[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006077772A1 - 熱可塑性重合体組成物 - Google Patents

熱可塑性重合体組成物 Download PDF

Info

Publication number
WO2006077772A1
WO2006077772A1 PCT/JP2006/300335 JP2006300335W WO2006077772A1 WO 2006077772 A1 WO2006077772 A1 WO 2006077772A1 JP 2006300335 W JP2006300335 W JP 2006300335W WO 2006077772 A1 WO2006077772 A1 WO 2006077772A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
block
polymer
thermoplastic
polymer composition
Prior art date
Application number
PCT/JP2006/300335
Other languages
English (en)
French (fr)
Inventor
Hidekazu Saito
Hiroyuki Ono
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to JP2006515468A priority Critical patent/JP5111851B2/ja
Publication of WO2006077772A1 publication Critical patent/WO2006077772A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6204Polymers of olefins
    • C08G18/6208Hydrogenated polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified

Definitions

  • the present invention relates to a thermoplastic polymer composition, a molded article comprising the thermoplastic polymer composition, and a composite molded article.
  • the thermoplastic polymer composition of the present invention is excellent in handleability and melt moldability, and a melted product such as an extrudate adheres or adheres to a molding apparatus part, particularly a die part in melt extrusion molding, at the time of melt molding. It is possible to perform molding with good productivity, and it is possible to perform various moldings with excellent mechanical properties such as appearance, dimensional stability, flexibility, strength, wear resistance, and light resistance. Since a molded product can be produced smoothly and firmly bonded to various materials, it can be used effectively in the production of various molded products and composite molded articles by making use of these characteristics.
  • a block copolymer having a styrene polymer block and a conjugated gen polymer block and a hydrogenated product thereof (hereinafter collectively referred to as "(hydrogenated) styrene 'conjugated gen block copolymer”)
  • (hydrogenated) styrene 'conjugated gen block copolymer) Can be easily plasticized and melted by heating, and can be molded easily.
  • Shika also has rubber elasticity at room temperature and has a good balance between flexibility and mechanical properties. For this reason, V is widely used in various fields as a kind of so-called thermoplastic elastomer (thermoplastic elastomer) in recent years.
  • (Hydrogenated) Styrene conjugated gen block copolymer has low polarity! Therefore, it has low polarity! Although it can be melt-bonded or integrally formed with other polymers, it has high polarity. ! It is difficult to melt and bond with polymers and metals.
  • composition in which an engineering plastic having a specific crystalline melting point and viscosity is blended with a (hydrogenated) styrene 'conjugated gen block copolymer is known.
  • a thermoplastic polyurethane is known. Is used (see Patent Document 1).
  • Patent Document 1 describes that the composition is suitable as an insulator for a conductor or a wire for soldering.
  • thermoplastic polyurethane used as the engineering plastic
  • (Hydrogenated) Styrene Conjugated Gen Block Since the compatibility between the copolymer and the thermoplastic polyurethane is poor, the properties of both polymers are not sufficiently exhibited, and a useful composition cannot be obtained.
  • thermoplastic polyurethane for the purpose of improving the compatibility between the conjugated gen block copolymer and the thermoplastic polyurethane, and improving the melt adhesion of the composition containing both polymers.
  • a composition in which a thermoplastic polyurethane is blended with a (hydrogenated) styrene 'conjugated gen block copolymer modified with an acid group, a hydroxyl group or other polar group is known (see Patent Documents 5 and 6). .
  • a (hydrogenated) styrene 'conjugated gen block copolymer modified with a carboxylic acid group and a composition that also has a thermoplastic polyurethane strength are provided with a hindered phenol and a phosphate in order to improve thermal stability during molding.
  • a composition containing a phyto compound is known (see Patent Document 7).
  • these compositions are easily molded and adhered to a molding device such as a die part during melt molding, and have a predetermined dimension, and are excellent in surface smoothness and appearance. The product may not be obtained, and it is not sufficiently satisfactory in terms of handleability, melt moldability, etc. In addition, it is also excellent in terms of melt adhesion with other materials. Difficult,
  • thermoplastic polymer composition containing an addition polymerization block composed of a styrene / conjugated gen block copolymer and a block copolymer having a polyurethane block, a thermoplastic polyurethane and a paraffinic oil is known.
  • a thermoplastic polymer composition containing an addition polymerization block composed of a styrene / conjugated gen block copolymer and a block copolymer having a polyurethane block, a thermoplastic polyurethane and a paraffinic oil is known.
  • Have See Patent Document 8).
  • thermoplastic polymer composition has good flexibility, elasticity, mechanical properties, oil resistance and molding processability, and has excellent melt adhesion and is melted into various materials. It has excellent properties such as strong adhesion. Therefore, the present inventors further studied this thermoplastic polymer composition, and as a result, an addition made of a (hydrogenated) styrene′-conjugated gen block copolymer used in this thermoplastic polymer composition.
  • a block copolymer having a polymerization block and a polyurethane block may be dissociated at the joint between the addition polymerization block and the polyurethane block depending on the thermal conditions during molding molding. It has been found that there is room for further improvement from the standpoint of improving heat resistance at the plant. Moreover, there was room for further improvement from the viewpoint of obtaining a thermoplastic polymer composition having higher tensile breaking strength.
  • Patent Document 1 Japanese Patent Laid-Open No. 52-150464
  • Patent Document 2 JP-A-6-65467
  • Patent Document 3 JP-A-6-107898
  • Patent Document 4 JP-A-8-72204
  • Patent Document 5 Japanese Patent Laid-Open No. 63-99257
  • Patent Document 6 Japanese Patent Laid-Open No. 3-234755
  • Patent Document 7 JP-A-7-126474
  • Patent Document 8 Japanese Patent Application Laid-Open No. 11-323073
  • Patent Document 9 Japanese Patent Laid-Open No. 2001-220505
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2001-220506
  • Patent Document 11 Japanese Patent Laid-Open No. 10-139963
  • thermoplastic elastomers including (hydrogenated) styrene 'conjugated gen block copolymers
  • molding processability is further improved.
  • high-performance power There is a demand for high-performance power.
  • the object of the present invention is to solve the above-mentioned problems in the prior art, and is excellent in melt moldability, handling and performance without adhesion or adhesion to a molding apparatus during melt molding, and particularly in Produces molded products with excellent appearance and dimensional stability without adhesion of extrudates to the die during melt extrusion molding, including freight molding, and without thickness spots, cracks, or streaks in the molded products. Molded products that can be manufactured smoothly and with excellent mechanical properties such as flexibility, tensile breaking strength, wear resistance, light resistance, heat resistance, and melt adhesion with other materials.
  • the object is to provide a thermoplastic polymer composition capable of producing a composite molded body.
  • an object of the present invention is to provide a molded article made of the thermoplastic polymer composition and a composite molded body of the thermoplastic polymer composition and other materials.
  • the present inventors included an addition polymerization block composed of a (hydrogenated) styrene 'conjugated gen block copolymer contained therein. If the thermal stability of the block copolymer having a polyurethane block can be raised to a higher level, the adhesion of the extrudate to the die portion that occurs during melt extrusion molding can be prevented or reduced, so that I came up with the idea that defective phenomena such as thick spots, streaks, and cracks could be improved, and further research.
  • thermoplastic polymer composition described in Patent Document 8 a (hydrogenated) styrene block having an addition polymerization system block having a conjugated gen block copolymer force and a polyurethane block used therein.
  • a new thermoplastic polymer composition was prepared by replacing the copolymer with a block copolymer having an addition polymerization block (polyhydrogenated) styrene-conjugated gen block copolymer and a polycarbonate block. Handling, properties, melt moldability, physical properties, etc. were examined.
  • thermoplastic polymer composition containing an addition polymerization block composed of a (hydrogenated) styrene conjugated gen block copolymer and a block copolymer having a polycarbonate block is transferred to a molding apparatus during melt molding.
  • Extrusion does not adhere to the die part during melt extrusion molding including inflation molding, and the thickness unevenness during extrusion molding is excellent. It has been found that there are no streaks, cracks, etc., and it is also excellent in mechanical properties such as flexibility, tensile breaking strength, wear resistance, light resistance, heat resistance, and melt adhesion with other materials. It was.
  • the present inventors provide a block copolymer having an addition polymerization block composed of a (hydrogenated) styrene 'conjugated gen block copolymer and a polycarbonate block.
  • a block copolymer prepared by reacting polycarbonate with a reactive hydrogenated (styrene) conjugated gen block copolymer and polycarbonate, or a functional group reactive with polycarbonate.
  • the inventors of the present invention have a thermoplastic polymer block described in the above-mentioned Patent Document 8, wherein the (hydrogenated) styrene ′ conjugated gen block copolymer also has an attached calopolymerization block.
  • a reaction mixture prepared by reacting a polycarbonate and a (hydrogenated) styrene conjugated gen block copolymer having a functional group reactive with polycarbonate under melt kneading instead of a block copolymer having a polyurethane block, a reaction mixture prepared by reacting a polycarbonate and a (hydrogenated) styrene conjugated gen block copolymer having a functional group reactive with polycarbonate under melt kneading.
  • a reaction mixture prepared by reacting (hydrogenated) styrene conjugated gen block copolymer having a functional group reactive with polycarbonate, a compound having two hydroxyl groups, and a polycarbonate precursor under melt kneading The present inventors have also found that a thermoplastic polymer composition having the above-described excellent properties can be obtained.
  • thermoplastic polymer composition examples include, as polyurethane, a polymer polyol, a chain extender, and an organic diisocyanate compound, and are derived from an organic diisocyanate compound.
  • a thermoplastic polyurethane formed by using a reaction raw material having a nitrogen atom content of 1 to 6.5% by mass based on the total mass of the polymer polyol, the chain extender and the organic diisocyanate compound is preferably used. I found out that
  • the present inventors use the polymer polyol, the chain extender, and the organic diisocyanate compound as they are in the thermoplastic polymer composition instead of using the previously prepared thermoplastic polyurethane.
  • the present inventors have found that a thermoplastic polymer composition having the above-described excellent characteristics can be obtained even when melt kneading is used, and the present invention has been completed based on these various findings. That is, the present invention provides:
  • Addition polymerization block (ii) comprising a block copolymer having an aromatic vinyl compound polymer block (a-2) and a conjugated diene polymer block (b-2) or a hydrogenated product thereof, and a polycarbonate polymer
  • Block copolymer ( ⁇ ) force The thermoplastic polymer composition according to (1), which is at least one of the following block copolymer ( ⁇ ) and block copolymer ( ⁇ ).
  • a block copolymer having a polymer block (a-2) and a conjugated diene polymer block (b-2), or a hydrogenated product thereof, and a polycarbonate polymer (Roh 1) A block copolymer prepared by reacting an addition polymerization block copolymer (I-1) having a functional group capable of reacting with a polycarbonate polymer (Rho 1) under melt kneading.
  • the present invention also provides:
  • Addition polymerization type block copolymer (I) 5 parts of block copolymer (II) per 100 parts by mass ⁇ 200 parts by mass, 100 to 800 parts by mass of thermoplastic polyurethane (III) and 10 to 200 parts by mass of paraffinic oil (IV) are contained in any of the above (1) to (3) A thermoplastic polymer composition;
  • the present invention provides:
  • thermoplastic polymer composition (ii) A block copolymer having an aromatic vinyl compound-based polymer block (a-1) and a conjugated-gen-based polymer block (b-1) or an addition polymerization block copolymer having a hydrogenated product
  • a block copolymer having a polymer block (a-2) and a conjugated diene polymer block (b-2), or a hydrogenated product thereof, and a polycarbonate polymer (Roh 1) A reaction mixture obtained by reacting an addition polymerization block copolymer (I-1) having a functional group capable of reacting with a polycarbonate polymer (Rho 1) under melt kneading.
  • a block copolymer having a polymer block (a-2) and a conjugated diene polymer block (b-2), or a hydrogenated product thereof, and a polycarbonate polymer (Roh 1) A reaction mixture obtained by reacting an addition polymerization block copolymer having a functional group capable of reacting with (I-1), a compound having two hydroxyl groups, and a carbonate precursor under melt kneading.
  • thermoplastic polymer composition (iii) A block copolymer having an aromatic vinyl compound polymer block (a-1) and a conjugated diene polymer block (b-1), or an addition polymerization block copolymer having a hydrogenated product (1) , At least one of the following reaction mixture (Ila) and reaction mixture (lib), high molecular polyol, chain extender, organic diisocyanate compound, and paraffinic oil It is a thermoplastic polymer composition obtained by melt-kneading (IV) [hereinafter, this may be referred to as “thermoplastic polymer composition (iii)”].
  • a block copolymer having a polymer block (a-2) and a conjugated diene polymer block (b-2), or a hydrogenated product thereof, and a polycarbonate polymer (Roh 1) A reaction mixture obtained by reacting an addition polymerization block copolymer (I-1) having a functional group capable of reacting with a polycarbonate polymer (Rho 1) under melt kneading.
  • a block copolymer having a polymer block (a-2) and a conjugated diene polymer block (b-2), or a hydrogenated product thereof, and a polycarbonate polymer (Roh 1) A reaction mixture obtained by reacting an addition polymerization block copolymer having a functional group capable of reacting with (I-1), a compound having two hydroxyl groups, and a carbonate precursor under melt kneading.
  • the present invention provides:
  • thermoplastic polymer composition according to any one of the above (2) to (6), wherein the functional group capable of reacting with the polycarbonate polymer in the addition polymerization block copolymer (I-1) is a hydroxyl group. ;
  • Thermoplastic polyurethane (III) is a reaction raw material for forming a thermoplastic polyurethane that also has a high molecular weight polyol, a chain extender, and an organic diisocyanate compound, and contains nitrogen atoms derived from the organic diisocyanate compound.
  • thermoplasticity according to any one of (1) to (9) above, wherein a tensile strength at break measured in accordance with JIS K-7311 is 8 MPa or more using a dumbbell-type test piece specified in JIS 3 It is a polymer composition.
  • thermoplastic polymer composition according to any one of (1) to (10) and another material;
  • thermoplastic polymer composition of the present invention is excellent in melt moldability and handling properties without adhesion or adhesion to a molding apparatus during melt molding, and particularly in melt extrusion molding including inflation molding. At this time, the extrudate does not adhere to the die part, and no thick spots, streaks, cracks, etc. are produced during extrusion molding, and a high-quality molded article having excellent appearance and dimensional stability can be produced with high productivity.
  • thermoplastic polymer composition of the present invention are excellent in mechanical properties such as flexibility and tensile breaking strength, wear resistance, light resistance, heat resistance, and the like, and melted with other materials. It has excellent adhesiveness and adheres firmly to other materials.
  • thermoplastic polymer composition of the present invention makes use of such excellent properties, and is in the form of a film used for various molded products and products, for example, electrical products, synthetic leather, automobile-related devices and the like. It can be used effectively for the manufacture of various molded products bonded to other materials, such as products, sheets, hoses, tubes, other molded products, and other materials.
  • the present invention is a.
  • thermoplastic polymer composition [thermoplastic polymer composition (i)];
  • thermoplastic polymer composition obtained by melt-kneading (IV) [thermoplastic polymer composition (iii)];
  • thermoplastic polymer composition (i) to (iii) of the present invention may be collectively referred to as “thermoplastic polymer composition”.
  • the addition polymerization type block copolymer (I) used has an aromatic vinyl compound type polymer block (a-1). Also used as an addition polymer block (ii) in the block copolymer ( ⁇ ) used in the thermoplastic polymer composition (i) and as a block copolymer (II) in the thermoplastic polymer composition (i).
  • the addition polymerization block copolymer (I-1) used to form the reaction mixture (Ila) and the reaction mixture (lib) in this case is not less than the aromatic vinyl compound polymer block (a-2).
  • aromatic bur compound constituting the aromatic vinyl compound-based polymer blocks (a-1) and (a-2) examples include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, ⁇ -methylenostyrene, m —Methylanol styrene, p-methylol styrene, 2,4 dimethyl styrene, 2, 4, 6 trimethyl styrene, 4 propino styrene, t-butyl styrene, 4 cyclohexyl styrene, 4 dodecyl styrene, 2 ethyl 4 benzyl styrene, 4 (Fuenolebutinore) Mention may be made of aromatic vinyl compounds such as styrene, 1-vininolenaphthalene, vinylenoanthracene, indene, acetonaphthylene, monofun
  • Aromatic vinyl compound The physical polymer blocks (a-1) and (a-2) may be formed of one kind of aromatic bee complex force, and may have two or more kinds of aromatic bee lei compound strength. It may be formed.
  • the aromatic bur compound-based polymer blocks (a-1) and (a-2) are preferably formed mainly from structural units derived from styrene and Z or a-methylstyrene.
  • the aromatic vinyl compound-based polymer blocks (a-1) and (a-2) are composed of structural units derived from the aromatic vinyl compound and, if necessary, other copolymerizable monomers. It may contain a small amount of structural units derived from one or more of the body.
  • the content of structural units derived from other copolymerizable monomers is 30% by mass or less, particularly 10% based on the mass of the aromatic vinyl compound polymer block (a-1) or (a-2). More preferably, it is less than or equal to mass%.
  • Examples of other copolymerizable monomers include 1-butene, 1-pentene, 1-hexene, butadiene, 2-methyl-1,3-butadiene (isoprene), and methyl vinyl ether.
  • the addition polymerization block copolymer (I) used in the thermoplastic polymer compositions (i) to (iii) of the present invention is a conjugated gen polymer block (b — Has 1). Also used as an addition polymerization block (ii) in the block copolymer (i) used in the thermoplastic polymer composition (i) and as a block copolymer (ii) in the thermoplastic polymer composition (i).
  • Conjugated Genuine compounds constituting the Conjugated Polymer Blocks (b-1) and (b-2) are 1,3 butadiene, 2-methyl-1,3 butadiene (isoprene), 2,3 dimethyl-1 , 3 Butadiene, 1,3 pentagen, 1,3 hexagen, and the like.
  • the conjugated gen-based polymer blocks (b-1) and (b-2) may be formed from one type of conjugated gen compound or may be formed from two or more types of conjugated genic compounds. You can do it.
  • Conjugated polymer block (b— 1) and Z or (b— 2) In the case of containing structural units derived from conjugated genie compounds with more than one kind of force, their bonding form may be random, tapered or partially blocky, and they are mixed. Well, okay.
  • Conjugated polymer block (b-1) and Z or (b-2) are hydrogenated! Even if not, it may be partly hydrogenated or all hydrogenated.
  • the hydrogenation rate of the co-gene polymer block (b-1) and Z or (b-2) is 50 mol% or more, more preferably 60 mol% or more from the viewpoint of heat resistance, weather resistance and light resistance. In particular, it is preferably 80 mol% or more.
  • the hydrogenation rate (mol%) is a ratio with respect to the total number of moles of double bonds existing in the conjugated diene polymer block (b-1) or (b-2) before hydrogenation. .
  • the polymer block (b-2) is an isoprene polymer block that may be hydrogenated, hydrogenated, a butadiene polymer block and a hydrogenated copolymer of isoprene and butadiene.
  • Polymer block power Preferably at least one polymer block selected.
  • the content of the structural unit derived from the aromatic vinyl compound in the addition polymerization block copolymer (I) is 5 to 90% by mass relative to the mass of the addition polymerization block copolymer (I). 10 to 90 mass to a further 0/0, and particularly preferably 20 to 80 wt%.
  • the content of the structural unit derived from the aromatic beryl compound in the addition copolymerization block (ii) of the block copolymer (II) is 5 to 5 to the mass of the addition polymerization block (ii). It is preferably 90% by mass, more preferably 10 to 90% by mass, and particularly preferably 20 to 80% by mass.
  • the addition of structural units derived from aromatic belief compounds in the addition copolymer block copolymer (ii) used to form the block copolymer ( ⁇ ) and block copolymer ( ⁇ ) The amount of the structural unit derived from the aromatic belief compound in the addition polymerization system block copolymer (I 1) used to form the reaction mixture (Ila) and the reaction mixture (lib) 5 to 90% by mass, more preferably 10 to 90% by mass, and particularly preferably 20 to 80% by mass with respect to the mass of the polymerization block copolymer (I-1).
  • addition polymerization block copolymer (I), block copolymer (II), and addition polymerization block copolymer (I-1) in which the content of structural units derived from aromatic vinyl compounds is within the above range. By doing so, it is possible to obtain a thermoplastic polymer composition that is superior in flexibility, mechanical performance and melt moldability.
  • the bond form of the aromatic beryl compound polymer block (a 2) and the conjugated gen polymer block (b-2) in the attached caropolymer block copolymer (I-1) is It is not limited and can be linear, branched, radial, or a combined form thereof. It is flexible, the point mosquitoes ⁇ et preferable to be able to obtain a thermoplastic polymer composition excellent in such mechanical properties and melt forming shape retention by a linear bonding form Among the Guso.
  • Addition polymerization block copolymers (I-1), and addition polymerization block copolymers (I-1) used to form the reaction mixture (Ila) and reaction mixture (lib) include aromatic vinyl compounds.
  • the polymer blocks (a-1) and (a-2) are represented by X and the conjugated diene polymer blocks (b1) and (b-2) are represented by Y, for example, the following formula:
  • thermoplastic polymer composition of the present invention is melt moldable, flexible, mechanical In terms of performance, etc., addition polymerization block copolymer (1), addition copolymer block (ii), block copolymer (ii) and block copolymer (II) in block copolymer (II)
  • the addition polymerization block copolymer (I-1) used for the formation of the polymer ( ⁇ ) and the addition polymerization block copolymer (I-1) used for the formation of the reaction mixture (Ila) and the reaction mixture (lib) are:
  • the formula: X—Y—X is preferred to be in the form of a diblock copolymer represented by X—Y or a triblock copolymer represented by the formula: X—Y—X.
  • the impregnation ability (oil retention ability) of paraffinic oil (IV) in the thermoplastic polymer composition is increased. It is also preferable from the viewpoint of preventing the transfer of paraffinic oil (IV) (bleed out, etc.) more effectively!
  • the addition polymerization block (ii) of the block copolymer ( ⁇ ) is an aromatic vinyl compound.
