[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006077695A1 - 送液装置及び送液方法 - Google Patents

送液装置及び送液方法 Download PDF

Info

Publication number
WO2006077695A1
WO2006077695A1 PCT/JP2005/022164 JP2005022164W WO2006077695A1 WO 2006077695 A1 WO2006077695 A1 WO 2006077695A1 JP 2005022164 W JP2005022164 W JP 2005022164W WO 2006077695 A1 WO2006077695 A1 WO 2006077695A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
flow path
liquid
rotating substrate
rotation
Prior art date
Application number
PCT/JP2005/022164
Other languages
English (en)
French (fr)
Inventor
Nobuhiko Ozaki
Hiroaki Oka
Tetsuo Yukimasa
Hidenobu Yaku
Maki Yotsuhashi
Yukari Hataoka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006515510A priority Critical patent/JP3910208B2/ja
Publication of WO2006077695A1 publication Critical patent/WO2006077695A1/ja
Priority to US11/516,008 priority patent/US7497996B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0017Capillary or surface tension valves, e.g. using electro-wetting or electro-capillarity effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0055Operating means specially adapted for microvalves actuated by fluids
    • F16K99/0057Operating means specially adapted for microvalves actuated by fluids the fluid being the circulating fluid itself, e.g. check valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • B01L2300/0806Standardised forms, e.g. compact disc [CD] format
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • B01L2400/0412Moving fluids with specific forces or mechanical means specific forces centrifugal forces using additionally coriolis forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0074Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/008Multi-layer fabrications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/111666Utilizing a centrifuge or compartmented rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Definitions

