[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006075636A1 - Method for producing allophanate-modified polyisocyanate composition - Google Patents

Method for producing allophanate-modified polyisocyanate composition Download PDF

Info

Publication number
WO2006075636A1
WO2006075636A1 PCT/JP2006/300245 JP2006300245W WO2006075636A1 WO 2006075636 A1 WO2006075636 A1 WO 2006075636A1 JP 2006300245 W JP2006300245 W JP 2006300245W WO 2006075636 A1 WO2006075636 A1 WO 2006075636A1
Authority
WO
WIPO (PCT)
Prior art keywords
allophanate
reaction
acid
catalyst
group
Prior art date
Application number
PCT/JP2006/300245
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshizumi Kataoka
Koichi Suzuki
Mitsushige Ikemoto
Original Assignee
Nippon Polyurethane Industry Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Polyurethane Industry Co., Ltd filed Critical Nippon Polyurethane Industry Co., Ltd
Publication of WO2006075636A1 publication Critical patent/WO2006075636A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/222Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26

Definitions

  • the present invention relates to a method for producing an allophanate-modified polyisocyanate composition. More specifically, the present invention relates to a method for producing an allophanate-modified polyisocyanate composition which substantially contains no urethane group, uretdione group and isocyanurate group and has a transparent appearance.
  • Patent Documents 1 to 3 disclose a method for producing an allophanate-modified polyisocyanate.
  • Patent Document 1 describes a method for producing an allophanate group-containing polyisocyanate in which an isocyanate group-terminated urethane prepolymer and an organic diisocyanate are reacted in the presence of a specific catalyst.
  • the resulting polyisocyanate contains substantially dimers and trimers.
  • the reaction takes a long time at a high temperature, resulting in coloring the final product as well as increasing the production cost.
  • Patent Document 2 describes a method for producing an allophanate-modified isocyanate of a diisocyanate having a ring structure such as a benzene ring, and describes that the same catalyst as the urethanization reaction can be used for the allophanate reaction.
  • Patent Document 3 describes a method for producing alophanate-modified polyisocyanate containing no dimer or trimer, but this method has an isocyanate group bonded to an aromatic group. It has substantial reactivity only in the compounds and is not suitable for the production of polyisocyanates containing aliphatic esters having aliphatic and Z or alicyclic bonded isocyanate groups.
  • Patent Document 4 discloses a process for producing an allophanate group-containing polyisocyanate which is substantially free of isocyanate dimer and which is substantially colorless and has a relatively low viscosity.
  • a polyisocyanate is partially urethaned with a hydroxyl group compound and reacted at a temperature of at least 150 ° C. for 90 minutes or less to form an allophanate group, and the product generated by the reaction It is characterized by cooling to a temperature below 100 ° C within 10 minutes.
  • the reaction temperature rises and falls rapidly, making it unsuitable for large-scale batch production, and because the reaction is controlled in a short time, the conversion rate of urethane groups to allophanate groups is high. Low. Therefore, it contains a considerable amount of unreacted urethane groups, and it does not contain dimers, but it is not satisfactory in providing performance specific to allophanate groups.
  • Patent Document 5 a compound having a urethane group and an isocyanate are reacted using a catalyst having a carboxylic acid metal salt power and a promoter having a phosphite power. A method for producing an allophanate group-containing polyisocyanate is shown.
  • Patent Document 1 Specification of British Patent No. 994,890
  • Patent Document 2 Japanese Patent Publication No. 46-1711
  • Patent Document 3 Japanese Patent Laid-Open No. 46-1671
  • Patent Document 4 JP-A-64-66155
  • Patent Document 5 JP-A-8-188566
  • the present invention has been made in view of the above problems, and can be produced relatively easily without using a cocatalyst, is substantially free of dimers and trimers, and is substantially colorless alophanate. It aims at providing the manufacturing method of a modified polyisocyanate composition.
  • the present invention is as shown in the following (1) to (5).
  • (A) is a monool compound having 1 to 40 carbon atoms, and the obtained allophanate-modified polyisocyanate composition contains 60% by mass or more of a bifunctional component, (1) or (2) production method.
  • (A) is a monool compound having 1 to 10 carbon atoms, and the viscosity of the obtained allophanate-modified polyisocyanate composition at 25 ° C. is 130 mPa ′s or less, Manufacturing method of said (1)-(3).
  • (A) is a monool compound having 3 to 40 carbon atoms, and the obtained alophanate-modified polyisocyanate composition is soluble in a poor solvent. 4) Manufacturing method.
  • the alophanate-modified polyisocyanate composition obtained by the present invention is substantially free of dimer and trimer. Note that “substantially free of dimers and trimers” means that traces of the presence of dimers and trimers are recognized by IR and NMR analysis. Or no
  • the present invention is a process for producing an allophanate-modified polyisocyanate composition having an excellent performance that can be produced relatively easily, has a low viscosity that is substantially uncolored, and is soluble in a poor solvent in some cases. Provide a method.
  • the “alcoholic hydroxyl group” in the alcoholic hydroxyl group-containing compound (A) used in the present invention means a hydroxyl group directly bonded to the aliphatic hydrocarbon skeleton. That is, the term “alcoholic hydroxyl group-containing compound” is intended to exclude compounds in which a hydroxyl group is directly bonded to an aromatic hydrocarbon skeleton, such as phenol and talesol. In the present invention, the alcoholic hydroxyl group-containing compound (A) may be used alone or in the form of a mixture of two or more.
  • (A) examples include methanol, ethanol, propanol (including various isomers), butanol (including various isomers), pentanol (including various isomers), hexanol (including various isomers).
  • heptanol including various isomers
  • octanol including various isomers
  • nonanol including various isomers
  • decanol including various isomers
  • lauryl alcohol myristyl alcohol (tetra Decanol), pentadecanol, cetyl alcohol (hexadecol), heptadecanol, stearyl alcohol (octadecanol), nonadeol, oleyl alcohol and other aliphatic monools, cyclohexanol, methylcyclohex Alicyclic monools such as xanol, and araliphatic monooles such as benzyl alcohol Ethylene glycol, 1,2-propanediol, 1,3 propanediol, 1,2 butanediol, 1,3 butanediol, 1,4 butanediol, 1,5 pentanediol, 2-methyl-1
  • a hydroxyl group-containing polyether obtained by adding an alkylene oxide such as ethylene oxide or propylene oxide using the above-mentioned hydroxyl group-containing compound as an initiator.
  • Hydroxyl-containing polyesters obtained from the above-mentioned polyol and polycarboxylic acid power, hydroxyl-containing polycarbonates obtained from the above-mentioned polyols and low-molecular carbonates (ethylene carbonate, propylene carbonate, dimethyl carbonate, jetyl carbonate, diphenyl carbonate, etc.) Etc. can also be used suitably.
  • polyether polyols having a number average molecular weight of 1,000 to 5,000 and monool compounds having 1 to 40 carbon atoms are preferred! /.
  • aliphatic and ⁇ ⁇ or alicyclic diisocyanate ( ⁇ ) used in the present invention hexamethylene diisocyanate, tetramethylene diisocyanate, 2-methyl-pentane 1,5 diisocyanate, 3 —Methyl monopentane-1, 1,5 diisocyanate, lysine diisocyanate, trioxyethylene diisocyanate, and other aliphatic diisocyanates; xylylene 1,4-diisocyanate, xylylene 1,3 diisocyanate, tetramethylxylylene diisocyanate, etc.
  • Araliphatic diisocyanate Araliphatic diisocyanate; isophorone diisocyanate, hydrogenated hydrogenated diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diisocyanate And alicyclic diisocyanates such as phenol methane diisocyanate and hydrogenated tetramethylxylene diisocyanate.
  • organic diisocyanates may be used alone or in a mixture of two or more.
  • non-yellowing diisocyanate is preferred, particularly hexamethylene diisocyanate.
  • the allophanate catalyst (C) used in the present invention is a zirconium tetracarboxylate.
  • the carboxylic acid include octylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, 2-ethylhexanoic acid, and other saturated aliphatic carboxylic acids having 6 or more carbon atoms, cyclohexane carboxylic acid, and cyclopentane.
