[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006087833A1 - 真空処理装置における水素原子発生源及び水素原子輸送方法 - Google Patents

真空処理装置における水素原子発生源及び水素原子輸送方法 Download PDF

Info

Publication number
WO2006087833A1
WO2006087833A1 PCT/JP2005/013175 JP2005013175W WO2006087833A1 WO 2006087833 A1 WO2006087833 A1 WO 2006087833A1 JP 2005013175 W JP2005013175 W JP 2005013175W WO 2006087833 A1 WO2006087833 A1 WO 2006087833A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen atom
hydrogen
hydrogen atoms
processing chamber
sio
Prior art date
Application number
PCT/JP2005/013175
Other languages
English (en)
French (fr)
Inventor
Hironobu Umemoto
Atsushi Masuda
Koji Yoneyama
Keiji Ishibashi
Manabu Ikemoto
Original Assignee
Canon Anelva Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corporation filed Critical Canon Anelva Corporation
Priority to US11/816,726 priority Critical patent/US7771701B2/en
Publication of WO2006087833A1 publication Critical patent/WO2006087833A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32871Means for trapping or directing unwanted particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a hydrogen atom generation source and a hydrogen atom transport method in a vacuum processing apparatus.
  • a hydrogen atom generation source capable of effectively suppressing the hydrogen atom generated by the hydrogen atom generation means in the vacuum processing apparatus from recombining and returning to the hydrogen molecule, and the hydrogen atom concentration being attenuated.
  • the present invention relates to a method for transporting hydrogen atoms to a desired location while suppressing the attenuation of the concentration of hydrogen atoms generated in the source.
  • Chemical Vapor Deposition is a method for forming a predetermined thin film on a substrate in the production of various semiconductor devices such as LSI (Large Scale Integrated Circuit) and LCD (Liquid Crystal Display). Widely used as one of the forming processes.
  • Non-Patent Document 1 the probability of annihilation of hydrogen atoms on the surface of stainless steel is 0.20, and it has been reported that 90% of the hydrogen atoms disappear when the stainless steel surface and hydrogen atoms collide 10 times.
  • hydrogen atoms may be used for various applications as described above.
  • concentration of hydrogen atoms is greatly attenuated, it becomes difficult to provide practical use.
  • Non-patent Document 3 it is known that hydrogen atoms can be efficiently generated by decomposition of hydrogen molecules on the surface of a high-temperature metal catalyst body.
  • a raw material gas supply system that supplies a raw material gas into a water-cooled glass chamber, and a power supply mechanism that is disposed in the water-cooled glass chamber 1 It has a heating element (metal catalyst body) that is heated to a high temperature and decomposes the hydrogen gas introduced into the raw material gas supply system force water-cooled glass chamber with a heating element maintained at a high temperature for efficiency. It is considered that hydrogen atoms are often generated and used for the various applications described above.
  • the mechanical strength of the glass chamber is naturally the same as that of the chamber. (For example, the pressure due to the pressure difference between the vacuum and the atmosphere, the water pressure of the cooling water, etc.) is required, so the thickness is required. Glass is known as a material with low thermal conductivity. To satisfy the mechanical strength as described above, when it has a certain thickness, for example, a high-temperature heating element (metal catalyst body) generates hydrogen atoms. In the case of being let down, even if it is water-cooled, it is inevitable that the surface temperature of the inner wall of the chamber will rise.
  • Non-patent document 1 P. Kae_Nune, J. Perrin, J. Jolly, and J. Guillon, Surf. Sci. 360, L495 (1996)
  • Non-patent document 2 J. Phys. D27 ⁇ 1412 (1994)
  • Non-Patent Document 3 J.Appl.Phys. 91 ⁇ 3, page 1650 (2002)
  • the present invention is directed to hydrogen atoms used for various practical applications in various surface treatments such as a CVD method.
  • a hydrogen atom generation source and a hydrogen atom transport method in a vacuum processing system that can effectively transport by recombination by contacting the inner wall surface and returning to hydrogen molecules. It is aimed at that.
  • the hydrogen atom generation source in the vacuum processing apparatus proposed by the present invention is a member of a member surrounding the hydrogen atom generation means on the surface facing the space where the hydrogen atom generation means is arranged. Characterized in that at least a portion is coated with SiO
  • the hydrogen atom generation source includes a transport path for transporting the hydrogen atoms generated by the hydrogen atom generation means from the hydrogen atom generation source, and the inner wall surface of the transport path is made of SiO. It can be in a coated form.
  • the absolute concentration of hydrogen atoms increased by an order of magnitude when the other conditions were the same, compared to the case where there was none.
  • the surface of the member surrounding the hydrogen atom generating means facing the space where the hydrogen atom generating means is disposed is covered with SiO, and the hydrogen atom generating source is further provided.
  • the SiO coating applied to the surface facing the space where the hydrogen atom generating means of the member surrounding the hydrogen atom generating means is disposed is not necessarily the entire surface.
  • the hydrogen atom generation means is a surface of a high-temperature metal catalyst body such as a metal catalyst body in a catalytic CVD (Cat-CVD: Catalytic_CVD) apparatus.
  • a metal catalyst body in a catalytic CVD Catalytic CVD
  • hydrogen atoms can be generated by decomposing hydrogen molecules.
  • Non-Patent Document 3 It has been made clear in Non-Patent Document 3 that hydrogen atoms can be efficiently generated by the decomposition of hydrogen molecules on the surface of the high-temperature metal catalyst body.
  • a raw material gas supply system that supplies a raw material gas into a processing chamber that can be evacuated, and a heating element (metal catalyst body) that is disposed in the processing chamber and is heated to a high temperature by the power supply mechanism.
  • the raw material gas introduced into the processing chamber in a predetermined vacuum state from the raw material gas supply system is decomposed and Z or activated by a heating element (metal catalyst body) maintained at a high temperature, and the processing is performed.
  • a heating element metal catalyst body
  • Cat-CVD Catalytic-CVD
  • Catalytic-CVD Catalytic-CVD
  • hydrogen gas is used as the raw material gas.
  • hydrogen atoms can be generated efficiently.
  • the high-concentration hydrogen atoms generated in this way can be effectively used for termination of dangling bonds in polysilicon and interface stabilization processing of semiconductor devices performed in the catalytic CVD device. Is possible.
  • the member surrounding the hydrogen atom generating means is preferably made of metal and equipped with a cooling system.
  • the temperature of the surface of the member surrounding the metal hydrogen atom generating means facing the space where the hydrogen atom generating means is arranged can be maintained below + 30 ° C by the cooling system.
  • the temperature of the member surrounding the hydrogen atom generating means also affects the attenuation of the hydrogen atom concentration
  • the member surrounding the hydrogen atom generating means is made of metal and includes a cooling system.
  • the surface facing the space where the hydrogen atom generating means of the member surrounding the hydrogen atom generating means is disposed is made of SiO.
  • a member surrounding the metal hydrogen atom generating means for example, a stainless steel or aluminum member can be used.
  • a heating element known in this technical field such as a mechanism for preventing a temperature rise due to heat released from a heating element mounted on a CVD apparatus and maintaining a predetermined temperature.
  • the system can be adopted.
  • the surface temperature is desirably + 30 ° C or lower.
  • the coating with SiO is an organic solution of polysilazane.
  • the medium solution After applying the medium solution, it can be formed by oxidizing it.
  • it can be formed by applying a xylene solution of perhydropolysilazane and then oxidizing it naturally.
  • plasma oxidation treatment is performed from hydrogenated amorphous silicon.
