[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006090464A1 - Solid polymer fuel cell and method for producing same - Google Patents

Solid polymer fuel cell and method for producing same Download PDF

Info

Publication number
WO2006090464A1
WO2006090464A1 PCT/JP2005/003058 JP2005003058W WO2006090464A1 WO 2006090464 A1 WO2006090464 A1 WO 2006090464A1 JP 2005003058 W JP2005003058 W JP 2005003058W WO 2006090464 A1 WO2006090464 A1 WO 2006090464A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
fuel cell
electrode
reaction fluid
anode
Prior art date
Application number
PCT/JP2005/003058
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuya Okumura
Original Assignee
Octec, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Octec, Inc. filed Critical Octec, Inc.
Priority to PCT/JP2005/003058 priority Critical patent/WO2006090464A1/en
Publication of WO2006090464A1 publication Critical patent/WO2006090464A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte fuel cell, and more particularly to a polymer electrolyte fuel cell suitable as a power source for home use or portable electronic devices.
  • a polymer electrolyte fuel cell using a proton conductive polymer membrane as an electrolyte has advantages such as a small size and light weight, high output density, low operating temperature, and short start-up time. Therefore, development is underway for use as a power source for electric vehicles, household cordage energy systems, portable devices, and the like.
  • FIG. 19 shows a unit cell of a polymer electrolyte fuel cell, in which an anode electrode (fuel electrode) 102 and a force sword electrode (oxidant electrode) 104 are integrated on both surfaces of a polymer electrolyte membrane 100, respectively.
  • the membrane electrode assembly 106 is configured in such a manner that a pair of separators 108 and 108 are sandwiched between the outer sides thereof.
  • Each electrode is composed of a catalyst layer and a porous support layer such as carbon, and the separator 108 is formed with a groove 110 on the opposite side of the electrode to form an anode gas (fuel) and a power sword gas (oxidant).
  • a flow path for supplying a reaction fluid such as is supplied to the electrode.
  • the separator 108 plays a role of blocking the reaction fluid between the stacked cells, forming a flow path of the reaction fluid supplied to the electrodes and the generated water, transferring electrons, and supporting the structure of the membrane electrode assembly 106. I'm in charge. Grooves are formed on both surfaces of the separator 108, and separators and membrane electrode assemblies are alternately arranged in series so that cells can be stacked to obtain a required voltage.
  • Non-Patent Document 1 Hideo Tamura et al. "Functional Chemistry Series of Electrons and Ions Vol.4"
  • the separator is required to have a complicated function electrically and mechanically and also needs to have corrosion resistance. Therefore, a force material typically using carbon (graphite) is expensive. There is also a high cost for machining the grooves. Carbon is also more electrically conductive than metal. In addition to low conductivity, a specific thickness is required to process a groove with a complex shape and obtain sufficient mechanical strength, which hinders the miniaturization of a fuel cell configured by stacking cells. It is a factor.
  • the present invention has been made in view of the above circumstances, and solves the dimensional and cost problems of the conventional separator structure, can be manufactured at low cost, and achieves efficiency and miniaturization. It is an object of the present invention to provide a polymer electrolyte fuel cell that can be used.
  • the polymer electrolyte fuel cell according to claim 1 is a membrane electrode joint in which an anode electrode and a force sword electrode are attached to both sides of a polymer electrolyte membrane, respectively. And a cell unit comprising a current collecting member having air permeability installed so as to be in surface contact with the anode electrode and the Z or force sword electrode, and a plurality of the cell sets are connected to the anode electrode.
  • the force sword electrodes are stacked so as to be opposed to each other, and a common reaction fluid supply space is provided between these opposed electrodes.
  • a plurality of cell units are arranged so that the same electrodes are opposed to each other, and a common reaction fluid supply space is provided between the opposed electrodes. Therefore, there is no need to arrange a conventional separator between the stacked cells. Therefore, the manufacturing cost can be reduced and the apparatus can be downsized.
  • the polymer electrolyte fuel cell according to claim 2 is characterized in that, in the invention according to claim 1, the current collecting member is made of a highly conductive material in which a plurality of holes are formed.
  • the second aspect of the present invention it is possible to reduce the size and improve the efficiency by manufacturing the current collecting member with a highly conductive material.
  • the configuration of the reaction fluid supply space is simplified because it is not necessary to supply the reaction fluid through a narrow and long complicated flow path as in the case of using a separator. Therefore, the reaction fluid can be easily supplied to the electrode.
  • the length of the flow path is shortened, resulting in the generation of condensed water. The efficiency can be improved by suppressing the life.
  • the polymer electrolyte fuel cell according to claim 3 is characterized in that, in the invention according to claim 1, the current collecting member has a porous, highly conductive material force.
  • the electrode is in surface contact with the current collecting member made of a porous, highly conductive material, so that the current conduction between the current collecting member and the electrode and the supply of the reaction fluid are made uniform. Can be achieved.
  • the polymer electrolyte fuel cell according to claim 4 is the invention according to any one of claims 1 to 3, wherein the cell unit includes a fluid that communicates with the reaction fluid supply space when stacked. There is a passage that forms the flow path! / Characterized by scolding.
  • the flow path for supplying and discharging the reaction fluid to the cell is formed by forming the fluid flow path communicating with the reaction fluid supply space in the stacking direction and opening the reaction fluid supply space. Can be designed appropriately.
  • the polymer electrolyte fuel cell according to claim 5 is the invention according to claim 4, wherein, in one of the cell units, the membrane electrode assembly has a plurality of regions, and the passage opening is It is provided for each of these areas.
  • the supply path of the reaction fluid to the cell can be subdivided and one flow path can be shortened.
  • the pressure loss for supplying the reaction fluid can be reduced and the generation of condensed water can be suppressed.
  • the polymer electrolyte fuel cell according to claim 6 is the invention according to any one of claims 1 to 5, wherein the reaction fluid supply space is divided into a plurality of sections in one cell unit. It is characterized by being formed.
  • the flow of the reaction fluid is controlled to reduce the flow path resistance, that is, the pressure loss, and the condensed water. Occurrence can be suppressed.
  • the polymer electrolyte fuel cell according to claim 7 is the invention according to any one of claims 1 to 6, wherein an insulating member that insulates the layers of the cell unit is provided.
  • the polymer electrolyte fuel cell according to claim 8 is the conduction according to the invention according to claim 7, wherein the current collecting members are three-dimensionally connected so that the cell units are connected in series. A structure is provided.
  • the polymer electrolyte fuel cell according to claim 9 is characterized in that, in the invention according to any one of claims 1 to 8, a seal member for sealing between the layers of the cell unit is provided. .
  • the polymer electrolyte fuel cell according to claim 10 is the invention according to any one of claims 1 to 9, wherein the anode reaction fluid and the force sword reaction fluid in each of the reaction fluid supply spaces are provided.
  • the flow directions are orthogonal to each other.
  • the polymer electrolyte fuel cell according to claim 11 is the invention according to any one of claims 1 and 10, wherein the cell unit is arranged substantially horizontally, and the force sword reaction fluid The discharge port is provided below the stacked cell units.
  • the polymer electrolyte fuel cell according to claim 12 is the invention according to any one of claims 1 to 11, wherein the cell unit or a component constituting the cell unit is laminated. It is characterized in that a positioning element for positioning is provided. As a result, the assembly and production of the polymer electrolyte fuel cell can be performed accurately and quickly.
  • the positioning element for example, there is an element in which an engaging portion such as a hole or a groove is provided in the cell unit or its component parts, and a common guide pin is engaged with these and stacked.
  • the method for producing a membrane electrode assembly according to claim 13 produces a membrane electrode assembly in which a plurality of anode electrodes and force sword electrodes are respectively attached to both surfaces of a polymer electrolyte membrane. Forming a sheet on which the plurality of anode electrodes or force sword electrodes are provided in advance, and transferring the plurality of anode electrodes or force sword electrodes to the polymer electrolyte membrane from the sheet.
  • reaction fluid supply space that does not require a separator to be disposed between the stacked cells is rationally simplified, thereby reducing cost and size. It is possible to provide a solid polymer fuel cell.
  • FIG. 1 is an exploded perspective view showing a configuration of a polymer electrolyte fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a partial sectional view of a polymer electrolyte fuel cell according to an embodiment of the present invention.
  • FIG. 3 is an exploded cross-sectional view showing a senor unit that is a main part of a polymer electrolyte fuel cell according to an embodiment of the present invention. '
  • FIG. 4 shows a structure of a membrane electrode assembly (a) a plan view and (b) an enlarged cross-sectional view.
  • FIG. 5A is a diagram showing a configuration of a current collecting member
  • FIG. 5B is a diagram showing a configuration of a contact electrode portion.
  • FIG. 6 is a cross-sectional view showing a configuration of a current collecting member.
  • FIG. 7 is a diagram showing a configuration of a main part of a current collecting member.
  • FIG. 8 (a) is a view showing a configuration of a main part of the current collecting member, and (b) is an enlarged sectional view of the part.
  • FIG. 9 is a diagram showing a spacer.
  • FIG. 10 (a) to (d) are diagrams showing a configuration of a main part of another embodiment of a current collecting member.
  • FIG. 11 (a) and (b) are cross-sectional views showing the flow of fluid in a polymer electrolyte fuel cell.
  • FIG. 12 is a perspective view showing a flow of fluid in a polymer electrolyte fuel cell.
  • FIG. 13 is a diagram showing a configuration of an electrode terminal for taking out current from a current collecting member to the outside.
  • FIG. 14 is a diagram showing connection of electrode terminals.
  • FIG. 15 (a) to (d) are diagrams showing a process of creating an electrode film of a membrane electrode assembly.
  • FIG. 16 (a) to (c) are diagrams showing a process of preparing an electrode film of a membrane electrode assembly.
  • FIGS. 17 (a) to (c) are diagrams showing a process of transferring an electrode film of a membrane electrode assembly to a sheet.
  • FIG. 18 (a) to (c) are diagrams showing a process of transferring an electrode membrane of a membrane electrode assembly to a polymer electrolyte membrane.
  • FIG. 19 is a view showing a conventional polymer electrolyte fuel cell.
  • the polymer fuel cell is constructed by laminating flat cell units 12 between a pair of end plates 10 and 10 in multiple layers (in this example, three layers)! RU
  • Each cell 12 has nine cells 14 arranged in three rows vertically and three rows horizontally in the same plane.
  • the number of cell units 12 stacked, the planar shape of the cells 14 in the cell unit 12 and the number of arrangement patterns can be appropriately set as necessary.
  • each cell unit 12 has an anode electrode (fuel electrode) 18 and a force sword electrode (oxidant electrode) 20 arranged on both sides of the polymer electrolyte membrane 16, respectively.
  • the membrane electrode assembly 22 and the current collecting member 24 sandwiching the membrane electrode assembly 22 from above and below are provided.
  • the polymer electrolyte membrane 16 is common in one cell unit 12, but the anode electrode 18 and the force sword electrode 20 arranged on the same are disposed between the cells. Arranged independently.
  • the constituent elements of the membrane / electrode assembly 22 are well-known and will not be described in detail.
  • An insulating sheet 26 having the same thickness as these electrodes is disposed between the polymer electrolyte membrane 16 and the current collecting member 24 at portions other than the anode electrode 18 and the force sword electrode 20. Further, in the cell 12, the current collecting member 24 is also common to all the cells 14, and therefore these cells 14 are connected in parallel.
  • the current collecting member 24 includes a contact electrode portion 28 in contact with the anode electrode 18 or the force sword electrode 20 of each cell 14, and a frame portion surrounding the contact electrode portion 28. 30 is integrated into a plate shape.
  • the frame portion 30 includes an outer frame portion 32 on the outer peripheral side and two partition portions 34 that cut the inside of the outer frame portion 32.
  • the frame part 30 is thicker than the contact electrode part 28 to maintain the structural strength.