  • Saturated monocyclic carboxylic acids such as carboxylic acids, bicyclo (4.4.0) decane 2-saturated polycyclic carboxylic acids such as rubonic acid, mixtures of the above carboxylic acids such as naphthenic acid, oleic acid, linoleic acid, Unsaturated aliphatic carboxylic acids such as linolenic acid, soybean oil fatty acid and tol oil fatty acid, aromatic aliphatic carboxylic acids such as diphenylacetic acid, monocarboxylic acids such as aromatic carboxylic acids such as benzoic acid and toluic acid, Phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, adipic acid, pimelic acid, suberic acid, kurtaconic acid, azelaic acid, sebacic acid, 1 , 4-cyclohexyldicarboxylic acid, ⁇ -noidromuconic acid, ⁇ -hydromu
  • the present invention makes it possible to relatively easily obtain an allophanate-modified polyisocyanate composition having substantially no color without using a cocatalyst or the like. It is done.
  • an alcoholic hydroxyl group-containing compound (A) and a diisocyanate (B) are charged in an excess amount of the isocyanate group relative to the hydroxyl group and subjected to urethane reaction at 20 to: LOO ° C.
  • the reaction is carried out at 150 ° C. in the presence of the alophanation catalyst (C) until substantially no urethane groups are present.
  • the amount in which the isocyanate group is excessive with respect to the hydroxyl group means that the isocyanate group is excessive with respect to the hydroxyl group when the raw material is charged, and the molar amount of the isocyanate group and the hydroxyl group.
  • a ratio of isocyanate group Z hydroxyl group 8 or more is preferred, and 10 to 50 is particularly preferred.
  • the reaction temperature of the urethanization reaction is 20 to 120 ° C, preferably 50 to 100 ° C.
  • a known so-called urethanization catalyst can be used. Specific examples thereof include organic metal compounds such as dibutyltin dilaurate and dioctyltin dilaurate, organic amines such as triethylenediamine and triethylamine, and salts thereof.
  • the reaction time of the urethanization reaction varies depending on the presence and type of the catalyst and the reaction temperature, but is generally within 10 hours, preferably 1 to 5 hours is sufficient.
  • an allophanate reaction is performed.
  • the alophanate reaction is carried out by adding the above-described alophanate catalyst (C) and a reaction temperature of 70 to 150 ° C, preferably 80 to 130 ° C.
  • the reaction temperature is too low, not a lot of allophanate groups are formed, and the average number of functional groups of the resulting polyisocyanate composition is lowered.
  • the coating film properties tend to be insufficient.
  • the average number of functional groups of polyisocyanate is the average number of isocyanate groups present in one molecule.
  • the urethanization reaction and the allophanate reaction can be carried out simultaneously.
  • the alcoholic hydroxyl group-containing compound (A) and the organic diisocyanate (B) are charged in an amount in which the isocyanate group is excessive with respect to the hydroxyl group, and the catalyst is added to the alophanate catalyst (C In the presence of), the urethanation reaction and the alphaphanation reaction are carried out simultaneously.
  • the amount of the halophanation catalyst (C) used varies depending on the type, but 0.0005 to 1% by mass is preferable with respect to the total amount of the above (A) and (B). 0.1% by mass is more preferable.
  • the amount of the catalyst used is less than 0.0005% by mass, the reaction is substantially slow and it takes a long time, and coloring due to the thermal history may occur.
  • the amount of catalyst used exceeds 1% by mass
  • the reaction control becomes difficult, and side reactions such as dimerization reaction (uretdione formation reaction) and trimerization reaction (isocyanuration reaction) may occur, and the resulting polyisocyanate is cured into a two-part paint.
  • problems such as shortening the pot life of the paint may occur.
  • the reaction time varies depending on the type of catalyst, the amount added, and the reaction temperature. Usually within 10 hours, preferably 1 to 5 hours is sufficient.
  • an organic solvent can be used as necessary.
  • the organic solvent include aliphatic hydrocarbon organic solvents such as n-hexane and octane, alicyclic hydrocarbon organic solvents such as cyclohexane and methylcyclohexane, acetone, methyl ethyl ketone, and methyl isobutyl.
  • Ketone organic solvents such as ketone and cyclohexanone, ester organic solvents such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate, ethylene glycol ether ether, propylene glycol methyl ether acetate, 3-methyl-3-methoxybutyl Glycol ether ester organic solvents such as acetate and ethyl 3-ethoxypropionate, ether organic solvents such as jetyl ether, tetrahydrofuran and dioxane, methyl chloride, methylene chloride, chloroform, carbon tetrachloride, odor Methyl iodide, methyl iodide , Harogeni spoon aliphatic hydrocarbon organic solvent such as Jikuroroetan, N- methylpyrrolidone, dimethylformamide, dimethyl ⁇ Seth, dimethyl sulfoxide, polar aprotic solvents such as
  • the catalyst poison (D) is added to stop the alophanate reaction.
  • the timing of addition of the catalyst poison (D) is not particularly limited as long as it is after the allophanate reaction, but when the thin film distillation method is used to remove free organic diisocyanate, the allophanate reaction is performed.
  • catalyst poison (D) it is preferred to add the catalyst poison (D) later and before thin film distillation. This is to prevent side reactions from occurring due to heat during thin film distillation.
  • catalyst poison (D) known acids such as inorganic acids such as phosphoric acid and hydrochloric acid, organic acids having a sulfonic acid group, a sulfamic acid group and the like, esters thereof, and acyl halides can be used.
  • the amount of catalyst poison (D) added varies depending on the type and type of catalyst, but it is 0.5 to 2 A preferred amount is 0.8 to 1.5 equivalents. If the catalyst poison is too small, the storage stability of the resulting polyisocyanate tends to decrease. If the amount is too large, the resulting polyisocyanate may be colored.
  • free organic diisocyanate is present in the product after the allophanate reaction. Since this free organic diisocyanate causes odor and turbidity with time, it is preferable to remove the unreacted organic diisocyanate (B) until the free organic diisocyanate content is 1% by mass or less.
  • preferable thin film distillation conditions are pressure: 0.1 lkPa or less and temperature: 100 to 200 ° C, and particularly preferable conditions are pressure: 0.05 kPa or less and temperature: 120 to 180 ° C.
  • the content of the bifunctional component is 60% by mass or more.
  • the content of the bifunctional component is the ratio of the peak area of gel permeation chromatography (GPC), and the identification of the peak is determined on the assumption that the compound of the following formula is generated from the raw material.
  • RR 2 represents an organic diisocyanate residue which may be the same or different.
  • R 3 represents a monool residue.
  • the viscosity of the allophanate-modified polyisocyanate composition is minimized when the compound used in (A) is a monool having about 6 to 8 carbon atoms.
  • the viscosity of the obtained phanate-modified polyisocyanate composition at 25 ° C. is 130 mPa's or less. It becomes preferable.
  • the compound used in (A) improves the solubility of the obtained alophanate-modified polyisocyanate composition in a poor solvent in the order of methanol, ethanol, and propanol when the introduction amount of the allophanate group is constant.
  • (A) is preferably a monool compound having 3 to 40 carbon atoms.
  • the poor solvent is a solvent in which ordinary polyisocyanate has low solubility, and examples thereof include aliphatic hydrocarbons, mineral spirits, kerosene, and petroleum-based mixed solvents.
  • the alophanate-modified polyisocyanate composition obtained by the present invention may be added to an antioxidant such as 2,6-di-tert-butyl-4-methylphenol, an ultraviolet absorber, a pigment, or a dye, if necessary.
  • an antioxidant such as 2,6-di-tert-butyl-4-methylphenol
  • an ultraviolet absorber such as 2,6-di-tert-butyl-4-methylphenol
  • Additives such as solvents, flame retardants, hydrolysis inhibitors, lubricants, plasticizers, fillers, storage stabilizers and the like can be appropriately blended.
  • the alophanate-modified polyisocyanate composition obtained by the present invention is used for paints, adhesives, various binders, printing inks, magnetic recording media, coating agents, sealing agents, elastomers, sealants, synthetic leather, various leathers. Applicable to a wide range of foam, civil engineering foam fillers, etc. It is particularly suitable as a curing agent for high solid paints and a curing agent for turpentine paints.