  • the surface roughness of the inner wall of a processing chamber or the like also affects the attenuation of the hydrogen atom concentration.
  • the inner wall of the processing chamber or the like is oxidized by, for example, oxidizing at a temperature of 600K or less.
  • a smooth SiO coating covering the surface can be formed.
  • the present application relates to a method for transporting hydrogen atoms generated by a hydrogen atom generation means in a vacuum processing apparatus to a desired location, in which an inner wall surface is coated with Sio.
  • the hydrogen atom is transported through a transport route.
  • This paper proposes a method for transporting hydrogen atoms in an empty treatment device.
  • the inner wall surface of the transportation route is coated with SiO.
  • the member surrounding the hydrogen atom generating means made of metal and equipped with a cooling system, it is possible to more effectively suppress the attenuation of the hydrogen atom concentration during the transport of hydrogen atoms. be able to.
  • a space in which a hydrogen atom used for various practical applications in various surface treatments such as a CVD method is disposed in a member surrounding the hydrogen atom generation means It is possible to effectively suppress recombination and return to hydrogen molecules by coming into contact with the surface facing the surface or the inner wall surface of the transport path for transporting hydrogen atoms to a place used for a predetermined treatment. This makes it possible to efficiently transport a desired high concentration of hydrogen atoms to a target location while maintaining a high concentration, and to terminate the dangling bonds in the polysilicon and the interface of the semiconductor device. It can be effectively used for stabilization technology.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a case where a hydrogen atom generation source and a hydrogen atom transport method in a vacuum processing apparatus according to the present invention are realized in a force catalytic CVD (Cat-CVD: Catalytic_CVD) apparatus. .
  • Cat-CVD Catalytic_CVD
  • a catalytic CVD apparatus 1 shown in FIG. 1 includes a hydrogen atom generating means 2 for generating hydrogen atoms and a processing chamber 3 that can be evacuated to a predetermined vacuum.
  • a substrate holder 4 is provided in the processing chamber 3, and, for example, an end of a dangling bond in polysilicon or an interface stabilization treatment of a semiconductor device is performed on the substrate holder 4.
  • the processing substrate 5 is mounted.
  • the processing chamber 3 is connected to a decompression means 6 such as an exhaust device for decompressing the inside of the processing chamber 3 and a connecting portion for transporting the substrate 5 to be processed from another processing chamber via a gate valve (not shown). 7 is connected.
  • a heating means 8 such as a heater is built in the substrate holder 4 so that the substrate to be processed 5 mounted on the substrate holder 4 can be heated.
  • the form of the substrate holder 4 is not particularly limited, and may be a form in which a plurality of substrate holders 4 are held simultaneously. Further, the direction in which the substrate 5 to be processed is held is not limited to the direction in which the substrate 5 to be processed is in the horizontal direction, but may be in the direction in which the substrate 5 is in the vertical direction.
  • the processing chamber 3 is provided with a raw material gas supply system 9 for supplying a raw material gas into the processing chamber 3 and a processing chamber 3, and is heated to a high temperature by receiving power supply from the power supply system 10.
  • the heating element 11 is provided.
  • the source gas supplied from the source gas supply system 9 has a plurality of gas outlet holes (not shown) formed in the direction of the heating element 11. Is blown out in the direction of the heating element 11. If necessary, an additive gas such as nitrogen, argon, krypton, or xenon supplied from an unillustrated additive gas supply system and the source gas are mixed at a predetermined ratio, and then the heating element 11 is supplied from the source gas blower 12. Use a form that blows out in the direction. [0041]
  • the raw material gas blower 12 in which a large number of gas blowout holes (not shown) are formed in the direction of the heat generating element 11 is, for example, a large number in order to effectively bring the raw material gas into contact with the heat generating element 11.
  • the hydrogen gas is brought into contact with the heating element 11 maintained at a high temperature, and hydrogen atoms are converted by catalytic cracking reaction. Can be generated.
  • the heating element 11 constituting the hydrogen atom generating means 2 is disposed at a position facing the substrate to be processed 5 held by the substrate holder 4 in the illustrated example.
  • the heating element 11 is not limited as long as it can generate hydrogen atoms from hydrogen gas by catalytic cracking reaction.
  • a metal catalyst body is used in a catalytic CVD (Cat-CVD: Catalytic_CVD) apparatus.
  • Metal catalysts such as tungsten, tantalum, platinum, and molybdenum that are generally used can be used. These can be used alone or in combination of two or more.
  • the form of the heating element 11 is not particularly limited. However, as shown in the figure, catalytic CVD (Cat_CVD:
  • the generated hydrogen atoms be in effective contact with the entire surface of the substrate 5 to be processed held by the substrate holder 4.
  • a heating element is provided between the substrate 5 to be treated and the raw material gas blower 12 in the form of a shower nozzle.
  • a number of tungsten wires 11 are arranged so as to be substantially parallel to the substrate 5 to be processed, and hydrogen gas from the raw material gas blower 12 contacts the heating element 11 to form hydrogen atoms, which are uniformly processed. It can be arranged so as to diffuse into the substrate 5.
  • the heating element 11 is held in the processing chamber 3 by a power introduction terminal (not shown) provided in the processing chamber 3, and is heated by receiving power supply from the power supply mechanism 10 through the power introduction terminal.
  • the processing chamber 3 is made of stainless steel, and the inner wall surface thereof is covered with the SiO film 13. [0049] The coating of Si film 13 is hardened at a low temperature on the inner wall of the processing chamber 3 made of stainless steel.
  • treatment chamber 3 After applying a xylene solution of a natural perhydropolysilazane (manufactured by Etascia (name: QGC Tokyo)), treatment chamber 3 was heated at 140 ° C to 300 ° C for about 3 hours to form. The thickness was 1 ⁇ m or less.
  • the pressure reducing means For the purpose of suppressing the attenuation of the concentration of hydrogen atoms generated in the processing chamber 3, the pressure reducing means
  • the coating of the Si film 13 is applied to the inner wall surface of the path leading to 6 and the inner wall surface of the connecting portion 7 as well.
  • a hydrogen atom generation source in the vacuum processing apparatus of the present invention is configured.
  • the entire inner wall surface of the processing chamber 3 is covered with the SiO film 13.
  • the region close to the heating element 11 Only the inner wall surface may be covered with the SiO film 13.
  • the substrate 5 to be processed is carried into the processing chamber 3 and placed in the substrate holder 4.
  • the heating means 8 is operated to heat the substrate holder 4, and the substrate to be processed 5 is heated to a desired temperature, for example, 20 to 200 ° C.
  • Hydrogen gas is supplied from the raw material gas supply system 9 and blown out from the gas blowing holes of the raw material gas blower 12, and the decompression means 6 is operated so that the inside of the processing chamber 3 is several Pa to several lOkPa. Depressurize until. Further, power is supplied from the power supply system 10 to heat the heating element 11 to a predetermined temperature. For example, when the heating element 11 is tungsten, it heats up to 1000-2000 ° C.
  • the hydrogen gas blown out from the gas blowout holes of the raw material gas blower 12 is a heated heating element.
  • Catalytic decomposition reaction occurs in contact with 11 to produce hydrogen atoms. This hydrogen atom is The substrate 4 is held in contact with the substrate 4 to be terminated, and the termination of unbonded hands in the polysilicon and the interface stabilization processing of the semiconductor device are performed.
