解方法は、本発明としては特に限定さ れるものではなぐ例えば常法により既知の溶解炉を用いて行うことができる。 Mg合 金溶湯は、好適には撹拌混合される。撹拌混合の方法、手段は特に限定されるもの ではなぐ適宜のものを採用することが可能である。例えば、図 1 (b)に示すように、撹 拌羽根 3によって Mg合金溶湯 2の撹拌がなされる。  [0017] As shown in FIG. 1 (a), the Mg alloy whose components have been adjusted is melted by heating in, for example, a melting furnace 1 to obtain a molten Mg alloy 2. The melting method of the Mg alloy is not particularly limited as the present invention, and for example, it can be carried out using a known melting furnace by a conventional method. The molten Mg alloy is preferably stirred and mixed. The method and means for stirring and mixing are not particularly limited, and appropriate methods can be adopted. For example, as shown in FIG. 1 (b), the molten Mg alloy 2 is stirred by the stirring blade 3.
[0018] Mg合金溶湯 2は、図 1 (c)に示すように、铸型 4に注入した後、通常は、静置した状 態で、铸型 4内で凝固させる。この際には、 Mg合金の成分 (成分によって凝固点等 が変動する)、 Mg合金溶湯の温度、铸型の冷却能、 Mg合金の質量効果などによつ て、溶湯の凝固速度および凝固に至るまでの時間、すなわち凝固時間が定まる。 Y の成分偏析率は、この凝固時間に大きく依存するため、所望の成分偏析率に合わせ て最長の凝固時間が定まる。 10%以内の偏析率とする場合、凝固時間を 200秒以 内に定める。また、 5%以内の偏析率とする場合、凝固時間を 100秒以内に定める。 この凝固時間内になるように、铸型の材質や大きさ、溶湯の温度、铸型の強制冷却 の有無、方法などを定めることが必要になる。 [0018] As shown in Fig. 1 (c), the molten Mg alloy 2 is usually solidified in the mold 4 in a stationary state after being poured into the mold 4. At this time, the solidification rate and solidification of the molten metal are caused by the components of the Mg alloy (the freezing point varies depending on the components), the temperature of the molten Mg alloy, the cooling capacity of the vertical mold, the mass effect of the Mg alloy, etc. Time, that is, the coagulation time is determined. Since the component segregation rate of Y greatly depends on this solidification time, it matches the desired component segregation rate. The longest coagulation time is determined. If the segregation rate is 10% or less, set the solidification time within 200 seconds. If the segregation rate is within 5%, set the solidification time within 100 seconds. It is necessary to determine the material and size of the bowl, the temperature of the molten metal, the presence or absence of forced cooling of the bowl, and the method so that it is within this solidification time.
[0019] これらの条件を定めた後には、所定の凝固時間内で Mg合金溶湯 2を凝固させてィ ンゴット 5を得る。このインゴットは、 Yの偏析率力 予め定めた所望の偏析率以下に なっており、成分の均質ィ匕が図られたインゴットを得ることができる。このインゴットを 原料として Mg製品を製造することによって成分偏祈が少なくて品質に優れたものが 得られる。なお、インゴットを出発原料として、 Mg製品を得るに至るまでの工程は本 発明としては特に限定されるものではなぐ既知の加工方法などを採用することがで きる。 [0019] After these conditions are determined, the ingot 5 is obtained by solidifying the molten Mg alloy 2 within a predetermined solidification time. This ingot has a segregation rate power of Y that is equal to or lower than a predetermined segregation rate, and an ingot in which the components are homogeneous can be obtained. By producing Mg products using this ingot as a raw material, it is possible to obtain an excellent quality product with little component prayer. It should be noted that the process up to obtaining the Mg product using the ingot as a starting material is not particularly limited as the present invention, and a known processing method can be employed.
実施例 1  Example 1
[0020] 以下に、本発明の実施例を説明する。  [0020] Examples of the present invention will be described below.
Y成分の偏析を再現するために、図 2に示すような小型溶解試験装置 10を用意し た。該溶解試験装置 10は、耐熱性材料からなり、内部に円柱状の内部空間を有する 炉体 11が軸心を垂直にして縦に配置され、該炉体 11内に、筒状の発熱体 12が配 置され、該発熱体 12の内側に同心状に炉心管 13が配置されている。炉心管 13内に は、溶解炉として坩堝 14が配置されており、該坩堝 14は炉心管 13内に設置した支 持台 13a上に載置されている。該坩堝 14は、発熱体 12を動作させて炉心管 13を加 熱することにより、昇温する。  In order to reproduce the segregation of the Y component, a small dissolution test apparatus 10 as shown in Fig. 2 was prepared. The melting test apparatus 10 is made of a heat-resistant material, and a furnace body 11 having a cylindrical inner space inside is vertically arranged with the axis being vertical, and a cylindrical heating element 12 is placed in the furnace body 11. Is disposed, and a core tube 13 is concentrically disposed inside the heating element 12. A crucible 14 is disposed as a melting furnace in the core tube 13, and the crucible 14 is placed on a support 13 a installed in the core tube 13. The temperature of the crucible 14 is raised by operating the heating element 12 to heat the core tube 13.