  • the current collecting member 24 may be made of any appropriate material as long as it is a good conductor having a predetermined strength, but a metal is preferable from the viewpoint of strength and conductivity.
  • the current collecting member is made of metal, it is possible to reduce the size and improve the efficiency by utilizing its strength and good conductivity.
  • Ni is used, which has the strength to maintain the laminated structure even if it is thin.
  • a plurality of holes 36 are arranged uniformly in a staggered manner in the contact electrode portion 28 so that a gas or liquid as a reaction fluid can be transmitted.
  • the hole diameter is ⁇ 3.0 ⁇
  • the hole pitch is 4.5 mm
  • the hole area ratio is about 0.4.
  • the contact electrode part 28 is thinner than the frame part 30 and facilitates the flow of the reaction fluid.
  • the current generated on the polymer electrolyte membrane 16 is collected in the frame portion 30 via the thin contact electrode portion 28.
  • Joule heat Joule heat
  • the current collecting member 24 can be composed of, for example, a thick portion 38 mainly constituting the frame portion 30 and a thin portion 40 mainly constituting the contact electrode portion 28 as shown in FIG. .
  • the thick portion 38 has an outer frame portion 32 and two partition portions 34, and is manufactured by punching a thick plate material or the like.
  • the thin portion 40 has a frame portion 30 and a hole 36 in the contact electrode portion 28 formed in a body, and is manufactured by punching or etching.
  • the thick portion 38 and the thin portion 40 are joined together by current welding, laser welding, or the like, and if necessary, the sealing resin is infiltrated into the joint portion and solidified to maintain airtightness.
  • These cell units 12 are laminated so that electrodes of the same polarity face each other. As shown in FIG. 2, in this example, the upper cell 14 and the middle cell 14 are opposed to the anode electrode 18, and the middle cell 14 and the lower cell 14 are opposed to the force sword electrode 20. Between the end plate 10 and the cell unit 12 and between adjacent cell units 12, a spacer, that is, an anode-side spacer 42a or a force sword is provided at a position corresponding to the frame 30 of the current collector 24. A side spacer 42c is arranged. As shown in FIG.
  • each spacer 42a, 42c has an outer frame portion 44 and a partition portion 46 that partitions the contact electrode portion 28 in contact with the electrode of each cell 14 in the “row” or “column” direction. It has.
  • a plurality of rows are formed in the same cell unit 12!
  • the oxidant supplied to the force sword electrode 20 is a single gas such as oxygen or air containing oxygen.
  • a liquid such as liquid oxygen may be used.
  • the fuel supplied to the anode electrode may be a liquid such as methanol, dimethyl ether, or a similar alcohol-based substance, in addition to a gas such as hydrogen.
  • the spacers 42a and 42c thus form the airtight reaction fluid supply spaces 48a and 48c between the cell units 12, and also electrically isolate the current collecting members 24 of the cell unit 12.
  • the anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c are alternately formed between the stacked cell units 12, and the reaction fluid supply spaces 48a and 48c formed between the adjacent cell units 12 are these.
  • Cell unit 12 is shared.
  • the force sword side spacer 42c has basically the same shape, but is arranged in an orthogonal direction as shown in FIGS. 9 (a) and 9 (b). . Thus, as shown in FIG.
  • the anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c are formed so as to extend in a direction perpendicular to each other.
  • the spacers 42a and 42c have the same shape as the thick portion 38 of the current collecting member 24 shown in FIG. 7, but the shape is appropriately adopted as long as the above functions are achieved. Is possible.
  • pin holes 49 are provided at the four corners of the components constituting the cell unit 12 such as the polymer electrolyte membrane 16, the current collecting member 24, and the spacers 42a and 42c.
  • FIG. 10 (a) shows another embodiment of the current collecting member, in which the opening formed in the thick portion 38 is divided by a girder to form a reaction fluid supply space. It is.
  • the girder supports the contact electrode portion of the thin portion 40, so that the portion can be reinforced.
  • FIG. 10 (b) shows a structure in which a columnar member is provided to reinforce the region of the thin portion 40 that extends to the passing through contact electrode portion 28, whereby the thin portion 40 facing the sandwiched reaction fluid supply space is provided. Since the columnar members provided on each other face each other, the portions can be reinforced and the airtightness can be improved.
  • each of the two end plates 10 has a marquee formed by a flow path 62 on the outer side, and the flow path 62 includes an external supply pipe and a discharge pipe (not shown).
  • Connection ports 64a, 65a, 64c and 65c are provided for connection. That is, one (upper side in Figure 1
  • the end plate 10 is connected to the anode reaction fluid connection ports 64a and 65a, and the other end plate 10 (lower side in FIG. 1) is connected to the force sword reaction fluid connection ports 64c and 65c. Yes.
  • anode reaction fluid or the force sword reaction fluid is circulated in the spacers 42a and 42c, the current collecting member 24, and the membrane electrode assembly 22 in the anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c, respectively.
  • Passing ports 53a, 53c, 54a, 54c are formed.
  • passage ports 53a, 53c, 54a, 54c are located at positions corresponding to the anode reaction fluid or force sword reaction fluid supply ports 50a, 50c and the discharge ports 52a, 52c formed in the end plate 10.
  • the supply ports 50a and 50c communicate with the anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c through the passage ports 53a and 53c, and the discharge ports 52a and 52c have passage ports 54a,
  • the anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c communicate with each other through 54c.
  • a supply flow path and a discharge flow path for allowing the anode reaction fluid or the force sword reaction fluid to flow through the reaction fluid supply spaces 48a and 48c are formed so as to extend along the stacking direction. Gas and other fluids do not leak between the laminated members! A sufficient seal is made.
  • connection port, supply port, and discharge port of the anode reaction fluid and the force sword reaction fluid are separated for each end plate, thereby simplifying the piping and providing a powerful fluid supply form such as a fuel tank.
  • a powerful fluid supply form such as a fuel tank.
  • the arrangement of the connection ports 64a, 65a, 64c, 65c, the supply ports 50a, 50c, and the discharge ports 52a, 52c is related to the arrangement of the fluid source and the supply piping, and the devices arranged adjacent to each other. Can be determined as appropriate.
  • piping is not installed on one or both of the power sword side supply port 50c and the discharge port 52c. Especially when air is used as the reaction fluid on the force sword side, piping must be used on both the supply side and the discharge side. It does not have to be.
  • the supply flow path and discharge flow path of these anode reaction fluid or force sword reaction fluid are the cells 14 in each anode reaction fluid supply space 48a or force sword reaction fluid supply space 48c, respectively. It is opened alternately at a position that sandwiches. Accordingly, as shown in FIGS. 11 to 12, these fluids flow into the anode reaction fluid supply space 48a or the force sword reaction fluid supply space 48c from the supply flow path, and face each anode electrode 18 or force sword electrode 20 It flows along the surface and flows out to the opposing discharge channel. That is, these fluids are discharged after crossing one cell 14. As described above, since each reaction fluid supply space 48a, 48c flows through a certain distance, a stable power generation operation is brought about.
  • the supply ports 50a, 50c, the discharge ports 52a, 52c, and the passage ports 53a, 53c, 54a, 54c located inside the cell unit 12 are the fluid flows of the two cells 14 on both sides sandwiching these passage ports. Therefore, if the opening area is larger than the opening located in the outer frame portion, the cells 14 can easily supply the reaction fluid uniformly.
  • the current collecting member 24 of each cell unit 12 is provided along the opposing sides of the current collecting member 24 as shown in FIG. 13 at the electrode terminals 56a and 56c.
  • the electrode terminals 56a and 56c are provided at opposite ends in the fluid flow direction in the reaction fluid supply spaces 48a and 48c. It is not the side of the fluid flow direction shown in b). This is because the length of the flow path from the contact electrode portion 28 to the electrode terminals 56a and 56c via the outer frame portion 44 of the current collecting member 24 is equal to the length of the 1S contact electrode portion 28 to the partition portion 46. The length of the flow path toward the electrode terminals 56a and 56c via the line is shorter in the case shown in FIG.
  • the best mode is that the electrode terminals 56a and 56c for drawing the current collected in the current collecting member 24 to the outside of the battery are end portions in the fluid flow direction. Further, in order to obtain a predetermined voltage, the required number of cell units 12 can be stacked, and these electrode terminals 56a and 56c can be connected in series by internal wiring 58 as shown in FIG.
  • the method of the internal wiring 58 can be realized by a three-dimensional connection as shown in FIG. In this example, the cross section is widened to reduce ohmic resistance loss in internal wiring 58. However, the internal wiring 58 can be made thinner if necessary.
  • a method for manufacturing the membrane electrode assembly (see FIG. 4) of this embodiment will be described with reference to FIG. 15 or FIG.
  • the following method forms a sintered porous carbon membrane for forming an anode electrode or a force sword electrode, and transfers it onto the polymer electrolyte membrane.
  • a suitable substrate 70 for example, a surface of a silicon wafer is subjected to an oxidation treatment to form an SiO film 72.
  • Carbon powder 74 is printed on the surface of the substrate 70, and this is subjected to high-temperature heat treatment at about 1000 ° C in a reduction furnace, and the carbon powder 74 is sintered and sintered as shown in FIGS. 15 (c) and (d). A carbon film 76 is formed.
  • a catalytic metal such as a Pt ((NH) (NO) / ethanol solution is used.
  • Solution 78 was dropped, and as shown in FIG. 16 (b), this was dried under reduced pressure, and further heat treated in a N + H atmosphere at 400 ° C., for example, as shown in FIG. 16 (c).
  • Reduce Pt particles 80 as shown in
  • the transfer sheet 84 is composed of a carrier resin layer made of a thermoplastic resin such as PET and an adhesive resin layer, and adheres the adherend firmly at room temperature. It is easy to peel off the adherend without losing or damaging it. As shown in FIG. 17A, such a transfer sheet 84 is attached to the surface of the substrate 70 on which the electrode film 82 is formed, and the SiO film 72 is removed by etching with a dilute hydrogen fluoride solution.
  • the substrate is separated from the substrate 70 as shown in FIG.
  • the electrode film 82 peeled from the substrate 70 is impregnated with a naphthion (trade name) oligomer solution 86 to form a naphthion packed layer 87.
  • Naphion oligomers enhance the bonding between the electrode and the polymer electrolyte membrane and carry protons into the electrode.
  • the anode electrode film 82a and the force sword electrode film 82c on the transfer sheet 84 produced by the above process are further transferred onto the polymer electrolyte film 88 by the process shown in FIG. That is, as shown in FIG. 18 (a), the transfer sheet 84 having the electrode films 82 formed on both surfaces of the polymer electrolyte membrane 88 is attached at predetermined positions, and as shown in FIG. ° C Then, as shown in FIG. 18 (c), the transfer sheet 84, which has lost its adhesive strength due to heat, is removed to form a membrane electrode assembly.
  • the catalyst is supported on the carbon film formed by printing or the like to form the electrode film 82, and this is formed into the polymer electrolyte. Since the film 88 is transferred, a membrane electrode assembly used for one cell unit can be efficiently produced.
  • the electrode film 82 may be formed by printing a powder to form a porous film and a carbon film having a dense layer force, and supporting the catalyst on the porous layer. In this case, such an electrode film 82 is attached with the porous layer side facing the polymer electrolyte film 88.
  • graphite powder was used as the strong material, but an appropriate material such as activated carbon fiber or carbon nanofiber can be used as necessary.
  • an appropriate material such as a force bonbon can be used as long as it satisfies the conditions of conductivity and strength without being limited to metal.
  • a porous material can be used in addition to forming a hole.
  • the present invention is particularly suitably used as a power source for home or portable electronic devices.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a small-sized solid polymer fuel cell having improved efficiency which can be produced at low cost. Specifically disclosed is a solid polymer fuel cell comprising a cell unit (12) which includes a membrane electrode assembly (22) wherein an anode electrode (18) and a cathode electrode (20) are respectively fixed to the sides of a polymer electrolyte membrane (16) in a integrated manner, and an air-permeable collector member (24) arranged on the outer surface of the anode electrode and/or the cathode electrode. A plurality of cell units (12) are stacked in such a manner that the anode electrodes or the cathode electrodes in adjacent cell units are opposite to each other. In addition, a common reaction fluid supplying space (48a, 48c) is arranged between these opposite electrodes.