  • hydrogen atoms generated by decomposing hydrogen molecules on the surface of the high-temperature heating element 11 can be effectively suppressed from recombining and returning to hydrogen molecules.
  • a desired treatment can be performed with a high concentration of hydrogen atoms.
  • the processing chamber 3 made of stainless steel can be cooled by providing a water cooling system 15. Then, while the hydrogen atoms are being generated as described above, the attenuation of the hydrogen atom concentration can be more effectively suppressed by cooling the processing chamber 3.
  • FIG. 2 illustrates another embodiment.
  • reference numeral 21 is equivalent to a hydrogen atom generation source in the present invention. That is, the processing chamber 3 generates hydrogen atoms that do not pass through a facility for performing a desired process on the substrate to be processed inside, and the generated hydrogen atoms are transferred through the transport path 14 by, for example, reference numeral 22 in FIG. It is shown and is a facility that is transported to a processing chamber for performing desired processing on a substrate to be processed. Therefore, the inner wall of the transport path 14 is coated with the SiO film 13 in the same manner as the inner wall of the processing chamber 3.
  • the configuration and operation of the embodiment shown in FIG. 2 are the same as those shown in FIG. 1, except that the substrate holder shown in the embodiment shown in FIG. 1 is not shown in the hydrogen atom generation source 21. Since it is the same as that of the illustrated embodiment, the same reference numerals are assigned to the common components, and the description thereof is omitted.
  • hydrogen atoms are decomposed on the surface of the metal catalyst body (heating element 11) of the catalytic CVD apparatus maintained at a high temperature to decompose hydrogen molecules.
  • the metal catalyst body heating element 11
  • catalytic decomposition of ammonia Various other forms can be employed as the hydrogen atom generating means.
  • a high-density hydrogen atom may be generated by microwave discharge.
  • hydrogen gas was introduced while maintaining the processing chamber 3 at 5.6 Pa, and hydrogen atoms were generated using a tungsten wire heated to 1900 ° C. as a metal catalyst body.
  • the concentration of hydrogen atoms under 10 cm of the tungsten wire was 10 M / cm 3 . It has also been confirmed that if the temperature at which the tungsten is heated is increased to 2100-2300 ° C and the pressure in the processing chamber 3 is set to 0.1 to:!
  • a heating element 11 which is a metal catalyst body of a catalytic CVD apparatus is adopted as a hydrogen atom generating means, and a stainless steel processing chamber 3 which is a member surrounding the heating element 11 is used. If the surface facing the space where the heating element 1 1 is arranged, that is, the inner wall surface of the processing chamber 3 is coated with SiO to form a hydrogen atom generation source, a large amount of generated hydrogen atoms
  • a cylindrical processing chamber (inner diameter 72 mm, height 280 mm) made of stainless steel was prepared.
  • the processing chamber was a cooling jacket connected to a water cooling system, and was able to be evacuated by a turbo molecular pump, and hydrogen gas could be introduced from the upper side of the processing chamber.
  • a tungsten filament (length: 20 cm, diameter: 0.4 mm) that was heated to a high temperature by being supplied with electric power from the outside was disposed at a location where hydrogen gas introduced into the treatment chamber was blown.
  • processing chambers are prepared, one of which is not coated on the inner wall surface, and the other three chambers are each coated with fluororesin, SiO coating, and Si on the inner wall surface.
  • the fluororesin coating was applied to Unics Co., using Teflon (registered trademark) in a thickness of 30 ⁇ m.
  • the coating of the SiO film is formed on the inner wall of the stainless steel processing chamber at low temperature curing.
  • the sample was dried by spraying a HPO solution on the SiO film formed as described above.
  • the temperature of the processing chamber wall is maintained at 20 ° C
  • the pressure of the processing chamber is maintained at 8.0 Pa
  • the flow rate of hydrogen gas is maintained at 0.15 SLM
  • the temperature of the tungsten filament is 1100 by the water cooling system. C-2000.
  • the absolute concentration of hydrogen atoms was measured by absorptiometry in the vacuum ultraviolet region (121.6 nm).
  • FIG. Figure 3 shows the Teflon® when the horizontal axis is the reciprocal of the absolute temperature of the tungsten filament and the vertical axis is the logarithmic hydrogen atom concentration, and the inner wall of the stainless steel treatment chamber is not coated. If coated with fluororesin, if coated with SiO, HP over the SiO coating
  • the concentration of hydrogen atoms was higher than when not applied. It was also confirmed that there was a temperature region where the difference in hydrogen atom concentration was more than an order of magnitude (Fig. 3).
  • Teflon (registered trademark) is used instead of SiO film coating.
  • Fig. 3 what is represented by a broken line is that the inventors of the present application have an inner diameter of 460 mm and a height of 320 mm. This shows the measurement results when a similar experiment was performed using a cylindrical stainless steel processing chamber (water cooling system similar to this experimental example).
  • the hydrogen atom concentration (logarithmic display) and the tungsten filament absolute temperature (reciprocal) represented by the broken line in Fig. 3 are the length of the tungsten filament when it is performed in this large processing chamber: 120 cm, and the processing chamber pressure. : 5. 6 Pa is expressed after correction to the above-mentioned experimental conditions.
  • FIG. 3 shows a force obtained by plotting the logarithm of the hydrogen atom concentration on the vertical axis and the reciprocal of the absolute temperature of the tungsten filament on the horizontal axis.
  • 1900 ° Above C they are in a linear relationship.
  • this experimental example is used in the large processing chamber. Therefore, it can be considered that the influence of hydrogen atoms recombining and returning to hydrogen molecules on the surface of the processing chamber wall is small because of the size of the processing chamber compared to the inner diameter of the processing chamber.
  • the processing chamber pressure was 8. OPa, and the surface of the processing chamber wall was exposed to hydrogen atoms for 5 hours, the hydrogen atom concentration did not change.
  • the Si film coating was applied to the inner wall of the stainless steel processing chamber.
  • Mass spectrometer (M-QA manufactured by ANELVA Corporation) 200TS) was used to measure whether SiH and HO were detectable. That
  • the inner wall of a stainless steel processing chamber is coated with SiO film.
  • the hydrogen atom concentration during this period was 1.0 ⁇ 10 12 / cm 3 .
  • the surface roughness is attributed to the roughness of the stainless steel inner wall of the processing chamber.
  • the difference between the two as a result of etching with hydrogen atoms is very small.
  • Hydrogen atoms can be used to modify the surface of a semiconductor thin film in the manufacture of a semiconductor using a vacuum processing apparatus, etc., and to remove a photoresist. Until now, a heating catalyst body in a Cat_CVD apparatus has been used.
  • the present invention that effectively suppresses the attenuation of the concentration of hydrogen atoms generated by the hydrogen atom generation means and enables a large amount of hydrogen atoms to be transported to a target location in large quantities. It is applicable to various technologies. Brief Description of Drawings
  • FIG. 1 is a schematic configuration diagram for explaining an example when the present invention is realized in a catalytic CVD apparatus.
  • FIG. 2 is a schematic configuration diagram illustrating another embodiment of the present invention.
  • FIG. 3 is a diagram showing experimental results for the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】 水素原子が真空処理装置の処理室内壁表面や、輸送経路内壁表面と接触することによって再結合し、水素分子に戻ってしまうことを効果的に抑制できる真空処理装置における水素原子発生源及び水素原子輸送方法を提案する。 【解決手段】  水素原子発生手段を取り囲む部材の当該水素原子発生手段が配置されている空間に面する表面の少なくとも一部がSiO2で被覆されている真空処理装置における水素原子発生源。真空処理装置における水素原子発生手段によって生成した水素原子を所望の場所へ輸送する方法であって、内壁表面がSiO2で被覆されている輸送経路を介して前記水素原子を輸送する真空処理装置における水素原子輸送方法。