  • the present invention relates to a liquid feeding device and a liquid feeding method.
  • the present invention relates to a liquid feeding method and a liquid feeding apparatus for controlling and feeding a small amount of liquid flow in a micro channel.
  • a pump In a macro system, a pump is generally used as a liquid feeding means. However, in a micro-channel that handles a very small amount of fluid, the invalid volume (dead volume) generated in the tube connected to the pump cannot be ignored.
  • Patent Document 1 discloses a capillary valve type microchannel liquid feeding method. In this liquid feeding method, the flow is blocked by the capillary force generated in the micro flow path, and the balance of the force is broken by the centrifugal force generated by rotating the rotating substrate, so that one micro tank The mosquito also feeds liquid to other micro tanks.
  • the centrifugal force generated with rotation is used as a drive source.
  • the tank is also limited to the radially outward direction (centrifugal direction) with respect to the rotation axis of the rotating substrate, and the liquid feed is basically limited to only one direction in the centrifugal direction.
  • This driving principle For this reason, the micro-channel liquid feeding method disclosed in Patent Document 1 has limitations in the arrangement of the flow channel structure and the liquid feeding behavior with a small degree of freedom in the design of the rotating substrate, and has many functions for liquid feeding. If you hold it !, you can't!
  • Patent Document 1 Japanese Patent Publication No. 2001-503854
  • the present invention realizes liquid feeding behavior control with a high degree of freedom not limited to one direction, has a high degree of design freedom, and can provide various functions to liquid feeding and liquid feeding
  • the problem is to provide a method.
  • a first aspect of the present invention is formed on a rotating substrate (2) rotatable at least in a first rotating direction (Rl, R2) about a rotation center line (S), and the rotating substrate, A first tank (6A) that is spatially closed except for the inlet (11) and a second tank (7A) that is formed on the rotating substrate and is spatially closed except for the air port (12). ), A first flow path end (13) formed on the rotating substrate and connected to the first tank, and a second flow path end (14) connected to the second tank.
  • the first tank and the second tank communicate with each other, and the first flow path end extends from the first tank along the first rotation direction of the rotating substrate, and
  • the first channel end has a first channel (8A) that holds the liquid (9) in the first tank by capillary force (Fc), exceeds the capillary force, and is in the first rotation.
  • the rotation direction is defined as a direction that is orthogonal to a virtual line orthogonal to the rotation center line and is on the same plane as the virtual line of parentheses.
  • the tangential direction orthogonal to the radial direction of the rotating shaft is the rotating direction.
  • the first rotation direction may be either clockwise or counterclockwise with respect to the rotation center line in plan view.
  • Injection Loca The injected liquid in the first tank is held at the first end of the first flow path by capillary force.
  • the rotary substrate is rotated by the rotation drive unit, so that it is held at the first end.
  • An inertial force acts on the held liquid in the first rotational direction.
  • this inertial force exceeds the capillary force, the liquid in the first tank flows into the first flow path and is sent to the second tank.
  • the air in the second tank is discharged to the outside through the air port.
  • the first channel needs to be a fine channel.
  • the width of the first flow path is preferably set to 20 / z m or more and 2000 ⁇ m or less, for example.
  • the inlet is a flow path that connects, for example, the inside of the first tank formed on the rotating substrate and the outside of the rotating substrate.
  • the area of the inlet opening must be sufficiently smaller than the area of the first tank.
  • a part of the first tank may be made of a material that allows air to pass through but does not allow liquid to pass therethrough, and may function as an injection port.
  • the air port is a flow path that connects, for example, the inside of the second tank formed in the rotating substrate and the outside of the rotating substrate.
  • a part or the whole of the second tank may be made of a material that allows air to permeate but does not allow liquid to permeate.
  • the inertial force that is not centrifugal force exceeds the capillary force that holds the liquid at the first end, the liquid is fed to the first tank through the first channel to the second tank. Is done. Therefore, it is not necessary to arrange the first end, which is the boundary between the first tank and the first flow path, outside the first tank or at a position far from the rotational center line force. In this respect, the first and second tanks have a high degree of design freedom regarding the arrangement of the first flow path.
  • liquid can be fed only in one direction, that is, in a centrifugal direction in which the liquid is supplied away from a tank on the supply side.
  • the first rotation direction that is, the direction in which the first flow path end extends is set to one of the two directions of the clockwise direction and the counterclockwise direction.
  • liquid can be fed in either of these two directions.
  • the liquid feeding device of the first invention can realize liquid feeding behavior control with a high degree of freedom that is not limited to one direction.
  • the liquid flowing through the first flow path toward the first tank force toward the second tank has a flow path wall force as a component that reduces its speed. Receive resistance.
  • the flow resistance of the fine flow path is smaller than the applied inertial force, The liquid can be fed in either direction.
  • the second tank can be arranged closer to the rotation center line than the first tank, and liquid can be fed from the first tank in the centripetal direction. As a result, more complicated liquid feeding can be easily realized, and the degree of freedom in designing the flow path is increased, so that the liquid feeding device can be easily designed.
  • the rotation driving unit suddenly brakes the rotating substrate once rotated in the first rotation direction, that is, the direction in which the first flow path end extends in the first tank force, An inertial force is generated in the liquid at the end of the first flow path. That is, the rotation drive unit rotates the rotating substrate in the first rotation direction, stops the rotating substrate with a speed characteristic (42) having a first acceleration (a2), and The inertial force exceeding the capillary force is generated in the liquid at the end of the first flow path by the acceleration (a2).
  • the inertial force in the first rotational direction acts on the liquid held at the first flow path end.
  • the inertial force in the first rotation direction that is proportional to the first acceleration when stopping the rotation of the rotating substrate acts on the liquid at the end of the first flow path.
  • this inertial force exceeds the capillary force that holds the liquid at the first flow path end, the liquid held at the first flow path end flows into the first flow path, and the first flow path Through the end of the second flow path and into the second tank.
  • the angle formed by the first flow path end with the first rotation direction is set to 45 ° or more and + 45 ° or less. Good. Therefore, it is preferable in terms of productivity and the like with a high degree of freedom in design for the direction of the first flow path end.
  • the rotation drive unit causes the first flow path to rotate rapidly in the second rotational direction, that is, in the direction opposite to the direction in which the first flow path end extends in the first tank force.
  • An inertial force is generated, that is, the rotational drive unit has a second acceleration (bl) in a second rotational direction (Rl, R2) opposite to the first rotational direction (43)
  • the rotating substrate is rotated, and an inertial force exceeding the capillary force is generated in the liquid at the end of the first flow path by the second acceleration.
  • the second rotation direction is counterclockwise with respect to the rotation center line. Conversely, if the first rotation direction is counterclockwise with respect to the rotation center line in plan view, the second rotation direction is clockwise with respect to the rotation center line.
  • the angle formed by the first flow path end with the second rotation direction may be set to 135 ° or more and 235 ° or less. . Therefore, it is preferable in terms of productivity, etc., in which the degree of freedom in design with respect to the direction of the first flow path end is high.
  • the second tank may be disposed closer to the rotation center line than the first tank.
  • the second flow path end of the first flow path extends along a direction orthogonal to the first rotation direction and is connected to the second tank. . V, when the liquid that has flowed into the second tank is directed to the first tank from the end of the second flow path by the inertial force generated during the sudden braking or sudden rotation of the rotating substrate described above. It is possible to prevent reverse flow in the flow path.
  • the first channel end of the first channel has hydrophobicity.
  • To have hydrophobicity means that the end of the first channel of the first channel has a hydrophobic material force or has been subjected to a treatment for imparting water repellency. Since the first flow path end has hydrophobicity, the liquid stored in the first tank can be reliably held at the first flow path end. Specifically, as described above, if the channel width of the first channel is sufficiently narrow and the end of the first channel has hydrophobicity, the liquid will be in the first channel due to surface tension. It does not get wet and is held at the end of the first channel.
  • the entire first channel has hydrophobicity! /, Or may be! /.
  • the liquid can be held over the entire length of the first flow path as long as the liquid can be held more reliably at the end of the first flow path.
  • the longer the length of the first flow path the stronger the liquid is held in the first tank. Therefore, when the entire first flow path is hydrophobic, in order to send a certain amount of liquid to the second tank as well as the first tank force, the aforementioned rapid rotation or rapid rotation of the rotating substrate is repeated. There is a need. By controlling the number of repetitions of this rapid braking or rapid rotation, a more accurately determined amount of liquid can be sent to the first tank as well as the second tank.
  • the time required to feed a predetermined amount of liquid to the first tank force and the second tank can be controlled.
  • This control of the time required for liquid feeding is suitable for liquid feeding when another mixing is performed after a predetermined reaction time after mixing! / Speak.
  • the entire rotating substrate may have hydrophobicity. If the entire rotating substrate is made hydrophobic, for example, the entire rotating substrate that is connected to only a specific part such as the end of the first flow path is made of a hydrophobic material, or the entire rotating substrate is made hydrophobic. Therefore, the productivity of the rotating board can be improved.
  • the second channel end of the first channel has hydrophilicity U.
  • Having hydrophilicity means that the second flow path end of the first flow path is made of a hydrophilic material or has been subjected to a treatment for imparting hydrophilicity. If the end of the second flow path has hydrophilicity, the liquid flowing into the first flow path due to the inertial force generated by the sudden braking or the rapid rotation of the rotating substrate described above is ensured by the wetting effect and the capillary phenomenon. The second channel end force flows into the second tank. Therefore, a desired liquid feeding behavior can be realized more reliably.
  • the whole of the first channel except the first channel end may have hydrophilicity. First If the whole of the first channel except the first channel end portion is hydrophilic, the liquid flows into the second tank more reliably by the wetting effect and the capillary phenomenon.
  • the liquid stored in the first tank is securely held at the end of the first flow path by the non-wetting effect, and once the first flow is caused by the inertial force generated by sudden braking or sudden rotation of the rotating substrate.
  • the first tank and the second tank have hydrophilicity.
  • the first flow path end of the first flow path has hydrophobicity, and
  • the whole of the first channel except the first channel end has hydrophilicity.
  • a plurality of flow path portions (5) including at least the first tank, the second tank, and the first flow path are formed on the circuit board.
  • the liquid in the first tank of each flow path part can be obtained by executing the aforementioned rapid braking or sudden rotation of the rotating substrate once. At the same time, it can be sent to the second tank. Therefore, a large number of samples can be processed in a short time by increasing the number of simultaneous parallel processes.
  • forming a large number of flow path parts on one rotating substrate contributes to reducing the processing cost of one specimen from the viewpoint of the manufacturing cost of the rotating substrate.
  • the liquid feeding device is formed on the rotating substrate and is spatially closed except for the air port, and is formed on the rotating substrate and connected to the first tank.
  • the third flow path end extends from the first tank in a second rotation direction opposite to the first rotation direction of the rotating substrate, and the third flow path end is a front end.
  • a second flow path (8B) for holding the liquid in the first tank by a capillary force, and the rotation driving unit exceeds the capillary force and faces the second rotation direction.
  • the rotary substrate may be rotatable around the rotation center line so that an inertial force acts on the liquid at the end of the third flow path.
  • the first flow path end where the first flow path connects to the first tank extends in the first rotation direction
  • the second flow path connects to the first tank.
  • the end faces the second direction of rotation opposite to the first direction of rotation.
  • the first and third flow path ends connected to the first tank extend in opposite directions. Therefore, the direction in which the rotation drive unit rotates the rotating substrate ( (Clockwise or counterclockwise) the first tank force can be sent to the second tank via the first flow path, or the first tank force can be sent to the third tank via the second flow path.
  • the first tank force liquid can be fed by selecting one of the second tank and the third tank depending on the direction in which the rotation driving unit rotates the rotating substrate.
  • the liquid can be continuously fed to the first tank force, the second tank, and the third tank by switching the direction in which the rotation driving unit rotates the rotating substrate. Therefore, a complex reaction can be realized with one channel group.
  • the liquid feeding device is formed on the rotating substrate and is spatially closed except for an air port (7C), formed on the rotating substrate, and the second tank.
  • the fifth flow path end extends from the second tank in the first rotation direction of the rotating substrate or in a second rotation direction opposite to the first rotation direction, and
  • the flow path end of 5 further includes a third flow path (8D) for holding the liquid in the second tank by a capillary force, and the rotational drive unit exceeds the capillary force and the fifth flow path.
  • the rotary substrate may be capable of being driven to rotate about the rotation center line so that an inertial force in a direction in which the flow path end portion extends in the second tank force acts on the liquid.
  • Liquid feeding in multiple stages can be realized. More specifically, the first tank force is supplied to the second tank via the first flow path, and the liquid stored in the second device is subsequently transferred to the second tank via the third flow path. Can be sent to 4 tanks. Therefore, a more complicated reaction function can be realized. For example, extraction, mixing, reaction, and detection can be sequentially performed in one channel group.
  • the rotation drive unit includes a motor (31) that rotates the rotating substrate, and a speed characteristic application unit (34) that gives a speed characteristic to the motor.
  • a DC motor for example, a DC motor, a DC brushless motor, an AC motor, or a stepping motor can be used.
  • a stepping motor When a stepping motor is employed, the above-described rotation and rapid braking can be easily realized by simply applying an external drive signal.
  • the rotation drive unit includes a rotation speed detector (35) for detecting a rotation speed of the rotating substrate during rotation, and the speed based on the rotation speed detected by the rotation speed detector.
  • a rotation speed correction unit (36) for correcting a speed characteristic applied to the motor by the characteristic application unit; May be provided. Since the rotating substrate can be driven to rotate while feeding back the actual rotational speed and correcting the speed characteristics, the liquid supply amount is stabilized and the repeatability of the liquid supply amount is also improved.
  • a rotating substrate used in the above-described liquid delivery device. That is, in the second aspect of the present invention, the rotating substrate (2) for the liquid-feeding device that is rotatable at least in the first rotation direction (R1, R2) around the rotation center line (S).
  • a first tank that is rotatable in at least a first rotation direction (Rl, R2) around a rotation center line (S) and is spatially closed ( 6A), a second tank (7A) that is spatially closed, a first flow path end (13) that is connected to the first tank, and a second tank that is connected to the second tank.
  • the first tank and the second tank communicate with each other, and the first flow path end extends from the first tank to the first of the rotating substrate.
  • a rotating substrate having a flow path (8A) that extends in the rotation direction of 1 and that has a flow path (8A) for holding the liquid (9) in the first tank by capillary force at the end of the first flow path is prepared; Rotating the rotating substrate around the rotation center line so that an inertial force that exceeds a capillary force and that is directed to the first rotation direction acts on the liquid at the end of the first flow path.
  • the rotational base is rotated with a speed characteristic having a first acceleration in the first rotational direction, and a speed having a second acceleration having an absolute value larger than the first acceleration. Due to the characteristics, the rotation of the rotating substrate in the first rotation direction is stopped, and thereby the inertial force directed to the first rotation direction exceeding the capillary force is applied to the first flow path end. Generate in liquid.
  • the magnitude of the first acceleration is 600 rpm / sec
  • the magnitude of the second acceleration is lOOO rpm / sec or more and 60000 rpm / sec or less.
  • the liquid at the end of the first flow path has a centrifugal property. Centrifugal force acts in the direction of, that is, the rotational center line force. The direction in which this centrifugal force acts is different from the direction in which the first tank force and the first flow path end extend, so that the liquid does not flow into the first flow path but flows into the first tank by capillary force. Retained.
  • the rotation of the rotating substrate in the first rotation direction is stopped with a speed characteristic having a second acceleration having an absolute value larger than the first acceleration, the first flow path is stored in the first tank. The liquid held at the end will continue to move in the first direction of rotation due to the law of inertia.
  • the rotating substrate is rotated with a speed characteristic having a third acceleration in a second rotating direction opposite to the first rotating direction, thereby exceeding the capillary force.
  • An inertial force directed to the rotation direction of 1 is generated in the liquid at the end of the first flow path, and the rotation substrate has an acceleration characteristic having a fourth acceleration having an absolute value smaller than the third acceleration.
  • the rotation in the second rotation direction is stopped.
  • the magnitude of the third acceleration is 600 rpm / sec
  • the magnitude of the fourth acceleration is lOOO rpm / sec or more and 60000 rpm / sec.
  • the liquid is injected into the first tank that is in communication with the first tank and the outside of the rotating substrate.
  • liquid-feeding device and liquid-feeding method of the present invention not the centrifugal or centripetal force but the rotating substrate.
  • Liquid feeding is realized by the fact that the inertial force generated by sudden braking or sudden rotation exceeds the capillary force that holds the liquid. Therefore, liquid feeding behavior control with a high degree of freedom that is not limited to one direction can be realized, the degree of design freedom is high, and the liquid feeding can have various functions.
  • FIG. 1 is a schematic configuration diagram showing a liquid delivery device according to a first embodiment of the present invention.
  • FIG. 2 is a partially enlarged plan view of the rotary substrate according to the first embodiment of the present invention.
  • FIG. 3A is a partial cross-sectional view taken along line III-III in FIG.
  • FIG. 3B is a partial cross-sectional view taken along the line ⁇ - ⁇ in FIG.
  • FIG. 4 is an exploded perspective view of the rotating substrate according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a velocity waveform and a rotation direction of the first example of the operation of the liquid delivery device according to the first embodiment of the present invention.
  • FIG. 7A is a schematic plan view for explaining the force acting on the solution at the end of the flow path before the rotation of the rotating substrate is started.
  • FIG. 7B is a schematic plan view for explaining the force acting on the solution at the end of the channel during the start of rotation of the rotating substrate.
  • FIG. 7C is a schematic plan view for explaining the force acting on the solution at the end of the flow path when the rotating substrate suddenly stops.
  • FIG. 7D is a schematic plan view for explaining the force acting on the solution at the end of the flow channel during liquid feeding.
  • FIG. 9 is a diagram showing a velocity waveform and a rotation direction of a second example of the operation of the liquid delivery device according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing a velocity waveform and a rotation direction in a third example of the operation of the liquid delivery device according to the first embodiment of the present invention.
  • FIG. 11 is a flowchart for explaining a fourth example of the operation of the liquid delivery device according to the first embodiment of the present invention. Mouth 1 ⁇ Chiya 1 ⁇ ⁇ .
  • FIG. 12 is a diagram showing a velocity waveform and a rotation direction in a fourth example of the operation of the liquid delivery device according to the first embodiment of the present invention.
  • FIG. 13 is a diagram showing a velocity waveform and a rotation direction of a fifth example of the operation of the liquid delivery device according to the first embodiment of the present invention.
  • FIG. 15 is a diagram showing a velocity waveform and a rotation direction in a sixth example of the operation of the liquid delivery device according to the first embodiment of the present invention.
  • FIG. 16 is an exploded perspective view showing a first alternative of the rotating substrate.
  • FIG. 17 is an exploded perspective view showing a second alternative of the rotating substrate.
  • FIG. 18 is an exploded perspective view showing a third alternative of the rotating substrate.
  • the second embodiment off port 1 ⁇ Teya 1 ⁇ Bok for explaining a first example of the operation of the liquid supply apparatus according to the present invention.
  • FIG. 20 is a diagram showing a velocity waveform and a rotation direction in the first example of the operation of the liquid delivery device according to the second embodiment of the present invention.
  • ⁇ 21A A schematic plan view for explaining the force acting on the solution at the end of the flow path before the rotation of the rotating substrate is started.
  • ⁇ 21B A schematic plan view for explaining the force acting on the solution at the end of the flow path when the rotating substrate suddenly rotates.
  • FIG. 22 A schematic plan view for explaining the force acting on the solution at the end of the flow path during liquid feeding. ⁇ 22] Openings 1 to -1 for explaining a second example of the operation of the liquid delivery device according to the second embodiment of the present invention.
  • ⁇ 23 Diagram showing speed waveform and rotation direction of second example of operation of liquid feeding device according to second embodiment of the present invention.
  • FIG. 24 is a diagram showing a velocity waveform and a rotation direction in a third example of the operation of the liquid delivery device according to the second embodiment of the present invention.
  • a flow chart for explaining a fourth example of the operation of the liquid delivery device according to the second embodiment of the present invention Mouth 1 ⁇ Chiya 1 ⁇ ⁇ .
  • FIG. 26 is a diagram showing a velocity waveform and a rotation direction in a fourth example of the operation of the liquid delivery device according to the second embodiment of the present invention.
  • FIG. 27 is a diagram showing a velocity waveform and a rotation direction in a fifth example of the operation of the liquid delivery device according to the second embodiment of the present invention.
  • FIG. 29 is a diagram showing a velocity waveform and a rotation direction of a sixth example of the operation of the liquid delivery device according to the second embodiment of the present invention.
  • ⁇ 30 A partially enlarged plan view showing a rotating substrate of a liquid delivery device according to a modification of the first and second embodiments.
  • 32 A partial enlarged plan view showing a rotating substrate of a liquid delivery device according to a first modification of the third embodiment of the present invention.
  • ⁇ 33 A partial enlarged plan view showing a rotating substrate of a liquid delivery device according to a second modification of the third embodiment of the present invention.
  • ⁇ 35 Partially enlarged plan view showing a rotating substrate of a liquid delivery device according to a fourth embodiment of the present invention.
  • ⁇ 36 A flow chart for explaining the operation of the liquid delivery device according to the fourth embodiment of the present invention.
  • FIG. 37 is a diagram showing a velocity waveform and a rotation direction of the operation of the liquid delivery device according to the fourth embodiment of the present invention.
  • FIG. 40 Partially enlarged plan view showing the rotating substrate of the liquid delivery device according to the sixth embodiment of the present invention.
  • FIG. 41 is a partially enlarged plan view showing a rotating substrate of a liquid delivery device according to a seventh embodiment of the present invention.
  • FIG. 42 is a partially enlarged plan view showing a rotating substrate of a liquid delivery device according to a modification of the eighth embodiment of the present invention.
  • FIG. 43 is a partially enlarged plan view showing the rotating substrate of the liquid delivery device according to the ninth embodiment of the present invention.
  • FIG. 44 is a partially enlarged plan view showing the rotating substrate of the liquid delivery device according to the ninth embodiment of the present invention.
  • FIG. 45 is a partially enlarged plan view showing the rotating substrate of the liquid delivery device according to the tenth embodiment of the present invention.
  • FIG. 46 is a schematic configuration diagram showing a liquid delivery device according to an eleventh embodiment of the present invention.
  • FIG. 47 is a partially enlarged sectional view taken along line XLVII—XLVII in FIG. 46.
  • FIG. 48 is a partially enlarged plan view of a rotating substrate according to an eleventh embodiment of the present invention.
  • FIG. 1 to 4 show a liquid delivery device 1 according to the first embodiment of the present invention.
  • the liquid feeding device 1 includes a rotating substrate 2, a rotating shaft 3 to which the rotating substrate 2 is fixed, and a rotation driving unit 4 that rotationally drives the rotating shaft 3.
  • the rotary shaft 3 is arranged in such a posture that its axis (rotation center axis) S extends in the vertical direction, and the rotary substrate 2 is fixed to the upper end side thereof.
  • the rotating substrate 2 is circular in plan view, and the center of the rotating substrate 2 is coincident with the axis S of the rotating shaft 3.
  • the lower end side of the rotating shaft 3 is connected to a motor 31 described later.
  • the outer shape of the rotating substrate 2 can be arbitrarily set so that the flow path part 5 can be accommodated.
  • the diameter of the rotating substrate 2 is For example, it is set to about 10 mm or more and 150 mm or less.
  • the thickness of the rotating substrate 2 is set to 0.2 mm or more and 20 mm or less.
  • the rotation direction of the rotary shaft 3 is defined as a direction orthogonal to the radial direction r of the rotary shaft 3 as indicated by arrows Rl and R2 in FIG.
  • the rotation direction is defined as a direction that is orthogonal to a virtual line orthogonal to the axis S of the rotation axis 3 and is on the same plane as the virtual line of parentheses.
  • the rotating substrate 2 can rotate in two directions, ie, clockwise R1 and counterclockwise R2 in plan view.
  • the flow path part 5 includes a supply tank (first tank) 6A, a tank to be supplied (second tank) 7A, and a flow path (first flow). Road) Equipped with 8A.
  • the supply tank 6A is a tank in which a solution or liquid 9 (see, for example, FIG. 7A) to be supplied is stored.
  • the supply tank 6A is formed inside the rotary substrate 2 and is spatially closed.
  • the rotary substrate 2 is formed with an inlet 11 having a circular cross section that allows the upper wall force of the supply tank 6A to also penetrate the upper surface of the rotary substrate 2 so that the inside of the supply tank 6A communicates with the outside of the rotary substrate 2.
  • the inlet 11 is used for injecting the liquid 9 into the supply tank 6A.
  • the tank 7A to be supplied is a tank to which the liquid 9 is fed from the supply tank 6A.
  • the tank 7A to be supplied is formed inside the rotating substrate 2 and is spatially closed.
  • the rotary substrate 2 is formed with an air port 12 having a circular cross section that penetrates the upper surface of the rotating substrate 2 from the upper wall of the supplied tank 7A and communicates the inside of the supplied tank 7A with the outside of the rotating substrate 2. .
  • the air port 12 has a function of discharging the air in the supplied tank 7A to the outside of the rotating substrate 2 when the liquid 9 flows into the supplied tank 7A.
  • the flow path 8A is a flow path that fluidly connects the supply tank 6A and the supply tank 7A.
  • Channel 8 A is formed inside the rotating substrate 2 and is spatially closed. Further, both ends of the flow path 8A, that is, the inlet end (first flow path end) 13 and the outlet end (second flow path end) 14 are connected to the supply tank 6A and the supply tank 7A, respectively. Connected.
  • the supply tank 6A has a substantially rectangular shape in plan view, and the inlet end 13 of the flow path 8A is open on the left side wall.
  • the inlet 11 is provided at a position closer to the rotary shaft 3 than the inlet end 13. Specifically, the inlet 11 is provided in the upper right corner of the supply tank 6A in FIG.
  • the area of the injection port 11 in plan view is set to be sufficiently smaller than the area of the supply tank 6A in plan view.
  • the injection port 11 may be left open when the liquid 9 is injected into the supply tank 6A and the rotating substrate 2 is rotated.
  • the inlet 11 is provided at a position farther from the rotary shaft 3 than the inlet end 13 or if the area of the inlet 11 is relatively large relative to the area of the supply tank 6A, the rotating substrate In order to prevent the liquid 9 in the supply tank 6A from leaking or splashing from the inlet 11 during the rotation of 2, the inlet 11 needs to be sealed before the rotating substrate 2 is rotated.
  • the size and volume of the supply tank 6A need to be determined according to the volume of the sample (liquid 9).
  • the volume is preferably 0.1 ⁇ L or more and 100 ⁇ L or less.
  • the tank 7 to be supplied will be described in detail.
  • the tank 7 to be supplied has a substantially rectangular shape in plan view.
  • the tank 7 to be supplied is arranged in the radial direction!: Along with the tank 6, and is further away from the rotation shaft 3 than the tank 6.
  • the outlet end 14 of the channel 8 is open on the side wall on the side of the rotary shaft 3 of the tank 7 to be supplied in plan view.
  • the area in the plan view of the air port 12 is such that the liquid 9 does not leak or scatter from the air port 12 due to the outward centrifugal force in the radial direction r acting during the rotation of the rotating substrate 2. It is set to be sufficiently smaller than the area in plan view of the supply tank 7A.
  • the size and volume of the tank 7A to be supplied need to be determined according to the amount of the sample (liquid 9), but preferably the volume is 0.1 ⁇ L or more and 100 ⁇ L or less.
  • the flow path 8mm will be described in detail.
  • the flow path 8 ⁇ needs to be a fine channel.
  • the volume of the flow path 8A is preferably equal to or smaller than that of the supply tank 6A and the supply tank 7A.
  • the width of the flow path 8A is preferably narrower than the width of the supply tank 6A and the supply tank 7A.
  • the width of the flow path 8A is preferably about 20 ⁇ m to 2000 ⁇ m, more preferably about 10 m to 100 m.
  • the depth of the flow path 8A is preferably shallower than the supply tank 6A and the supply tank 7A.
  • the depth of the channel 8A is preferably about 10 ⁇ m to 100 ⁇ m.
  • the flow path 8A meanders and has an S shape in plan view.
  • the inlet end 13 of the flow path 8A connected to the supply tank 6A has a function as a valve that releasably holds the liquid 9 stored in the supply tank 6A.
  • the inlet end 13 extends in the clockwise direction R1 of the two rotation directions of the rotating substrate 2 in the supply tank 6A. By setting the inlet end 13 in this direction, the liquid 9 in the supply tank 6A can be caused to flow into the flow path 8A by the inertial force acting on the liquid 9 when the rotary substrate 2 rotates.
  • the outlet end 14 of the flow path 8A connected to the supplied tank 7A is directed toward the supplied tank 7A in the radial direction of the rotating shaft 3 !: that is, the rotating direction of the rotating substrate 2 (clockwise R1 and It extends in a direction perpendicular to the counterclockwise direction R2).
  • the flow path wall of the inlet end 13 of the flow path 8A is made of a hydrophobic material or is subjected to a treatment for imparting hydrophobicity. Since the inlet end 13 is hydrophobic, the liquid stored in the supply tank 6A can be reliably held at the inlet end 13 by capillary force.
  • the remaining part of the flow path part 5, that is, the wall surface of the supply tank 6A, the wall surface of the supplied tank 7A, and the entire wall surface (including the outlet end part 14) excluding the inlet end 13 of the flow path 8A is hydrophilic. It is made of a functional material or has been treated to impart hydrophilicity. Due to the hydrophilicity of these portions, the liquid flowing into the supply tank 6A force flow path 8A surely flows into the supply tank 7A due to the wetting effect and capillary action.
  • hydrophobic material examples include single crystal silicon, amorphous silicon, silicon carbide, silicon carbide, silicon nitride, and other semiconductor materials, alumina, sapphire, forstera.
  • Inorganic insulating materials selected from the group consisting of carbonite, carbide, oxide and nitride, polyethylene, ethylene, polypropylene, polyisobutylene, polyethylene terephthalate (PET), unsaturated polyester, fluorine-containing resin, poly Polyvinyl chloride, Polysalt vinylidene, Polyacetate butyl, Polybulal alcohol, Polybutylacetal, Acrylic resin, Polyacrylo-tril, Polystyrene, Acetal resin, Polycarbonate (PC), Polyamide, Phenolic resin, Urea
  • organic materials selected from the group such as fat, epoxy resin, melamine resin, styrene 'acrylonitrile copolymer, acrylo-tolyl butadiene styrene copolymer,
  • hydrophilic material examples include metal materials such as glass, quartz glass, aluminum, copper, and stainless steel. However, the metal material has a pure surface from which organic substances adhering to the surface have been removed in advance.
  • materials that can impart hydrophilicity include surfactants typified by TritonX, and polymer compounds having hydrophilic groups such as hydroxyl groups, sulfonic acid groups, and carboxyl groups. Preferably, a surfactant is used.
  • the rotating substrate 2 has a four-layer structure in which an upper surface substrate 21, a flow path substrate 22, a tank substrate 23, and a lower surface substrate 24 are joined in a laminated state.
  • the top substrate 21 is provided with an injection port 11 and an air port 12 so as to penetrate in the plate thickness direction.
  • the flow path substrate 22 has a shape corresponding to the supply tank 6A, the supplied tank 7A, and the flow path 8A, and is provided with a groove hole 26 penetrating in the plate thickness direction.
  • the tank substrate 23 is provided with a groove hole 27 having a shape corresponding to the supply tank 6A and the supply tank 7A and penetrating in the plate thickness direction.
  • the bottom substrate 24 constitutes the bottom surface of the supply tank 6A and the supply tank 7A, and is not provided with a groove. Since the multi-layer rotating substrate 2 can be manufactured by bonding the substrates, the productivity is excellent.
  • the depth of the flow path 8A is determined by the thickness of the flow path substrate 22, and the depths of the supply tank 6A and the supplied tank 7A are determined by the combined thickness of the flow path substrate 22 and the tank substrate 23. Therefore, a structure in which the depth of the flow path 8A is shallower than the depth of the supply tank 6A and the supplied tank 7A can be easily manufactured, and the depth of the flow path 8A and the depth of the supply tank 6A and the supplied tank 7A Can be set independently of each other.
  • channel 8 When the depth of A is about 100 m, the sheet-like flow path substrate 22 obtained by cutting the shapes of the flow path 8A, the supply tank 6A, and the supply tank 7A can be used. Furthermore, since the lower substrate 24 that is the bottom of the supply tank 6A and the supplied tank 7A is separate from the other substrates, it is easy to carry a reaction reagent or the like on the lower substrate 24 before bonding. For example, a reaction reagent can be supported on the bottom of the supply tank 7A for the purpose of reacting with the liquid sent from the supply tank 6A.
  • the rotation driving unit 4 will be described with reference to FIG.
  • the rotation drive unit 4 includes a motor 31 that is mechanically coupled to the rotation shaft 3 and rotates the rotation shaft 3 and the rotating substrate 2 fixed to the rotation shaft 3, and a drive circuit 32 for the motor 31. Further, the rotation drive unit 4 has a control signal output unit 33 that outputs a control signal and a desired speed characteristic as shown in FIG. 6 based on the control signal input from the control signal output unit 33, for example. A speed characteristic applying unit 34 for supplying to the drive circuit 32 is provided.
  • the control signal output unit 33 may be an external computer different from the liquid delivery device 1.
  • the motor 31 may be a DC motor, a DC brushless motor, an AC motor, a stepping motor, or the like.
  • the stepping motor is suitable because it can easily realize rapid rotation and rapid braking of the rotating substrate 2 only by applying an external drive signal. Further, the DC motor does not particularly require the drive circuit 32. When a DC brushless motor is used as the motor 31, faster and quicker braking can be realized if the drive circuit 32 has a function of applying a reverse rotation voltage.
  • the rotation drive unit 4 includes a rotation speed detector 35 that detects the rotation speed of the rotating substrate 2 that is rotating, and a rotation speed control unit 36 that corrects the speed characteristic application unit 34.