[0021] また、炉心管 13の上下端部は、炉体 11外部に突出し、水冷キャップ 15、 16によつ て塞がれている。水冷キャップ 15、 16には、それぞれ冷却水導入管 15a、 16aと冷 却水排出管 15b、 16bとが設けられており、冷却水導入管 15a、 16aから導入された 冷却水は水冷キャップ内を通水して冷却水排出管 15b、 16bから排出される。冷却 水は、上記水冷キャップ 15、 16内の部材の損傷防止のために加熱中通水されてい る。  In addition, the upper and lower ends of the core tube 13 project outside the furnace body 11 and are closed by water cooling caps 15 and 16. The water cooling caps 15 and 16 are provided with cooling water introduction pipes 15a and 16a and cooling water discharge pipes 15b and 16b, respectively. Cooling water introduced from the cooling water introduction pipes 15a and 16a passes through the water cooling cap. Water is discharged and discharged from the cooling water discharge pipes 15b and 16b. The cooling water is passed during heating to prevent damage to the members in the water cooling caps 15 and 16.
[0022] また、水冷キャップ 16に、 Arガス導入管 17aが設けられており、該 Arガス導入管 1 7aは、炉心管 13内に連通している。また、水冷キャップ 15には、 Arガス排出管 17b が設けられており、該 Arガス排出管 17bも、炉心管 13内に連通している。 [0022] The water cooling cap 16 is provided with an Ar gas introduction pipe 17a, and the Ar gas introduction pipe 17a communicates with the reactor core pipe 13. The water cooling cap 15 has an Ar gas discharge pipe 17b. The Ar gas discharge pipe 17b is also communicated with the reactor core pipe 13.
上記 Arガス導入管 17aより Arガスを炉心管 13内に導入することにより、炉心管 13 内を Arガス雰囲気にすることができ、坩堝 14によって Mg合金を溶解する際に、該合 金の酸化を防止する。  By introducing Ar gas into the reactor core tube 13 through the Ar gas introduction tube 17a, the atmosphere in the reactor core tube 13 can be changed to an Ar gas atmosphere. When the Mg alloy is melted by the crucible 14, the alloy is oxidized. To prevent.
なお、炉体 11には、炉体内空間の温度を測定する炉制御温度計 18が設けられ、 水冷キャップ 15には、坩堝 14内の溶湯の温度を測定する熱電対 19が設けられてい る。  The furnace body 11 is provided with a furnace control thermometer 18 for measuring the temperature of the furnace body space, and the water cooling cap 15 is provided with a thermocouple 19 for measuring the temperature of the molten metal in the crucible 14.
[0023] 上記した小型溶解試験装置 10において、坩堝 14内に溶解母材として Yを 6. 7% 含む Mg合金 90gを挿入し、 750°Cまで加熱して溶解し、凝固時間 1000秒で凝固さ せた後、試料を縦方向に切断して断面の組織観察 (EPMA法)を行なうと、図 3に示 すように Y成分力インゴット下部に濃化する現象が認められた。  [0023] In the small dissolution test apparatus 10 described above, 90 g of Mg alloy containing 6.7% Y as a melting base material is inserted into the crucible 14 and heated to 750 ° C to be melted and solidified in a solidification time of 1000 seconds. Then, when the sample was cut longitudinally and the cross-sectional structure was observed (EPMA method), a phenomenon of thickening at the bottom of the Y component force ingot was observed as shown in Fig. 3.
[0024] さらに、上記小型溶解試験装置 10を使用し、様々な凝固時間で凝固させた試料の インゴット中心の γ成分分析を行ない、凝固時間と Y偏祈との相関を調べた。その結 果を図 4に示す。図 4に示すように凝固時間が長いと、その分 Y成分が下方に沈殿し てしまうため、インゴット中心部分の Y成分値がレードル値 (溶湯成分値)よりも低くな り、 Y偏祈の度合いが大きくなる傾向があることが明らかになつている。逆に、凝固時 間を lOsecと短くした場合、図 5に示すように Y成分の偏祈が抑えられることが判明し た。  [0024] Further, using the small dissolution test apparatus 10, the γ component analysis of the ingot center of the sample coagulated at various coagulation times was performed, and the correlation between the coagulation time and Y bias was examined. The results are shown in Fig. 4. As shown in Fig. 4, if the solidification time is long, the Y component settles downward, and the Y component value in the center of the ingot becomes lower than the ladle value (molten component value). It is becoming clear that the degree tends to increase. On the other hand, when the solidification time was shortened to lOsec, it was found that the prejudice of the Y component could be suppressed as shown in Fig. 5.