Description

明 細 書  Specification
固体高分子型燃料電池及び製造方法  Solid polymer fuel cell and manufacturing method
技術分野  Technical field
[0001] 本発明は、固体高分子型燃料電池に関し、特に、家庭用あるいは携帯電子機器用 の電源として好適な固体高分子型燃料電池に関する。  TECHNICAL FIELD [0001] The present invention relates to a polymer electrolyte fuel cell, and more particularly to a polymer electrolyte fuel cell suitable as a power source for home use or portable electronic devices.
背景技術  Background art
[0002] プロトン導電性の高分子膜を電解質として用いる固体高分子型燃料電池は、小型 軽量で出力密度が高 、、運転温度が低 、ため起動時間が短 、等の利点を有してお り、電気自動車、家庭用コージエネシステム、携帯機器等の電源として利用するため に開発が進められている。  A polymer electrolyte fuel cell using a proton conductive polymer membrane as an electrolyte has advantages such as a small size and light weight, high output density, low operating temperature, and short start-up time. Therefore, development is underway for use as a power source for electric vehicles, household cordage energy systems, portable devices, and the like.
[0003] 図 19は、固体高分子型燃料電池のユニットセルを示すもので、高分子電解質膜 1 00の両面にそれぞれアノード電極 (燃料極) 102と力ソード電極 (酸化剤極) 104が 一体に配置されて膜電極接合体 106が構成され、その外側を一対のセパレータ 108 , 108が挟み込む構造となっている。各電極は、それぞれ触媒層と炭素等の多孔質 支持層から構成され、また、セパレータ 108は電極に向カゝぅ面に溝 110が形成されて アノードガス (燃料)や力ソードガス (酸化剤)等の反応流体を電極に供給する流路を 構成している。セパレータ 108は、積層されるセル間での反応流体の遮断、電極へ 供給する反応流体や生成した水の流路の形成、電子の移動、膜電極接合体 106の 構造を支持する等の役割を担っている。セパレータ 108には両面に溝が形成されて おり、セパレータと膜電極接合体を交互に直列に配置し、セルをスタック積層させるこ とにより、所要の電圧を得ることができるようになつている。  FIG. 19 shows a unit cell of a polymer electrolyte fuel cell, in which an anode electrode (fuel electrode) 102 and a force sword electrode (oxidant electrode) 104 are integrated on both surfaces of a polymer electrolyte membrane 100, respectively. The membrane electrode assembly 106 is configured in such a manner that a pair of separators 108 and 108 are sandwiched between the outer sides thereof. Each electrode is composed of a catalyst layer and a porous support layer such as carbon, and the separator 108 is formed with a groove 110 on the opposite side of the electrode to form an anode gas (fuel) and a power sword gas (oxidant). A flow path for supplying a reaction fluid such as is supplied to the electrode. The separator 108 plays a role of blocking the reaction fluid between the stacked cells, forming a flow path of the reaction fluid supplied to the electrodes and the generated water, transferring electrons, and supporting the structure of the membrane electrode assembly 106. I'm in charge. Grooves are formed on both surfaces of the separator 108, and separators and membrane electrode assemblies are alternately arranged in series so that cells can be stacked to obtain a required voltage.
[0004] 非特許文献 1:田村英雄等「電子とイオンの機能化学シリーズ Vol.4」ェヌ'ティー'エス 発明の開示  [0004] Non-Patent Document 1: Hideo Tamura et al. "Functional Chemistry Series of Electrons and Ions Vol.4"
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] セパレータには、上記のように電気的、機械的に複雑な機能が要求され、また耐食 性も必要であるので、カーボン (黒鉛)が代表的に用いられている力 素材が高価で あり、またこれに溝を加工するコストも高い。また、カーボンは金属に比較して電気伝 導度が小さい上、複雑な形状の溝を加工しかつ充分な機械的強度を得るために所 定の厚さが必要であり、セルをスタック積層して構成される燃料電池の小型化を妨げ る要因になっている。 [0005] As described above, the separator is required to have a complicated function electrically and mechanically and also needs to have corrosion resistance. Therefore, a force material typically using carbon (graphite) is expensive. There is also a high cost for machining the grooves. Carbon is also more electrically conductive than metal. In addition to low conductivity, a specific thickness is required to process a groove with a complex shape and obtain sufficient mechanical strength, which hinders the miniaturization of a fuel cell configured by stacking cells. It is a factor.
また、セパレータに形成された溝状の流路は、細く長いので、後流部で凝縮水が発 生し、円滑な反応流体の供給を妨げるとともに、圧力損失が大きくなつて、効率の低 下や騒音'振動の原因となってしまう。  In addition, since the groove-like flow path formed in the separator is thin and long, condensed water is generated in the wake, which prevents smooth reaction fluid supply and increases pressure loss, thereby reducing efficiency. Or cause noise and vibration.
[0006] 本発明は、前記事情に鑑みて為されたもので、従来のセパレータ構造が有する寸 法的、コスト的な問題を解決し、安価に製造でき、かつ効率化、小型化を図ることが できる固体高分子型燃料電池を提供することを目的とする。  [0006] The present invention has been made in view of the above circumstances, and solves the dimensional and cost problems of the conventional separator structure, can be manufactured at low cost, and achieves efficiency and miniaturization. It is an object of the present invention to provide a polymer electrolyte fuel cell that can be used.
課題を解決するための手段  Means for solving the problem
[0007] 前記目的を達成するために、請求項 1に記載の固体高分子型燃料電池は、高分子 電解質膜の両面にそれぞれアノード電極と力ソード電極とがー体に取り付けられた膜 電極接合体と、前記アノード電極及び Z又は力ソード電極に面接触するように設置さ れた通気性を有する集電部材を備えたセルユニットを有し、複数枚の前記セルュ- ットを前記アノード電極どうしまたは前記力ソード電極どうしが対向するように積層して 配置し、かつこれらの対向する電極の間にこれらの電極に共通の反応流体供給空間 を設けたことを特徴とする。 [0007] In order to achieve the above object, the polymer electrolyte fuel cell according to claim 1 is a membrane electrode joint in which an anode electrode and a force sword electrode are attached to both sides of a polymer electrolyte membrane, respectively. And a cell unit comprising a current collecting member having air permeability installed so as to be in surface contact with the anode electrode and the Z or force sword electrode, and a plurality of the cell sets are connected to the anode electrode. The force sword electrodes are stacked so as to be opposed to each other, and a common reaction fluid supply space is provided between these opposed electrodes.
[0008] 請求項 1に記載の発明によれば、複数のセルユニットを同じ電極どうしが対向する ように積層して配置し、これらの対向する電極の間に共通の反応流体供給空間を設 けているので、積層したセル間に従来のようなセパレータを配置する必要が無い。し たがって、製造コストの低下及び装置の小型化を図ることができる。  [0008] According to the invention described in claim 1, a plurality of cell units are arranged so that the same electrodes are opposed to each other, and a common reaction fluid supply space is provided between the opposed electrodes. Therefore, there is no need to arrange a conventional separator between the stacked cells. Therefore, the manufacturing cost can be reduced and the apparatus can be downsized.
[0009] 請求項 2に記載の固体高分子型燃料電池は、請求項 1に記載の発明において、前 記集電部材は複数の穴を形成した良電導性素材からなることを特徴とする。  [0009] The polymer electrolyte fuel cell according to claim 2 is characterized in that, in the invention according to claim 1, the current collecting member is made of a highly conductive material in which a plurality of holes are formed.
請求項 2に記載の発明によれば、集電部材を良導電性素材で作製することにより、 小型化と効率の向上を図ることができる。すなわち、電極表面上で発生した電子を効 率良く集電できるため、セパレータを用いた場合のような細く長い複雑な流路で反応 流体を供給する必要が無ぐ反応流体供給空間の構成を簡略化して、電極への反 応流体供給を容易とすることができる。特に、流路長さが短くなることで、凝縮水の発 生を抑制して効率ィ匕を図ることができる。 According to the second aspect of the present invention, it is possible to reduce the size and improve the efficiency by manufacturing the current collecting member with a highly conductive material. In other words, since electrons generated on the electrode surface can be collected efficiently, the configuration of the reaction fluid supply space is simplified because it is not necessary to supply the reaction fluid through a narrow and long complicated flow path as in the case of using a separator. Therefore, the reaction fluid can be easily supplied to the electrode. In particular, the length of the flow path is shortened, resulting in the generation of condensed water. The efficiency can be improved by suppressing the life.
[0010] 請求項 3に記載の固体高分子型燃料電池は、請求項 1に記載の発明において、前 記集電部材は多孔質の良電導性素材力 なることを特徴とする。  [0010] The polymer electrolyte fuel cell according to claim 3 is characterized in that, in the invention according to claim 1, the current collecting member has a porous, highly conductive material force.
請求項 3に記載の発明によれば、多孔質の良電導性素材からなる集電部材に電極 が面接触することによって集電部材と電極の導通及び反応流体の供給が均一されて 効率ィ匕を図ることができる。  According to the third aspect of the present invention, the electrode is in surface contact with the current collecting member made of a porous, highly conductive material, so that the current conduction between the current collecting member and the electrode and the supply of the reaction fluid are made uniform. Can be achieved.
[0011] 請求項 4に記載の固体高分子型燃料電池は、請求項 1ないし請求項 3のいずれか に記載の発明において、前記セルユニットには、積層時に前記反応流体供給空間に 連通する流体流路を構成する通過口が設けられて!/ヽることを特徴とする。 [0011] The polymer electrolyte fuel cell according to claim 4 is the invention according to any one of claims 1 to 3, wherein the cell unit includes a fluid that communicates with the reaction fluid supply space when stacked. There is a passage that forms the flow path! / Characterized by scolding.
請求項 4に記載の発明によれば、反応流体供給空間に連通する流体流路を積層 方向に形成し、反応流体供給空間に開口させることで、セルへの反応流体の供給及 び排出の経路を適宜に設計することができる。  According to the invention described in claim 4, the flow path for supplying and discharging the reaction fluid to the cell is formed by forming the fluid flow path communicating with the reaction fluid supply space in the stacking direction and opening the reaction fluid supply space. Can be designed appropriately.