  • Rotational speed The actual rotation speed of the rotating substrate 2 detected by the detector 36 is sent to the rotation speed control unit 36. If there is a discrepancy between the detected actual rotational speed and the speed characteristic to be given to the motor 31 by the speed characteristic applying part 34, the rotational speed control part 36 corrects the speed characteristic given by the speed characteristic applying part 34. In this way, the rotational speed of the actual rotating substrate 2 is fed back to drive the rotating substrate 2 while correcting the speed characteristics, thereby realizing stable liquid feeding and improving the repeatability of liquid feeding. Can do.
  • the liquid 9 is injected from the inlet 11 of the rotating substrate 2 and filled into the supply tank 6A (step A).
  • step A the liquid 9 has a surface tension. It is held at the inlet end 13 by the capillary force Fc caused by the above, and the inside of the flow path 8A is not wetted by the liquid 9.
  • the flow path wall surface of the inlet end 13 is hydrophobic, it does not get wet with the liquid 9, and the contact angle ⁇ c between the liquid 9 and the flow path wall becomes an obtuse angle, so that the liquid 9 is held in the supply layer 6A.
  • Force Fc is generated. Specifically, a surface tension Tl to Tn is generated at the interface between the channel wall surface and the liquid 9, and the resultant capillary force Fc is counterclockwise R2, that is, in the direction of the counter force from the inlet end 13 to the inside of the supply tank 6A. Occurs.
  • the size of the capillary force Fc is expressed by the following equation (1).
  • T represents the surface tension of water
  • 0 c represents the contact angle of the liquid 9 with respect to the channel wall surface
  • c represents the perimeter of the channel.
  • the capillary force Fc that is a non-wetting phenomenon that holds the liquid 9 in the supply tank 6A at the inlet end 13 is caused by the hydrophobicity of the inlet end 13 as described above. Further, in order to hold the liquid 9 at the inlet end 13 by the capillary force Fc, the flow path 8A needs to be a fine flow path. In the present embodiment, as described above, the width of the flow path 8A is set to about 20 ⁇ m or more and 2000 ⁇ m or less, and the depth of the supply tank 6A is set shallower than the supply tank 6A and the supply tank 7A. The Therefore, the liquid 9 can be reliably held at the inlet end 13 by the capillary force Fc.
  • step A ′ if necessary to prevent the liquid 9 from scattering when the rotating substrate 2 rotates, the inlet 11 is sealed (step A ′).
  • the closer to the rotation shaft 3 and the injection port 11 at the position the less likely the liquid is scattered with the rotation. Further, the smaller the opening area of the inlet 11 is, the smaller the scattering is as compared with the supply tank 6A.
  • step A ′ it becomes difficult to fill the supply tank 6A with the liquid 9. Therefore, by performing step A ′, it is possible to achieve both the reliable injection of the liquid 9 into the supply tank 6A and the prevention of the scattering of the liquid 9 when the rotating substrate 2 rotates.
  • the rotary substrate 2 is rotationally driven with the speed characteristic 41 having a constant acceleration al in the clockwise direction R1 (the direction in which the inlet end 13 extends from the supply tank 6A) (step B).
  • the rotation speed and direction of the rotating substrate 2 in process B are shown from time 0 to time tl (solid line) in FIG.
  • the direction of acceleration al is clockwise R1.
  • the rotating substrate 2 starts rotating.
  • the rotational speed of the rotating substrate 2 increases with the acceleration al, and reaches the rotational speed RV1 at time tl. As shown in FIG.
  • step C the rotating substrate 2 rotating with the speed characteristic 41 is suddenly braked with the speed characteristic 42 having a constant acceleration a2 (step C).
  • the rotation speed and rotation direction of the rotating substrate 2 in process C are shown from time tl to time t2 (solid line) in FIG.
  • time tl the rotation speed of the rotating substrate 2 starts to decrease from the rotation speed RV1.
  • the rotation speed of the rotating board 2 decelerates with acceleration (deceleration when the clockwise direction R1 is positive) a2, and the rotating board 2 stops rotating in the clockwise direction R1 at time t2.
  • the velocity waveforms in steps B and C have a single triangular waveform.
  • the direction of acceleration al in process A is clockwise R1, while the direction of acceleration a2 in process B is counterclockwise R2.
  • the acceleration a2 of the process B is opposite to the acceleration al of the process A.
  • the absolute value of the acceleration a2 of the process C is sufficiently larger than the absolute value of the acceleration al of the process B.
  • the inertia force Fi acts on the liquid 9.
  • the liquid 9 stored in the supply tank 6A and held in the inlet end 13 is determined by the law of inertia. Try to keep moving in the clockwise direction R1.
  • the inertial force Fi in the clockwise direction R1 acts on the liquid 9 held at the inlet end 13.
  • the magnitude of the inertia force Fi is proportional to the absolute value of the acceleration a2 when the rotation of the rotating substrate 2 is suddenly braked in the process C.
  • the relationship of the following formula (2) exists between the inertial force Fi and the acceleration a2.
  • m represents the mass of the liquid 9 held at the inlet end 13.
  • the minus sign on the right side indicates that the direction of inertial force Fi is opposite to the direction of acceleration a2.
  • the inlet end 13 extends in the clockwise direction R1 from the supply tank 6A, and the capillary force Fc acts in the counterclockwise direction R2. Therefore, the inertia force Fi cancels the capillary force Fc and acts in the direction in which the liquid 9 at the inlet end 13 wets the flow path 8A.
  • the inertial force Fi exceeds the capillary force Fc that holds the liquid 9 at the inlet end 13, that is, exceeds the pressure exerted on the cross-sectional area of the inlet end 13, the liquid 9 that is held at the inlet end 13 is It flows into channel 8A.
  • the absolute value of the acceleration a2 of the process C is large. If this is the case, it is necessary that the rotational speed of the rotating substrate 2 is rapidly reduced in process C.
  • the process B is executed for the purpose of rotating the rotating substrate 2 in a stopped state at a certain rotational speed RV1, it is not always necessary to rapidly accelerate the rotating substrate 2 in the process B.
  • the acceleration a2 of the process C is set sufficiently larger than the acceleration al of the process B.
  • the acceleration al is set to 600 rpmZsec or less, and the acceleration a2 is set in the range of lOOOrpmZsec or more and 60000 rpmZsec or less.
  • the duration of process A (from time 0 to time tl in Fig. 6) is determined by the final speed of rotation RV1 and acceleration al.
  • the duration of the stroke B (from time tl to time t2 in FIG. 6) is determined by the rotational speed RV1 and acceleration a2 at the start of deceleration.
  • Process B acceleration al to lOOrpmZsec Set and accelerate for 30 seconds (from time 0 to time tl).
  • the entire flow path 8 ⁇ excluding the inlet end 13, the supply tub 6 ⁇ , and the supplied tub 7 ⁇ have hydrophilicity, so that the liquid 9 at the inlet end 13 is once held by the inertial force Fi.
  • the liquid 9 in the supply tank 6A flows to the supply tank 7A through the flow path 8A due to the wettability effect or capillary action.
  • the air in the flow path 8A and the supply tank 7A is discharged to the outside of the rotating substrate 2 through the air port 12. Since the liquid 9 reaches every corner of the flow path 8A and the supplied tank 7A by capillary action, the liquid 9 can be poured into the supplied tank 7A reliably and quantitatively.
  • the direction of the inlet end 13 is the clockwise direction R1.
  • the inlet end 13 has the inertial force Fi. It must extend along the clockwise direction R1, which is the direction of action.
  • the direction of the inlet end 13 may be set so that the angle formed with the clockwise direction R1 is ⁇ 45 ° or more and + 45 ° or less. In this way, the degree of freedom in design with respect to the direction of the inlet end 13 is high, which is preferable in terms of productivity.
  • the volume of the liquid 9 flowing from the supply tank 6A to the supply tank 7A can be defined by the position of the inlet end 13 with respect to the supply tank 6A. For example, when the inlet end 13 is connected to the outermost circumferential position in the radial direction r of the supply tank 6A, almost all of the liquid 9 in the supply tank 6A is sent to the supply tank 7A via the flow path 8A. To be liquidated.
  • the liquid delivery device 1 of the embodiment has various advantages as listed below.
  • the inertial force Fi that is not centrifugal force exceeds the capillary force Fc that holds the liquid 9 at the inlet end 13, so that the supply tank 6A is supplied to the supply tank 7A via the flow path 8A. Liquid 9 is delivered. Therefore, it is not necessary to dispose the inlet end 13 which is the boundary between the supply tank 6A and the flow path 8A outside the supply tank 6A or at a position farthest from the rotating shaft 3. In this respect, the degree of freedom in designing the arrangement of the supply tank 6A, the supplied tank 7A, and the flow path 8A is high.
  • liquid can be fed only in one direction, that is, in a centrifugal direction away from the liquid supply side tank with respect to the rotation center line.
  • the direction in which the inlet end 13 extends is set in the clockwise direction R1 that is the direction of the inertia force Fi.
  • the direction in which the inlet end 13 extends can be set to the counterclockwise direction R2 only by changing the sequence for rotationally driving the rotary substrate 2.
  • the liquid feeding device 1 of the present embodiment can realize liquid feeding behavior control with a high degree of freedom that is not limited to one direction.
  • the inertial force Fi exceeds the capillary force Fc
  • the liquid flowing through the flow path 8A by force toward the supply tank 6A also flows into the supply tank 7A as a component that reduces the speed of the flow path wall surface. Force is also subject to flow path resistance.
  • the liquid 9 can be fed from the supply tank 6A in the direction of deviation.
  • the tank 7A to be supplied is arranged closer to the rotary shaft 3 than the supply tank 6A, and liquid is fed from the supply tank 6A in the centripetal direction. Is also possible. As a result, more complicated liquid feeding can be easily realized, and the degree of freedom in designing the flow path is increased, so that the liquid feeding device can be easily designed.
  • the sequence for rotationally driving the rotary substrate 2 is not limited to that shown in Figs. 5 and 6, and there are, for example, the following alternatives.
  • FIG. 10 shows a velocity waveform and a rotation direction of the second alternative of the rotation drive sequence.
  • this second alternative as conceptually indicated by the broken line ⁇ 1 in FIG. 5, the process B for rotating the rotating substrate 2 in the clockwise direction R1 and the process C for suddenly braking the rotating substrate 2 are repeated. Therefore, the velocity waveform of the rotating substrate 2 exhibits a sawtooth wave shape that is a continuous triangular wave shape force.
  • the volume of the liquid 9 stored in the supply tank 6A is larger than the total volume of the flow path 8A, the second If the rotary substrate 2 is rotationally driven in this alternative sequence, the liquid 9 can be intermittently continuously fed from the supply tank 6A to the supply tank 7A. Therefore, the second alternative sequence is effective when a relatively large volume of liquid 9 is fed from the supply tank 6A to the supply tank 7A.
  • FIGS. 11 and 12 show a third alternative of the rotation drive sequence.
  • This third alternative consists of a process B for rotating the rotating board 2 in the clockwise direction R1 (time 0 to time tl in FIG. 12) and a process C for sudden braking of the rotating board 2 (from time tl to time t2 in FIG. 12).
  • step E (interval t2 to time t3 in FIG. 12) is executed to maintain the rotating substrate 2 in a state where the rotation is stopped for a certain time.
  • the rotating substrate 2 may be rotated at a constant low speed for a certain time every time the processes B and C are completed.
  • FIG. 13 shows the velocity waveform and rotation direction of the fourth alternative of the rotation drive sequence.
  • process B, process D, and process C are repeated in this order, as conceptually indicated by the broken line ⁇ 2 in FIG.
  • step B, step D, step C, and step E are repeated in this order.
  • the rotation of the rotating substrate 2 in the process B and the process C is an equal acceleration motion.
  • the rotational acceleration of the rotating substrate 2 may fluctuate in these processes.
  • the outer shape of the rotating substrate 2 is not limited to a disk shape, and may be a cube, a rectangular parallelepiped, a polygon such as a pentagon, a star, or the like.
  • the shapes of the supply tank 6A and the supply tank 7A are not limited to a substantially rectangular shape, and can be arbitrarily set to a cylinder or the like.
  • the cross-sectional shapes of the inlet 11 and the air port 12 are not limited to a circle, and may be other shapes such as an ellipse or a polygon.
  • the inlet 11 is not limited to penetrating from the upper wall of the supply tank 6A to the upper surface of the rotating substrate 2, and may be arranged at any place.
  • Air port 12 is supplied tank It is not limited to the flow path communicating with the rotating substrate 2 in 7A, and it may be configured by attaching a material that transmits air but does not transmit liquid to a part of the wall surface constituting the supply tank 7A or flow path 8A. Good. In this case, since it is not necessary to consider the leakage of the liquid 9 when the rotating substrate 2 is rotated, the air port 12 can have a relatively large area.
  • a first alternative rotating substrate 2 shown in FIG. 16 has a three-layer structure including an upper surface substrate 21, a flow path substrate 22, and a tank substrate 23.
  • the top substrate 21 is provided with an inlet 11 and an air inlet 12.
  • the flow path substrate 22 is provided with a slot 26 having a shape corresponding to the supply tank 6A, the supplied tank 7A, and the flow path 8A.
  • the tank substrate 23 is provided with bottomed depressions 28 corresponding to the supply tank 6A and the supplied tank 7A.
  • a second alternative rotating substrate 2 shown in FIG. 17 includes an upper surface substrate 21 provided with an inlet 11 and an air port 12, a flow path substrate 22 provided with a groove hole 26 penetrating in the plate thickness direction, and a supply. It has a three-layer structure consisting of the bottom substrate 24 that is the bottom of the tank 6A and the supply tank 7A.
  • a third alternative rotating substrate 2 shown in FIG. 18 includes an upper substrate 29 provided with an inlet 11 and an air port 12, a lower substrate provided with a supply tank 6A, a supplied tank 7A, and a flow path 8A. It has a 30-layer structure.
  • FIG. 1 An example of a manufacturing method of the third alternative rotating substrate 2 using photolithography is shown below.
  • a photoresist is applied to the lower substrate 30, a flow path 8A is formed by lithography, a supply tank 6A and a supplied tank 7A are formed, an inlet 11 and air are formed on the upper substrate 29.
  • the process of forming the opening 12 and the process power of sealing the upper part of the flow path part 5 of the lower substrate 30 with the upper substrate 19 are also provided.
  • the process of forming the flow path 8A will be described in order.
  • a negative thick film photoresist is applied to a glass substrate that has been cleaned.
  • a resist suitable for the size of the flow path is selected.
  • K MPR1030 (Yuyaku Microchem) and the like are excellent in the degree of thick film formation and aspect ratio.
  • a spin coater such as a spin coater is used.
  • spin coating K MPR1030 with a spin coater perform 10 seconds at 500 rpm pre-rotation and 30 seconds at main rotation lOOOOrpm.
  • the film thickness can be changed by changing the rotation speed of the main rotation. For example, 57 ⁇ m at the main rotation lOOOrpm, 48 ⁇ m at 1070rpm, etc. Is possible.
  • pre-beta for 20 minutes at 95 ° C to expose the mask with the flow path and tank drawn. The exposure intensity and the exposure time are corrected appropriately according to the film thickness.
  • the exposure intensity is preferably about 1700mjZcm2.
  • PEB Post Exposure Bake
  • the flow path and tank pattern are formed by photolithography.
  • the tank portion of the lower substrate 30 is formed by cutting or sandblasting.
  • the upper substrate 29 with the inlet 11 and the air port 12 opened is attached to the lower substrate 30.
  • the entire flow path 8A may have hydrophobicity.
  • the liquid 9 can be held over the entire length of the flow path 8A as long as the liquid 9 can be held more reliably at the inlet end 13.
  • the longer the length of the flow path 8A the stronger the liquid 9 can be held in the supply tank 6A. Therefore, in the case where the entire first flow path is hydrophobic, a certain amount of the liquid 9 is sent to the supply tank 7A from the supply tank 6A as shown in FIG. 10, FIG. 12, FIG. 13, and FIG. Thus, it is necessary to repeat the process for generating the inertial force.
  • a more precisely defined amount of the liquid 9 can be sent from the supply tank 6A to the supply tank 7A. Further, by adjusting the time for repeating the step of generating the inertial force, it is possible to control the time required to feed a predetermined amount of the liquid 9 from the supply tank 6A to the supply tank 7A. This control of the time required for liquid feeding is suitable for liquid feeding when another mixing is performed after a predetermined reaction time after mixing.
  • the entire flow path part 5 may be hydrophobic.
  • Productivity can be improved because the entire flow path part 5 is made of a hydrophobic material or a treatment for imparting hydrophobicity to the entire flow path part 5 is performed.
  • the entire rotating substrate 2 may be hydrophobic.
  • Productivity can be further improved because the entire rotating substrate 2 can be made of a hydrophobic material or can be treated to impart hydrophobicity to the entire rotating substrate 2.
  • the structure of the liquid delivery device 1 according to the second embodiment of the present invention is the same as that of the first embodiment described with reference to FIGS. Accordingly, reference is made to these drawings in the following description.
  • the liquid feeding device 1 of the second embodiment is different from the first embodiment in the process or sequence of rotating the rotating substrate 2 executed by the rotation driving unit 4.
  • the rotation drive unit 4 rotates the rotating substrate 2 in the clockwise direction R1, which is the direction in which the inlet end 13 extends (step B), and then suddenly brakes this rotation. By doing so, an inertial force Fi is generated to release the liquid 9 held by the inlet end 13 mm.
  • the rotation drive unit 4 causes the rotating substrate 2 to suddenly rotate (rapid acceleration) in the counterclockwise direction R2 opposite to the direction in which the inlet end 13 extends, and the inertia generated at that time is generated. Release the retention of liquid 9 by inlet end 13 with force Fi.
  • a liquid feeding method using the liquid feeding apparatus 1 of the second embodiment will be described.
  • the liquid 9 is injected from the injection port 11 of the rotating substrate 2 and filled in the supply tank 6A (step A), and the injection port 11 is sealed if necessary.
  • the capillary force Fc in the counterclockwise direction R2 opposite to the direction in which the inlet end 13 extends (clockwise R1) is applied to the liquid 9 at the inlet end 13.
  • the liquid 9 in the supply tank 6A is held at the inlet end 13 by this capillary force Fc.
  • Step F the rotating substrate 2 in a stopped state is suddenly rotationally driven with a speed characteristic 43 having a constant acceleration bl in the counterclockwise direction R2 (opposite to the direction in which the inlet end 13 extends from the supply tank 6A).
  • Step F From time 0 to time tl (solid line) in FIG. 20, the rotational speed and direction of the rotating substrate 2 in process F are shown.
  • the direction of acceleration bl is counterclockwise R2.
  • the rotating substrate 2 starts rotating.
  • the rotational speed of the rotating substrate 2 increases with the acceleration bl, and reaches the rotational speed RV2 at time tl.
  • the counterclockwise rotation R2 causes an inertial force Fi to act on the liquid 9 at the inlet end 13.
  • the liquid 9 stored in the supply tank 6A and held at the inlet end 13 should remain stopped by the law of inertia.
  • the inertial force Fi in the clockwise direction R1 acts on the liquid 9 held at the inlet end 13.
  • the magnitude of the inertia force Fi is proportional to the absolute value of the acceleration bl when rotating the rotation of the rotating substrate 2 in the process F.
  • This inertia force Fi cancels the capillary force Fc and acts in the direction in which the liquid 9 at the inlet end 13 wets the flow path 8A.
  • the force Fi exceeds the capillary force Fc, the liquid 9 held at the inlet end 13 flows into the flow path 8A.
  • step G the rotating substrate 2 is braked with a speed characteristic 44 having a constant acceleration b2 (step G).
  • the rotational speed and direction of the rotating substrate 2 in process G are shown.
  • the rotation speed of the rotating substrate 2 starts to decrease from the rotation speed RV2.
  • the rotation speed of the rotating board 2 is reduced by acceleration (deceleration when the counterclockwise direction R2 is set to a positive direction) b2, and the rotation of the rotating board 2 in the counterclockwise direction R2 stops at time t2.
  • the direction of acceleration bl in process F is counterclockwise R2, while the direction of acceleration b2 in process G is clockwise R1. In other words, the acceleration b2 of the process G is opposite to the acceleration bl of the process F.
  • the absolute value of the acceleration bl of the process F is large.
  • the rotating substrate 2 needs to be rapidly rotated in the process F.
  • the process G is executed simply for the purpose of stopping the rotation of the rotating substrate 2, a rapid deceleration is not necessarily required.
  • the acceleration bl of the process F is set to be sufficiently larger than the acceleration b2 of the process G.
  • acceleration bl is set in the range of lOOOrpmZsec or more and 60000rpmZsec or less, and acceleration b2 is set to 600rpmZsec or less.
  • the duration of process F (time 0 to time tl in Fig. 20) is determined by the rotational speed RV2 and acceleration bl that are reached from the stop state.
  • the duration of process G (from time tl to time t2 in FIG. 20) is determined by the rotational speed RV2 and acceleration b2 at the start of deceleration.
  • the supply tank 6A force can be realized quickly by simply rotating the rotating substrate 2 in the process G. Subsequent reaction time is short! / Speak.
  • FIG. 22 and FIG. 23 show a first alternative of the rotation drive sequence in the second embodiment.
  • Step H from time tl to time t2 in FIG. 23 for rotating the rotating substrate 2 at a constant rotational speed RV2 for a certain period of time is executed.
  • FIG. 24 shows a speed waveform and a rotation direction of the second alternative of the rotation drive sequence.
  • this second alternative as shown conceptually by the broken line ⁇ 3 in FIG. 19, the process F for rapidly rotating the rotating board 2 in the counterclockwise direction R2 and the process G for braking the rotating board 2 are repeated. Since intermittent continuous liquid feeding is possible, it is effective when a relatively large volume of liquid 9 is fed from the supply tank 6A to the supply tank 7A.
  • FIG. 25 and FIG. 26 show a third alternative of the rotation drive sequence.
  • This third alternative consists of a process F (time t1 to time t2 in FIG. 26) for rotating the rotating substrate 2 in the counterclockwise direction R2 and a process G (time t2 to time t3 in FIG. 26) for braking the rotating board 2. ), And every time step F and step G are completed, an interpal step I (from time t3 to time t4 in FIG. 12) is executed that keeps the rotating substrate 2 stopped for a certain period of time. . By providing the interval step I, intermittent continuous liquid feeding can be performed while the reaction of the liquid 9 in the supply tank 7A is performed.
  • FIG. 27 shows a velocity waveform and a rotation direction of the fourth alternative of the rotation drive sequence.
  • process F, process H, and process G are repeated in this order, as conceptually shown by the broken line ⁇ 4 in FIG.
  • Step F, Step H, Step G, and Step I are repeated in this order.
  • FIG. 30 shows a liquid delivery device 1 according to a modification of the first and second embodiments.
  • the inlet end 13 of the flow path 8A extends in the clockwise direction R1 from the supply tank 6A.
  • the inlet end 13 of the flow path 8A extends in the counterclockwise direction R2 from the supply tank 6A.
  • the liquid feeding device 1 of this modification is used to release the holding of the liquid 9 at the inlet end 13 by the inertia force Fi generated by the sudden braking (step C). 9, 10, 12, 13, and 15!
  • the direction of rotation of the rotating substrate 2 in step ⁇ and step C (step D, if executed) Must be set counterclockwise R2.
  • the inertia force Fi generated by the rapid rotation (process F) is released to release the holding of the liquid 9 at the inlet end 13 as shown in FIGS. 20, 23, 24, 26, and 26.
  • the rotation direction of the rotating substrate 2 in the process F and the process G (process H if executed) must be set to the clockwise direction R1. .
  • the direction of the inlet end 13 and the direction of rotation of the rotary substrate 2 have the following general relationship.
  • the inertia force Fi is generated by rapid rotation (process F)
  • the tank 7A to be supplied is arranged inside the rotary substrate 2, that is, at a position closer to the rotary shaft 3 than the supply tank 6A.
  • the inlet end 13 of the flow path 8A extends from the supply tank 6A in the clockwise direction R1. Whether the rotating substrate 2 rotating in the clock direction R1 is braked suddenly as in the first embodiment (step C in FIGS. 6 and 8), or the rotating substrate 2 is rotated in the counterclockwise direction R2 as in the second embodiment. When suddenly rotated (step F in Figs. 20 and 22), an inertial force Fi in the clockwise direction R1 is generated.
  • FIG. 32 shows a first modification of the third embodiment.
  • the inlet end 13 extends in the counterclockwise direction R2 from the supply tank 6A. Therefore, suddenly brake the rotating substrate 2 rotating in the counterclockwise direction R2.
  • the rotating substrate 2 is suddenly rotated in the clockwise direction Rl (step C in FIGS. 6 and 8) (step F in FIGS. 20 and 22)
  • the inertia force Fi in the counterclockwise direction R2 is generated.
  • the holding of the liquid is released by the inlet end 13 by this inertial force Fi, the liquid 9 flows through the flow path 8A toward the rotating shaft 3 and flows into the supply tank 7A.
  • the flow path 8A extends inward in the radial direction r when meandering.
  • the supply tank 6A and the supplied tank 7A are arranged side by side in a direction orthogonal to the radial direction r.
  • the flow path part 5 includes an additional supply tank (third tank) 7B in addition to the supply tank 6A and the supply tank 7A. Similar to the supplied tank 7A, the supplied tank 7B is formed in a spatially closed state on the rotating substrate 2 except for the air port 12.
  • the flow path part 5 includes a flow path (second flow path) 8B for connecting the supply tank 6A and the supply tank 7B in addition to the flow path 8A for communicating the supply tank 6A and the supply tank 7A. Similar to the flow path 8A, the flow path 8B is formed on the rotating substrate 2 in a spatially closed state.
  • Both the supplied tank 7A and the supplied tank 7B are arranged outside the supply tank 6A in the radial direction!:.
  • the tank 7A to be supplied is arranged on the R1 side in the clockwise direction (left side in FIG. 35) than the tank 6A. Therefore, the inlet end 13 of the flow path 8A extends in the clockwise direction R1 from the supply tank 6A.
  • the tank 7B to be supplied is arranged on the counterclockwise direction R2 side (right side in FIG. 35) than the tank 6A. Accordingly, the inlet end (fourth channel end) 13 of the channel 8B extends from the supply tank 6A in the counterclockwise direction R2.
  • the outlet end 14 of the channel 8A extends outward in the radial direction r to prevent backflow.
  • the outlet end portion (fifth flow passage end portion) 14 of the flow path 8B also extends outward in the radial direction r.
  • Each of the inlet end portions 13 of the flow channel 8A and the flow channel 8B has hydrophobicity.
  • the parts other than the inlet end 13 of the flow path 8A and the flow path 8B, the supply tank 6A, the supplied tank 7A, and the supplied tank 7B have hydrophilicity.
  • Fig. 36 and Fig. 37 show examples of continuous switching of the liquid feeding direction.
  • the rotating substrate 2 is rotationally driven in the clockwise direction R1 with a speed characteristic 41 having a constant acceleration al (step B in FIG. 37). Time 0 to time tl). Subsequently, the rotating substrate 2 rotating with the speed characteristic 41 is suddenly braked with the speed characteristic 42 having a constant acceleration a2 (step C, time tl to time t2 in FIG. 37).
  • the inertial force Fi in the clockwise direction R1 acts on the liquid 9 at the inlet end 13 of the flow path 8A, and the liquid 9 in the supply tank 6A flows into the supply tank 7A through the flow path 8A.
  • the rotation direction of the rotating substrate 2 is reversed from the clockwise direction R1 to the counterclockwise direction R2, and the process B (time t2 to time t3 in FIG. 37) and the process C (time t3 to time t4 in FIG. 37) are executed. To do.
  • the inertia force Fi in the counterclockwise direction R2 acts on the liquid 9 at the inlet end 13 of the flow path 8B, and the liquid 9 in the supply tank 6A flows. It flows into the tank 7B through the path 8B.
  • the supply tank 6A and the supply tank 7A and the supply tank 7B arranged on the left and right sides thereof are arranged in a direction perpendicular to the radial direction r of the rotary shaft 3. They are arranged side by side.
  • the flow path part 5 includes an additional supply tank (third tank) 7B in addition to the supply tank 6A and the supply tank 7A.
  • the tank 7B to be supplied is formed in a spatially closed state except for the air port 12 on the rotating substrate 2.
  • the flow path part 5 includes a flow path (second flow path) 8B for connecting the supply tank 6A and the supply tank 7B in addition to the flow path 8A for communicating the supply tank 6A and the supply tank 7A. Similar to the flow path 8A, the flow path 8B is formed on the rotating substrate 2 in a spatially closed state.
  • Both the supplied tank 7A and the supplied tank 7B are arranged outside the supply tank 6A in the radial direction!:. Both the tank 7A and the tank 7B to be supplied are arranged on the R1 side in the clockwise direction (left side in FIG. 39) from the tank 6A. Therefore, the inlet end 13 of the flow path 8A extends in the clockwise direction R1 from the supply tank 6A. Similarly, the inlet end (fourth channel end) 13 of the channel 8B also extends in the clockwise direction R1 from the supply tank 6A. The inlet end 13 of the channel 8A is closer to the center of rotation than the inlet end 13 of the channel 8B.
  • the cross-sectional area of the inlet end 13 of the flow path 8A is larger than the cross-sectional area of the inlet end 13 of the flow path 8B. Therefore, the pressure per unit area generated by the capillary force Fca applied to the inlet end 13 of the flow path 8A is always higher than the pressure per unit area generated by the capillary force Feb applied to the inlet end 13 of the flow path 8B. Get smaller.
  • the outlet end 14 of the channel 8A extends outward in the radial direction r to prevent backflow.
  • the outlet end portion (fifth flow passage end portion) 14 of the flow path 8B also extends outward in the radial direction r.
  • Each of the inlet end portions 13 of the flow channel 8A and the flow channel 8B has hydrophobicity. Portions other than the inlet end portion 13 of the flow path 8A and the flow path 8B, the supply tank 6A, the supplied tank 7A, and the supplied tank 7B have hydrophilicity.
  • the capillary force Fca applied to the inlet end 13 of the flow path 8A which is always greater than the capillary force Feb, is always exceeded, so the flow path liquid 9 passes through the flow path 8A. It flows from the supply tank 6A to the supplied tank 7A, and at the same time, flows from the supply tank 6A to the supplied tank 7B through the flow path 8B. Moreover, when the water level of the amount of solution in the supply tank 6A is between the inlet end 13 of the flow path 8A and the inlet end 13 of the flow path 8B, the liquid 9 passes through the flow path 8A and is supplied to the supply tank 6A.
  • Liquid 9 can be sent selectively to
  • the liquid delivery device 1 according to the sixth embodiment of the present invention shown in FIG. 40 includes two supply tanks, that is, supply tanks 6A and 6B.
  • the supply tanks 6A and 6B are arranged side by side in a direction orthogonal to the radial direction r.
  • the supplied tank 7A In the supplied tank 7A, the supplied tank 7A is arranged at a position farther from the rotating shaft 3 than the supplied tanks 6A and 6B.
  • the inlet end 13 of the flow path 8A that connects the supply tank 6A and the supply tank 7A extends in the clockwise direction R1.
  • the supply tank 6B communicates with the supply tank 7A through a spatially closed flow path 8C formed in the rotating substrate 2.
  • the inlet end 13 of the channel 8C extends in the counterclockwise direction R2.
  • Both the inlet ends 13 of the flow path 8A and the flow path 8C are hydrophobic. Further, the outlet end portions 14 of the flow channel 8A and the flow channel 8C both extend outward in the radial direction r. Further, the portions other than the inlet end 13 of the flow path 8A and the flow path 8C, the supply tanks 6A and 6B, and the supply tank 7A have hydrophilicity.
  • a supply tank (fourth tank) 7C is further connected to a supply tank 7A communicated with the supply tank 6A through a flow path 8A.
  • Supply tank 6A and supply tanks 7A and 7C are arranged side by side in the radial direction r. Specifically, the supplied tank 7A is arranged outside the supply tank 6A, and the supplied tank 7C is arranged outside the supplied tank 7A.
  • the inlet end 13 of the flow path 8A that connects the supply tank 6A and the supply tank 7A extends in the clockwise direction R1. Further, the outlet end 14 of the channel 8A extends outward in the radial direction r.
  • the inlet end (fifth flow path end) 13 of the flow path (third flow path) 8D connecting the supplied tank 7A and the supplied tank 7C also extends in the clockwise direction R1. Further, the outlet end (sixth flow path end) 14 of the flow path 8D extends outward in the radial direction r.
  • the inlet ends 13 of the flow paths 8A and 8D are both hydrophobic. Further, the portions other than the inlet end 13 of the flow paths 8A and 8D, the supply tank 6A, and the supplied tanks 7A and 7C have hydrophilicity.
  • each liquid feeding can be provided with a function.
  • the solution can have more complicated reaction functions such as extraction, mixing, reaction, and detection.
  • a supply tank 7D may be further provided on the downstream side of the supply tank 7C, and the number of stages of multistage liquid feeding may be four or more.
  • the inlet end 13 of the flow path 8A extends in the clock direction R1, whereas the inlet end 13 of the flow path 8D is supplied.
  • the tank 7A has the same structure as the seventh embodiment (see FIG. 41) except that the force of the tank 7A also extends in the counterclockwise direction R2.
  • the flow path 8A and the inlet end 13 of the flow path 8D extend in opposite directions.
  • the liquid to be supplied is supplied when liquid is supplied from the supplied tank 7A to the supplied tank 7C. It is possible to more reliably prevent the liquid 9 from flowing backward from the tank 7A to the supply tank 6A.
  • the liquid delivery device 1 of the ninth embodiment of the present invention shown in FIG. 44 has a configuration in which two further supplied tanks 7D and 7E are provided on the downstream side of the supplied tank 7B of the fourth embodiment (see FIG. 35). Yes.
  • the to-be-supplied tank 7B and the to-be-supplied tank 7D are connected by the flow path 8E, and the to-be-supplied tank 7D and the to-be-supplied tank 7E are connected by the flow path 8F.
  • Both the inlet ends 13 of the flow paths 8E and 8F extend in the counterclockwise direction R2. Yes.
  • the inertia in the counterclockwise direction R2 is obtained. Force Fi is generated. Due to the inertia force Fi in the counterclockwise direction R2, the liquid 9 can be sent in multiple stages from the supply tank 6A to the supply tank 7E through the supply tanks 7B and 7D. According to the arrangement of the tank of the ninth embodiment, for example, the liquid 9 in the supply tank 6A is subjected to various treatments in the supplied tanks 7B, 7D, and 7E, and the remaining liquid 9 is discarded to the supplied tank 7A. Control is possible.
  • the liquid delivery device 1 of the tenth embodiment of the present invention shown in FIG. 45 includes, in addition to the supplied tank 7C, the supplied tank 7A of the sixth embodiment (FIG. 41), two more tanks, that is, the supplied tank 7F. , 7G is connected.
  • the flow path 8G for connecting the supplied tank 7A and the supplied tank 7F and the flow path 8H for connecting the supplied tank 7A and the supplied tank 7G both have an inlet end 13 extending in the clockwise direction R1. ing. Further, the outlet ends 14 of the flow paths 8G and 8H both extend outward in the radial direction r. Three or more tanks may be connected to one tank like the supplied 7C, 7F, 7G in the present embodiment.
  • the liquid delivery device 1 of the eleventh embodiment of the present invention shown in FIGS. 46 to 48 is different from the first embodiment in the structure of the rotating substrate 2.
  • the rotating substrate 2 includes a rotating substrate body 51 and a chip body 52 that can be attached to and detached from the rotating substrate body 51.
  • the flow path part 5 is not formed in the rotating substrate body 51, and the flow path part 5 is formed in each chip body 52.
  • rotation A plurality of receiving holes 53 for receiving the chip bodies 52 are formed on the upper surface side of the substrate body 51.
  • the receiving holes 53 are arranged radially with respect to the rotating shaft 3.
  • a recess 53 a is formed on the outer wall surface of the accommodation hole 53.
  • the chip body 52 By disposing a part of the chip body 52 in the recess 53 a, the chip body 52 is held in the accommodation hole 53. In particular, when the rotating substrate 2 rotates, the chip body 52 is biased toward the recess 53a by centrifugal force, so that the chip body 52 is securely held by the rotating substrate body 51 without dropping from the receiving hole 53. .
  • the liquid-feeding device and liquid-feeding method of the present invention are useful as a drive source for a device that analyzes biological components such as proteins contained in biological samples, particularly blood.
  • the blood sample is subjected to blood cell plasma separation in the previous stage, and the protein contained in the plasma is used as the sample to be measured.
  • the centrifugal force using centrifugal force is also preferably used for the separation.
  • the liquid feeding method using a rotating substrate can be easily combined with blood cell plasma separation using centrifugal force.
  • functions such as reaction, purification, and detection can be imparted by carrying reagents or the like in each tank or performing physical operations such as heating on each tank.
  • liquid feeding method of the present invention it is possible to perform liquid feeding regardless of the conventional centrifugal direction, so that the flow path tank can be easily integrated with the blood cell plasma separation.
  • blood cell plasma separation is performed by utilizing the difference in density between blood cells and plasma due to centrifugal force, so that high density blood cells always settle in the centrifugal direction.
  • the conventional liquid feeding method when the separated plasma is sent to another tank, the blood cell component that has settled in the centrifugal direction is prevented from going! Since the end can be set in the direction of rotation regardless of the centrifugal outside, easily separated plasma components can be fed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