  • the addition copolymer block copolymer (I-1) used to form the block copolymer ( ⁇ ) and the block copolymer ( ⁇ ) Aromatic vinyl compound-based polymer when the addition of two or more polymer blocks X, and addition polymerization block copolymer (I-1) used to form Z or reaction mixture (Ila) and reaction mixture (lib)
  • the aromatic beryl compound polymer block may be a polymer block having the same contents or a polymer block having different contents.
  • the addition polymerization block copolymer (I) contains two or more conjugated gen polymer blocks Y
  • the addition polymerization block (ii) of the block copolymer ( ⁇ ) has two or more conjugates.
  • the addition copolymer-based block copolymer (I-1) used to form the block copolymer ( ⁇ ) and the block copolymer ( ⁇ ) has two or more conjugated gens. Conjugated diene containing two or more addition polymerization block copolymers (i-1) used for forming Z or reaction mixture (Ila) and reaction mixture (lib).
  • the conjugation polymer block may be a polymer block having the same contents or a polymer block having different contents.
  • the polymer block ⁇ may be the same or different in the type of aromatic belief compound or conjugated gen compound constituting them, the type of bonding, the number average molecular weight of the polymer block, and the like. Also good.
  • the number average molecular weight of 1) and the conjugated gen polymer block (b-1) is not particularly limited, but the number of aromatic vinyl compound polymer blocks (a-1) in the state before hydrogenation.
  • the average molecular weight force is in the range of 2,500 to 125,000, especially 10,000 to 100,000, and the number average molecular weight of the conjugated gen-based polymer block (b-1) is 10,000 to 250,000, in particular It is preferably within the range of 20,000 to 200,000.
  • An addition polymerization block copolymer (I) composed of an aromatic bur compound polymer block (a-1) and a conjugated diene polymer block (b-1) having a number average molecular weight within the above range is prepared.
  • the total number average molecular weight of the addition polymerization block copolymer (I) is in the range of 15,000 to 500,000, particularly 80,000 to 400,000 in the state before hydrogenation. Powerful! /
  • the thermoplastic polymer composition of the present invention is more excellent in melt moldability, flexibility, mechanical performance and the like. Become.
  • Aromatic beryl polymer block in addition polymer block copolymer (I-1) used to form molecular weight, block copolymer ( ⁇ ) and block copolymer ( ⁇ ) ( Number average molecular weights of a—2) and conjugation polymer blocks (b—2), addition polymerization block copolymers (i—1) used to form reaction mixture (Ila) and reaction mixture (lib) The number average molecular weights of the aromatic bur compound polymer block (a-2) and the conjugated diene polymer block (b-2) in Fig.
  • the number average molecular weight of the aromatic vinyl compound polymer block (a-2) is in the range of 2,500 to 75,000, particularly 5,000 to 50,000, and the conjugated gen polymer block ( It is preferable that the number average molecular weight force of b) is in the range of 000 to 150,000, especially 10,000 to 100,000.
  • the melt moldability of the thermoplastic polymer composition of the present invention When the number average molecular weights of the aromatic vinyl compound-based polymer block (a-2) and the conjugation-based polymer block (b-2) are within the above range, the melt moldability of the thermoplastic polymer composition of the present invention , Flexibility, mechanical performance, etc. will be better.
  • the number average molecular weight of the addition polymerization block (ii) of the block copolymer (II), the addition polymerization system used for forming the block copolymer ( ⁇ ) and the block copolymer ( ⁇ ) Total number average molecular weight of block copolymer (I-1), total number average of addition polymerization block copolymer (I-1) used to form reaction mixture (Ila) and reaction mixture (lib)
  • the molecular weight is preferably in the range of 15,000 to 300,000, particularly in the range of 20,000 to 100,000 before hydrogenation.
  • a block copolymer (II) containing an addition polymerization block (ii) having such a number average molecular weight, or an addition polymerization block copolymer (ii) having a strong number average molecular weight By using the block copolymer ( ⁇ ), the block copolymer ( ⁇ ), the reaction mixture (Ila) and Z or the reaction mixture (lib) formed by using the thermoplastic polymer composition of the present invention, Melt formability, flexibility, mechanical performance, etc. are improved.
  • the number average molecular weight of each of the aromatic vinyl compound-based polymer block (a-1) and the conjugated-gen-based polymer block (b-1), the addition polymerization block The total number average molecular weight of the copolymer (I), the number average molecular weight of each of the aromatic vinyl compound polymer block (a-2) and the conjugated diene polymer block (b-2), the addition polymerization system block ( B)
  • the overall number average molecular weight of the addition polymer block copolymer (a-1) and conjugate polymer block (a-2) in the addition polymerization block copolymer (i-1) ( The number average molecular weight of each b-2) and the total number average molecular weight of the addition polymerization block copolymer (I-1) are both converted to standard polystyrene by gel permeation chromatography (GPC). It is the value measured by.
  • Addition polymerization block copolymer used in the thermoplastic polymer compositions (i) to (iii) of the present invention (I) preferably has a melt flow rate (MFR) measured at 230 ° C. under a load of 2.16 kg of not more than lOgZlO, more preferably not more than 5 gZlO, especially not more than 3 gZlO.
  • MFR melt flow rate
  • block copolymer (ii) constituting the block copolymer (II) used in the thermoplastic polymer composition (i) of the present invention, and a block copolymer usable as the block copolymer (II).
  • the addition polymerization block copolymer (i-1) used to form the reaction mixture (lib) both have a melt flow rate (MFR) of 0.01 measured at 230 ° C and 2.16 kg load. It is preferable to be within the range of ⁇ lOOgZlO, particularly 0.05 to 80g / 10min. Accordingly, the block copolymer (11), block copolymer ( ⁇ ), block copolymer ( ⁇ ) or reaction mixture (Ila) and Z or reaction mixture (lib) can be added to the addition polymerization block copolymer.
  • the compatibility with the polymer (I) and the thermoplastic polyurethane (III) is improved, and a thermoplastic polymer composition excellent in mechanical performance and melt moldability can be obtained.
  • melt flow rate (MFR) of the addition polymerization block copolymer (I) and the addition polymerization block copolymer (I1) in this specification are both measured in accordance with ASTM D-1238. It is the value.
  • melt flow rate (MFR) of the attached polymer block (ii) in this specification is the same as that of the block copolymer (II) in which the polycarbonate polymer block (mouth) is replaced with a hydrogen atom. It is a value measured according to ASTM D-1238 using a coalescence.
  • the JIS A hardness of (I) is in the range of 30 to 95, more preferably 40 to 90, and particularly 50 to 85.
  • the thermoplastic polymer composition of the present invention has improved strength, such as melt moldability, flexibility and mechanical performance.
  • block copolymer (II) used in the thermoplastic polymer composition (i) of the present invention.
  • the JIS A hardness is 30 to 95, more preferably 40 to 90, especially 50 to 85. It is preferable that the thermoplastic polymer composition of the present invention has better melt moldability, flexibility, mechanical performance, and the like.
  • the JIS A hardness of the addition polymerization block copolymer (I) and the addition polymerization block copolymer (I-1) in this specification is a value measured in accordance with JIS K-6253. It is.
  • JIS A hardness of the addition polymerization block (ii) in this specification is JIS A using a polymer in which the polycarbonate polymer block (mouth) is replaced with a hydrogen atom in the block copolymer (II). K—Measured according to 6253.
  • the method for producing the addition polymerization block copolymer (I) used in the thermoplastic polymer compositions (i) to (iii) is not particularly limited, and the addition polymerization block copolymer having the structure described above is not particularly limited.
  • a polymer can be produced, or it can be produced by a deviation method.
  • the addition polymerization block copolymer (I) can be produced, for example, by ion polymerization methods such as anion polymerization or cationic polymerization, single site polymerization methods, radical polymerization methods, and the like.
  • ion polymerization methods such as anion polymerization or cationic polymerization, single site polymerization methods, radical polymerization methods, and the like.
  • the char-on polymerization method for example, using an alkyl lithium compound as a polymerization initiator in an inert organic solvent such as n-hexane or cyclohexane, an aromatic vinyl compound or a conjugated conjugated compound is used.
  • a hydrogenated product may be obtained by hydrogenating in the presence of a hydrogenation reaction catalyst under conditions of a reaction temperature of 20 to 150 ° C. and a hydrogen pressure of 0.1 to 15 MPa.
  • an addition polymerization block copolymer having an functional group such as an acid anhydride group in the molecule by modifying the block copolymer before or after hydrogenation with maleic anhydride or the like, if desired.
  • the polymer (I) can also be produced.
  • addition polymerization block copolymer (I) a commercially available product may be used.
  • Examples of the polycarbonate polymer block (mouth) constituting the block copolymer (II) used in the thermoplastic polymer composition (i) include a compound having two hydroxyl groups and a carbonate precursor. Examples thereof include a block made of polycarbonate produced by reacting a body.
  • Examples of the polycarbonate polymer (Rho 1) used for the formation of (Ila) include polycarbonate produced by reacting a compound having two hydroxyl groups with a carbonate precursor.
  • Examples of the compound having two hydroxyl groups used in the production of polycarbonate include bivalent phenol and aliphatic diol.
  • divalent phenols in this case are 2, 2 bis (4-hydroxyphenol) propane [bisphenol A], 1, 1-bis (4 hydroxyphenol) ethane, 1, 1-bis. (4 hydroxyphenol) cyclohexane, 2,2 bis (4 hydroxy-1,3,5 dimethylphenol) propane, 2,2 bis (4 hydroxy-3,5 dibromophenol) propane, 2, 2 Bis (4hydroxy-1,3,5,2-phenyl) propane, 2,2Bis (4-hydroxy-3-methylphenyl) propane, hydroquinone, 4,4'-dihydroxydiphenyl, bis (4hydroxyphenol) ) Sulfide, bis (4-hydroxyphenol) sulphone, bis (4-hydroxyphenol) sulfoxide and the like.
  • 2,2-bis (4-hydroxyphenol) propane (commonly known as bisphenol A) is particularly preferred as a divalent phenol.
  • examples of the aliphatic diol used in the production of polycarbonate include ethylene glycol, propylene glycol, hexylene glycol, and 3-methyl-1,5-pentanediol.
  • the polycarbonate polymer (Mouth 1) used for forming the reaction mixture (Ila) also has the strength of the polycarbonate polymer obtained by the reaction of one of the two hydroxyl group-containing compounds with the carbonate precursor. Alternatively, it may have a polycarbonate polymer strength obtained by reacting two or more of the above-mentioned compounds having two hydroxyl groups with a carbonate precursor.
  • the carbonate precursor includes carbohalide, carbonate ester, haloformate, and the like, and specific examples include phosgene, diphenol carbonate, methyl chlorocarbonate, dihaloformate of divalent phenol, and the like. Can be mentioned. Of these, phosgene is preferred as the carbonate precursor!
  • the polycarbonate-based polymer (Mouth 1) used in the formation of (Ila) may be formed using one type of carbonate precursor, or formed using two or more types of carbonate precursors. Even so!
  • the molecular weight of the polymer (Rho 1) is in the range of 10,000 to 100,000, especially 15,000 to 60,000, in terms of viscosity average molecular weight.
  • the thermoplastic polymer of the present invention It is preferable from the viewpoints of melt moldability, flexibility, mechanical performance and the like of the composition.
  • the form of bonding between the attached caropolymer block (ii) and the polycarbonate polymer block (mouth) is particularly limited. However, it may be any of linear, branched, radial, or a combined form in which they are combined, but the linear combined form indicates that the thermoplastic polymer composition (i) is melt-molded. From the viewpoints of properties, flexibility, mechanical performance and the like.
  • the linear block copolymer is represented by, for example, the formula: ⁇ -j8 List various block copolymers such as diblock copolymers, formula; ⁇ -j8-triblock copolymer represented by ⁇ , formula; ⁇ -a- ⁇ represented triblock copolymer Can do.
  • 8 diblock copolymer, melt moldability, flexibility and mechanical performance of the thermoplastic polymer composition (i) I like it because it becomes better.
  • the addition polymerization block (ii) the mass of the polycarbonate polymer block (port;) it force S, 20: 80 to 80: 20, and [30: 70] It is preferable that the thermoplastic polymer composition (i) has a point strength such as melt moldability, flexibility and mechanical performance within the range of ⁇ 70: 30, particularly 35:65 to 6 5:35.
  • the block copolymer (II) used in the thermoplastic polymer composition (i) of the present invention is known and includes improved compatibility between polycarbonate-based resin and rubber-reinforced styrene-based resin, and polycarbonate. It has been used in the past for the purpose of improving the compatibility between monotonic and polyester-based resins (see Patent Documents 9 and 10). However, it has been conventionally known that the block copolymer (II) is used in combination with the addition polymerization block copolymer (I) and the thermoplastic polyurethane (III).
  • the conventionally known block copolymer (II) can be used as it is, but the melt moldability and flexibility of the thermoplastic polymer composition can be used.
  • the block copolymer (II) includes at least one block copolymer ( ⁇ ) and block copolymer ( ⁇ ) prepared by a specific method. Polymers are preferably used.
  • Block copolymer (IIA) A block copolymer having a polymer block (a-2) and a conjugated diene polymer block (b-2), or a hydrogenated product thereof, and a polycarbonate polymer (Roh 1) A block copolymer prepared by reacting an addition polymerization block copolymer (I-1) having a functional group capable of reacting with a polycarbonate polymer (Rho 1) under melt kneading.
  • a polycarbonate polymer block (mouth) is formed by a reaction between a compound having two hydroxyl groups and a carbonate precursor.
  • Examples of the functional group capable of reacting with) include a carboxyl group, an acid anhydride group, an alkoxy group, a phenyl group, a thiocarboxyl group, an isocyanate group, a hydroxyl group, an amino group, and a mercapto group.
  • the addition polymerization block copolymer (I1) may have one of these functional groups, or may have two or more of these functional groups, and a hydroxyl group is preferable.
  • the above addition polymerization block copolymer (I-1) has a functional group capable of reacting with the polycarbonate polymer (Rho 1) at the molecular end of the copolymer.
  • the number of functional groups capable of reacting with the polycarbonate polymer (Rho 1) in the addition polymerization block copolymer (I-1) is the same per molecule of the addition polymerization block copolymer (I-1). On average, it is preferably 0.6 or more, more preferably 0.7 or more, and particularly preferably 0.7 to 1.
  • the addition-polymerization block copolymer (I-1) does not have a functional group capable of reacting with the polycarbonate-based polymer (Rho 1).
  • a force-added polymerization block copolymer (a hydrogenated or non-hydrogenated block copolymer having a non-group aromatic vinyl compound polymer block and a conjugated diene polymer block) ( 1), the number of functional groups capable of reacting with the polycarbonate polymer (Mouth 1) is on average 0.6 or more, more preferably 0.7 or more, especially on a molecule basis. 0. Smooth use of block copolymer (11), block copolymer ( ⁇ ), block copolymer ( ⁇ ), reaction mixture (Ila) or (lib) Can be prepared.
  • the production method of the addition polymerization block copolymer (I-1) is not limited in any way.
  • ion polymerization methods such as cation polymerization, cation polymerization, single site polymerization, radical polymerization, etc. Can be manufactured.
  • an aromatic vinyl compound or a conjugated diene compound is prepared in an inert organic solvent such as n-hexane or cyclohexane.
  • compounds having an oxysilane skeleton such as ethylene oxide, propylene oxide, and styrene oxide, ⁇ -force prolatatatone, ⁇ -propiolataton, dimethylpropiolataton (pivalolataton), methylvalerolataton
  • an active hydrogen-containing compound such as alcohols, carboxylic acids, and water
  • the block copolymer obtained thereby is preferably subjected to a hydrogenation reaction such as a Ziegler catalyst such as cobalt and nickel in an inert organic solvent such as ⁇ -hexane and cyclohexane.
  • a hydrogenated product may be obtained by hydrogenating under the conditions of a reaction temperature of 20 to 150 ° C. and a hydrogen pressure of 0.1 to 15 MPa in the presence of a catalyst. If desired, before or after hydrogenation
  • the copolymer may be modified with maleic anhydride or the like.
  • addition polymerization block copolymer (I-1) a commercially available product may be used.
  • thermoplastic polymer composition (i) the polycarbonate polymer (Rho 1) and the thermoplastic polymer compositions ( ⁇ ) and () used for the preparation of the block copolymer ( ⁇ ) that can be used.
  • the polycarbonate-based polymer (Mouth-1) used for forming the reaction mixture (Ila) can be produced by reacting a compound having two hydroxyl groups with a carbonate precursor by a solution method or a melting method. .
  • a reaction mixture containing a polycarbonate polymer (Mouth-1) obtained by reacting a compound having two hydroxyl groups with a carbonate precursor.
  • V may be used directly as it is, and the polycarbonate polymer (Rho 1) may be separated from the reaction mixture and used.
  • a block copolymer ( ⁇ ) and a reaction mixture (Ila) may be prepared using a commercially available polycarbonate as a polycarbonate polymer (Rho 1).
  • the polycarbonate polymer (Roh 1) a polycarbonate produced using a molecular weight regulator, a branching agent, a catalyst, or the like may be used as necessary. Further, the polycarbonate polymer (Rho 1) may contain additives, for example, heat stabilizers such as phosphites, phosphate esters, and phosphonates; triazole, acetophenone, salicylate, etc. Ultraviolet absorbers; low molecular weight polycarbonates of tetrabromobisphenol A and tetrabromobisphenol A; flame retardants such as decarburized phenol ether; colorants, fluorescent brighteners and the like.
  • heat stabilizers such as phosphites, phosphate esters, and phosphonates
  • triazole acetophenone
  • salicylate etc.
  • Ultraviolet absorbers low molecular weight polycarbonates of tetrabromobisphenol A and tetrabromobisphenol A
  • flame retardants
  • the compound having two hydroxyl groups and the carbonate precursor the polycarbonate and the polycarbonate-based polymer (low 1) constituting the polycarbonate polymer block (mouth) in the block copolymer (II) are described above.
  • Specific examples of compounds having two hydroxyl groups for example, bisphenol A, various other divalent phenols, aliphatic diols, etc.
  • carbonate precursors for example, carbohalides, carbonate esters, halides, etc. Mouth formate etc. (specific examples include phosgene, diphenol carbonate, black mouth methyl carbonate, dihaloformate of divalent phenol, etc.)].
  • the block copolymer ( ⁇ ) that can be used in the thermoplastic polymer composition (i) and the reaction mixture (Ila) used in the thermoplastic polymer compositions (ii) and (m), the block copolymer is used.
  • the addition polymerization block Copolymer (ii), compound having two hydroxyl groups and carbonate precursor [mass of addition-polymerized block copolymer (ii)]: [compound having two hydroxyl groups and force-bonate precursor
  • the total mass of the body] 20: 80-80: 20, more preferably 30: 70-70: 30, and particularly preferably within the range of 3 5: 65-65: 35! / ,.
  • the above reaction for preparing the block copolymer ( ⁇ ), the block copolymer ( ⁇ ), the reaction mixture (Ila) and the reaction mixture (lib) can be carried out in the presence of a catalyst.
  • a catalyst include organic titanium compounds, organic antimony compounds, organic germanium compounds, organic manganese compounds, organic tin compounds, organic zinc compounds, organic strength compounds, and organic lead compounds.
  • Organic metal compounds such as organic samarium compounds, organic lanthanum compounds, organic ytterbium compounds, organic cobalt compounds, organic cadmium compounds, or organic magnesium compounds. One or more of these may be used. it can. Of these, one or more of organic titanium compounds, organic tin compounds, and organic samarium compounds are preferably used.
  • the metals contained in each catalyst may be the same or different.
  • the type of the organic titanium compound that is preferably used as the catalyst is not particularly limited.
  • titanium alcoholates such as tetraisopropyl titanate and tetrabutyl titanate are particularly preferably used.
  • the kind of the above-described organotin compound that is preferably used as the catalyst is not particularly limited, and examples thereof include monomethyltin oxide, monoethyltin oxide, monopropyl tin oxide, monobutyltin oxide, and di-2- Ethylhexyltin oxide, dibutyltin oxide, furmethyltin oxide, monobutyltin trichloride, dibutyltin dichloride, dimethyltin dibromide, monobutyltin monoacetate, monobutyltin monopropylate, dibutyltin diacetate, dibutyltin sulfide, Diphenol tin sulfide can be used, and one or more of these can be used.
  • tin carboxylates are preferably used.
  • the organic samarium compound preferably used as a catalyst is not particularly limited, and examples thereof include samarium acetate, samarium oxalate, samarium acetylacetonate, samarium oxide, samarium chloride, and samarium bromide. One or more of these can be used. Of these, samarium acetyl cetate is particularly preferably used.
  • the amount of the above-mentioned catalyst used is the total mass of the addition polymerization block copolymer (I-1) and the polycarbonate polymer (Rho 1) or the addition polymerization block copolymer (I-1). ), Based on the total mass of the compound having two hydroxyl groups and the carbonate precursor, from 0.5 lp pm to 0.2 mass%, more preferably from 0.5 ppm to 0.02 mass%, especially from lppm to 0.01 mass % Is preferable.
  • a catalyst is used in preparing the block copolymer ( ⁇ ), the block copolymer ( ⁇ ), the reaction mixture (Ila), and the reaction mixture (lib), an addition polymerization block copolymer is used.
  • the catalyst deactivator examples include lauryl phosphate, oleinorephosphate, stearinorephosphate, dilaurinophosphate, dioleyl phosphate, distearyl phosphate, tris (2-ethylhexyl) phosphate, bis (octadecyl) Phosphorus compounds such as pentaerythritol diphosphate, phenethyl phosphonate, 3,5-di-tert-butyl-4-ethyl benzyl phosphonate; 2, 2, -methylenebis (4-methyl-6t butylphenol), 2, 2, Methylene bis (4-ethyl 6 t butylphenol), 2 hydroxy-4-benzyloxybenzophenone, 2— (2,1 hydroxy-1,3,5,1 t-butylphenol) benzotriazole, 2— [2 hydroxy 3,5bis ( ⁇ , a-dimethylbenzyl) phenol]
  • Examples include phenolic compounds such as 2 H be
  • the amount of the catalyst deactivator used is the total mass of the addition polymerization block copolymer (I-1) and the polycarbonate polymer (mouth 1), or the addition polymerization block copolymer (I-1). Based on the total mass of the compound with two hydroxyl groups and the carbonate precursor !, lppn! To 2 mass 0/0, more 5Ppm ⁇ 0. 2 mass 0/0, especially 10Ppm ⁇ 0. And this is preferably in the range of 1 wt%.
  • an addition polymerization block copolymer (I-1) and a polycarbonate polymer (Mouth 1) are used.
  • a method of melt kneading usually at 180 to 300 ° C. for 3 to 15 minutes using a kneader such as a single screw extruder, a twin screw extruder, a kneader, or a banner mixer in the presence of a catalyst as necessary.
  • a kneader such as a single screw extruder, a twin screw extruder, a kneader, or a banner mixer in the presence of a catalyst as necessary.
  • a compound having two hydroxyl groups is used in the thermoplastic polymer composition (i), for example, an addition polymerization block copolymer (I-1).
  • a compound having two hydroxyl groups is used in the thermoplastic polymer composition (i), for example, an addition polymerization block copolymer (I-1).
  • Products and carbonate precursors, optionally in the presence of a catalyst, single screw extruder, twin screw A block copolymer ( ⁇ ) can be obtained by using a kneading machine such as an extruder, kneader, Banbury mixer, etc., usually at 180 to 300 ° C for 3 to 15 minutes.