Description

明 細 書
真空処理装置における水素原子発生源及び水素原子輸送方法 技術分野
[0001] この発明は真空処理装置における水素原子発生源及び水素原子輸送方法に関す る。特に、真空処理装置における水素原子発生手段で生成された水素原子が再結 合して水素分子に戻り、水素原子濃度が減衰することを効果的に抑制できる水素原 子発生源及び、水素原子発生源において生成された水素原子の濃度の減衰を抑制 しながら水素原子を所望の場所へ輸送する方法に関する。
背景技術
[0002] 化学気相堆積(CVD: Chemical Vapor Deposition)法は、 LSI (大規模集積回路) を始めとする各種半導体デバイスや LCD (液晶ディスプレイ)等の作成などにおいて 、基板上に所定の薄膜を形成するプロセスの一つ等々として広く使用されている。
[0003] 水素原子は、この CVD法の他、ポリシリコンにおけるダングリング ·ボンドの終端や、 結晶性シリコンのドライエッチング、真空排気可能な処理室のクリーニング、フォトレジ スト除去などにも広く利用される。いずれの利用方法においても、水素原子は、効果 的なエッチング種として重要な役割を果たしている。
[0004] しかし、水素原子は、例えば、真空処理装置の処理室内壁に接触すると再結合し て水素分子に戻るため、たとえ効率よく水素原子を発生させても、その濃度を維持し て目的とする場所に輸送することは困難であった。
[0005] 例えば、ステンレススチールの表面における水素原子の消滅確率は 0. 20であって 、ステンレススチール表面と水素原子が 10回衝突すると、水素原子の 90%が消滅す ると報告されてレ、る (非特許文献 1)。
[0006] 真空排気されている処理室において薄膜形成や、形成されている薄膜の改質など の処理を行う真空処理装置において、水素原子を前述したような種々の用途に利用 しょうとしても、このように水素原子の濃度が大きく減衰してしまうと実用上の利用に供 することが困難になる。
[0007] 従来から、真空処理装置の処理室として水冷式のガラスチャンバ一を用いることに より、水素原子が再結合して水素分子に戻ることを抑制可能であることが提案されて いる。しかし、この方法を採用しても、例えば、真空処理装置の処理室内に配置され た基板等を加熱するための構造体等から熱が放射されること等によってチャンバ一 内壁の温度が上昇すると、再結合過程が加速し、水素原子濃度の減衰が進んでしま う(非特許文献 2)。このように、処理室内に基板等を加熱する目的などで何らかの熱 源が存在する場合、水素原子濃度が減衰する可能性が高くなる。
[0008] 一方、高温金属触媒体表面において水素分子の分解により効率よく水素原子を発 生できることが知られてレ、る(非特許文献 3)。
[0009] そこで、真空処理装置として、水冷式のガラスチャンバ一内に原料ガスを供給する 原料ガス供給系と、水冷式のガラスチャンバ一内に配置されていて電力供給機構か らの電力供給を受けて高温にされる発熱体 (金属触媒体)とを備え、原料ガス供給系 力 水冷式のガラスチャンバ一内に導入された水素ガスを高温に維持されている発 熱体によって分解して効率よく水素原子を発生させ、これを前述した種々の用途に 用いることが考えられる。
[0010] しかし、前記の通り、水素原子濃度の減衰を抑制することを目的として水冷式のガ ラスチャンバ一を用いた場合であっても、ガラスチャンバ一にも当然チャンバ一として の機械的な強度 (例えば、真空と大気との圧力差による圧力、冷却水の水圧等)が要 求されるため、その厚みが必要になる。ガラスは熱伝導率が低い材料として知られて おり、前記のように機械的強度を満たすため、ある程度の厚みを有するようになると、 例えば、高温の発熱体 (金属触媒体)によって水素原子を発生させている等の場合 には、たとえ、水冷されていても、チャンバ一内壁の表面温度が上昇することが避け られなレ、。このようにしてチャンバ一内壁の温度が上昇すると、再結合過程が加速し 、水素原子濃度の減衰が進んでしまうので、高温金属触媒体表面において水素分 子を分解して効率よく水素原子を発生させても、実用上の利用に供することは困難で ある。
[0011] なによりも、薄膜形成、形成されている薄膜の改質、フォトレジストの除去、タリー二 ング等の処理を行う真空処理装置の真空排気可能な処理室をガラスチャンバ一製に するには基板サイズの大型化への対応など大きな技術的困難が伴う。 非特許文献 1 : P.Kae_Nune,J.Perrin,J.Jolly, and J.Guillon,Surf.Sci.360,L495(1996) 非特許文献 2 : J. Phys.D27卷 1412頁(1994)
非特許文献 3: J.Appl.Phys. 91卷 3号 1650頁 (2002)
発明の開示
発明が解決しょうとする課題
[0012] 前述した従来技術に鑑みて、この発明は、 CVD法等各種の表面処理において種 々の実用的用途に利用される水素原子が、真空処理装置の処理室内壁表面や、輸 送経路内壁表面と接触することによって再結合し、水素分子に戻ってしまうことを効 果的に抑制して輸送していくことのできる真空処理装置における水素原子発生源及 び水素原子輸送方法を提案することを目的にしている。
課題を解決するための手段
[0013] 前記の目的を達成するため、この発明が提案する真空処理装置における水素原子 発生源は、水素原子発生手段を取り囲む部材の当該水素原子発生手段が配置され ている空間に面する表面の少なくとも一部が SiOで被覆されていることを特徴とする
2
ものである。
[0014] この場合、水素原子発生源は前記水素原子発生手段によって生成された水素原 子を当該水素原子発生源から輸送していく輸送経路を備えており、当該輸送経路の 内壁表面が SiOで被覆されている形態にすることができる。
2
[0015] 発明者等の実験によれば、水素原子発生手段を取り囲む部材の当該水素原子発 生手段が配置されている空間に面する表面を SiOで被覆すると、 SiOで被覆されて
2 2
レ、ない場合に比較して、他の条件を同一にしたときに、水素原子の絶対濃度が一桁 上昇していた。
[0016] そこで、水素原子発生手段を取り囲む部材の当該水素原子発生手段が配置され ている空間に面する表面を Si〇で被覆すること、更に、水素原子発生源が備えてい
2
る前記水素原子発生手段によって生成された水素原子を水素原子発生源から輸送 していく輸送経路の内壁表面を Si〇で被覆することにより、水素原子が再結合して、
2
水素分子に戻ってしまうことを効果的に抑制できる。そして、これによつて、水素原子 の高い濃度を維持して、 目的とする場所に輸送し、水素原子を、ポリシリコン中にお ける未結合手の終端や、半導体装置の界面安定化技術に効果的に利用することが できる。
[0017] なお、水素原子発生手段を取り囲む部材の当該水素原子発生手段が配置されて レ、る空間に面する表面に対して行う SiOコーティングは、必ずしも当該表面の全域
2
に渡って行うことが要求されるものではない。水素原子が再結合して水素分子に戻る ことを効果的に抑制し、発生した水素原子の高い濃度を維持することが可能であれ ば、当該表面の一部分、例えば、水素原子発生手段に近接している箇所における当 該表面にのみ SiOコーティングを形成しておくこともできる。
2
[0018] 前記本発明の真空処理装置における水素原子発生源において、水素原子発生手 段は、例えば、触媒 CVD (Cat-CVD:Catalytic_CVD)装置における金属触媒体のよう に、高温の金属触媒体表面において、水素分子を分解することにより水素原子を発 生させるものにすることができる。
[0019] 高温金属触媒体表面において水素分子の分解により、効率よく水素原子を発生で きることは非特許文献 3に明らかにされているところである。例えば、真空排気可能な 処理室内に原料ガスを供給する原料ガス供給系と、当該処理室内に配置されていて 電力供給機構力もの電力供給を受けて高温にされる発熱体 (金属触媒体)とを備え、 前記原料ガス供給系から所定の真空状態の処理室内に導入された原料ガスを、高 温に維持されている発熱体 (金属触媒体)によって分解及び Z又は活性化させて、 前記処理室内に配置されている被処理基板などに対して所定の処理を行う触媒 CV D (Cat-CVD:Catalytic-CVD)装置における発熱体 (金属触媒体)を用い、前記の原 料ガスに水素ガスを利用することによって、効率よく水素原子を発生させることができ る。そして、このようにして発生させた高濃度の水素原子を当該触媒 CVD装置におい て行われるポリシリコン中における未結合手の終端や、半導体装置の界面安定化処 理に効果的に利用することが可能である。