[0025] 次に、大型の溶解炉を用いて、坩堝に Yを 6. 7%含む Mg (Y6. 7wt%、 Zr4. 9wt %、 Lai. Owt%、残部 Mg) 167kgの原材料を挿入し、溶落ち後に溶湯を角型金型 (320 X 490 X 440mm)に铸込むことによって、金型铸込み材での Yの成分偏祈と 凝固時間との関係を調べた。図 6にインゴット内各部の Yの成分偏祈と、凝固時間と の関係を示す。凝固時間は、インゴット底力もの距離に基づいて算出されている。し たがって、凝固時間とインゴット底力もの距離とは一対一に対応している。金型铸込 み材においても、凝固時間が長くなるにつれて Y成分力インゴット下部へ沈殿するた め、インゴット底から 20mmの位置では Y濃度が増加してゆき、逆にインゴット上部の サンプリング位置での Y成分値が減少する傾向があった。その減少割合は lOOsec で 5%、 200secで 10%、 400secで 15%であることを見出した。 [0026] 次に、 Yの成分偏析を 10%以内に抑えたインゴットを製造するために、図 6から凝 固時間を判断し、凝固時間が 200sec以内になるように铸型を設計した。厚さ 20mm 板の円柱型铸型の凝固時間は凝固計算力 内径と相関があり、図 7からは空冷の铸 型で φ 230mm以下であることが求められた。この結果に基づいて、 φ 200mmの铸 型を製作した。 [0025] Next, using a large melting furnace, a raw material of 167 kg of Mg containing 6.7% Y (Y6.7 wt%, Zr4.9 wt%, Lai. Owt%, remaining Mg) was inserted into the crucible, After pouring, the molten metal was poured into a square mold (320 X 490 X 440mm), and the relationship between the Y component prayer and the solidification time was investigated. Figure 6 shows the relationship between the component prayer for Y in each part of the ingot and the solidification time. The solidification time is calculated based on the distance of the ingot bottom force. Therefore, there is a one-to-one correspondence between the solidification time and the ingot bottom force distance. Even in the mold brazing material, as the solidification time becomes longer, the Y component force settles to the bottom of the ingot, so the Y concentration increases at a position 20 mm from the bottom of the ingot, and conversely at the sampling position at the top of the ingot. Y component value tended to decrease. The rate of decrease was found to be 5% for lOOsec, 10% for 200 sec, and 15% for 400 sec. [0026] Next, in order to produce an ingot in which the component segregation of Y was suppressed to within 10%, the solidification time was judged from Fig. 6, and the saddle shape was designed so that the solidification time was within 200 seconds. The solidification time of a cylindrical bowl of 20 mm thickness correlates with the inner diameter of the solidification calculation force, and from Fig. 7, it was determined that it should be φ230 mm or less for an air-cooled bowl. Based on this result, a φ200mm bowl was produced.
大型の溶解炉を用いて、坩堝に Yを 6. 7%含む Mg合金の原材料を挿入し、溶落 ち後に溶湯約 60kgを φ 200mm X H650mmの円柱铸型に铸込んだ。図 8にインゴ ット内各部の Yの成分偏祈と凝固時間との関係を示す。 Yの成分偏析割合は 10%以 内に抑えられ、均一なインゴットを製造することができた。  Using a large melting furnace, a raw material of Mg alloy containing 6.7% Y was inserted into the crucible, and after melting, about 60 kg of molten metal was inserted into a cylindrical bowl of φ200mm X H650mm. Figure 8 shows the relationship between the Y component prayer and the solidification time of each part of the ingot. The component segregation ratio of Y was suppressed to 10% or less, and a uniform ingot could be produced.
[0027] Yの成分偏析を 10%以内に抑えたインゴットを製造する際に、上記実施例よりも铸 型内径を大きくするために铸型の側面に水冷パイプを溶接して水を流し、铸型を十 分冷却させることができる水冷铸型を用意する。図 7に示す計算結果から、水冷铸型 では凝固時間を 200sec以内にできる円柱铸型内径は φ 350mm以下と拡大される ことが判明した。大型の溶解炉を用いて、坩堝に Yを 6. 7%含む Mg合金の原材料を 挿入し、溶落ち後に溶湯約 180kgを φ 350mm X H650mmの円柱铸型に铸込むと 、 Yの成分偏析割合は 10%以内に抑えられ、均一なインゴットを製造することができ る。 [0027] When producing an ingot in which the component segregation of Y is suppressed to within 10%, a water cooling pipe is welded to the side surface of the saddle in order to make the saddle inner diameter larger than in the above examples, and water is allowed to flow. Prepare a water-cooled mold that can cool the mold sufficiently. From the calculation results shown in Fig. 7, it was found that the inner diameter of the cylindrical saddle that can be solidified within 200 seconds is expanded to 350 mm or less in the water-cooled vertical mold. Using a large melting furnace, insert a raw material of Mg alloy containing 6.7% Y into the crucible, and after pouring about 180 kg of molten metal into a cylindrical bowl of φ 350 mm X H 650 mm, the component segregation ratio of Y Is less than 10%, and a uniform ingot can be produced.
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。  Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
本出願は、 2005年 3月 15日出願の日本特許出願 (特願 2005— 072308)に基づくも のであり、その内容はここに参照として取り込まれる。  This application is based on a Japanese patent application filed on March 15, 2005 (Japanese Patent Application No. 2005-072308), the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0028] 本発明は、 Yを含有する Mg合金を溶融させた後、 200秒以内の凝固時間で凝固 させてインゴットとするので、 Y偏祈が少なく成分の均一な Mg合金を得られることによ り、機能材料など成分濃度で性能が大きく変化する合金などの製造において、高品 質な製品を歩留まり良く製造することができる。 [0028] In the present invention, after the Mg alloy containing Y is melted, it is solidified within a solidification time of 200 seconds or less to form an ingot. As a result, high-quality products can be manufactured with high yield in the production of alloys such as functional materials whose performance varies greatly depending on the component concentration.