  • the addition is preferably performed after the completion of the carbonate bond formation reaction until the end of the melt kneading.
  • the block copolymer ( ⁇ ⁇ ⁇ ⁇ ) is prepared by reacting the addition polymerization block copolymer (I-1) with the polycarbonate polymer (Roh 1), and the addition polymerization block copolymer ( 1)
  • a block copolymer ( ⁇ ) is prepared by reacting a compound having two hydroxyl groups and a carbonate precursor, the block copolymer ( ⁇ ) is contained in the reaction product obtained by the reaction.
  • the block copolymer is composed of a polycarbonate, an aromatic vinyl compound polymer block and a conjugated diene polymer block, and has no functional group reactive with the polycarbonate polymer (Rho 1).
  • One or more of components such as polymers may be contained, and the content of these components varies depending on the reaction conditions such as the ratio of raw materials used in the reaction and reaction temperature.
  • the block copolymer ( ⁇ ) or the reaction product containing the above-mentioned other components together with the block copolymer ( ⁇ ) may generally be used without particular problems. Often does not occur. Therefore, the reaction product containing the block copolymer (II A) or the block copolymer ( ⁇ ) without separating and recovering the block copolymer ( ⁇ ) or the block copolymer ( ⁇ ) from the reaction product.
  • the thermoplastic polymer composition (i) of the present invention is produced using the product, the production process of the thermoplastic polymer composition (i) can be simplified.
  • thermoplastic polymer composition (i) when the above-mentioned reaction product containing the block copolymer ( ⁇ ) or the block copolymer ( ⁇ ) and other components is used, an addition is required.
  • Polymerization system To have good compatibility with both the block copolymer (I) and the thermoplastic polyurethane (III), the tensile strength at break is lOMPa or more, further 12 MPa or more, especially 15 MPa or more. It is preferable to use the reaction product which is The tensile strength at break in the present specification is a value measured according to JIS K-7311.
  • thermoplastic polymer composition (i) when the above-mentioned reaction product containing the block copolymer ( ⁇ ) or the block copolymer ( ⁇ ) and other components is used, In order to improve the melt moldability, flexibility, mechanical performance, etc. of the thermoplastic polymer composition (i) of the invention, a JIS A hardness of 40 to 99, further ⁇ 50 to 95, especially 60 It is preferred to use a reaction product in the range of ⁇ 95.
  • the JIS hardness of the reaction product referred to in the present specification is a value measured according to JIS K-6253.
  • reaction mixture (Ila) used for the thermoplastic polymer compositions (ii) and (m) for example, an addition polymerization block copolymer (I-1) and a polycarbonate-based polymer are used.
  • a catalyst if necessary, with a kneader such as a single screw extruder, twin screw extruder, kneader, Banbury mixer, etc., usually at 180 to 300 ° C for 3 to 15 minutes.
  • a reaction mixture (Ila) can be obtained by adopting a melt-kneading method.
  • reaction mixture (lib) used for the thermoplastic polymer compositions Gi) and (m) for example, an addition polymerization block copolymer (I-1), a compound having two hydroxyl groups, and A method in which a carbonate precursor is melt-kneaded usually at 180-300 ° C for 3-15 minutes using a kneader such as a single-screw extruder, twin-screw extruder, kneader, Banbury mixer, etc. in the presence of a catalyst as necessary. Can be used to obtain a reaction mixture (lib). In the case where a catalyst deactivator is used, it is preferably added after the completion of the carbonate bond formation reaction until the end of the melt kneading.
  • a catalyst deactivator it is preferably added after the completion of the carbonate bond formation reaction until the end of the melt kneading.
  • the reaction mixture (Ila) and the reaction mixture (lib) used in the thermoplastic polymer compositions (ii) and (m) are composed of an addition polymerization block copolymer (I) and a thermoplastic polyurethane (III). In order to have good compatibility with both, it is preferable to use the reaction mixture having a tensile strength at break of 1 OMPa or more, more preferably 12 MPa or more, and particularly preferably 15 MPa or more.
  • the reaction mixture (Ila) and reaction mixture (lib) used for the products (ii) and (iii) are the melt moldability, flexibility, strength of the thermoplastic polymer compositions (ii) and (iii). It is preferable to use a reaction mixture having a JIS A hardness of 40 to 99, more preferably 50 to 95, particularly 60 to 95, in order to improve the chemical performance.
  • the JIS A hardness of the reaction mixture as used herein is a value measured according to JIS K-6253.
  • thermoplastic polymer compositions (i) to (iii) of the present invention include the above addition polymerization block copolymer (I), block copolymer (II), reaction mixture (Ila) or reaction.
  • the thermoplastic polyurethane (III) is contained together with the mixture (lib).
  • thermoplastic polyurethane (III) those in which a polymer polyol, a chain extender and an organic diisocyanate compound are also formed are preferable.
  • polymer polyol used for forming the thermoplastic polyurethane (III) examples include polyester polyols, polyether polyols, polycarbonate polyols, polyester polycarbonate polyols, polyolefin polyols, conjugated polyethylene polymer polyols, and castor oils.
  • Polyols, silicone polyols, and bull polymer polyols can be used, and one or more of these can be used.
  • the polymer polyol one or more of polyester polyols, polyether polyols and polyolefin polyols are preferably used, and polyester polyols and Z or polyether polyols are more preferably used.
  • the polyester polyol preferably used for forming the thermoplastic polyurethane (III) is, for example, a force for directly subjecting a polyol component and a polycarboxylic acid component to an esterification reaction or a transesterification reaction, or starting a polyol component. It can be produced by ring-opening polymerization of rataton as an agent.
  • Examples of the polyol component used in the production of the polyester polyol include those generally used in the production of polyester, such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1, 3 propanediol, 2 —Methyl-1,3 propanediol, 2,2 Jetyl 1,3 propanediol, 1,3 butanediol, 1,4 butanediol, 2-methyl-1,4 butanediol, neopentyl glycol, 1,5 pentanediol, 3 —Methyl- 1, 5 pentane All, 1,6 hexanediol, 1,7 heptanediol, 1,8 octanediol, 2-methyl-1,8 octanediol, 2,7 dimethyl-1,8 octanediol, 1,9-nonanediol, 2-methyl-1, Aliphatic diols having
  • Alicyclic diols such as 1,4 bis (j8-hydroxyethoxy) benzene; trimethylolpropane, trimethylolethane, glycerin, 1,2,6hexanetriol, pentaerythritol, diglycerin, etc.
  • aromatic diols such as 1,4 bis (j8-hydroxyethoxy) benzene
  • trimethylolpropane trimethylolethane
  • glycerin 1,2,6hexanetriol
  • pentaerythritol diglycerin, etc.
  • One or more polyhydric alcohols having 3 or more hydroxyl groups per molecule can be used
  • polyester polyol propylene glycol, 2-methyl-1,4 butanediol, 3-methyl-1,5 pentanediol, 2-methyl-1,8 octanediol, 2, 7
  • One or two aliphatic diols having 3 to 12 carbon atoms having a methyl group as a side chain such as dimethyl-1,8-octanediol, 2-methyl-1,9-nonanediol, and 2,8 dimethyl-1,9-nonanediol. It is preferable to use more than one species.
  • an aliphatic diol having 3 to 12 carbon atoms having a methyl group as a side chain is 10 mol% or more, more preferably 30 mol% or more of all polyol components used for the production of polyester polyol, It is preferable to use it at a ratio of 50 mol% or more.
  • polycarboxylic acid component used in the production of the polyester polyol described above polycarboxylic acid components generally used in the production of polyester, for example, succinic acid, glutaric acid, adipic acid, pimelic acid, Suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, methylsuccinic acid, 2-methyldaltaric acid, 3-methyldaltaric acid, trimethyladipic acid, 2 methyloctanedioic acid, 3,8 dimethyldecanedioic acid, 3,7 dimethyldecane Aliphatic dicarboxylic acids having 4 to 12 carbon atoms such as diacids; cycloaliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid, dimer acid and hydrogenated dimer acid; terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, etc.
  • succinic acid succinic acid
  • Aromatic dicarboxylic acids Trimellitic acid, polymellitic acid such as pyromellitic acid Bon acid; etc. can be mentioned their esters or ester forming derivatives such as their anhydrides, these one or Two or more types can be used. Among them, one or more of aliphatic dicarboxylic acids having 6 to 12 carbon atoms, adipic acid, azelaic acid and sebacic acid are preferably used as the polycarboxylic acid component.
  • examples of the ratatones used for the production of the polyester polyol include ⁇ -force prolatatanes, ⁇ -methyl-1- ⁇ -valerolatatanes, and the like.
  • the above-described polyether polyols preferably used for forming the thermoplastic polyurethane (III) include, for example, poly (ethylene glycol), poly (propylene glycol), poly (polyethylene glycol) obtained by ring-opening polymerization of a cyclic ether.
  • Tetramethylene glycol poly (methyltetramethylene glycol) and the like can be used, and one or more of these can be used.
  • poly (tetramethylene glycol) and cocoon or poly (methyl tetramethylene glycol) are preferably used.
  • the polycarbonate polyol that can be used for forming the thermoplastic polyurethane (III) is obtained by, for example, reacting a polyol component with a carbonate compound such as dialkyl carbonate, alkylene carbonate, or diaryl carbonate. Can be listed.
  • the polyol component constituting the polycarbonate polyol the polyol component exemplified as the constituent component of the polyester polyol can be used.
  • the dialkyl carbonate include dimethyl carbonate and jetyl carbonate.
  • the alkylene carbonate include ethylene carbonate.
  • the dialyl carbonate include , Diphenol-bonate and the like.
  • polyester polycarbonate polyol that can be used to form the thermoplastic polyurethane (III) include those obtained by reacting a polyol component, a polycarboxylic acid component and a carbonate compound at the same time, or a polyester synthesized in advance. Examples include those obtained by reacting polyols and polycarbonate polyols with carbonated compounds, or those obtained by reacting previously synthesized polyester polyols and polycarbonate polyols with polyol components and polycarboxylic acid components. Can do.
  • the above-mentioned conjugated gen-based polyol or polyolefin-based polyol that can be used to form the thermoplastic polyurethane (III) includes a conjugated diene such as butadiene and isoprene, or a conjugated gen in the presence of a polymerization initiator.
  • a conjugated diene such as butadiene and isoprene
  • Polyisoprene polyol, polybutadiene polyol, poly (butadiene z isoprene) polyol, poly (butadiene Z acrylonitrile) obtained by reacting an epoxy compound with the polymerization active terminal after polymerizing other monomers by a living polymerization method or the like.
  • Examples thereof include polyols, poly (butadiene Z styrene) polyols, hydrogenated products thereof, and the like, and one or more of these can be used.
  • the number average molecular weight of the high molecular polyol used for forming the thermoplastic polyurethane (III) is within the range of 500 to 10,000, more preferably 700 to 8,000, and particularly 800 to 5,000. S Preferred.
  • a thermoplastic polyurethane (III) produced using a polymer polyol having a number average molecular weight in the above range the melt moldability, flexibility, mechanical performance, etc. of the thermoplastic polymer composition of the present invention The characteristics are excellent.
  • the number average molecular weight of the polymer polyol referred to in the present specification is a number average molecular weight calculated based on a hydroxyl value measured in accordance with JIS K-1557.
  • the polymer polyol used for forming the thermoplastic polyurethane (III) has a hydroxyl number per molecule of 2.0 to 2.1, and even ⁇ or 2. 0 to 2.05. In particular, it is preferably within the range of 2.002 to 2.03 even.
  • the average number of hydroxyl groups per molecule calculated from the number of hydroxyl groups per molecule and the amount used (number of moles) is calculated for each molecule.
  • the number of hydroxyl groups is calculated from the number of hydroxyl groups per molecule and the amount used (number of moles).
  • the chain extender used for forming the thermoplastic polyurethane (III) may be any chain extender conventionally used in the production of polyurethane, and any of them may be an active hydrogen atom capable of reacting with an isocyanate group.
  • a low molecular weight compound having a molecular weight of 400 or less having 2 or more in the molecule is preferably used.
  • chain extenders include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6 hexanediol, 2-methyl-1,3 propanediol, 2,2 jetyl-1,3 propanediol, 2 Butyl-2-ethyl-1,3-propanediol, 1,3-butanediol, 2-methyl-1,4-butanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4 jetyl-1,5-pentanediol, 2 ethyl-1 , 3 hexanediol, 2-methyl-1,8-octanediol, 2,7 dimethyl-1,8 octanediol, 2-methyl-1,9-nonanediol, 2,8 dimethyl-1,9-nonanediol, 1,4 bis (j8— Hydroxye
  • aliphatic diols having 2 to 12 carbon atoms are preferably used, and one or two of 1,4 butanediol, 3-methyl-1,5-pentanediol, 2-methyl-1,8 octanediol and 1,9-nonanediol are used. More than species are more preferably used.
  • thermoplastic polyurethane (III) produced using an aliphatic diol having a number average molecular weight of 100 to 400 as a chain extender is used as a chain extender, the value of the loss coefficient is around room temperature.
  • a thermoplastic polymer composition excellent in vibration damping performance that maintains a large loss coefficient value over a large and wide temperature range can be obtained.
  • an aliphatic diol having such a branch in the molecule an aliphatic diol having 5 to 12 carbon atoms having a methyl group as a side chain is preferably used.
  • an organic diisocyanate compound which has been conventionally used in the production of polyurethane, for example, 4, 4'—Diphenylmethane diisocyanate, tolylene diisocyanate, phenolic diene Aromatic diisocyanates such as isocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, 3, 3, -dichloro-4,4, -diphenylmethane diisocyanate; hexamethylene diisocyanate, isophorone Aliphatic or alicyclic diisocyanates such as diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, etc. can be mentioned, and one or more of these Can be used.
  • thermoplastic polymer composition of the present invention is excellent in melt moldability, flexibility, mechanical performance, etc., so it is formed using 4,4'-diphenylmethane diisocyanate. It is preferable to contain the thermoplastic polyurethane (III).
  • thermoplastic polyurethane (III) formed using an aliphatic or alicyclic diisocyanate is preferably used because of its excellent light resistance.
  • the organic diisocyanate compound is based on the total mass of the polymer polyol, the chain extender and the organic diisocyanate compound. It is preferable to use a polyurethane raw material having a nitrogen atom content derived from a material in the range of 1 to 6.5% by mass, more preferably 1 to 6% by mass, and particularly 1.3 to 5.5% by mass.
  • a polyurethane raw material having a nitrogen atom content derived from a material in the range of 1 to 6.5% by mass, more preferably 1 to 6% by mass, and particularly 1.3 to 5.5% by mass.
  • thermoplastic polyurethane (III) it is possible to use a thermoplastic polyurethane having a JIS A hardness of 30 to 99, more preferably 45 to 97, particularly 60 to 95.
  • the combined composition is preferred because it has better melt moldability, flexibility, mechanical performance, and the like.
  • thermoplastic polyurethane (III) a commercially available product may be used, or the thermoplastic polyurethane (III) may be prepared by reacting the above-described polymer polyol, chain extender, and organic diisocyanate compound. You may use what you did.
  • thermoplastic polyurethane (III) In forming the thermoplastic polyurethane (III), the polymer polyol and the chain extender have! /, And the organic diisocyanate compound has 1 mole of the active hydrogen atom. It is preferable to use each component in such a ratio that the group is 0.9 to 1.3 moles. ,.
  • the melt moldability, flexibility and mechanical properties of the thermoplastic polymer compositions (i) to (iii) of the present invention are as follows. The characteristics such as Noh are better.
  • a urethanization reaction catalyst may be used.
  • powerful urethane reaction catalysts include organotin compounds such as dibutyltin diacetate, dibutyltin dilaurate, and dibutyltin bis (3-mercaptopropionic acid ethoxybutyl ester) salt; titanic acid; tetraisopropyl titanate, tetra-n- Organic titanium compounds such as butyrate titanate, polyhydroxytitanium stearate, titanium acetylacetonate; triethylenediamine, N-methylmorpholine, N, N, ⁇ ', ⁇ , tetramethylethylenedi And tertiary amine compounds such as ⁇ , ⁇ , ⁇ , ⁇ ', N'-tetramethylhexamethylenediamine, triethylamine, ⁇ , ⁇ -dimethylaminoethanol, etc. Or two or more can be
  • the amount of the urethanization reaction catalyst used is 0.1 ppm to 0.2% by mass, more preferably 0.5 ppm to 0.02% by mass based on the total mass of the polymer polyol, the chain extender and the organic disoocyanate compound. It is preferably in the range of lppm to 0.01 mass%.
  • the urethanization reaction catalyst can be contained in one or more of the polymer polyol, chain extender, and organic diisocyanate compound.
  • the polymer polyol should be contained in the polymer polyol. Is preferred!
  • thermoplastic polyurethane (III) is produced using the urethanization reaction catalyst, it is preferable to add a urethane-type reaction catalyst deactivator to the obtained thermoplastic polyurethane ( ⁇ ).
  • a urethane-type reaction catalyst deactivator examples include lauryl phosphate, oleyl phosphate, stearinorephosphate, dilaurinorephosphate, diolenorephosphate, diester.
  • Phosphorus compounds such as stearyl phosphate, tris (2-ethylhexyl) phosphate, bis (octadecyl) pentaerythritol diphosphate, jetyl phosphonate, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate 2, 2, -methylenebis (4-methyl-6t-butylphenol), 2,2, -methylenebis (4-ethyl-6-t butylenophenol), 2 hydroxy-1-pentinoreoxybenzophenone, 2- (2 , Monohydroxy-1,3,5,1t-butylphenol) benzotriazole, 2- [2 hydroxy-3,5 bis ( ⁇ , a-dimethylbenzyl) phenol] 2H benzotriazole, 4, 4 Examples include phenolic compounds such as'-octyl-2,2'-biphenol, among which phosphorus compounds are preferably used. It is.
  • the amount of the urethanization catalyst deactivator used is lppm to 2% by mass, and 5ppm based on the total mass of the polymer polyol, chain extender and organic diisocyanate compound used to form the thermoplastic polyurethane (5). It is preferable to be within the range of ⁇ 0.2% by mass, particularly 10 ppm to 0.1% by mass.
  • the ratio of the urethanization reaction catalyst deactivator to the urethanization reaction catalyst is such that when a phosphorus compound is used as the urethanization reaction catalyst deactivator, the metal atom 1 of the urethanization reaction catalyst is 1
  • the phosphorus atom of the phosphorus compound is preferably used in the range of 0.1 to 500 mol, more preferably 0.2 to 200 mol, and particularly preferably 0.5 to 100 mol with respect to mol.
  • a phenolic compound when used as the urethanization reaction catalyst deactivator, 1 to 5000 moles as a hydroxyl group of the phenolic compound relative to 1 mole of the metal atom of the urethanization reaction catalyst, and further 2 to 2000 It is preferred to use within the range of mol, especially 5 to: L000 mol.
  • the urethanization reaction catalyst deactivator comprises an addition polymerization block copolymer (I), a block copolymer (11), a reaction mixture (Ila) or a reaction mixture (lib), a thermoplastic polyurethane (III), A paraffinic oil (IV) and other components as necessary were mixed and melt-kneaded to produce a thermoplastic polymer composition, and the physical properties of the thermoplastic polymer composition reached desired values. It is preferable to add at the time from the viewpoint of melt moldability, flexibility, mechanical performance, etc. of the thermoplastic polymer composition of the present invention.
  • thermoplastic polyurethane (III) is not particularly limited, and the polymer polyol, chain elongation, A long agent and an organic diisocyanate compound may be used to produce either a prepolymer method or a one-shot method using a known urethanization reaction. Of these, it is preferable to use melt polymerization in the absence of any solvent, especially using a multi-screw extruder.
  • V preferably formed by continuous melt polymerization.
  • thermoplastic polyurethane prepared in advance as the thermoplastic polyurethane (III) may be used, or the thermoplastic polymer of the present invention.
  • the raw material component for the composition may be mixed with a polymer polyol, a chain extender and an organic diisocyanate compound to form a thermoplastic polyurethane in the composition simultaneously with the production of the thermoplastic polymer composition.
  • paraffinic oil (IV) used in the thermoplastic polymer compositions (i) to (iii) of the present invention those containing 60% by mass or more of a nophine component (chain hydrocarbon) are used. However, those containing 80% by mass or more of the paraffin component (chain hydrocarbon) are preferred.
  • the paraffinic oil (IV) may contain a component having an aromatic ring such as a benzene ring or a naphthene ring as other components.
  • the kinematic viscosity measured at 40 ° C is in the range of 20 to 800 centistoise (cSt (mmVs)), particularly 50 to 600 centistoise (cSt (mmVs)). It is preferable to use what is in By using the paraffinic oil (IV) having a strong kinematic viscosity, the thermoplastic polymer composition of the present invention is more excellent in properties such as melt moldability, flexibility and mechanical performance.
  • the kinematic viscosity of the paraffinic oil (IV) referred to in this specification is a value measured according to JIS K-2283.
  • thermoplastic polymer composition of the present invention is more excellent in properties such as melt moldability, flexibility and mechanical performance.
  • the pour point of paraffinic oil (IV) in the present specification is a value measured in accordance with JIS K-2269.
  • the flash point of paraffinic oil (IV) is in the range of 200 to 400 ° C, especially 250 to 350 ° C. It is preferable that it exists in.
  • the thermoplastic polymer composition of the present invention has more excellent characteristics such as melt moldability, flexibility and mechanical performance. Become.
  • the flash point of paraffinic oil (IV) in the present specification is a value measured according to JIS K-2265.
  • thermoplastic polymer composition (i) of the present invention has excellent properties such as melt moldability, anti-adhesion to a molding machine, flexibility, mechanical properties, and melt adhesion to other materials. From this point, the addition copolymerization block copolymer (I) per 100 parts by mass of the block copolymer (II) is 5 to 200 parts by mass, the thermoplastic polyurethane (III) is 100 to 800 parts by mass and paraffin. It is preferable to contain 10 to 200 parts by mass of the system oil (IV).
  • the content of the block copolymer (II) is less than 5 parts by mass with respect to 100 parts by mass of the addition polymerization block copolymer (I).
  • the compatibility between the addition polymerization type block copolymer (I) and the thermoplastic polyurethane (III) becomes insufficient, and the thermoplastic polymer has flexibility, mechanical performance and melt moldability.
  • it may be difficult to obtain the composition and the product such as a molded product or a laminated structure obtained by using the thermoplastic polymer composition tends to easily cause surface roughness and lower adhesion between layers. is there.
  • thermoplastic polymer composition (i) if the content of the block copolymer ( ⁇ ) exceeds 200 parts by mass with respect to 100 parts by mass of the addition polymerization block copolymer (I), the thermoplastic polymer The melt flowability and melt adhesion of the polymer composition are lowered, and the molded product tends to be rough, and the adhesion between layers in the laminated structure tends to occur.
  • the thermoplastic polymer composition (i) of the present invention contains 10 to 180 parts by mass of the block copolymer (II) with respect to 100 parts by mass of the addition polymerization block copolymer (I). More preferably, it is contained in a proportion of 20 to 150 parts by mass, which is more preferable.