[0020] これは、本発明を発熱体 CVD装置、特に、触媒 CVD (Cat-CVD:Catalytic-CVD)装 置に適用するものであるが、高温金属触媒体表面において水素分子の分解により、 効率よく水素原子を発生できるので (非特許文献 3)、本発明をこのように触媒 CVD装 置、触媒 CVD方法に用いれば、前記のように、真空処理装置の真空排気可能な処 理室や、輸送経路における水素原子濃度の減衰を効果的に抑制して、高濃度の水 素原子を大量に利用することが可能になる。
[0021] 前記において、水素原子発生手段を取り囲む部材は金属製で、冷却システムを備 えてレ、るものにすることが望ましレ、。
[0022] この場合、金属製の水素原子発生手段を取り囲む部材の水素原子発生手段が配 置されている空間に面する表面の温度は、冷却システムにより + 30°C以下に維持す ること力 S望ましレ、。
[0023] 発明者等の実験によれば、水素原子発生手段を取り囲む部材の温度も水素原子 濃度の減衰に影響を及ぼしており、水素原子発生手段を取り囲む部材を金属製で、 冷却システムを備えているものとした上で、前述したように、水素原子発生手段を取り 囲む部材の当該水素原子発生手段が配置されてレ、る空間に面する表面を SiOで
2 被覆すると、より効果的に、水素原子濃度の減衰を抑制することができた。
[0024] この場合、金属製の水素原子発生手段を取り囲む部材としては、例えば、ステンレ ススチール製、アルミニウム製のものなどを用いることができる。
[0025] また、冷却システムとしては、発熱体 CVD装置に搭載される発熱体等から放出され る熱による温度の上昇を防止し、所定の温度を維持する機構のようにこの技術分野 で公知のシステムを採用することができる。例えば、水素原子発生手段を取り囲む部 材の内部を冷媒が流動することにより冷却が行われるシステムを採用することができ る。
[0026] 発明者等の実験によれば、水素原子発生手段を取り囲む部材の水素原子発生手 段が配置されている空間に面する表面の温度が + 30°Cを越えると水素原子濃度の 減少が生じていた。そこで、表面温度は + 30°C以下とすることが望ましい。なお、水 素原子濃度の減衰を効果的に抑制しつつ、実用上の利用に供する上では、表面温 度を _ 30°C〜 + 30°Cに維持することが望ましレ、。
[0027] 以上の本発明において、 Si〇による被覆は、ポリシラザン (polysilazane)の有機溶
2
媒溶液を塗布した後、これを酸化させて形成することができる。例えば、ペルヒドロポ リシラザン (perhydropolysilazane)のキシレン溶液を塗布した後、これを自然に酸化さ せて形成することができる。 [0028] Si〇コーティングとして、水素添加アモルファスシリコンからプラズマ酸化処理によ
2
つて形成したポーラスな Si〇を採用することもできる。しかし、発明者等の実験によれ
2
ば、処理室等の内壁の表面粗さも水素原子濃度の減衰に影響を与えており、例えば 、塗布などの処理によって、表面が平滑な Si〇コーティングを形成することが望まし
2
かった。
[0029] 前述したように、ポリシラザンの有機溶媒溶液を処理室等の内壁の表面に塗布した 後、これを酸化させることにより、例えば、 600K以下の温度で酸化させることにより、 処理室等の内壁表面を被覆した平滑な SiOコーティングを形成することができる。
2
[0030] 次に、前記目的を達成するため、本願は、真空処理装置における水素原子発生手 段によって生成した水素原子を所望の場所へ輸送する方法であって、内壁表面が Si oで被覆されてレ、る輸送経路を介して前記水素原子を輸送することを特徴とする真
2
空処理装置における水素原子輸送方法を提案するものである。
[0031] かかる輸送方法によれば、輸送経路の内壁表面が Si〇で被覆されていることにより
2
、前述したように、輸送経路において水素原子が再結合して、水素分子に戻ってしま うことを効果的に抑制できる。そこで、水素原子の高い濃度を維持して、 目的とする場 所に輸送し、例えば、水素原子を、ポリシリコン中における未結合手の終端や、半導 体装置の界面安定化技術に効果的に利用することが可能になる。
[0032] なお、この輸送方法においても、水素原子発生手段を取り囲む部材の当該水素原 子発生手段が配置されている空間に面する表面の少なくとも一部を Si〇で被覆し、
2
更には、水素原子発生手段を取り囲む部材を金属製で、冷却システムを備えている ものにすることによって、水素原子を輸送してレ、く途中における水素原子濃度の減衰 をより効果的に抑制することができる。
発明の効果
[0033] 本発明によれば、 CVD法等、各種の表面処理において種々の実用的用途に利用 される水素原子が、水素原子発生手段を取り囲む部材の当該水素原子発生手段が 配置されている空間に面する表面や、水素原子を所定の処理に使用する場所に輸 送していく輸送経路の内壁表面と接触することによって再結合し、水素分子に戻って しまうことを効果的に抑制できる。 [0034] これによつて、所望の高濃度の水素原子を、 目的とする場所へ、高い濃度を維持し て効率的に輸送し、ポリシリコン中における未結合手の終端や、半導体装置の界面 安定化技術などに効果的に利用することができる。
発明を実施するための最良の形態
[0035] 以下、添付図面を参照して本発明の好ましい実施形態を説明する。
[0036] 図 1は、本発明の真空処理装置における水素原子発生源及び水素原子輸送方法 力 触媒 CVD (Cat-CVD:Catalytic_CVD)装置において実現されている場合の一例 を説明する概略構成図である。
[0037] 図 1図示の触媒 CVD装置 1は、水素原子を発生させる水素原子発生手段 2と、所定 の真空に排気可能な処理室 3とを備えている。処理室 3内には、基板ホルダー 4が配 備されており、この基板ホルダー 4の上に、例えば、ポリシリコン中における未結合手 の終端や、半導体装置の界面安定化処理などが行われる被処理基板 5が搭載され る。また、処理室 3には、処理室 3内を減圧するための排気装置などの減圧手段 6と、 不図示のゲートバルブ等を介して、被処理基板 5を他の処理室から搬送する接続部 7が接続されている。基板ホルダー 4には、ヒータなどの加熱手段 8が内蔵されていて 、基板ホルダー 4に搭載された被処理基板 5を加熱できるようになつている。
[0038] 基板ホルダー 4の形態には特に制限はなぐ複数を同時に保持した形態のもので あってもよレ、。また、被処理基板 5を保持する向きも、図示のように、被処理基板 5が 水平方向となる向きに限らず、鉛直方向となる向きなどであってもよい。
[0039] 処理室 3には、処理室 3内に原料ガスを供給する原料ガス供給系 9と、処理室 3内 に配置されていて、電力供給系 10からの電力供給を受けて高温にされる発熱体 11 が備えられている。
[0040] 原料ガス供給系 9から供給される原料ガスは、図示の例では、発熱体 11方向に向 けて多数のガス吹出穴(不図示)が形成されてレ、る原料ガス吹出器 12から発熱体 11 方向に向けて吹き出される。なお、必要ならば、不図示の添加ガス供給系から供給さ れる窒素、アルゴン、クリプトン、キセノンなどの添加ガスと原料ガスとを所定の割合で 混合したのち、原料ガス吹出器 12から発熱体 11方向に向けて吹き出す形態にする ことちでさる。 [0041] 発熱体 11方向に向けて多数のガス吹出穴(不図示)が形成されている原料ガス吹 出器 12としては、原料ガスを効果的に発熱体 11に接触させるため、例えば、多数の ガス吹出穴が周壁に形成された管状のシャワーノズノレや、多数のガス導入穴が片面 に形成された中空板状のシャワープレートを採用することができる。また、これ以外に も、原料ガスを効果的に発熱体 11に接触させることができるならば種々の形態を採 用できる。
[0042] ここで、原料ガス供給系 9から供給される原料ガスとして水素ガスを採用することに より、高温に維持されている発熱体 11に水素ガスを接触させ、接触分解反応により 水素原子を発生させることができる。
[0043] この水素原子発生手段 2を構成する発熱体 11は、図示の例では、基板ホルダー 4 に保持されている被処理基板 5と対向する位置に配備されている。