Claims

請求の範囲 The scope of the claims
[1] Yを含有する Mg合金を溶解した後、 200秒以内の凝固時間で凝固させてインゴッ トとすることを特徴とする Mg合金の製造方法。  [1] A method for producing an Mg alloy, comprising melting an Mg alloy containing Y and then solidifying it in a solidification time within 200 seconds to form an ingot.
[2] Yを含有する Mg合金溶湯を撹拌して静置した後、 200秒以内の凝固時間で凝固 させてインゴットとすることを特徴とする Mg合金の製造方法。 [2] A method for producing an Mg alloy, characterized in that the molten Mg alloy containing Y is left to stir and then solidified within a solidification time of 200 seconds or less to form an ingot.
[3] 前記 Mg合金は、質量%で¥を 0. 5〜20%含有することを特徴とする請求項 1また は 2に記載の Mg合金の製造方法。 [3] The method for producing an Mg alloy according to [1] or [2], wherein the Mg alloy contains 0.5 to 20% by mass%.
[4] 前記凝固時間を 10秒以上とすることを特徴とする請求項 1〜3のいずれかに記載 の Mg合金の製造方法。 [4] The method for producing an Mg alloy according to any one of claims 1 to 3, wherein the solidification time is 10 seconds or more.
PCT/JP2006/305161 2005-03-15 2006-03-15 Process for producing magnesium alloy WO2006098381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06729182A EP1859878A4 (en) 2005-03-15 2006-03-15 Process for producing magnesium alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005072308A JP4296158B2 (en) 2005-03-15 2005-03-15 Method for producing Mg alloy
JP2005-072308 2005-03-15