  • the ratio of the thermoplastic polyurethane (III) is less than 100 parts by mass with respect to 100 parts by mass of the addition polymerization block copolymer (I). It is difficult to obtain a thermoplastic polymer composition having flexibility, mechanical performance, and melt moldability, and it is easy to obtain a compression set of a molded product or a laminated structure obtained from the thermoplastic polymer composition. Tends to be large, and melt adhesion with other materials is reduced, resulting in molding The surface of the product is roughened, and the moldability tends to become unstable. In particular, when melt extrusion molding including inflation molding is performed using the thermoplastic polymer composition (i), the moldability may be lowered.
  • thermoplastic polymer composition (i) when the ratio of the thermoplastic polyurethane (III) exceeds 800 parts by mass with respect to 100 parts by mass of the addition polymerization block copolymer (I), As the plastic polymer composition is easily attached to the molding apparatus, the melt moldability tends to be unstable, and the surface of the molded product tends to be roughened.
  • thermoplastic polymer composition (i) of the present invention contains 150 to 800 parts by mass of the thermoplastic polyurethane (III) with respect to 100 parts by mass of the addition polymerization block copolymer (I). It is particularly preferred to contain it in a proportion of 200 to 700 parts by mass, more preferably 350 to 700 parts by mass.
  • the ratio of the paraffinic oil (IV) is less than 10 parts by mass with respect to 100 parts by mass of the addition polymerization type block copolymer (I).
  • a compression set of a molded product or a laminated structure obtained from the thermoplastic polymer composition is increased, or the surface of the molded product is liable to be roughened.
  • thermoplastic polymer composition (i) when the ratio of the paraffinic oil (IV) exceeds 200 parts by mass with respect to 100 parts by mass of the addition polymerization block copolymer (I), the thermoplastic polymer composition It becomes difficult to melt-mold products, and melt adhesion with other materials decreases, resulting in decreased mechanical performance such as tensile breaking strength and tensile breaking elongation of molded products obtained from thermoplastic polymer compositions. There is a tendency that problems such as rough surface of the molded product and running out of the spool during molding tend to occur.
  • thermoplastic polymer composition (i) of the present invention contains 50 to 150 parts by mass of the nophine oil (IV) with respect to 100 parts by mass of the addition polymerization block copolymer (I). It is more preferable that it is contained in a proportion of 75 to 125 parts by mass.
  • thermoplastic polymer composition (i) of the present invention the block copolymer obtained by reacting the addition polymerization block copolymer (I-1) and the polycarbonate polymer (Rho 1).
  • One or more components such as a block copolymer having no functional group may be contained.
  • the addition polymerization block copolymer (I-1) [equivalent to the addition polymerization block copolymer (I)] contained in those reaction products, the block copolymer (11)
  • the amount of selenium-polyborate polymer (Rho 1), etc., addition polymerization block copolymer (1), block copolymer (11), thermoplastics in the thermoplastic polymer composition Content Ratio of Polyurethane (III) and Paraffinic Oil (IV) It is preferable to adjust the blending ratio of the reaction product and other components so as to be within the above-mentioned range.
  • thermoplastic polymer compositions (ii) and (iii) of the present invention the obtained thermoplastic polymer composition has a melt moldability, an adhesion preventing property to a molding machine, a flexibility, a mechanical property.
  • reaction mixture (Ila) and Z or (lib) per 100 parts by mass of the addition polymerization block copolymer (I) 5 to 5000 parts by mass [If both reaction mixture (Ila) and reaction mixture (lib) are used, the total mass of both], 100 to 13600 parts by mass of thermoplastic polyurethane (III) and paraffinic oil (IV ) Is preferably used in a proportion of 10 to 3400 parts by mass.
  • thermoplastic polymer compositions (ii) and (m) an addition polymerization block copolymer (I)
  • the addition polymerization block copolymer (I) and the thermoplastic polyurethane (III) Insufficient compatibility may be difficult, and it may be difficult to obtain a thermoplastic polymer composition having excellent flexibility, mechanical performance, and melt moldability. Further, the thermoplastic polymer composition may be used. Products such as molded products and laminated structures tend to be prone to surface roughness and interlaminar adhesion degradation.
  • thermoplastic polymer compositions (ii) and (m) the reaction mixture (Ila) and Z or the reaction mixture (lib) are added to 100 parts by mass of the addition polymerization block copolymer (I).
  • the amount of use exceeds 5000 parts by mass, the thermoplastic polymer composition Decrease in melt fluidity and decrease in melt adhesiveness tend to cause surface roughness in the molded product, and poor adhesion between layers in the laminated structure.
  • the reaction mixture (Ila) and Z or the reaction mixture (lib) are added in an amount of 10 to 450 parts by mass relative to the addition polymerization block copolymer (I) loo parts by mass. More preferably, it is used in a proportion of 20 parts by weight, and more preferably in a proportion of 20 to 300 parts by mass.
  • the amount of the thermoplastic polyurethane (III) used is 100 parts by mass with respect to 100 parts by mass of the addition polymerization block copolymer (I). If the amount is less than part by mass, it is difficult to obtain a thermoplastic polymer composition having flexibility, mechanical performance and melt moldability, and the strength of the thermoplastic polymer composition is easily obtained.
  • the compression set tends to be large, and the melt adhesion with other materials is lowered, the surface of the molded product is roughened, and the moldability tends to be unstable.
  • the moldability may be lowered.
  • thermoplastic polymer compositions (ii) and (m) the amount of the thermoplastic polyurethane (III) used is 13600 parts by mass with respect to the addition polymerization block copolymer (I) loo part by mass. If it exceeds 1, the thermoplastic polymer composition tends to adhere to the molding apparatus at the time of melt molding, so that the melt moldability tends to become unstable and the surface of the molded product tends to become rough.
  • thermoplastic polyurethane (III) should be used at a ratio of 150 to 1500 parts by mass with respect to addition polymerization block copolymer (I) loo parts by mass. More preferably 200 to: L It is particularly preferable to use at a ratio of 100 to 100 parts by mass, and particularly preferable to use at a ratio of 350 to 1100 parts by mass.
  • the amount of the paraffinic oil (IV) used is 10 per 100 parts by mass of the addition polymerization block copolymer (I). If the amount is less than part by mass, the compression set of a molded product or a laminated structure obtained from the thermoplastic polymer composition tends to increase, or the surface of the molded product tends to become rough. On the other hand, in the thermoplastic polymer compositions (ii) and (m), the amount of the paraffinic oil (IV) used is 3400 parts by mass with respect to 100 parts by mass of the addition polymerization block copolymer (I).
  • the nophine oil (IV) is used at a ratio of 50 to 300 parts by mass with respect to the addition polymerization type block copolymer (I) loo part by mass. It is more preferable to use it at a ratio of 75 to 200 parts by mass.
  • thermoplastic polymer composition ⁇ to (m) of the present invention does not impair the effects of the invention!
  • the olefin polymer (V) may contain an olefin polymer (V).
  • the content of the olefin polymer (V) is preferably 200 parts by mass or less, particularly 0 to L00 parts by mass with respect to 100 parts by mass of the addition polymerization block copolymer (I).
  • the mechanical strength and melt moldability of the thermoplastic polymer composition may be further improved.
  • Examples of the olefin-based polymer (V) include homopolymers of olefins such as ethylene, propylene and butylene, olefin copolymers composed of two or more of the above-mentioned olefins, or one or two of the olefins described above. Examples thereof include a copolymer of at least one species and one or more of other bule monomers.
  • bur monomers examples include cyanobyl monomers such as acrylo-tolyl and meta-tallow-tolyl; methyl, ethyl, propyl, n-butyl of acrylic acid or methacrylic acid, C1-C18 alkyl esters such as i-butyl, hexyl, 2-ethylhexyl, dodecyl, octadecyl; diol esters such as acrylic acid or methacrylic acid ethylene glycol, propylene glycol, butanediol; acetic acid and propionic acid Vinyl esters of carboxylic acids having 1 to 6 carbon atoms such as; unsaturated carboxylic acids such as acrylic acid, methacrylic acid and maleic acid; anhydrides of unsaturated dicarboxylic acids such as maleic anhydride; acrylamide, methacrylamide, N, N — (Meth) acrylamides such as dimethylacrylamide; maleimide, N-methylmaleimi
  • the olefin-based polymer (V) for example, low density polyethylene, medium Density polyethylene, high density polyethylene, polypropylene, polybutylene, ethylene (X-olefin copolymer, ethylene acetate butyl copolymer, ethylene acrylic acid copolymer, ethylene maleic anhydride copolymer, propylene acrylic acid copolymer, propylene Examples thereof include maleic anhydride copolymers and isobutylene maleic anhydride copolymers, and one or more of these can be used.
  • thermoplastic polymer compositions (i) to (iii) of the present invention may be added within the range of the addition polymerization block copolymer (1 ), A styrene polymer different from the block copolymer (II); a polyphenylene ether resin; a thermosetting polyurethane resin; a polyamide resin; a polyester resin; a polyvinyl chloride resin; Vinylidene resin; Acrylic resin; Ethylene acetate copolymer Copolymer; Copolymer of aromatic vinyl compound and vinyl silane compound; Aromatic vinyl compound, cyanide vinyl compound and Olefinich One kind or two or more kinds of other polymers such as a copolymer of the compound may be contained.
  • the thermoplastic polymer composition ⁇ to (m) of the present invention can contain an inorganic filler as required, and the inorganic filler is a high polymer of the thermoplastic polymer composition of the present invention. It is useful for improving hardness and economic efficiency as a bulking agent.
  • the inorganic filler include calcium carbonate, talc, clay, synthetic silicon, titanium oxide, carbon black, barium sulfate, and the like, and can contain one or more of these.
  • the content of the inorganic filler is preferably 100 parts by mass or less, more preferably 0 to 50 parts by mass with respect to 100 parts by mass of the addition polymerization block copolymer (I).
  • thermoplastic polymer composition ⁇ to (m) of the present invention may be a lubricant, a pigment, an impact resistance improver, a processing aid, a crystal nucleating agent, a colorant, a flame retardant, and a weather resistance improvement as necessary.
  • Agents ultraviolet absorbers, antioxidants, hydrolysis resistance improvers, antifungal agents, antibacterial agents, light stabilizers, antistatic agents, silicone oils, antiblocking agents, mold release agents, foaming agents, fragrances, etc. 1 type or 2 types or more of various coupling agents and other arbitrary components.
  • thermoplastic polymer composition having high bow I tensile strength can be obtained.
  • a thermoplastic polymer composition having a tensile strength at break of 8 MPa or more, and further lMPa or more can be obtained.
  • the tensile strength at break is the thermoplastic polymer composition.
  • thermoplastic polymer composition ⁇ to (m) of the present invention is not particularly limited, and any method can be used as long as the above-described constituent components can be uniformly mixed. Of these, the melt-kneading method is simple and preferably employed.
  • each constituent component is melt-kneaded equipment such as a single screw extruder, a twin screw extruder, a kneader, a mixing roll, a Banbury mixer, and the like. In general, it can be produced by melt kneading at a temperature of 150 to 220 ° C. for about 30 seconds to 5 minutes.
  • thermoplastic polymer composition (i) excellent in melt moldability, flexibility, mechanical performance, etc. can be reliably produced.
  • the following method [1] or [2] is preferably employed.
  • block copolymer ( II) Containing reaction product "]]
  • block copolymer ( II) Containing reaction product "]
  • mixing high molecular weight polyol, chain extender and organic diisocyanate compound, pre-manufactured thermoplastic polyurethane ( ⁇ ) and paraffinic oil (IV) And then melt-kneading.
  • thermoplastic polymer composition (i) the blending order and melt-kneading order of each component are not particularly limited.
  • blending is performed by the method shown in the following (1) to (8). Melting and kneading can be performed.
  • a block copolymer (II) -containing reaction product] and paraffinic oil (IV) are mixed together and melt-kneaded.
  • a block copolymer (II) or a block copolymer (II) -containing reaction product], a polymer polyol, a chain extender and an organic diisocyanate compound are mixed and melt-kneaded.
  • the addition polymerization block copolymer (I) and the paraffinic oil (IV) are separately mixed and melt-kneaded, and both melt-kneaded materials are mixed and further melt-kneaded.
  • Addition-polymerized block copolymer (1), block copolymer (II) or block copolymer ( ⁇ ) containing reaction product] and paraffinic oil (IV) are mixed and melt-kneaded.
  • Addition-polymerized block copolymer (1), block copolymer (II) or block copolymer (II) -containing reaction product], polymer polyol, chain extender and organic diisocyanate compound are mixed Then, after melt-kneading, paraffinic oil (IV) is added thereto and further melt-kneading.
  • thermoplastic polyurethane is produced by kneading and reacting a polymer polyol, a chain extender and an organic diisocyanate compound, followed by addition polymerization block copolymer (I) and block copolymer ( II) Almost the block copolymer (II) -containing reaction product] is melt-kneaded, and paraffinic oil (IV) is further added thereto and melt-kneaded.
  • Addition-polymerized block copolymer (1), block copolymer (II) or block copolymer (II) -containing reaction product], polymer polyol, chain extender and paraffinic oil (IV ) are mixed and melt-kneaded, and then an organic diisocyanate compound is added thereto and further melt-kneaded.
  • Thermoplastic polyurethane (III) and block copolymer (II) prepared by reacting high molecular polyol, chain extender and organic diisocyanate compound (II) A method of mixing and melt-kneading a composition comprising separately prepared addition polymerization block copolymer (I) and paraffinic oil (IV) together with (i) containing reaction product].
  • thermoplastic polymer composition (ii) of the present invention can be produced by the following method [3]. [3] A method in which at least one of addition polymerization block copolymer (I), reaction mixture (Ila) and reaction mixture (lib), thermoplastic polyurethane (III), and paraffinic oil (IV) is melt-kneaded.
  • thermoplastic polymer composition (m) of the present invention can be produced by the following method [4].
  • addition polymerization is carried out while reacting a polymer polyol, a chain extender, and an organic diisocyanate compound to form a thermoplastic polyurethane.
  • the components to be used may be melt-kneaded all at once, or some of the components may be melted and kneaded first, then the remaining components are added and melted. It may be kneaded.
  • the olefin-based polymer (V), other polymers, inorganic fillers, and other optional components include addition-polymerized block copolymer (I), block copolymer (II) or Can be added during or after melt mixing of reaction mixtures (Ila) and Z or reaction mixture (lib), thermoplastic polyurethane (III) and paraffinic oil (IV)! ! /
  • the above optional components are added to the addition polymerization block copolymer (1), block copolymer (II) or reaction mixture (Ila) and Z or reaction mixture (lib), thermoplastic polyurethane (III) and paraffin.
  • the mixture (Ila) and Z or the reaction mixture (lib), the thermoplastic polyurethane (III), and the paraffinic oil (IV) are contained in at least one kind, and then supplied to the melt-kneader to knead. .
  • thermoplastic polymer composition of the present invention produced by melt-kneading may be used directly in the production of a molded product or a composite molded product in a molten state, or once molded into a pellet. It may also be used for the production of composite molded bodies.
  • thermoplastic polymer composition of the present invention can be melt-molded and heat-processed, and may be any molding method such as extrusion molding, injection molding, press molding, blow molding, calender molding, and casting.
  • various molded products and composite molded bodies can be produced smoothly.
  • a molded product having an arbitrary shape such as a film shape, a sheet shape, a tube shape, or a three-dimensional shape can be produced, and the present invention includes those molded products.
  • thermoplastic polymer composition of the present invention is excellent in melt moldability, and in particular, adhesion of the extrudate to the die portion during melt extrusion molding including inflation molding can be greatly reduced. High-quality molded products free from defects such as cracks and streaks can be produced with high productivity, and the resulting molded products are excellent in various properties such as flexibility and mechanical performance.
  • thermoplastic polyurethane (III) formed using an aliphatic diisocyanate or an alicyclic diisocyanate is used, a molded product having excellent light resistance in combination with the above-described characteristics can be obtained.
  • thermoplastic polymer composition of the present invention has high melt adhesiveness to various materials in combination with the above-described excellent melt moldability, and is strong with various other materials under melting. Therefore, it can be used effectively in the manufacture of composite molded bodies with members made of other materials.
  • thermoplastic polymer composition of the present invention examples include various thermoplastic polymers other than the thermoplastic polymer composition of the present invention or compositions thereof, thermosetting resin, paper, and fabric. , Metal, wood, ceramics and the like.
  • thermoplastic polymer composition of the present invention is excellent in melt adhesion with other polar materials.
  • other polar materials include polyoxymethylene, saponified ethylene acetate butyl copolymer, polyurethane, polyamide, polyester, polycarbonate, polyphenylene sulfide, polyacrylate, polymetatalylate, and polyester.
  • the type and shape of the composite molded body of the thermoplastic polymer composition of the present invention and other materials are not particularly limited, and typical examples include film-like, sheet-like or plate-like laminates.
  • a tube, a deformed product, and other arbitrary three-dimensional shapes can be used.
  • the number of layers, the thickness, shape, and structure of each layer are not particularly limited, and are appropriately adjusted according to the use of the laminate. That's right.
  • the laminate obtained by using the thermoplastic polymer composition of the present invention includes, for example, one layer composed of the thermoplastic polymer composition of the present invention and another material.
  • a two-layer structure in which one layer is laminated, and three layers in which a layer made of the thermoplastic polymer composition of the present invention exists as an intermediate layer between two surface layers (front and back layers) made of other materials A structure, a three-layer structure in which a layer made of the thermoplastic polymer composition of the present invention is laminated on the front and back surfaces of one layer made of another material, a layer made of the thermoplastic polymer composition of the present invention, and others Examples include a multilayer structure in which layers of one or more materials are alternately stacked in four or more layers.
  • the other material which comprises each layer may be the same, and may mutually differ.
  • the thermoplastic polymer composition constituting each layer may be the same or different from each other. Even Yes.
  • the method for producing a composite molded body of the thermoplastic polymer composition of the present invention and other materials is not particularly limited, and any method can be used as long as it is a method for producing a composite molded body by melt adhesion. May be.
  • an injection molding method such as an insert injection molding method, a two-color injection molding method, a core back injection molding method, a sandwich injection molding method, an injection press molding method; Extrusion molding methods such as a laminate molding method, coextrusion molding method, and extrusion coating method; blow molding method; calender molding method; press molding method and melt casting method such as a melt casting method can be employed.
  • the insert injection molding method another material that has been formed in a predetermined shape and size in advance is inserted into a mold, and the thermoplastic weight of the present invention is inserted there.
  • a method of producing a composite molded body by injection molding of the combined composition is generally employed.
  • the method for forming other materials inserted in the mold is not particularly limited.
  • the other material to be inserted is a synthetic resin or rubber product, for example, it is manufactured by any method such as injection molding, extrusion molding and cutting to a predetermined dimension, press molding, casting, etc. It may be.
  • the other material to be inserted is a metal material
  • a conventional general-purpose method for manufacturing a metal product forging, rolling, cutting, machining, grinding, etc.
  • a metal product forging, rolling, cutting, machining, grinding, etc.
  • thermoplastic resin composition of the present invention is formed in a gap formed between a molded product made of another material formed by the first injection molding and the second mold wall by exchanging the mold cavity by movement or the like.
  • a method of producing a composite molded body by injection molding is generally employed. In the case of the core back injection molding method described above, after using one injection molding machine and one mold, other materials are first injection molded into the mold to form a molded product, and then the mold is used. A method is generally employed in which the mold cavity is expanded and the thermoplastic polymer composition of the present invention is injection molded therein to produce a composite molded body.
  • thermoplastic polymer composition of the present invention is first injected into a mold to produce a first molded product, and then another material.
  • Composite moldings may be manufactured by injection molding of materials (such as thermoplastic resin).
  • thermoplastic polymer composition of the present invention When a composite molded body having a layer of the thermoplastic polymer composition of the present invention and a layer of another thermoplastic material is produced by the above-described extrusion molding, the inner side and the outer side, the upper side and the lower side, the left side and the right side
  • the thermoplastic polymer composition of the present invention and other materials are simultaneously melt-extruded into two or more layers and joined through a mold (extrusion die portion or the like) divided into two or more layers. Methods can be adopted. If the other material is not thermoplastic, a composite molded body can be produced by extrusion-coating the thermoplastic polymer composition of the present invention under melting on or around the other material. .
  • thermoplastic polymer composition of the present invention when calendering is performed, the thermoplastic polymer composition of the present invention is calendered and coated on a melt plastic force or other material in a solid state under melting. By laminating, a desired composite molded body can be produced. Further, in the case of press molding, a composite molded body can be produced by performing melt pressing using the thermoplastic polymer composition of the present invention under the arrangement of other materials.
  • the composite molded article of the present invention can be used as various industrial products and parts.
  • industrial products and parts include instrument panels, center panels, center console boxes, door trims, pillars, various interior parts for vehicles such as assist grips; automotive exterior parts such as malls; electric tool grips, refrigerator doors, cameras Home appliance parts such as grips, vacuum cleaner bumpers and hoses, remote control switches and various key tops for office equipment; underwater products such as underwater glasses and underwater camera covers; various cover parts; sealing, waterproof, soundproof, Industrial parts with various packings for anti-vibration performance; automotive functional parts such as rack & pion boots, suspension boots, constant velocity joint boots, etc .; Electronic parts; Sporting goods; Synthetic leather; Doors, window frame materials, etc.