 送液装置1は回転基板2を備える。回転基板2には供給槽6Aと被供給槽7Aを連通させる流路8Aが形成されている。流路8Aが供給槽6Aと接続する入口端部13は、回転基板2の回転方向のうち時計方向R1に延びている。入口端部13は毛細管力により供給槽6A内の液体9を保持する。回転駆動部4は、毛細管力を上回り、時計方向R1に向いた慣性力が入口端部13の液体9に作用するように回転基板2を回転駆動する。自由度の高い微小流体の送液挙動制御を実現できる。

Description

明 細 書
送液装置及び送液方法
技術分野
[0001] 本発明は、送液装置及び送液方法に関する。特に、本発明は、微小流路内での微 量な液体の流れを制御して送液する送液方法及び送液装置に関する。
背景技術
[0002] 近年、様々な健康診断チップが開発されて ヽる。これら健康診断チップの殆どは、 マイクロタス -TAS : Micro Total Analysis System)と呼ばれる微小流路構造を持 つカード型のデバイスである。流路を微細化すると、生体力 抽出するサンプル量は 微量でよい点等で非常に有用である。また、流路の微細化により健康診断チップを 含む装置全体を小型化できれば、比較的大規模の病院だけでなぐ診療所や家庭 での診断を行う POCT (Point of care test :その場診断)用途に用いることが可能とな る。
[0003] マクロな系では、送液手段としてポンプが一般的に用いられる。しかしながら、極少 量の流体を扱う微小流路では、ポンプに接続したチューブで発生する無効体積 (デ ッドボリューム)を無視することができな 、。
[0004] POCT用途で好適に用いられる送液方法の一つに遠心力を駆動源とした方法が ある。この送液方法には、デッドボリュームが発生しない、同時かつ並列に多数の処 理を実行できる等の長所がある。例えば、特許文献 1には、毛細管バルブ方式のマイ クロ流路送液方法が開示されている。この送液方法は、マイクロ流路に発生する毛細 管力によって流れを阻止して 、た流体を、回転基板を回転させることで発生する遠 心力によって力の釣り合 、を崩し、一つのマイクロ槽カも他のマイクロ槽へと送液する ものである。
[0005] し力しながら、特許文献 1に開示されたマイクロ流路送液方法では、回転に伴 、発 生する遠心性の力を駆動源とするため、バルブの配置位置は供給側のマイクロ槽ょ りも回転基板の回転軸に対して半径方向外向き (遠心性の方向)に限定され、かつ、 送液も基本的には遠心方向の一方向のみに限定される。この駆動原理上の制約の ため、特許文献 1に開示されたマイクロ流路送液方法は、回転基板の設計の自由度 が少なぐ流路構造の配置及び送液の挙動には限界があり、送液に多くの機能を持 たせると!、うことができな!/、。
[0006] 特許文献 1 :特 2001— 503854号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、一方向に限定されない自由度の高い送液挙動制御を実現し、設計自 由度が高ぐかつ送液に種々の機能を持たせることができる送液装置及び送液方法 を提供することを課題とする。
課題を解決するための手段
[0008] 本発明の第 1の態様は、回転中心線 (S)まわりに少なくとも第 1の回転方向(Rl, R 2)に回転可能な回転基板 (2)と、前記回転基板に形成され、注入口(11)を除いて 空間的に閉じられた第 1の槽 (6A)と、前記回転基板に形成され、空気口(12)を除 いて空間的に閉じられた第 2の槽 (7A)と、前記回転基板に形成され、前記第 1の槽 と接続する第 1の流路端部(13)と、前記第 2の槽と接続する第 2の流路端部(14)と を備え、前記第 1の槽と前記第 2の槽とを連通させ、前記第 1の流路端部は前記第 1 の槽から前記回転基板の前記第 1の回転方向に沿って延び、かつ前記第 1の流路 端部は前記第 1の槽内の液体 (9)を毛細管力 (Fc)により保持する第 1の流路 (8A) と、前記毛細管力を上回り、かつ前記第 1の回転方向に向いた慣性力 (Fi)が前記第 1の流路端部の前記液体に作用するように、前記回転基板を前記回転中心線まわり に回転駆動可能な回転駆動部 (4)とを備えることを特徴とする送液装置を提供する。
[0009] ここで回転方向は、回転中心線に対して直交する仮想の線に対して直交し、かっこ の仮想の線と同一の平面上にある方向として定義する。例えば、回転基板が回転軸 に固定される場合、この回転軸の半径方向に対して直交する接線方向が回転方向 である。第 1の回転方向は、平面視で回転中心線に対して時計方向及び反時計方 向のいずれでもよい。
[0010] 注入ロカ 注入された第 1の槽内の液体は、毛細管力により第 1の流路の第 1の端 部で保持される。回転駆動部により回転基板が回転することにより、第 1の端部で保 持されている液体に第 1の回転方向に慣性力が作用する。この慣性力が毛細管力を 上回ると、第 1の槽内の液体は第 1の流路に流れ込み、第 2の槽に送液される。第 2 の槽内の空気は空気口を介して外部に排出される。
[0011] 毛細管力により第 1の槽内の液体を保持し、かついつたん慣性力が毛細管力を上 回ると第 1の槽力 第 2の槽へ確実に液体が送液されるためには、第 1の流路は微細 な流路である必要がある。具体的には、第 1の流路の幅は、例えば 20 /z m以上 200 0 μ m以下に設定することが好ま 、。
[0012] 注入口は、例えば回転基板に形成された第 1の槽内と回転基板の外部とを連通さ せる流路である。この場合、注入口の開口部の面積は第 1の槽の面積よりも十分に小 さい必要がある。また、第 1の槽の一部を空気は透過するが液体は透過しない材料 で形成することにより、注入口として機能させてもよい。同様に、空気口は、例えば回 転基板に形成された第 2の槽内と回転基板の外部とを連通させる流路である。また、 第 2の槽の一部又は全部を空気は透過するが液体は透過しない材料で形成すること により、空気口として機能させてもよい。
[0013] 遠心性の力ではなぐ慣性力が第 1の端部に液体を保持する毛細管力を上回ること で第 1の流路を介して第 1の槽力 第 2の槽に液体が送液される。従って、第 1の槽と 第 1の流路の境界である第 1の端部を第 1の槽に対して外側、ないしは回転中心線 力 遠い位置に配置する必要がない。この点で第 1及び第 2の槽ゃ第 1の流路の配 置に関する設計の自由度が高い。
[0014] 遠心性の力を駆動源とする場合、一方向、すなわち液体の供給側の槽から回転中 心線に対して遠ざ力る遠心方向のみへの送液が可能である。これに対して、第 1の 発明の送液装置では、第 1の回転方向、すなわち第 1の流路端部が延びる方向を時 計方向と反時計方向の 2方向のいずれかに設定することで、第 1の槽力 これらの 2 方向のいずれにも送液を行うことができる。換言すれば、第 1の発明の送液装置は、 一方向に限定されない自由度の高い送液挙動制御を実現できる。
[0015] 慣性力が毛細管力を上回ったことにより、第 1の流路を第 1の槽力 第 2の槽に向か つて流れる液体は、その速度を減速させる成分として流路壁面力 流路抵抗を受け る。しかし、微細な流路では与えた慣性力に比べ流路抵抗が小さいため、第 1の槽か らいずれの方向にも液体を送液することができる。換言すれば、第 2の槽を第 1の槽 よりも回転中心線に近 、側に配置し、第 1の槽から求心性の方向へ送液することも可 能である。これによつて、より複雑な液体の送液を容易に実現することができ、流路の 設計の自由度も増すため、送液装置の設計が容易となる。
[0016] 具体的には、前記回転駆動部は、いったん第 1の回転方向、すなわち第 1の流路 端部が第 1の槽力 延びる方向に回転させた回転基板を急制動することで、第 1の流 路端部の液体に慣性力を生じさせる。すなわち、前記回転駆動部は、前記第 1の回 転方向に前記回転基板を回転させた後、第 1の加速度 (a2)を有する速度特性 (42) で前記回転基板を停止させ、前記第 1の加速度 (a2)により前記第 1の流路端部の前 記液体に前記毛細管力を上回る慣性力を生じさせる。
[0017] 回転基板を第 1の回転方向に回転させると、第 1の流路端部の液体には、遠心性 の方向、すなわち回転中心線力 遠ざ力る方向に遠心力が作用する。この遠心力の 作用する方向は、第 1の槽力 第 1の流路端部が延びる向きとは異なるので、液体は 第 1の流路に流入することなく毛細管力によって第 1の槽内に保持される。第 1の回 転方向に回転している回転基板を急制動すると、第 1の槽に蓄えられて第 1の流路 端部に保持されている液体は、慣性の法則により第 1の回転方向に運動し続けようと する。その結果、第 1の流路端部に保持されている液体には第 1の回転方向の慣性 力が作用する。具体的には、回転基板の回転を停止させる際の第 1の加速度に比例 する第 1の回転方向の慣性力が、第 1の流路端部の液体に作用する。この慣性力が 第 1の流路端部に液体を保持する毛細管力を上回ることで、第 1の流路端部に保持 されていた液体が第 1の流路に流れ込み、第 1の流路を通って第 2の流路端部から 第 2の槽に流入する。
[0018] この急制動で生じる慣性力による送液を実現するには、前記第 1の流路端部が前 記第 1の回転方向となす角度が 45° 以上 +45° 以下に設定すればよい。従って 、第 1の流路端部の向きについての設計の自由度が高ぐ生産性等の面で好ましい
[0019] 代案としては、回転駆動部は第 2の回転方向、すなわち第 1の流路端部が第 1の槽 力 延びる方向と逆向きに回転基板を急回転させることで第 1の流路端部の液体に 慣性力を生じさせる、すなわち、前記回転駆動部は、前記第 1の回転方向とは逆向き の第 2の回転方向(Rl, R2)に第 2の加速度 (bl)を有する速度特性 (43)で前記回 転基板を回転させ、前記第 2の加速度により前記第 1の流路端部の前記液体に前記 毛細管力を上回る慣性力を生じさせる。
[0020] 第 1の回転方向が平面視で回転中心線に対して時計方向であれば、第 2の回転方 向は回転中心線に対して反時計方向である。逆に、第 1の回転方向が平面視で回転 中心線に対して反時計方向であれば、第 2の回転方向は回転中心線に対して時計 方向である。
[0021] 第 2の回転方向に回転基板を急回転させると、第 1の槽に蓄えられて第 1の流路端 部に保持されている液体は、慣性の法則により静止した状態を維持しょうとする。そ の結果、第 1の流路端部に保持されている液体には、第 2の回転方向とは逆向き、す なわち第 1の回転方向の慣性力が作用する。具体的には、第 2の回転方向に回転基 板を急回転させる際の第 2の加速度に比例する第 1の回転方向の慣性力が、第 1の 流路端部の液体に作用する。この慣性力が第 1の流路端部に液体を保持する毛細 管力を上回ることで、第 1の流路端部に保持されていた液体が第 1の流路に流れ込 み、第 1の流路を通って第 2の流路端部から第 2の槽に流入する。回転基板を急回転 させるだけで、第 1の槽カも第 2の槽へ素早い送液を実現できる。従って、回転基板 の急回転により送液は、化学反応等の混合後の反応時間が短い場合の送液に適し ている。
[0022] この急回転で生じる慣性力による送液を実現するには、前記第 1の流路端部が前 記第 2の回転方向となす角度が 135° 以上 235° 以下に設定すればよい。従って、 第 1の流路端部の向きについての設計の自由度が高ぐ生産性等の面で好ましい。 前述のように、前記第 2の槽は前記第 1の槽よりも前記回転中心線に近い位置に配 置されてもよい。
[0023] 前記第 1の流路の前記第 2の流路端部は、第 1の回転方向と直交する方向に沿つ て延びて前記第 2の槽に接続して 、ることが好ま 、。 V、つたん第 2の槽に流入した 液体が、前述の回転基板の急制動又は急回転の際に生じる慣性力によって第 2の 流路端部から第 1の槽に向力つて第 1の流路を逆流するのを防止できる。 [0024] 前記第 1の流路の前記第 1の流路端部が疎水性を有することが好ましい。
[0025] 疎水性を有するとは、第 1の流路の第 1の流路端部が疎水性材料力 なり、又は疎 水性を付与する処理が施されていることを意味する。第 1の流路端部が疎水性を有 することにより、第 1の槽に蓄えられた液体を確実に第 1の流路端部で保持することが できる。詳細には、前述のように第 1の流路の流路幅が十分狭ぐかつ第 1の流路端 部が疎水性を有していれば、液体は表面張力により第 1の流路内へ濡れず、第 1の 流路端部に保持される。
[0026] 前記第 1の流路の全体が疎水性を有して!/、てもよ!/、。この場合、第 1の流路端部で 液体をより確実に保持できるだけでなぐ第 1の流路の長さ全体で液体を保持ができ る。また、この場合、第 1の流路の長さが長い程、第 1の槽内に液体をより強固に保持 される。従って、第 1の流路の全体が疎水性を有する場合、ある量の液体を第 1の槽 力も第 2の槽に送液するためには、前述の回転基板の急制動又は急回転を繰り返す 必要がある。この急制動又は急回転の繰り返し回数を制御することにより、より正確に 定められた量の液体を第 1の槽カも第 2の槽に送液することができる。また、急制動 又は急回転の繰り返しを行う時間を調節することで、定められた量の液体を第 1の槽 力 第 2の槽に送液するのに要する時間を制御できる。この送液に要する時間の制 御は、混合後の所定の反応時間を経て別の混合を行う場合等の送液に適して!/ヽる。
[0027] 前記回転基板全体が疎水性を有していてもよい。回転基板全体を疎水性とすれば 、例えば第 1の流路端部のような特定の部位のみでなぐ回転基板の全体を疎水性 材料とするか、回転基板の全体に疎水性を付与する処理を施せばよいので、回転基 板の生産性を向上することができる。
[0028] 前記第 1の流路の前記第 2の流路端部は親水性を有することが好ま U、。
[0029] 親水性を有するとは、第 1の流路の第 2の流路端部が親水性材料からなり、又は親 水性を付与する処理が施されて ヽることを意味する。第 2の流路端部が親水性を有し ていれば、前述の回転基板の急制動又は急回転で生じる慣性力により第 1の流路に 流入した液体は、湿潤効果と毛細管現象によって確実に第 2の流路端部力 第 2の 槽に流入する。従って、より確実に所望の送液挙動を実現できる。
[0030] 前記第 1の流路の前記第 1の流路端部を除く全体が親水性を有していてもよい。第 1の流路の前記第 1の流路端部を除く全体が親水性を有していれば、湿潤効果と毛 細管現象によってより確実に第 2の槽に液体が流入する。
[0031] 第 1の槽に蓄えられた液体を非湿潤効果により第 1の流路端部で確実に保持し、か つ回転基板の急制動又は急回転により生じる慣性力でいったん第 1の流路端部での 保持が解除されると液体が確実に第 1の槽力 第 2の槽に送液されるためには、前記 第 1の槽及び前記第 2の槽は親水性を有し、前記第 1の流路の前記第 1の流路端部 は疎水性を有し、かつ
前記第 1の流路の前記第 1の流路端部を除く全体が親水性を有することが好ましい。
[0032] 前記回路基板に、少なくとも前記第 1の槽、前記第 2の槽、及び前記第 1の流路を 備える流路部位 (5)が複数個形成されていることが好ましい。複数の流路部位を一 つの回転基板に集積ィ匕して設けることにより、前述の回転基板の急制動又は急回転 を 1回実行すれば、各流路部位の第 1の槽内の液体を同時に第 2の槽に送液するこ とができる。よって、同時並列処理数を増加させて、多数の検体を短時間で処理する ことができる。また、一つの回転基板に多数の流路部位を形成させることは、回転基 板の製造コスト面から見ても、一つの検体の処理コストを下げることに貢献する。
[0033] 送液装置は、前記回転基板に形成され、空気口を除いて空間的に閉じられた第 3 の槽 (7B)と、前記回転基板に形成され、前記第 1の槽と接続する第 3の流路端部(1 3)と、前記第 3の槽と接続する第 4の流路端部(14)とを備え、前記第 1の槽と前記第 3の槽とを連通させ、前記第 3の流路端部は前記第 1の槽から前記回転基板の前記 第 1の回転方向とは逆向きの第 2の回転方向に延び、かつ前記第 3の流路端部は前 記第 1の槽内の液体を毛細管力により保持する第 2の流路 (8B)とをさらに備え、前 記回転駆動部は、前記毛細管力を上回り、かつ前記第 2の回転方向に向いた慣性 力が前記第 3の流路端部の前記液体に作用するように、前記回転基板を前記回転 中心線まわりに回転駆動可能であってもよい。
[0034] 第 1の流路が第 1の槽と接続する第 1の流路端部は第 1の回転方向に延び、第 2の 流路が第 1の槽と接続する第 3の流路端部は第 1の回転方向とは逆方向の第 2の回 転方向を向いている。換言すれば、第 1の槽と接続している第 1及び第 3の流路端部 は互いに逆方向に延びている。よって、回転駆動部が回転基板を回転させる方向( 時計方向又は反時計方向)により、第 1の槽力 第 1の流路を経て第 2の槽に液体を 送液することも、第 1の槽力 第 2の流路を経て第 3の槽に液体を送液することもでき る。換言すれば、回転駆動部が回転基板を回転させる方向により、第 2の槽と第 3の 槽のいずれか一方を選択して第 1の槽力 液体を送液することができる。また、回転 駆動部が回転基板を回転させる方向を切り換えることにより、第 1の槽力 第 2の槽と 第 3の槽に対して連続的に液体を送液することもできる。よって、一つの流路群で、複 雑な反応を実現することができる。
[0035] また、送液装置は、前記回転基板に形成され、空気口を除いて空間的に閉じられ た第 4の槽 (7C)と、前記回転基板に形成され、前記第 2の槽と接続する第 5の流路 端部(13)と、前記第 4の槽と接続する第 6の流路端部(14)とを備え、前記第 2の槽と 前記第 4の槽とを連通させ、前記第 5の流路端部は前記第 2の槽から前記回転基板 の前記第 1の回転方向又は第 1の回転方向とは逆向きの第 2の回転方向に延び、か つ前記第 5の流路端部は前記第 2の槽内の液体を毛細管力により保持する第 3の流 路 (8D)とをさらに備え、前記回転駆動部は、前記毛細管力を上回り、かつ前記第 5 の流路端部が前記第 2の槽力 延びる向きの慣性力が前記液体に作用するように、 前記回転基板を前記回転中心線まわりに回転駆動可能であってもよい。
[0036] 多段階での送液を実現することができる。詳細には、第 1の流路を介して第 1の槽 力 第 2の槽に液体を送液し、続いて第 2の装置に蓄えられた液体を第 3の流路を介 して第 4の槽に送液できる。よって、より複雑な反応機能を実現することができる。例 えば、一つの流路群で抽出、混合、反応、及び検出を順次実行することができる。
[0037] 前記回転駆動部は、前記回転基板を回転させるモータ(31)と、前記モータに速度 特性を与える速度特性印加部(34)とを備える。
[0038] モータとしては、例えば DCモータ、 DCブラシレスモータ、 ACモータ、又はステツピ ングモータを使用することができる。ステッピングモータを採用した場合、前述した回 転と急制動を外部の駆動信号を印加するだけで、容易に実現することができる。
[0039] また、前記回転駆動部は、回転中の前記回転基板の回転速度を検出する回転速 度検出器 (35)と、前記回転速度検出器の検出した前記回転速度に基づいて、前記 速度特性印加部が前記モータに与える速度特性を補正する回転速度補正部(36)と を備えてもよい。実際の回転速度をフィードバックして速度特性を補正しつつ、回転 基板を回転駆動できるため、送液量が安定し、かつ送液量の繰り返し再現性も向上 する。
[0040] 本発明の第 2の態様は、前述の送液装置に使用される回転基板を提供する。すな わち、本発明の第 2の態様は、回転中心線 (S)まわりに少なくとも第 1の回転方向 (R 1, R2)に回転可能である、送液装置用の回転基板(2)であって、注入口を除いて空 間的に閉じられた第 1の槽 (6A)と、空気口を除いて空間的に閉じられた第 2の槽 (7 A)と、前記第 1の槽と接続する第 1の流路端部と、前記第 2の槽と接続する第 2の流 路端部とを備え、前記第 1の槽と前記第 2の槽とを連通させ、前記第 1の流路端部は 前記第 1の槽から前記回転基板の前記第 1の回転方向に延びる第 1の流路 (8A)と が形成されていることを特徴とする回転基板を提供する。
[0041] 本発明の第 3の態様は、回転中心線 (S)まわりに少なくとも第 1の回転方向(Rl, R 2)に回転可能であって、空間的に閉じられた第 1の槽 (6A)と、空間的に閉じられた 第 2の槽 (7A)と、前記第 1の槽と接続する第 1の流路端部(13)と、前記第 2の槽と接 続する第 2の流路端部(14)とを備え、前記第 1の槽と前記第 2の槽とを連通させ、前 記第 1の流路端部は前記第 1の槽から前記回転基板の前記第 1の回転方向に延び、 かつ前記第 1の流路端部は前記第 1の槽内の液体 (9)を毛細管力により保持する流 路 (8A)とを形成した回転基板を準備し、前記毛細管力を上回り、かつ前記第 1の回 転方向に向いた慣性力が前記第 1の流路端部の前記液体に作用するように、前記 回転基板を前記回転中心線まわりに回転させることを特徴とする、送液方法を提供 する。
[0042] 具体的には、前記第 1の回転方向に第 1の加速度を有する速度特性で前記回転基 板を回転させ、前記第 1の加速度よりも絶対値の大きい第 2の加速度を有する速度特 性で前記回転基板の前記第 1の回転方向の回転を停止させ、それによつて前記毛 細管力を上回る前記第 1の回転方向を向いた慣性力を前記第 1の流路端部の前記 液体に生じさせる。例えば、第 1の加速度の大きさは 600rpm/secであり、第 2の加速 度の大きさは lOOOrpm/sec以上 60000rpm/sec以下である。
[0043] 回転基板を第 1の回転方向に回転させると、第 1の流路端部の液体には、遠心性 の方向、すなわち回転中心線力 遠ざ力る方向に遠心力が作用する。この遠心力の 作用する方向は、第 1の槽力 第 1の流路端部が延びる向きとは異なるので、液体は 第 1の流路に流入することなく毛細管力によって第 1の槽内に保持される。次に、第 1 の加速度よりも絶対値の大きい第 2の加速度を有する速度特性で回転基板の第 1の 回転方向の回転を停止させると、第 1の槽に蓄えられて第 1の流路端部に保持されて いる液体は、慣性の法則により第 1の回転方向に運動し続けようとする。その結果、 第 1の流路端部に保持されて!、る液体には第 2の加速度に比例する第 1の回転方向 の慣性力が作用する。この慣性力が第 1の流路端部に液体を保持する毛細管力を 上回ることで、第 1の流路端部に保持されていた液体が第 1の流路に流れ込み、最 終的には第 2の槽に流入する。
[0044] 代案としては、前記第 1の回転方向と逆向きの第 2の回転方向に、第 3の加速度を 有する速度特性で前記回転基板を回転させ、それによつて前記毛細管力を上回る 前記第 1の回転方向を向いた慣性力を前記第 1の流路端部の前記液体に生じさせ、 前記第 3の加速度よりも絶対値の小さい第 4の加速度を有する加速度特性で前記回 転基板の前記第 2の回転方向の回転を停止させる。例えば、第 3の加速度の大きさ は 600rpm/secであり、第 4の加速度の大きさは lOOOrpm/sec以上 60000rpm/secで ある。
[0045] 第 2の回転方向に回転基板を急回転させると、第 1の槽に蓄えられ、第 1の流路端 部に保持されている液体は、慣性の法則により静止した状態を維持しょうとする。そ の結果、第 1の流路端部に保持されている液体には第 2の回転方向に回転基板を急 回転させる際の第 3の加速度に比例する第 1の回転方向の慣性力が作用する。この 慣性力が第 1の流路端部に液体を保持する毛細管力を上回ることで、第 1の流路端 部に保持されていた液体が第 1の流路に流れ込み、最終的には第 2の槽に流入する
[0046] 前述の回転基板の急制動や急回転を実行する前に、第 1の槽と回転基板の外部を 連通させる注入ロカ 第 1の槽に液体を注入する。
発明の効果
[0047] 本発明の送液装置及び送液方法では、遠心性や求心性の力ではなく回転基板の 急制動又は急回転により生じる慣性力が液体を保持する毛細管力を上回ることで、 送液を実現している。従って、一方向に限定されない自由度の高い送液挙動制御を 実現することができ、設計自由度も高ぐかつ送液に種々の機能を持たせることも可 能である。