Publications (1)

Publication Number Publication Date
WO2006098381A1 true WO2006098381A1 (en) 2006-09-21

Family

ID=36991724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305161 WO2006098381A1 (en) 2005-03-15 2006-03-15 Process for producing magnesium alloy

Country Status (3)

Country Link
EP (1) EP1859878A4 (en)
JP (1) JP4296158B2 (en)
WO (1) WO2006098381A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179541A (en) * 2016-03-31 2017-10-05 アイシン・エィ・ダブリュ株式会社 Magnesium alloy for casting and magnesium alloy cast

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570880A (en) * 1991-09-13 1993-03-23 Takeshi Masumoto Magnesium alloy material having high strength and high toughness and its production
JP2003126943A (en) * 2001-10-19 2003-05-08 Nippon Kinzoku Co Ltd Manufacturing method of magnesium alloy slab for hot- rolling and method for hot-rolling magnesium alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582027B2 (en) * 1993-03-26 1997-02-19 三井金属鉱業株式会社 Manufacturing method of magnesium alloy casting
JP3814219B2 (en) * 2002-04-08 2006-08-23 忠志 宇野 Injection molding molding method
JP2004099941A (en) * 2002-09-05 2004-04-02 Japan Science & Technology Corp Magnesium-base alloy and production method
JP4314207B2 (en) * 2005-03-15 2009-08-12 株式会社日本製鋼所 Casting method and casting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570880A (en) * 1991-09-13 1993-03-23 Takeshi Masumoto Magnesium alloy material having high strength and high toughness and its production
JP2003126943A (en) * 2001-10-19 2003-05-08 Nippon Kinzoku Co Ltd Manufacturing method of magnesium alloy slab for hot- rolling and method for hot-rolling magnesium alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1859878A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179541A (en) * 2016-03-31 2017-10-05 アイシン・エィ・ダブリュ株式会社 Magnesium alloy for casting and magnesium alloy cast

Also Published As

Publication number Publication date
EP1859878A1 (en) 2007-11-28
JP4296158B2 (en) 2009-07-15
JP2006255713A (en) 2006-09-28
EP1859878A4 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
KR101264219B1 (en) Mg alloy and the manufacturing method of the same
AU6418800A (en) Semi-solid concentration processing of metallic alloys
US20080317621A1 (en) Process for Producing Mg Alloy
JPH0967635A (en) Aluminum alloy casting excellent in strength and toughness, by high pressure casting, and its production
CN102719688B (en) Process method capable of improving thermal fatigue property of polynary zinc-aluminum alloy
CN112981212B (en) Preparation method of non-equiatomic ratio high-entropy alloy semi-solid thixotropic blank
CN108977707B (en) Modified aluminum alloy and casting method
CN110387478B (en) Semi-continuous casting method of aluminum-silicon alloy cast ingot
EP0512118B1 (en) Process for continuous casting of ultralow-carbon aluminum-killed steel
CN105358723A (en) Method of producing aluminium alloys containing lithium
WO2006098381A1 (en) Process for producing magnesium alloy
JP3735318B2 (en) High silicon cast iron excellent in acid resistance and method for producing the same
CN108359856B (en) One kind high strength heat resistant alloy containing Ni-Be-Mo and preparation method thereof
CN102517476B (en) High strength aluminum alloy capable of reducing porosity and dispersed shrinkage and preparation method thereof
JP2003183756A (en) Aluminum alloy for semi-solid molding
CN111531135B (en) Production process of aluminum-silicon intermediate alloy
CN1301166C (en) Preparation method of high speed steel blank and its equipment
CN111378887A (en) Silicon-aluminum alloy and preparation method thereof
JPH0987768A (en) Production of half-melted hypereutectic al-si alloy
CN115786793B (en) Light medium-entropy alloy with excellent mechanical properties and preparation method thereof
Kim et al. Castability of Cu 54 Ni 6 Zr 22 Ti 18 bulk amorphous alloy
JP5453480B2 (en) Cast iron billet for thixocasting and manufacturing method thereof
JP4179206B2 (en) Method for producing semi-solid metal and method for forming the same
JP2003073768A (en) Fe-BASED ALLOY MATERIAL FOR THIXOCASTING AND CASTING METHOD THEREFOR
EP0277890A1 (en) Method for forming metals with reduced impurity concentrations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006729182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11795795

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729182

Country of ref document: EP