[0044] 発熱体 11としては、接触分解反応により、水素ガスから水素原子を発生させられる ものであれば制限はないが、例えば、触媒 CVD (Cat-CVD:Catalytic_CVD)装置に おいて金属触媒体として一般に使用されるタングステン、タンタル、白金、モリブデン などの金属触媒を使用することができる。これらを一種単独で、または二種以上を同 時に使用することができる。
[0045] 発熱体 11の形態としては特に制限はないが、図示のような、触媒 CVD (Cat_CVD:
Catalytic-CVD)装置の場合には、基板ホルダー 4に保持された被処理基板 5の全面 に、発生した水素原子が効果的に接触するような形態であることが好ましい。
[0046] 例えば、被処理基板 5とシャワーノズル形態の原料ガス吹出器 12との間に、発熱体
11である多数本のタングステン線を被処理基板 5と略平行となるように配置し、原料 ガス吹出器 12からの水素ガスが発熱体 11に接触して水素原子となり、それが均一に 被処理基板 5に拡散するような配置にすることができる。
[0047] 発熱体 11は処理室 3に設けられている不図示の電力導入端子によって処理室 3内 に保持され、この電力導入端子を介して電力供給機構 10から電力の供給を受けて 加熱される。
[0048] 図示の実施形態では、処理室 3はステンレススチール製であり、その内壁表面が、 Si〇膜 13で被覆されている。 [0049] Si〇膜 13のコーティングは、ステンレススチール製の処理室 3の内壁に、低温硬化
2
性のペルヒドロポリシラザン(perhydropolysilazane) (有限会社エタスシァ(名称: QGC 東京)製)のキシレン溶液を塗布した後、処理室 3を 140°C〜300°Cで 3時間程度加 熱して形成した。厚さは 1 μ m以下であった。
[0050] なお、処理室 3内で発生した水素原子濃度の減衰を抑制する目的から、減圧手段
6に通じる経路の内壁表面、接続部 7の内壁表面にも、同様に、 Si〇膜 13のコーテ
2
イングを行った。
[0051] 図 1図示の実施形態では、水素原子発生手段たる発熱体 11を取り囲む部材にあ たるステンレススチール製の処理室 3の、水素原子発生手段たる発熱体 11が配置さ れている空間に面する表面、すなわち、処理室 3の内壁表面が SiOで被覆され、本
2
願発明の真空処理装置における水素原子発生源が構成されている。
[0052] なお、図 1図示の実施形態では処理室 3の内壁表面全域を SiO膜 13で被覆して
2
いるが、水素原子が再結合して水素分子に戻ることを効果的に抑制し、発生した水 素原子の高い濃度を維持することが可能であれば、発熱体 11に近接している領域 の内壁表面のみ SiO膜 13で被覆する形態にすることもできる。
2
[0053] この水素原子発生源における水素原子の発生、その発生された水素原子の輸送と 、当該水素原子を利用した所定の処理、例えば、ポリシリコン中における未結合手の 終端や、半導体装置の界面安定化処理などは、例えば、以下のように行われる。
[0054] 被処理基板 5を処理室 3内に搬入し基板ホルダー 4に配置する。被処理基板 5を加 熱する必要がある場合には、加熱手段 8を作動させて基板ホルダー 4を加熱し、被処 理基板 5を所望の温度、例えば、 20〜200°Cに加熱する。
[0055] 原料ガス供給系 9から水素ガスを供給して原料ガス吹出器 12のガス吹出穴から吹 き出させると共に、減圧手段 6を作動させて、処理室 3内を数 Pa〜数 lOkPa程度まで 減圧する。また、電力供給系 10から電力を供給し、発熱体 11を所定の温度に加熱 する。例えば発熱体 11がタングステンである場合には、 1000〜2000°Cにカロ熱する
[0056] 原料ガス吹出器 12のガス吹出穴から吹き出された水素ガスは、加熱された発熱体
11に接触して接触分解反応し、水素原子が生成される。この水素原子が、基板ホル ダー 4に保持されている被処理基板 5に接触し、ポリシリコン中における未結合手の 終端や、半導体装置の界面安定化処理などが行われる。
[0057] 前述したように、処理室 3の内壁には、 SiO膜 13がコーティングされているので、前
2
記のように、高温の発熱体 11 (金属触媒体)の表面において、水素分子を分解する ことにより生成された水素原子が、再結合して水素分子に戻ることを効果的に抑制で きる。こうして、高濃度の水素原子により所望の処理を行うことが可能になる。
[0058] なお、ステンレススチール製の処理室 3は、水冷システム 15を付設して冷却可能に することができる。そして、前記のように水素原子が生成されている間、処理室 3を冷 却することにより、一層効果的に、水素原子濃度の減衰を抑制できる。
[0059] 図 2は、他の実施形態を説明するものである。図 2中、符号 21で示されているもの 力 本発明における水素原子発生源に相当する。すなわち、処理室 3は内部で被処 理基板などに対する所望の処理を行う設備ではなぐ水素原子を発生させ、発生し た水素原子を輸送経路 14を介して、例えば、図 2中、符号 22で示されていて内部で 被処理基板などに対する所望の処理を行う処理室に輸送していく設備になっている 。そこで、輸送経路 14の内壁も、前記の処理室 3の内壁と同様に、 SiO膜 13でコー
2
ティングされている。
[0060] そこで、図 1図示の実施形態には表されていた基板ホルダーが水素原子発生源 21 内に図示されていない点などを除けば、図 2図示の実施形態の構成、動作は図 1図 示の実施形態のものと同一であるので、共通する構成部材に共通する符号を付けて その説明を省略する。
[0061] なお、図 1、図 2図示の実施形態においては、高温に維持されている触媒 CVD装置 の金属触媒体 (発熱体 11)表面にぉレ、て水素分子を分解することにより水素原子を 発生させていたが、アンモニアの触媒分解を利用することも可能である。また、水素 原子発生手段としては他の種々の形態を採用することができる。
[0062] 例えば、マイクロ波放電によって高濃度の水素原子を発生させる形態にすることも できる。ただし、放電容積を大きくしなければ大量の水素原子を生成できないので、 前述の実施形態で説明した高温の金属触媒体表面において水素分子を分解して水 素原子を発生させる方が効率がょレ、。 [0063] 発明者等の実験によれば、処理室 3を 5. 6Paに維持して水素ガスを導入し、金属 触媒体として 1900°Cに加熱したタングステン線を用いて水素原子を発生させたとこ ろ、タングステン線の 10cm下における水素原子の濃度は 10M/cm3であった。タン ダステンを加熱する温度を 2100〜2300°Cに上げ、処理室 3内圧力を 0. 1〜: ! OkPa にすれば、更に一桁多くの水素原子を発生できることも確認されている。
[0064] そこで、図 1図示の実施形態のように、水素原子発生手段として触媒 CVD装置の金 属触媒体たる発熱体 1 1を採用し、これを取り囲む部材にあたるステンレススチール 製の処理室 3の発熱体 1 1が配置されている空間に面する表面、すなわち、処理室 3 の内壁表面を SiOで被覆して水素原子発生源とすれば、多量の発生した水素原子
2
の高い濃度を維持したまま、当該触媒 CVD装置において、効率よぐポリシリコン中 における未結合手の終端や、半導体装置の界面安定化処理などを行うことができる 実験例
[0065] 本願発明の真空処理装置における水素原子発生源、水素原子輸送方法について
、以下のように実験を行った。
[0066] ステンレススチール製の円筒状の処理室(内径 72mm、高さ 280mm)を準備した。
[0067] 処理室は、水冷システムに接続されている冷却ジャケットとし、ターボ分子ポンプに よって真空排気可能にすると共に、処理室の上側から水素ガスを導入可能とした。
[0068] 処理室内に導入された水素ガスが吹きつけられる箇所に、外部から電力の供給を 受けて高温に加熱されるタングステンフィラメント(長さ: 20cm、直径: 0. 4mm)を配 置した。
[0069] 前記の処理室を 4室準備し、 1室は内壁表面にコーティングを行っていないもの、 残りの 3室は、それぞれ、内壁表面にフッ素樹脂コーティング、 SiOコーティング、 Si
2
〇コーティングした後に H PO溶液を噴霧してコーティングしたものとした。
2 3 4
[0070] フッ素樹脂コーティングは Unics Co.に依頼して、テフロン(登録商標)を用レ、、 30 μ m厚に行った。
[0071] SiO膜のコーティングは、ステンレススチール製の処理室の内壁に、低温硬化性
2