図面の簡単な説明
[図 1]本発明の第 1実施形態に係る送液装置を示す模式的な構成図。
[図 2]本発明の第 1実施形態に係る回転基板の部分拡大平面図。
[図 3A]図 2の III III線での部分断面図。
[図 3B]図 2の ΠΓ— ΠΓ線での部分断面図。
[図 4]本発明の第 1実施形態に係る回転基板の分解斜視図。
[図 5]本発明の第 1実施形態に係る送液装置の動作の第 1の例を説明するためのフ 口1 ~~チヤ1 ~~卜。
[図 6]本発明の第 1実施形態に係る送液装置の動作の第 1の例の速度波形及び回転 方向を示す線図。
[図 7A]回転基板の回転開始前に流路端部の溶液に作用する力を説明するための概 略平面図。
[図 7B]回転基板の回転開始中に流路端部の溶液に作用する力を説明するための概 略平面図。
[図 7C]回転基板の急停止時に流路端部の溶液に作用する力を説明するための概略 平面図。
[図 7D]送液時に流路端部の溶液に作用する力を説明するための概略平面図。
[図 8]本発明の第 1実施形態に係る送液装置の動作の第 2の例を説明するためのフ 口1 ~~チヤ1 ~~卜。
[図 9]本発明の第 1実施形態に係る送液装置の動作の第 2の例の速度波形及び回転 方向を示す線図。
[図 10]本発明の第 1実施形態に係る送液装置の動作の第 3の例の速度波形及び回 転方向を示す線図。
[図 11]本発明の第 1実施形態に係る送液装置の動作の第 4の例を説明するためのフ 口1 ~~チヤ1 ~~卜。
[図 12]本発明の第 1実施形態に係る送液装置の動作の第 4の例の速度波形及び回 転方向を示す線図。
[図 13]本発明の第 1実施形態に係る送液装置の動作の第 5の例の速度波形及び回 転方向を示す線図。
圆 14]本発明の第 1実施形態に係る送液装置の動作の第 6の例を説明するためのフ 口1 ~~テャ1 ~~卜。
[図 15]本発明の第 1実施形態に係る送液装置の動作の第 6の例の速度波形及び回 転方向を示す線図。
[図 16]回転基板の第 1の代案を示す分解斜視図。
[図 17]回転基板の第 2の代案を示す分解斜視図。
[図 18]回転基板の第 3の代案を示す分解斜視図。
圆 19]本発明の第 2実施形態に係る送液装置の動作の第 1の例を説明するためのフ 口1 ~~テャ1 ~~卜。
[図 20]本発明の第 2実施形態に係る送液装置の動作の第 1の例の速度波形及び回 転方向を示す線図。
圆 21A]回転基板の回転開始前に流路端部の溶液に作用する力を説明するための 概略平面図。
圆 21B]回転基板の急回転時に流路端部の溶液に作用する力を説明するための概 略平面図。
圆 21C]送液時に流路端部の溶液に作用する力を説明するための概略平面図。 圆 22]本発明の第 2実施形態に係る送液装置の動作の第 2の例を説明するためのフ 口1 ~~テャ1 ~~卜。
圆 23]本発明の第 2実施形態に係る送液装置の動作の第 2の例の速度波形及び回 転方向を示す線図。
[図 24]本発明の第 2実施形態に係る送液装置の動作の第 3の例の速度波形及び回 転方向を示す線図。
圆 25]本発明の第 2実施形態に係る送液装置の動作の第 4の例を説明するためのフ 口1 ~~チヤ1 ~~卜。
[図 26]本発明の第 2実施形態に係る送液装置の動作の第 4の例の速度波形及び回 転方向を示す線図。
[図 27]本発明の第 2実施形態に係る送液装置の動作の第 5の例の速度波形及び回 転方向を示す線図。
圆 28]本発明の第 2実施形態に係る送液装置の動作の第 6の例を説明するためのフ 口1 ~~テャ1 ~~卜。
[図 29]本発明の第 2実施形態に係る送液装置の動作の第 6の例の速度波形及び回 転方向を示す線図。
圆 30]第 1及び第 2実施形態の変形例に係る送液装置の回転基板を示す部分拡大 平面図。
圆 31]本発明の第 3実施形態に係る送液装置の回転基板を示す部分拡大平面図。 圆 32]本発明の第 3実施形態の第 1の変形例に係る送液装置の回転基板を示す部 分拡大平面図。
圆 33]本発明の第 3実施形態の第 2の変形例に係る送液装置の回転基板を示す部 分拡大平面図。
圆 34]本発明の第 3実施形態の第 3の変形例に係る送液装置の回転基板を示す部 分拡大平面図。
圆 35]本発明の第 4実施形態に係る送液装置の回転基板を示す部分拡大平面図。 圆 36]本発明の第 4実施形態に係る送液装置の動作を説明するためのフローチヤ一 ト。
[図 37]本発明の第 4実施形態に係る送液装置の動作の速度波形及び回転方向を示 す線図。
圆 38]本発明の第 4実施形態の変形例に係る送液装置の回転基板を示す部分拡大 平面図。
圆 39]本発明の第 5実施形態の変形例に係る送液装置の回転基板を示す部分拡大 平面図。
圆 40]本発明の第 6実施形態に係る送液装置の回転基板を示す部分拡大平面図。 [図 41]本発明の第 7実施形態に係る送液装置の回転基板を示す部分拡大平面図。
[図 42]本発明の第 8実施形態の変形例に係る送液装置の回転基板を示す部分拡大 平面図。
[図 43]本発明の第 9実施形態に係る送液装置の回転基板を示す部分拡大平面図。
[図 44]本発明の第 9実施形態に係る送液装置の回転基板を示す部分拡大平面図。
[図 45]本発明の第 10実施形態に係る送液装置の回転基板を示す部分拡大平面図
[図 46]本発明の第 11実施形態に係る送液装置を示す模式的な構成図。
[図 47]図 46の XLVII— XLVII線での部分拡大断面図。
[図 48]本発明の第 11実施形態に係る回転基板の部分拡大平面図。
符号の説明
1 送液装置
2 回転基板
3 回転軸
4 回転駆動部
5 流路部位
6A, 6B 供給槽
7A, 7B, 7C, 7D, 7E, 7F, 7G 被供給槽
8A, 8B, 8C, 8D, 8E, 8F, 8G, 8H 流路
9 液体
11 注入口
12 空気口
13 入口端部
14 出口端部
21 上面基板
22 流路基板
23 槽基板
24 下面基板 26, 27 溝孑し
28 窪み
29 上部基板
30 下部基板
31 モータ
32 駆動回路
33 制御信号出力部
34 速度特性印加部
35 回転速度検出器
36 回転速度制御部
41, 42, 43, 44 速度特性
51 回転基板本体
52 チップ本体
53 収容孔
R1 時計方向
R2 反時計方向
S 軸線
r 半径方向
発明を実施するための最良の形態
[0050] 次に、添付図面を参照して本発明の実施形態を詳細に説明する。
[0051] (第 1実施形態)
図 1から図 4は、本発明の第 1実施形態に係る送液装置 1を示す。
[0052] この送液装置 1は、回転基板 2、この回転基板 2が固定される回転軸 3、及び回転 軸 3を回転駆動する回転駆動部 4を備える。回転軸 3はその軸線(回転中心軸線) S が鉛直方向に延びる姿勢で配置されており、その上端側に回転基板 2が固定されて いる。回転基板 2は平面視で円形であり、回転基板 2の中心は回転軸 3の軸線 Sと一 致している。一方、回転軸 3の下端側は後述するモータ 31に連結されている。回転 基板 2の外形は流路部位 5が収まる寸法で任意に設定できる。回転基板 2の直径は 、例えば 10mm以上 150mm以下程度に設定される。また、回転基板 2の厚みは 0. 2mm以上 20mm以下に設定される。
[0053] 回転基板 2は回転軸 3と共に回転する。以下の説明では、図 2において矢印 Rl, R 2で示すように、回転軸 3の回転方向を回転軸 3の半径方向 rに対して直交する方向 として定義する。換言すれば、回転方向は回転軸 3の軸線 Sに対して直交する仮想 の線に対して直交し、かっこの仮想の線と同一の平面上にある方向として定義する。 回転基板 2は 2方向、すなわち平面視で時計方向 R1及び反時計方向 R2に回転可 能である。
[0054] 図 1に示すように、回転基板 2には複数の流路部位 5が回転軸 3の周囲に放射状に 配置されている。図 2、図 3A、及び図 3Bを併せて参照すると、流路部位 5は、供給槽 (第 1の槽) 6A、被供給槽 (第 2の槽) 7A、及び流路 (第 1の流路) 8Aを備える。複数 の流路部位 5を一つの回転基板 2に集積ィ匕して設けることにより、後述する回転基板 2の急制動又は急回転を 1回実行すれば、各流路部位 5の供給槽 6A内の液体を同 時に被供給槽 7Aに送液することができる。従って、流路部位 5の集積ィ匕により同時 並列処理数を増加させて、多数の検体を短時間で処理することができる。また、一つ の回転基板 2に多数の流路部位 5を形成することは、回転基板 2の製造コスト面から 見ても、一つの検体の処理コストを下げることに貢献する。
[0055] 供給槽 6Aは送液の対象である溶液な ヽしは液体 9 (例えば図 7A参照)が蓄えられ る槽である。供給槽 6Aは回転基板 2の内部に形成され、空間的に閉じられている。 ただし、回転基板 2には、供給槽 6Aの上壁力も回転基板 2の上面に貫通し、供給槽 6Aの内部を回転基板 2の外部と連通させる断面円形の注入口 11が形成されている 。この注入口 11は供給槽 6Aへの液体 9の注入に使用される。被供給槽 7Aは、供給 槽 6Aカゝら液体 9が送液される槽である。被供給槽 7Aは回転基板 2の内部に形成さ れ、空間的に閉じられている。ただし、回転基板 2には被供給槽 7Aの上壁から回転 基板 2の上面に貫通し、被供給槽 7Aの内部を回転基板 2の外部と連通させる断面 円形の空気口 12が形成されている。この空気口 12は被供給槽 7Aに液体 9が流入 する際に、被供給槽 7A内の空気を回転基板 2の外部に排出する機能を有する。流 路 8Aは、供給槽 6Aと被供給槽 7Aを流体的に互いに連通させる流路である。流路 8 Aは回転基板 2の内部に形成され、空間的に閉じられている。また、流路 8Aの両端、 すなわち入口端部 (第 1の流路端部) 13と出口端部 (第 2の流路端部) 14は、それぞ れ供給槽 6Aと被供給槽 7Aに接続されて 、る。
[0056] 供給槽 6Aについて詳述する。図 2を参照すると、供給槽 6Aは平面視で略長方形 状であり、左側の側壁に流路 8Aの入口端部 13が開口している。注入口 11は、入口 端部 13よりも回転軸 3に近い位置に設けられている。具体的には、注入口 11は図 2 において供給槽 6Aの右上隅に設けられている。また、注入口 11の平面視での面積 は、供給槽 6Aの平面視での面積よりも十分小さく設定されている。注入口 11の位置 及び面積をこのように設定することで、回転基板 2の回転中に作用する半径方向 rで 外向きの遠心力によって液体 9が注入口 11から漏れないしは飛散せず、流路 8Aに 流れる。従って、注入口 11の位置及び面積をこのように設定した場合には、液体 9を 供給槽 6Aに注入して回転基板 2を回転させる際に、注入口 11を開放したままであつ てもよい。逆に、注入口 11が入口端部 13よりも回転軸 3から遠い位置に設けられて いる場合や、注入口 11の面積が供給槽 6Aの面積に対して比較的大きい場合には、 回転基板 2の回転時に供給槽 6A内の液体 9が注入口 11から漏れないしは飛散する のを防止するために、回転基板 2を回転させる前に注入口 11を封止する必要がある 。供給槽 6Aの寸法及び体積は、試料 (液体 9)の液量に従って決定する必要がある 力 好適には、体積が 0. 1 μ L以上 100 μ L以下であることが好ましい。
[0057] 被供給槽 7Αにつ ヽて詳述する。被供給槽 7Αは平面視で略長方形状である。また 、被供給槽 7Αは、供給槽 6Αと半径方向!:に並んで、かつ供給槽 6Αよりも回転軸 3か ら遠 、位置に配置されて 、る。平面視で被供給槽 7Αの回転軸 3側の側壁に流路 8 Αの出口端部 14が開口している。回転基板 2の回転中に作用する半径方向 rで外向 きの遠心力によって液体 9が空気口 12から漏れな 、しは飛散しな 、ように、空気口 1 2の平面視での面積は被供給槽 7Aの平面視での面積よりも十分小さく設定されてい る。被供給槽 7Aの寸法及び体積は、試料 (液体 9)の液量に従って決定する必要が あるが、好適には、体積が 0. 1 μ L以上 100 μ L以下であることが好ましい。
[0058] 流路 8Αについて詳述する。流路 8Αを通って供給槽 6Αから被供給槽 7Αに液体 9 が確実に送液されるためには、流路 8Αは微細な流路である必要がある。具体的に は、流路 8Aの体積は、供給槽 6A及び被供給槽 7Aと同等又はそれよりも小さいこと が好ましい。また、流路 8Aの幅は、供給槽 6A及び被供給槽 7Aの幅よりも狭いことが 好ましい。例えば、流路 8Aの幅は、 20 μ m以上 2000 μ m以下程度であることが好 ましぐ 10 m以上 100 m以下程度であることがより好ましい。さらに、流路 8Aの深 さは、供給槽 6A及び被供給槽 7Aよりも浅いことが好ましい。例えば、流路 8Aの幅が 50 μ m以上 500 μ m以下程度の場合、流路 8Aの深さは 10 μ m以上 100 μ m以下 程度であることが好ましい。本実施形態では流路 8Aは蛇行しており、平面視で S字 形状を呈している。
[0059] 供給槽 6Aと接続している流路 8Aの入口端部 13は、供給槽 6A内に蓄えられた液 体 9を解除可能に保持するバルブとしての機能を有する。入口端部 13は供給槽 6 A 力も回転基板 2の 2つの回転方向のうち時計方向 R1に延びている。入口端部 13をこ の向きとすることで、回転基板 2の回転時に液体 9に作用する慣性力で供給槽 6A内 の液体 9を流路 8A内に流入させることができる。一方、被供給槽 7Aと接続している 流路 8Aの出口端部 14は、被供給槽 7Aに向力つて回転軸 3の半径方向!:、すなわち 回転基板 2の回転方向(時計方向 R1及び反時計方向 R2)に対して直交する方向に 延びている。出口端部 14をこの向きとすることで、いったん被供給槽 7Aに流入した 液体が、出口端部 14から供給槽 6Aに向力つて流路 8Aを逆流するのを防止できる。
[0060] 次に、流路部位 5を構成する壁面の濡れ性にっ 、て説明する。まず、流路 8Aの入 口端部 13の流路壁は、疎水性材料により構成されているか、疎水性を付与する処理 が施されている。入口端部 13が疎水性を有することにより、供給槽 6Aに蓄えられた 液体を毛細管力により確実に入口端部 13で保持することができる。一方、流路部位 5の残りの部分、すなわち供給槽 6Aの壁面、被供給槽 7Aの壁面、及び流路 8 Aの 入口端部 13を除く全体(出口端部 14を含む)の壁面は親水性材料により構成されて いるか、親水性を付与する処理が施されている。これらの部分が親水性を有すること により、供給槽 6A力 流路 8Aに流入した液体は、湿潤効果と毛細管現象によって 確実に被供給槽 7Aへ流れる。
[0061] 疎水性材料の例としては、単結晶シリコン、アモルファスシリコン、炭化ケィ素、酸ィ匕 ケィ素、窒化ケィ素等に代表される半導体材料、アルミナ、サファイア、フォルステラ イト、炭化ケィ素、酸化ケィ素、窒化ケィ素の群カゝら選ばれる無機絶縁材料、ポリェチ レン、エチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート(PET) 、不飽和ポリエステル、含フッ素榭脂、ポリ塩化ビニル、ポリ塩ィ匕ビユリデン、ポリ酢酸 ビュル、ポリビュルアルコール、ポリビュルァセタール、アクリル榭脂、ポリアクリロ-ト リル、ポリスチレン、ァセタール榭脂、ポリカーボネート(PC)、ポリアミド、フエノール榭 脂、ユリア榭脂、エポキシ榭脂、メラミン榭脂、スチレン'アクリロニトリル共重合体、ァ クリロ-トリル.ブタジエンスチレン共重合体、シリコン榭脂、ポリフエ-レンオキサイド 及びポリスルホン等の群カゝら選ばれる有機材料がある。好適に用いられる材料は、 P ET, PCである。疎水性を付与できる材料としては、フッ素榭脂系の塗布剤、シリコン 系の塗布剤等がある。好適には、フッ素榭脂計の塗布剤が用いられる。
[0062] 親水性材料の例としては、ガラス、石英ガラス、アルミ、銅、ステンレスなどの金属材 料等がある。ただし、金属材料は事前に表面に付着する有機物を取り除いた清純な 表面を持つ。親水性を付与できる材料しては、 TritonXに代表される界面活性剤、 水酸基、スルホン酸基、カルボキシル基等の親水基を持つ高分子化合物等がある。 好適には、界面活性剤が用いられる。
[0063] 次に、図 3A、図 3B、及び図 4を参照して、回転基板 2の積層構造について説明す る。回転基板 2は、上面基板 21、流路基板 22、槽基板 23、及び下面基板 24を積層 状態で接合した 4層構造を有する。上面基板 21には、注入口 11と空気口 12が板厚 方向に貫通するように設けられている。流路基板 22には、供給槽 6A、被供給槽 7A 、及び流路 8Aに対応する形状であり、かつ板厚方向に貫通する溝孔 26が設けられ ている。槽基板 23には、供給槽 6A及び被供給槽 7Aに対応する形状であり、かつ板 厚方向に貫通する溝孔 27が設けられて ヽる。下面基板 24は供給槽 6A及び被供給 槽 7Aの底面を構成し、溝ゃ孔は設けられていない。この多層構造の回転基板 2は各 基板を接合することで製作できるので、生産性が優れている。また、流路 8Aの深さは 流路基板 22の厚みで決まり、供給槽 6A及び被供給槽 7Aの深さは流路基板 22と槽 基板 23を合わせた厚みで決まる。従って、流路 8Aの深さが供給槽 6A及び被供給 槽 7Aの深さよりも浅い構造を容易に製作することができ、かつ流路 8Aの深さと供給 槽 6A及び被供給槽 7Aの深さを互いに独立に設定することができる。例えば、流路 8 Aの深さが 100 m程度である場合、流路 8A、供給槽 6A、及び被供給槽 7Aの形 状を切断したシート状の流路基板 22を使用できるため、生産性の面力も好ましい。さ らに、供給槽 6A及び被供給槽 7Aの底部となる下面基板 24は他の基板とは別体で あるので、接合前に下面基板 24に反応試薬等を担持させることも容易である。例え ば、被供給槽 7Aの底部に、供給槽 6Aから送液された液体と反応させる目的で反応 試薬を担持させておくことができる。
[0064] 各層の基板の接合は、当業者に知られた種々の方法を採用できる。例えば、各層 の基板の間に接着性材料又は接着性を有するシートを介在させてもよぐ超音波接 合、熱圧着接合、ラミネータ加工等の他の接合方法を採用してもよい。流路と槽の形 成方法も、当業者に知られた種々の方法を採用できる。例えば、半導体微細加工技 術に代表されるフォトリソグラフィー加工、プラスチック成型に代表されるインジエタショ ンモールド、切削加工、マスター基板力 複製をつくる転写加工等が挙げられる。好 適に用いられるのは、フォトリソグラフィー加工が適用される。
[0065] 図 1を参照して回転駆動部 4について説明する。回転駆動部 4は、回転軸 3に機械 的に連結され、回転軸 3及び回転軸 3に固定された回転基板 2を回転させるモータ 3 1と、このモータ 31の駆動回路 32を備える。また、回転駆動部 4は制御信号を出力す る制御信号出力部 33と、制御信号出力部 33から入力される制御信号に基づいて、 例えば図 6に示すような所望の速度特性をモータ 31の駆動回路 32に与える速度特 性印加部 34を備える。制御信号出力部 33は、送液装置 1とは別の外部のコンビユー タであってもよい。
[0066] モータ 31には、 DCモータ、 DCブラシレスモータ、 ACモータ、ステッピングモータ 等を採用することができる。ステッピングモータは、回転基板 2の急回転と急制動を外 部の駆動信号を印加するだけで、容易に実現することができるため好適である。また 、 DCモータは駆動回路 32を特に必要としない。モータ 31として DCブラシレスモータ を採用する場合、駆動回路 32が逆回転電圧を印加する機能を有していればより素 早い急制動を実現できる。
[0067] また、回転駆動部 4は、回転中の回転基板 2の回転速度を検出する回転速度検出 器 35と、速度特性印加部 34を補正する回転速度制御部 36を備えている。回転速度 検出器 36が検出した回転基板 2の実際の回転速度は回転速度制御部 36に送られ る。回転速度制御部 36は検出された実際の回転速度と速度特性印加部 34によりモ ータ 31に与えるべき速度特性にずれがあれば、速度特性印加部 34が与える速度特 性を補正する。このように実際の回転基板 2の回転速度をフィードバックして速度特 性を補正しつつ回転基板 2を駆動することにより、安定した送液を実現し、かつ送液 の繰り返し再現性を向上することができる。
[0068] 次に、第 1実施形態の送液装置 1を使用した送液方法を説明する。図 5のフローチ ヤートを参照すると、まず液体 9を回転基板 2の注入口 1 1から注入して供給槽 6A内 に充填する(工程 A)。図 7Aを参照すると、前述のように供給槽 6Aと接続する流路 8 Aの入口端部 13は疎水性を有し、かつ流路 8Aは微細な流路であるので、液体 9は 表面張力による毛細管力 Fcにより入口端部 13で保持され、流路 8A内は液体 9で濡 れない。入口端部 13の流路壁面が疎水性を有するので液体 9で濡れず、液体 9と流 路壁面の接触角 Θ cが鈍角となるので液体 9を供給層 6A内に保持する方向の毛細 管力 Fcが発生する。詳細には、流路壁面と液体 9の界面には表面張力 Tl〜Tnが 生じ、その合力である毛細管力 Fcは反時計方向 R2、すなわち入口端部 13から供給 槽 6Aの内部に向力 方向に発生する。毛細管力 Fcの大きさは、以下の式(1)で表さ れる。
[0069] [数 1]
F c = 1 X cos Θ c x c 1
[0070] ここで、符号 Tは水の表面張力、 0 cは液体 9の流路壁面に対する接触角、 cは流 路の周囲長をそれぞれ表す。
[0071] 供給槽 6A内の液体 9を入口端部 13で保持する非湿潤性の現象である毛細管力 F cは、前述のように入口端部 13が疎水性を有することにより生じる。また、毛細管力 F cにより入口端部 13に液体 9を保持するためには、流路 8Aが微細な流路である必要 がある。本実施形態では、前述のように流路 8Aの幅を 20 μ m以上 2000 μ m以下程 度に設定し、かつ供給槽 6Aの深さを供給槽 6A及び被供給槽 7Aよりも浅く設定して いるので、毛細管力 Fcにより入口端部 13に液体 9を確実に保持することができる。
[0072] 次に、回転基板 2の回転時の液体 9の飛散防止のために必要であれば、注入口 11 を封止する(工程 A' )。前述のように回転軸 3に近 、位置に注入口 11を設けるほど、 回転に伴う液体の飛散は起こりにくい。また、注入口 11の開口面積が供給槽 6Aに 比べ十分に小さいほど飛散が起こりにくいが、反面、工程 Aにおいて供給槽 6A内を 液体 9で充たすことが困難となる。よって、工程 A'を行うことで、供給槽 6Aへの液体 9の確実な注入と、回転基板 2の回転時の液体 9の飛散防止を両立することができる
[0073] 次に、回転基板 2を時計方向 R1 (入口端部 13が供給槽 6Aから延びる方向)に一 定の加速度 alを有する速度特性 41で回転駆動する(工程 B)。図 6の時刻 0から時 刻 tl (実線)に工程 Bにおける回転基板 2の回転速度と回転方向を示す。加速度 al の向きは時計方向 R1である。時刻 0に回転基板 2が回転を開始する。回転基板 2の 回転速度は加速度 alで上昇し、時刻 tlには回転速度 RV1に達する。図 7Bに示す ように、工程 Bにおいて回転基板 2が時計方向 R1に回転中は、入口端部 13で毛細 管力 Fcにより保持されている液体 9に対して半径方向!:で外向きに遠心力 Fgが作用 する。しかし、入口端部 13は時計方向 R1に延びており、遠心力 Fgが作用する方向 は入口端部 13が延びる方向と直交する。従って、遠心力 Fgが作用しても入口端部 1 3の液体 9は毛細管力 Fcで保持された状態で維持される。