  • Example 2 The same reactor as in Example 1 was charged with 975 g of hexamethylene diisocyanate, 25 g of methanol, and 0.1 lg of strong zirconium pyrophosphate, and reacted at 90 ° C. for 5 hours. When the reaction product was analyzed by FT-IR and 13C-NMR, a hydroxyl group and a urethane group were not confirmed. Next, 0.05 g of phosphoric acid was added, and a stop reaction was performed at 50 ° C. for 1 hour. The isocyanate content of the reaction product after the termination reaction was 42.0%.
  • This reaction product was subjected to thin-film distillation at 130 ° C '0.04kPa, the isocyanate content was 21.2%, the viscosity at 25 ° C was 112mPa's, and the content of free hexamethylene diisocyanate was 0.
  • a polyisocyanate P-12 with 1%, 20 APHA color number and 72% difunctional component was obtained.
  • P-12 was analyzed by FT-IR and 13C-NMR, the presence of urethane groups was not confirmed, and the presence of allophanate groups was confirmed. In addition, traces of uretdione groups and isocyanurate groups were observed. The results are shown in Table 1.
  • Example 2 The same reactor as in Example 1 was charged with 930 g of hexamethylene diisocyanate and 70 g of normal hexanol, and a urethane reaction was performed at 90 ° C. for 2 hours. When the reaction product was analyzed by FT-IR, the hydroxyl group disappeared. Next, it was heated to 160 ° C and reacted at the same temperature for 5 hours. The isocyanate content after the reaction was 40.7%.
  • Example 2 A reactor similar to that in Example 1 was charged with 995 g of hexamethylene diisocyanate and 5 g of neopentyl glycol and subjected to urethane reaction at 90 ° C. for 2 hours. When the reaction product was analyzed by FT-IR, the hydroxyl group disappeared. Next, tributylphosphine was charged with 1. Og and reacted at 50 ° C for 14 hours. When the reaction product was analyzed by FT-IR and 13C-NMR, the presence of urethane groups, uretdione groups, and isocyanurate groups was confirmed. Further, 0.6 g of phosphoric acid was added, and the reaction was stopped at 50 ° C for 1 hour.
  • the isocyanate content of the product was 42.1%. This reaction product was subjected to thin-film distillation at 130 ° C '0.04kPa, the isocyanate content was 22.3%, the viscosity at 25 ° C was 78mPa's, and the free hexamethylene diisocyanate content was 0. Polyisocyanate P-16 with 2% and 40 APHA color number was obtained. The results are shown in Table 2.
  • Bifunctional component content 73 71 71 61 68 73 70 70 ⁇ 72 Urethane group X X X X X X X X X X X
  • MePPG— 400 Methoxypolypropylene glycol
  • MePEG 400 Methoxypolyethylene glycol
  • the number of colors of the polyisocyanate composition in the examples was low L. Carbon number Polyisocyanates obtained using monools of 10 or less are all low in viscosity at 25 ° C of 13 OmPa ⁇ s or less, and have good workability when handling. It was. However, polyisocyanate produced using zirconyl acetate (Daiichi Rare Element Chemical Co., Ltd.)
  • P-2 and P-13 were placed in a sealed container, and the void content was replaced with nitrogen, and the isocyanate content after storage at 50 ° C for 2 weeks was measured.
  • P-2 decreased slightly from 19.4% to 19.3% by weight
  • P-13 decreased significantly from 19.9% to 18.8% by weight. From this, it was found that when a zirconium tetracarboxylate-based catalyst (wherein the carboxylic acid has 6 or more carbon atoms) is used, an allophanate-modified polyisocyanate composition having excellent storage stability can be obtained.
  • the obtained polyisocyanate (excluding P-11 and 12) was heated at 150 ° C for 2 hours, and then the free HDI content was measured by GC. The results are shown in Tables 3 and 4.
  • the tip of the pencil specified in JIS S-6006 was extruded at an angle of 45 degrees, and the hardness of the pencil with the highest hardness at which the coating did not break was defined as the coating hardness.
  • the steel ball was also pressed slowly against the back surface of the painted surface, and the extrusion distance of the steel ball when the coating film was cracked or peeled off was measured.
  • polyisocyanate composition obtained by the present invention had a good appearance.
  • polyisocyanate composition obtained using monool having 10 or less carbon atoms obtained using monool having 10 or less carbon atoms
  • the product was particularly low in viscosity. Further, the polyisocyanate composition obtained using monool having 3 to 40 carbon atoms had good solubility in a poor solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Disclosed is a method for relatively easily producing an allophanate-modified polyisocyanate composition without using a promoter, which allophanate-modified polyisocyanate composition is practically colorless and substantially contains no urethane group, urethodione group or isocyanurate group. Specifically disclosed is a method for producing an allophanate-modified polyisocyanate composition from an alcoholic hydroxyl group-containing compound (A) and an organic diisocyanate (B) by using an allophanation catalyst (C). This method is characterized in that the allophanation catalyst (C) is a zirconium tetracarboxylate having 6 or more carbon atoms, and a catalyst poison (D) is used for stopping the allophanation reaction.

Description

明 細 書  Specification
ァロファネート変性ポリイソシァネート組成物の製造方法  Process for producing alophanate-modified polyisocyanate composition
技術分野  Technical field
[0001] 本発明は、ァロファネート変性ポリイソシァネート組成物の製造方法に関するもので ある。更に詳細には、実質的にはウレタン基、ウレトジオン基、及びイソシァヌレート基 をほとんど含有せず、また、透明外観を有するァロファネート変性ポリイソシァネート 組成物の製造方法に関するものである。  [0001] The present invention relates to a method for producing an allophanate-modified polyisocyanate composition. More specifically, the present invention relates to a method for producing an allophanate-modified polyisocyanate composition which substantially contains no urethane group, uretdione group and isocyanurate group and has a transparent appearance.
背景技術  Background art
[0002] ァロファネート変性ポリイソシァネートの製造方法は、従来より種々知られて!/、る。例 えば、特許文献 1〜3には、ァロファネート変性ポリイソシァネートの製造方法が開示 されている。  [0002] Various methods for producing alophanate-modified polyisocyanate have been conventionally known! For example, Patent Documents 1 to 3 disclose a method for producing an allophanate-modified polyisocyanate.
[0003] し力しながら、これらに記載されているァロファネート変性ポリイソシァネートの製造 方法のほとんどは、ァロファネート基の生成を目的としているにもかかわらず、副反応 として自己付加反応や自己重合反応が進行し、副生成物が生じると!、う問題がある。 前記副生成物としては、例えば、熱的に不安定なウレトジオン基を含む二量体ゃ最 終生成物の粘度を飛躍的に増大させ、かつ非極性溶剤への溶解性や高分子ポリエ ステル等の樹脂との相溶性を低下させるイソシァヌレート基を含む三量体が挙げられ る。更には、最終生成物に着色や濁りを生じさせるといった問題もある。  However, in spite of the fact that most of the methods for producing alophanate-modified polyisocyanate described therein are aimed at the formation of an allophanate group, a self-addition reaction or a self-polymerization reaction is a side reaction. As the process proceeds and by-products are generated, there is a problem. Examples of the by-product include a dimer containing a thermally unstable uretdione group, which dramatically increases the viscosity of the final product, and is soluble in a non-polar solvent, polymer polyester, etc. And a trimer containing an isocyanurate group which reduces the compatibility with the resin. Furthermore, there is a problem that the final product is colored or turbid.
[0004] 例えば、特許文献 1には、特定の触媒の存在下でイソシァネート基末端ウレタンプ レポリマーと有機ジイソシァネートとを反応させるァロファネート基含有ポリイソシァネ ートの製造方法が記載されており、前記製造方法により得られるポリイソシァネートは 、実質的に二量体及び三量体を含有している。また、触媒を用いない場合には、高 温で長時間の反応となり、製造コストが上昇するのみでなぐ最終生成物に着色を生 じてしまう。 [0004] For example, Patent Document 1 describes a method for producing an allophanate group-containing polyisocyanate in which an isocyanate group-terminated urethane prepolymer and an organic diisocyanate are reacted in the presence of a specific catalyst. The resulting polyisocyanate contains substantially dimers and trimers. In addition, when a catalyst is not used, the reaction takes a long time at a high temperature, resulting in coloring the final product as well as increasing the production cost.