  • thermoplastic polymer composition Built for materials; various fittings; valve parts; can be exemplified various products like surgical cast.
  • the thermoplastic polymer composition is elastic and flexible. It shows a soft and good touch when touched, and the collar also has shock absorption (cushioning) properties and excellent impact resistance, so it is also excellent in terms of safety.
  • melt viscosity the melt viscosity, extrusion moldability, hardness, tensile rupture strength, tensile rupture elongation, and adhesive strength in the laminate of the thermoplastic polymer composition were measured or evaluated by the following methods.
  • grey deposits adhered to the die part
  • The average mass of the collected eye grease is 5 mg or less.
  • the obtained molded product was left at 25 ° C for 7 days, and then punched into a dumbbell mold specified in JIS No. 3 to produce a test piece.
  • JIS K-7311 Shimadzu Using an “autograph measuring device IS-500DJ” manufactured by Seisakusho, the tensile strength at break and tensile elongation at break were measured.
  • Polystyrene block Poly (isoprene Z butadiene) block Polystyrene block Hydrogenated triblock copolymer with structure [Kuraray Co., Ltd., "Septon 4055" (trade name), content of structural units derived from styrene 30% by mass].
  • Polystyrene block Poly (isoprene z butadiene) block Polystyrene block A hydrogenated product of a triblock copolymer having a structure of the type and having a hydroxyl group at one end of the molecule.
  • This F-SEEPS is a block copolymer having a hydroxyl group at one end of the molecule.
  • SEEPS-OH polystyrene block poly (isoprene Z butadiene) block poly styrene block type triblock copolymer structure
  • SEEPS-2 [a block copolymer without hydroxyl groups in the molecule] Hydrogenated triblock copolymer with a structure of polystyrene block poly (isoprene Z butadiene) block polystyrene block type; number average molecular weight
  • Polystyrene block Polyisoprene block A hydrogenated product of a triblock copolymer having a polystyrene block type structure and having a hydroxyl group at one end of the molecule.
  • This F-HVSIS is a block copolymer having a hydroxyl group at one end of the molecule.
  • MDI diphenylmethane diisocyanate
  • a polyester polyol having a number of hydroxyl groups per molecule of 3.00, produced by reacting 3-methyl-1,5-pentanediol, trimethylolpropane and adipic acid (number average molecular weight 2,000).
  • Polytetramethylene glycol (number average molecular weight) with 2.00 hydroxyl groups per molecule
  • MDI 4, 4'-diphenylmethane diisocyanate.
  • PL Rohine oil [made by Idemitsu Kosan Co., Ltd., “Diana Process PW—380” (trade name), kinematic viscosity (40 ° C): 382cSt, pour point: —15 ° C, flash point: 300 ° C].
  • ABS Acrylonitrile-butadiene-styrene copolymer resin (manufactured by Nippon Synthetic Rubber Co., Ltd.)
  • the obtained reaction mixture (melt) was continuously extruded into water in the form of strands and then cut with a pelletizer to obtain pellets.
  • the obtained pellets were dehumidified and dried at 80 ° C. for 12 hours to obtain a composition (PC—SEEPS Compound E2) containing a block copolymer ( ⁇ ).
  • the melt viscosity of this composition (PC-S EEPS Compound E2) was 630 Pa's.
  • the obtained pellets were dehumidified and dried at 80 ° C. for 12 hours to obtain a composition (PC-HVSIS Compound E3) containing a block copolymer ( ⁇ ).
  • the melt viscosity of this composition was 610 Pa ′s.
  • thermoplastic polymer composition 1 obtained in (2) above, the melt viscosity, hardness, tensile strength at break and tensile elongation at break were measured by the methods described above. It was as shown.
  • thermoplastic polymer composition 1 was produced by the method described above, and the adhesive strength of the obtained laminated structure was measured by the method described above. It was as follows.
  • urethanization catalyst tetraisopropyl titanate
  • thermoplastic polymer composition 2 was obtained by continuous extrusion into water in the form of a strand, followed by cutting with a pelletizer and dehumidifying and drying the pellets at 70 ° C. for 4 hours.
  • thermoplastic polymer composition 2 obtained in (2) above the melt viscosity, hardness, tensile strength at break and tensile elongation at break were measured by the methods described above, and as shown in Table 1 below. Met.
  • thermoplastic polyurethane (III) in the thermoplastic polymer composition is 60% by mass
  • Continuous melt feed at 260 ° C with continuous supply to twin screw extruder (30mm ⁇ , LZD 36, heating zone divided into three zones: front, center and rear) rotating in the same direction
  • Polyurethane formation reaction was carried out by polymerization.
  • thermoplastic polymer composition 3 The pellet was cut with a pelletizer, and the pellet was dehumidified and dried at 70 ° C. for 4 hours to obtain a thermoplastic polymer composition 3.
  • thermoplastic polymer composition 3 obtained in (3) above, the melt viscosity, hardness, tensile strength at break and tensile elongation at break were measured by the methods described above. It was as shown.
  • thermoplastic polymer composition 3 was produced by the method described above, and the adhesive strength of the obtained laminated structure was measured by the method described above. It was as follows.
  • thermoplastic polyurethane (I II) in the thermoplastic polymer composition is 50% by mass
  • twin screw extruder (30mm ⁇ , LZD 36, and the heating zone was divided into three zones: front, center, and rear).
  • the polyurethane formation reaction was carried out by continuous melt polymerization at 260 ° C.
  • thermoplastic polymer composition C 1 obtained in (2) above were measured by the methods described above. It was as shown in.
  • thermoplastic polymer composition C1 and ABS a laminated structure was produced by the method described above, and the adhesive strength of the obtained laminated structure was measured by the method described above. It was as shown.
  • the molten material is continuously extruded into water in the form of strands and then cut with a pelletizer.
  • the pellets were dehumidified and dried at 70 ° C. for 4 hours to obtain a thermoplastic polymer composition C-2.
  • thermoplastic polymer composition C 2 obtained in the above (1), the melt viscosity, hardness, tensile breaking strength and tensile breaking elongation were measured by the methods described above. It was as shown in.
  • thermoplastic polymer composition C2 and ABS a laminated structure was produced by the method described above, and the adhesive strength of the obtained laminated structure was measured by the method described above. It was as shown.
  • Chain extender (BD) (ratio) ⁇ 1.1 2.4 1.1
  • Thermoplastic resin [Large%] * 70 65 60 50
  • Thermoplastic E 'ij Urethane (TPU-1) [H content 3 ⁇ 4] a 60 half rough; [mass%] »10 12.5 15 25 15
  • thermoplastic polymer composition has excellent extrudability when the extrudate adheres to the die part (amount of grease) when melt extrusion is performed.
  • the molded products obtained from the thermoplastic polymer compositions of Examples 1 to 3 are also excellent in mechanical properties such as tensile breaking strength and tensile breaking elongation, and are firmly melt bonded to the ABS resin board. is doing.
  • the thermoplastic polymer composition of Comparative Example 2 was inferior to the extrusion molding in which the adhesion (extrusion amount) of the extrudate to the die part was large when melt extrusion was performed. ing.
  • molded articles obtained from the thermoplastic polymer compositions of Comparative Examples 1 and 2 have low tensile fracture strength and inferior mechanical properties, and also have good melt adhesion to the ABS resin board. Is also inferior.
  • thermoplastic polymer composition of the present invention is excellent in melt moldability, and particularly when melt extrusion including inflation molding is performed, the extrudate is attached to the die part of an extruder (the amount of grease). ) Can be produced with high productivity without causing defects such as thick spots, streaks, and cracks, and the resulting molded products have flexibility, mechanical performance, and wear resistance. It excels in properties such as light resistance and light resistance, and also has excellent melt adhesion with other materials. By taking advantage of these properties, various products such as electrical products, synthetic leather, automobiles, etc. It can be used effectively in the production of film-like materials, sheet-like materials, hose-like materials, tube-like materials and the like used for equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書
熱可塑性重合体組成物
技術分野
[0001] 本発明は熱可塑性重合体組成物、それからなる成形品および複合成形体に関す る。本発明の熱可塑性重合体組成物は、取り扱い性および溶融成形性に優れてい て、溶融成形時に成形装置部分、特に溶融押出成形におけるダイス部などに、押出 物などの溶融物が付着したり粘着したりすることがなぐ良好な生産性で成形を行なう ことができ、それによつて、外観、寸法安定性、柔軟性、強度などの力学的特性、耐 摩耗性、耐光性などの特性に優れる各種成形品を円滑に製造することができ、しかも 各種の材料に対して強固に溶融接着するため、それらの特性を活力して各種成形品 や複合成形体の製造に有効に使用することができる。
背景技術
[0002] スチレン系重合体ブロックと共役ジェン系重合体ブロックを有するブロック共重合体 およびその水素添加物(以下これらを総称して「(水添)スチレン '共役ジェンブロック 共重合体」ということがある)は、加熱により可塑化'溶融して成形加工を容易に行うこ とができ、しカゝも常温でゴム弾性を有し、柔軟性と力学的特性のバランスにも優れて V、ることから、 V、わゆる熱可塑性弾性体 (熱可塑性エラストマ一)の 1種として近年種 々の分野で広く用いられて 、る。
[0003] (水添)スチレン ·共役ジェンブロック共重合体は極性が低!、ため、極性の低!、他の 重合体等との溶融接着や溶融一体成形は可能であるが、極性の高!ヽ重合体や金属 などとの溶融接着が困難である。
これまで、(水添)スチレン '共役ジェンブロック共重合体に、特定の結晶性融点お よび粘度を有するエンジニアリングプラスチックをブレンドした組成物が知られており 、前記エンジニアリングプラスチックの 1つとして熱可塑性ポリウレタンが用 ヽられて ヽ る(特許文献 1参照)。この特許文献 1には、該組成物が、導電体やハンダ付用針金 の絶縁体として適して 、ることが記載されて 、るが、前記エンジニアリングプラスチッ クとして熱可塑性ポリウレタンを用いたものでは、(水添)スチレン ·共役ジェンブロック 共重合体と熱可塑性ポリウレタンとの相容性が不良であるため、両重合体の特性が 十分に発揮されておらず、有用な組成物が得られない。
[0004] また、(水添)スチレン '共役ジェンブロック共重合体の熱融着性の向上を目的とし た技術が従来カゝら種々提案されており、そのような従来技術として、(水添)スチレン' 共役ジェンブロック共重合体に熱可塑性ポリウレタンを配合した熱融着性組成物が 知られている(特許文献 2〜4参照)。し力しながら、これらの熱融着性組成物では、 熱融着させる材料によっては充分な接着強度が得られず、しかも接着強度の持続性 が無いなどの問題がある。その上、これらの熱融着性組成物では、(水添)スチレン' 共役ジェンブロック共重合体と熱可塑性ポリウレタンとの相容性が充分に良好である とは言えず、例えば複層射出成形などにより得られる積層成形品では層間剥離や接 着力のノ ラツキなどの問題を生じ易い。
[0005] (水添)スチレン '共役ジェンブロック共重合体と熱可塑性ポリウレタンとの間の相容 性の向上、両重合体を含有する組成物の溶融接着性の向上などの目的で、カルボ ン酸基、水酸基、その他の極性基で変性された (水添)スチレン '共役ジェンブロック 共重合体に熱可塑性ポリウレタンを配合した組成物が知られて ヽる(特許文献 5およ び 6参照)。また、カルボン酸基で変性された (水添)スチレン '共役ジェンブロック共 重合体と熱可塑性ポリウレタン力もなる組成物に、成形加工時の熱安定性を向上さ せるために、ヒンダードフエノールとホスファイト系化合物を添カ卩した組成物が知られ ている(特許文献 7参照)。し力しながら、これらの組成物は、溶融成形時にダイス部 分などの成形装置への付着や粘着が生じ易ぐそれに伴って所定の寸法を有し、表 面平滑性、外観などに優れる成形品が得られないことがあり、取り扱い性、溶融成形 性などの点で充分に満足のゆくものではなぐその上他の材料との溶融接着性の点 でも充分に優れて 、るとは言 、難 、。
[0006] (水添)スチレン ·共役ジェンブロック共重合体および熱可塑性ポリウレタンを含有 する上記した従来の組成物における問題点を解決できるものとして、(水添)スチレン •共役ジェンブロック共重合体、(水添)スチレン ·共役ジェンブロック共重合体よりな る付加重合系ブロックとポリウレタンブロックを有するブロック共重合体、熱可塑性ポリ ウレタンおよびパラフィン系オイルを含有する熱可塑性重合体組成物が知られている (特許文献 8参照)。この熱可塑性重合体組成物は、良好な柔軟性、弾力性、力学的 特性、耐油性、成形加工性を有し、しカゝも溶融接着性に優れていて各種材料に対し て溶融下に強固に接着するという優れた特性を備えている。そこで、本発明者がこの 熱可塑性重合体組成物にっ ヽて更に検討したところ、この熱可塑性重合体組成物 で用いられて 、る(水添)スチレン '共役ジェンブロック共重合体よりなる付加重合系 ブロックとポリウレタンブロックを有するブロック共重合体は、成形カ卩ェ時における熱 的条件によっては付加重合系ブロックとポリウレタンブロックの結合部などで解離が 生ずることがあり、成形カ卩ェ時などにおける耐熱性の向上などの観点から更に改良 の余地があることが判明した。また、より高い引張破断強度を有する熱可塑性重合体 組成物を得るという観点からも、更なる改良の余地があった。
[0007] 特許文献 1:特開昭 52— 150464号公報
特許文献 2:特開平 6— 65467号公報
特許文献 3 :特開平 6— 107898号公報
特許文献 4:特開平 8 - 72204号公報
特許文献 5:特開昭 63 - 99257号公報
特許文献 6:特開平 3 - 234755号公報
特許文献 7:特開平 7 - 126474号公報
特許文献 8:特開平 11― 323073号公報
特許文献 9:特開 2001 - 220505号公報
特許文献 10:特開 2001— 220506号公報
特許文献 11 :特開平 10— 139963号公報
発明の開示
発明が解決しょうとする課題
[0008] 前記したように、(水添)スチレン '共役ジェンブロック共重合体をはじめとする各種 熱可塑性エラストマ一の利用範囲は広がってきており、それに伴って、成形加工性に 一層優れ、し力も高性能なものが求められるようになってきて 、る。
本発明の目的は、上記した従来技術における問題点を解決して、溶融成形時に成 形装置への付着や粘着がなく溶融成形性および取り扱 、性に優れて 、て、特にイン フレーシヨン成形をも含めた溶融押出成形の際にダイス部への押出物の付着が生じ ず、成形品における厚み斑、割れ、筋などが生じず、外観および寸法安定性に優れ る成形品を生産性良く円滑に製造することができ、しかも柔軟性、引張破断強度など の力学的性能、耐摩耗性、耐光性、耐熱性、他の材料との溶融接着性などの特性に も優れる成形品や複合成形体を製造することのできる熱可塑性重合体組成物を提 供することである。
さらに、本発明の目的は、前記熱可塑性重合体組成物からなる成形品および該熱 可塑性重合体組成物と他の材料との複合成形体を提供することである。
課題を解決するための手段
本発明者らは、前記した特許文献 8に記載された熱可塑性重合体組成物について 検討する過程で、そこに含まれる(水添)スチレン '共役ジェンブロック共重合体から なる付加重合系ブロックとポリウレタンブロックを有するブロック共重合体の熱的な安 定性をより高い水準にすることができれば、溶融押出成形の際に生じるダイス部への 押出物の付着が防止または低減されて、押出成形品における厚み斑、筋、割れなど の不良現象が改善できるのではないかということに思い至って更に研究を重ねた。そ して、該特許文献 8に記載された熱可塑性重合体組成物において、そこで用いられ ている(水添)スチレン '共役ジェンブロック共重合体力もなる付加重合系ブロックとポ リウレタンブロックを有するブロック共重合体を、(水添)スチレン ·共役ジェンブロック 共重合体力 なる付加重合系ブロックとポリカーボネートブロックを有するブロック共 重合体に変更した新たな熱可塑性重合体組成物をつくり、その組成物の取り扱 、性 、溶融成形性、物性などについて検討した。その結果、(水添)スチレン '共役ジェン ブロック共重合体からなる付加重合系ブロックとポリカーボネートブロックを有するブロ ック共重合体を配合した前記熱可塑性重合体組成物は、溶融成形時に成形装置へ の付着や粘着がなく溶融成形性および取り扱 、性に優れており、特にインフレーショ ン成形をも含めた溶融押出成形の際にダイス部に押出物が付着せず、押出成形時 に厚み斑、筋、割れなどが生じないこと、しかも柔軟性、引張破断強度などの力学的 性能、耐摩耗性、耐光性、耐熱性、他の材料との溶融接着性などにも優れていること を見出した。 [0010] また、本発明者らは、前記の熱可塑性重合体組成物においては、(水添)スチレン' 共役ジェンブロック共重合体からなる付加重合系ブロックとポリカーボネートブロック を有するブロック共重合体として、ポリカーボネートと反応性の官能基を有する(水添 )スチレン '共役ジェンブロック共重合体とポリカーボネートとを溶融混練下に反応さ せて調製したブロック共重合体、またはポリカーボネートと反応性の官能基を有する( 水添)スチレン '共役ジェンブロック共重合体、 2つの水酸基を有する化合物、および カーボネート前駆体を溶融混練下に反応させて調製したブロック共重合体が好ましく 用いられること、該ブロック共重合体を調製するための前記溶融混練下での反応は 触媒の存在下に行うのが好ましいことを見出した。
更に、本発明者らは、前記特許文献 8に記載された熱可塑性重合体組成物におい て、そこで用いられている(水添)スチレン '共役ジェンブロック共重合体力もなる付カロ 重合系ブロックとポリウレタンブロックを有するブロック共重合体の代わりに、ポリカー ボネートと反応性の官能基を有する(水添)スチレン '共役ジェンブロック共重合体と ポリカーボネートとを溶融混練下に反応させて調製した反応混合物、またはポリカー ボネートと反応性の官能基を有する(水添)スチレン '共役ジェンブロック共重合体、 2 つの水酸基を有する化合物、およびポリカーボネート前駆体を溶融混練下に反応さ せて調製した反応混合物を用いた場合にも、上記した優れた諸特性を有する熱可塑 性重合体組成物が得られることを見出した。
[0011] また、本発明者らは、前記熱可塑性重合体組成物では、ポリウレタンとして、高分子 ポリオール、鎖伸長剤および有機ジイソシァネートイ匕合物からなり、有機ジイソシァネ ート化合物に由来する窒素原子の含有量が高分子ポリオール、鎖伸長剤および有 機ジイソシァネート化合物の合計質量に基づ 、て 1〜6. 5質量%である反応原料を 用 、て形成した熱可塑性ポリウレタンが好ましく用いられることを見出した。
さらに、本発明者らは、前記熱可塑性重合体組成物において、予め調製しておい た熱可塑性ポリウレタンを用いる代わりに、高分子ポリオール、鎖伸長剤および有機 ジイソシァネートイ匕合物をそのまま用いて溶融混練を行った場合にも、上記した優れ た諸特性を有する熱可塑性重合体組成物が得られることを見出し、それらの種々の 知見に基づいて本発明を完成した。 [0012] すなわち、本発明は、
(1)芳香族ビニル化合物系重合体ブロック (a— 1)と共役ジェン系重合体ブロック (b 1)を有するブロック共重合体またはその水素添加物力 なる付加重合系ブロック 共重合体 (I)、芳香族ビニル化合物系重合体ブロック (a— 2)と共役ジェン系重合体 ブロック (b— 2)を有するブロック共重合体またはその水素添加物からなる付加重合 系ブロック (ィ)とポリカーボネート系重合体ブロック(口)を有するブロック共重合体(II) 、熱可塑性ポリウレタン (ΠΙ)、およびパラフィン系オイル (IV)を含有することを特徴と する熱可塑性重合体組成物 [以下これを「熱可塑性重合体組成物 (i)」と!ヽぅことがあ る]である。
[0013] そして、本発明は、
(2) ブロック共重合体 (Π)力 以下のブロック共重合体 (ΠΑ)およびブロック共重合 体 (ΠΒ)の少なくとも 1種である前記(1)の熱可塑性重合体組成物である。
•ブロック 本 (ΠΑ) :
芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)と 、ポリカーボネート系重合体 (ロー 1)とを溶融混練下に反応させて調製したブロック 共重合体。
•ブロック共 ¾合体 (IIB) :
芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)、 2つの水酸基を有する化合物、およびカーボネート前駆体を溶融混練下に反応させ て調製したブロック共重合体。
[0014] また、本発明は、
(3) ブロック共重合体 (ΠΑ)およびブロック共重合体 (ΠΒ)が、触媒の存在下に溶融 混練下で反応させて調製したものである前記 (2)の熱可塑性重合体組成物;および、
(4) 付加重合系ブロック共重合体 (I) 100質量部当たり、ブロック共重合体 (II)を 5 〜200質量部、熱可塑性ポリウレタン(III)を 100〜800質量部およびパラフィン系ォ ィル (IV)を 10〜200質量部の割合で含有する前記(1)〜(3)の 、ずれかの熱可塑 性重合体組成物;
である。
[0015] さらに、本発明は、
(5) 芳香族ビニル化合物系重合体ブロック (a— 1)と共役ジェン系重合体ブロック( b- 1)を有するブロック共重合体またはその水素添加物力 なる付加重合系ブロック 共重合体 (1)、以下の反応混合物 (Ila)および反応混合物 (lib)の少なくとも一方、熱 可塑性ポリウレタン (III)、並びにパラフィン系オイル (IV)を溶融混練することにより得 られる熱可塑性重合体組成物 [以下これを「熱可塑性重合体組成物 (ii)」と ヽうことが ある]である。 芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)と 、ポリカーボネート系重合体 (ロー 1)とを溶融混練下に反応させて得られる反応混合 物。 芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)、 2つの水酸基を有する化合物、およびカーボネート前駆体を溶融混練下に反応させ て得られる反応混合物。
[0016] そして、本発明は、
(6) 芳香族ビニル化合物系重合体ブロック (a— 1)と共役ジェン系重合体ブロック( b- 1)を有するブロック共重合体またはその水素添加物力 なる付加重合系ブロック 共重合体 (1)、以下の反応混合物 (Ila)および反応混合物 (lib)の少なくとも一方、高 分子ポリオール、鎖伸長剤、有機ジイソシァネートイ匕合物、並びにパラフィン系オイル (IV)を溶融混練することにより得られる熱可塑性重合体組成物 [以下これを「熱可塑 性重合体組成物 (iii)」と 、うことがある]である。
' 昆 馳 a) :
芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)と 、ポリカーボネート系重合体 (ロー 1)とを溶融混練下に反応させて得られる反応混合 物。
' 昆 馳 b) :
芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)、 2つの水酸基を有する化合物、およびカーボネート前駆体を溶融混練下に反応させ て得られる反応混合物。
[0017] さらに、本発明は、
(7) 付加重合系ブロック共重合体 (ィー 1)におけるポリカーボネート系重合体と反 応し得る官能基が水酸基である前記(2)〜(6)の 、ずれかの熱可塑性重合体組成 物;
および、
(8) 付加重合系ブロック共重合体 (ィ—1)が、末端に水酸基を 1分子当たり平均で 0. 6個以上有する前記(7)の熱可塑性重合体組成物;
である。
[0018] そして、本発明は、
(9) 熱可塑性ポリウレタン (III)が、高分子ポリオール、鎖伸長剤および有機ジィソシ ァネートイ匕合物力もなる熱可塑性ポリウレタン形成用の反応原料であって、有機ジィ ソシァネート化合物に由来する窒素原子の含有量が高分子ポリオール、鎖伸長剤お よび有機ジイソシァネートィヒ合物の合計質量に基づ 、て 1〜6. 5質量%である反応 原料を用いて形成した熱可塑性ポリウレタンである前記(1)〜(5)、 (7)および (8)の V、ずれかの熱可塑性重合体組成物である。
さらに、本発明は、
(10) JIS 3号に規定されるダンベル型の試験片にして、 JIS K— 7311に準じて 測定した引張破断強度が 8MPa以上である、前記(1)〜(9)のいずれかの熱可塑性 重合体組成物である。
そして、本発明は、
(11) 前記(1)〜(10)の 、ずれかの熱可塑性重合体組成物からなる成形品;およ び、
(12) 前記(1)〜(10)のいずれかの熱可塑性重合体組成物と他の材料からなる複 合成形体;
である。
発明の効果
[0019] 本発明の熱可塑性重合体組成物は、溶融成形時に成形装置への付着や粘着が なく溶融成形性および取り扱 、性に優れており、特にインフレーション成形をも含め た溶融押出成形の際にダイス部に押出物が付着せず、押出成形時に厚み斑、筋、 割れなどが生じず、外観および寸法安定性に優れる高品質の成形品を生産性良く 製造することができる。
本発明の熱可塑性重合体組成物から得られる成形品は、柔軟性、引張破断強度 などの力学的性能、耐摩耗性、耐光性、耐熱性などの特性に優れ、しかも他の材料 との溶融接着性にも優れていて他の材料と強固に接着する。
そのため、本発明の熱可塑性重合体組成物は、そのような優れた特性を活力ゝして、 各種の成形品や製品、例えば、電気製品、合成皮革、自動車関連機器などに用いら れるフィルム状物、シート状物、ホース状物、チューブ状物、その他の成形品、他の 材料と接着した各種複合成形体の製造などに有効に使用することができる。
発明を実施するための最良の形態
[0020] 以下に本発明につ 、て詳細に説明する。
本発明は、
(i) 付加重合系ブロック共重合体 (I)、ブロック共重合体 (Π)、熱可塑性ポリウレタン ( III)およびパラフィン系オイル (IV)を含有する熱可塑性重合体組成物 [熱可塑性重 合体組成物 (i) ] ;
(ii) 付加重合系ブロック共重合体 (I)、反応混合物(Ila)および反応混合物(lib)の 少なくとも一方、熱可塑性ポリウレタン (III)並びにパラフィン系オイル (IV)を溶融混練 して得られる熱可塑性重合体組成物 [熱可塑性重合体組成物 (ii) ];および、
(iii) 付加重合系ブロック共重合体 (I)、反応混合物(Ila)および反応混合物(lib)の 少なくとも一方、高分子ポリオール、鎖伸長剤、有機ジイソシァネートィヒ合物、並びに パラフィン系オイル (IV)を溶融混練して得られる熱可塑性重合体組成物 [熱可塑性 重合体組成物 (iii) ] ;
を包含する。
本発明の熱可塑性重合体組成物 (i)〜 (iii) [以下熱可塑性重合体組成物 (i)〜 (iii )を総称して「熱可塑性重合体組成物」 ヽぅことがある]で使用する付加重合系プロ ック共重合体 (I)は、芳香族ビニル化合物系重合体ブロック(a— 1)を有して ヽる。 また、熱可塑性重合体組成物 (i)で使用するブロック共重合体 (Π)における付加重 合系ブロック (ィ)、熱可塑性重合体組成物 (i)におけるブロック共重合体 (II)として用 V、得るブロック共重合体 (ΠΑ)およびブロック共重合体 (ΠΒ)の形成に用いる付加重 合系ブロック共重合体 (ィ— 1)、並びに熱可塑性重合体組成物 (ii)および (m)にお ける反応混合物(Ila)および反応混合物(lib)の形成に用いる付加重合系ブロック共 重合体 (ィー 1)は、 ヽずれも、芳香族ビニル化合物系重合体ブロック(a— 2)を有し ている。
当該芳香族ビニル化合物系重合体ブロック (a— 1)および (a— 2)を構成する芳香 族ビュル化合物としては、例えば、スチレン、 α—メチルスチレン、 βーメチルスチレ ン、 ο—メチノレスチレン、 m—メチノレスチレン、 p—メチノレスチレン、 2, 4 ジメチルス チレン、 2, 4, 6 トリメチルスチレン、 4 プロピノレスチレン、 tーブチルスチレン、 4 シクロへキシルスチレン、 4 ドデシルスチレン、 2 ェチル 4 ベンジルスチレン、 4 (フエニノレブチノレ)スチレン、 1ービニノレナフタレン、ビニノレアントラセン、インデン 、ァセトナフチレン、モノフノレオロスチレン、ジフノレオロスチレン、モノクロロスチレン、メ トキシスチレンなどの芳香族ビニルイ匕合物を挙げることができる。芳香族ビニル化合 物系重合体ブロック (a— 1)および (a— 2)は、 1種類の芳香族ビ-ルイ匕合物力 形成 されていてもよいし、 2種以上の芳香族ビ-ルイ匕合物力も形成されていてもよい。芳 香族ビュル化合物系重合体ブロック(a— 1)および (a— 2)は、スチレンおよび Zまた は a—メチルスチレンに由来する構造単位から主として形成されていることが好まし い。
[0022] 芳香族ビニル化合物系重合体ブロック (a— 1)および (a— 2)は、芳香族ビ-ルイ匕 合物に由来する構造単位とともに、必要に応じて他の共重合性単量体の 1種または 2種以上に由来する構造単位を少量含有していてもよい。他の共重合性単量体に由 来する構造単位の含有量は、芳香族ビニル化合物系重合体ブロック (a— 1)または( a— 2)の質量に基づいて 30質量%以下、特に 10質量%以下であることがより好まし い。他の共重合性単量体としては、例えば、 1ーブテン、 1 ペンテン、 1一へキセン 、ブタジエン、 2—メチルー 1, 3 ブタジエン(イソプレン)、メチルビ-ルエーテルな どを挙げることができる。
[0023] また、本発明の熱可塑性重合体組成物 (i)〜 (iii)で使用する付加重合系ブロック 共重合体 (I)は、共役ジェンに主として由来する共役ジェン系重合体ブロック (b— 1) を有している。また、熱可塑性重合体組成物 (i)で使用するブロック共重合体 (Π)に おける付加重合系ブロック (ィ)、熱可塑性重合体組成物 (i)におけるブロック共重合 体 (Π)として用い得るブロック共重合体 (ΠΑ)およびブロック共重合体 (ΠΒ)の形成に 用いる付加重合系ブロック共重合体 (ィ 1)、並びに熱可塑性重合体組成物 (ii)お よび (m)における反応混合物(Ila)および反応混合物(lib)の形成に用いる付加重合 系ブロック共重合体 (ィ— 1)は、いずれも共役ジェン系重合体ブロック (b— 2)を有し ている。
当該共役ジェン系重合体ブロック (b— 1)および (b— 2)を構成する共役ジェンィ匕 合物としては、 1, 3 ブタジエン、 2—メチルー 1, 3 ブタジエン (イソプレン)、 2, 3 ジメチルー 1, 3 ブタジエン、 1, 3 ペンタジェン、 1, 3 へキサジェンなどを挙 げることができる。共役ジェン系重合体ブロック (b— 1)および (b— 2)は、 1種類の共 役ジェン化合物から形成されて ヽてもよ ヽし又は 2種以上の共役ジェンィ匕合物から 形成されて ヽてもよ ヽ。共役ジェン系重合体ブロック (b— 1)および Zまたは (b— 2) 力^種以上の共役ジェンィ匕合物に由来する構造単位を含有している場合は、それら の結合形態はランダム、テーパー、一部ブロック状のいずれであってもよいし、さらに それらが混在して 、てもよ 、。
[0024] 共役ジェン系重合体ブロック(b— 1)および Zまたは(b— 2)は水素添加されて!ヽな くても、一部が水素添加されていても、または全部が水素添加されていてもよい。共 役ジェン系重合体ブロック (b— 1)および Zまたは (b— 2)の水素添加率としては、耐 熱性、耐候性および耐光性の観点から、 50モル%以上、更には 60モル%以上、特 に 80モル%以上であることが好ましい。なお、該水素添加率 (モル%)とは、水素添 加前の共役ジェン系重合体ブロック (b— 1)または (b— 2)中に存在する二重結合の 総モル数に対する割合である。
[0025] 特に、柔軟性、力学的性能および溶融成形性に優れる熱可塑性重合体組成物が より円滑に得られる点から、当該共役ジェン系重合体ブロック (b— 1)および共役ジ ェン系重合体ブロック (b— 2)は、水素添加されていてもよいイソプレン重合体ブロッ ク、水素添加されて 、てもよ 、ブタジエン重合体ブロックおよび水素添加されて 、て もよいイソプレンとブタジエンの共重合体ブロック力 選ばれる少なくとも 1種の重合 体ブロックであることが好まし 、。
[0026] 付加重合系ブロック共重合体 (I)における芳香族ビニル化合物に由来する構造単 位の含有量は、付加重合系ブロック共重合体 (I)の質量に対して、 5〜90質量%、更 には 10〜90質量0 /0、特に 20〜80質量%であることが好ましい。
ブロック共重合体 (II)の付加重合系ブロック (ィ)における芳香族ビ-ルイ匕合物に由 来する構造単位の含有量は、付加重合系ブロック (ィ)の質量に対して、 5〜90質量 %、更には 10〜90質量%、特に 20〜80質量%であることが好ましい。
また、ブロック共重合体 (ΠΑ)およびブロック共重合体 (ΠΒ)の形成に用いる付加重 合系ブロック共重合体 (ィー 1)における芳香族ビ-ルイ匕合物に由来する構造単位の 含有量、並びに反応混合物(Ila)および反応混合物(lib)の形成に用いる付加重合 系ブロック共重合体 (ィ 1)における芳香族ビ-ルイ匕合物に由来する構造単位の含 有量は、付加重合系ブロック共重合体 (ィー 1)の質量に対して、 5〜90質量%、更に は 10〜90質量%、特に 20〜80質量%であることが好ましい。 芳香族ビニル化合物に由来する構造単位の含有量が前記範囲にある付加重合系 ブロック共重合体 (I)、ブロック共重合体 (II)、付加重合系ブロック共重合体 (ィー 1) を使用することにより、柔軟性、力学的性能および溶融成形性などにより優れる熱可 塑性重合体組成物を得ることができる。
[0027] 付加重合系ブロック共重合体 (I)における芳香族ビニルイ匕合物系重合体ブロック(a
1)と共役ジェン系重合体ブロック (b— 1)との結合形態、ブロック共重合体 (II)の 付加重合系ブロック (ィ)における芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共 役ジェン系重合体ブロック (b— 2)との結合形態、ブロック共重合体 (ΠΑ)およびプロ ック共重合体 (ΠΒ)の形成に用いる付加重合系ブロック共重合体 (ィー 1)における芳 香族ビュル化合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)と の結合形態、並びに反応混合物(Ila)および反応混合物(lib)の形成に用いる付カロ 重合系ブロック共重合体 (ィー 1)における芳香族ビ-ルイ匕合物系重合体ブロック (a 2)と共役ジェン系重合体ブロック (b— 2)との結合形態は、特に制限されず、直鎖 状、分岐状、放射状、またはそれらが組み合わさった結合形態のいずれであってもよ ぐそのうちでも直鎖状の結合形態であることが、柔軟性、力学的性能および溶融成 形性などに優れる熱可塑性重合体組成物を得ることができる点カゝら好ましい。
[0028] 付加重合系ブロック共重合体 (I)、ブロック共重合体 (II)における付加重合系ブロッ ク (ィ)、ブロック共重合体 (ΠΑ)およびブロック共重合体 (ΠΒ)の形成に用いる付加重 合系ブロック共重合体 (ィー 1)、並びに反応混合物(Ila)および反応混合物(lib)の 形成に用いる付加重合系ブロック共重合体 (ィ— 1)としては、芳香族ビニル化合物 系重合体ブロック(a— 1)および (a— 2)を Xで表し、共役ジェン系重合体ブロック (b 1)および (b— 2)を Yで表したときに、例えば、下記の式;
(X-Y) -X
m
(X-Y)
Y— (X-Y)
P
(式中、 m、 nおよび pはそれぞれ 1以上の整数を示す)
で表されるものを挙げることができる。
これらの中でも、本発明の熱可塑性重合体組成物が溶融成形性、柔軟性、力学的 性能などにより優れたものになる点から、付加重合系ブロック共重合体 (1)、ブロック 共重合体 (II)における付加重合系ブロック (ィ)、ブロック共重合体 (ΠΑ)およびブロッ ク共重合体 (ΠΒ)の形成に用いる付加重合系ブロック共重合体 (ィー 1)、並びに反応 混合物(Ila)および反応混合物(lib)の形成に用いる付加重合系ブロック共重合体( ィ— 1)は、式: X—Yで示されるジブロック共重合体または式: X—Y—Xで表されるト リブロック共重合体の形態であることが好ましぐ式: X— Y— Xで表されるトリブロック 共重合体の形態であることがより好ましい。特に、式: X— Y— Xで表されるトリブロック 共重合体の形態であると、熱可塑性重合体組成物でのパラフィン系オイル (IV)の含 浸能 (保油能)が高くなり、パラフィン系オイル (IV)の移行 (ブリードアウトなど)がより 効果的に防止できると!、う観点からも好ま U、。
付加重合系ブロック共重合体 (I)が芳香族ビニルイ匕合物系重合体ブロック Xを 2個 以上含有する場合、ブロック共重合体 (Π)の付加重合系ブロック (ィ)が芳香族ビニル 化合物系重合体ブロック Xを 2個以上含有する場合、ブロック共重合体 (ΠΑ)および ブロック共重合体 (ΠΒ)の形成に用いる付加重合系ブロック共重合体 (ィー 1)が芳香 族ビュル化合物系重合体ブロック Xを 2個以上含有する場合、および Zまたは反応 混合物(Ila)および反応混合物(lib)の形成に用いる付加重合系ブロック共重合体( ィー 1)が芳香族ビニル化合物系重合体ブロック Xを 2個以上含有する場合は、芳香 族ビ-ルイ匕合物系重合体ブロックは互いに同じ内容の重合体ブロックであってもよい し又は異なる内容の重合体ブロックであってもよい。
また、付加重合系ブロック共重合体 (I)が 2個以上の共役ジェン系重合体ブロック Y を含有する場合、ブロック共重合体 (Π)の付加重合系ブロック (ィ)が 2個以上の共役 ジェン系重合体ブロック γを含有する場合、ブロック共重合体 (ΠΑ)およびブロック共 重合体 (ΠΒ)の形成に用いる付加重合系ブロック共重合体 (ィー 1)が 2個以上の共 役ジェン系重合体ブロック γを含有する場合、および Zまたは反応混合物(Ila)およ び反応混合物(lib)の形成に用いる付加重合系ブロック共重合体 (ィ— 1)が 2個以 上の共役ジェン系重合体ブロック Yを含有する場合は、共役ジェン系重合体ブロック は互いに同じ内容の重合体ブロックであってもよいし又は異なる内容の重合体ブロッ クであってもよい。 例えば、 X—Y—Xで表されるトリブロック構造における 2個の芳香族ビニルイ匕合物 系重合体ブロック X、或いは Υ—Χ—Υで表されるトリブロック構造における 2個の共役 ジェン系重合体ブロック γは、それらを構成する芳香族ビ-ルイ匕合物または共役ジェ ン化合物の種類、その結合形式、重合体ブロックの数平均分子量などが同じであつ てもよいし、異なっていてもよい。
[0030] 付加重合系ブロック共重合体 (I)における芳香族ビニルイ匕合物系重合体ブロック(a
1)および共役ジェン系重合体ブロック (b— 1)の数平均分子量は特に制限される ものではないが、水素添加前の状態で、芳香族ビニル化合物系重合体ブロック (a— 1)の数平均分子量力 2, 500〜125, 000、特に 10, 000〜100, 000の範囲内で あり、共役ジェン系重合体ブロック(b— 1)の数平均分子量が 10, 000〜250, 000 、特に 20, 000〜200, 000の範囲内であることが好ましい。数平均分子量が前記の 範囲内にある芳香族ビュル化合物系重合体ブロック (a— 1)および共役ジェン系重 合体ブロック (b— 1)から構成される付加重合系ブロック共重合体 (I)を使用すること により、本発明の熱可塑性重合体組成物の溶融成形性、柔軟性、力学的性能などが より良好になる。
[0031] 付加重合系ブロック共重合体 (I)の全体の数平均分子量は、水素添加前の状態で 、 15, 000〜500, 000、特に 80, 000〜400, 000の範囲内であること力好まし!/、。 力かる数平均分子量を有する付加重合系ブロック共重合体 (I)を使用することにより 、本発明の熱可塑性重合体組成物の溶融成形性、柔軟性、力学的性能などがより 優れたものとなる。
[0032] また、ブロック共重合体 (Π)の付加重合系ブロック (ィ)における芳香族ビニル化合 物系重合体ブロック(a— 2)および共役ジェン系重合体ブロック(b— 2)の数平均分 子量、ブロック共重合体 (ΠΑ)およびブロック共重合体 (ΠΒ)の形成に用いる付加重 合系ブロック共重合体 (ィー 1)における芳香族ビ-ルイ匕合物系重合体ブロック (a— 2 )および共役ジェン系重合体ブロック (b— 2)の数平均分子量、反応混合物(Ila)およ び反応混合物(lib)の形成に用いる付加重合系ブロック共重合体 (ィ— 1)における 芳香族ビュル化合物系重合体ブロック (a— 2)および共役ジェン系重合体ブロック (b —2)の数平均分子量は、特に制限されるものではないが、水素添加前の状態で、い ずれも、芳香族ビニル化合物系重合体ブロック(a— 2)の数平均分子量が 2, 500〜 75, 000、特に 5, 000〜50, 000の範囲内であり、共役ジェン系重合体ブロック(b 2)の数平均分子量力 000〜150, 000、特に 10, 000〜100, 000の範囲内 であることが好ましい。
芳香族ビニル化合物系重合体ブロック (a— 2)および共役ジェン系重合体ブロック (b— 2)の数平均分子量が前記範囲内であると、本発明の熱可塑性重合体組成物 の溶融成形性、柔軟性、力学的性能などがより優れたものとなる。
[0033] また、ブロック共重合体(II)の付加重合系ブロック (ィ)の全体の数平均分子量、ブ ロック共重合体 (ΠΑ)およびブロック共重合体 (ΠΒ)の形成に用いる付加重合系プロ ック共重合体 (ィー 1)の全体の数平均分子量、反応混合物 (Ila)および反応混合物( lib)の形成に用いる付加重合系ブロック共重合体 (ィー 1)の全体の数平均分子量は 、水素添カロ前の状態で、 ヽずれも 15, 000〜300, 000、特【こ 20, 000〜100, 000 の範囲内であることが好ましい。かかる数平均分子量を有する付加重合系ブロック( ィ)を含有するブロック共重合体 (II)を使用することにより、或いは力かる数平均分子 量を有する付加重合系ブロック共重合体 (ィー 1)を用いて形成したブロック共重合体 (ΠΑ)、ブロック共重合体 (ΠΒ)、反応混合物(Ila)および Zまたは反応混合物(lib)を 使用することにより、本発明の熱可塑性重合体組成物の溶融成形性、柔軟性、力学 的性能などがより良好になる。
[0034] なお、本明細書で!/ヽぅ、芳香族ビニル化合物系重合体ブロック (a— 1)および共役 ジェン系重合体ブロック(b— 1)のそれぞれの数平均分子量、付加重合系ブロック共 重合体 (I)の全体の数平均分子量、芳香族ビニル化合物系重合体ブロック (a— 2) および共役ジェン系重合体ブロック (b— 2)のそれぞれの数平均分子量、付加重合 系ブロック (ィ)の全体の数平均分子量、付加重合系ブロック共重合体 (ィー 1)にお ける芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)および共役ジェン系重合体ブロッ ク (b— 2)のそれぞれの数平均分子量、並びに付加重合系ブロック共重合体 (ィー 1) の全体の数平均分子量は、いずれも、ゲルパーミュエーシヨンクロマトグラフィー(GP C)により標準ポリスチレン換算で測定した値である。
[0035] 本発明の熱可塑性重合体組成物 (i)〜 (iii)で用いる付加重合系ブロック共重合体 (I)は、 230°C、 2. 16kg荷重下で測定したメルトフローレート(MFR)が lOgZlO分 以下、更には 5gZlO分以下、特に 3gZlO分以下であることが好ましい。かかるメル トフローレート (MFR)を有する付加重合系ブロック共重合体 (I)を使用することにより 、本発明の熱可塑性重合体組成物の溶融成形性、柔軟性、力学的性能などがより 優れたものとなる。
[0036] また、本発明の熱可塑性重合体組成物 (i)で用いるブロック共重合体 (II)を構成す る付加重合系ブロック (ィ)、ブロック共重合体 (II)として用い得るブロック共重合体 (II A)およびブロック共重合体 (ΠΒ)の形成に用いる付加重合系ブロック共重合体 (ィ―
1)、並びに本発明の熱可塑性重合体組成物 (ii)および (m)における反応混合物(Ila
)および反応混合物(lib)の形成に用いる付加重合系ブロック共重合体 (ィ— 1)は、 いずれも、 230°C、 2. 16kg荷重下で測定したメルトフローレート(MFR)が 0. 01〜 lOOgZlO分、特に 0. 05〜80g/10分の範囲内にあることが好ましい。それによつ て、ブロック共重合体 (11)、ブロック共重合体 (ΠΑ)、ブロック共重合体 (ΠΒ)或いは反 応混合物 (Ila)および Zまたは反応混合物 (lib)と、付加重合系ブロック共重合体 (I) および熱可塑性ポリウレタン (III)との相容性が良好となり、力学的性能や溶融成形 性などにより優れる熱可塑性重合体組成物が得られる。
なお、本明細書における付加重合系ブロック共重合体 (I)および付加重合系ブロッ ク共重合体(ィ 1)のメルトフローレート(MFR)は、いずれも、 ASTM D— 1238に 準拠して測定した値である。
また、本明細書における付カ卩重合系ブロック(ィ)のメルトフローレート(MFR)は、ブ ロック共重合体 (II)において、そのポリカーボネート系重合体ブロック(口)を水素原子 に置き換えた重合体を用いて、 ASTM D— 1238に準拠して測定した値である。
[0037] 本発明の熱可塑性重合体組成物 (i)〜 (iii)で用いる付加重合系ブロック共重合体