[0012] 請求項 5に記載の固体高分子型燃料電池は、請求項 4に記載の発明において、 1 つの前記セルユニットにおいて、前記膜電極接合体は複数の領域を有し、前記通過 口はこれらの領域毎に設けられて 、ることを特徴とする。 [0012] The polymer electrolyte fuel cell according to claim 5 is the invention according to claim 4, wherein, in one of the cell units, the membrane electrode assembly has a plurality of regions, and the passage opening is It is provided for each of these areas.
請求項 5に記載の発明によれば、通過口を膜電極接合体の各領域毎に設けること で、セルへの反応流体の供給経路を細分化し、 1つの流路を短くすることができる。こ れにより、反応流体供給のための圧力損失の低減と、凝縮水の発生の抑制を図るこ とがでさる。  According to the invention described in claim 5, by providing the passage port for each region of the membrane electrode assembly, the supply path of the reaction fluid to the cell can be subdivided and one flow path can be shortened. As a result, the pressure loss for supplying the reaction fluid can be reduced and the generation of condensed water can be suppressed.
[0013] 請求項 6に記載の固体高分子型燃料電池は、請求項 1ないし請求項 5のいずれ力ゝ に記載の発明において、 1つの前記セルユニットにおいて、前記反応流体供給空間 は複数に区画して形成されて ヽることを特徴とする。  [0013] The polymer electrolyte fuel cell according to claim 6 is the invention according to any one of claims 1 to 5, wherein the reaction fluid supply space is divided into a plurality of sections in one cell unit. It is characterized by being formed.
請求項 6に記載の発明によれば、反応流体供給空間を複数に区画して形成するこ とにより、反応流体の流れを制御して、流路抵抗つまり圧力損失を小さくし、かつ凝 縮水の発生を抑制することができる。  According to the invention described in claim 6, by forming the reaction fluid supply space into a plurality of sections, the flow of the reaction fluid is controlled to reduce the flow path resistance, that is, the pressure loss, and the condensed water. Occurrence can be suppressed.
[0014] 請求項 7に記載の固体高分子型燃料電池は、請求項 1ないし請求項 6のいずれか に記載の発明において、前記セルユニットの層間を絶縁する絶縁部材が設けられて いることを特徴とする。 請求項 8に記載の固体高分子型燃料電池は、請求項 7に記載の発明において、前 記各セルユニットが直列に接続されるように前記集電部材どうしを 3次元的に導通さ せる導通構造が設けられて 、ることを特徴とする。 [0014] The polymer electrolyte fuel cell according to claim 7 is the invention according to any one of claims 1 to 6, wherein an insulating member that insulates the layers of the cell unit is provided. Features. The polymer electrolyte fuel cell according to claim 8 is the conduction according to the invention according to claim 7, wherein the current collecting members are three-dimensionally connected so that the cell units are connected in series. A structure is provided.
請求項 9に記載の固体高分子型燃料電池は、請求項 1ないし請求項 8のいずれか に記載の発明において、前記セルユニットの層間を密封するシール部材が設けられ ていることを特徴とする。  The polymer electrolyte fuel cell according to claim 9 is characterized in that, in the invention according to any one of claims 1 to 8, a seal member for sealing between the layers of the cell unit is provided. .
[0015] 請求項 10に記載の固体高分子型燃料電池は、請求項 1ないし請求項 9のいずれ かに記載の発明において、前記各反応流体供給空間におけるアノード反応流体及 び力ソード反応流体の流れ方向が互いに直交することを特徴とする。 [0015] The polymer electrolyte fuel cell according to claim 10 is the invention according to any one of claims 1 to 9, wherein the anode reaction fluid and the force sword reaction fluid in each of the reaction fluid supply spaces are provided. The flow directions are orthogonal to each other.
請求項 11に記載の固体高分子型燃料電池は、請求項 1な!、し請求項 10の 、ずれ かに記載の発明において、前記セルユニットはほぼ水平に配置され、前記力ソード 反応流体の排出口は積層されたセルユニットの下側に設けられていることを特徴とす る。  The polymer electrolyte fuel cell according to claim 11 is the invention according to any one of claims 1 and 10, wherein the cell unit is arranged substantially horizontally, and the force sword reaction fluid The discharge port is provided below the stacked cell units.
[0016] 請求項 12に記載の固体高分子型燃料電池は、請求項 1ないし請求項 11のいずれ かに記載の発明において、前記セルユニットまたはセルユニットを構成する部品には 、これらを積層する際の位置決めをするための位置決め要素が設けられていることを 特徴とする。これにより、固体高分子型燃料電池の組立'製造が精度良くかつ迅速に 行われる。位置決め要素としては、例えば、セルユニットやその構成部品に穴や溝な どの係合部を設け、これらに共通のガイドピンを係合させて積層するものが有る。  [0016] The polymer electrolyte fuel cell according to claim 12 is the invention according to any one of claims 1 to 11, wherein the cell unit or a component constituting the cell unit is laminated. It is characterized in that a positioning element for positioning is provided. As a result, the assembly and production of the polymer electrolyte fuel cell can be performed accurately and quickly. As the positioning element, for example, there is an element in which an engaging portion such as a hole or a groove is provided in the cell unit or its component parts, and a common guide pin is engaged with these and stacked.
[0017] 請求項 13に記載の膜電極接合体の製造方法は、高分子電解質膜の両面にそれ ぞれ複数のアノード電極と力ソード電極とがー体に取り付けられた膜電極接合体を製 造する方法であって、前記複数のアノード電極または力ソード電極を予め表面に設 けたシートを作成し、このシートから記複数のアノード電極または力ソード電極を前記 高分子電解質膜に転写することを特徴とする。  [0017] The method for producing a membrane electrode assembly according to claim 13 produces a membrane electrode assembly in which a plurality of anode electrodes and force sword electrodes are respectively attached to both surfaces of a polymer electrolyte membrane. Forming a sheet on which the plurality of anode electrodes or force sword electrodes are provided in advance, and transferring the plurality of anode electrodes or force sword electrodes to the polymer electrolyte membrane from the sheet. Features.
発明の効果  The invention's effect
[0018] 請求項 1ないし請求項 12に記載の発明によれば、積層したセル間にセパレータを 配置する必要が無ぐ反応流体供給空間を合理的に簡略化することにより、安価で かつ小型化した固体高分子型燃料電池を提供することができる。 図面の簡単な説明 [0018] According to the inventions of claims 1 to 12, the reaction fluid supply space that does not require a separator to be disposed between the stacked cells is rationally simplified, thereby reducing cost and size. It is possible to provide a solid polymer fuel cell. Brief Description of Drawings
[図 1]この発明の実施の形態の固体高分子型燃料電池の構成を分解して示す斜視 図である。  FIG. 1 is an exploded perspective view showing a configuration of a polymer electrolyte fuel cell according to an embodiment of the present invention.
[図 2]この発明の実施の形態の固体高分子型燃料電池の部分断面図である。  FIG. 2 is a partial sectional view of a polymer electrolyte fuel cell according to an embodiment of the present invention.
[図 3]この発明の実施の形態の固体高分子型燃料電池の要部であるセノレユニットを 分解して示す断面図である。 '  FIG. 3 is an exploded cross-sectional view showing a senor unit that is a main part of a polymer electrolyte fuel cell according to an embodiment of the present invention. '
[図 4]膜電極接合体の構造を示す (a)平面図、(b)—部を拡大した断面図である。  FIG. 4 shows a structure of a membrane electrode assembly (a) a plan view and (b) an enlarged cross-sectional view.
[図 5] (a)集電部材の構成を示す図、(b)接電極部の構成を示す図である。  5A is a diagram showing a configuration of a current collecting member, and FIG. 5B is a diagram showing a configuration of a contact electrode portion.
[図 6]集電部材の構成を示す断面図である。  FIG. 6 is a cross-sectional view showing a configuration of a current collecting member.
[図 7]集電部材の要部の構成を示す図である。  FIG. 7 is a diagram showing a configuration of a main part of a current collecting member.
[図 8] (a)集電部材の要部の構成を示す図、(b)—部を拡大した断面図である。  FIG. 8 (a) is a view showing a configuration of a main part of the current collecting member, and (b) is an enlarged sectional view of the part.
[図 9]スぺーサを示す図である。 FIG. 9 is a diagram showing a spacer.
[図 10] (a)〜(d)は、'集電部材の他の実施の形態の要部の構成を示す図である。  [FIG. 10] (a) to (d) are diagrams showing a configuration of a main part of another embodiment of a current collecting member.
[図 11] (a)及び (b)は、いずれも固体高分子型燃料電池における流体の流れを示す 断面図である。 FIG. 11 (a) and (b) are cross-sectional views showing the flow of fluid in a polymer electrolyte fuel cell.
[図 12]固体高分子型燃料電池における流体の流れを示す斜視図である。  FIG. 12 is a perspective view showing a flow of fluid in a polymer electrolyte fuel cell.
[図 13]集電部材から電流を外部に取り出すための電極端子の構成を示す図である。  FIG. 13 is a diagram showing a configuration of an electrode terminal for taking out current from a current collecting member to the outside.
[図 14]電極端子の接続を示す図である。  FIG. 14 is a diagram showing connection of electrode terminals.
[図 15] (a)〜(d)は、膜電極接合体の電極膜を作成する工程を示す図である。  [FIG. 15] (a) to (d) are diagrams showing a process of creating an electrode film of a membrane electrode assembly.
[図 16] (a)〜(c)は、膜電極接合体の電極膜を作成する工程を示す図である。 [FIG. 16] (a) to (c) are diagrams showing a process of preparing an electrode film of a membrane electrode assembly.
[図 17] (a)〜(c)は、膜電極接合体の電極膜をシートに転写する工程を示す図である FIGS. 17 (a) to (c) are diagrams showing a process of transferring an electrode film of a membrane electrode assembly to a sheet.
[図 18] (a)〜(c)は、膜電極接合体の電極膜を高分子電解質膜に転写する工程を示 す図である。 [FIG. 18] (a) to (c) are diagrams showing a process of transferring an electrode membrane of a membrane electrode assembly to a polymer electrolyte membrane.
[図 19]従来の固体高分子型燃料電池を示す図である。  FIG. 19 is a view showing a conventional polymer electrolyte fuel cell.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、図面を参照してこの発明の実施の形態を説明する。この実施め形態の固体  Embodiments of the present invention will be described below with reference to the drawings. Solid of this embodiment
差薺え用紙(規則 26) 高分子型燃料電池は、図 1及び図 2に示すように、一対の端板 10, 10の間に平板状 のセルユニット 12が多層に(この例では 3層)積層されて構成されて!、る。各セルュ- ット 12には、同一平面内にセル 14が縦に 3列、横に 3列、計 9個が配置されている。 セルユニット 12の積層数、セルユニット 12におけるセル 14の平面形状及び配置パタ ーンゃ配置数は、必要に応じて適宜に設定することができる。 Refill paper (Rule 26) As shown in FIGS. 1 and 2, the polymer fuel cell is constructed by laminating flat cell units 12 between a pair of end plates 10 and 10 in multiple layers (in this example, three layers)! RU Each cell 12 has nine cells 14 arranged in three rows vertically and three rows horizontally in the same plane. The number of cell units 12 stacked, the planar shape of the cells 14 in the cell unit 12 and the number of arrangement patterns can be appropriately set as necessary.