[0005] 特許文献 2には、ベンゼン環等の環構造を有するジイソシァネートのァロファネート 変性イソシァネートの製造方法が記載され、ァロファネートイ匕反応には、ウレタン化反 応と同じ触媒が使用できることが記載されている。 [0006] また、特許文献 3には、二量体及び三量体を含まないァロファネート変性ポリイソシ ァネートの製造方法が記載されているが、この方法は、芳香族に結合したイソシァネ 一ト基を有する化合物においてのみ実質的な反応性を有しており、脂肪族及び Z又 は脂環式に結合したイソシァネート基を有するァロファネート基含有ポリイソシァネー トの製造には適していない。 [0005] Patent Document 2 describes a method for producing an allophanate-modified isocyanate of a diisocyanate having a ring structure such as a benzene ring, and describes that the same catalyst as the urethanization reaction can be used for the allophanate reaction. . [0006] In addition, Patent Document 3 describes a method for producing alophanate-modified polyisocyanate containing no dimer or trimer, but this method has an isocyanate group bonded to an aromatic group. It has substantial reactivity only in the compounds and is not suitable for the production of polyisocyanates containing aliphatic esters having aliphatic and Z or alicyclic bonded isocyanate groups.
[0007] 更に、特許文献 4には、実質的にイソシァネートの二量体を含まず、かつ実質的に 無色で比較的低い粘度を有するァロファネート基含有ポリイソシァネートの製造法が 開示されている。この方法は、ポリイソシァネートを水酸基ィ匕合物で部分ウレタンィ匕し 、少なくとも 150°Cの温度にて 90分以下の時間反応させてァロファネート基を生成さ せ、前記反応により生じた生成物を 10分以内に 100°C未満の温度に冷却することを 特徴としている。し力しこの方法では、反応温度の昇降が急であり、バッチ式での大 量製造には不向きであるとともに、反応のコントロールを短時間で行うため、ウレタン 基のァロファネート基への変換率が低い。そのため、未反応ウレタン基をかなり含有 することになり、二量体は含有しないものの、ァロファネート基特有の性能を与える上 で満足できるものではな 、。  [0007] Further, Patent Document 4 discloses a process for producing an allophanate group-containing polyisocyanate which is substantially free of isocyanate dimer and which is substantially colorless and has a relatively low viscosity. . In this method, a polyisocyanate is partially urethaned with a hydroxyl group compound and reacted at a temperature of at least 150 ° C. for 90 minutes or less to form an allophanate group, and the product generated by the reaction It is characterized by cooling to a temperature below 100 ° C within 10 minutes. However, in this method, the reaction temperature rises and falls rapidly, making it unsuitable for large-scale batch production, and because the reaction is controlled in a short time, the conversion rate of urethane groups to allophanate groups is high. Low. Therefore, it contains a considerable amount of unreacted urethane groups, and it does not contain dimers, but it is not satisfactory in providing performance specific to allophanate groups.
[0008] このように、従来のァロファネート基を含有するポリイソシァネートの製造法において は、副反応としてイソシァネートの二量ィ匕ゃ三量ィ匕が進行したり、ァロファネート基を 有する化合物の収率が低!、等、それぞれの方法に解決されて!ヽな ヽ課題があった。  [0008] Thus, in the conventional method for producing a polyisocyanate containing an allophanate group, dimerization or trimerization of the isocyanate proceeds as a side reaction or the compound having an allophanate group is collected. The problem was solved by each method such as low rate!
[0009] このような問題を解決するために、特許文献 5では、カルボン酸金属塩力もなる触 媒及び亜リン酸エステル力もなる助触媒を用いて、ウレタン基を有する化合物とイソシ ァネートを反応させるという、ァロファネート基含有ポリイソシァネートの製造方法が示 されている。  [0009] In order to solve such problems, in Patent Document 5, a compound having a urethane group and an isocyanate are reacted using a catalyst having a carboxylic acid metal salt power and a promoter having a phosphite power. A method for producing an allophanate group-containing polyisocyanate is shown.
[0010] 特許文献 1 :英国特許第 994, 890号明細書  [0010] Patent Document 1: Specification of British Patent No. 994,890
特許文献 2:特公昭 46— 1711号公報  Patent Document 2: Japanese Patent Publication No. 46-1711
特許文献 3:特開昭 46 - 1671号公報  Patent Document 3: Japanese Patent Laid-Open No. 46-1671
特許文献 4:特開昭 64 - 66155号公報  Patent Document 4: JP-A-64-66155
特許文献 5 :特開平 8— 188566号公報  Patent Document 5: JP-A-8-188566
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0011] 本発明は上記課題を鑑みされたものであり、助触媒を用いることなく比較的容易に 製造でき、実質的に二量体及び三量体を含有せず、実質的に無色のァロファネート 変性ポリイソシァネート組成物の製造方法を提供することを目的とする。  The present invention has been made in view of the above problems, and can be produced relatively easily without using a cocatalyst, is substantially free of dimers and trimers, and is substantially colorless alophanate. It aims at providing the manufacturing method of a modified polyisocyanate composition.
課題を解決するための手段  Means for solving the problem
[0012] 本発明者等は鋭意検討した結果、特定の金属塩をァロファネートイ匕触媒に用いる ことにより、前記課題を解決することを見いだし、本発明を完成させるに至った。  As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by using a specific metal salt as an allophanate catalyst, and have completed the present invention.
[0013] すなわち本発明は、以下の(1)〜(5)に示されるものである。  That is, the present invention is as shown in the following (1) to (5).
(1)アルコール性水酸基含有化合物 (A)と、脂肪族及び Z又は脂環族ジイソシァネ ート(B)から、ァロファネート化触媒 (C)を用いてァロファネート変性ポリイソシァネー ト組成物を製造する方法において、該ァロファネート化触媒 (C)がジルコニウムテトラ カルボン酸塩で、そのカルボン酸の炭素数は 6以上であり、ァロファネート化反応を 停止させる際に触媒毒 (D)を用いること、を特徴とする前記製造方法。  (1) In a method for producing an allophanate-modified polyisocyanate composition from an alcoholic hydroxyl group-containing compound (A) and an aliphatic and Z or alicyclic diisocyanate (B) using an allophanate catalyst (C), The production characterized in that the alfaphanate catalyst (C) is a zirconium tetracarboxylate, the carboxylic acid has 6 or more carbon atoms, and the catalyst poison (D) is used when the alfaphanate reaction is stopped. Method.
[0014] (2)ァロファネート化反応の停止後に、遊離の有機ジイソシァネート (B)を含有量が 1 質量%以下になるまで除去することを特徴とする、前記(1)の製造方法。  [0014] (2) The method according to (1), wherein after the allophanatization reaction is stopped, the free organic diisocyanate (B) is removed until the content becomes 1% by mass or less.
[0015] (3) (A)が炭素数 1〜40のモノオール化合物であり、得られるァロファネート変性ポリ イソシァネート組成物が、 2官能成分を 60質量%以上含有することを特徴とする、前 記(1)又は(2)の製造方法。  [0015] (3) (A) is a monool compound having 1 to 40 carbon atoms, and the obtained allophanate-modified polyisocyanate composition contains 60% by mass or more of a bifunctional component, (1) or (2) production method.
[0016] (4) (A)が炭素数 1〜10のモノオール化合物であり、得られるァロファネート変性ポリ イソシァネート組成物の 25°Cでの粘度が 130mPa' s以下であることを特徴とする、前 記(1)〜(3)の製造方法。  (4) (A) is a monool compound having 1 to 10 carbon atoms, and the viscosity of the obtained allophanate-modified polyisocyanate composition at 25 ° C. is 130 mPa ′s or less, Manufacturing method of said (1)-(3).
[0017] (5) (A)が炭素数 3〜40のモノオール化合物であり、得られるァロファネート変性ポリ イソシァネート組成物が貧溶剤に可溶であることを特徴とする、前記(1)〜 (4)の製 造方法。  (5) (A) is a monool compound having 3 to 40 carbon atoms, and the obtained alophanate-modified polyisocyanate composition is soluble in a poor solvent. 4) Manufacturing method.