(I)の JIS A硬度は、 30〜95、更には 40〜90、特に 50〜85の範囲内にあること力 S 好ま ヽ。かかる JIS A硬度を有する付加重合系ブロック共重合体 (I)を使用するこ とにより、本発明の熱可塑性重合体組成物の溶融成形性、柔軟性、力学的性能など 力 り良好になる。
また、本発明の熱可塑性重合体組成物 (i)で用いるブロック共重合体 (II)を構成す る付加重合系ブロック (ィ)、ブロック共重合体 (II)として用い得るブロック共重合体 (II A)およびブロック共重合体 (ΠΒ)の形成に用いる付加重合系ブロック共重合体 (ィ―
1)、並びに本発明の熱可塑性重合体組成物 (ii)および (m)における反応混合物(Ila
)および反応混合物(lib)の形成に用いる付加重合系ブロック共重合体 (ィ— 1)は、 ヽずれも、 JIS A硬度力 30〜95、更には 40〜90、特に 50〜85の範囲内にあること が好ましぐそれによつて、本発明の熱可塑性重合体組成物の溶融成形性、柔軟性 、力学的性能などがより良好なものとなる。
なお、本明細書における付加重合系ブロック共重合体 (I)および付加重合系ブロッ ク共重合体 (ィー 1)の JIS A硬度は、いずれも、 JIS K— 6253に準拠して測定した 値である。
また、本明細書における付加重合系ブロック (ィ)の JIS A硬度は、ブロック共重合 体 (II)において、そのポリカーボネート系重合体ブロック(口)を水素原子に置き換え た重合体を用いて、 JIS K— 6253に準拠して測定した値である。
[0038] 熱可塑性重合体組成物 (i)〜 (iii)で用いる付加重合系ブロック共重合体 (I)の製造 方法は、特に限定されるものではなぐ上記した構造を有する付加重合系ブロック共 重合体を製造することのできる 、ずれの方法で製造してもよ 、。
付加重合系ブロック共重合体 (I)は、例えば、ァニオン重合ゃカチオン重合などの イオン重合法、シングルサイト重合法、ラジカル重合法などにより製造することができ る。ァ-オン重合法による場合は、例えば、アルキルリチウム化合物などを重合開始 剤として用いて、 n—へキサンゃシクロへキサンなどの不活性有機溶媒中で、芳香族 ビニル化合物、共役ジェンィ匕合物を逐次重合させ、所望の分子構造および分子量 を有するブロック共重合体を製造した後、アルコール類、カルボン酸類、水などの活 性水素含有ィ匕合物を添加して重合を停止させることにより製造することができる。そし て、得られたブロック共重合体を、好ましくは、 n—へキサン、シクロへキサンなどの不 活性有機溶媒中で、アルキルアルミニウム化合物とコバルト、ニッケル等カゝらなるチ 一ダラー触媒などの水素添加反応触媒の存在下に、反応温度 20〜150°C、水素圧 力 0. l〜15MPaの条件下で水素添加することによって、水素添加物としてもよい。
[0039] 上記において、活性水素含有化合物を添加して重合を停止させる前に、例えば、 エチレンォキシド、プロピレンォキシド、スチレンオキサイド等のォキシラン骨格を有 する化合物、 ε—力プロラタトン、 j8—プロピオラタトン、ジメチルプロピオラタトン(ピ ノ ロラタトン)、メチルバレロラタトン等のラタトン化合物などを付加させることによって、 分子内に水酸基、カルボキシル基等の官能基を有する付加重合系ブロック共重合 体 (I)を製造することができる。
また、上記において、所望により、水素添加前または水素添加後のブロック共重合 体を、無水マレイン酸等によって変性することによって分子内に酸無水物基等の官 能基を有する付加重合系ブロック共重合体 (I)を製造することもできる。
なお、付加重合系ブロック共重合体 (I)としては、市販されているものを使用しても よい。
[0040] 熱可塑性重合体組成物 (i)で用いるブロック共重合体 (II)を構成するポリカーボネ ート系重合体ブロック(口)としては、例えば、 2つの水酸基を有する化合物とカーボネ ート前駆体を反応させて製造したポリカーボネートよりなるブロックを挙げることができ る。また、ブロック共重合体 (II)として用い得るブロック共重合体 (ΠΑ)の形成に用い るポリカーボネート系重合体 (ロー 1)、並びに熱可塑性重合体組成物 (ii)および (m) における反応混合物(Ila)の形成に用いるポリカーボネート系重合体 (ロー 1)として は、例えば、 2つの水酸基を有する化合物とカーボネート前駆体を反応させて製造し たポリカーボネートなどを挙げることができる。
[0041] ポリカーボネートの製造に用いられる前記した 2つの水酸基を有する化合物として は、 2価フ ノールや脂肪族ジオールなどが用いられる。
その場合の 2価フエノールの代表的な例としては、 2, 2 ビス(4ーヒドロキシフエ- ル)プロパン [ビスフエノール A]、 1, 1—ビス(4 ヒドロキシフエ-ル)ェタン、 1, 1— ビス(4 ヒドロキシフエ-ル)シクロへキサン、 2, 2 ビス(4 ヒドロキシ一 3, 5 ジメ チルフエ-ル)プロパン、 2, 2 ビス(4 ヒドロキシ— 3, 5 ジブロモフエ-ル)プロ パン、 2, 2 ビス(4 ヒドロキシ一 3, 5 クロ口フエ-ル)プロパン、 2, 2 ビス(4— ヒドロキシー 3—メチルフエニル)プロパン、ハイドロキノン、 4, 4'ージヒドロキシジフエ -ル、ビス(4 ヒドロキシフエ-ル)サルファイド、ビス(4 ヒドロキシフエ-ル)スノレホ ン、ビス(4—ヒドロキシフエ-ル)スルホキサイドなどを挙げることができる。これらの中 でも、 2価フエノールとしてビス(4 ヒドロキシフエ-ル)アルカン系が好ましぐ 2, 2- ビス(4 -ヒドロキシフエ-ル)プロパン(通称:ビスフエノール A)が特に好まし!/、。
[0042] また、ポリカーボネートの製造に用いられる前記した脂肪族ジオールとしては、例え ば、エチレングリコール、プロピレングリコール、へキシレングリコール、 3—メチル 1 , 5—ペンタンジオールなどを挙げることができる。
[0043] ブロック共重合体(II)におけるポリカーボネート系重合体ブロック(口)、ブロック共重 合体 (II)として用い得るブロック共重合体 (ΠΑ)の形成に用いるポリカーボネート系重 合体 (ロー 1)、反応混合物(Ila)の形成に用いるポリカーボネート系重合体 (口 1) は、前記した 2つの水酸基を有する化合物のうちの 1種類とカーボネート前駆体との 反応により得られたポリカーボネート系重合体力もなつていてもよいし、または前記し た 2つの水酸基を有する化合物のうちの 2種類以上とカーボネート前駆体との反応に より得られたポリカーボネート系重合体力もなつて 、てもよ 、。
[0044] また、上記、カーボネート前駆体としては、カルボ-ルハライド、カーボネートエステ ル、ハロホルメートなどがあり、具体例としては、ホスゲン、ジフエ-ルカーボネート、ク ロロ炭酸メチル、 2価フエノールのジハロホルメートなどを挙げることができる。これらの 中でも、カーボネート前駆体としてホスゲンが好まし!/、。
ブロック共重合体 (II)におけるポリカーボネート系重合体ブロック(口)、ブロック共重 合体 (II)として用い得るブロック共重合体 (ΠΑ)の形成に用いるポリカーボネート系重 合体 (ロー 1)、反応混合物(Ila)の形成に用いるポリカーボネート系重合体 (口 1) は、 1種類のカーボネート前駆体を用いて形成したものであってもよいし、または 2種 類以上のカーボネート前駆体を用いて形成したものであってもよ!/、。
[0045] ブロック共重合体 (II)として用い得るブロック共重合体 (ΠΑ)の形成に用いるポリ力 ーボネート系重合体 (口— 1)の分子量、および反応混合物(Ila)の形成に用いるポリ カーボネート系重合体 (ロー 1)の分子量は、いずれも、粘度平均分子量で 10, 000 〜100, 000、特に 15, 000〜60, 000の範囲内にあること力 本発明の熱可塑'性 重合体組成物の溶融成形性、柔軟性、力学的性能などの点から好ましい。
なお、本明細書におけるポリカーボネート系重合体 (ロー 1)の粘度平均分子量は、 溶液粘度法 (測定温度 = 20°C、溶媒 =塩化メチレン)によって測定した値である。 [0046] 本発明の熱可塑性重合体組成物 (i)で用いるブロック共重合体 (II)における、付カロ 重合系ブロック (ィ)とポリカーボネート系重合体ブロック(口)の結合形態は特に制限 されず、直鎖状、分岐状、放射状又はそれらが組み合わさった結合形態のいずれで あってもよいが、直鎖状の結合形態であることが、熱可塑性重合体組成物 (i)の溶融 成形性、柔軟性、力学的性能などの点から好ましい。
付加重合系ブロック (ィ)を αで表し、ポリカーボネート系重合体ブロック(口)を βで 表した場合に、直鎖状のブロック共重合体としては、例えば、式; α— j8で表されるジ ブロック共重合体、式; α— j8— αで表されるトリブロック共重合体、式; β— a— β で表されるトリブロック共重合体などの種々のブロック共重合体を挙げることができる。 そのうちでも、ブロック共重合体 (II)力 式; α— |8で表されるジブロック共重合体で あると、熱可塑性重合体組成物 (i)の溶融成形性、柔軟性、力学的性能などがより優 れたものとなることから好ま 、。
[0047] ブロック共重合体 (II)では、付加重合系ブロック (ィ):ポリカーボネート系重合体ブ ロック(口;)の質量 it力 S、 20 : 80〜80 : 20、更に【ま30 : 70〜70 : 30、特に 35 : 65〜6 5 : 35の範囲内であることが、熱可塑性重合体組成物 (i)の溶融成形性、柔軟性、力 学的性能などの点力も好ま 、。
[0048] 本発明の熱可塑性重合体組成物 (i)に使用するブロック共重合体 (II)は公知であり 、ポリカーボネート系榭脂とゴム強化スチレン系榭脂との相容性の改良、ポリカーボネ 一ト系榭脂とポリエステル系榭脂の相容性の改良の目的で従来使用されている(特 許文献 9および 10を参照)。し力しながら、ブロック共重合体 (II)を付加重合系ブロッ ク共重合体 (I)および熱可塑性ポリウレタン (III)と併用することは従来知られて 、な!/ヽ
[0049] 本発明の熱可塑性重合体組成物 (i)では、従来公知のブロック共重合体 (II)をその まま使用することもできるが、熱可塑性重合体組成物の溶融成形性、柔軟性、力学 的性能などの点から、ブロック共重合体 (II)としては、特定の方法で調製された以下 のブロック共重合体(ΠΑ)およびブロック共重合体(ΠΒ)の少なくとも 1種のブロック共 重合体が好ましく使用される。
,ブロック共重合体(IIA): 芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)と 、ポリカーボネート系重合体 (ロー 1)とを溶融混練下に反応させて調製したブロック 共重合体。
,ブロック共重合体(IIB):
芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)、 2つの水酸基を有する化合物、およびカーボネート前駆体を溶融混練下に反応させ て調製したブロック共重合体。
なお、ブロック共重合体 (ΠΒ)では、 2つの水酸基を有する化合物とカーボネート前 駆体との反応によってポリカーボネート系重合体ブロック(口)が形成されている。
[0050] 熱可塑性重合体組成物 (i)で用い得る前記ブロック共重合体 (ΠΑ)およびブロック 共重合体 (ΠΒ)の調製に用いる付加重合系ブロック共重合体 (ィー 1)並びに熱可塑 性重合体組成物 (ii)および (m)における反応混合物(Ila)および (lib)の形成に用い る付加重合系ブロック共重合体 (ィ— 1)が有する、ポリカーボネート系重合体 (口— 1 )と反応し得る官能基としては、例えば、カルボキシル基、酸無水物基、アルコキシ力 ルポ二ル基、チォカルボキシル基、イソシァネート基、水酸基、アミノ基、メルカプト基 などを挙げることができる。付加重合系ブロック共重合体 (ィ 1)はこれらの官能基の 1種を有していてもよいし、または 2種以上有していてもよぐ前記した官能基のなか でも水酸基が好ましい。
また、前記した付加重合系ブロック共重合体 (ィー 1)は、ポリカーボネート系重合体 (ロー 1)と反応し得る官能基を、該共重合体の分子末端に有して 、ることが好ま 、
[0051] 熱可塑性重合体組成物 (i)で用い得る前記ブロック共重合体 (ΠΑ)およびブロック 共重合体 (ΠΒ)の調製に用いる付加重合系ブロック共重合体 (ィー 1)並びに熱可塑 性重合体組成物 (ii)および (m)における反応混合物(Ila)および (lib)の形成に用い る付加重合系ブロック共重合体 (ィー 1)におけるポリカーボネート系重合体 (ロー 1) と反応し得る官能基の数は、いずれも、付加重合系ブロック共重合体 (ィ— 1) 1分子 当たり、平均で 0. 6個以上、更には 0. 7個以上、特に 0. 7〜1個であることが好まし い。
付加重合系ブロック共重合体 (ィ— 1)中には、その製造工程にもよるが、ポリカーボ ネート系重合体 (ロー 1)と反応し得る官能基を持たな 、ブロック共重合体 (該官能基 を持たない芳香族ビニルイ匕合物系重合体ブロックと共役ジェン系重合体ブロックを 有する水添または未水添のブロック共重合体)が含まれることがある力 付加重合系 ブロック共重合体 (ィ— 1)として、ポリカーボネート系重合体 (口— 1)と反応し得る官 能基の数が、 1分子当たり、平均して前記した 0. 6個以上、更には 0. 7個以上、特に 0. 7〜1個であるものを使用することにより、ブロック共重合体 (11)、ブロック共重合体 (ΠΑ)、ブロック共重合体 (ΠΒ)、反応混合物 (Ila)または (lib)を円滑に調製すること ができる。
付加重合系ブロック共重合体 (ィー 1)の製造方法は、何ら限定されるものではなく 、例えば、ァ-オン重合ゃカチオン重合などのイオン重合法、シングルサイト重合法 、ラジカル重合法などにより製造することができる。ァ-オン重合法による場合は、例 えば、アルキルリチウム化合物などを重合開始剤として用いて、 n—へキサンやシクロ へキサンなどの不活性有機溶媒中で、芳香族ビニル化合物、共役ジェン化合物を 逐次重合させ、所望の分子構造および分子量に達した時点で、エチレンオキサイド、 プロピレンオキサイド、スチレンオキサイド等のォキシラン骨格を有する化合物、 ε 力プロラタトン、 β—プロピオラタトン、ジメチルプロピオラタトン (ピバロラタトン)、メチ ルバレロラタトン等のラタトン化合物などを付加させ、次いで、アルコール類、カルボ ン酸類、水などの活性水素含有ィ匕合物を添加して重合を停止させることにより製造 することができる。また、それによつて得られたブロック共重合体を、好ましくは、 η— へキサン、シクロへキサンなどの不活性有機溶媒中でアルキルアルミニウム化合物と コバルト、ニッケル等力 なるチーグラー触媒などの水素添加反応触媒の存在下に、 反応温度 20〜150°C、水素圧力 0. l〜15MPaの条件下で水素添カ卩することによつ て、水素添加物としてもよい。また、所望により、水素添加前または水素添加後のプロ ック共重合体を、無水マレイン酸等によって変性してもよ 、。
なお、付加重合系ブロック共重合体 (ィ一 1)としては、市販されているものを使用し てもよい。
[0053] 熱可塑性重合体組成物 (i)に用い得るブロック共重合体 (ΠΑ)の調製に用いるポリ カーボネート系重合体 (ロー 1)並びに熱可塑性重合体組成物 (ϋ)および ( )におけ る反応混合物(Ila)の形成に用いるポリカーボネート系重合体 (口— 1)は、いずれも、 2つの水酸基を有する化合物とカーボネート前駆体を溶液法または溶融法で反応さ せて製造することができる。ブロック共重合体 (ΠΑ)および反応混合物(Ila)の調製に 当たっては、 2つの水酸基を有する化合物とカーボネート前駆体を反応させて得られ たポリカーボネート系重合体 (口— 1)を含む反応混合物をそのまま直接使用してもよ V、し、該反応混合物からポリカーボネート系重合体 (ロー 1)を分離してそれを用いて もよい。また、市販品として入手可能なポリカーボネートをポリカーボネート系重合体 ( ロー 1)として使用してブロック共重合体 (ΠΑ)および反応混合物 (Ila)を調製してもよ い。
[0054] ポリカーボネート系重合体 (ロー 1)としては、必要に応じて分子量調節剤、分岐剤、 触媒等を用いて製造したポリカーボネートを使用してもよい。また、ポリカーボネート 系重合体 (ロー 1)は、必要に応じて添加剤、例えば亜リン酸エステル、リン酸エステ ル、ホスホン酸エステル等の熱安定剤;トリァゾール系、ァセトフエノン系、サリチル酸 エステル系等の紫外線吸収剤;テトラブロモビスフエノール A、テトラブロモビスフエノ ール Aの低分子量ポリカーボネート;デカブ口モジフエ-ルエーテル等の難燃剤;着 色剤、蛍光増白剤などを含有していてもよい。
[0055] また、熱可塑性重合体組成物 (i)で用い得るブロック共重合体 (ΠΒ)並びに熱可塑 性重合体組成物 (ii)および (m)における反応混合物(lib)の調製に用いる 2つの水 酸基を有する化合物およびカーボネート前駆体としては、ブロック共重合体 (II)にお けるポリカーボネート系重合体ブロック(口)を構成するポリカーボネートおよびポリ力 ーボネート系重合体 (ロー 1)について上記で具体的に例示した 2つの水酸基を有す る化合物(例えばビスフエノール Aやその他の種々の 2価フエノール、脂肪族ジォー ルなど)、カーボネート前駆体 [例えばカルボ-ルハライド、カーボネートエステル、ハ 口ホルメートなど(具体例としては、ホスゲン、ジフエ-ルカーボネート、クロ口炭酸メチ ル、 2価フエノールのジハロホルメートなど)]を用いることができる。
[0056] 熱可塑性重合体組成物 (i)に用い得るブロック共重合体 (ΠΑ)並びに熱可塑性重 合体組成物 (ii)および (m)に用いる反応混合物(Ila)の調製に当たっては、ブロック 共重合体 (ΠΑ)または反応混合物 (Ila)と、付加重合系ブロック共重合体 (I)および熱 可塑性ポリウレタン (III)との相容性が良好になることから、付加重合系ブロック共重 合体 (ィー 1)とポリカーボネート系重合体 (ロー 1)を、 [付加重合系ブロック共重合体 (ィ— 1)の質量]: [ポリカーボネート系重合体(口 - 1)の質量] = 20: 80〜80: 20、 更には 30: 70〜70: 30、特に 35: 65〜65: 35の範囲内で用いることが好まし!/、。 また、熱可塑性重合体組成物 (i)に用い得るブロック共重合体 (ΠΒ)並びに熱可塑 性重合体組成物 (ii)および (m)に用いる反応混合物(lib)の調製に当たっては、プロ ック共重合体 (ΠΒ)または反応混合物(lib)と、付加重合系ブロック共重合体 (I)およ び熱可塑性ポリウレタン (III)との相容性が良好になることから、付加重合系ブロック 共重合体 (ィー 1)、 2つの水酸基を有する化合物およびカーボネート前駆体を、 [付 加重合系ブロック共重合体 (ィー 1)の質量]: [2つの水酸基を有する化合物および力 ーボネート前駆体の合計質量] = 20 : 80〜80: 20、更には30 : 70〜70 : 30、特に 3 5: 65〜65: 35の範囲内で用いることが好まし!/、。
[0057] ブロック共重合体 (ΠΑ)、ブロック共重合体 (ΠΒ)、反応混合物(Ila)および反応混 合物 (lib)を調製するための上記の反応は、触媒の存在下で行うことが好ましい。そ の際の触媒としては、例えば、有機チタン化合物、有機アンチモンィ匕合物、有機ゲル マニウム化合物、有機マンガンィ匕合物、有機スズィ匕合物、有機亜鉛化合物、有機力 ルシゥム化合物、有機鉛化合物、有機サマリウム化合物、有機ランタンィ匕合物、有機 イッテルビウム化合物、有機コバルト化合物、有機カドミウム化合物、または有機マグ ネシゥム化合物などの有機金属化合物が挙げられ、これらの 1種または 2種以上を用 いることができる。そのうちでも、有機チタン化合物、有機スズィ匕合物および有機サマ リウム化合物の 1種または 2種以上が好ましく用いられる。 2種以上の触媒を併用する 場合は、各触媒に含まれる金属は、同一であってもよいし、異なっていてもよい。
[0058] 触媒として好ましく用いられる上記有機チタン化合物の種類は特に制限されず、例 えば、テトライソプロピノレチタネート、テトラブチルチタネート、テトラー 2—ェチルへキ シルチタネート、エチレングリコールチタネート、ブチレングリコールチタネート、シユウ 酸チタンカリウム、酒石酸チタンカリウム、チタニウムァセチルァセトナート、ジブトキシ ビス(トリエタノールアミネート)チタン、およびへキサフルォロチタン酸カリウムなどを 挙げることができ、これらの 1種または 2種以上を用いることができる。そのうちでも、テ トライソプロピルチタネート、テトラブチルチタネートなどのチタンアルコラートが特に 好ましく用いられる。
[0059] また、触媒として好ましく用いられる上記した有機スズィ匕合物の種類は特に制限さ れず、例えば、モノメチルスズオキサイド、モノェチルスズオキサイド、モノプロピルス ズオキサイド、モノブチルスズオキサイド、ジー 2—ェチルへキシルスズオキサイド、ジ ブチルスズオキサイド、フ -ルメチルスズオキサイド、モノブチルスズトリクロライド、 ジブチルスズジクロライド、ジメチルスズジブロマイド、モノブチルスズモノアセテート、 モノブチルスズモノプチレート、ジブチルスズジアセテート、ジブチルスズスルフイド、 ジフエ-ルスズスルフイドなどを挙げることができ、これらの 1種または 2種以上を用い ることができる。そのうちでも、モノメチルスズォキサイド、モノェチルスズォキサイド、 モノプロピルスズオキサイド、ジブチルスズオキサイド等のスズオキサイド;およびモノ ブチルスズモノアセテート、モノブチノレスズモノブチレート、ジブチノレスズジアセテート 等のスズカルボキシレートの 1種または 2種以上が好ましく用いられる。
[0060] また、触媒として好ましく用いられる上記した有機サマリウム化合物としては、特に 制限はなぐ例えば、サマリウムアセテート、サマリウムォキザレート、サマリウムァセチ ルァセトナート、サマリウムオキサイド、サマリウムクロライド、サマリウムブロマイドなど を挙げることができ、これらの 1種または 2種以上を用いることができる。そのうちでも、 サマリウムァセチルァセトナートが特に好ましく用いられる。
[0061] 上記した触媒の使用量は、付加重合系ブロック共重合体 (ィー 1)とポリカーボネー ト系重合体 (ロー 1)の合計質量、または付加重合系ブロック共重合体 (ィー 1)、 2つ の水酸基を有する化合物およびカーボネート前駆体の合計質量に基づいて、 0. lp pm〜0. 2質量%、更には 0. 5ppm〜0. 02質量%、特に lppm〜0. 01質量%の 範囲内であることが好ましい。 [0062] また、ブロック共重合体 (ΠΑ)、ブロック共重合体 (ΠΒ)、反応混合物(Ila)および反 応混合物 (lib)の調製に当たって触媒を使用する場合は、付加重合系ブロック共重 合体 (I)および熱可塑性ポリウレタン (III)との相容性を損なわない限り、得られたプロ ック共重合体 (ΠΑ)、ブロック共重合体 (ΠΒ)、反応混合物(Ila)および反応混合物(II b)に、触媒失活剤を添加することが好ましい。触媒失活剤としては、例えば、ラウリル ホスフェート、ォレイノレホスフェート、ステアリノレホスフェート、ジラウリノレホスフェート、 ジォレイルホスフェート、ジステアリルホスフェート、トリス(2—ェチルへキシル)ホスフ エート、ビス(ォクタデシル)ペンタエリスリトールジホスフェート、フエニルホスホン酸ジ ェチル、 3, 5—ジ—tーブチルー 4ーヒドロキシベンジルホスホン酸ジェチル等のリン 系化合物; 2, 2,ーメチレンビス(4ーメチルー 6 t ブチルフエノール)、 2, 2,ーメ チレンビス(4 -ェチル 6 t ブチルフエノール)、 2 ヒドロキシ一 4 ベンジルォ キシベンゾフエノン、 2— (2,一ヒドロキシ一 3,, 5,一 t—ブチルフエ-ル)ベンゾトリア ゾール、 2— [ 2 ヒドロキシ 3 , 5 ビス( α , a -ジメチルベンジル)フエ-ル] 2 H ベンゾトリァゾール、 4, 4,一ォクチルー 2, 2,一ビフエノール等のフエノール系 化合物などを挙げることができ、そのうちでもリン系化合物が好ましく用いられる。
[0063] 触媒失活剤の使用量は、付加重合系ブロック共重合体 (ィー 1)とポリカーボネート 系重合体 (口 1)の合計質量、または付加重合系ブロック共重合体 (ィー 1)、 2つの 水酸基を有する化合物およびカーボネート前駆体の合計質量に基づ!、て、 lppn!〜 2質量0 /0、更には 5ppm〜0. 2質量0 /0、特に 10ppm〜0. 1質量%の範囲内であるこ とが好ましい。
[0064] 熱可塑性重合体組成物 (i)に用い得るブロック共重合体 (ΠΑ)の調製に当たっては 、例えば、付加重合系ブロック共重合体 (ィー 1)およびポリカーボネート系重合体 (口 1)を、必要に応じて触媒の存在下に、単軸押出機、二軸押出機、ニーダー、バン ノ リーミキサー等の混練機により、通常 180〜300°Cで 3〜15分溶融混練する方法 を採用することによりブロック共重合体 (ΠΑ)を得ることができる。
また、熱可塑性重合体組成物 (i)に用い得るブロック共重合体 (ΠΒ)の調製に当た つては、例えば、付加重合系ブロック共重合体 (ィー 1)、 2つの水酸基を有する化合 物およびカーボネート前駆体を、必要に応じて触媒の存在下に、単軸押出機、二軸 押出機、ニーダー、バンバリ一ミキサー等の混練機により通常 180〜300°Cで 3〜15 分溶融混練する方法を採用することによりブロック共重合体 (ΠΒ)を得ることができる なお、触媒失活剤を使用する場合には、その添加は、カーボネート結合の形成反 応終了後から溶融混練終了までの間に行なうことが好ましい。
[0065] 付加重合系ブロック共重合体 (ィー 1)とポリカーボネート系重合体 (ロー 1)を反応さ せてブロック共重合体 (ΠΑ)を調製する場合に、並びに付加重合系ブロック共重体( ィー 1)、 2つの水酸基を有する化合物およびカーボネート前駆体を反応させてブロッ ク共重合体 (ΠΒ)を調製する場合に、それらの反応により得られる反応生成物中に、 ブロック共重合体 (ΠΑ)またはブロック共重合体 (ΠΒ)の他に、未反応の付加重合系 ブロック共重合体 (ィー 1)、未反応のポリカーボネート系重合体(ロー 1)、 2つの水酸 基を有する化合物とカーボネート前駆体力 形成されるポリカーボネート、芳香族ビ -ル化合物系重合体ブロックと共役ジェン系重合体ブロックからなり且つポリカーボ ネート系重合体 (ロー 1)と反応性の官能基を持たな 、ブロック共重合体などの成分 の 1種または 2種以上が含まれていることがあり、それらの成分の含有量は、反応に 使用した原料の割合、反応温度等の反応条件などによって変化する。
本発明の熱可塑性重合体組成物 (i)では、ブロック共重合体 (ΠΑ)またはブロック 共重合体 (ΠΒ)と共に上記した他の成分を含有する反応生成物をそのまま用いても 一般に格別の支障が生じないことが多い。そのため、当該反応生成物からブロック共 重合体 (ΠΑ)またはブロック共重合体 (ΠΒ)を分離回収せずに、ブロック共重合体 (II A)またはブロック共重合体 (ΠΒ)を含む当該反応生成物を用いて本発明の熱可塑 性重合体組成物 (i)を製造すると、熱可塑性重合体組成物 (i)の製造工程を簡便化 することができる。
[0066] 熱可塑性重合体組成物 (i)にお 、て、ブロック共重合体 (ΠΑ)またはブロック共重合 体 (ΠΒ)と共に他の成分を含む上記した反応生成物を使用する場合は、付加重合系 ブロック共重合体 (I)および熱可塑性ポリウレタン (III)の双方に対して良好な相容性 を有するようにするために、引張破断強度が lOMPa以上、更には 12MPa以上、特 に 15MPa以上である当該反応生成物を用 、ることが好ま 、。 なお、本明細書でいう引張破断強度は、 JIS K— 7311に準拠して測定した値であ る。
[0067] 熱可塑性重合体組成物 (i)にお 、て、ブロック共重合体 (ΠΑ)またはブロック共重合 体 (ΠΒ)と共に他の成分を含む上記した反応生成物を使用する場合は、本発明の熱 可塑性重合体組成物 (i)の溶融成形性、柔軟性、力学的性能などを良好なものにす るために、 JIS A硬度力40〜99、更に ίま 50〜95、特に 60〜95の範囲内にある反 応生成物を用いることが好まし 、。
なお、本明細書でいう前記反応生成物の JIS Α硬度は、 JIS K— 6253に準拠し て測定した値である。
[0068] また、熱可塑性重合体組成物 (ii)および (m)に用いる反応混合物 (Ila)の調製に当 たっては、例えば、付加重合系ブロック共重合体 (ィー 1)およびポリカーボネート系 重合体 (ロー 1)を、必要に応じて触媒の存在下に、単軸押出機、二軸押出機、ニー ダー、バンバリ一ミキサー等の混練機により、通常 180〜300°Cで 3〜15分溶融混 練する方法を採用することにより反応混合物(Ila)を得ることができる。
さらに、熱可塑性重合体組成物 Gi)および (m)に用いる反応混合物(lib)の調製に 当たっては、例えば、付加重合系ブロック共重合体 (ィー 1)、 2つの水酸基を有する 化合物およびカーボネート前駆体を、必要に応じて触媒の存在下に、単軸押出機、 二軸押出機、ニーダー、バンバリ一ミキサー等の混練機により通常 180〜300°Cで 3 〜15分溶融混練する方法を採用することにより反応混合物(lib)を得ることができる。 なお、触媒失活剤を使用する場合には、その添加は、カーボネート結合の形成反 応終了後から溶融混練終了までの間に行なうことが好ましい。
[0069] 熱可塑性重合体組成物 (ii)および (m)に用いる反応混合物(Ila)および反応混合 物(lib)は、付加重合系ブロック共重合体 (I)および熱可塑性ポリウレタン (III)の双方 に対して良好な相容性を有するようにするために、引張破断強度が lOMPa以上、更 には 12MPa以上、特に 15MPa以上である当該反応混合物を用いることが好ましい また、熱可塑性重合体組成物 (ii)および (iii)に用いる反応混合物(Ila)および反応 混合物(lib)は、熱可塑性重合体組成物 (ii)および (iii)の溶融成形性、柔軟性、力 学的性能などを良好なものにするために、 JIS A硬度が 40〜99、更には 50〜95、 特に 60〜95の範囲内にある反応混合物を用いることが好まし 、。
なお、本明細書でいう前記反応混合物の JIS A硬度は、 JIS K— 6253に準拠し て測定した値である。
[0070] 本発明の熱可塑性重合体組成物 (i)〜 (iii)は、前記した付加重合系ブロック共重 合体 (I)と、ブロック共重合体 (II)、反応混合物 (Ila)または反応混合物 (lib)と共に、 熱可塑性ポリウレタン (III)を含有する。
熱可塑性ポリウレタン (III)としては、高分子ポリオール、鎖伸長剤および有機ジイソ シァネートイ匕合物力も形成されたものが好ましい。
[0071] 熱可塑性ポリウレタン (III)の形成に用いられる前記高分子ポリオールとしては、例 えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール 、ポリエステルポリカーボネートポリオール、ポリオレフイン系ポリオール、共役ジェン 重合体系ポリオール、ひまし油系ポリオール、シリコーン系ポリオール、ビュル重合体 系ポリオールなどを挙げることができ、これらの 1種または 2種以上を用いることができ る。そのうちでも、高分子ポリオールとして、ポリエステルポリオール、ポリエーテルポリ オールおよびポリオレフイン系ポリオールのうちの 1種または 2種以上が好ましく用い られ、ポリエステルポリオールおよび Zまたはポリエーテルポリオールがより好ましく用 いられる。
[0072] 熱可塑性ポリウレタン (III)の形成に好ましく用いられる前記したポリエステルポリオ ールは、例えば、ポリオール成分とポリカルボン酸成分を直接エステルイ匕反応または エステル交換反応に供する力、あるいはポリオール成分を開始剤としてラタトンを開 環重合させること〖こよって製造することができる。
[0073] ポリエステルポリオールの製造に用いるポリオール成分としては、ポリエステルの製 造において一般的に使用されているもの、例えば、エチレングリコール、ジエチレン グリコール、トリエチレングリコール、プロピレングリコール、 1, 3 プロパンジオール、 2—メチルー 1, 3 プロパンジオール、 2, 2 ジェチルー 1, 3 プロパンジオール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、 2—メチルー 1, 4 ブタンジオール 、ネオペンチルグリコール、 1, 5 ペンタンジオール、 3—メチルー 1, 5 ペンタンジ オール、 1, 6 へキサンジオール、 1, 7 ヘプタンジオール、 1, 8 オクタンジォー ル、 2—メチルー 1, 8 オクタンジオール、 2, 7 ジメチルー 1, 8 オクタンジォー ル、 1, 9ーノナンジオール、 2—メチルー 1, 9ーノナンジオール、 2, 8 ジメチルー 1 , 9ーノナンジオール、 1, 10 デカンジオール等の炭素数 2〜 15の脂肪族ジォー ル; 1, 4ーシクロへキサンジオール、シクロへキサンジメタノール、シクロオクタンジメ タノール等の脂環式ジオール; 1 , 4 ビス( j8—ヒドロキシエトキシ)ベンゼン等の芳 香族ジオール;トリメチロールプロパン、トリメチロールェタン、グリセリン、 1, 2, 6 へ キサントリオール、ペンタエリスリトール、ジグリセリン等の 1分子当たりの水酸基数が 3 以上である多価アルコールの 1種または 2種以上を用いることができる。
[0074] そのうちでも、ポリエステルポリオールの製造に当たっては、ポリオール成分として、 プロピレングリコール、 2—メチルー 1, 4 ブタンジオール、 3—メチルー 1, 5 ペン タンジオール、 2—メチルー 1, 8 オクタンジオール、 2, 7 ジメチルー 1, 8—ォクタ ンジオール、 2—メチルー 1, 9ーノナンジオール、 2, 8 ジメチルー 1, 9ーノナンジ オールなどのメチル基を側鎖として有する炭素数 3〜 12の脂肪族ジオールの 1種ま たは 2種以上を用いることが好ましい。特にこれらのポリオール成分のうち、メチル基 を側鎖として有する炭素数 3〜 12の脂肪族ジオールを、ポリエステルポリオールの製 造に用いる全ポリオール成分の 10モル%以上、更には 30モル%以上、特に 50モル %以上の割合で使用することが好ま 、。
[0075] また、前記したポリエステルポリオールの製造に用いるポリカルボン酸成分としては 、ポリエステルの製造において一般的に使用されているポリカルボン酸成分、例えば 、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、ァゼライン酸、セバシン 酸、ドデカン二酸、メチルコハク酸、 2—メチルダルタル酸、 3—メチルダルタル酸、トリ メチルアジピン酸、 2 メチルオクタン二酸、 3, 8 ジメチルデカン二酸、 3, 7 ジメ チルデカン二酸等の炭素数 4〜 12の脂肪族ジカルボン酸;シクロへキサンジカルボ ン酸、ダイマー酸、水添ダイマー酸等の脂環式ジカルボン酸;テレフタル酸、イソフタ ル酸、オルトフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;トリメリット 酸、ピロメリット酸等の 3官能以上の多価カルボン酸;それらのエステルまたはそれら の酸無水物等のエステル形成性誘導体などを挙げることができ、これらの 1種または 2種以上を用いることができる。そのうちでも、炭素数 6〜 12の脂肪族ジカルボン酸、 アジピン酸、ァゼライン酸、セバシン酸の 1種または 2種以上がポリカルボン酸成分と して好ましく用いられる。
[0076] また、ポリエステルポリオールの製造に用いる前記のラタトンとしては、 ε —力プロラ タトン、 β—メチル一 δ—バレロラタトンなどを挙げることができる。
[0077] また、熱可塑性ポリウレタン (III)の形成に好ましく用いられる上記したポリエーテル ポリオールとしては、例えば、環状エーテルを開環重合して得られるポリ(エチレング リコール)、ポリ(プロピレングリコール)、ポリ(テトラメチレングリコール)、ポリ(メチルテ トラメチレングリコール)などを挙げることができ、これらの 1種または 2種以上を用いる ことができる。そのうちでも、ポリ(テトラメチレングリコール)および Ζまたはポリ (メチル テトラメチレングリコール)が好ましく用いられる。
[0078] 熱可塑性ポリウレタン (III)の形成に用い得る上記したポリカーボネートポリオールと しては、例えば、ポリオール成分とジアルキルカーボネート、アルキレンカーボネート 、ジァリールカーボネート等のカーボネートイ匕合物との反応によって得られるものを挙 げることができる。
ポリカーボネートポリオールを構成するポリオール成分としては、ポリエステルポリオ ールの構成成分として例示したポリオール成分を使用することができる。また、ジアル キルカーボネートとしては、例えば、ジメチルカーボネート、ジェチルカーボネートな どを挙げることができ、アルキレンカーボネートとしては、例えば、エチレンカーボネー トなどを挙げることができ、ジァリールカーボネートとしては、例えば、ジフエ-ルカ一 ボネートなどを挙げることができる。
[0079] 熱可塑性ポリウレタン (III)の形成に用い得る上記したポリエステルポリカーボネート ポリオールとしては、例えば、ポリオール成分、ポリカルボン酸成分およびカーボネー ト化合物を同時に反応させて得られたもの、あるいは予め合成したポリエステルポリオ ールおよびポリカーボネートポリオールをカーボネートィヒ合物と反応させて得られた もの、または予め合成したポリエステルポリオールおよびポリカーボネートポリオール をポリオール成分およびポリカルボン酸成分と反応させて得られたものなどを挙げる ことができる。 [0080] 熱可塑性ポリウレタン (III)の形成に用い得る上記した共役ジェン重合体系ポリオ一 ルまたはポリオレフイン系ポリオールとしては、重合開始剤の存在下に、ブタジエン、 イソプレン等の共役ジェン、または共役ジェンと他のモノマーをリビング重合法などに より重合した後に、重合活性末端にエポキシ化合物を反応させて得られる、ポリイソ プレンポリオール、ポリブタジエンポリオール、ポリ(ブタジエン zイソプレン)ポリオ一 ル、ポリ(ブタジエン Zアクリロニトリル)ポリオール、ポリ(ブタジエン Zスチレン)ポリオ ール、あるいはそれらの水素添加物などを挙げることができ、これらの 1種または 2種 以上を用いることができる。
[0081] 熱可塑性ポリウレタン (III)の形成に用いられる高分子ポリオールの数平均分子量 は、 500〜10, 000、更には 700〜8, 000、特に 800〜5, 000の範内であること力 S 好ましい。数平均分子量が前記範囲にある高分子ポリオールを用いて製造した熱可 塑性ポリウレタン (III)を含有することにより、本発明の熱可塑性重合体組成物の溶融 成形性、柔軟性、力学的性能などの特性が優れたものになる。
なお、本明細書でいう高分子ポリオールの数平均分子量は、 JIS K— 1557に準 拠して測定した水酸基価に基づいて算出した数平均分子量である。
[0082] また、熱可塑性ポリウレタン (III)の形成に用いられる高分子ポリオールは、 1分子当 たりの水酸基数力 2. 0〜2. 1偶、更に ίま 2. 0〜2. 05偶、特に 2. 002〜2. 03偶の 範囲内であることが好ましい。 1分子当たりの水酸基数が前記範囲内にある高分子ポ リオールを用いて形成した熱可塑性ポリウレタン (III)を含有することにより、本発明の 熱可塑性重合体組成物の溶融成形性、柔軟性、力学的性能、耐摩耗性などの特性 が優れたものになる。
なお、複数種の高分子ポリオールを使用する場合には、それぞれの 1分子当たりの 水酸基数およびそれらの使用量 (モル数)から計算される 1分子あたりの平均水酸基 数を、該 1分子当たりの水酸基数とする。
[0083] 熱可塑性ポリウレタン (III)の形成に用いられる鎖伸長剤としては、ポリウレタンの製 造に従来力 使用されている鎖伸長剤のいずれでもよぐそのうちでもイソシァネート 基と反応し得る活性水素原子を分子中に 2個以上有する分子量 400以下の低分子 化合物が好ましく用いられる。 [0084] 鎖伸長剤としては、例えば、エチレングリコール、プロピレングリコール、 1, 4ーブタ ンジオール、 1, 6 へキサンジオール、 2—メチルー 1, 3 プロパンジオール、 2, 2 ジェチルー 1, 3 プロパンジオール、 2 ブチルー 2 ェチルー 1, 3 プロパン ジオール、 1, 3 ブタンジオール、 2—メチルー 1, 4 ブタンジオール、ネオペンチ ルグリコール、 3—メチルー 1, 5 ペンタンジオール、 2, 4 ジェチルー 1, 5 ペン タンジオール、 2 ェチルー 1, 3 へキサンジオール、 2—メチルー 1, 8 オクタン ジオール、 2, 7 ジメチルー 1, 8 オクタンジオール、 2—メチルー 1, 9ーノナンジ オール、 2, 8 ジメチルー 1, 9ーノナンジオール、 1, 4 ビス(j8—ヒドロキシェトキ シ)ベンゼン、 1, 4ーシクロへキサンジオール、ビス(j8—ヒドロキシェチル)テレフタレ ート、キシリレングリコール、 1, 4ーシクロへキサンジメタノール、 1, 4 (または 5)—シク 口オクタンジメタノール、 3 (または 4) , 8 (または 9)—ジヒドロキシメチルトリシクロ(5, 2 , 1, 02'6)デカン等のジオール類;ヒドラジン、エチレンジァミン、プロピレンジァミン、 キシリレンジァミン、イソホロンジァミン、ピぺラジンおよびその誘導体、フエ-レンジァ ミン、トリレンジァミン、キシレンジァミン、アジピン酸ジヒドラジド、イソフタル酸ジヒドラ ジド等のジァミン類;ァミノエチルアルコール、ァミノプロピルアルコール等のアミノア ルコール類などを挙げることができ、これらの 1種または 2種以上を用いることができる 。そのうちでも、炭素数 2〜12の脂肪族ジオールが好ましく用いられ、 1, 4 ブタン ジオール、 3—メチルー 1, 5 ペンタンジオール、 2—メチルー 1, 8 オクタンジォー ルおよび 1, 9ーノナンジオールの 1種または 2種以上がより好ましく用いられる。 また、鎖伸長剤として、分岐を分子内に有する数平均分子量が 100〜400の脂肪 族ジオールを使用して製造した熱可塑性ポリウレタン (III)を用いると、常温付近にお いて損失係数の値が大きぐかつ広い温度範囲にわたって大きな損失係数の値を保 持する制振性能に優れる熱可塑性重合体組成物を得ることができる。そのような分岐 を分子内に有する脂肪族ジオールとしては、メチル基を側鎖として有する炭素数 5〜 12の脂肪族ジオールが好ましく用いられる。
[0085] また、熱可塑性ポリウレタン (III)の形成に用いる有機ジイソシァネートイ匕合物として は、ポリウレタンの製造に従来力も使用されている有機ジイソシァネートイ匕合物、例え ば、 4, 4'—ジフエ-ルメタンジイソシァネート、トリレンジイソシァネート、フエ二レンジ イソシァネート、キシリレンジイソシァネート、 1, 5—ナフチレンジイソシァネート、 3, 3 ,ージクロロー 4, 4,ージフエ-ルメタンジイソシァネート等の芳香族ジイソシァネート; へキサメチレンジイソシァネート、イソホロンジイソシァネート、 4, 4'ージシクロへキシ ルメタンジイソシァネート、水素化キシリレンジイソシァネート等の脂肪族または脂環 式ジイソシァネートなどを挙げることができ、これらの 1種または 2種以上を用いること ができる。
そのうちでも、本発明の熱可塑性重合体組成物の溶融成形性、柔軟性、力学的性 能などが優れたものになることから、 4, 4'ージフエ-ルメタンジイソシァネートを用い て形成した熱可塑性ポリウレタン (III)を含有することが好ましい。また、脂肪族または 脂環式ジイソシァネートを用いて形成した熱可塑性ポリウレタン (III)は耐光性に優れ ることから好ましく用いられる。
[0086] 熱可塑性ポリウレタン (III)の形成に当たっては、高分子ポリオール、鎖伸長剤およ び有機ジイソシァネートイ匕合物の合計質量に基づ 、て、有機ジイソシァネートイ匕合物 に由来する窒素原子含有量が 1〜6. 5質量%、更には1〜6質量%、特に 1. 3〜5. 5質量%の範囲内にあるポリウレタン原料を用いることが好ましい。そのようなポリウレ タン原料を用いて形成した熱可塑性ポリウレタン (III)を含有することにより、本発明の 熱可塑性重合体組成物の溶融成形性、柔軟性、力学的性能などが良好なものとな る。
[0087] また、熱可塑性ポリウレタン(III)としては、その JIS A硬度が、 30〜99、更には 45 〜97、特に 60〜95の範囲内のものを使用すること力 本発明の熱可塑性重合体組 成物の溶融成形性、柔軟性、力学的性能などがより優れたものになることから好まし い。
[0088] 熱可塑性ポリウレタン (III)としては、市販されているものを使用してもよいし、上記し た高分子ポリオール、鎖伸長剤および有機ジイソシァネートイヒ合物を反応させて調 製したものを使用してもよい。
熱可塑性ポリウレタン (III)の形成に当たっては、高分子ポリオールおよび鎖伸長剤 が有して!/、る活性水素原子 1モルに対し、有機ジイソシァネートイ匕合物が有して 、る イソシァネート基が 0. 9〜1. 3モルとなるような割合で各成分を使用することが好まし 、。前記割合で各成分を用いて形成した熱可塑性ポリウレタン (III)を含有することに より、本発明の熱可塑性重合体組成物 (i)〜(iii)の溶融成形性、柔軟性、力学的性 能などの特性がより優れたものになる。
[0089] また、熱可塑性ポリウレタン (III)として、 [高分子ポリオールのモル数]: [鎖伸長剤 のモル数] = 1 : 0. 2〜8. 0 (モル比)で且つ [高分子ポリオールと鎖伸長剤の合計モ ル数] : [有機ジイソシァネートイ匕合物のモル数] = 1 : 0. 98-1. 04 (モル比)という条 件を満すようにして形成したものを含有すると、本発明の熱可塑性重合体組成物を 用いて押出成形、射出成形などの溶融成形を行う際に、溶融粘度の急激な上昇が 生じず、 目的とする成形品や積層構造体などの製品を円滑に製造することができる。
[0090] 熱可塑性ポリウレタン (III)の形成に際しては、ウレタン化反応触媒を使用してもよい 。力かるウレタンィ匕反応触媒としては、例えば、ジブチルスズジアセテート、ジブチル スズジラウレート、ジブチルスズビス(3—メルカプトプロピオン酸エトキシブチルエステ ル)塩等の有機スズ系化合物;チタン酸;テトライソプロピルチタネート、テトラー n—ブ チルチタネート、ポリヒドロキシチタンステアレート、チタンァセチルァセトネート等の有 機チタン系化合物;トリエチレンジァミン、 N—メチルモルホリン、 N, N, Ν' , Ν,ーテ トラメチルエチレンジァミン、 Ν, Ν, Ν' , N'ーテトラメチルへキサメチレンジァミン、ト リエチルァミン、 Ν, Ν—ジメチルァミノエタノール等の 3級ァミン系化合物などを挙げ ることができ、これらの 1種または 2種以上を用いることができる。
ウレタン化反応触媒の使用量は、高分子ポリオール、鎖伸長剤および有機ジィソシ ァネート化合物の合計質量に基づいて 0. lppm〜0. 2質量%、更には 0. 5ppm〜 0. 02質量%、特に lppm〜0. 01質量%の範囲内であることが好ましい。
ウレタン化反応触媒は、高分子ポリオール、鎖伸長剤、有機ジイソシァネートイ匕合 物のうち 1つまたは 2つ以上に含有させておくことができる力 高分子ポリオールに含 有させておくことが好まし!/、。
[0091] ウレタン化反応触媒を使用して熱可塑性ポリウレタン (III)を製造した場合は、得ら れた熱可塑性ポリウレタン (ΠΙ)にウレタンィ匕反応触媒失活剤を添加することが好まし い。ウレタン化反応触媒失活剤としては、例えば、ラウリルホスフェート、ォレイルホス フェート、ステアリノレホスフェート、ジラウリノレホスフェート、ジォレイノレホスフェート、ジ ステアリルホスフェート、トリス(2—ェチルへキシル)ホスフェート、ビス(ォクタデシル) ペンタエリスリトールジホスフェート、フエ-ルホスホン酸ジェチル、 3, 5—ジ tーブ チルー 4ーヒドロキシベンジルホスホン酸ジェチル等のリン系化合物; 2, 2,ーメチレ ンビス(4ーメチルー 6 t—ブチルフエノール)、 2, 2,ーメチレンビス(4ーェチルー 6 —t ブチノレフエノーノレ)、 2 ヒドロキシ一 4—ペンジノレオキシベンゾフエノン、 2— (2 ,一ヒドロキシ一 3,, 5, 一t—ブチルフエ-ル)ベンゾトリァゾール、 2— [2 ヒドロキシ — 3, 5 ビス( α , a -ジメチルベンジル)フエ-ル] 2H ベンゾトリァゾール、 4, 4'ーォクチルー 2, 2'ービフエノール等のフエノール系化合物などを挙げることがで き、そのうちでもリン系化合物が好ましく用いられる。
ウレタン化反応触媒失活剤の使用量は、熱可塑性ポリウレタン (ΠΙ)の形成に用いた 高分子ポリオール、鎖伸長剤および有機ジイソシァネート化合物の合計質量に基づ いて lppm〜2質量%、更には 5ppm〜0. 2質量%、特に 10ppm〜0. 1質量%の 範囲内であることが好ましい。
[0092] また、ウレタン化反応触媒に対するウレタン化反応触媒失活剤の使用割合は、ウレ タン化反応触媒失活剤としてリン系化合物を使用する場合には、ウレタン化反応触 媒の金属原子 1モルに対して、リン系化合物のリン原子として 0. 1〜500モル、更に は 0. 2〜200モル、特に 0. 5〜100モルの範囲内で使用することが好ましい。また、 ウレタン化反応触媒失活剤としてフヱノール系化合物を使用する場合には、ウレタン 化反応触媒の金属原子 1モルに対して、フエノール系化合物の水酸基として 1〜500 0モル、更には 2〜2000モル、特に 5〜: L000モルの範囲内で使用することが好まし い。
ウレタン化反応触媒失活剤は、付加重合系ブロック共重合体 (I)と、ブロック共重合 体 (11)、反応混合物 (Ila)または反応混合物 (lib)と、熱可塑性ポリウレタン (III)と、パ ラフィン系オイル (IV)、および必要に応じてその他の成分を混合し溶融混練を行って 熱可塑性重合体組成物を製造し、その熱可塑性重合体組成物の物性が所望の値 になった時点で添加することが、本発明の熱可塑性重合体組成物の溶融成形性、 柔軟性、力学的性能などの点から好ましい。
[0093] 熱可塑性ポリウレタン (III)の形成方法は特に限定されず、高分子ポリオール、鎖伸 長剤および有機ジイソシァネートイ匕合物を使用して、公知のウレタン化反応を利用し て、プレボリマー法、ワンショット法のいずれで製造してもよい。そのうちでも、実質的 に溶剤の不存在下に溶融重合することが好ましぐ特に多軸スクリュー型押出機を用
V、て連続溶融重合により形成させることが好ま 、。
[0094] 本発明の熱可塑性重合体組成物(i)〜(m)では、熱可塑性ポリウレタン (III)として 予め調製された熱可塑性ポリウレタンを用いてもよいし、または本発明の熱可塑性重 合体組成物用の原料成分中に高分子ポリオール、鎖伸長剤および有機ジイソシァネ ート化合物を混合してぉ ヽて熱可塑性重合体組成物の製造と同時に組成物中で熱 可塑性ポリウレタンを形成してもよ 、。
[0095] 本発明の熱可塑性重合体組成物 (i)〜 (iii)で用いるパラフィン系オイル (IV)として は、ノ フィン成分 (鎖状炭化水素)を 60質量%以上含むものが使用されるが、パラ フィン成分 (鎖状炭化水素)を 80質量%以上含むものが好ま ヽ。パラフィン系オイ ル (IV)は、その他の成分として、ベンゼン環やナフテン環などの芳香族環を有する 成分を含有していてもよい。
[0096] ノラフィン系オイル (IV)としては、 40°Cで測定した動粘度が 20〜800センチスト一 タス〔cSt (mmVs)〕、特に 50〜600センチスト一タス〔cSt (mmVs)〕の範囲内に あるものを用いることが好まし 、。力かる動粘度を有するパラフィン系オイル (IV)を使 用することにより、本発明の熱可塑性重合体組成物の溶融成形性、柔軟性、力学的 性能などの特性がより優れたものになる。
なお、本明細書でいうパラフィン系オイル (IV)の動粘度は、 JIS K— 2283に準拠 して測定した値である。
[0097] また、本発明では、流動点が 40〜0°C、特に 30〜0°Cの範囲内にあるパラフィ ン系オイル (IV)を用いることが好まし 、。前記の流動点を有するパラフィン系オイル (I V)を使用することにより、本発明の熱可塑性重合体組成物の溶融成形性、柔軟性、 力学的性能などの特性がより優れたものになる。
なお、本明細書でいうパラフィン系オイル (IV)の流動点は、 JIS K— 2269に準拠 して測定した値である。
[0098] パラフィン系オイル(IV)の引火点は、 200〜400°C、特に 250〜350°Cの範囲内 にあることが好ましい。前記の範囲の引火点を有するパラフィン系オイル (IV)を使用 することにより、本発明の熱可塑性重合体組成物の溶融成形性、柔軟性、力学的性 能などの特性がより優れたものになる。
なお、本明細書でいうパラフィン系オイル (IV)の引火点は、 JIS K— 2265に準拠 して測定した値である。
[0099] 本発明の熱可塑性重合体組成物 (i)は、溶融成形性、成形機への付着防止性、柔 軟性、力学的特性、他の材料への溶融接着性などの諸特性が良好になる点から、付 加重合系ブロック共重合体 (I) 100質量部当たり、ブロック共重合体(II)を 5〜200質 量部、熱可塑性ポリウレタン(III)を 100〜800質量部およびパラフィン系オイル(IV) を 10〜200質量部の割合で含有して 、ることが好まし 、。
[0100] 熱可塑性重合体組成物 (i)にお 、て、付加重合系ブロック共重合体 (I) 100質量部 に対して、ブロック共重合体 (II)の含有量が 5質量部未満であると、付加重合系プロ ック共重合体 (I)と熱可塑性ポリウレタン (III)との相容性が不十分になり、柔軟性、力 学的性能および溶融成形性を有する熱可塑性重合体組成物を得ることが困難となる 場合があり、更に熱可塑性重合体組成物を用いて得られる成形品や積層構造体な どの製品に表面荒れや層間の接着性の低下を生じ易くなる傾向にある。一方、熱可 塑性重合体組成物 (i)において、付加重合系ブロック共重合体 (I) 100質量部に対し てブロック共重合体 (Π)の含有量が 200質量部を超えると、熱可塑性重合体組成物 の溶融流動性の低下、溶融接着性の低下が生じて、成形品に表面荒れを生じたり、 積層構造体における層間の接着不良などを生じ易くなる傾向にある。本発明の熱可 塑性重合体組成物 (i)は、付加重合系ブロック共重合体 (I) 100質量部に対して、ブ ロック共重合体 (II)を 10〜180質量部の割合で含有していることがより好ましぐ 20 〜 150質量部の割合で含有して 、ることが更に好ま 、。
[0101] また、熱可塑性重合体組成物 (i)にお 、て、付加重合系ブロック共重合体 (I) 100 質量部に対して熱可塑性ポリウレタン (III)の割合が 100質量部未満であると、柔軟 性、力学的性能および溶融成形性を有する熱可塑性重合体組成物を得ることが困 難となり易ぐしかも熱可塑性重合体組成物から得られる成形品や積層構造体など の圧縮永久歪みが大きくなり易ぐ更には他の材料との溶融接着性が低下し、成形 品表面に荒れを生じ、し力も成形性が不安定になり易くなる傾向にある。特に、熱可 塑性重合体組成物 (i)を用いて、インフレーション成形をも含めた溶融押出成形を行 う際に、成形性が低下する場合がある。一方、熱可塑性重合体組成物 (i)において、 付加重合系ブロック共重合体 (I) 100質量部に対して熱可塑性ポリウレタン (III)の割 合が 800質量部を超えると、溶融成形時に熱可塑性重合体組成物が成形装置に付 着し易くなつて、溶融成形性の不安定ィ匕ゃ成形品における表面荒れを生じ易くなる 傾向にある。
本発明の熱可塑性重合体組成物 (i)は、付加重合系ブロック共重合体 (I) 100質 量部に対して、熱可塑性ポリウレタン (III)を 150〜800質量部の割合で含有すること 力 り好ましぐ 200〜700質量部の割合で含有することが更に好ましぐ 350-700 質量部の割合で含有することが特に好ま Uヽ。
[0102] また、熱可塑性重合体組成物 (i)にお 、て、付加重合系ブロック共重合体 (I) 100 質量部に対してパラフィン系オイル (IV)の割合が 10質量部未満であると、熱可塑性 重合体組成物から得られる成形品や積層構造体などの圧縮永久歪みが大きくなつ たり、成形品表面の荒れを生じ易くなる傾向にある。一方、熱可塑性重合体組成物 (i )において、付加重合系ブロック共重合体 (I) 100質量部に対してパラフィン系オイル (IV)の割合が 200質量部を超えると、熱可塑性重合体組成物の溶融成形が困難に なり易ぐしかも他の材料との溶融接着性が低下し、熱可塑性重合体組成物から得ら れる成形品の引張破断強度や引張破断伸びなどの力学的性能の低下、成形品表 面の荒れ、成形中のスプール切れなどの問題が生じ易くなる傾向にある。
本発明の熱可塑性重合体組成物 (i)は、付加重合系ブロック共重合体 (I) 100質 量部に対して、ノ フィン系オイル (IV)を 50〜 150質量部の割合で含有することがよ り好ましく、 75〜 125質量部の割合で含有することが更に好ま 、。
[0103] 本発明の熱可塑性重合体組成物 (i)の製造に当たって、付加重合系ブロック共重 合体 (ィー 1)とポリカーボネート系重合体 (ロー 1)を反応させて得られたブロック共重 合体 (ΠΑ)を含む反応生成物、および Zまたは付加重合系ブロック共重合体 (ィー 1 )、 2つの水酸基を有する化合物およびカーボネート前駆体を反応させて得られたブ ロック共重合体 (ΠΒ)を含む反応生成物をそのまま用いた場合には、それらの反応生 成物中には、ブロック共重合体 (ΠΑ)またはブロック共重合体 (ΠΒ)の他に、未反応の 付加重合系ブロック共重合体 (ィー 1)、未反応のポリカーボネート系重合体 (ロー 1) 、 2つの水酸基を有する化合物およびカーボネート前駆体力 形成されるポリカーボ ネート、芳香族ビニルイ匕合物系重合体ブロックと共役ジェン系重合体ブロック力もな り且つポリカーボネート系重合体 (ロー 1)と反応性の官能基を持たないブロック共重 合体などの成分の 1種または 2種以上が含まれて 、ることがある。