[0074] 次に、速度特性 41で回転中の回転基板 2を一定の加速度 a2を有する速度特性 42 で急制動する(工程 C)。図 6の時刻 tlから時刻 t2 (実線)に工程 Cにおける回転基板 2の回転速度と回転方向を示す。時刻 tlに回転速度 RV1から回転基板 2の回転速 度の低下が始まる。回転基板 2の回転速度は加速度(時計方向 R1を正の向きとする と減速度) a2で減速し、時刻 t2に回転基板 2の時計方向 R1の回転が停止する。ェ 程 B, Cの速度波形は単発の三角波形状となっている。工程 Aの加速度 alの向きは 時計方向 R1であるのに対し、工程 Bの加速度 a2の向きは反時計方向 R2である。換 言すれば、工程 Bの加速度 a2は、工程 Aの加速度 alとは逆向きである。また、工程 C の加速度 a2の絶対値は工程 Bの加速度 alの絶対値よりも十分大きい。
[0075] 図 7Cを参照すると、工程 Cにより回転基板 2を急制動することにより入口端部 13の 液体 9には慣性力 Fiが作用する。詳細には、工程 Bにおいて時計方向 R1に回転し ている回転基板 2を工程 Cで急制動すると、供給槽 6Aに蓄えられて入口端部 13に 保持されている液体 9は、慣性の法則により時計方向 R1に運動し続けようとする。そ の結果、入口端部 13に保持されている液体 9には時計方向 R1の慣性力 Fiが作用す る。慣性力 Fiの大きさは工程 Cで回転基板 2の回転を急制動する際の加速度 a2の絶 対値に比例する。慣性力 Fiと加速度 a2の間には以下の式(2)の関係がある。
[0076] [数 2]
F i =— m x a 2 ( 2 )
[0077] ここで mは入口端部 13に保持されて ヽる液体 9の質量を示す。また、右辺のマイナ ス符号は慣性力 Fiの向きが加速度 a2の向きと逆向きであることを示す。
[0078] 前述のように入口端部 13は供給槽 6Aから時計方向 R1へ延び、毛細管力 Fcは反 時計方向 R2に作用する。従って、慣性力 Fiは毛細管力 Fcを相殺して入口端部 13 の液体 9が流路 8Aを濡らす方向に作用する。慣性力 Fiが入口端部 13に液体 9を保 持する毛細管力 Fcを上回る、つまり入口端部 13の断面積に力かる圧力を上回ると、 入口端部 13に保持されて ヽた液体 9は流路 8A内に流入する。前述のように慣性力 Fiの大きさは工程 Cの加速度 a2の絶対値に比例するので、慣性力 Fiが毛細管力 Fc を上回るためには工程 Cの加速度 a2の絶対値が大き 、こと、換言すれば工程 Cで回 転基板 2の回転速度が急激に低下することが必要である。一方、工程 Bは停止状態 にある回転基板 2をある程度の回転速度 RV1で回転させる目的で実行されるので、 工程 Bでは回転基板 2を急激に加速する必要は必ずしもない。これらの理由より、本 実施形態では工程 Cの加速度 a2を工程 Bの加速度 alよりも十分大きく設定している 。例えば、加速度 alは 600rpmZsec以下に設定され、加速度 a2は lOOOrpmZsec 以上 60000rpmZsec以下の範囲で設定される。工程 Aの継続時間(図 6の時刻 0か ら時刻 tl)は最終的な到達速度である回転速度 RV1と加速度 alで決まる。また、ェ 程 Bの継続時間(図 6の時刻 tlから時刻 t2)は減速開始時の回転速度 RV1と加速度 a2で決まる。特に、以下の条件が好適である。工程 Bの加速度 alを lOOrpmZsecに 設定し、 30秒間加速させる(時刻 0から時刻 tl)。その後、回転速度が 3000rpmに達 したときに、工程 Cの急制動を行う。工程 Cの加速度 a2をほぼ 6000rpmZsecに設定 すると、回転基板 2の制動が 0. 5秒間で完了する(時刻 tlから時刻 t2が 30. 5秒)。 この速度特性 41、 42であれば、 1 μ Lから 10 Lまでの容積の液体を送液することが できる。
[0079] 前述のように入口端部 13を除く流路 8Αの全体、供給槽 6Α、及び被供給槽 7Αは 親水性を有するので、いったん慣性力 Fiによって入口端部 13での液体 9の保持が 解除されると、湿潤性効果ないしは毛細管現象により供給槽 6A内の液体 9が流路 8 Aを通って被供給槽 7Aへ流れる。流路 8A及び被供給槽 7A内の空気は、空気口 12 を通って回転基板 2の外部に排出される。液体 9は毛細管現象により流路 8A及び被 供給槽 7Aの隅々まで行き渡るので、被供給槽 7A内に確実かつ定量的に液体 9を 注人することができる。
[0080] 毛細管現象につ!、て詳述する。図 7Dに示すように、親水性を有する流路 8Aの流 路壁面が濡れると、液体と流路壁面の接触角 Θ cが鋭角になる。流路壁面と液体 9の 界面には表面張力 S l〜Snが図の方向に生じ、その合力である毛細管力 Fc 'は時 計方向 Rl、すなわち供給槽 6Aから入口端部 13が延びる方向に生じる。従って、い つたん入口端部 13による保持が解除されて流路 8Aに流入した液体 9に作用する毛 細管力 Fc 'は、液体 9が流路 8Aを充たす方向に作用する。毛細管力 Fc 'の大きさは 前述の式(1)と同様に表される。
[0081] 入口端部 13の向きについて説明する。本実施形態では入口端部 13の向きは時計 方向 R1である。入口端部 13に保持されている液体 9が急制動(工程 C)により発生す る慣性力 Fiで確実に流路 8A内に流れ込むようにするためには、入口端部 13が慣性 力 Fiの作用する方向である時計方向 R1に沿って延びている必要がある。具体的に は、入口端部 13の向きは、時計方向 R1となす角度が— 45° 以上 +45° 以下とな るように設定すればよい。このように入口端部 13の向きについての設計の自由度が 高ぐ生産性等の面で好ましい。逆に、仮に入口端部 13が時計方向 R1に対して直 交する方向に延びて 、ると、慣性力 Fiにより入口端部 13に保持された液体 9を流路 8A内に流入させることができな 、。 [0082] 供給槽 6Aから被供給槽 7Aに流す液体 9の容量は、供給槽 6Aに対する入口端部 13の位置によって規定することができる。例えば、供給槽 6Aの半径方向 rの最外周 の位置に入口端部 13が接続されている場合、供給槽 6A内の液体 9のほぼすべてが 、流路 8Aを介して被供給槽 7Aに送液される。これは、工程 Cで回転基板 2を急制動 する直前まで、工程 Bで回転基板 2は回転するので供給槽 6A内の液体 9には半径 方向 rで外向きに常に遠心力が作用しているためである。逆に、入口端部 13の位置 を半径方向 rの内側、すなわち回転軸 3側へ移動させると、供給槽 6A内に満たされ た液体 9のうち、入口端部 13よりも外周にある溶液は、回転基板 2が急制動されても 被供給槽 7Aに送液されない。かかる構成は、被供給槽 7Aへ送液する液量を規定し たい場合に有用である。しかし、入口端部 13より半径方向 rで外側に位置する液体 9 であっても粘性により、わずかに被供給槽 7Aへと送液される場合もある。よって、入 口端部 13の位置で被供給槽 7Aへ送液する液量に厳密な定量性を持たせることは できず、ある程度の精度で液量を規定はできる程度である。
[0083] 実施形態の送液装置 1は、以下に列挙するように種々の利点を有する。
[0084] 第 1に、遠心性の力ではなぐ慣性力 Fiが入口端部 13に液体 9を保持する毛細管 力 Fcを上回ることで、流路 8Aを介して供給槽 6Aから被供給槽 7Aに液体 9が送液さ れる。従って、供給槽 6Aと流路 8Aの境界である入口端部 13を供給槽 6Aに対して 外側、ないしは回転軸 3から最も遠い位置に配置する必要がない。この点で供給槽 6 A、被供給槽 7A、及び流路 8Aの配置に関する設計の自由度が高い。
[0085] 第 2に、遠心性の力を駆動源とする場合、一方向、すなわち液体の供給側の槽から 回転中心線に対して遠ざ力る遠心方向のみへの送液が可能である。これに対して、 本実施形態の送液装置 1では、慣性力 Fiの向きである時計方向 R1に入口端部 13 が延びる方向を設定している。また、後に図 30を参照して説明するように、回転基板 2を回転駆動するシーケンスを変更するだけで、入口端部 13が延びる方向を反時計 方向 R2に設定することもできる。従って、入口端部 13が延びる方向を時計方向 R1と 反時計方向 R2の 2方向のいずれかに設定することで、供給槽 6Aからこれらの 2方向 のいずれにも送液を行うことができる。換言すれば、本実施形態の送液装置 1は、一 方向に限定されない自由度の高い送液挙動制御を実現できる。 [0086] 第 3に、慣性力 Fiが毛細管力 Fcを上回ったことにより流路 8Aを供給槽 6A力も被供 給槽 7Aに向力つて流れる液体は、その速度を減速させる成分として流路壁面力も流 路抵抗を受ける。しかし、微細な流路である流路 8Aでは、与えた慣性力 Fiに比べ流 路抵抗が小さ ヽため、供給槽 6Aから 、ずれの方向にも液体 9を送液することができ る。換言すれば、後に図 31を参照して詳述するように、被供給槽 7Aを供給槽 6Aより も回転軸 3に近い側に配置し、供給槽 6Aから求心性の方向へ送液することも可能で ある。これによつて、より複雑な液体の送液を容易に実現することができ、流路の設計 の自由度も増すため、送液装置の設計が容易となる。
[0087] 回転基板 2を回転駆動するシーケンスは、図 5及び図 6に示すものに限定されず、 例えば以下の代案がある。
[0088] 図 8及び図 9は回転駆動のシーケンスの第 1の代案を示す。この代案では回転基板 2を時計方向 R1に回転させる工程 B (図 9の時刻 tOから時刻 tl)と回転基板 2を急制 動する工程 C (図 9の時刻 t2から時刻 t3)の間に、加速度を 0とする工程、すなわち回 転基板 2を一定の回転速度 RV1で一定時間回転させる工程 D (図 9の時刻 tlから時 刻 t2)を実行する。工程 Dで定速回転を維持した後に、工程 Cにおいて急制動で発 生する慣性力 Fiにより液体 9を送液することができる。血液中のタンパクの量を測定 する場合、測定の前段階として被測定物質である血液を、粒状成分である血球と液 体成分である血漿に分離し、血漿に含まれるタンパクが溶解した溶液のみを送液す る必要がある。図 8及び図 9に示す回転駆動のシーケンスは、この種のより複雑な送 液制御に適している。具体的には、工程 Dで一定時間だけ回転基板 2を定速回転さ せることにより、血液の血球 ·血漿分離が可能であり、分離後に工程 Cで血漿成分だ けを送液することができる。なお、工程 Dに代えて、工程 B, Cの加速度 al, a2と異な る加速度で一定時間だけ回転基板 2を回転させてもよい。
[0089] 図 10は回転駆動のシーケンスの第 2の代案の速度波形及び回転方向を示す。こ の第 2の代案では、図 5において破線《1で概念的に示すように、回転基板 2を時計 方向 R 1に回転させる工程 Bと回転基板 2を急制動する工程 Cとを繰り返す。そのため 、回転基板 2の速度波形は、連続する三角波形状力 なるのこぎり波形状を呈する。 供給槽 6A内に蓄えられた液体 9の体積が流路 8Aの総体積に比べ大きい場合、第 2 の代案のシーケンスで回転基板 2を回転駆動すれば、供給槽 6Aから被供給槽 7Aに 液体 9を間欠的に連続送液できる。従って、第 2の代案のシーケンスは、比較的大容 量の液体 9を供給槽 6Aから被供給槽 7Aに送液する場合に有効である。
[0090] 図 11及び図 12は回転駆動のシーケンスの第 3の代案を示す。この第 3の代案は、 回転基板 2を時計方向 R1に回転させる工程 B (図 12の時刻 0から時刻 tl)と回転基 板 2を急制動する工程 C (図 12の時刻 tlから時刻 t2)を繰り返し、かつ工程 B及びェ 程 Cが終了する毎に、一定の時間だけ回転基板 2を回転が停止した状態で維持する インターバルの工程 E (図 12の時刻 t2から時刻 t3)を実行する。例えば、工程 Bで供 給槽 6Aから被供給槽 7Aに液体 9を送液した後、被供給槽 7Aに予め担持させた酵 素と送液された液体 9とを工程 Eのインターバル期間中〖こ反応させることができる。ェ 程 Eに代えて、工程 B及び工程 Cが終了する毎に回転基板 2を一定時間だけ一定の 低速で回転させてもよい。
[0091] 図 13は回転駆動のシーケンスの第 4の代案の速度波形及び回転方向を示す。こ の第 4の代案では、図 8の破線《2で概念的に示すように、工程 B、工程 D、及びェ 程 Cをこの順に繰り返す。
[0092] 図 14及び図 15に示す回転駆動のシーケンスの第 5の代案では、工程 B、工程 D、 工程 C、及び工程 Eをこの順に繰り返す。
[0093] 以上の説明では、工程 B及び工程 Cにおける回転基板 2の回転はいずれも等加速 度運動である。しかし、毛細管力 Fcを上回る慣性力 Fiが発生する限り、これらの工程 にお 、て回転基板 2の回転の加速度が変動してもよ 、。
[0094] 送液装置 1の構造に関する種々の代案を以下に説明する。これらの代案は第 1実 施形態に限定されず、後述する第 2から第 10実施形態についても適用可能である。
[0095] 回転基板 2の外形形状は円盤形に限定されず、立方体、直方体、五角形等の多角 形、星形等であってもよい。供給槽 6A、被供給槽 7Aの形状は略長方形状に限定さ れず、円柱等、任意に設定できる。
[0096] 注入口 11及び空気口 12の断面形状は円形に限定されず、楕円形、多角形等の 他の形状であってもよい。注入口 11は、供給槽 6Aの上壁から回転基板 2の上面に 貫通するに限定されず任意の場所に配されていてよい。また、空気口 12は被供給槽 7A内を回転基板 2に連通させる流路に限定されず、被供給槽 7A又は流路 8Aを構 成する壁面の一部に空気を透過するが液体を透過しない材料を取り付けて構成して もよい。この場合、回転基板 2の回転時の液体 9の漏れを考慮する必要がないので、 空気口 12を比較的大きな面積とすることができる。
[0097] 以下は、回転基板 2の積層構造の代案である。
[0098] 図 16に示す第 1の代案の回転基板 2は、上面基板 21、流路基板 22、及び槽基板 23からなる 3層構造を有する。上面基板 21には注入口 11と空気口 12が設けられて いる。流路基板 22には、供給槽 6A、被供給槽 7A、及び流路 8Aに対応する形状の 溝孔 26が設けられている。槽基板 23には供給槽 6A及び被供給槽 7Aに対応する有 底の窪み 28が設けられて!/、る。
[0099] 図 17に示す第 2の代案の回転基板 2は、注入口 11と空気口 12を設けた上面基板 21、板厚方向に貫通する溝孔 26を設けた流路基板 22、並びに供給槽 6A及び被供 給槽 7Aの底部となる下面基板 24からなる 3層構造を有する。
[0100] 図 18に示す第 3の代案の回転基板 2は、注入口 11と空気口 12を設けた上部基板 29と、供給槽 6A、被供給槽 7A、及び流路 8Aを設けた下部基板 30からなる 2層構 造である。
[0101] フォトリソグラフィー加工を用いた第 3の代案の回転基板 2の製作方法の一例を以 下に示す。この製作工程は、下部基板 30にフォトレジストを塗布し、リソグラフィー〖こ より流路 8Aを形成する工程、供給槽 6A及び被供給槽 7Aを形成する工程、上部基 板 29に注入口 11及び空気口 12を形成する工程、並びに下部基板 30の流路部位 5 の上部を上部基板 19で封止する工程力もなる。まず、流路 8Aを形成する工程から 順に説明する。清浄に処理されたガラス基板にネガ型厚膜フォトレジストを塗布する 。ここで、用いるフォトレジストは流路のサイズに適したレジストを選択する。例えば、 K MPR1030 (ィ匕薬マイクロケム)等が厚膜形成度合 、、アスペクト比の面力も優れて いる。スピンコーターなど回転塗布型のものなどが用いられる。スピンコーターにて K MPR1030を回転塗布する場合には、プレ回転 500rpmで 10秒、本回転 lOOOrpm で 30秒行う。なお、本回転の回転速度を変化させることにより、膜厚を変化させること が可能となる。一例を示すと、本回転 lOOOrpmで 57 μ m、 1070rpmで 48 μ mなど が可能である。その後、 95°Cで 20分プレベータを行い、流路と槽が描かれたマスク を露光する。露光強度と露光時間は膜厚によって適性に補正するものとする。一例を 挙げると、露光強度は 1700mjZcm2程度が望ましい。次に 95°Cで 6分 PEB (Post Exposure Bake)し、現像を行い、流路と槽パターンをフォトリソグラフィ一により形成 させる。次に、下部基板 30の槽部位を切削加工もしくはサンドブラスト加工により形 成させる。最後に、注入口 11と空気口 12を開けた上部基板 29を下部基板 30に貼り 付ける。
[0102] 次に、供給槽 6A、被供給槽 7A、及び流路 8Aの壁面の濡れ性の代案を説明する
[0103] 第 1の代案としては、生産性を考慮して入口端部 13のみでなく流路 8Aの全体が疎 水性を有していてもよい。この場合、入口端部 13で液体 9をより確実に保持できるだ けでなぐ流路 8Aの長さ全体で液体 9を保持ができる。また、流路 8Aの長さが長い 程、供給槽 6A内に液体 9をより強固に保持できる。従って、第 1流路の全体が疎水 性を有する場合、ある量の液体 9を供給槽 6Aから被供給槽 7Aに送液するためには 、図 10、図 12、図 13、図 15に示すように、慣性力を発生させるための工程を繰り返 す必要がある。この繰り返し回数を制御することにより、より正確に定められた量の液 体 9を供給槽 6Aから被供給槽 7Aに送液することができる。また、慣性力を発生させ る工程を繰り返して行う時間を調節することで、定められた量の液体 9を供給槽 6Aか ら被供給槽 7Aに送液するのに要する時間を制御できる。この送液に要する時間の 制御は、混合後の所定の反応時間を経て別の混合を行う場合等の送液に適して ヽ る。
[0104] 第 2の代案としては、流路部位 5全体が疎水性を有して 、てもよ 、。流路部位 5全 体を疎水性材料により構成するか、流路部位 5全体に疎水性を付与する処理する処 理を施せばよいので、生産性を向上することができる。
[0105] さらに、第 3の代案としては、回転基板 2全体が疎水性を有していてもよい。回転基 板 2全体を疎水性材料により構成するか、回転基板 2全体に疎水性を付与する処理 を施せばよいので、生産性がさらに向上する。
[0106] (第 2実施形態) 本発明の第 2実施形態に係る送液装置 1の構造は、図 1から図 4を参照して説明し た第 1実施形態と同様である。従って、以下の説明においてこれらの図面を参照する 。第 2実施形態の送液装置 1は回転駆動部 4により実行される回転基板 2を回転させ る工程ないしはシーケンスが第 1実施形態と異なる。この相違を概説すると、第 1実施 形態では、回転駆動部 4は入口端部 13の延びる方向である時計方向 R1に回転基 板 2を回転させ(工程 B)、続ヽてこの回転を急制動することで入口端部 13〖こよる液 体 9の保持を解除する慣性力 Fiを発生させる。これに対し、第 2実施形態では、回転 駆動部 4は入口端部 13の延びる方向と逆向きの反時計方向 R2に回転基板 2を急回 転 (急加速)させ、その際に発生する慣性力 Fiで入口端部 13による液体 9の保持を 解除する。
[0107] 第 2実施形態の送液装置 1を使用した送液方法を説明する。図 19のフローチャート を参照すると、まず液体 9を回転基板 2の注入口 11から注入して供給槽 6A内に充填 し(工程 A)、必要があれば注入口 11を封止する。図 21Aを参照すると、入口端部 13 は疎水性を有するので、入口端部 13が延びる方向(時計方向 R1)と逆向きの反時計 方向 R2の毛細管力 Fcが入口端部 13の液体 9に作用する。この毛細管力 Fcにより 供給槽 6A内の液体 9は入口端部 13で保持される。
[0108] 次に、停止状態の回転基板 2を反時計方向 R2 (入口端部 13が供給槽 6Aから延び る方向と逆向き)に一定の加速度 blを有する速度特性 43で急激に回転駆動する(ェ 程 F)。図 20の時刻 0から時刻 tl (実線)に、工程 Fにおける回転基板 2の回転速度と 回転方向を示す。加速度 blの向きは反時計方向 R2である。時刻 0に回転基板 2が 回転を開始する。回転基板 2の回転速度は加速度 blで上昇し、時刻 tlには回転速 度 RV2に達する。図 21Bに示すように、この反時計方向 R2の回転により入口端部 1 3の液体 9に慣性力 Fiが作用する。詳細には、回転基板 2が反時計方向 R1の回転を 開始しても、供給槽 6Aに蓄えられて入口端部 13に保持されている液体 9は、慣性の 法則により停止した状態を維持しょうとする。その結果、入口端部 13に保持されてい る液体 9には時計方向 R1の慣性力 Fiが作用する。慣性力 Fiの大きさは工程 Fで回 転基板 2の回転を回転させる際の加速度 blの絶対値に比例する。この慣性力 Fiは 毛細管力 Fcを相殺して入口端部 13の液体 9が流路 8Aを濡らす方向に作用し、慣性 力 Fiが毛細管力 Fcを上回ると、入口端部 13に保持されていた液体 9は流路 8A内に 流入する。流路 8A及び供給槽 6Aは親水性を有するので、いったん入口端部 13で の保持が解除されると図 21Cに示すように液体には被供給槽 7Aに向力 毛細管力 Fc'が作用する。この毛細管現象により流路 8A及び被供給槽 7Aの隅々まで行き渡 るので、被供給槽 7A内に確実かつ定量的に液体 9を注入することができる。
[0109] 次に、回転基板 2を一定の加速度 b2を有する速度特性 44で制動する(工程 G)。
図 20の時刻 tlから時刻 t2 (実線)に、工程 Gにおける回転基板 2の回転速度と回転 方向を示す。時刻 tlに回転速度 RV2から回転基板 2の回転速度の低下が始まる。 回転基板 2の回転速度は加速度 (反時計方向 R2を正の向きとすると減速度) b2で減 速し、時刻 t2に回転基板 2の反時計方向 R2の回転が停止する。工程 Fの加速度 bl の向きは反時計方向 R2であるのに対し、工程 Gの加速度 b2の向きは時計方向 R1で ある。換言すれば、工程 Gの加速度 b2は、工程 Fの加速度 blとは逆向きである。
[0110] 慣性力 Fiの大きさは工程 Fの加速度 blの絶対値に比例するので、慣性力 Fiが毛 細管力 Fcを上回るためには工程 Fの加速度 blの絶対値が大きいこと、換言すれば 工程 Fで回転基板 2が急回転されることが必要である。一方、工程 Gは単に回転基板 2の回転を停止させる目的で実行されるので、必ずしも急激な減速は必要ない。これ らの理由より、本実施形態では工程 Fの加速度 blを工程 Gの加速度 b2よりも十分大 きく設定している。例えば、加速度 blは lOOOrpmZsec以上 60000rpmZsec以下の 範囲で設定され、加速度 b2は 600rpmZsec以下に設定され。工程 Fの継続時間(図 20の時刻 0から時刻 tl)は停止状態カゝら到達する回転速度 RV2と加速度 blで決ま る。また、工程 Gの継続時間(図 20の時刻 tlから時刻 t2)は減速開始時の回転速度 RV2と加速度 b2で決まる。
[0111] 第 2実施形態の送液装置 1では、工程 Gで回転基板 2を急回転させるだけで、供給 槽 6A力 第 1被供給槽へ素早い送液を実現できるので、化学反応等の混合後の反 応時間が短!ヽ場合の送液に適して!/ヽる。
[0112] 図 22及び図 23は第 2実施形態における回転駆動のシーケンスの第 1の代案を示 す。この代案では回転基板 2を反時計方向 R2に急回転させる工程 F (図 23の時刻 t 0から時刻 tl)と回転基板 2を制動する工程 G (図 23の時刻 t2から時刻 t3)の間に、 回転基板 2を一定の回転速度 RV2で一定時間回転させる工程 H (図 23の時刻 tlか ら時刻 t2)を実行する。回転基板 2を定速で回転させる工程 Hを実行することで、より 複雑な送液制御を実行することが可能となる。
[0113] 図 24は回転駆動のシーケンスの第 2の代案の速度波形及び回転方向を示す。こ の第 2の代案では、図 19において破線《3で概念的に示すように、回転基板 2を反 時計方向 R2に急回転させる工程 Fと回転基板 2を制動する工程 Gとを繰り返す。間 欠的な連続送液が可能となるので、比較的大容量の液体 9を供給槽 6Aから被供給 槽 7Aに送液する場合に有効である。