発明の効果  The invention's effect
[0018] 本発明によって得られたァロファネート変性ポリイソシァネート組成物は、実質的に 二量体及び三量体を含有しな!、ものである。なお「実質的に二量体及び三量体を含 有しない」とは、 IRや NMR解析で、二量体及び三量体の存在が痕跡程度認められ る、又は全く [0018] The alophanate-modified polyisocyanate composition obtained by the present invention is substantially free of dimer and trimer. Note that “substantially free of dimers and trimers” means that traces of the presence of dimers and trimers are recognized by IR and NMR analysis. Or no
存在が認められな ヽと ヽうことである。  It is to meet with a niece who cannot be found.
[0019] さらに、本発明は、比較的容易に製造でき、実質的に着色がなぐ低粘度であり、 更に場合によっては貧溶剤に可溶な優れた性能を有するァロファネート変性ポリイソ シァネート組成物の製造方法を提供する。  [0019] Furthermore, the present invention is a process for producing an allophanate-modified polyisocyanate composition having an excellent performance that can be produced relatively easily, has a low viscosity that is substantially uncolored, and is soluble in a poor solvent in some cases. Provide a method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明に用いられる原料にっ 、て説明する。  [0020] The raw materials used in the present invention will be described.
本発明に用いられるアルコール性水酸基含有化合物 (A)における「アルコール性 水酸基」とは、脂肪族炭化水素骨格に直接結合している水酸基という意である。すな わち、「アルコール性水酸基含有化合物」とは、フエノール、タレゾール等のように芳 香族炭化水素骨格に水酸基が直接結合しているものを除く趣旨である。本発明にお いて、アルコール性水酸基含有ィ匕合物 (A)は、単独あるいは 2種以上の混合物のい ずれの形態で用いてもょ 、。  The “alcoholic hydroxyl group” in the alcoholic hydroxyl group-containing compound (A) used in the present invention means a hydroxyl group directly bonded to the aliphatic hydrocarbon skeleton. That is, the term “alcoholic hydroxyl group-containing compound” is intended to exclude compounds in which a hydroxyl group is directly bonded to an aromatic hydrocarbon skeleton, such as phenol and talesol. In the present invention, the alcoholic hydroxyl group-containing compound (A) may be used alone or in the form of a mixture of two or more.
[0021] (A)の具体的なものとしては、メタノール、エタノール、プロパノール(各種異性体を 含む)、ブタノール (各種異性体を含む)、ペンタノール (各種異性体を含む)、へキサ ノール (各種異性体を含む)、ヘプタノール (各種異性体を含む)、ォクタノール (各種 異性体を含む)、ノナノール (各種異性体を含む)、デカノール (各種異性体を含む) 、ラウリルアルコール、ミリスチルアルコール(テトラデカノール)、ペンタデカノール、 セチルアルコール(へキサデ力ノール)、ヘプタデカノール、ステアリルアルコール(ォ クタデカノール)、ノナデ力ノール、ォレイルアルコール等の脂肪族モノオール類、シ クロへキサノール、メチルシクロへキサノール等の脂環族モノオール類、ベンジルァ ルコール等の芳香脂肪族モノオール類、エチレングリコール、 1, 2—プロパンジォー ル、 1, 3 プロパンジオール、 1, 2 ブタンジオール、 1, 3 ブタンジオール、、 1, 4 ブタンジオール、 1, 5 ペンタンジオール、 2—メチルー 1, 5 ペンタンジォー ル、 3—メチルー 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 1, 8—ォクタ ンジオール、 1, 9ーノナンジオール、ネオペンチルグリコール、 2, 2 ジェチルー 1, 3 プロパンジオール、 2—n—ブチルー 2 ェチルー 1, 3 プロパンジオール、 2, 2, 4 トリメチルー 1, 3 ペンタンジオール、 2 ェチルー 1, 3 へキサンジオール 、 2— n—へキサデカン一 1, 2—エチレングリコール、 2— n—エイコサン一 1, 2—ェ チレングリコール、 2—n—ォクタコサン—1, 2—エチレングリコール等の脂肪族ジォ ール類、シクロへキサン一 1, 4ージオール、シクロへキサン一 1, 4ージメタノール、水 素添加ビスフエノール A等の脂環族ジオール類、ビス(j8—ヒドロキシェチル)ベンゼ ン等の芳香脂肪族ジオール類、グリセリン、トリメチロールプロパン、ペンタエリスリトー ル等の脂肪族ポリオール類、ジエチレングリコール、ジプロレングリコール、トリエチレ ングリコール等のエーテル基含有ダリコール類、 a ォキシプロピオン酸、ォキシコ ハク酸、ジォキシコハク酸、 ε ォキシプロパン 1, 2, 3 トリカルボン酸、ヒドロキ シ酢酸、 OC—ヒドロキシ酪酸、ヒドロキシステアリン酸、リシノール酸、リシノエライジン 酸、リシノステアロール酸、サリチル酸、マンデル酸等のォキシカルボン酸と前述のモ ノオールカゝら得られる水酸基含有エステル等が挙げられる。 [0021] Specific examples of (A) include methanol, ethanol, propanol (including various isomers), butanol (including various isomers), pentanol (including various isomers), hexanol (including various isomers). Including various isomers), heptanol (including various isomers), octanol (including various isomers), nonanol (including various isomers), decanol (including various isomers), lauryl alcohol, myristyl alcohol (tetra Decanol), pentadecanol, cetyl alcohol (hexadecol), heptadecanol, stearyl alcohol (octadecanol), nonadeol, oleyl alcohol and other aliphatic monools, cyclohexanol, methylcyclohex Alicyclic monools such as xanol, and araliphatic monooles such as benzyl alcohol Ethylene glycol, 1,2-propanediol, 1,3 propanediol, 1,2 butanediol, 1,3 butanediol, 1,4 butanediol, 1,5 pentanediol, 2-methyl-1,5 pentanediol 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, neopentyl glycol, 2,2 jetyl-1,3 propanediol, 2-n-butyl-2 Ethyl-1,3 propanediol, 2,2,4 Trimethyl-1,3 pentanediol, 2 Ethyl-1,3 hexanediol 2-n-hexadecane 1, 2-ethylene glycol, 2-n-eicosane 1, 2-ethylene glycol, 2-n-octacosane-1, 2-ethylene glycol, and other aliphatic diols , Cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, alicyclic diols such as hydrogenated bisphenol A, and araliphatic diols such as bis (j8-hydroxyethyl) benzen , glycerol, trimethylolpropane, aliphatic polyols such as pentaerythritol Le, diethylene glycol, dipropionate glycol, ether group-containing Darikoru such as Toriechire glycol, a Okishipuropion acid, Okishiko Haq acid, Jiokishikohaku acid, epsilon Okishipuropan 1, 2, 3 Tricarboxylic acid, hydroxyacetic acid, OC-hydroxybutyric acid, hydroxystearic acid Ricinoleic acid, ricinelaidic acid, ricinoleate stearolic acid, salicylic acid, hydroxyl group-containing esters in which the Okishikarubon acid obtained above in motor Nooruka ゝ et such mandelic acid.
[0022] また、前述の水酸基含有ィ匕合物を開始剤としてエチレンオキサイドやプロピレンォ キサイド等のアルキレンオキサイドを付加させて得られる水酸基含有ポリエーテル類 [0022] Further, a hydroxyl group-containing polyether obtained by adding an alkylene oxide such as ethylene oxide or propylene oxide using the above-mentioned hydroxyl group-containing compound as an initiator.
、前述のポリオールとポリカルボン酸力 得られる水酸基含有ポリエステル類、前述 のポリオールと低分子カーボネート(エチレンカーボネート、プロピレンカーボネート、 ジメチルカーボネート、ジェチルカーボネート、ジフエ-ルカーボネート等)から得ら れる水酸基含有ポリカーボネート類等も好適に使用できる。 Hydroxyl-containing polyesters obtained from the above-mentioned polyol and polycarboxylic acid power, hydroxyl-containing polycarbonates obtained from the above-mentioned polyols and low-molecular carbonates (ethylene carbonate, propylene carbonate, dimethyl carbonate, jetyl carbonate, diphenyl carbonate, etc.) Etc. can also be used suitably.