のペルヒドロポリシラザン(perhydropolysilazane) (有限会社エタスシァ(名称: QGC東 京)製)のキシレン溶液を塗布し、その後、処理室を 140°C〜300°Cで 3時間程度加 熱して形成した。 Si〇膜の厚さは l z m以下である。
2
[0072] 内壁表面に SiO膜をコーティングした後に H PO溶液を噴霧してコーティングした
2 3 4
ものは、前記のように形成した Si〇膜の上に H PO溶液を噴霧して乾燥させた。
2 3 4
[0073] 水冷システムにより処理室内壁の温度を 20°C、処理室の圧力を 8. 0Pa、水素ガス の流量を 0. 15SLMに維持し、タングステンフィラメントの温度を 1100。C〜2000。C で変化させ、真空紫外部(121. 6nm)における吸光光度法により水素原子の絶対 濃度を測定した。
[0074] 測定結果を図 3に表す。図 3は、横軸をタングステンフィラメントの絶対温度の逆数、 縦軸を対数表示した水素原子濃度とし、ステンレススチール製の処理室の内壁にコ 一ティングが施されていない場合、テフロン (登録商標)によるフッ素樹脂コーティン グされている場合、 SiOコーティングされている場合、 SiOコーティングの上に H P
2 2 3
〇力 sコーティングされている場合のそれぞれの結果を表すものである。
4
[0075] 前記の試験の結果、同一のタングステンフィラメントの絶対温度において、ステンレ ススチール製の処理室の内壁にフッ素樹脂コーティングされている場合、 SiO コー
2 ティングされている場合、コーティングが施されていない場合を比較すると、図 3図示 のように、すべてのタングステンフィラメントの絶対温度においても、フッ素樹脂コーテ イングされている場合及び SiOコーティングされている場合の方が、コーティングが
2
施されていない場合よりも水素原子の濃度が高かった。そして、水素原子の濃度の 差が一桁以上になる温度領域が存在することも確認できた(図 3)。
[0076] そこで、本願発明において、 SiO膜コーティングに代えて、テフロン (登録商標)に
2
よるフッ素樹脂コーティングを採用することも可能と考えられる。ただし、実用上利用 可能な大きさの処理室内壁にテフロン (登録商標)によるフッ素樹脂コーティングを施 すことは容易ではないので、実用上は、 SiO膜コーティングが望ましい。
2
[0077] なお、 SiO膜コーティングの上に H PO力コーティングされている場合であっても、
2 3 4
ステンレススチール製の処理室の内壁に Si〇膜コーティングだけがされている場合
2
と特に相違はなかった。
[0078] 図 3中、破線で表されているものは、本願発明者等が、内径 460mm、高さ 320mm の円筒状のステンレススチール製処理室 (この実験例と同様の水冷システム)を用い て同様の実験を行った場合の測定結果を表している。なお、図 3に破線で表している 水素原子濃度 (対数表示)、タングステンフィラメントの絶対温度 (逆数)は、この大型 の処理室で行ったときのタングステンフィラメントの長さ: 120cm、処理室の圧力: 5. 6Paを、前記のこの実験の条件に補正した上で表しているものである。
[0079] 図 3は、縦軸に、水素原子濃度の対数、横軸に、タングステンフィラメントの絶対温 度の逆数をとつたものである力 前記の大型の処理室での実験の場合、 1900°C以 上でも、両者は、直線的な関係になっている。なお、この実験例で用いた処理室(内 径 72mm)での実験結果と、前記の大型の処理室(内径 460mm)での実験結果を 比較する場合、大型の処理室においては、この実験例で用いた処理室の内径の大 きさに比較したその内径の大きさ故に、処理室内壁表面において、水素原子が再結 合して水素分子に戻ることによる影響が小さいと考えることができる。
[0080] この実験例において、水冷システムの冷媒の温度を 20°Cに維持し、タングステンフ イラメント温度を 1400°Cにして実験を行ったところ、水素原子濃度は、 4. 4 X 1011/ cm3であった。一方、水冷システムを作動させない以外の条件を同じにした場合、水 素原子濃度は、 3. S X lO^/cm3に減少した。そこで、水冷チャンバ一を用い、内壁 温度を低くする方が、処理室内壁表面において、水素原子が再結合して水素分子に 戻ることをより効果的に抑制する上で望ましい。
[0081] この実験で、処理室内壁の温度を + 30°Cから _ 30°Cの間で変化させても水素原 子濃度に大きな変化はなかった。しかし、処理室内壁の温度が + 30°Cを上回ると水 素原子濃度が減少した。
[0082] この実験例において、ステンレススチール製の処理室の内壁に Si〇膜コーティン
2
グされているものの場合、タングステンフィラメント温度を 2000°C、処理室の圧力を 8 . OPaにして 5時間処理室内壁表面を水素原子に晒したところ、水素原子濃度に変 化は生じなかった。
[0083] 前記の実験を行った後、ステンレススチール製の処理室の内壁に Si〇膜コーティ
2 ングされているものに関して、水素原子による SiO膜のエッチングの有無を検証する
2
ため、質量分析法による測定を行った。質量分析計 (ァネルバ株式会社製 M-QA 200TS)を用レ、、 SiHと H〇について検出可能であるかどうか測定を行った。その
4 2
結果、 SiHは検出されなかった。 H〇は検出された力 その信号強度はバックグラウ
4 2
ンドとして存在するものと変わらず、 SiOのエッチングは確認されなかった。
2
[0084] また、ステンレススチール製の処理室の内壁に Si〇膜コーティングされているもの
2
について、前記の実験の前後で、 SiO膜表面の SEM画像を検討した。図 4 (a)は、
2
実験開始前の SiO膜表面の SEM画像であり、図 4 (b)は、実験終了後の Si〇膜表
2 2 面の SEM画像である。ここで、 Si〇膜表面が水素原子に晒されていた時間は 3時間
2
であり、その間の水素原子濃度は、 1. 0 X 1012/cm3であった。図 4 (a)、図 4 (b)に おいて、表面の粗さは、処理室のステンレススチール内壁の粗さに起因するものであ る。図 4 (a)と図 4 (b)とから判るように、両者の間には、水素原子によるエッチングの 結果生じた相違は非常に小さい。
産業上の利用可能性
[0085] 本発明の水素原子発生源と水素原子輸送方法によれば、生成した水素原子濃度 の減衰を効果的に抑制し、高い濃度の水素原子を、大量に、 目的とする場所に輸送 することが可能になる。
[0086] 水素原子は、真空処理装置を用いた半導体の製造などにおいて、半導体薄膜表 面の改質ゃフォトレジストの除去などに利用可能とされており、これまでも、 Cat_CVD 装置における加熱触媒体上で多量に発生させた水素原子を輸送した後にシランと反 応させ、発生するシリルラジカルを堆積させて欠陥の少ない非晶質シリコン薄膜を製 造する技術や、 Cat-CVD装置における加熱触媒体上で多量に発生させた高密度水 素原子を用いたプラズマ 'レジスト剥離技術(TECHNICAL REPORT OF IEICE CPM 2004- 134(2004- 11)39— 43頁 the INSTITUTE OF ELECTRONICS, INFORMATIO N AND COMMUNICATION ENGINEERS)、 Cat-CVD装置における加熱触媒体上 で水素ラジカル、重水素ラジカルを利用した半導体装置の界面安定化処理技術 (特 開 2004— 319771)などが提案されている。
[0087] 水素原子発生手段によって生成した水素原子濃度の減衰を効果的に抑制し、高 い濃度の水素原子を、大量に、 目的とする場所に輸送することを可能にする本発明 は、これらの種々の技術に適用可能である。 図面の簡単な説明
[0088] [図 1]本発明が触媒 CVD装置において実現されている場合の一例を説明する概略構 成図。
[図 2]本発明の他の実施形態を説明する概略構成図。
[図 3]本発明についての実験結果を表す図。
[図 4]本発明についての実験の前後における Si〇膜表面の SEM画像であって、(a)
2
は実験開始前、(b)は実験終了後の SiO膜表面の SEM画像。
2
符号の説明
[0089] 1 触媒 CVD装置
2 水素原子発生手段
3 処理室
4 基板ホルダー
5 被処理基板
6 減圧手段
7 接続部
8 加熱手段
9 原料ガス供給系
10 電力供給系
11 発熱体
12 原料ガス吹出器
13 SiO膜のコーティング
2
14 輸送経路
15 水冷システム