[0114] 図 25及び図 26は回転駆動のシーケンスの第 3の代案を示す。この第 3の代案は、回 転基板 2を反時計方向 R2に回転させる工程 F (図 26の時刻 tlから時刻 t2)と回転基 板 2を制動する工程 G (図 26の時刻 t2から時刻 t3)を繰り返し、かつ工程 F及び工程 Gが終了する毎に、一定の時間だけ回転基板 2を回転が停止した状態で維持するィ ンターパルの工程 I (図 12の時刻 t3から時刻 t4)を実行する。インターバルの工程 Iを 設けることで、被供給槽 7A内での液体 9の反応を行いつつ、間欠的な連続送液を行 うことができる。
[0115] 図 27は回転駆動のシーケンスの第 4の代案の速度波形及び回転方向を示す。こ の第 4の代案では、図 22の破線《4で概念的に示すように、工程 F、工程 H、及びェ 程 Gをこの順に繰り返す。
[0116] 図 28及び図 29に示す回転駆動のシーケンスの第 5の代案では、工程 F、工程 H、 工程 G、及び工程 Iをこの順に繰り返す。
[0117] 図 30は第 1及び第 2実施形態の変形例に係る送液装置 1を示す。図 2と図 30を比 較すれば明らかなように、第 1及び第 2実施形態では流路 8Aの入口端部 13は供給 槽 6Aから時計方向 R1に延びている。これに対し、本変形例では流路 8Aの入口端 部 13は供給槽 6Aから反時計方向 R2に延びて 、る。本変形例の送液装置 1で第 1 実施形態と同様に急制動(工程 C)により発生する慣性力 Fiで入口端部 13での液体 9の保持を解除するに ίま、図 6、図 9、図 10、図 12、図 13、及び図 15にお!/、て破線 β 1で示すように、工程 Β及び工程 C (実行する場合には工程 D)の回転基板 2の回 転方向を反時計方向 R2に設定する必要がある。一方、本変形例の送液装置 1で第 2実施形態と同様に急回転 (工程 F)により発生する慣性力 Fiで入口端部 13での液 体 9の保持を解除するに ίま、図 20、図 23、図 24、図 26、図 27、及び図 29にお!/、て 破線 j8 2で示すように、工程 F及び工程 G (実行する場合には工程 H)の回転基板 2 の回転方向を時計方向 R1に設定する必要がある。
[0118] 入口端部 13の向きと回転基板 2の回転方向には、概ね以下の関係がある。入口端 部 13での保持を解除するためには、入口端部 13が供給槽 6Aから延びる方向の慣 性力 Fiが発生する必要がある。従って、急制動(工程 C)により慣性力 Fiを発生させる 場合には、急制動の開始時に、入口端部 13が供給槽 6A力も延びる方向と同じ向き に回転基板 2が回転している必要がある。また、急回転(工程 F)により慣性力 Fiを発 生させる場合には、入口端部 13が供給槽 6Aから延びる方向と逆向きに回転基板 2 を回転させる必要がある。
[0119] (第 3実施形態)
図 31に示す本発明の第 3実施形態の送液装置 1では、被供給槽 7Aが供給槽 6A よりも、回転基板 2の内側、すなわち回転軸 3に近い位置に配置されている。流路 8A の入口端部 13は供給槽 6 Aから時計方向 R 1に延びて 、る。第 1実施形態のように時 計方向 R1で回転する回転基板 2を急制動するか(図 6及び図 8の工程 C)、又は第 2 実施形態のように反時計方向 R2に回転基板 2を急回転すると(図 20及び図 22のェ 程 F)、時計方向 R1の慣性力 Fiが発生する。この慣性力 Fiが毛細管力 Fcを上回るこ とで、入口端部 13での液体 9の保持が解除され、供給槽 6A内の液体 9は流路 8Aを 通って被供給槽 7Aに流入する。前述のように被供給槽 7Aは供給槽 6Aよりも回転軸 3に近い位置に配置されているので、液体 9は回転軸 3の半径方向 rに内向きに、す なわち回転中心である回転軸 3に向かう方向に流れる。遠心力を駆動力とする送液 では送液の方向は回転中心力も遠ざ力る方向にのみ限定される。しかし、本発明で は慣性力 Fiを駆動力として行うので、本実施形態のような求心方向への送液も可能 であり、複雑な送液挙動を単純な流路構成で実現できる。
[0120] 第 3実施形態のその他の構成及び作用は第 1実施形態と同様である。
[0121] 図 32は第 3実施形態の第 1の変形例を示す。入口端部 13は供給槽 6Aから反時計 方向 R2に延びている。従って、反時計方向 R2で回転する回転基板 2を急制動する 力 (図 6及び図 8の工程 C)、又は時計方向 Rlに回転基板 2を急回転すると(図 20及 び図 22の工程 F)、反時計方向 R2の慣性力 Fiが発生する。この慣性力 Fiにより入口 端部 13により液体の保持を解除すると、液体 9は流路 8Aを回転軸 3側へ向力つて流 れて被供給槽 7Aに流入する。
[0122] 図 33に示す第 2の変形例では流路 8Aは蛇行するとなぐ半径方向 rに内向きに延 びている。また、図 34に示す第 3の変形例では供給槽 6Aと被供給槽 7Aは、半径方 向 rと直交する方向に並んで配置されて 、る。
[0123] (第 4実施形態)
図 35に示す本発明の第 4実施形態の送液装置 1は、流路部位 5は供給槽 6A、被 供給槽 7Aに加え、追加の被供給槽 (第 3の槽) 7Bを備える。被供給槽 7Aと同様に、 被供給槽 7Bは回転基板 2に空気口 12を除いて空間的な閉じた状態に形成されてい る。また、流路部位 5は、供給槽 6Aと被供給槽 7Aを連通させる流路 8Aに加え、供 給槽 6Aと被供給槽 7Bを接続する流路 (第 2の流路) 8Bを備える。流路 8Aと同様に 、流路 8Bは回転基板 2に空間的に閉じた状態で形成されて!ヽる。
[0124] 被供給槽 7Aと被供給槽 7Bは、ともに供給槽 6Aよりも半径方向!:の外側に配置され ている。被供給槽 7Aは供給槽 6Aよりも時計方向 R1側(図 35において左側)に配置 されている。従って、流路 8Aの入口端部 13は供給槽 6Aから時計方向 R1に延びて いる。一方、被供給槽 7Bは供給槽 6Aよりも反時計方向 R2側(図 35において右側) に配置されている。従って、流路 8Bの入口端部(第 4の流路端部) 13は供給槽 6 Aか ら反時計方向 R2に延びている。流路 8Aの出口端部 14は逆流防止のために半径方 向 rに外向きに延びている。同様に、流路 8Bの出口端部(第 5の流路端部) 14も半径 方向 rに外向きに延びている。流路 8A及び流路 8Bの入口端部 13は、いずれも疎水 性を有している。流路 8A及び流路 8Bの入口端部 13以外の部分と供給槽 6A、被供 給槽 7A、及び被供給槽 7Bは親水性を有している。
[0125] 注入口 11から供給槽 6Aに液体を注入した後(工程 A)、時計方向 R1に回転する 回転基板 2を急制動する力 (図 6及び図 8の工程 C)、又は反時計方向 R2に回転基 板 2を急回転すると(図 20及び図 22の工程 F)、時計方向 R1の慣性力 Fiが発生し、 この慣性力 Fiが毛細管力 Fcを上回ると、流路 8Aの入口端部 13で保持されていた液 体 9は流路 8Aを通って供給槽 6Aから被供給槽 7Aに流れ込む。一方、時計方向 R1 ではなく反時計方向 R2に回転する回転基板 2を急制動する力 又は反時計方向 R2 ではなく時計方向 R1に回転基板 2を急回転すると、反時計方向 R2の慣性力 Fiが発 生し、この慣性力 Fiが毛細管力 Fcを上回ると、流路 8Bの入口端部 13で保持されて V、た液体 9は流路 8Bを通って供給槽 6A力 被供給槽 7Bに流れ込む。このように急 制動又は急回転を行う際の回転基板 2の回転方向により、供給槽 6A力 左側の被 供給槽 7A又は右側の被供給槽 7Bのいずれか一方に選択的に液体 9を送液できる
[0126] また、回転基板 2の回転方向を切り換えることにより、供給槽 6Aから被供給槽 7Aと 被供給槽 7Bに対して連続的に液体 9を送液することもできる。図 36及び図 37は、こ の送液方向の連続的な切り換えの例を示す。図 36を参照すると、供給槽 6Aへ液体 9を注入した後(工程 A)、回転基板 2を時計方向 R1に一定の加速度 alを有する速 度特性 41で回転駆動する(工程 B、図 37の時刻 0から時刻 tl)。続いて、速度特性 4 1で回転中の回転基板 2を一定の加速度 a2を有する速度特性 42で急制動する(ェ 程 C、図 37の時刻 tlから時刻 t2)。その結果、流路 8Aの入口端部 13の液体 9に時 計方向 R1の慣性力 Fiが作用し、供給槽 6A内の液体 9は流路 8Aを通って被供給槽 7Aに流入する。続いて、回転基板 2の回転方向を時計方向 R1から反時計方向 R2 に反転させ、工程 B (図 37の時刻 t2から時刻 t3)と工程 C (図 37の時刻 t3から時刻 t 4)を実行する。反時計方向 R2に回転する回転基板 2を急制動することで、流路 8B の入口端部 13の液体 9に反時計方向 R2の慣性力 Fiが作用し、供給槽 6A内の液体 9は流路 8Bを通って被供給槽 7Bに流入する。
[0127] 第 4実施形態のその他の構成及び作用は第 1実施形態と同様である。
[0128] 図 38に示す第 4実施形態の変形例では、供給槽 6Aとその左右に配置された被供 給槽 7A及び被供給槽 7Bは、回転軸 3の半径方向 rと直交する方向に並んで配置さ れている。
[0129] (第 5実施形態)
図 39に示す本発明の第 5実施形態の送液装置 1は、流路部位 5は供給槽 6A、被 供給槽 7Aに加え、追加の被供給槽 (第 3の槽) 7Bを備える。被供給槽 7Aと同様に、 被供給槽 7Bは回転基板 2に空気口 12を除いて空間的な閉じた状態に形成されてい る。また、流路部位 5は、供給槽 6Aと被供給槽 7Aを連通させる流路 8Aに加え、供 給槽 6Aと被供給槽 7Bを接続する流路 (第 2の流路) 8Bを備える。流路 8Aと同様に 、流路 8Bは回転基板 2に空間的に閉じた状態で形成されて!ヽる。
[0130] 被供給槽 7Aと被供給槽 7Bは、ともに供給槽 6Aよりも半径方向!:の外側に配置され ている。被供給槽 7Aと被供給槽 7Bは、ともに供給槽 6Aよりも時計方向 R1側(図 39 において左側)に配置されている。従って、流路 8Aの入口端部 13は供給槽 6Aから 時計方向 R1に延びている。同様に、流路 8Bの入口端部(第 4の流路端部) 13も供 給槽 6Aから時計方向 R1に延びている。流路 8Aの入口端部 13は、流路 8Bの入口 端部 13に比べ回転中心に近い。また、流路 8Aの入口端部 13の断面積は、流路 8B の入口端部 13の断面積に比べ大きい。従って、流路 8Aの入口端部 13にかかる毛 細管力 Fcaが起こす単位面積あたりの圧力は、流路 8Bの入口端部 13に力かる毛細 管力 Febが起こす単位面積あたりの圧力に比べ必ず小さくなる。流路 8Aの出口端部 14は逆流防止のために半径方向 rに外向きに延びている。同様に、流路 8Bの出口 端部(第 5の流路端部) 14も半径方向 rに外向きに延びている。流路 8A及び流路 8B の入口端部 13は、いずれも疎水性を有している。流路 8A及び流路 8Bの入口端部 1 3以外の部分と供給槽 6A、被供給槽 7A、及び被供給槽 7Bは親水性を有している。
[0131] 注入口 11から供給槽 6Aに液体を注入した後(工程 A)、時計方向 R1に回転する 回転基板 2を急制動する力 (図 6及び図 8の工程 C)、又は反時計方向 R2に回転基 板 2を急回転すると(図 20及び図 22の工程 F)、時計方向 R1の慣性力 Fiが発生する 。この慣性力 Fiの大きさによって 3つの動作が実現される。第一に、この慣性力 Fiが、 流路 8Aの入口端部 13にかかる毛細管力 Fcaを下回ると、この毛細管力 Fcaより常に 大きい流路 8Bの入口端部 13にかかる毛細管力 Febも必ず下回るので、液体 9は供 給槽 6A力も被供給槽 7Aに流れ込まない。第二に、この慣性力 Fiが、流路 8Aの入 口端部 13にかかる毛細管力 Fcaを上回り、かつ、流路 8Bの入口端部 13にかかる毛 細管力 Febを下回ると、流路 8 Aの入口端部 13で保持されていた液体 9は流路 8 Aを 通って供給槽 6Aから被供給槽 7Aに流れ込む一方、流路 8Bを通る供給槽 6Aから 被供給槽 7Bへの流れ込みは起きない。第三に、この慣性力 Fiが、流路 8Bの入口端 部 13にかかる毛細管力 Febも上回ると、この毛細管力 Febより常に大きい流路 8Aの 入口端部 13に力かる毛細管力 Fcaも必ず上回るので、流路液体 9は流路 8 Aを通つ て供給槽 6Aから被供給槽 7Aに流れ込み、同時に、流路 8Bを通って供給槽 6Aから 被供給槽 7Bへも流れ込む。しかも、供給槽 6Aにある溶液量の水位が流路 8Aの入 口端部 13と流路 8Bの入口端部 13の間にある時には、液体 9は流路 8Aを通って供 給槽 6A力ゝら被供給槽 7Aに流れ込めず、流路 8Bを通って供給槽 6Aから被供給槽 7 Bへの流れ込みのみ起こる。このように急制動又は急回転を行う際の加速度の大きさ により、供給槽 6Aから同じ方向に出て 、る太 ヽ流路を持つ被供給槽 7A又は細 ヽ流 路を持つ被供給槽 7Bへと選択的に液体 9を送液できる。
[0132] (第 6実施形態)
図 40に示す本発明の第 6実施形態の送液装置 1は、 2つの供給槽、すなわち供給 槽 6A, 6Bを備える。供給槽 6A, 6Bは半径方向 rに直交する方向に並んで配置され ている。被供給槽 7Aは供給槽 6A, 6Bよりも回転軸 3から離れた位置に被供給槽 7A が配置されている。供給槽 6Aと被供給槽 7Aを連通させる流路 8Aの入口端部 13は 時計方向 R1に延びている。一方、供給槽 6Bは回転基板 2に形成された空間的に閉 じられた流路 8Cにより被供給槽 7Aに連通している。流路 8Cの入口端部 13は反時 計方向 R2に延びて 、る。流路 8 A及び流路 8Cの入口端部 13は共に疎水性を有し ている。また、流路 8A及び流路 8Cの出口端部 14は共に半径方向 rに外向きに延び ている。さらに、流路 8A及び流路 8Cの入口端部 13以外の部分と供給槽 6A,6B、及 び被供給槽 7Aは親水性を有して 、る。
[0133] 時計方向 R1に回転する回転基板 2を急制動する力 (図 6及び図 8の工程 C)、又は 反時計方向 R2に回転基板 2を急回転すると(図 20及び図 22の工程 F)、時計方向 R 1の慣性力 Fiが発生し、この慣性力 Fiが毛細管力 Fcを上回ると、流路 8Aの入口端 部 13で保持されていた液体 9は流路 8Aを通って供給槽 6Aから被供給槽 7Aに流れ 込む。一方、反時計方向 R2に回転する回転基板 2を急制動する力、又は時計方向 R1に回転基板 2を急回転すると、反時計方向 R2の慣性力 Fiが発生し、この慣性力 Fiが毛細管力 Fcを上回ると、流路 8Cの入口端部 13で保持されていた液体 9は流路 8Cを通って供給槽 6A力も被供給槽 7Aに流れ込む。このように本発明によれば、 2 つの槽にそれぞれ蓄えられた液体を別の槽で混合させる送液制御を実現することが できる。
[0134] 第 6実施形態のその他の構成及び作用は第 1実施形態と同様である。
[0135] (第 7実施形態)
図 41に示す本発明の第 7実施形態の送液装置 1は、流路 8Aで供給槽 6Aに連通 された被供給槽 7Aに、さらに被供給槽 (第 4の槽) 7Cが接続されている。供給槽 6A 、被供給槽 7A, 7Cは半径方向 rに並んで配置されている。詳細には、供給槽 6Aより も外側に被供給槽 7Aが配置され、さらに被供給槽 7Aの外側に被供給槽 7Cが配置 されている。供給槽 6Aと被供給槽 7Aを連通する流路 8Aの入口端部 13は時計方向 R1に延びている。また、流路 8Aの出口端部 14は半径方向 rに外向きに延びている 。被供給槽 7Aと被供給槽 7Cを接続する流路 (第 3の流路) 8Dの入口端部 (第 5の流 路端部) 13も時計方向 R1に延びている。また、流路 8Dの出口端部(第 6の流路端部 ) 14は半径方向 rに外向きに延びている。流路 8A, 8Dの入口端部 13は、共に疎水 性を有する。また、流路 8A, 8Dの入口端部 13以外の部分、供給槽 6A、及び被供 給槽 7A, 7Cは親水性を有する。
[0136] 時計方向 R1に回転する回転基板 2を急制動する力、又は反時計方向 R2に回転基 板 2を急回転すると)、時計方向 R1の慣性力 Fiが発生し、この慣性力 Fiが毛細管力 Fcを上回ると、流路 8Aの入口端部 13で保持されていた液体 9は流路 8Aを通って供 給槽 6A力ゝら被供給槽 7Aに流れ込む。被供給槽 7Aに液体 9が蓄えられた後、再び 時計方向 R1に回転する回転基板 2を急制動する力 又は反時計方向 R2に回転基 板 2を急回転すると)、時計方向 R1の慣性力 Fiが発生し、この慣性力 Fiが毛細管力 Fcを上回ると、流路 8Dの入口端部 13で保持されて ヽた液体 9は流路 8Dを通って被 供給槽 7A力も被供給槽 7Cに流れ込む。従って、図 10、図 12、図 13、図 15、図 24 、図 26、図 27、及び図 29に示すような、加速と減速を繰り返す速度特性で回転基板 2を回転駆動することにより、供給槽 6A内の液体 9を被供給槽 7A, 7Cに順次送液 する多段送液を実現できる。このような送液挙動により、それぞれの送液に機能を付 カロさせることができる。例えば、一つの流路部位の各槽上で、溶液に対し、抽出、混 合、反応、及び検出といった、多段にわたるより複雑な反応機能をもたせることができ る。
[0137] 図 42に示すように、被供給槽 7Cの下流側にさらに被供給槽 7Dを設け、多段送液 の段数を 4段以上にしてもょ 、。
[0138] 第 7実施形態のその他の構成及び作用は第 1実施形態と同様である。
[0139] (第 8実施形態)
図 43に示す本発明の第 8実施形態の送液装置 1は、流路 8Aの入口端部 13は時 計方向 R1に延びているのに対し、流路 8Dの入口端部 13が被供給槽 7A力も反時 計方向 R2に延びている点を除いて、第 7実施形態(図 41参照)と同様の構造を有す る。換言すれば、第 8実施形態では、流路 8Aと流路 8Dの入口端部 13が互いに逆向 きに延びている。
[0140] 時計方向 R1に回転する回転基板 2を急制動する力、又は反時計方向 R2に回転基 板 2を急回転すると、時計方向 R1の慣性力 Fiが発生し、この慣性力 Fiが毛細管力 F cを上回ると、流路 8Aの入口端部 13で保持されていた液体 9は流路 8Aを通って供 給槽 6A力も被供給槽 7Aに流れ込む。一方、被供給槽 7A内の液体 9を被供給槽 7 Cに送液するには、時計方向 R1ではなく反時計方向 R2に回転する回転基板 2を急 制動するか、又は反時計方向 R2ではなく時計方向 R1に回転基板 2を急回転する必 要がある。従って、供給槽 6A内の液体 9を被供給槽 7A, 7Cに順次送液するには、 例えば図 36及び図 37に示すように、時計方向 R1に回転する回転基板 2の急制動を まず実行し、それに続いて反時計方向 R2に回転する回転基板 2の急制動を実行す ればよい。このように流路 8Aの入口端部 13と流路 8Cの入口端部 13の向きを逆向き に設定しておけば、被供給槽 7Aから被供給槽 7Cに送液する際に、被供給槽 7Aか ら供給槽 6Aに液体 9が逆流するのをより確実に防止できる。
[0141] 第 8実施形態のその他の構成及び作用は第 1実施形態と同様である。
[0142] (第 9実施形態)
図 44に示す本発明の第 9実施形態の送液装置 1は、第 4実施形態(図 35参照)の 被供給槽 7Bの下流側にさらに 2つの被供給槽 7D, 7Eを設けた構成としている。被 供給槽 7Bと被供給槽 7Dは流路 8Eで連通され、被供給槽 7Dと被供給槽 7Eは流路 8Fで連通されている。流路 8E, 8Fの入口端部 13は、共に反時計方向 R2に延びて いる。
[0143] 時計方向 Rlに回転する回転基板 2を急制動する力 (図 6及び図 8の工程 C)、又は 反時計方向 R2に回転基板 2を急回転すると(図 20及び図 22の工程 F)、時計方向 R 1の慣性力 Fiが発生し、この慣性力 Fiが毛細管力 Fcを上回ると、流路 8Aの入口端 部 13で保持されていた液体 9は流路 8Aを通って供給槽 6Aから被供給槽 7Aに流れ 込む。一方、時計方向 R1ではなく反時計方向 R2に回転する回転基板 2を急制動す る力、又は反時計方向 R2ではなく時計方向 R1に回転基板 2を急回転すると、反時 計方向 R2の慣性力 Fiが発生する。この反時計方向 R2の慣性力 Fiによって、供給槽 6Aから、被供給槽 7B, 7Dを経て被供給槽 7Eまで液体 9を多段送液できる。第 9実 施形態の槽の配置により、例えば供給槽 6Aの液体 9を被供給槽 7B, 7D, 7Eにお ける種々の処理に供し、残余の液体 9を被供給槽 7Aに破棄する送液制御が可能で ある。
[0144] 第 9実施形態のその他の構成及び作用は第 1実施形態と同様である。
[0145] (第 10実施形態)
図 45に示す本発明の第 10実施形態の送液装置 1は、第 6実施形態(図 41)の被 供給槽 7Aに被供給槽 7Cに加えて、さらに 2つの槽、すなわち被供給槽 7F, 7Gを連 通させた構成としている。
[0146] 被供給槽 7Aと被供給槽 7Fを連通させる流路 8Gと、被供給槽 7Aと被供給槽 7Gを 連通させる流路 8Hは、共に時計方向 R1に延びる入口端部 13を有している。また、 流路 8G, 8Hの出口端部 14は共に半径方向 rに外向きに延びている。本実施形態 における被供給 7C, 7F, 7Gのように、 1個の槽に 3個以上の槽が接続されていても よい。
[0147] 第 10実施形態のその他の構成及び作用は第 1実施形態と同様である。
[0148] (第 11実施形態)
図 46から図 48に示す本発明の第 11実施形態の送液装置 1は、回転基板 2の構造 が第 1実施形態と相違する。具体的には、回転基板 2は、回転基板本体 51と、この回 転基板本体 51に対して着脱可能なチップ体 52を備える。回転基板本体 51には流 路部位 5は形成されておらず、各チップ体 52に流路部位 5が形成されている。回転 基板本体 51の上面側にはそれぞれチップ体 52が収容される複数の収容孔 53が形 成されている。収容孔 53は回転軸 3に対して放射状に配置されている。収容孔 53の 外側の壁面には凹部 53aが形成されている。チップ体 52の一部がこの凹部 53a内に 配置されることにより、チップ体 52が収容孔 53内に保持される。特に、回転基板 2の 回転時には遠心力によってチップ体 52が凹部 53aに向力つて付勢されるので、チッ プ体 52は収容孔 53から脱落することなく確実に回転基板本体 51に保持される。
[0149] 第 11実施形態のその他の構成及び作用は第 1実施形態と同様である。
[0150] 本発明の送液装置及び送液方法は、生体試料、特に血液等に含まれるタンパク質 等の生体構成成分を分析するデバイスの駆動源として有用である。特に、血液試料 は、前段階で血球血漿分離を行い、血漿に含まれるタンパク質を被測定試料とする 。し力もその分離に好適に用いられるのは遠心力を用いた遠心分離である。このため 回転基板を使った送液方式は遠心力を使った血球血漿分離と容易に組み合わせる ことができる。さらに、各槽に試薬等を担持、または、各槽上で加温などの物理的操 作を施すことで、反応、精製、検出などの機能を持たせることができる。このため、血 液試料中に含まれるタンパクや健康指標物質を分離、精製、反応、検出する POCT (Point of care testその場診断)診断バイオセンサ等の用途にも応用できる。本発明 の送液方法によれば、従来の遠心性の方向によらない送液が可能なので、血球血 漿分離との流路'槽の統合が容易であるという特長を持つ。つまり、血球血漿分離は 、遠心力による血球と血漿の密度差を利用して分離するため、必ず遠心性の方向に 、密度の大きい血球が沈降する。従来の送液方法では、分離した血漿を別の槽へ送 液する際には遠心性の方向に沈降した血球成分が行く手を阻んで!/ヽたが、本発明 の送液方法の流路端部は遠心性の外側に依らず、回転方向に設定できるため、容 易に分離した血漿成分を送液することができる。