[0023] 本発明においては、原料としての取り扱い易さ、得られるポリイソシァネートの粘度 等 In the present invention, ease of handling as a raw material, viscosity of the resulting polyisocyanate, etc.
を考慮すると、数平均分子量 1, 000〜5, 000のポリエーテルポリオール、炭素数 1 〜40のモノオール化合物が好まし!/、。  In view of this, polyether polyols having a number average molecular weight of 1,000 to 5,000 and monool compounds having 1 to 40 carbon atoms are preferred! /.
[0024] 本発明に用いられる脂肪族及び Ζ又は脂環族ジイソシァネート (Β)としては、へキ サメチレンジイソシァネート、テトラメチレンジイソシァネート、 2—メチルーペンタン 1, 5 ジイソシァネート、 3—メチル一ペンタン一 1, 5 ジイソシァネート、リジンジィ ソシァネート、トリオキシエチレンジイソシァネート等の脂肪族ジイソシァネート;キシリ レン 1, 4ージイソシァネート、キシリレン 1, 3 ジイソシァネート、テトラメチルキ シリレンジイソシァネート等の芳香脂肪族ジイソシァネート;イソホロンジイソシァネート 、水素添力卟リレンジイソシァネート、水素添加キシレンジイソシァネート、水素添加ジ フエ-ルメタンジイソシァネート、水素添加テトラメチルキシレンジイソシァネート等の 脂環族ジイソシァネート等が挙げられる。これらの有機ジイソシァネートは、単独ある いは 2種以上の混合物の 、ずれの形態で用いてもょ 、。本発明では得られるァロフ ァネート変性ポリイソシァネートの耐候性等の点を考慮すると、無黄変ジイソシァネー トが好ましぐ特にへキサメチレンジイソシァネートが最適である。 As the aliphatic and 及 び or alicyclic diisocyanate (Β) used in the present invention, hexamethylene diisocyanate, tetramethylene diisocyanate, 2-methyl-pentane 1,5 diisocyanate, 3 —Methyl monopentane-1, 1,5 diisocyanate, lysine diisocyanate, trioxyethylene diisocyanate, and other aliphatic diisocyanates; xylylene 1,4-diisocyanate, xylylene 1,3 diisocyanate, tetramethylxylylene diisocyanate, etc. Araliphatic diisocyanate; isophorone diisocyanate, hydrogenated hydrogenated diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diisocyanate And alicyclic diisocyanates such as phenol methane diisocyanate and hydrogenated tetramethylxylene diisocyanate. These organic diisocyanates may be used alone or in a mixture of two or more. In consideration of the weather resistance and the like of the allophanate-modified polyisocyanate obtained in the present invention, non-yellowing diisocyanate is preferred, particularly hexamethylene diisocyanate.
[0025] 本発明に用いられるァロファネートイ匕触媒 (C)はジルコニウムテトラカルボン酸塩であ る。このカルボン酸としては、炭素数が 6以上であるォクチル酸、ラウリン酸、ミリスチン 酸、パルミチン酸、ステアリン酸、 2—ェチルへキサン酸等の飽和脂肪族カルボン酸、 シクロへキサンカルボン酸、シクロペンタンカルボン酸等の飽和単環カルボン酸、ビ シクロ(4. 4. 0)デカン 2—力ルボン酸等の飽和複環カルボン酸、ナフテン酸等の 上記したカルボン酸の混合物、ォレイン酸、リノール酸、リノレン酸、大豆油脂肪酸、ト ール油脂肪酸等の不飽和脂肪族カルボン酸、ジフ ニル酢酸等の芳香脂肪族カル ボン酸、安息香酸、トルィル酸等の芳香族カルボン酸等のモノカルボン酸類、フタル 酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、アジピン酸、ピメリン酸、ス ベリン酸、クルタコン酸、ァゼライン酸、セバシン酸、 1, 4ーシクロへキシルジカルボン 酸、 α—ノヽイドロムコン酸、 β—ハイドロムコン酸、 —ブチルー —ェチルダルタル 酸、 a , j8—ジェチルサクシン酸、トリメリット酸、ピロメリット酸等のポリカルボン酸類 が挙げられる。これらのカルボン酸ジルコニウム塩は、単独あるいは 2種以上の混合 物のいずれの形態で用いてもよい。本発明で好ましい(C)は、炭素数 6〜10の脂肪 族モノカルボン酸のジルコニウム塩である。  [0025] The allophanate catalyst (C) used in the present invention is a zirconium tetracarboxylate. Examples of the carboxylic acid include octylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, 2-ethylhexanoic acid, and other saturated aliphatic carboxylic acids having 6 or more carbon atoms, cyclohexane carboxylic acid, and cyclopentane. Saturated monocyclic carboxylic acids such as carboxylic acids, bicyclo (4.4.0) decane 2-saturated polycyclic carboxylic acids such as rubonic acid, mixtures of the above carboxylic acids such as naphthenic acid, oleic acid, linoleic acid, Unsaturated aliphatic carboxylic acids such as linolenic acid, soybean oil fatty acid and tol oil fatty acid, aromatic aliphatic carboxylic acids such as diphenylacetic acid, monocarboxylic acids such as aromatic carboxylic acids such as benzoic acid and toluic acid, Phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, adipic acid, pimelic acid, suberic acid, kurtaconic acid, azelaic acid, sebacic acid, 1 , 4-cyclohexyldicarboxylic acid, α-noidromuconic acid, β-hydromuconic acid, —butyl-ethyl taltaltaric acid, a, j8-jetylsuccinic acid, trimellitic acid, pyromellitic acid, and other polycarboxylic acids . These zirconium carboxylates may be used alone or in the form of a mixture of two or more. (C) preferred in the present invention is a zirconium salt of an aliphatic monocarboxylic acid having 6 to 10 carbon atoms.
[0026] 本発明は、このァロファネートイ匕触媒 (C)を特定することにより、助触媒等を使用す ることなく、実質的に着色のないァロファネート変性ポリイソシァネート組成物が比較 的容易に得られる。  [0026] By specifying this allophanate catalyst (C), the present invention makes it possible to relatively easily obtain an allophanate-modified polyisocyanate composition having substantially no color without using a cocatalyst or the like. It is done.
[0027] 次に具体的な製造手順について説明する。  Next, a specific manufacturing procedure will be described.
最初に、アルコール性水酸基含有化合物 (A)及びジイソシァネート(B)をイソシァ ネート基を水酸基に対して過剰となる量を仕込んで、 20〜: LOO°Cでウレタンィ匕反応さ せた後、 70〜 150°Cにてァロファネート化触媒 (C)の存在下でウレタン基が実質的 に存在しなくなるまでァロファネートイ匕反応させる。 [0028] ここで「イソシァネート基を水酸基に対して過剰となる量」とは、原料仕込みの際、ィ ソシァネート基を水酸基に対して過剰となるという意味であり、イソシァネート基と水酸 基のモル比がイソシァネート基 Z水酸基 =8以上が好ましぐ 10〜50が特に好まし い。 First, an alcoholic hydroxyl group-containing compound (A) and a diisocyanate (B) are charged in an excess amount of the isocyanate group relative to the hydroxyl group and subjected to urethane reaction at 20 to: LOO ° C. The reaction is carried out at 150 ° C. in the presence of the alophanation catalyst (C) until substantially no urethane groups are present. [0028] Here, "the amount in which the isocyanate group is excessive with respect to the hydroxyl group" means that the isocyanate group is excessive with respect to the hydroxyl group when the raw material is charged, and the molar amount of the isocyanate group and the hydroxyl group. A ratio of isocyanate group Z hydroxyl group = 8 or more is preferred, and 10 to 50 is particularly preferred.
[0029] ウレタン化反応の反応温度は 20〜120°Cであり、好ましくは 50〜100°Cである。な お、ウレタン化反応の際、公知のいわゆるウレタン化触媒を用いることができる。具体 的には、ジブチルチンジラウレート、ジォクチルチンジラウレート等の有機金属化合物 や、トリエチレンジァミンゃトリエチルァミン等の有機アミンやその塩等が挙げられる。  [0029] The reaction temperature of the urethanization reaction is 20 to 120 ° C, preferably 50 to 100 ° C. In the urethanization reaction, a known so-called urethanization catalyst can be used. Specific examples thereof include organic metal compounds such as dibutyltin dilaurate and dioctyltin dilaurate, organic amines such as triethylenediamine and triethylamine, and salts thereof.