[0021] 各セルユニット 12は、図 3に示すように、高分子電解質膜 16の両面にそれぞれァノ ード電極 (燃料極) 18と力ソード電極 (酸化剤極) 20がー体に配置された膜電極接合 体 22と、膜電極接合体 22を上下から挟む集電部材 24とを有している。図 4 (a)及び ( b)に示すように、 1枚のセルユニット 12において高分子電解質膜 16は共通であるが 、その上に配置されたアノード電極 18と力ソード電極 20はセル間で独立して配置さ れている。膜電極接合体 22の構成要素は周知のものであり、詳しい説明は省略する 。アノード電極 18と力ソード電極 20以外の部分には高分子電解質膜 16と集電部材 2 4の間にこれらの電極と同じ厚さの絶縁性シート 26が配されている。また、セルュ-ッ ト 12において集電部材 24もセル 14すべてに共通であり、したがって、これらのセル 1 4は並列接続されている。  [0021] As shown in Fig. 3, each cell unit 12 has an anode electrode (fuel electrode) 18 and a force sword electrode (oxidant electrode) 20 arranged on both sides of the polymer electrolyte membrane 16, respectively. The membrane electrode assembly 22 and the current collecting member 24 sandwiching the membrane electrode assembly 22 from above and below are provided. As shown in FIGS. 4 (a) and 4 (b), the polymer electrolyte membrane 16 is common in one cell unit 12, but the anode electrode 18 and the force sword electrode 20 arranged on the same are disposed between the cells. Arranged independently. The constituent elements of the membrane / electrode assembly 22 are well-known and will not be described in detail. An insulating sheet 26 having the same thickness as these electrodes is disposed between the polymer electrolyte membrane 16 and the current collecting member 24 at portions other than the anode electrode 18 and the force sword electrode 20. Further, in the cell 12, the current collecting member 24 is also common to all the cells 14, and therefore these cells 14 are connected in parallel.
[0022] 集電部材 24は、この実施の形態では、図 5 (a)に示すように、各セル 14のアノード 電極 18または力ソード電極 20に接する接電極部 28と、これを囲む枠部 30とが一体 になって板状に形成されている。枠部 30は、外周側の外枠部 32と外枠部 32内を仕 切る 2つの仕切部 34とから構成されている。この例では枠部 30は接電極部 28より肉 厚とし、構造的強度を維持している。集電部材 24は、所定の強度を持つ良導電体で あれば、適宜の素材を採用することができるが、強度、電導性の観点から金属が好適 である。すなわち、集電部材を金属で作製することにより、その強度と良導電性を利 用して、小型化と効率の向上を図ることができる。この例では、薄くても積層構造を維 持できるような強度を有する Niが採用されている。接電極部 28には、図 5 (b)のように 複数の穴 36を千鳥状に均等配置させて、反応流体であるガスや液体を透過可能に している。この例では、穴径は φ 3.0πιπι、穴のピッチは 4.5mmであり、開孔率は約 0.4 である。接電極部 28は枠部 30より肉薄になっており、反応流体の流通を容易にして いる。 [0023] このような構成において、高分子電解質膜 16上で発生した電流は薄い接電極部 2 8を経由して枠部 30に集められる。接電極部 28は、カーボンより導電性の高い良導 電物質である金属によって作られているため、肉薄であっても、従来のグラフアイト製 のセパレータで集電される場合よりもオーム抵抗損失(=ジュール熱)を小さくするこ とができる。発明者による計算によれば、 Niを素材として開孔率を 0.4にした場合、接 電極部 28の厚さを 8 m以上とすれば、接電極部 28におけるオーム抵抗損失を膜電 極接合体 22におけるオーム抵抗損失の 5%以下に抑えることができることが分力つた In this embodiment, as shown in FIG. 5 (a), the current collecting member 24 includes a contact electrode portion 28 in contact with the anode electrode 18 or the force sword electrode 20 of each cell 14, and a frame portion surrounding the contact electrode portion 28. 30 is integrated into a plate shape. The frame portion 30 includes an outer frame portion 32 on the outer peripheral side and two partition portions 34 that cut the inside of the outer frame portion 32. In this example, the frame part 30 is thicker than the contact electrode part 28 to maintain the structural strength. The current collecting member 24 may be made of any appropriate material as long as it is a good conductor having a predetermined strength, but a metal is preferable from the viewpoint of strength and conductivity. That is, when the current collecting member is made of metal, it is possible to reduce the size and improve the efficiency by utilizing its strength and good conductivity. In this example, Ni is used, which has the strength to maintain the laminated structure even if it is thin. As shown in FIG. 5 (b), a plurality of holes 36 are arranged uniformly in a staggered manner in the contact electrode portion 28 so that a gas or liquid as a reaction fluid can be transmitted. In this example, the hole diameter is φ3.0πιπι, the hole pitch is 4.5 mm, and the hole area ratio is about 0.4. The contact electrode part 28 is thinner than the frame part 30 and facilitates the flow of the reaction fluid. In such a configuration, the current generated on the polymer electrolyte membrane 16 is collected in the frame portion 30 via the thin contact electrode portion 28. Since the contact electrode part 28 is made of a metal, which is a good conductive material having higher conductivity than carbon, even if it is thin, the ohmic resistance loss is higher than that when current is collected by a conventional graphite separator. (= Joule heat) can be reduced. According to the calculation by the inventor, when the hole area ratio is 0.4 using Ni as a material, the ohmic resistance loss in the contact electrode portion 28 is reduced to a membrane electrode assembly if the thickness of the contact electrode portion 28 is 8 m or more. It was possible to reduce the ohmic resistance loss at 22 to less than 5%.
[0024] 集電部材 24は、例えば、図 6に示すように主に枠部 30を構成する肉厚部 38と、主 に接電極部 28を構成する肉薄部 40とから構成することができる。肉厚部 38は、図 7 に示すように、外枠部 32と、 2つの仕切部 34とを有し、肉厚の板材を打ち抜き加工等 することにより作製されている。一方、肉薄部 40は、図 8に示すように、枠部 30と接電 極部 28の穴 36がー体に形成されており、打ち抜き加工やエッチングカ卩ェにより作製 されている。これらの肉厚部 38、肉薄部 40を通電溶接やレーザー溶接等によって一 体に接合し、必要に応じて接合部に封止榭脂を浸透させて固化させることで、気密 性を維持する。 [0024] The current collecting member 24 can be composed of, for example, a thick portion 38 mainly constituting the frame portion 30 and a thin portion 40 mainly constituting the contact electrode portion 28 as shown in FIG. . As shown in FIG. 7, the thick portion 38 has an outer frame portion 32 and two partition portions 34, and is manufactured by punching a thick plate material or the like. On the other hand, as shown in FIG. 8, the thin portion 40 has a frame portion 30 and a hole 36 in the contact electrode portion 28 formed in a body, and is manufactured by punching or etching. The thick portion 38 and the thin portion 40 are joined together by current welding, laser welding, or the like, and if necessary, the sealing resin is infiltrated into the joint portion and solidified to maintain airtightness.
[0025] これらのセルユニット 12は、同じ極性の電極が向かい合うように積層されている。図 2に示すように、この例では、上段のセル 14と中段のセル 14はアノード電極 18どうし を対向させ、中段のセル 14と下段のセル 14は力ソード電極 20どうしを対向させてい る。端板 10とセルユニット 12、及び隣接するセルユニット 12どうしの間には、集電部 材 24の枠部 30と対応する位置にスぺーサ、すなわち、アノード側スぺーサ 42aまた は力ソード側スぺーサ 42cが配置されている。各スぺーサ 42a, 42cには、図 9に示 すように、外枠部 44と、各セル 14の電極に接する接電極部 28を「行」または「列」方 向に仕切る仕切部 46を備えている。これにより、端板 10とセルユニット 12、及び隣接 するセルユニット 12どうしの間に電極面に沿った反応流体供給空間、すなわち、ァノ ード反応流体供給空間 48aと力ソード反応流体供給空間 48cが、同一のセルユニット 12にお 、てそれぞれ複数列(図示例では 3列)形成されて!、る。燃料電池の場合、 力ソード電極 20に供給される酸化剤は酸素や酸素が含まれる空気のような気体が一 般的であるが、液体酸素のような液体であってもよい。また、アノード電極に供給され る燃料は水素などの気体の他に、メタノールゃジメチルエーテルその他類似のアル コール系物質のような液体であってもよい。 [0025] These cell units 12 are laminated so that electrodes of the same polarity face each other. As shown in FIG. 2, in this example, the upper cell 14 and the middle cell 14 are opposed to the anode electrode 18, and the middle cell 14 and the lower cell 14 are opposed to the force sword electrode 20. Between the end plate 10 and the cell unit 12 and between adjacent cell units 12, a spacer, that is, an anode-side spacer 42a or a force sword is provided at a position corresponding to the frame 30 of the current collector 24. A side spacer 42c is arranged. As shown in FIG. 9, each spacer 42a, 42c has an outer frame portion 44 and a partition portion 46 that partitions the contact electrode portion 28 in contact with the electrode of each cell 14 in the “row” or “column” direction. It has. Thus, the reaction fluid supply space along the electrode surface between the end plate 10 and the cell unit 12, and the adjacent cell units 12, that is, the anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c. However, a plurality of rows (three rows in the illustrated example) are formed in the same cell unit 12! In the case of a fuel cell, the oxidant supplied to the force sword electrode 20 is a single gas such as oxygen or air containing oxygen. Generally, a liquid such as liquid oxygen may be used. Further, the fuel supplied to the anode electrode may be a liquid such as methanol, dimethyl ether, or a similar alcohol-based substance, in addition to a gas such as hydrogen.