Claims

請求の範囲
[1] 回転中心線 (S)まわりに少なくとも第 1の回転方向 (Rl, R2)に回転可能な回転基 板 (2)と、
前記回転基板に形成され、注入口(11)を除いて空間的に閉じられた第 1の槽 (6A )と、
前記回転基板に形成され、空気口(12)を除いて空間的に閉じられた第 2の槽 (7A )と、
前記回転基板に形成され、前記第 1の槽と接続する第 1の流路端部(13)と、前記 第 2の槽と接続する第 2の流路端部(14)とを備え、前記第 1の槽と前記第 2の槽とを 連通させ、前記第 1の流路端部は前記第 1の槽から前記回転基板の前記第 1の回転 方向に沿って延び、かつ前記第 1の流路端部は前記第 1の槽内の液体 (9)を毛細管 力 (Fc)により保持する第 1の流路 (8A)と、
前記毛細管力を上回り、かつ前記第 1の回転方向に向いた慣性力 (Fi)が前記第 1 の流路端部の前記液体に作用するように、前記回転基板を前記回転中心線まわりに 回転駆動可能な回転駆動部 (4)と
を備えることを特徴とする送液装置。
[2] 前記回転駆動部は、前記第 1の回転方向に前記回転基板を回転させた後、第 1の 加速度 (a2)を有する速度特性 (42)で前記回転基板を停止させ、前記第 1の加速度 (a2)により前記第 1の流路端部の前記液体に前記毛細管力を上回る慣性力を生じ させることを特徴とする、請求項 1に記載の送液装置。
[3] 前記第 1の流路端部が前記第 1の回転方向となす角度が 45° 以上 +45° 以下 であることを特徴とする、請求項 2に記載の送液装置。
[4] 前記回転駆動部は、前記第 1の回転方向とは逆向きの第 2の回転方向(Rl, R2) に第 2の加速度 (bl)を有する速度特性 (43)で前記回転基板を回転させ、前記第 2 の加速度により前記第 1の流路端部の前記液体に前記毛細管力を上回る慣性力を 生じさせることを特徴とする、請求項 1に記載の送液装置。
[5] 前記第 1の流路端部が前記第 2の回転方向となす角度が 135° 以上 235° 以下 であることを特徴とする請求項 4に記載の送液装置。
[6] 前記第 2の槽は前記第 1の槽よりも前記回転中心線に近い位置に配置されているこ とを特徴とする請求項 1から請求項 5のいずれか 1項に記載の送液装置。
[7] 前記第 1の流路の前記第 2の流路端部は、第 1の回転方向と直交する方向に沿つ て延びて前記第 2の槽に接続して 、ることを特徴とする請求項 1から請求項 6の 、ず れか 1項に記載の送液装置。
[8] 前記第 1の流路の前記第 1の流路端部が疎水性を有することを特徴とする請求項 1 から請求項 7のいずれか 1項に記載の送液装置。
[9] 前記第 1の流路の全体が疎水性を有することを特徴とする請求項 1から請求項 7の いずれか 1項に記載の送液装置。
[10] 前記回転基板全体が疎水性を有することを特徴とする請求項 1から請求項 7のいず れか 1項に記載の送液装置。
[11] 前記第 1の流路の前記第 2の流路端部が親水性を有することを特徴とする請求項 8 に記載の送液装置。
[12] 前記第 1の流路の前記第 1の流路端部を除く全体が親水性を有することを特徴とす る請求項 8に記載の送液装置。
[13] 前記第 1の槽及び前記第 2の槽は親水性を有し、
前記第 1の流路の前記第 1の流路端部は疎水性を有し、かつ
前記第 1の流路の前記第 1の流路端部を除く全体が親水性を有することを特徴とす る請求項 1から請求項 7のいずれか 1項に記載の送液装置。
[14] 前記回転基板に、少なくとも前記第 1の槽、前記第 2の槽、及び前記第 1の流路を 備える流路部位 (5)が複数個形成されていることを特徴とする、請求項 1から請求項 13のいずれか 1項に記載の送液装置。
[15] 前記回転基板に形成され、空気口を除いて空間的に閉じられた第 3の槽 (7B)と、 前記回転基板に形成され、前記第 1の槽と接続する第 3の流路端部(13)と、前記 第 3の槽と接続する第 4の流路端部(14)とを備え、前記第 1の槽と前記第 3の槽とを 連通させ、前記第 3の流路端部は前記第 1の槽から前記回転基板の前記第 1の回転 方向とは逆向きの第 2の回転方向に延び、かつ前記第 3の流路端部は前記第 1の槽 内の液体を毛細管力により保持する第 2の流路 (8B)とをさらに備え、 前記回転駆動部は、前記毛細管力を上回り、かつ前記第 2の回転方向に向いた慣 性力が前記第 3の流路端部の前記液体に作用するように、前記回転基板を前記回 転中心線まわりに回転駆動可能であることを特徴とする、請求項 1に記載の送液装 置。
[16] 前記回転基板に形成され、空気口を除いて空間的に閉じられた第 4の槽 (7C)と、 前記回転基板に形成され、前記第 2の槽と接続する第 5の流路端部(13)と、前記 第 4の槽と接続する第 6の流路端部(14)とを備え、前記第 2の槽と前記第 4の槽とを 連通させ、前記第 5の流路端部は前記第 2の槽から前記回転基板の前記第 1の回転 方向又は第 1の回転方向とは逆向きの第 2の回転方向に延び、かつ前記第 5の流路 端部は前記第 2の槽内の液体を毛細管力により保持する第 3の流路 (8D)とをさらに 備え、
前記回転駆動部は、前記毛細管力を上回り、かつ前記第 5の流路端部が前記第 2 の槽力 延びる向きの慣性力が前記液体に作用するように、前記回転基板を前記回 転中心線まわりに回転駆動可能であることを特徴とする、請求項 1に記載の送液装 置。
[17] 前記回転駆動部は、
前記回転基板を回転させるモータ(31)と、
前記モータに速度特性を与える速度特性印加部(34)と
を備えることを特徴とする、請求項 1から請求項 15のいずれ力 1項に記載の送液装 置。
[18] 前記回転駆動部は、
回転中の前記回転基板の回転速度を検出する回転速度検出器(35)と、 前記回転速度検出器の検出した前記回転速度に基づいて、前記速度特性印加部 が前記モータに与える速度特性を補正する回転速度補正部(36)と
を備えることを特徴とする、請求項 16に記載の送液装置。
[19] 回転中心線 (S)まわりに少なくとも第 1の回転方向(Rl, R2)に回転可能である、送 液装置用の回転基板(2)であって、
注入口を除いて空間的に閉じられた第 1の槽 (6A)と、 空気口を除いて空間的に閉じられた第 2の槽 (7A)と、
前記第 1の槽と接続する第 1の流路端部と、前記第 2の槽と接続する第 2の流路端 部とを備え、前記第 1の槽と前記第 2の槽とを連通させ、前記第 1の流路端部は前記 第 1の槽から前記回転基板の前記第 1の回転方向に延びる第 1の流路 (8A)と が形成されていることを特徴とする回転基板。
[20] 回転中心線 (S)まわりに少なくとも第 1の回転方向(Rl, R2)に回転可能であって、 空間的に閉じられた第 1の槽 (6A)と、空間的に閉じられた第 2の槽 (7A)と、前記第 1の槽と接続する第 1の流路端部(13)と、前記第 2の槽と接続する第 2の流路端部( 14)とを備え、前記第 1の槽と前記第 2の槽とを連通させ、前記第 1の流路端部は前 記第 1の槽から前記回転基板の前記第 1の回転方向に延び、かつ前記第 1の流路端 部は前記第 1の槽内の液体 (9)を毛細管力により保持する流路 (8A)とを形成した回 転基板を準備し、
前記毛細管力を上回り、かつ前記第 1の回転方向に向いた慣性力が前記第 1の流 路端部の前記液体に作用するように、前記回転基板を前記回転中心線まわりに回転 させることを特徴とする、送液方法。
[21] 前記第 1の回転方向に第 1の加速度を有する速度特性で前記回転基板を回転させ 前記第 1の加速度よりも絶対値の大きい第 2の加速度を有する速度特性で前記回 転基板の前記第 1の回転方向の回転を停止させ、それによつて前記毛細管力を上 回る前記第 1の回転方向を向いた慣性力を前記第 1の流路端部の前記液体に生じさ せることを特徴とする、請求項 20に記載の送液方法。
[22] 前記第 1の回転方向と逆向きの第 2の回転方向に、第 3の加速度を有する速度特 性で前記回転基板を回転させ、それによつて前記毛細管力を上回る前記第 1の回転 方向を向いた慣性力を前記第 1の流路端部の前記液体に生じさせ、
前記第 3の加速度よりも絶対値の小さい第 4の加速度を有する加速度特性で前記 回転基板の前記第 2の回転方向の回転を停止させることを特徴とする、請求項 20に 記載の送液方法。
[23] 前記回転基板は前記第 1の槽と前記回転基板の外部を連通させる注入口(11)を 備え、
前記回転基板を回転させる前に、前記第 1の槽に前記注入口から前記液体を注入 する請求項 20から請求項 22のいずれか 1項に記載の送液方法。
PCT/JP2005/022164 2005-01-24 2005-12-02 送液装置及び送液方法 WO2006077695A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006515510A JP3910208B2 (ja) 2005-01-24 2005-12-02 送液装置及び送液方法
US11/516,008 US7497996B2 (en) 2005-01-24 2006-09-06 Liquid delivery apparatus and liquid delivery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-015489 2005-01-24
JP2005015489 2005-01-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/516,008 Continuation US7497996B2 (en) 2005-01-24 2006-09-06 Liquid delivery apparatus and liquid delivery method

Publications (1)

Publication Number Publication Date
WO2006077695A1 true WO2006077695A1 (ja) 2006-07-27

Family

ID=36692089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022164 WO2006077695A1 (ja) 2005-01-24 2005-12-02 送液装置及び送液方法

Country Status (3)

Country Link
US (1) US7497996B2 (ja)
JP (1) JP3910208B2 (ja)
WO (1) WO2006077695A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064753A (ja) * 2006-09-05 2008-03-21 Samsung Electronics Co Ltd 遠心力基盤の蛋白質検出用の微細流動装置及びそれを備える微細流動システム
JP2009145111A (ja) * 2007-12-12 2009-07-02 Seiko Epson Corp 生体物質検出装置、反応用チップ、および生体物質検出方法
JP2009180707A (ja) * 2008-02-01 2009-08-13 Nippon Telegr & Teleph Corp <Ntt> フローセル
US7749449B2 (en) * 2006-07-11 2010-07-06 Panasonic Corporation Liquid delivery apparatus and liquid delivery method
WO2011013331A1 (ja) * 2009-07-27 2011-02-03 ベックマン コールター, インコーポレイテッド マイクロ流体チップ
JP2011141299A (ja) * 2011-04-25 2011-07-21 Nippon Telegr & Teleph Corp <Ntt> フローセル
JP2013088211A (ja) * 2011-10-16 2013-05-13 Japan Advanced Institute Of Science & Technology Hokuriku 微細流路のバルブ構造、これを備えるマイクロデバイス、マイクロセンサ及びマイクロリアクター及び微細流路の送液制御方法
JP2013195370A (ja) * 2012-03-22 2013-09-30 Saitama Univ 液体分割方法及び液体分割用キット
JP2014510922A (ja) * 2011-03-28 2014-05-01 バイオサーフィット、 ソシエダッド アノニマ 液体のスイッチング、ドーシングおよびポンピング
WO2016052601A1 (ja) * 2014-09-30 2016-04-07 ブラザー工業株式会社 検査装置、検査プログラム、検査方法
JP2017203763A (ja) * 2016-05-09 2017-11-16 住友ゴム工業株式会社 医療用検査装置及び細胞検査方法
JP2019519798A (ja) * 2016-06-21 2019-07-11 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) 微細流体装置
JP2019144133A (ja) * 2018-02-21 2019-08-29 国立研究開発法人産業技術総合研究所 アッセイ装置
US10786812B2 (en) 2016-05-09 2020-09-29 Sumitomo Rubber Industries, Ltd. Medical analysis device and cell analysis method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918589B2 (ja) * 2007-05-10 2012-04-18 パナソニック株式会社 チャンバを有する流路部位を含む基板、およびそれを含む多段送液装置
US10888862B2 (en) 2012-12-05 2021-01-12 Radisens Diagnostics Limited Acceleration-primed valving system for centrifugal microfluidics
WO2014086956A2 (en) * 2012-12-05 2014-06-12 Radisens Diagnostics Limited Valving system for use in centrifugal microfluidic platforms

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160702A (en) * 1989-01-17 1992-11-03 Molecular Devices Corporation Analyzer with improved rotor structure
JPH04507288A (ja) * 1989-05-30 1992-12-17 マーチン・マリエッタ・エナジー・システムズ・インク 液体処理用回転子及び方法
JPH05508709A (ja) * 1990-06-04 1993-12-02 アバクシス,インコーポレイテッド 分析用回転装置および生物学的流体の分析方法
JPH09504732A (ja) * 1993-09-01 1997-05-13 アバクシス,インコーポレイテッド 簡易入口チャンネル
JP2003502656A (ja) * 1999-06-22 2003-01-21 テカン トレーディング アーゲー 小型化されたインビトロ増幅アッセイを行うための装置および方法
WO2003057369A1 (en) * 2001-12-21 2003-07-17 3M Innovative Properties Company Centrifugal filling of sample processing devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835106A (en) * 1987-07-17 1989-05-30 Martin Marietta Energy Systems, Inc. Rotor for processing liquids using movable capillary tubes
US5242606A (en) 1990-06-04 1993-09-07 Abaxis, Incorporated Sample metering port for analytical rotor having overflow chamber
US5061381A (en) * 1990-06-04 1991-10-29 Abaxis, Inc. Apparatus and method for separating cells from biological fluids
US20010055812A1 (en) 1995-12-05 2001-12-27 Alec Mian Devices and method for using centripetal acceleration to drive fluid movement in a microfluidics system with on-board informatics
US6706519B1 (en) * 1999-06-22 2004-03-16 Tecan Trading Ag Devices and methods for the performance of miniaturized in vitro amplification assays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160702A (en) * 1989-01-17 1992-11-03 Molecular Devices Corporation Analyzer with improved rotor structure
JPH04507288A (ja) * 1989-05-30 1992-12-17 マーチン・マリエッタ・エナジー・システムズ・インク 液体処理用回転子及び方法
JPH05508709A (ja) * 1990-06-04 1993-12-02 アバクシス,インコーポレイテッド 分析用回転装置および生物学的流体の分析方法
JPH09504732A (ja) * 1993-09-01 1997-05-13 アバクシス,インコーポレイテッド 簡易入口チャンネル
JP2003502656A (ja) * 1999-06-22 2003-01-21 テカン トレーディング アーゲー 小型化されたインビトロ増幅アッセイを行うための装置および方法
WO2003057369A1 (en) * 2001-12-21 2003-07-17 3M Innovative Properties Company Centrifugal filling of sample processing devices

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749449B2 (en) * 2006-07-11 2010-07-06 Panasonic Corporation Liquid delivery apparatus and liquid delivery method
JP2008064753A (ja) * 2006-09-05 2008-03-21 Samsung Electronics Co Ltd 遠心力基盤の蛋白質検出用の微細流動装置及びそれを備える微細流動システム
JP2009145111A (ja) * 2007-12-12 2009-07-02 Seiko Epson Corp 生体物質検出装置、反応用チップ、および生体物質検出方法
JP2009180707A (ja) * 2008-02-01 2009-08-13 Nippon Telegr & Teleph Corp <Ntt> フローセル
WO2011013331A1 (ja) * 2009-07-27 2011-02-03 ベックマン コールター, インコーポレイテッド マイクロ流体チップ
JP2014510922A (ja) * 2011-03-28 2014-05-01 バイオサーフィット、 ソシエダッド アノニマ 液体のスイッチング、ドーシングおよびポンピング
JP2011141299A (ja) * 2011-04-25 2011-07-21 Nippon Telegr & Teleph Corp <Ntt> フローセル
JP2013088211A (ja) * 2011-10-16 2013-05-13 Japan Advanced Institute Of Science & Technology Hokuriku 微細流路のバルブ構造、これを備えるマイクロデバイス、マイクロセンサ及びマイクロリアクター及び微細流路の送液制御方法
JP2013195370A (ja) * 2012-03-22 2013-09-30 Saitama Univ 液体分割方法及び液体分割用キット
WO2016052601A1 (ja) * 2014-09-30 2016-04-07 ブラザー工業株式会社 検査装置、検査プログラム、検査方法
JP2016070773A (ja) * 2014-09-30 2016-05-09 ブラザー工業株式会社 検査装置、検査プログラム、検査方法
JP2017203763A (ja) * 2016-05-09 2017-11-16 住友ゴム工業株式会社 医療用検査装置及び細胞検査方法
US10786812B2 (en) 2016-05-09 2020-09-29 Sumitomo Rubber Industries, Ltd. Medical analysis device and cell analysis method
JP2019519798A (ja) * 2016-06-21 2019-07-11 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) 微細流体装置
JP2021004899A (ja) * 2016-06-21 2021-01-14 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) 微細流体装置
US11484883B2 (en) 2016-06-21 2022-11-01 Unist (Ulsan National Institute Of Science And Technology) Microfluidic device
JP2019144133A (ja) * 2018-02-21 2019-08-29 国立研究開発法人産業技術総合研究所 アッセイ装置
JP7016152B2 (ja) 2018-02-21 2022-02-04 国立研究開発法人産業技術総合研究所 アッセイ装置

Also Published As

Publication number Publication date
US7497996B2 (en) 2009-03-03
JPWO2006077695A1 (ja) 2008-06-19
US20070003437A1 (en) 2007-01-04
JP3910208B2 (ja) 2007-04-25

Similar Documents

Publication Publication Date Title
US7497996B2 (en) Liquid delivery apparatus and liquid delivery method
JP4918589B2 (ja) チャンバを有する流路部位を含む基板、およびそれを含む多段送液装置
EP2002883B1 (en) Mixer, mixing device and unit for measuring medical component
US8911684B2 (en) Microfluidic element for analyzing a liquid sample
US20090075801A1 (en) Counter-centrifugal force device
US20110244595A1 (en) Biomedical chip for blood coagulation test, method of production and use thereof
KR20130000009A (ko) 미세유동 소자와 그 제조 방법 및 이를 이용한 검체 검출 장치 및 방법
JP4673149B2 (ja) マイクロチップの使用方法、マイクロ流路及びマイクロチップ
AU2005329089A1 (en) Methods and device for transmitting, enclosing and analysing fluid samples
WO2012129455A2 (en) Microfluidic devices and methods of manufacture and use
KR101930611B1 (ko) 생물학적 샘플을 처리 및 분석하기 위한 회전가능한 카트리지
JP2010005618A (ja) マイクロ流体システム用支持ユニット
JP2008082961A (ja) マイクロ流路デバイス
JP2005265685A (ja) 血漿成分分析装置
JP4322956B2 (ja) 送液装置及び送液方法
US7368083B2 (en) Blood processing apparatus and blood introducing method
JP4819945B2 (ja) チャンバを含む流路部位を有する基板、およびそれを用いて液体を移送する方法
JP2007330857A (ja) 送液装置及び送液方法
JP4590542B2 (ja) マイクロ液滴輸送デバイス
Ibrahim et al. Analysis and experiment of centrifugal force for microfluidic ELISA CD platform
JP5354947B2 (ja) 生体分析用デバイスおよびそれを用いた試料定量攪拌方法
Ukita et al. Proposal of Minicentrifuge-Compatible Centrifugal Microfluidic Device
JP2004222689A (ja) 遠心力利用液層反応装置
Xie et al. Development of a disposable bio-microfluidic package with reagents self-contained reservoirs and micro-valves for a DNA lab-on-a-chip (LOC) application
Unitan Janus-Type Wicking Microfluidic Devices for Separation and Collection of Plasma from Blood

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006515510

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11516008

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11516008

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05811233

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5811233

Country of ref document: EP