そのような場合には、それらの反応生成物中に含まれる付加重合系ブロック共重合 体 (ィー 1) [付加重合系ブロック共重合体 (I)に相当]、ブロック共重合体 (11)、ポリ力 ーボネート系重合体 (ロー 1)などの量を勘案して、熱可塑性重合体組成物中におけ る付加重合系ブロック共重合体 (1)、ブロック共重合体 (11)、熱可塑性ポリウレタン (III )およびパラフィン系オイル (IV)の含有割合力 上記した好ま 、範囲になるように、 反応生成物やその他の成分の配合割合を調整することが好ましい。
[0104] また、本発明の熱可塑性重合体組成物 (ii)および (iii)では、得られる熱可塑性重 合体組成物が、溶融成形性、成形機への付着防止性、柔軟性、力学的特性、他の 材料への溶融接着性などの諸特性にぉ ヽて良好になる点から、付加重合系ブロック 共重合体 (I) 100質量部当たり、反応混合物(Ila)および Zまたは(lib)を 5〜5000 質量部 [反応混合物 (Ila)と反応混合物 (lib)の両方を用いた場合は両者の合計質 量]、熱可塑性ポリウレタン(III)を 100〜 13600質量部およびパラフィン系オイル(IV )を 10〜3400質量部の割合で使用することが好ましい。
[0105] 熱可塑性重合体組成物 (ii)および (m)にお 、て、付加重合系ブロック共重合体 (I)
100質量部に対して、反応混合物(Ila)および Zまたは反応混合物(lib)の使用量が 5質量部未満であると、付加重合系ブロック共重合体 (I)と熱可塑性ポリウレタン (III) との相容性が不十分になり、柔軟性、力学的性能および溶融成形性に優れる熱可塑 性重合体組成物を得ることが困難となる場合があり、更に熱可塑性重合体組成物を 用いて得られる成形品や積層構造体などの製品に表面荒れや層間の接着性の低下 を生じ易くなる傾向にある。一方、熱可塑性重合体組成物 (ii)および (m)にお 、て、 付加重合系ブロック共重合体 (I) 100質量部に対して反応混合物(Ila)および Zまた は反応混合物(lib)の使用量が 5000質量部を超えると、熱可塑性重合体組成物の 溶融流動性の低下、溶融接着性の低下が生じて、成形品に表面荒れを生じたり、積 層構造体における層間の接着不良などを生じ易くなる傾向にある。
熱可塑性重合体組成物 (ii)および (m)では、付加重合系ブロック共重合体 (I) loo 質量部に対して、反応混合物(Ila)および Zまたは反応混合物(lib)を 10〜450質 量部の割合で使用することがより好ましぐ 20〜300質量部の割合で使用することが 更に好ましい。
[0106] また、熱可塑性重合体組成物 (ϋ)および (m)にお ヽて、付加重合系ブロック共重合 体 (I) 100質量部に対して熱可塑性ポリウレタン (III)の使用量が 100質量部未満で あると、柔軟性、力学的性能および溶融成形性を有する熱可塑性重合体組成物を 得ることが困難となり易ぐしかも熱可塑性重合体組成物力 得られる成形品や積層 構造体などの圧縮永久歪みが大きくなり易ぐ更には他の材料との溶融接着性が低 下し、成形品表面に荒れを生じ、し力も成形性が不安定になり易くなる傾向にある。 特に、熱可塑性重合体組成物 (ii)または (iii)を用いて、インフレーション成形をも含 めた溶融押出成形を行う際に、成形性が低下する場合がある。一方、熱可塑性重合 体組成物 (ii)および (m)にお 、て、付加重合系ブロック共重合体 (I) loo質量部に対 して熱可塑性ポリウレタン (III)の使用量が 13600質量部を超えると、溶融成形時に 熱可塑性重合体組成物が成形装置に付着し易くなつて、溶融成形性の不安定化、 成形品における表面荒れを生じ易くなる傾向にある。
熱可塑性重合体組成物 (ii)および (m)では、付加重合系ブロック共重合体 (I) loo 質量部に対して、熱可塑性ポリウレタン (III)を 150〜 1500質量部の割合で使用する ことがより好ましぐ 200〜: L 100質量部の割合で使用することが更に好ましぐ 350〜 1100質量部の割合で使用することが特に好ま 、。
[0107] また、熱可塑性重合体組成物 (ϋ)および (m)にお ヽて、付加重合系ブロック共重合 体 (I) 100質量部に対してパラフィン系オイル (IV)の使用量が 10質量部未満である と、熱可塑性重合体組成物から得られる成形品や積層構造体などの圧縮永久歪み が大きくなつたり、成形品表面の荒れを生じ易くなる傾向にある。一方、熱可塑性重 合体組成物 (ii)および (m)にお 、て、付加重合系ブロック共重合体 (I) 100質量部に 対してパラフィン系オイル (IV)の使用量が 3400質量部を超えると、熱可塑性重合体 組成物の溶融成形が困難になり易ぐしかも他の材料との溶融接着性が低下し、熱 可塑性重合体組成物から得られる成形品の引張破断強度や引張破断伸びなどの力 学的性能の低下、成形品表面の荒れ、成形中のスプール切れなどの問題が生じ易く なる傾向にある。
熱可塑性重合体組成物 (ii)および (m)では、付加重合系ブロック共重合体 (I) loo 質量部に対して、ノ フィン系オイル (IV)を 50〜300質量部の割合で使用すること 力 り好ましぐ 75〜200質量部の割合で使用することが更に好ましい。
[0108] 本発明の熱可塑性重合体組成物 ω〜 (m)は、発明の効果を損なわな!、範囲内で
、必要に応じて、ォレフィン系重合体 (V)を含有していてもよい。ォレフィン系重合体 (V)の含有量は、付加重合系ブロック共重合体 (I) 100質量部に対して、 200質量部 以下、特に 0〜: L00質量部であることが好ましい。ォレフィン系重合体 (V)を含有させ ることにより、熱可塑性重合体組成物の力学的強度および溶融成形性を一層向上で きる場合がある。
[0109] ォレフィン系重合体(V)としては、エチレン、プロピレン、ブチレンなどのォレフィン の単独重合体、前記したォレフィンの 2種以上からなるォレフィン共重合体、または前 記したォレフィンの 1種または 2種以上と他のビュル系単量体の 1種または 2種以上と の共重合体などが挙げられる。その際の他のビュル系単量体としては、例えば、ァク リロ-トリル、メタタリ口-トリル等のシアンィ匕ビュル単量体;アクリル酸またはメタクリル 酸のメチル、ェチル、プロピル、 n—ブチル、 iーブチル、へキシル、 2—ェチルへキシ ル、ドデシル、ォクタデシル等の炭素数 1〜18のアルキルエステル;アクリル酸または メタクリル酸のエチレングリコール、プロピレングリコール、ブタンジオール等のジォー ルエステル;酢酸やプロピオン酸等の炭素数 1〜6のカルボン酸のビニルエステル; アクリル酸、メタクリル酸、マレイン酸等の不飽和カルボン酸;無水マレイン酸等の不 飽和ジカルボン酸の無水物;アクリルアミド、メタクリルアミド、 N, N—ジメチルアクリル アミド等の (メタ)アクリルアミド類;マレイミド、 N—メチルマレイミド、 N—ェチルマレイミ ド、 N—フエ-ルマレイミド、 N—シクロへキシルマレイミド等の N—置換マレイミド類; ブタジエン、イソプレン等の共役ジェンなどを挙げることができる。
[0110] より具体的には、ォレフィン系重合体 (V)としては、例えば、低密度ポリエチレン、中 密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリブチレン、エチレン (X ーォレフイン共重合体、エチレン 酢酸ビュル共重合体、エチレン アクリル酸共重 合体、エチレン 無水マレイン酸共重合体、プロピレン アクリル酸共重合体、プロ ピレン 無水マレイン酸共重合体、イソブチレン 無水マレイン酸共重合体などを挙 げることができ、これらの 1種または 2種以上を使用することができる。
[Oil 1] また、本発明の熱可塑性重合体組成物 (i)〜 (iii)は、本発明の効果を損なわな 、 範囲内で、必要に応じて、付加重合系ブロック共重合体 (1)、ブロック共重合体 (II)と は異なるスチレン系重合体;ポリフエ-レンエーテル系榭脂;熱硬化型ポリウレタン榭 脂;ポリアミド榭脂;ポリエステル榭脂;ポリ塩化ビニル榭脂;ポリ塩ィ匕ビユリデン榭脂; アクリル榭脂;エチレン 酢酸ビュル共重合体ケンィ匕物;芳香族ビニルイ匕合物とシァ ン化ビニル化合物の共重合体;芳香族ビニル化合物、シアンィ匕ビ二ルイ匕合物および ォレフィンィヒ合物の共重合体等の、他の重合体の 1種または 2種以上を含有してもよ い。
[0112] 本発明の熱可塑性重合体組成物 ω〜 (m)は、必要に応じて無機充填剤を含有す ることができ、無機充填剤は、本発明の熱可塑性重合体組成物の高硬度化や増量 剤としての経済性の改善に有用である。無機充填剤としては、例えば、炭酸カルシゥ ム、タルク、クレー、合成珪素、酸化チタン、カーボンブラック、硫酸バリウムなどを挙 げることができ、これらの 1種または 2種以上を含有することができる。無機充填剤の 含有量は、付加重合系ブロック共重合体 (I) 100質量部に対して 100質量部以下、 特に 0〜 50質量部が好まし 、。
[0113] 本発明の熱可塑性重合体組成物 ω〜 (m)は、必要に応じて、滑剤、顔料、耐衝撃 改良剤、加工助剤、結晶核剤、着色剤、難燃剤、耐候性改良剤、紫外線吸収剤、酸 化防止剤、耐加水分解性向上剤、防かび剤、抗菌剤、光安定剤、耐電防止剤、シリ コンオイル、ブロッキング防止剤、離型剤、発泡剤、香料などの各種添加剤;各種カツ プリング剤、その他の任意の成分の 1種または 2種以上を含有することができる。
[0114] 本発明によれば、弓 I張破断強度の高!、熱可塑性重合体組成物を得ることができる 。例えば、 8MPa以上、更には l lMPa以上の引張破断強度を有する熱可塑性重合 体組成物を得ることができる。なお、該引張破断強度とは、熱可塑性重合体組成物 を JIS 3号に規定されるダンベル型の試験片にして、 JIS K— 7311に準拠して測 定した値であり、詳細は実施例の項目において説明する。
[0115] 本発明の熱可塑性重合体組成物 ω〜 (m)の製造方法は特に制限されず、上記し た構成成分を均一に混合し得る方法であれば!/、ずれの方法で製造してもよく、そのう ちでも溶融混練法が簡便であり好ましく採用される。
本発明の熱可塑性重合体組成物 (i)〜(iii)は、例えば、各構成成分を、単軸押出 機、二軸押出機、ニーダー、ミキシングロール、バンバリ一ミキサーなどの溶融混練装 置を用いて、通常、 150〜220°Cの温度で約 30秒〜 5分間程度溶融混練することに よって製造することができる。
[0116] そのうちでも、熱可塑性重合体組成物 (i)の製造方法としては、溶融成形性、柔軟 性、力学的性能などに優れる熱可塑性重合体組成物 (i)を確実に製造できる点から 、以下の〔1〕または〔2〕に示す方法が好ましく採用される。
〔1〕 付加重合系ブロック共重合体 (I)、ブロック共重合体 (II)ほたはブロック共重合 体 (II)と共に他の成分を含む上記した反応生成物 {以下「ブロック共重合体 (II)含有 反応生成物」ということがある }]、高分子ポリオール、鎖伸長剤および有機ジイソシァ ネートイ匕合物を反応させて予め製造した熱可塑性ポリウレタン (ΠΙ)並びにパラフィン 系オイル (IV)を混合して溶融混練する方法。
〔2〕 付加重合系ブロック共重合体 (I)、ブロック共重合体 (II)ほたはブロック共重合 体 (II)含有反応生成物]、パラフィン系オイル (IV)、高分子ポリオール、鎖伸長剤お よび有機ジイソシァネート化合物を混合して溶融混練する方法。
[0117] 熱可塑性重合体組成物 (i)の製造に当たっては、各成分の配合順序や溶融混練 順序などは特に制限されず、例えば、以下の(1)〜(8)に示す方法で配合'溶融混 練を行うことができる。
(1)高分子ポリオール、鎖伸長剤および有機ジイソシァネートイヒ合物を反応させて調 製した熱可塑性ポリウレタン (111)、付加重合系ブロック共重合体 (1)、ブロック共重合 体 (II)ほたはブロック共重合体 (II)含有反応生成物]およびパラフィン系オイル (IV) を一括して混合し溶融混練する方法。
(2)付加重合系ブロック共重合体 (1)、ブロック共重合体 (II)ほたはブロック共重合 体 (II)含有反応生成物]、パラフィン系オイル (IV)、高分子ポリオール、鎖伸長剤お よび有機ジイソシァネート化合物を一括して混合し溶融混練する方法。
(3)ブロック共重合体 (II)ほたはブロック共重合体 (II)含有反応生成物]、高分子ポ リオール、鎖伸長剤および有機ジイソシァネートイ匕合物を混合して溶融混練し、それ とは別に付加重合系ブロック共重合体 (I)とパラフィン系オイル (IV)を別途混合して 溶融混練し、両方の溶融混練物を混合して更に溶融混練する方法。
(4)付加重合系ブロック共重合体 (1)、ブロック共重合体 (II)ほたはブロック共重合 体 (Π)含有反応生成物]およびパラフィン系オイル (IV)を混合して溶融混練し、その 溶融混練物に高分子ポリオール、鎖伸長剤および有機ジイソシァネート化合物を添 加して更に溶融混練する方法。
(5)付加重合系ブロック共重合体 (1)、ブロック共重合体 (II)ほたはブロック共重合 体 (II)含有反応生成物]、高分子ポリオール、鎖伸長剤および有機ジイソシァネート 化合物を混合して溶融混練した後に、そこにパラフィン系オイル (IV)を添加して更に 溶融混練する方法。
(6)高分子ポリオール、鎖伸長剤および有機ジイソシァネートイ匕合物を混練反応させ た熱可塑性ポリウレタンを製造し、次いでそれに付加重合系ブロック共重合体 (I)と ブロック共重合体 (II)ほたはブロック共重合体 (II)含有反応生成物]を添加して溶融 混練し、そこにパラフィン系オイル (IV)を更に添加して溶融混練する方法。
(7)付加重合系ブロック共重合体 (1)、ブロック共重合体 (II)ほたはブロック共重合 体 (II)含有反応生成物]、高分子ポリオール、鎖伸長剤およびパラフィン系オイル (IV )を混合して溶融混練し、次いでそれに有機ジイソシァネートイ匕合物を添加して更に 溶融混練する方法。
(8)高分子ポリオール、鎖伸長剤および有機ジイソシァネートイ匕合物を反応させて予 め調製した熱可塑性ポリウレタン (III)およびブロック共重合体 (II)ほたはブロック共 重合体 (Π)含有反応生成物]と共に、別途調製した付加重合系ブロック共重合体 (I) とパラフィン系オイル (IV)からなる組成物を混合して溶融混練する方法。
また、本発明の熱可塑性重合体組成物 (ii)は、以下の〔3〕の方法により製造するこ とがでさる。 〔3〕 付加重合系ブロック共重合体 (I)、反応混合物(Ila)および反応混合物(lib)の 少なくとも一方、熱可塑性ポリウレタン (III)、並びにパラフィン系オイル (IV)を溶融混 練する方法。
さらに、本発明の熱可塑性重合体組成物 (m)は、以下の〔4〕の方法により製造する ことができる。
〔4〕 付加重合系ブロック共重合体 (I)、反応混合物(Ila)および反応混合物(lib)の 少なくとも一方、高分子ポリオール、鎖伸長剤、有機ジイソシァネートィヒ合物、並びに パラフィン系オイル (IV)を溶融混練する方法。
[0119] なお、上記した〔4〕の方法においては、高分子ポリオール、鎖伸長剤、および有機 ジイソシァネートイ匕合物を反応させて、熱可塑性ポリウレタンを形成させながら、これ に付加重合系ブロック共重合体 (I)、反応混合物(Ila)および反応混合物(lib)の少 なくとも一方、並びにパラフィン系オイル (IV)を加えて溶融混練する方法を含む。ま た、上記〔3〕および〔4〕の方法においては、使用する各成分を一括して溶融混練し てもよいし、最初に一部の成分を溶融混練し次いで残りの成分を加えて溶融混練し てもよい。
[0120] また、ォレフィン系重合体 (V)、他の重合体、無機充填剤、その他の任意の成分は 、付加重合系ブロック共重合体 (I)、ブロック共重合体 (II)或 、は反応混合物(Ila)お よび Zまたは反応混合物(lib)、熱可塑性ポリウレタン (III)並びにパラフィン系オイル (IV)の溶融混合時に添加してもまたは溶融混合後に添加しても!/、ずれでもよ!/、。 前記任意の成分を、付加重合系ブロック共重合体 (1)、ブロック共重合体 (II)或い は反応混合物 (Ila)および Zまたは反応混合物 (lib)、熱可塑性ポリウレタン (III)並 びにパラフィン系オイル (IV)の溶融混合時に添加する場合は、付加重合系ブロック 共重合体 (I)、ブロック共重合体 (II)或いは反応混合物(Ila)および Zまたは反応混 合物(lib)、熱可塑性ポリウレタン (III)並びにパラフィン系オイル (IV)とは別個に溶融 混練装置に供給して混練してもよいし、付加重合系ブロック共重合体 (1)、ブロック共 重合体 (II)或いは反応混合物 (Ila)および Zまたは反応混合物 (lib)、熱可塑性ポリ ウレタン(III)並びにパラフィン系オイル (IV)の少なくとも 1種に含有させた上で溶融 混練装置に供給して混練してもょ ヽ。 [0121] 溶融混練によって製造された本発明の熱可塑性重合体組成物は、溶融状態のま ま成形品や複合成形体の製造に直接使用してもよいし、または一旦ペレット状にして 成形品や複合成形体の製造に使用してもよい。
[0122] 本発明の熱可塑性重合体組成物は、溶融成形、加熱加工が可能であり、押出成 形、射出成形、プレス成形、ブロー成形、カレンダー成形、流延成形などの任意の成 形方法によって種々の成形品や複合成形体を円滑に製造することができる。それに よって、フィルム状、シート状、チューブ状、三次元形状などの任意形状の成形品を 製造することができ、本発明はそれらの成形品を包含する。
本発明の熱可塑性重合体組成物は溶融成形性に優れていて、特に、インフレーシ ヨン成形を含めた溶融押出成形時にダイス部分への押出物の付着を大幅に低減で きるために、厚み斑、割れ、筋などの不良現象のない高品質の成形品を生産性良く 製造することができ、しかも得られる成形品は柔軟性、力学的性能などの各種の特性 に優れている。
また、熱可塑性ポリウレタン (III)として脂肪族ジイソシァネートまたは脂環式ジイソシ ァネートを用いて形成されたものを使用した場合には、上記した特性と併せて耐光性 にも優れる成形品を得ることができる。
[0123] さらに、本発明の熱可塑性重合体組成物は、上記した優れた溶融成形性と併せて 、各種素材に対して高い溶融接着性を有し、各種の他の材料と溶融下に強固に接 着するので、他の材料からなる部材との複合成形体の製造に有効に使用することが できる。
本発明の熱可塑性重合体組成物と複合化できる他の材料としては、本発明の熱可 塑性重合体組成物以外の各種熱可塑性重合体またはその組成物、熱硬化性榭脂、 紙、布帛、金属、木材、セラミックスなどを挙げることができる。
[0124] そのうちでも、本発明の熱可塑性重合体組成物は、極性を有する他の材料との溶 融接着性に優れている。極性を有する他の材料の具体例としては、ポリオキシメチレ ン、エチレン 酢酸ビュル共重合体のケン化物、ポリウレタン、ポリアミド、ポリエステ ル、ポリカーボネート、ポリフエ-レンスルフイド、ポリアタリレート、ポリメタタリレート、ポ リエ一テル、ポリスルフォン、アクリロニトリル Zスチレン共重合体 (AS榭脂)、スチレン Z無水マレイン酸共重合体 (SMA榭脂)、ゴム強化ポリスチレン (HIPS榭脂)、アタリ 口-トリル Zブタジエン Zスチレン共重合体 (ABS榭脂)、メタクリル酸メチル Zスチレ ン共重合体 (MS榭脂)、メタクリル酸メチル Zブタジエン Zスチレン共重合体 (MBS 榭脂)、塩化ビニル系重合体、塩化ビ-リデン系重合体、塩ィヒビュル Z酢酸ビニル共 重合体、ポリフッ化ビ-リデンフエノール榭脂、エポキシ榭脂などの各種の合成樹脂; イソプレンゴム、ブタジエンゴム、ブタジエン スチレンゴム、ブタジエン アタリロニト リルゴム、クロロプレンゴム、ブチルゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、ァ クリロ-トリルゴムなどの各種の合成ゴム;鉄、アルミニウム、銅などの金属ゃステンレ ス、ブリキ、トタンなどの各種合金などを挙げることができる。
本発明の熱可塑性重合体組成物と他の材料との複合成形体の種類や形状は特に 制限されず、代表的なものとしては例えばフィルム状、シート状または板状の積層体 を挙げることができ、それ以外にも例えばチューブ、異形品、その他の任意の立体形 状物などを挙げることができる。
本発明の熱可塑性重合体組成物を使用して得られる積層体では、層の数、各層の 厚さ、形状、構造などには特に制限はなぐ積層体の用途などに応じて適宜調整す ることがでさる。
何ら限定されるものではないが、本発明の熱可塑性重合体組成物を使用して得ら れる積層体としては、例えば、本発明の熱可塑性重合体組成物よりなる 1つの層と他 の材料よりなる 1つの層が積層した 2層構造体、他の材料よりなる 2つの表面層(表裏 面層)の間に本発明の熱可塑性重合体組成物よりなる層が中間層として存在する 3 層構造体、他の材料よりなる 1つの層の表裏面に本発明の熱可塑性重合体組成物よ りなる層が積層した 3層構造体、本発明の熱可塑性重合体組成物よりなる層と他の 1 種または 2種以上の材料よりなる層が交互に 4層以上に積層した多層構造体などを 挙げることができる。
そして、積層体が他の材料からなる層を 2つ以上有する場合は、それぞれの層を構 成する他の材料は同じであってもよいし、互いに異なっていてもよい。また、積層体が 本発明の熱可塑性重合体組成物よりなる層を 2つ以上有する場合は、それぞれの層 を構成する熱可塑性重合体組成物は同じであってもよ 、し、互いに異なって 、てもよ い。
[0126] 本発明の熱可塑性重合体組成物と他の材料との複合成形体の製法は特に制限さ れず、溶融接着により複合成形体を製造する方法であればいずれの方法を採用して 行ってもよい。そのうちでも、本発明の複合成形体の製造に当たっては、例えばイン サート射出成形法、二色射出成形法、コアバック射出成形法、サンドイッチ射出成形 法、インジェクションプレス成形法などの射出成形方法; Tダイラミネート成形法、共押 出成形法、押出被覆法などの押出成形法;ブロー成形法;カレンダー成形法;プレス 成形法、溶融注型法などの溶融を伴う成形法を採用することができる。
前記した成形法のうち、インサート射出成形法による場合は、予め所定の形状およ び寸法に形成しておいた他の材料を金型内にインサートしておき、そこに本発明の 熱可塑性重合体組成物を射出成形して複合成形体を製造する方法が一般に採用さ れる。この場合に、金型内にインサートしておく他の材料の形成方法は特に制限され ない。インサートしておく他の材料が合成樹脂やゴム製品である場合は、例えば、射 出成形、押出成形とその所定の寸法への切断、プレス成形、注型などのいずれの方 法で製造したものであってもよい。また、インサートしておく他の材料が金属材料であ る場合は、例えば、金属製品を製造する従来汎用の方法 (铸造、圧延、切断、工作 加工、研削加工など)によって所定の形状および寸法に予め形成しておけばよい。
[0127] また、上記した二色射出成形法によって複合成形体を製造する場合は、二台以上 の射出装置を用いて、金型内に他の材料を射出成形した後に、金型の回転や移動 などによって金型キヤビティーを交換し、最初の射出成形によって形成した他の材料 からなる成形品と第 2の金型壁との間に形成された空隙部に本発明の熱可塑性重合 体組成物を射出成形して複合成形体を製造する方法が一般に採用される。上記した コアバック射出成形法による場合は、 1台の射出成形機と 1個の金型を用いて、金型 内に他の材料を最初に射出成形して成形品を形成した後、その金型のキヤビティー を拡大させ、そこに本発明の熱可塑性重合体組成物を射出成形して複合成形体を 製造する方法が一般に採用される。
また、前記した射出成形方法において、材料の射出順序を逆にして、金型に最初 に本発明の熱可塑性重合体組成物を射出して第 1の成形品をつくり、次いで他の材 料 (熱可塑性榭脂など)を射出成形して複合成形体を製造してもよ ヽ。
[0128] 上記した押出成形によって本発明の熱可塑性重合体組成物の層と他の熱可塑性 材料の層を有する複合成形体を製造する場合は、内側と外側、上側と下側、左側と 右側とに 2層以上に分割された金型 (押出ダイ部など)を通して、本発明の熱可塑性 重合体組成物と他の材料 (熱可塑性榭脂等)を 2層以上に同時に溶融押出して接合 させる方法などが採用できる。また、他の材料が熱可塑性でない場合は、他の材料 の上や周囲に、本発明の熱可塑性重合体組成物を溶融下に押出被覆することによ つて複合成形体を製造することができる。
さらに、例えば、カレンダー成形を行う場合は、溶融可塑ィ匕状態にある力または固 形状態にある他の材料上に、本発明の熱可塑性重合体組成物を溶融下にカレンダ 一加工して被覆積層させることにより目的とする複合成形体を製造することができる。 また、プレス成形による場合は、他の材料の配置下に本発明の熱可塑性重合体組成 物を用いて溶融プレスを行うことによって複合成形体を製造することができる。
[0129] 本発明の複合成形体は、各種工業製品や部品として使用することができる。その具 体例としては、インストルメントパネル、センターパネル、センターコンソールボックス、 ドアトリム、ピラー、アシストグリップなどの自動車や車両用の各種内装部材;モール 等の自動車外装部品;電動工具グリップ、冷蔵庫戸当たり、カメラグリップ、掃除機の バンパーやホース、リモコンスィッチゃッマミ、 OA機器の各種キートップなどの家電 部品;水中メガネ、水中カメラカバーなどの水中使用製品;各種カバー部品;密閉性 、防水性、防音性、防振性を目的とする各種パッキン付き工業部品;ラック &ピ-オン ブーツ、サスペンションブーツ、等速ジョイントブーツなどの自動車機能部品;カール コード電線被覆、ベルト、ホース、チューブ、消音ギアなどの電気'電子部品;スポー ッ用品;合成皮革;ドア、窓枠材などの建築用資材;各種継手;バルブ部品;医療用 ギプス等々の各種製品を挙げることができる。そして、本発明の熱可塑性重合体組 成物からなる層が複合成形体の少なくとも 1つの表面に現れている製品においては、 該熱可塑性重合体組成物が弾力性で且つ柔軟性を有することにより、接触したとき の柔らかい良好な感触を示し、しカゝも衝撃吸収性 (クッション性)を有し、耐衝撃性に も優れているので、安全面でも優れたものとなる。 実施例
[0130] 以下に本発明を実施例および比較例などにより具体的に説明する力 本発明は以 下の例により何ら限定されるものではない。
なお、以下の例において、熱可塑性重合体組成物の溶融粘度、押出成形性、硬度 、引張破断強度、引張破断伸度および積層体における接着強度は、以下の方法に より測定または評価した。
[0131] mm& :
80°Cで 1時間減圧下(1333. 2Pa以下)に乾燥した熱可塑性重合体組成物の溶 融粘度を、高化式フローテスター(島津製作所製)を使用して、荷重 50kgf、ノズル寸 法 =直径 lmm X長さ 10mm、温度 200°Cの条件下で測定した。
[0132] 抻出成形件:
熱可塑性重合体組成物を、シート型ダイ(幅 = 25mm、厚さ =0. 3mm)を取り付け た押出成形機(25mm φ、シリンダー温度 = 200〜215°C、ダイス温度 = 205°C)か ら、約 3kgZ時間の吐出速度で連続的に吐き出している最中に、ダイス部に付着し た付着物 (以下「目脂」という)を 20分毎に 3回採取し、その平均質量を測定し、以下 の基準で、押出成形性の指標とした。
〇:採取した目脂の平均質量が 5mg以下である。
X:採取した目脂の平均質量が 5mgを超える。
[0133] MS.:
表面を鏡面仕上げした金型を用いて射出成形 (シリンダー温度 =180〜205°C、金 型温度 =35°C)して、熱可塑性重合体組成物よりなる円板状の成形品(直径 =120m m、厚さ =2mm)を製造した。得られた成形品を 23°Cで 7日間放置した後、成形品を 2枚重ね合わせたものを用いて、 JIS K— 6301に準じて、成形品の JIS A硬度を測 し 7こ。
[0134] 引張破断強度および引張破断伸度:
上記の硬度の評価におけるのと同じ操作を行って円板状の成形品(直径 =120mm 、厚さ =2mm)を製造した。得られた成形品を 25°Cで 7日間放置した後、 JIS 3号に 規定されるダンベル型に打ち抜いて試験片を作製し、 JIS K— 7311に準じて、島津 製作所製「オートグラフ測定装置 IS - 500DJを使用して、引張破断強度および引張 破断伸度を測定した。
[0135] 穑層構; ί告体における接着強度:
金型内に、合成樹脂板(寸法:縦 X横 X厚さ = 200mm X 150mm X lmm)を配 置し、射出成形機(日精榭脂工業株式会社製; 80トン射出成形機)を使用して、シリ ンダー温度 220°Cおよび金型温度 40°Cの条件下に熱可塑性重合体組成物を射出 し、榭脂板の一方の表面に熱可塑性重合体組成物の層が積層した積層体 (寸法:縦 X横 X厚み = 200mm X 150mm X 2mm)を製造した。
得られた積層体から剥離強度測定用の試験片 (寸法:縦 X横 X厚み = 80mm X 2 5mm X 2mm)を切り出し、それを用いて JIS K— 6854に記載の「180度剥離試験」 に準じて剥離強度を測定した。
[0136] 以下の参考例、実施例および比較例で使用した化合物の略号および Zまたは内 容、並びに以下の実施例および比較例において積層体を製造するのに使用した合 成榭脂板を構成する合成樹脂の略号と内容は次のとおりである。
[0137] 《付加重合系ブロック共重合体 (1)》
SEBS :
ポリスチレンブロック ポリブタジエンブロック ポリスチレンブロック型の構造を有 するトリブロック共重合体の水素添加物〔(株)クラレ製、「セプトン 8006」(商品名)、ス チレンに由来する構造単位の含有量 = 33質量%〕。
SEEPS- 1 :
ポリスチレンブロック ポリ(イソプレン Zブタジエン)ブロック ポリスチレンブロック 型の構造を有するトリブロック共重合体の水素添加物〔 (株)クラレ製、「セプトン 4055 」(商品名)、スチレンに由来する構造単位の含有量 = 30質量%〕。
[0138] 《付加重合系ブロック共重合体 (ィー 1)》
F— SEEPS :
ポリスチレンブロック ポリ(イソプレン zブタジエン)ブロック ポリスチレンブロック 型の構造を有し、分子の片末端に水酸基を有するトリブロック共重合体の水素添カロ 物。 〔数平均分子量 = 50, 000、スチレン含有量 = 30質量0 /0、ポリ(イソプレン/ブタ ジェン)ブロックにおける水素添カ卩率 = 98%、イソプレンとブタジエンの比率 = 50Z 50 (モル比)、 1分子当たりの平均水酸基数 =0. 9個、ポリ(イソプレン Ζブタジエン) ブロックにおける 1, 2 結合および 3, 4 結合量の合計量 =8モル%;特許文献 11 の参考例 1に記載された方法に準じ、スチレン、イソプレンおよびブタジエンを原料と して製造した。〕
なお、この F— SEEPSは、分子の片末端に水酸基を有するブロック共重合体であ る SEEPS— OH [ポリスチレンブロック ポリ(イソプレン Zブタジエン)ブロック ポリ スチレンブロック型の構造を有するトリブロック共重合体の水素添加物;数平均分子 量 = 50, 000、スチレン含有量 = 30質量0 /0、ポリ(イソプレン Zブタジエン)ブロック における水素添カ卩率 = 98%、イソプレンとブタジエンの比率 =50Z50 (モル比)、ポ リ(イソプレン Ζブタジエン)ブロックにおける 1, 2 結合および 3, 4 結合量の合計 量 = 8モル%]と、分子内に水酸基を有しな 、ブロック共重合体である SEEPS— 2 [ ポリスチレンブロック ポリ(イソプレン Zブタジエン)ブロック ポリスチレンブロック型 の構造を有するトリブロック共重合体の水素添加物;数平均分子量 = 50, 000、スチ レン含有量 = 30質量0 /0、ポリ(イソプレン Zブタジエン)ブロックにおける水素添加率 = 98%、イソプレンとブタジエンの比率 =50Z50 (モル比)、ポリ(イソプレン Ζブタ ジェン)ブロックにおける 1, 2 結合および 3, 4 結合量の合計量 =8モル%]を含 有する [SEEPS - OH/SEEPS - 2 = 9/1 (モル比) ]。
F-HVSIS :
ポリスチレンブロック ポリイソプレンブロック ポリスチレンブロック型の構造を有し 、分子の片末端に水酸基を有するトリブロック共重合体の水素添加物。
(数平均分子量 =63, 000、スチレン含有量 = 30質量0 /0、ポリイソプレンブロックに おける水素添加率 = 90%、 1分子当たりの平均水酸基数 =0. 8個、ポリイソプレンブ ロックにおける 1, 4 結合量 =45モル0 /0、 1, 2 結合および 3, 4 結合量の合計 量 = 55モル%;特許文献 11の参考例 3に記載された方法に準じ、スチレンおよびィ ソプレンを原料として製造したもの。)
なお、この F— HVSISは、分子の片末端に水酸基を有するブロック共重合体であ る HVSIS— OH (ポリスチレンブロック ポリイソプレンブロック ポリスチレンブロック 型の構造を有するトリブロック共重合体の水素添加物;数平均分子量 =63, 000、ス チレン含有量 = 30質量%、ポリイソプレンブロックにおける水素添加率 = 90%、ポリ イソプレンブロックにおける 1, 2 結合および 3, 4 結合量の合計量 = 55モル0 /0)と 、分子内に水酸基を有しないブロック共重合体である HVSIS〔ポリスチレンブロック ポリイソプレンブロック ポリスチレンブロック型の構造を有するトリブロック共重合 体の水素添加物;数平均分子量 =63, 000、スチレン含有量 = 30質量%、ポリイソ プレンブロックにおける水素添カ卩率 = 90%、ポリイソプレンブロックにおける 1, 2 結 合および 3, 4—結合量の合計量 = 55モル0 /0)を含有する [HVSIS— OH/HVSIS = 8Z2 (モル比)]。
[0140] SEPS :
ポリスチレンブロック ポリイソプレンブロック ポリスチレンブロック型の構造を有し 、分子内に水酸基を有しないトリブロック共重合体の水素添加物 [ (株)クラレ製、「セ プトン 2002」(商品名)、スチレンに由来する構造単位の含有量 = 30質量0 /0、 MFR = 708 10分、】13 A硬度 = 80]。
[0141] 《ポリカーボネート系重合体 (ロー 1)》
PC :
ポリカーボネート [帝人化成株式会社製、「パンライト L— 1225」(商品名)、粘度平 均分子量 = 22, 500]。
[0142] 《熱可塑性ポリウレタン (111)》
TPU- 1 :
ポリエステル系熱可塑性ポリウレタン [ (株)クラレ製、「クラミロン U8165」(商品名)、 ポリ(3—メチル 1, 5 ペンタンジオールアジペート)をソフトセグメントとし、 1, 4— ブタンジオールと 4, 4'—ジフエ-ルメタンジイソシァネート(MDI)力もなるセグメント をノヽードセグメントとするポリエステル系熱可塑性ポリウレタン;対数粘度 (DMF溶媒 中、濃度 0. 5gZdl、 30°Cで測定) = 1. 09dlZg、 JIS A硬度 = 65]。
[0143] 《高分子ポリオール》
POH- 1 :
3—メチルー 1, 5 ペンタンジオールとアジピン酸を反応させて製造した、 1分子当 たりの水酸基数が 2. 00であるポリエステルジオール (数平均分子量 = 3, 500)。 POH- 2 :
3—メチルー 1, 5 ペンタンジオール、トリメチロールプロパンおよびアジピン酸を 反応させて製造した、 1分子当たりの水酸基数が 3. 00であるポリエステルポリオール (数平均分子量 = 2, 000)。
POH- 3 :
1分子当たりの水酸基数が 2. 00であるポリテトラメチレングリコール (数平均分子量
= 2, 000)。
[0144] 《鎖伸長剤》
BP : 1, 4 ブタンジオール。
[0145] 《有機ジイソシァネートイ匕合物》
MDI : 4, 4'ージフエ-ルメタンジイソシァネート。
[0146] 《パラフィン系オイル (IV)》
PL : ノ《ラフィン系オイル〔出光興産 (株)製、「ダイアナプロセス PW— 380」(商品 名)、動粘度 (40°C) : 382cSt、流動点:— 15°C、引火点: 300°C〕。
[0147] 《積層構造体の製造に使用した合成樹脂板を構成する合成樹脂 (他の素材)》
ABS : アクリロニトリル—ブタジエン—スチレン共重合体榭脂(日本合成ゴム (株)製
、 rjSR ABS12」(商品名))。
[0148] 《参考例 1》
〔ブロック共重合体(Π)を含有する組成物(PC— SEEPS Compound El)の製造〕 (1) ブロック共重合体(F— SEEPS) 600質量部、ポリカーボネート系重合体(PC) 400質量部および触媒 (ジブチルスズォキシド) 0. 4質量部を予備混合し、得られた 混合物を同軸方向に回転する二軸スクリュー型押出機〔30πιπι φ、 LZD = 36 ;ブラ スチック工業研究所製、「BT—30」(商品名)〕を用いて、シリンダー温度 275°Cおよ びスクリュー回転数 150rpmの条件下に溶融混練して、得られた反応混合物 (溶融 物)をストランド状で水中に連続的に押し出し、次いでペレタイザ一で切断し、ペレット を得た。得られたペレットを 80°Cで 12時間除湿乾燥することによりブロック共重合体( Π)を含有する組成物(PC— SEEPS Compound El)を得た。この組成物(PC— S EEPS Compound El)の溶融粘度は 890Pa' sであった。
(2) 上記(1)で得られた組成物(PC— SEEPS Compound El)を用いて、射出成 形(シリンダー温度 =200〜220°C、金型温度 =30°C)することによって、ダンベル 1号 型 (厚さ = 3mm)の成形品を製造した。成形品の JIS A硬度は 80であり、 JIS K— 7 113に準じて測定 (試験速度 = 5mmZ分、チャック間距離 = 11 Omm)した引張破 断強度は 17MPaであつた。
[0149] 《参考例 2》
〔ブロック共重合体(Π)を含有する組成物(PC— SEEPS Compound E2)の製造〕
(1) ブロック共重合体 (F— SEEPS) 350質量部、ポリカーボネート系重合体(PC) 650質量部および触媒 (ジブチルスズォキシド) 0. 4質量部を予備混合し、得られた 混合物を同軸方向に回転する二軸スクリュー型押出機〔30πιπι φ、 LZD = 36 ;ブラ スチック工業研究所製、「BT—30」(商品名)〕を用いて、シリンダー温度 275°Cおよ びスクリュー回転数 150rpmの条件下に溶融混練して、得られた反応混合物 (溶融 物)をストランド状で水中に連続的に押し出し、次いでペレタイザ一で切断し、ペレット を得た。得られたペレットを 80°Cで 12時間除湿乾燥することによりブロック共重合体( Π)を含有する組成物(PC— SEEPS Compound E2)を得た。この組成物(PC— S EEPS Compound E2)の溶融粘度は、 630Pa' sであった。
(2) 上記(1)で得られた組成物(PC— SEEPS Compound E2)を用いて、射出成 形(シリンダー温度 =200〜220°C、金型温度 =30°C)することによって、ダンベル 1号 型 (厚さ =3mm)の成形品を製造した。成形品の JIS A硬度は 97であり、 JIS K—7 113に準じて測定 (試験速度 = 5mmZ分、チャック間距離 = 110mm)した引張破 断強度は 33MPaであつた。
[0150] 《参考例 3》
〔ブロック共重合体(Π)を含有する組成物(PC— HVSIS Compound E3)の製造〕 (1) ブロック共重合体 (F— HVSIS) 500質量部、ポリカーボネート系重合体(PC) 500質量部および触媒 (ジブチルスズォキシド) 0. 4質量部を予備混合し、得られた 混合物を同軸方向に回転する二軸スクリュー型押出機〔30πιπι φ、 LZD = 36 ;ブラ スチック工業研究所製、「BT—30」(商品名)〕を用いて、シリンダー温度 275°Cおよ びスクリュー回転数 150rpmの条件下に溶融混練して、得られた反応混合物 (溶融 物)をストランド状で水中に連続的に押し出し、次いでペレタイザ一で切断し、ペレット を得た。得られたペレットを 80°Cで 12時間除湿乾燥することによりブロック共重合体( Π)を含有する組成物(PC—HVSIS Compound E3)を得た。この組成物(PC— H VSIS Compound E3)の溶融粘度は、 610Pa' sであった。
(2) 上記(1)で得られた組成物(PC— HVSIS Compound E3)を用いて、射出 成形 (シリンダー温度 = 200〜220°C、金型温度 = 30°C)することによって、ダンべ ル 1号型 (厚さ = 3mm)の成形品を製造した。成形品の JIS A硬度は 80であり、 JIS K— 7113に準じて測定 (試験速度 = 5mmZ分、チャック間距離 = 110mm)した 引張破断強度は 14MPaであつた。
[0151] 《参考例 4》
〔ブロック共重合体(II)を含有しな!、組成物(PCZSEEPS Compound)の製造〕
(1) ブロック共重合体(SEPS) 600質量部およびポリカーボネート系重合体(PC) 4 00質量部を予備混合し、得られた混合物を同軸方向に回転する二軸スクリュー型押 出機〔30mm φ、 L/D = 36;プラスチック工業研究所製、「BT— 30」(商品名)〕を 用いて、シリンダー温度 275°Cおよびスクリュー回転数 150rpmの条件下に溶融混 練して、得られた反応混合物 (溶融物)をストランド状で水中に連続的に押し出し、次 いでペレタイザ一で切断し、ペレットを得た。得られたペレットを 80°Cで 12時間除湿 乾燥することにより組成物(PCZSEEPS Compound)を得た。この組成物(PCZS EEPS Compound)の溶融粘度は、 54Pa' sであった。
(2) 上記(1)で得られた組成物(PCZSEEPS Compound)を用いて、射出成形( シリンダー温度 = 200〜220°C、金型温度 = 30°C)することによって、ダンベル 1号 型 (厚さ = 3mm)の成形品を製造した。成形品の JIS A硬度は 89であり、 JIS K— 7 113に準じて測定 (試験速度 = 5mmZ分、チャック間距離 = 110mm)した引張破 断強度は 8MPaであった。
[0152] 《実施例 1》
(1) ウレタン化反応触媒 (テトライソプロピルチタネート)を lOppm含有する高分子 ポリオール [POH - 1と POH - 3の混合物、 POH - 1/POH— 3 = 30/70 (モル 比)、 1分子当たりの平均水酸基数 = 2. 00]、鎖伸長剤 (BD)および有機ジイソシァ ネート化合物(MDI)を、高分子ポリオール: BD : MDIのモル比 = 1. 0 : 1. 1 : 2. 1 ( 窒素原子含有率は 1. 9質量%)で、かつこれらの合計供給量 140gZ分 [熱可塑性 重合体組成物中の熱可塑性ポリウレタン (III)の含有量が 70質量%になる量]で、同 軸方向に回転する二軸スクリュー型押出機(30mm φ、 LZD= 36、加熱ゾーンは前 部、中央部、後部の 3つの帯域に分けた)の加熱ゾーンの前部に連続供給して、 260 °Cの連続溶融重合でポリウレタン形成反応を実施した。
(2) 上記(1)と同時に、ブロック共重合体 (SEBS)およびパラフィン系オイル (PL) の混合物 [SEBS: PL= 1 : 1 (質量比) ]を 40gZ分の供給量 [熱可塑性重合体組成 物における SEBSの含有量が 10質量%、 PLの含有量が 10質量%になる量]で、更 に参考例 1で得られたブロック共重合体 (II)を有する組成物(PC— SEEPS Compo und El)を 20gZ分の供給量 (熱可塑性重合体組成物における PC— SEEPS Co mpound Elの含有量が 10質量%となる量)で、上記(1)の二軸スクリュー型押出機 の加熱ゾーンの中央部に接続された二軸スクリュー型押出機(30mm φ、 L/D = 3 6、 190°C加温)に連続供給して溶融混練し、得られた溶融物をストランド状で水中に 連続的に押し出し、次いでペレタイザ一で切断し、このペレットを 70°Cで 4時間除湿 乾燥することにより熱可塑性重合体組成物 1を得た。
(3) 上記(2)で得られた熱可塑性重合体組成物 1につ ヽて、上記した方法で溶融 粘度、硬度、引張破断強度および引張破断伸度を測定したところ、下記の表 1に示 すとおりであった。
また、熱可塑性重合体組成物 1および ABSを用いて、上記した方法で積層構造体 を製造し、得られた積層構造体の接着強度を上記した方法で測定したところ、下記 の表 1に示すとおりであった。
《実施例 2》
(1) ウレタン化反応触媒 (テトライソプロピルチタネート)を 15ppm含有する高分子 ポリオール [POH - 2および POH - 3の混合物; POH - 2/POH— 3 = lZ99 (モ ル比); 1分子当たりの平均水酸基数 = 2. 01]、鎖伸長剤 (BD)および有機ジィソシ ァネート化合物(MDI)を、高分子ポリオール: BD: MDIのモル比 = 1. 0 : 1. 03 : 2. 03 (窒素原子含有率は 2. 2質量%)で、かつこれらの合計供給量 130gZ分 [熱可 塑性重合体組成物における熱可塑性ポリウレタン (III)の含有量が 65質量%となる量 )で、同軸方向に回転する二軸スクリュー型押出機(30mm φ、 LZD= 36、加熱ゾ ーンは前部、中央部、後部の 3つの帯域に分けた)に連続供給して、 260°Cの連続 溶融重合でポリウレタン形成反応を実施した。
(2) 上記(1)と同時に、ブロック共重合体 (SEEPS— 1)およびパラフィン系オイル( PL)の混合物 [SEEPS— 1: PL = 1: 1 (質量比) ]を 50gZ分の供給量 (熱可塑性重 合体組成物における SEEPS— 1の含有量が 12. 5質量%、 PLの含有量が 12. 5質 量%となる量)で、更に参考例 2で得られたブロック共重合体 (II)を有する組成物(P C SEEPS Compound E2)を 20gZ分の供給量(熱可塑性重合体組成物中の P C - SEEPS Compound E2の含有量が 10質量%となる量)で、上記(1)のニ軸ス クリュー型押出機の加熱ゾーンの中央部に接続された二軸スクリュー型押出機(30m ιη φ、 LZD = 36、 190°C加温)に連続供給した。次いで、上記の二軸スクリュー型 押出機の後部にウレタン化反応触媒失活剤 (ジステアリルホスフェート) 0. 05質量% (供給量 =0. 125gZ分)を添加して、得られた溶融物をストランド状で水中に連続 的に押し出し、次いでペレタイザ一で切断し、このペレットを 70°Cで 4時間除湿乾燥 することにより熱可塑性重合体組成物 2を得た。
(3) 上記(2)で得られた熱可塑性重合体組成物 2について、上記した方法で溶融 粘度、硬度、引張破断強度および引張破断伸度を測定したところ、下記の表 1に示 すとおりであった。
また、熱可塑性重合体組成物 2および ABSを用いて、上記した方法で積層構造体 を製造し、得られた積層構造体の接着強度を上記した方法で測定したところ、下記 の表 1に示すとおりであった。
《実施例 3》
(1) ウレタン化反応触媒 (テトライソプロピルチタネート)を lOppm含有する高分子 ポリォール[?011—1と13011— 2の混合物;?011—17?011— 2 = 98. 5Z1. 5 (モ ル比); 1分子当たりの平均水酸基数 = 2. 015]、鎖伸長剤 (BD)および有機ジイソ シァネート化合物(MDI)を、高分子ポリオール: BD : MDIのモル比 = 1. 0 : 2. 4 : 3 . 4 (窒素原子含有率 =2. 1質量%)で、かつこれらの合計供給量 120gZ分 (熱可 塑性重合体組成物中の熱可塑性ポリウレタン (III)が 60質量%になる量)で、同軸方 向に回転する二軸スクリュー型押出機(30mm φ、 LZD= 36、加熱ゾーンは前部、 中央部、後部の 3つの帯域に分けた)に連続供給して、 260°Cの連続溶融重合でポ リウレタン形成反応を実施した。
(2) 上記(1)と同時に、ブロック共重合体 (SEEPS— 1)およびパラフィン系オイル( PL)の混合物 [SEEPS— 1: PL = 1: 1 (質量比) ]を 60gZ分の供給量 (熱可塑性重 合体組成物中の SEEPS— 1の含有量が 15質量%、 PLの含有量が 15質量%にな る量)で、また参考例 3で得られたブロック共重合体 (II)を有する組成物(PC— HVSI S Compound E3)を 20gZ分の供給量(熱可塑性重合体組成物中の PC— HVSI S compound E3の含有量が 10質量0 /0となる量)で、上記(1)の二軸スクリュー型押 出機の加熱ゾーンの中央部に接続された二軸スクリュー型押出機(30mm φ、 L/D = 36、 220°C加温)に連続供給した。次いで、上記の二軸スクリュー型押出機の後 部にウレタン化反応触媒失活剤(ジステアリルホスフェート) 0. 03質量% (供給量 =0 . 075gZ分)を添加して、得られた溶融物をストランド状で水中に連続的に押し出し
、次いでペレタイザ一で切断し、このペレットを 70°Cで 4時間除湿乾燥することにより 熱可塑性重合体組成物 3を得た。
(3) 上記(3)で得られた熱可塑性重合体組成物 3につ ゝて、上記した方法で溶融 粘度、硬度、引張破断強度および引張破断伸度を測定したところ、下記の表 1に示 すとおりであった。
また、熱可塑性重合体組成物 3および ABSを用いて、上記した方法で積層構造体 を製造し、得られた積層構造体の接着強度を上記した方法で測定したところ、下記 の表 1に示すとおりであった。
《比較例 1》
(1) ウレタン化反応触媒 (テトライソプロピルチタネート)を lOppm含有する高分子 ポリオール [POH - 1と POH - 3の混合物; POH - 1 /POH— 3 = 30/70 (モル 比)]、鎖伸長剤 (BD)および有機ジイソシァネートイ匕合物 (MDI)を、高分子ポリオ一 ル: BD : MDIのモル比 = 1. 0 : 1. 1 : 2. 1 (窒素原子含有率は 1. 9質量%)で、かつ これらの合計供給量 125gZ分 [熱可塑性重合体組成物中の熱可塑性ポリウレタン (I II)の含有量が 50質量%となる量)で、同軸方向に回転する二軸スクリュー型押出機( 30mm φ、 LZD = 36、加熱ゾーンは前部、中央部、後部の 3つの帯域に分けた)の 加熱ゾーンの前部に連続供給して、 260°Cの連続溶融重合でポリウレタン形成反応 を実施した。
(2) 上記(1)と同時に、ブロック共重合体 (SEBS)およびパラフィン系オイル (PL) の混合物 [SEBS: PL= 1 : 1 (質量比) ]を 125gZ分の供給量 (熱可塑性重合体組 成物中の SEBSの含有量が 25質量%、 PLの含有量が 25質量%となる量)で、上記 (1)の二軸スクリュー型押出機の加熱ゾーンの中央部に接続された二軸スクリュー型 押出機(30mm φ、 LZD = 36、 220°C加温)に連続供給して、得られた溶融物をス トランド状で水中に連続的に押し出し、次いでペレタイザ一で切断し、このペレットを 7 0°Cで 4時間除湿乾燥することにより熱可塑性重合体組成物 C—1を得た。
(3) 上記(2)で得られた熱可塑性重合体組成物 C 1につ 、て、上記した方法で 溶融粘度、硬度、引張破断強度および引張破断伸度を測定したところ、下記の表 1 に示すとおりであった。
さらに、熱可塑性重合体組成物 C 1および ABSを用いて、上記した方法で積層 構造体を製造し、得られた積層構造体の接着強度を上記した方法で測定したところ 、下記の表 1に示すとおりであった。
《比較例 2》
(1) ブロック共重合体(SEBS)とパラフィン系オイル(PL)の混合物 [SEBS: PL = 1 : 1 (質量比) ]を 60gZ分の供給量 (熱可塑性重合体組成物中の SEBSの含有量が 15質量%、 PLの含有量が 15質量%となる量)で、熱可塑性ポリウレタン (TPU—1) を 120gZ分の供給量 [熱可塑性重合体組成物中の熱可塑性ポリウレタン (ΠΙ)の含 有量が 60質量%になる量]で、更に参考例 4で得られたブロック共重合体組成物(P U/SEEPS Compound)を 20gZ分の供給量(熱可塑性重合体組成物中の PUZ SEEPS Compoundの含有量が 10質量%となる量)で、同軸方向に回転する二軸 スクリュー型押出機(30mm φ、 L/D = 36)に供給して 220°Cで溶融混練し、得ら れた溶融物をストランド状で水中に連続的に押し出し、次いでペレタイザ一で切断し 、このペレットを 70°Cで 4時間除湿乾燥することにより熱可塑性重合体組成物 C— 2 を得た。
(2) 上記(1)で得られた熱可塑性重合体組成物 C 2につ 、て、上記した方法で 溶融粘度、硬度、引張破断強度および引張破断伸度を測定したところ、下記の表 1 に示すとおりであった。
さらに、熱可塑性重合体組成物 C 2および ABSを用いて、上記した方法で積層 構造体を製造し、得られた積層構造体の接着強度を上記した方法で測定したところ 、下記の表 1に示すとおりであった。
[表 1]
実施例 1 実施例 2 実施例 3 比較例 1 比較例 2
[製造原料]
高分子 t°リオ-ル 〔モル比〕 1)
P0H-1 0.300 0.985 0.300
P0H-2 0.010 0.015
P0H-3 0.700 0.990 0.700
鎖伸長剤 (BD) ( 比〕 《 1.1 2.4 1.1
有機シ'イリシァネ -ト化合物 (MDI) ( 比〕 n 2.1 3.4 2.1
ま素原子含有量 〔質量%) 1.9 2.2 2.1 1.9
熱可塑性ホ'リウレ夕ン [燹量%〕 * 70 65 60 50
プ Dフク共重合体組成物 〔質量%〕 «
PC-SEEPS Compound El 10
PC-SEEPS Compound E2 10
PC-HVSIS Compound E3 10
PC/SEEPS Compound 10 付加重合系 7' D 共重合体 〔質量%〕 2)
SEBS 10 25 15
SEEPS- 1 12.5 15
熱可塑性ホ' ijウレタン (TPU-1) 〔H量 ¾〕 a 60 ハ'ラフ 系; 〔質量%〕 » 10 12.5 15 25 15
[熱可塑性重合体組成物]
溶 fit粘度 [ホ'イス'〕 10,200 8,600 3,650 6,780 1,500 押出成形性 〇 o 〇 X X
[熱可塑性重合体組成物の成形品]
硬度 〔JIS A〕 55 63 60 46 55 引張破断 ¾度 CMPa) 19 23 11 3 4 引張破断伸度 〔%〕 860 675 930 610 720
[積履体における接着強度]
A B S Ckgf/25mm] 5.0 4,4 5.3 1.4 2.2
1 ) 高分子ポリオ一ル, 鎖伸長剤、 有機ジイソシァネート化合物のモル比,
2 ) 高分子ポリオール、 鎖伸長劑, 有機ジイソシァネート化合物または熱可塑性ポリウレタン (ΙΠ)、 ブロック共重合体 (II) , 付加重合系プロック共重合体 (I ) 及びバラフイン系オイル (IV) の 合針質量に対する割合. 上記の表 1にみるように、 芳香族ビニルイ匕合物系重合体ブロック (a— 1)と共役ジ ェン系重合体ブロック (b— 1)を有するブロック共重合体の水素添加物からなる付カロ 重合系ブロック共重合体 (I)、芳香族ビニル化合物系重合体ブロック (a— 2)と共役ジ ェン系重合体ブロック (b— 2)を有するブロック共重合体の水素添加物からなる付カロ 重合系ブロック (ィ)とポリカーボネート系重合体ブロック(口)を有するブロック共重合 体 (Π)、熱可塑性ポリウレタン (III)およびパラフィン系オイル (IV)を含有する実施例 1 〜3の本発明の熱可塑性重合体組成物は、溶融押出成形したときに、ダイス部への 押出物の付着(目脂量)が極めて少なく押出成形性に優れている。し力も、実施例 1 〜3の熱可塑性重合体組成物から得られた成形品は、引張破断強度、引張破断伸 度などの力学的特性にも優れ、更に ABS榭脂板と強固に溶融接着している。
それに対して、前記付加重合系ブロック共重合体 (1)、熱可塑性ポリウレタン (III)お よびパラフィン系オイル (IV)を含有し、前記ブロック共重合体 (Π)を含有しな!、比較 例 1の熱可塑性重合体組成物、並びに前記付加重合系ブロック共重合体 (1)、熱可 塑性ポリウレタン (111)、パラフィン系オイル (IV)およびポリカーボネートを含有し、前 記ブロック共重合体 (Π)を含有しな!ヽ比較例 2の熱可塑性重合体組成物は、 V、ずれ も、溶融押出成形したときにダイス部への押出物の付着(目脂量)が多ぐ押出成形 に劣っている。しカゝも、比較例 1および 2の熱可塑性重合体組成物から得られた成形 品は、引張破断強度が低くて力学的特性にも劣り、その上 ABS榭脂板との溶融接着 性にも劣っている。
産業上の利用可能性
本発明の熱可塑性重合体組成物は、溶融成形性に優れており、特にインフレーシ ヨン成形を含めた溶融押出成形を行なう際に押出成形機のダイス部への押出物の付 着(目脂量)が極めて少なぐ厚み斑、筋、割れなどの不良現象を生ずることなぐ高 品質の成形品を高い生産性で製造することができ、しかも得られる成形品は柔軟性、 力学的性能、耐摩耗性、耐光性などの特性に優れ、更には他の材料との溶融接着 性にも優れているので、それらの特性を活力ゝして、各種の製品、例えば、電気製品、 合成皮革、 自動車関連機器などに用いられるフィルム状物、シート状物、ホース状物 、チューブ状物などの製造に有効に使用することができる。