[0026] スぺーサ 42a, 42cは、このようにセルユニット 12どうしの間に気密な反応流体供給 空間 48a, 48cを形成するとともに、セルユニット 12の集電部材 24どうしの電気的絶 縁を行う。アノード反応流体供給空間 48aと力ソード反応流体供給空間 48cは、積層 されたセルユニット 12の間に交互に形成され、隣接するセルユニット 12間に形成さ れた反応流体供給空間 48a, 48cはこれらのセルユニット 12に共有されている。ァノ 一ド側スぺーサ 42a力ソード側スぺーサ 42cは、基本的に同じ形状であるが、図 9 (a) と (b)に示すように、互いに直交する向きに配置されている。これにより、図 1に示すよ うに、アノード反応流体供給空間 48aと力ソード反応流体供給空間 48cは互いに直 交する方向に延びて形成されている。この実施の形態では、スぺーサ 42a, 42cは図 7に示した集電部材 24の肉厚部 38と同じ形状になっているが、上記のような機能を 果たす限り、形状は適宜に採用可能である。なお、高分子電解質膜 16、集電部材 2 4、スぺーサ 42a, 42c等のセルユニット 12を構成する部品には、この実施の形態で は四隅にピン穴 49が設けられ、これにピン(図示略)を挿通することにより、セルュ- ット 12の積層体である固体高分子型燃料電池を精度良ぐ効率的に組み立てること ができる。  The spacers 42a and 42c thus form the airtight reaction fluid supply spaces 48a and 48c between the cell units 12, and also electrically isolate the current collecting members 24 of the cell unit 12. Do. The anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c are alternately formed between the stacked cell units 12, and the reaction fluid supply spaces 48a and 48c formed between the adjacent cell units 12 are these. Cell unit 12 is shared. The anode side spacer 42a The force sword side spacer 42c has basically the same shape, but is arranged in an orthogonal direction as shown in FIGS. 9 (a) and 9 (b). . Thus, as shown in FIG. 1, the anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c are formed so as to extend in a direction perpendicular to each other. In this embodiment, the spacers 42a and 42c have the same shape as the thick portion 38 of the current collecting member 24 shown in FIG. 7, but the shape is appropriately adopted as long as the above functions are achieved. Is possible. In this embodiment, pin holes 49 are provided at the four corners of the components constituting the cell unit 12 such as the polymer electrolyte membrane 16, the current collecting member 24, and the spacers 42a and 42c. By inserting (not shown), it is possible to assemble the polymer electrolyte fuel cell that is a laminate of the cell 12 with high accuracy and efficiency.
[0027] 図 10 (a)は、集電部材の他の実施の形態を示すもので、ここでは、反応流体供給 空間を形成するために肉厚部 38に形成した開口を桁によって区分したものである。 この桁が肉薄部 40の接電極部を支えることにより、当該部分を補強することができる 。また図 10 (b)は、肉薄部 40の通過ロカ 接電極部 28に渡る領域の補強のために 柱状部材を設けたもので、これにより、反応流体供給空間を挟んで対向する肉薄部 4 0に設けられた柱状部材どうしが互いに突き合わせられることにより、当該部分を補強 し、気密性を向上させることができる。  [0027] FIG. 10 (a) shows another embodiment of the current collecting member, in which the opening formed in the thick portion 38 is divided by a girder to form a reaction fluid supply space. It is. The girder supports the contact electrode portion of the thin portion 40, so that the portion can be reinforced. FIG. 10 (b) shows a structure in which a columnar member is provided to reinforce the region of the thin portion 40 that extends to the passing through contact electrode portion 28, whereby the thin portion 40 facing the sandwiched reaction fluid supply space is provided. Since the columnar members provided on each other face each other, the portions can be reinforced and the airtightness can be improved.
[0028] 図 1に示すように、 2枚の端板 10は、それぞれ外側に流路 62によってマ-ホールド が構成されており、流路 62には外部供給配管及び排出配管(図示略)に接続するた めの接続口 64a, 65a, 64c, 65cが設けられている。すなわち、一方の(図 1で上側 の)端板 10にはアノード反応流体の接続口 64a, 65aが接続され、他方の(図 1で下 側の)端板 10には、力ソード反応流体の接続口 64c, 65cが接続されている。また、 スぺーサ 42a, 42c、集電部材 24及び膜電極接合体 22には、アノード反応流体供 給空間 48aと力ソード反応流体供給空間 48cにアノード反応流体または力ソード反応 流体をそれぞれ流通させるための通過口 53a, 53c, 54a, 54cが形成されている。 As shown in FIG. 1, each of the two end plates 10 has a marquee formed by a flow path 62 on the outer side, and the flow path 62 includes an external supply pipe and a discharge pipe (not shown). Connection ports 64a, 65a, 64c and 65c are provided for connection. That is, one (upper side in Figure 1 The end plate 10 is connected to the anode reaction fluid connection ports 64a and 65a, and the other end plate 10 (lower side in FIG. 1) is connected to the force sword reaction fluid connection ports 64c and 65c. Yes. Further, the anode reaction fluid or the force sword reaction fluid is circulated in the spacers 42a and 42c, the current collecting member 24, and the membrane electrode assembly 22 in the anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c, respectively. Passing ports 53a, 53c, 54a, 54c are formed.
[0029] これらの通過口 53a, 53c, 54a, 54cは、端板 10に形成されたアノード反応流体ま たは力ソード反応流体の供給口 50a, 50c及び排出口 52a, 52cと対応する位置に 形成され、積層状態において供給口 50a, 50cは通過口 53a, 53cを介してアノード 反応流体供給空間 48aと力ソード反応流体供給空間 48cに連通し、排出口 52a, 52 cは、通過口 54a, 54cを介してアノード反応流体供給空間 48aと力ソード反応流体 供給空間 48cに連通する。これにより、アノード反応流体または力ソード反応流体を 反応流体供給空間 48a, 48cに流通させる供給流路と排出流路が、積層方向に沿つ て延びるように形成される。積層された部材間にお 、てガス等の流体がリークしな!ヽ ように充分なシールがなされて 、る。  [0029] These passage ports 53a, 53c, 54a, 54c are located at positions corresponding to the anode reaction fluid or force sword reaction fluid supply ports 50a, 50c and the discharge ports 52a, 52c formed in the end plate 10. In the stacked state, the supply ports 50a and 50c communicate with the anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c through the passage ports 53a and 53c, and the discharge ports 52a and 52c have passage ports 54a, The anode reaction fluid supply space 48a and the force sword reaction fluid supply space 48c communicate with each other through 54c. As a result, a supply flow path and a discharge flow path for allowing the anode reaction fluid or the force sword reaction fluid to flow through the reaction fluid supply spaces 48a and 48c are formed so as to extend along the stacking direction. Gas and other fluids do not leak between the laminated members! A sufficient seal is made.
[0030] これらの供給流路及び排出流路は、他極側の反応流体供給空間とは交差しないよ うに互いに直交する方向に形成されている。このように、アノード反応流体及びカソー ド反応流体の流れ方向が互いに直交するように通過口を配置することで、隣り合うセ ルユニットの供給 z排出通過口を共通化することが可能となり、流体供給口の簡略 ィ匕、装置の小型化を図ることができる。また、この実施の形態では、力ソード反応流体 の排出口 52cが積層された構造体の下側に設けられているので、力ソードにおいて 生成された水が凝縮したとしても、排出が円滑に行われる。  [0030] These supply flow path and discharge flow path are formed in directions orthogonal to each other so as not to intersect with the reaction fluid supply space on the other electrode side. Thus, by arranging the passage ports so that the flow directions of the anode reaction fluid and the cathode reaction fluid are orthogonal to each other, it becomes possible to share the supply z discharge passage ports of adjacent cell units, and to supply the fluid. Mouth simplification and downsizing of the device can be achieved. Further, in this embodiment, since the discharge port 52c for the force sword reaction fluid is provided on the lower side of the laminated structure, even if the water generated in the force sword is condensed, the discharge is smoothly performed. Is called.
[0031] また、この実施の形態では、端板別にアノード反応流体及び力ソード反応流体の接 続口、供給口、排出口を分けることによって、配管を簡素化し、燃料タンクなど力もの 流体供給形態を簡略ィ匕することができる。勿論、このような接続口 64a, 65a, 64c, 6 5c、供給口 50a, 50c及び排出口 52a, 52cの配置は、流体源や供給配管の配置、 隣接して配置される装置等との関係で適宜に定めることができる。また、力ソード側供 給口 50c、排出口 52cについては、一方または双方に配管を設置しない形態もある。 特に、力ソード側反応流体に空気を用いた場合には、供給側 ·排出側ともに配管を用 いなくてもよい。 [0031] Further, in this embodiment, the connection port, supply port, and discharge port of the anode reaction fluid and the force sword reaction fluid are separated for each end plate, thereby simplifying the piping and providing a powerful fluid supply form such as a fuel tank. Can be simplified. Of course, the arrangement of the connection ports 64a, 65a, 64c, 65c, the supply ports 50a, 50c, and the discharge ports 52a, 52c is related to the arrangement of the fluid source and the supply piping, and the devices arranged adjacent to each other. Can be determined as appropriate. There is also a configuration in which piping is not installed on one or both of the power sword side supply port 50c and the discharge port 52c. Especially when air is used as the reaction fluid on the force sword side, piping must be used on both the supply side and the discharge side. It does not have to be.
[0032] これらのアノード反応流体または力ソード反応流体の各供給流路と排出流路は、図 1に示すように、各アノード反応流体供給空間 48aまたは力ソード反応流体供給空間 48cにおいてそれぞれセル 14を挟むような位置に交互に開口している。したがって、 これらの流体は、図 11ないし図 12に示すように、供給流路から各アノード反応流体 供給空間 48aまたは力ソード反応流体供給空間 48cに流入し、各アノード電極 18面 または力ソード電極 20面に沿って流れて対向する排出流路に流出する。すなわち、 これらの流体は 1つのセル 14を横切った後に排出される。このように、各反応流体供 給空間 48a, 48cにおいて一定の距離を流れるので、安定した発電作用がもたらされ る。  [0032] As shown in FIG. 1, the supply flow path and discharge flow path of these anode reaction fluid or force sword reaction fluid are the cells 14 in each anode reaction fluid supply space 48a or force sword reaction fluid supply space 48c, respectively. It is opened alternately at a position that sandwiches. Accordingly, as shown in FIGS. 11 to 12, these fluids flow into the anode reaction fluid supply space 48a or the force sword reaction fluid supply space 48c from the supply flow path, and face each anode electrode 18 or force sword electrode 20 It flows along the surface and flows out to the opposing discharge channel. That is, these fluids are discharged after crossing one cell 14. As described above, since each reaction fluid supply space 48a, 48c flows through a certain distance, a stable power generation operation is brought about.
[0033] なお、セルユニット 12の内側に位置する供給口 50a, 50c、排出口 52a, 52c及び 通過口 53a, 53c, 54a, 54cは、これらの通過口を挟む両側 2つのセル 14の流体流 路となるので、外枠部に位置する開口より大きな開口面積を有すると各セル 14が均 一に反応流体を供給し易くなる。  [0033] The supply ports 50a, 50c, the discharge ports 52a, 52c, and the passage ports 53a, 53c, 54a, 54c located inside the cell unit 12 are the fluid flows of the two cells 14 on both sides sandwiching these passage ports. Therefore, if the opening area is larger than the opening located in the outer frame portion, the cells 14 can easily supply the reaction fluid uniformly.