[0030] ウレタン化反応の反応時間は、触媒の有無や種類、反応温度により異なるが、一般 には 10時間以内、好ましくは 1〜5時間で充分である。  [0030] The reaction time of the urethanization reaction varies depending on the presence and type of the catalyst and the reaction temperature, but is generally within 10 hours, preferably 1 to 5 hours is sufficient.
[0031] ウレタンィ匕反応が終了したら、ァロファネートイ匕反応を行う。ァロファネート化反応は 、前述のァロファネートイ匕触媒 (C)を添加し、反応温度を 70〜150°C、好ましくは 80 〜130°Cにして行う。反応温度が低すぎる場合は、ァロファネート基があまり生成せ ず、得られるポリイソシァネート組成物の平均官能基数が低下することになる。このよ うなポリイソシァネートを塗料用硬化剤に用いると、塗膜物性が不十分となりやすい。 反応温度が高すぎる場合は、得られるポリイソシァネート組成物に不必要に熱履歴を 与えることになり、生産時のエネルギーが無駄であるばかりか、ポリイソシァネートが 着色する原因になることがある。なお、ポリイソシァネートの平均官能基数とは、 1分 子中に存在するイソシァネート基の平均数である。  [0031] Upon completion of the urethane reaction, an allophanate reaction is performed. The alophanate reaction is carried out by adding the above-described alophanate catalyst (C) and a reaction temperature of 70 to 150 ° C, preferably 80 to 130 ° C. When the reaction temperature is too low, not a lot of allophanate groups are formed, and the average number of functional groups of the resulting polyisocyanate composition is lowered. When such a polyisocyanate is used as a coating curing agent, the coating film properties tend to be insufficient. If the reaction temperature is too high, the resulting polyisocyanate composition will unnecessarily give a thermal history, which not only wastes energy during production but also causes the polyisocyanate to become colored. There is. The average number of functional groups of polyisocyanate is the average number of isocyanate groups present in one molecule.
[0032] なお、本発明においては、ウレタン化反応とァロファネート化反応を同時に行うこと もできる。この場合は、アルコール性水酸基含有ィ匕合物 (A)及び有機ジイソシァネー ト(B)をイソシァネート基を水酸基に対して過剰となる量を仕込んで、 70〜150°Cに てァロファネート化触媒 (C)の存在下でウレタン化反応及びァロファネート化反応を 同時に行う。  [0032] In the present invention, the urethanization reaction and the allophanate reaction can be carried out simultaneously. In this case, the alcoholic hydroxyl group-containing compound (A) and the organic diisocyanate (B) are charged in an amount in which the isocyanate group is excessive with respect to the hydroxyl group, and the catalyst is added to the alophanate catalyst (C In the presence of), the urethanation reaction and the alphaphanation reaction are carried out simultaneously.
[0033] ァロファネート化触媒 (C)の使用量はその種類により異なるが、上記 (A)と (B)の総 和量に対して、 0. 0005〜1質量%が好ましぐ 0. 001-0. 1質量%がより好ましい 。触媒使用量が 0. 0005質量%未満であると、実質的に反応が遅くなつて長時間を 要し、熱履歴による着色が起こる場合がある。一方触媒使用量が 1質量%を超えると 、反応制御が難しなり、副反応である二量化反応 (ウレトジオン化反応)や三量化反 応 (イソシァヌレート化反応)が起こる場合があり、また得られたポリイソシァネートを二 液型塗料の硬化剤として用いた場合、塗料のポットライフが短くなる等の問題が生じ ることがある。 [0033] The amount of the halophanation catalyst (C) used varies depending on the type, but 0.0005 to 1% by mass is preferable with respect to the total amount of the above (A) and (B). 0.1% by mass is more preferable. When the amount of the catalyst used is less than 0.0005% by mass, the reaction is substantially slow and it takes a long time, and coloring due to the thermal history may occur. On the other hand, if the amount of catalyst used exceeds 1% by mass However, the reaction control becomes difficult, and side reactions such as dimerization reaction (uretdione formation reaction) and trimerization reaction (isocyanuration reaction) may occur, and the resulting polyisocyanate is cured into a two-part paint. When used as an agent, problems such as shortening the pot life of the paint may occur.
[0034] 反応時間は、触媒の種類や添加量、反応温度により異なる力 通常 10時間以内、 好ましくは 1〜5時間で充分である。  [0034] The reaction time varies depending on the type of catalyst, the amount added, and the reaction temperature. Usually within 10 hours, preferably 1 to 5 hours is sufficient.
[0035] なお、このとき必要に応じて有機溶剤を用いることができる。この有機溶剤としては 、 n—へキサン、オクタン等の脂肪族炭化水素系有機溶剤、シクロへキサン、メチルシ クロへキサン等の脂環族炭化水素系有機溶剤、アセトン、メチルェチルケトン、メチル イソブチルケトン、シクロへキサノン等のケトン系有機溶剤、酢酸メチル、酢酸ェチル 、酢酸ブチル、酢酸イソブチル等のエステル系有機溶剤、エチレングリコールェチル エーテルアセテート、プロピレングリコールメチルエーテルアセテート、 3—メチルー 3 ーメトキシブチルアセテート、ェチルー 3—エトキシプロピオネート等のグリコールエー テルエステル系有機溶剤、ジェチルエーテル、テトラヒドロフラン、ジォキサン等のェ 一テル系有機溶剤、塩化メチル、塩化メチレン、クロ口ホルム、四塩化炭素、臭化メチ ル、ヨウ化メチレン、ジクロロェタン等のハロゲンィ匕脂肪族炭化水素系有機溶剤、 N— メチルピロリドン、ジメチルホルムアミド、ジメチルァセトアミド、ジメチルスルホキシド、 へキサメチルホスホニルアミド等の極性非プロトン溶剤等が挙げられる。前記溶剤は 1種又は 2種以上使用することができる。  [0035] At this time, an organic solvent can be used as necessary. Examples of the organic solvent include aliphatic hydrocarbon organic solvents such as n-hexane and octane, alicyclic hydrocarbon organic solvents such as cyclohexane and methylcyclohexane, acetone, methyl ethyl ketone, and methyl isobutyl. Ketone organic solvents such as ketone and cyclohexanone, ester organic solvents such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate, ethylene glycol ether ether, propylene glycol methyl ether acetate, 3-methyl-3-methoxybutyl Glycol ether ester organic solvents such as acetate and ethyl 3-ethoxypropionate, ether organic solvents such as jetyl ether, tetrahydrofuran and dioxane, methyl chloride, methylene chloride, chloroform, carbon tetrachloride, odor Methyl iodide, methyl iodide , Harogeni spoon aliphatic hydrocarbon organic solvent such as Jikuroroetan, N- methylpyrrolidone, dimethylformamide, dimethyl § Seth, dimethyl sulfoxide, polar aprotic solvents such as hexa-methyl phosphonyl amides to. The solvent can be used alone or in combination of two or more.
[0036] ァロファネートイ匕反応後、触媒毒 (D)を添加してァロファネートイ匕反応を停止させる 。触媒毒 (D)の添加時期は、ァロファネートイ匕反応後であれば特に制限はないが、 遊離の有機ジイソシァネートを除去する方法に薄膜蒸留法を行う場合は、ァロファネ ート反応 [0036] After the alophanate reaction, the catalyst poison (D) is added to stop the alophanate reaction. The timing of addition of the catalyst poison (D) is not particularly limited as long as it is after the allophanate reaction, but when the thin film distillation method is used to remove free organic diisocyanate, the allophanate reaction is performed.
後であって薄膜蒸留前に触媒毒 (D)の添加を行うのが好ましい。これは、薄膜蒸留 時の熱により、副反応が起こるのを防止するためである。  It is preferred to add the catalyst poison (D) later and before thin film distillation. This is to prevent side reactions from occurring due to heat during thin film distillation.