Claims

請求の範囲
[1] 水素原子発生手段を取り囲む部材の当該水素原子発生手段が配置されてレ、る空 間に面する表面の少なくとも一部が Si〇で被覆されていることを特徴とする真空処理
2
装置における水素原子発生源。
[2] 水素原子発生源は前記水素原子発生手段によって生成された水素原子を当該水 素原子発生源から輸送していく輸送経路を備えており、当該輸送経路の内壁表面が Si〇で被覆されていることを特徴とする請求項 1記載の真空処理装置における水素
2
原子発生源。
[3] 水素原子発生手段は高温の金属触媒体表面において水素分子を分解することに より水素原子を発生させるものであることを特徴とする請求項 1又は 2記載の真空処 理装置における水素原子発生源。
[4] 水素原子発生手段を取り囲む部材は金属製で、冷却システムを備えてレ、ることを特 徴とする請求項 1乃至 3のいずれか一項記載の真空処理装置における水素原子発 生源。
[5] 金属製の水素原子発生手段を取り囲む部材の水素原子発生手段が配置されてい る空間に面する表面の温度が冷却システムにより + 30°C以下に維持されることを特 徴とする請求項 4記載の真空処理装置における水素原子発生源。
[6] Si〇による被覆は、ポリシラザン (polysilazane)の有機溶媒溶液を塗布した後、これ
2
を酸化させて形成したものであることを特徴とする請求項 1乃至 5のいずれか一項記 載の真空処理装置における水素原子発生源。
[7] 真空処理装置における水素原子発生手段によって生成した水素原子を所望の場 所へ輸送する方法であって、内壁表面が Si〇で被覆されている輸送経路を介して
2
前記水素原子を輸送することを特徴とする真空処理装置における水素原子輸送方 法。
[8] 水素原子発生手段を取り囲む部材の当該水素原子発生手段が配置されてレ、る空 間に面する表面の少なくとも一部が Si〇で被覆されていることを特徴とする請求項 7
2
記載の真空処理装置における水素原子輸送方法。
[9] 水素原子発生手段を取り囲む部材は金属製で冷却システムを備えてレ、ることを特 徴とする請求項 8記載の真空処理装置における水素原子輸送方法。
PCT/JP2005/013175 2005-02-21 2005-07-15 真空処理装置における水素原子発生源及び水素原子輸送方法 WO2006087833A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/816,726 US7771701B2 (en) 2005-02-21 2005-07-15 Hydrogen atom generation source in vacuum treatment apparatus, and hydrogen atom transportation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-044413 2005-02-21
JP2005044413A JP4652841B2 (ja) 2005-02-21 2005-02-21 真空処理装置における水素原子発生源及び水素原子輸送方法

Publications (1)

Publication Number Publication Date
WO2006087833A1 true WO2006087833A1 (ja) 2006-08-24

Family

ID=36916247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013175 WO2006087833A1 (ja) 2005-02-21 2005-07-15 真空処理装置における水素原子発生源及び水素原子輸送方法

Country Status (5)

Country Link
US (1) US7771701B2 (ja)
JP (1) JP4652841B2 (ja)
KR (1) KR20070107710A (ja)
TW (1) TW200630503A (ja)
WO (1) WO2006087833A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110302A (ja) * 2011-11-22 2013-06-06 Ulvac Japan Ltd プラズマ処理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352323B2 (ja) * 2009-04-07 2013-11-27 トヨタ自動車株式会社 水素生成装置及び水素生成方法
JP2011184719A (ja) * 2010-03-05 2011-09-22 Shin Etsu Handotai Co Ltd 耐食性部材、気相成長装置、気相成長方法及びコーティング方法
US8580661B1 (en) * 2011-08-24 2013-11-12 U.S. Department Of Energy Method for the hydrogenation of poly-si
WO2013096748A1 (en) * 2011-12-23 2013-06-27 Applied Materials, Inc. Methods and apparatus for cleaning substrate surfaces with atomic hydrogen
US11155916B2 (en) * 2018-09-21 2021-10-26 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and methods for pumping gases from a chamber
US11557499B2 (en) * 2020-10-16 2023-01-17 Applied Materials, Inc. Methods and apparatus for prevention of component cracking using stress relief layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140368A (ja) * 1992-10-28 1994-05-20 Fujitsu Ltd 水素プラズマダウンフロー処理方法及び水素プラズマダウンフロー処理装置
JPH0837176A (ja) * 1994-07-25 1996-02-06 Fujitsu Ltd 水素プラズマダウンフロー装置の洗浄方法および半導体装置の製造方法
JP2002294451A (ja) * 2001-03-30 2002-10-09 Sony Corp 多結晶性半導体薄膜の形成方法、半導体装置の製造方法、並びにこれらの方法の実施に使用する装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241828C (zh) * 2000-06-16 2006-02-15 打矢恒温器株式会社 氢供应方法、装置及移动式氢供应箱
KR100568100B1 (ko) * 2001-03-05 2006-04-05 삼성전자주식회사 트렌치형 소자 분리막 형성 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140368A (ja) * 1992-10-28 1994-05-20 Fujitsu Ltd 水素プラズマダウンフロー処理方法及び水素プラズマダウンフロー処理装置
JPH0837176A (ja) * 1994-07-25 1996-02-06 Fujitsu Ltd 水素プラズマダウンフロー装置の洗浄方法および半導体装置の製造方法
JP2002294451A (ja) * 2001-03-30 2002-10-09 Sony Corp 多結晶性半導体薄膜の形成方法、半導体装置の製造方法、並びにこれらの方法の実施に使用する装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110302A (ja) * 2011-11-22 2013-06-06 Ulvac Japan Ltd プラズマ処理装置

Also Published As

Publication number Publication date
TW200630503A (en) 2006-09-01
JP4652841B2 (ja) 2011-03-16
US7771701B2 (en) 2010-08-10
TWI377266B (ja) 2012-11-21
JP2006229152A (ja) 2006-08-31
KR20070107710A (ko) 2007-11-07
US20090004100A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
US8357619B2 (en) Film formation method for forming silicon-containing insulating film
TW556337B (en) Semiconductor device production method and semiconductor device production apparatus
KR0157139B1 (ko) 반도체장치의 제조방법과 제조장치
US9157152B2 (en) Vapor deposition system
JP2017034245A (ja) 感受性材料上にハロゲン化物含有ald膜を統合する方法
JP2007088454A (ja) 制御可能な空間的変化を有する層を形成する方法及びシステム
US6664184B2 (en) Method for manufacturing semiconductor device having an etching treatment
WO2006087833A1 (ja) 真空処理装置における水素原子発生源及び水素原子輸送方法
CN101151718A (zh) 用于形成氧氮化物层的方法和系统
US7601402B2 (en) Method for forming insulation film and apparatus for forming insulation film
US6395192B1 (en) Method and apparatus for removing native oxide layers from silicon wafers
JPH1079378A (ja) 成膜方法及びその装置
JP4538259B2 (ja) 層間絶縁膜の表面改質方法及び表面改質装置
US10066293B2 (en) Method of cleaning the filament and reactor's interior in FACVD
JP2002353210A (ja) 熱処理装置および熱処理方法
JP4130380B2 (ja) 熱処理方法及び熱処理装置
JP5169343B2 (ja) コーティング形成方法、コーティング形成装置および重合方法
JPH03204932A (ja) シリコン層上の被膜除去方法
US6551442B2 (en) Method of producing semiconductor device and system for producing the same
US20070026642A1 (en) Surface modification method and surface modification apparatus for interlayer insulating film
JP2006191151A (ja) 半導体装置の製造方法および基板処理装置
JPH0897206A (ja) 熱酸化膜形成方法
JP2005302786A (ja) 低誘電率膜の形成方法
JP2012216582A (ja) シリコン含有物のエッチング方法
JP2010004081A (ja) 層間絶縁膜の表面改質方法及び表面改質装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077019025

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05766495

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5766495

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11816726

Country of ref document: US