[0034] この実施の形態では、各セルユニット 12の集電部材 24には、電極端子 56a, 56c 力 図 13に示すように、集電部材 24の対向する辺に沿って設けられている。この実 施の形態では、電極端子 56a, 56cは、図 13 (a)に示すように、反応流体供給空間 4 8a, 48cにおける流体流れ方向において対向する両端部に設けられており、図 13 (b )に示す流体流れ方向の側部ではない。これは、接電極部 28から集電部材 24の外 枠部 44を経由してこれらの電極端子 56a, 56cへ向カゝぅ流れの経路の長さは等しい 1S 接電極部 28から仕切部 46を経由して電極端子 56a, 56cへ向かう流れの経路 の長さは、図 13 (a)に示す場合の方が短くなり、その分オーム抵抗損失を小さくする ことができる力らである。したがって、集電部材 24に集められた電流を電池外部へ引 き出す電極端子 56a, 56cは流体流れ方向の端部とすることが最良の形態となる。ま た所定の電圧を得るためにセルユニット 12を必要数だけ積層し、これらの電極端子 5 6a, 56cどうしを内部配線 58により図 14に示すように直列に接続することができる。 内部配線 58のその方法は、図 1に示すように 3次元的な接続によって実現可能であ る。この例では内部配線 58におけるオーム抵抗損失を減らすために断面を広くして あるが必要により内部配線 58を細くすることもできる。 In this embodiment, the current collecting member 24 of each cell unit 12 is provided along the opposing sides of the current collecting member 24 as shown in FIG. 13 at the electrode terminals 56a and 56c. In this embodiment, as shown in FIG. 13 (a), the electrode terminals 56a and 56c are provided at opposite ends in the fluid flow direction in the reaction fluid supply spaces 48a and 48c. It is not the side of the fluid flow direction shown in b). This is because the length of the flow path from the contact electrode portion 28 to the electrode terminals 56a and 56c via the outer frame portion 44 of the current collecting member 24 is equal to the length of the 1S contact electrode portion 28 to the partition portion 46. The length of the flow path toward the electrode terminals 56a and 56c via the line is shorter in the case shown in FIG. 13 (a), and is the force that can reduce the ohmic resistance loss. Therefore, the best mode is that the electrode terminals 56a and 56c for drawing the current collected in the current collecting member 24 to the outside of the battery are end portions in the fluid flow direction. Further, in order to obtain a predetermined voltage, the required number of cell units 12 can be stacked, and these electrode terminals 56a and 56c can be connected in series by internal wiring 58 as shown in FIG. The method of the internal wiring 58 can be realized by a three-dimensional connection as shown in FIG. In this example, the cross section is widened to reduce ohmic resistance loss in internal wiring 58. However, the internal wiring 58 can be made thinner if necessary.
[0035] 以下、この実施の形態の膜電極接合体(図 4参照)の製造方法について、図 15な いし図 18を参照して説明する。以下の方法は、アノード電極または力ソード電極を形 成するための焼結多孔質炭素膜を形成し、それを高分子電解質膜上に転写するも のである。まず、図 15 (a)に示すように、適当な基板 70、例えばシリコンウェハの表 面に酸ィ匕処理を行って SiO膜 72を形成する。そして、図 15 (b)に示すように、この Hereinafter, a method for manufacturing the membrane electrode assembly (see FIG. 4) of this embodiment will be described with reference to FIG. 15 or FIG. The following method forms a sintered porous carbon membrane for forming an anode electrode or a force sword electrode, and transfers it onto the polymer electrolyte membrane. First, as shown in FIG. 15 (a), a suitable substrate 70, for example, a surface of a silicon wafer is subjected to an oxidation treatment to form an SiO film 72. And as shown in Fig. 15 (b)
2  2
基板 70の表面にカーボン粉末 74を印刷し、これを還元炉において 1000°C程度で 高温熱処理し、図 15 (c)及び (d)に示すように、カーボン粉末 74を焼結させて焼結 カーボン皮膜 76を形成する。  Carbon powder 74 is printed on the surface of the substrate 70, and this is subjected to high-temperature heat treatment at about 1000 ° C in a reduction furnace, and the carbon powder 74 is sintered and sintered as shown in FIGS. 15 (c) and (d). A carbon film 76 is formed.
[0036] 次に、このカーボン粉末焼結膜に、図 16に示す工程によって触媒を担持させる。 Next, a catalyst is supported on the sintered carbon powder film by the process shown in FIG.
すなわち、図 16 (a)に示すように、 Pt((NH ) (NO ) /エタノール溶液のような触媒金属  That is, as shown in Fig. 16 (a), a catalytic metal such as a Pt ((NH) (NO) / ethanol solution is used.
3 2 2 2  3 2 2 2
溶液 78を滴下し、図 16 (b)に示すように、これを減圧下で乾燥し、さら〖こ、例えば 40 0°Cの N +H雰囲気中で熱処理を行って、図 16 (c)に示すように Pt粒子 80を還元 Solution 78 was dropped, and as shown in FIG. 16 (b), this was dried under reduced pressure, and further heat treated in a N + H atmosphere at 400 ° C., for example, as shown in FIG. 16 (c). Reduce Pt particles 80 as shown in
2 2 twenty two
-析出させ、電極膜 82を作成する。  -Deposit and make electrode film 82.
[0037] 次に、このように作成した電極膜 82を、図 17に示す工程によって転写シート 84に 転写する。転写シート 84は、 PET等の熱可塑性榭脂からなるキャリアー榭脂層と接 着用榭脂層とからなり、常温では被着体を強固に接着し、必要な時に、例えば加熱 等によって粘着力を失い、ダメージを与えずに被着体を簡単に剥離することができる ものである。このような転写シート 84を、図 17 (a)に示すように、電極膜 82を形成した 基板 70表面に貼付し、さらに、稀薄フッ化水素溶液で SiO膜 72をエッチング除去す Next, the electrode film 82 thus created is transferred to the transfer sheet 84 by the process shown in FIG. The transfer sheet 84 is composed of a carrier resin layer made of a thermoplastic resin such as PET and an adhesive resin layer, and adheres the adherend firmly at room temperature. It is easy to peel off the adherend without losing or damaging it. As shown in FIG. 17A, such a transfer sheet 84 is attached to the surface of the substrate 70 on which the electrode film 82 is formed, and the SiO film 72 is removed by etching with a dilute hydrogen fluoride solution.
2  2
ることにより、図 17 (b)に示すように、基板 70から分離する。次に、図 17 (c)に示すよ うに、基板 70から剥離した電極膜 82にナフイオン (商品名)オリゴマー溶液 86を含浸 させ、ナフイオン充填層 87を形成する。ナフイオンオリゴマーは、電極と高分子電解 質膜との結合性を高め、プロトンを電極内部まで運ぶ働きをする。  As a result, the substrate is separated from the substrate 70 as shown in FIG. Next, as shown in FIG. 17C, the electrode film 82 peeled from the substrate 70 is impregnated with a naphthion (trade name) oligomer solution 86 to form a naphthion packed layer 87. Naphion oligomers enhance the bonding between the electrode and the polymer electrolyte membrane and carry protons into the electrode.
[0038] 以上の工程で作製した転写シート 84上のアノード電極膜 82a及び力ソード電極膜 8 2cを、図 18に示す工程により、さらに高分子電解質膜 88上に転写する。すなわち、 図 18 (a)に示すように、高分子電解質膜 88の両面にそれぞれの電極膜 82を形成し た転写シート 84を所定位置に取り付け、図 18 (b)に示すように、例えば 130°Cのホッ トプレスで一体ィ匕し、さらに、図 18 (c)に示すように、熱で接着力を失った転写シート 84を除去して膜電極接合体とする。 [0038] The anode electrode film 82a and the force sword electrode film 82c on the transfer sheet 84 produced by the above process are further transferred onto the polymer electrolyte film 88 by the process shown in FIG. That is, as shown in FIG. 18 (a), the transfer sheet 84 having the electrode films 82 formed on both surfaces of the polymer electrolyte membrane 88 is attached at predetermined positions, and as shown in FIG. ° C Then, as shown in FIG. 18 (c), the transfer sheet 84, which has lost its adhesive strength due to heat, is removed to form a membrane electrode assembly.
[0039] 以上のように、この実施の形態の膜電極接合体の製造工程によれば、印刷等で成 膜したカーボン膜に触媒を担持させて電極膜 82を形成し、これを高分子電解質膜 8 8に転写させるので、 1枚のセルユニットに用いる膜電極接合体を効率良く製造する ことができる。 [0039] As described above, according to the manufacturing process of the membrane electrode assembly of this embodiment, the catalyst is supported on the carbon film formed by printing or the like to form the electrode film 82, and this is formed into the polymer electrolyte. Since the film 88 is transferred, a membrane electrode assembly used for one cell unit can be efficiently produced.
[0040] 上記の方法では、基板 70に形成した電極膜 82を転写シート 84に転写して力ゝら高 分子電解質膜 88に転写した力 例えば、カーボンペーパーのような導電性素材の上 にカーボン粉末を印刷して多孔質層と稠密層力もなる炭素膜を形成し、多孔質層に 触媒を担持させて電極膜 82を作成してもよい。この場合、このような電極膜 82を多孔 質層側を高分子電解質膜 88に向けて貼付する。なお、上記の工程においては、力 一ボン素材として黒鉛粉末を用いたが、必要に応じて活性炭繊維やカーボンナノフ アイバー等適宜の素材を用いることができる。  [0040] In the above method, the force transferred from the electrode film 82 formed on the substrate 70 to the transfer sheet 84 and transferred to the high molecular electrolyte film 88, for example, carbon on a conductive material such as carbon paper. The electrode film 82 may be formed by printing a powder to form a porous film and a carbon film having a dense layer force, and supporting the catalyst on the porous layer. In this case, such an electrode film 82 is attached with the porous layer side facing the polymer electrolyte film 88. In the above steps, graphite powder was used as the strong material, but an appropriate material such as activated carbon fiber or carbon nanofiber can be used as necessary.
[0041] 以上この発明を実施の形態に即して説明したが、この発明はこれらに限定されるも のではなぐその主旨に沿って種々の改変が可能である。例えば、集電部材の素材 としては、金属に限定されることなぐ導電性と強度の条件を満たすものであれば、力 一ボン等の適宜の素材を用いることができる。また、反応流体を通過させるための構 造として、穴を形成する他に、多孔質素材を用いることもできる。  Although the present invention has been described with reference to the embodiments, the present invention is not limited to these, and various modifications can be made in accordance with the gist thereof. For example, as a material for the current collecting member, an appropriate material such as a force bonbon can be used as long as it satisfies the conditions of conductivity and strength without being limited to metal. Further, as a structure for allowing the reaction fluid to pass therethrough, a porous material can be used in addition to forming a hole.
産業上の利用可能性  Industrial applicability
[0042] 本発明は、特に、家庭用あるいは携帯電子機器の電源等として好適に用いられる。 [0042] The present invention is particularly suitably used as a power source for home or portable electronic devices.