Claims

請求の範囲
[1] 芳香族ビニル化合物系重合体ブロック (a— 1)と共役ジェン系重合体ブロック (b—
1)を有するブロック共重合体またはその水素添加物力 なる付加重合系ブロック共 重合体 (I)、芳香族ビニル化合物系重合体ブロック (a— 2)と共役ジェン系重合体ブ ロック (b— 2)を有するブロック共重合体またはその水素添加物力もなる付加重合系 ブロック (ィ)とポリカーボネート系重合体ブロック(口)を有するブロック共重合体 (II)、 熱可塑性ポリウレタン (III)、およびパラフィン系オイル (IV)を含有することを特徴とす る熱可塑性重合体組成物。
[2] ブロック共重合体 (Π)力 以下のブロック共重合体 (ΠΑ)およびブロック共重合体 (II B)の少なくとも 1種である請求項 1に記載の熱可塑性重合体組成物。
•ブロック 本 (ΠΑ) :
芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b—
2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)と 、ポリカーボネート系重合体 (ロー 1)とを溶融混練下に反応させて調製したブロック 共重合体。
,ブロック共重合体(IIB):
芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)、 2つの水酸基を有する化合物、およびカーボネート前駆体を溶融混練下に反応させ て調製したブロック共重合体。
[3] ブロック共重合体 (ΠΑ)およびブロック共重合体 (ΠΒ)が、触媒の存在下に溶融混 練下で反応させて調製したものである請求項 2に記載の熱可塑性重合体組成物。
[4] 付加重合系ブロック共重合体 (I) 100質量部当たり、ブロック共重合体 (II)を 5〜20 0質量部、熱可塑性ポリウレタン(III)を 100〜800質量部およびパラフィン系オイル(I V)を 10〜200質量部の割合で含有する請求項 1〜3のいずれか 1項に記載の熱可 塑性重合体組成物。
[5] 芳香族ビニル化合物系重合体ブロック (a— 1)と共役ジェン系重合体ブロック (b—
1)を有するブロック共重合体またはその水素添加物力 なる付加重合系ブロック共 重合体 (1)、以下の反応混合物 (Ila)および反応混合物 (lib)の少なくとも一方、熱可 塑性ポリウレタン (III)、並びにパラフィン系オイル (IV)を溶融混練することにより得ら れる熱可塑性重合体組成物。
' 昆 馳 a) :
芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b—
2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)と 、ポリカーボネート系重合体 (ロー 1)とを溶融混練下に反応させて得られる反応混合 物。 芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)、 2つの水酸基を有する化合物、およびカーボネート前駆体を溶融混練下に反応させ て得られる反応混合物。
[6] 芳香族ビニル化合物系重合体ブロック (a— 1)と共役ジェン系重合体ブロック (b—
1)を有するブロック共重合体またはその水素添加物力 なる付加重合系ブロック共 重合体 (1)、以下の反応混合物 (Ila)および反応混合物 (lib)の少なくとも一方、高分 子ポリオール、鎖伸長剤、有機ジイソシァネートイ匕合物、並びにパラフィン系オイル (I V)を溶融混練することにより得られる熱可塑性重合体組成物。
' 昆 馳 a) :
芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b—
2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)と 、ポリカーボネート系重合体 (ロー 1)とを溶融混練下に反応させて得られる反応混合 物。 ' 昆 馳 b) :
芳香族ビ-ルイ匕合物系重合体ブロック (a— 2)と共役ジェン系重合体ブロック (b— 2)を有するブロック共重合体またはその水素添加物力 なり且つポリカーボネート系 重合体 (ロー 1)と反応し得る官能基を有する付加重合系ブロック共重合体 (ィー 1)、 2つの水酸基を有する化合物、およびカーボネート前駆体を溶融混練下に反応させ て得られる反応混合物。
[7] 付加重合系ブロック共重合体 (ィー 1)におけるポリカーボネート系重合体と反応し 得る官能基が水酸基である請求項 2〜6のいずれか 1項に記載の熱可塑性重合体組 成物。
[8] 付加重合系ブロック共重合体 (ィ—1)が、末端に水酸基を 1分子当たり平均で 0. 6 個以上有する請求項 7に記載の熱可塑性重合体組成物。
[9] 熱可塑性ポリウレタン (III)が、高分子ポリオール、鎖伸長剤および有機ジイソシァ ネートイ匕合物力もなる熱可塑性ポリウレタン形成用の反応原料であって、有機ジイソ シァネート化合物に由来する窒素原子の含有量が高分子ポリオール、鎖伸長剤およ び有機ジイソシァネートィヒ合物の合計質量に基づ 、て 1〜6. 5質量%である反応原 料を用いて形成した熱可塑性ポリウレタンである請求項 1〜5、 7および 8のいずれか 1項に記載の熱可塑性重合体組成物。
[10] JIS 3号に規定されるダンベル型の試験片にして、 JIS Κ— 7311に準じて測定し た引張破断強度が 8MPa以上である、請求項 1〜9のいずれか 1項に記載の熱可塑 性重合体組成物。
[11] 請求項 1〜10のいずれか 1項に記載の熱可塑性重合体組成物からなる成形品。
[12] 請求項 1〜: LOのいずれか 1項に記載の熱可塑性重合体組成物と他の材料からなる 複合成形体。
PCT/JP2006/300335 2005-01-21 2006-01-13 熱可塑性重合体組成物 WO2006077772A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006515468A JP5111851B2 (ja) 2005-01-21 2006-01-13 熱可塑性重合体組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-014049 2005-01-21
JP2005014049 2005-01-21

Publications (1)

Publication Number Publication Date
WO2006077772A1 true WO2006077772A1 (ja) 2006-07-27

Family

ID=36692162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300335 WO2006077772A1 (ja) 2005-01-21 2006-01-13 熱可塑性重合体組成物

Country Status (3)

Country Link
JP (1) JP5111851B2 (ja)
TW (1) TW200632026A (ja)
WO (1) WO2006077772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514745A (ja) * 2013-03-20 2016-05-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリウレタンをベースとするポリマー組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319428A (ja) * 1995-05-25 1996-12-03 Nippon Oil & Fats Co Ltd 熱可塑性エラストマー組成物
JP2001220505A (ja) * 2000-02-09 2001-08-14 Kuraray Co Ltd ポリカーボネート系樹脂組成物
JP2001220506A (ja) * 2000-02-09 2001-08-14 Kuraray Co Ltd 熱可塑性樹脂組成物
JP2005146173A (ja) * 2003-11-18 2005-06-09 Kuraray Co Ltd 熱可塑性重合体組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319428A (ja) * 1995-05-25 1996-12-03 Nippon Oil & Fats Co Ltd 熱可塑性エラストマー組成物
JP2001220505A (ja) * 2000-02-09 2001-08-14 Kuraray Co Ltd ポリカーボネート系樹脂組成物
JP2001220506A (ja) * 2000-02-09 2001-08-14 Kuraray Co Ltd 熱可塑性樹脂組成物
JP2005146173A (ja) * 2003-11-18 2005-06-09 Kuraray Co Ltd 熱可塑性重合体組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514745A (ja) * 2013-03-20 2016-05-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリウレタンをベースとするポリマー組成物

Also Published As

Publication number Publication date
JPWO2006077772A1 (ja) 2008-06-19
TW200632026A (en) 2006-09-16
JP5111851B2 (ja) 2013-01-09

Similar Documents

Publication Publication Date Title
JP3871453B2 (ja) 熱可塑性重合体組成物
JP4184178B2 (ja) 熱可塑性重合体組成物
WO2007023932A1 (ja) 熱可塑性エラストマー組成物およびその複合成形体
JP5165167B2 (ja) 熱可塑性ポリウレタン組成物
KR100849606B1 (ko) 비닐 클로라이드계 중합체 조성물
JP2003160727A (ja) 熱可塑性重合体組成物
KR100855892B1 (ko) 열가소성 중합체 조성물
JP3775546B2 (ja) 熱可塑性重合体組成物
JP4837244B2 (ja) 熱可塑性重合体組成物
WO2006077772A1 (ja) 熱可塑性重合体組成物
JP4409235B2 (ja) 難燃性の熱可塑性重合体組成物
JP3851239B2 (ja) 塩化ビニル系重合体組成物
JP5536497B2 (ja) 熱可塑性樹脂組成物の製造方法および該熱可塑性樹脂組成物からなる部材を含む複合成形体
JP2000143934A (ja) 熱可塑性エラストマー組成物
JP3923385B2 (ja) 熱可塑性重合体組成物
JP2000143932A (ja) 熱可塑性エラストマー組成物
WO2010126098A1 (ja) ポリウレタン系ブロック共重合体
JP2000063660A (ja) 熱可塑性重合体組成物
JP2003041089A (ja) 熱可塑性エラストマー組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006515468

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06702617

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6702617

Country of ref document: EP