Claims

請求の範囲 The scope of the claims
[1] 高分子電解質膜の両面にそれぞれアノード電極と力ソード電極とがー体に取り付け られた膜電極接合体と、前記アノード電極及び Z又は力ソード電極に面接触するよう に設置された通気性を有する集電部材を備えたセルユニットを有し、  [1] A membrane electrode assembly in which an anode electrode and a force sword electrode are respectively attached to both sides of a polymer electrolyte membrane, and an air vent installed so as to be in surface contact with the anode electrode and the Z or force sword electrode Having a cell unit equipped with a current collecting member having
複数枚の前記セルユニットを前記アノード電極どうしまたは前記力ソード電極どうし が対向するように積層して配置し、かつこれらの対向する電極の間にこれらの電極に 共通の反応流体供給空間を設けたことを特徴とする固体高分子型燃料電池。  A plurality of the cell units are stacked so that the anode electrodes or the force sword electrodes are opposed to each other, and a common reaction fluid supply space is provided between these opposed electrodes. A polymer electrolyte fuel cell characterized by the above.
[2] 前記集電部材は複数の穴を形成した良電導性素材力 なることを特徴とする請求 項 1に記載の固体高分子型燃料電池。  [2] The polymer electrolyte fuel cell according to [1], wherein the current collecting member has a highly conductive material force in which a plurality of holes are formed.
[3] 前記集電部材は多孔質の良電導性素材力 なることを特徴とする請求項 1に記載 の固体高分子型燃料電池。 [3] The polymer electrolyte fuel cell according to [1], wherein the current collecting member has a porous, highly conductive material force.
[4] 前記セルユニットには、積層時に前記反応流体供給空間に連通する流体流路を構 成する通過口が設けられて 、ることを特徴とする請求項 1な 、し請求項 3の 、ずれか に記載の固体高分子型燃料電池。 [4] The cell unit is provided with a passage opening that constitutes a fluid flow path communicating with the reaction fluid supply space at the time of stacking. A polymer electrolyte fuel cell according to any one of the above.
[5] 1つの前記セルユニットにお 、て、前記膜電極接合体は複数の領域を有し、前記 通過口はこれらの領域毎に設けられていることを特徴とする請求項 4に記載の固体 高分子型燃料電池。 [5] The cell electrode assembly according to claim 4, wherein the membrane electrode assembly has a plurality of regions in one cell unit, and the passage port is provided for each of the regions. Solid polymer fuel cell.
[6] 1つの前記セルユニットにおいて、前記反応流体供給空間は複数に区画して形成 されて 、ることを特徴とする請求項 1な 、し請求項 5の 、ずれかに記載の固体高分子 型燃料電池。  [6] The solid polymer according to any one of claims 1 and 5, wherein, in one cell unit, the reaction fluid supply space is divided into a plurality of sections. Type fuel cell.
[7] 前記セルユニットの層間を絶縁する絶縁部材が設けられて 、ることを特徴とする請 求項 1ないし請求項 6のいずれかに記載の固体高分子型燃料電池。  [7] The polymer electrolyte fuel cell according to any one of [1] to [6], wherein an insulating member for insulating between the layers of the cell unit is provided.
[8] 前記各セルユニットが直列に接続されるように前記集電部材どうしを 3次元的に導 通させる導通構造が設けられていることを特徴とする請求項 7に記載の固体高分子 型燃料電池。  [8] The solid polymer mold according to [7], wherein a conductive structure for three-dimensionally connecting the current collecting members is provided so that the cell units are connected in series. Fuel cell.
[9] 前記セルユニットの層間を密封するシール部材が設けられて 、ることを特徴とする 請求項 1ないし請求項 8のいずれかに記載の固体高分子型燃料電池。  [9] The polymer electrolyte fuel cell according to any one of [1] to [8], wherein a sealing member for sealing between the layers of the cell unit is provided.
[10] 前記アノード電極に供給されるアノード反応流体と前記力ソード電極に供給される 力ソード反応流体の流れ方向が前記各反応流体供給空間において互いに直交する ことを特徴とする請求項 1な ヽし請求項 9の ヽずれかに記載の固体高分子型燃料電 池。 [10] Anode reaction fluid supplied to the anode electrode and supplied to the force sword electrode 10. The polymer electrolyte fuel cell according to claim 1, wherein flow directions of the force sword reaction fluid are orthogonal to each other in each of the reaction fluid supply spaces.
[11] 前記セルユニットはほぼ水平に配置され、前記力ソード反応流体の排出口は積層 されたセルユニットの下側に設けられて 、ることを特徴とする請求項 1な 、し請求項 1 [11] The cell unit is arranged substantially horizontally, and the outlet of the force sword reaction fluid is provided below the stacked cell units.
0のいずれかに記載の固体高分子型燃料電池。 The polymer electrolyte fuel cell according to any one of 0.
[12] 前記セルユニットまたはセルユニットを構成する部品には、これらを積層する際の位 置決めをするための位置決め要素が設けられていることを特徴とする請求項 1ないし 請求項 11のいずれかに記載の固体高分子型燃料電池。 12. The cell unit or a component constituting the cell unit is provided with a positioning element for determining a position when stacking them. A polymer electrolyte fuel cell according to claim 1.
[13] 高分子電解質膜の両面にそれぞれ複数のアノード電極と力ソード電極とがー体に 取り付けられた膜電極接合体を製造する方法であって、 [13] A method for producing a membrane electrode assembly in which a plurality of anode electrodes and force sword electrodes are attached to both sides of a polymer electrolyte membrane,
前記複数のアノード電極または力ソード電極を予め表面に設けたシートを作成し、 このシートから記複数のアノード電極または力ソード電極を前記高分子電解質膜に 転写することを特徴とする膜電極接合体の製造方法。  A membrane electrode assembly, wherein a sheet on which the plurality of anode electrodes or force sword electrodes are provided in advance is prepared, and the plurality of anode electrodes or force sword electrodes are transferred from the sheet to the polymer electrolyte membrane. Manufacturing method.
PCT/JP2005/003058 2005-02-24 2005-02-24 Solid polymer fuel cell and method for producing same WO2006090464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/003058 WO2006090464A1 (en) 2005-02-24 2005-02-24 Solid polymer fuel cell and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/003058 WO2006090464A1 (en) 2005-02-24 2005-02-24 Solid polymer fuel cell and method for producing same

Publications (1)

Publication Number Publication Date
WO2006090464A1 true WO2006090464A1 (en) 2006-08-31

Family

ID=36927115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003058 WO2006090464A1 (en) 2005-02-24 2005-02-24 Solid polymer fuel cell and method for producing same

Country Status (1)

Country Link
WO (1) WO2006090464A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186594A (en) * 2007-01-26 2008-08-14 Tomoki Yamazaki Mea structure of fuel cell and structure of fuel cell
JP2009099567A (en) * 2007-10-17 2009-05-07 Antig Technology Corp Fuel cell stack structure
WO2009119434A1 (en) * 2008-03-24 2009-10-01 ソニー株式会社 Fuel cell unit, fuel cell stack and electronic device
JP2010097810A (en) * 2008-10-16 2010-04-30 Antig Technology Corp Fuel cell stack
JP2011222378A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Fuel cell manufacturing method
JP2013179078A (en) * 2007-08-02 2013-09-09 Sharp Corp Fuel cell stack and fuel cell system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150958A (en) * 1992-10-30 1994-05-31 Sekiyu Sangyo Kasseika Center Solid electrolyte fuel cell
JPH07211339A (en) * 1994-01-13 1995-08-11 Hitachi Ltd Maintenance system for fuel cell
JPH08171925A (en) * 1994-12-19 1996-07-02 Mitsubishi Electric Corp Solid high polymer type fuel cell
JPH097627A (en) * 1995-06-23 1997-01-10 Tanaka Kikinzoku Kogyo Kk Assembling method of fuel cell
JP2000012051A (en) * 1998-04-22 2000-01-14 Toyota Motor Corp Gas separator for fuel cell and fuel cell using the gas separator for the fuel cell
JP2001093564A (en) * 1999-09-24 2001-04-06 Toyota Motor Corp Fuel cell
JP2002050390A (en) * 2000-08-07 2002-02-15 Sony Corp Fuel cell having stack structure
WO2002058176A1 (en) * 2001-01-19 2002-07-25 Sony Corporation Electrode module
JP2002329508A (en) * 2001-05-01 2002-11-15 Nissan Motor Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2003303599A (en) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd Method of manufacturing electrolyte membrane/ electrode joint body for fuel cell
JP2004095553A (en) * 2002-08-14 2004-03-25 Dainippon Printing Co Ltd Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane junction body, and manufacturing method of the same
JP2004165073A (en) * 2002-11-15 2004-06-10 Dainippon Printing Co Ltd Paste composition for forming catalyst layer, transfer sheet for manufacturing catalyst layer-electrolyte membrane layered product, and catalyst layer-electrolyte membrane layered product
JP2004311057A (en) * 2003-04-02 2004-11-04 Dainippon Printing Co Ltd Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150958A (en) * 1992-10-30 1994-05-31 Sekiyu Sangyo Kasseika Center Solid electrolyte fuel cell
JPH07211339A (en) * 1994-01-13 1995-08-11 Hitachi Ltd Maintenance system for fuel cell
JPH08171925A (en) * 1994-12-19 1996-07-02 Mitsubishi Electric Corp Solid high polymer type fuel cell
JPH097627A (en) * 1995-06-23 1997-01-10 Tanaka Kikinzoku Kogyo Kk Assembling method of fuel cell
JP2000012051A (en) * 1998-04-22 2000-01-14 Toyota Motor Corp Gas separator for fuel cell and fuel cell using the gas separator for the fuel cell
JP2001093564A (en) * 1999-09-24 2001-04-06 Toyota Motor Corp Fuel cell
JP2002050390A (en) * 2000-08-07 2002-02-15 Sony Corp Fuel cell having stack structure
WO2002058176A1 (en) * 2001-01-19 2002-07-25 Sony Corporation Electrode module
JP2002329508A (en) * 2001-05-01 2002-11-15 Nissan Motor Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2003303599A (en) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd Method of manufacturing electrolyte membrane/ electrode joint body for fuel cell
JP2004095553A (en) * 2002-08-14 2004-03-25 Dainippon Printing Co Ltd Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane junction body, and manufacturing method of the same
JP2004165073A (en) * 2002-11-15 2004-06-10 Dainippon Printing Co Ltd Paste composition for forming catalyst layer, transfer sheet for manufacturing catalyst layer-electrolyte membrane layered product, and catalyst layer-electrolyte membrane layered product
JP2004311057A (en) * 2003-04-02 2004-11-04 Dainippon Printing Co Ltd Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186594A (en) * 2007-01-26 2008-08-14 Tomoki Yamazaki Mea structure of fuel cell and structure of fuel cell
JP2013179078A (en) * 2007-08-02 2013-09-09 Sharp Corp Fuel cell stack and fuel cell system
JP2009099567A (en) * 2007-10-17 2009-05-07 Antig Technology Corp Fuel cell stack structure
WO2009119434A1 (en) * 2008-03-24 2009-10-01 ソニー株式会社 Fuel cell unit, fuel cell stack and electronic device
JP2010097810A (en) * 2008-10-16 2010-04-30 Antig Technology Corp Fuel cell stack
JP2011222378A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Fuel cell manufacturing method

Similar Documents

Publication Publication Date Title
JP4505204B2 (en) Fuel cell system
USRE41577E1 (en) High power density fuel cell stack using micro structured components
US7270906B2 (en) Solid-oxide fuel cell module for a fuel cell stack
JP4630529B2 (en) Fuel cell system
JP2013149595A (en) Fuel battery stack
JP2008066264A (en) Laminating property improving structure of metal separator for fuel cell stack
JP2009170375A (en) Fuel cell and fuel cell stack
US7569301B2 (en) Fuel cell
JPH0536417A (en) Hollow thin plate type solid electrolytic fuel cell
US6864010B1 (en) Apparatus of high power density fuel cell layer with micro for connecting to an external load
JP2002280049A (en) Integrated type fuel cell
JP2004087311A (en) Fuel cell stack and metallic separator for for fuel cell stack
KR20040105711A (en) Apparatus of high power density fuel cell layer with microstructure components
JP5101866B2 (en) Fuel cell
JP4828841B2 (en) Fuel cell
JP3146758B2 (en) Solid polymer electrolyte fuel cell
MX2011011433A (en) High-volume-manufacture fuel cell arrangement and method for production thereof.
WO2006090464A1 (en) Solid polymer fuel cell and method for producing same
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
US20210043948A1 (en) Fuel cell, cell unit thereof, and cell stack structure body
WO2006090621A1 (en) Solid oxide fuel cell
JP4531019B2 (en) Fuel cell
JP2004119189A (en) Fuel cell
JP5249177B2 (en) Fuel cell system
JP2022125885A (en) Fuel battery cell and fuel battery stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05710659

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5710659

Country of ref document: EP