[0037] 触媒毒 (D)としては、リン酸、塩酸等の無機酸、スルホン酸基、スルファミン酸基等 を有する有機酸及びこれらのエステル類、ァシルハライド等公知の物が使用できる。 [0037] As the catalyst poison (D), known acids such as inorganic acids such as phosphoric acid and hydrochloric acid, organic acids having a sulfonic acid group, a sulfamic acid group and the like, esters thereof, and acyl halides can be used.
[0038] 触媒毒 (D)の添加量はその種類や触媒の種類により異なるが、触媒の 0. 5〜2当 量となる量が好ましぐ 0. 8〜1. 5当量が特に好ましい。触媒毒が少なすぎる場合は 、得られるポリイソシァネートの貯蔵安定性が低下しやすい。多すぎる場合は、得られ るポリイソシァネートが着色する場合がある。 [0038] The amount of catalyst poison (D) added varies depending on the type and type of catalyst, but it is 0.5 to 2 A preferred amount is 0.8 to 1.5 equivalents. If the catalyst poison is too small, the storage stability of the resulting polyisocyanate tends to decrease. If the amount is too large, the resulting polyisocyanate may be colored.
[0039] 本発明では、基本的にはァロファネートイ匕反応後の生成物には、遊離の有機ジイソ シァネートが存在することになる。この遊離の有機ジイソシァネートは、臭気や経時で の濁りの原因となるので、遊離の有機ジイソシァネート含有量が 1質量%以下となる まで未反応の有機ジイソシァネート (B)を除去すると好ましくなる。  [0039] In the present invention, basically, free organic diisocyanate is present in the product after the allophanate reaction. Since this free organic diisocyanate causes odor and turbidity with time, it is preferable to remove the unreacted organic diisocyanate (B) until the free organic diisocyanate content is 1% by mass or less.
[0040] 遊離の有機ジイソシァネートをOCR除 ■II 去する方法としては、蒸留、再沈、抽出等公知の  [0040] As a method for removing free organic diisocyanate from OCR ■ II, there are known methods such as distillation, reprecipitation, extraction and the like.
3  Three
方法が挙げられ、蒸留特に薄膜蒸留 0 o c =が溶剤等を用いることなくできるので好ましい。 また、好ましい薄膜蒸留の条件としては、圧力: 0. lkPa以下、温度: 100〜200°Cで あり、特に好ましい条件は圧力: 0. 05kPa以下、温度: 120〜180°Cである。  There is a method, and distillation, particularly thin-film distillation, 0 o c = is preferable because it can be performed without using a solvent or the like. Further, preferable thin film distillation conditions are pressure: 0.1 lkPa or less and temperature: 100 to 200 ° C, and particularly preferable conditions are pressure: 0.05 kPa or less and temperature: 120 to 180 ° C.
[0041] 本発明では、 (A)に炭素数 1〜40のモノオールィ匕合物を用いると、最終生成物中 の 2官能成分(下記式参照)含有量は 60質量%以上となるので好ましくなる。なお、 2 官能成分の含有量は、ゲルパーミエーシヨンクロマトグラフィー(GPC)のピーク面積 比であり、当該ピークの同定は原料から下記式の化合物が生成するとして決定する。  [0041] In the present invention, it is preferable to use a monooleic compound having 1 to 40 carbon atoms in (A) because the content of the bifunctional component (see the following formula) in the final product is 60% by mass or more. . The content of the bifunctional component is the ratio of the peak area of gel permeation chromatography (GPC), and the identification of the peak is determined on the assumption that the compound of the following formula is generated from the raw material.
[0042] [化 1]  [0042] [Chemical 1]
HH
O C R - N - R 2 - N C O O C R-N-R 2-N C O
R R 2は同じでも異なっていてもよい有機ジイソシァネート残基を示す。 R 3は、 モノオール残基を示す。 本発明によって得られるァロファネート変性ポリイソシァネート組成物の好ま 、粘 度(25°C、固形分 = 100%換算)は 200mPa' s以下であり、特に好ましくは 50〜18 OmPa' sである。また、イソシァネート含量(固形分 = 100%換算)は 10〜20質量0 /0 が好ましく、特に好ましくは 12〜 18質量%である。 [0044] ァロファネート変性ポリイソシァネート組成物の粘度は、導入量を一定にした場合、 (A)に用いる化合物を炭素数 6〜8付近のモノオールを用いたところが極小となる。 本発明においては、(A)に炭素数 1〜: LOのモノオールィ匕合物を用いると、得られるァ ロファネート変性ポリイソシァネート組成物の 25°Cの粘度が 130mPa' s以下になるの で好ましくなる。 RR 2 represents an organic diisocyanate residue which may be the same or different. R 3 represents a monool residue. The alophanate-modified polyisocyanate composition obtained by the present invention preferably has a viscosity (25 ° C., solid content = 100% conversion) of 200 mPa ′s or less, particularly preferably 50 to 18 OmPa ′s. Further, Isoshianeto content (solid content = 100% basis) is preferably from 10 to 20 weight 0/0, and particularly preferably 12 to 18 wt%. [0044] When the introduction amount is constant, the viscosity of the allophanate-modified polyisocyanate composition is minimized when the compound used in (A) is a monool having about 6 to 8 carbon atoms. In the present invention, when a monooleic compound having 1 to: LO carbon atoms is used for (A), the viscosity of the obtained phanate-modified polyisocyanate composition at 25 ° C. is 130 mPa's or less. It becomes preferable.
[0045] (A)に用いる化合物は、ァロファネート基導入量を一定にした場合、メタノール、ェ タノール、プロパノールの順で、得られるァロファネート変性ポリイソシァネート組成物 の貧溶剤への溶解性は向上する。本発明においては、(A)は、炭素数 3〜40のモノ オール化合物が好ましい。なお貧溶剤とは、通常のポリイソシァネートの溶解性が低 い溶剤であり、例えば、脂肪族炭化水素、ミネラルスピリット、灯油、石油系混合溶剤 等が挙げられる。  [0045] The compound used in (A) improves the solubility of the obtained alophanate-modified polyisocyanate composition in a poor solvent in the order of methanol, ethanol, and propanol when the introduction amount of the allophanate group is constant. To do. In the present invention, (A) is preferably a monool compound having 3 to 40 carbon atoms. The poor solvent is a solvent in which ordinary polyisocyanate has low solubility, and examples thereof include aliphatic hydrocarbons, mineral spirits, kerosene, and petroleum-based mixed solvents.
[0046] 本発明によって得られたァロファネート変性ポリイソシァネート組成物に、必要に応じ て、例えば 2, 6 ジー tert—ブチルー 4 メチルフエノール等の酸化防止剤や、紫 外線吸収剤、顔料、染料、溶剤、難燃剤、加水分解防止剤、潤滑剤、可塑剤、充填 剤、貯蔵安定剤等の添加剤を適宜配合することができる。  [0046] The alophanate-modified polyisocyanate composition obtained by the present invention may be added to an antioxidant such as 2,6-di-tert-butyl-4-methylphenol, an ultraviolet absorber, a pigment, or a dye, if necessary. Additives such as solvents, flame retardants, hydrolysis inhibitors, lubricants, plasticizers, fillers, storage stabilizers and the like can be appropriately blended.
[0047] [組成物の用途]  [0047] [Use of composition]
本発明によって得られたァロファネート変性ポリイソシァネート組成物は、塗料、接 着剤、各種結合剤、印刷インキ、磁気記録媒体、コーティング剤、シーリング剤、エラ ストマー、封止剤、合成皮革、各種フォーム、土木関係の発泡充填材等、広い範囲 に適用できる。特にハイソリッド塗料用の硬化剤や、ターペン塗料用の硬化剤に適し ている。  The alophanate-modified polyisocyanate composition obtained by the present invention is used for paints, adhesives, various binders, printing inks, magnetic recording media, coating agents, sealing agents, elastomers, sealants, synthetic leather, various leathers. Applicable to a wide range of foam, civil engineering foam fillers, etc. It is particularly suitable as a curing agent for high solid paints and a curing agent for turpentine paints.
実施例  Example
[0048] 本発明について、実施例、比較例により更に詳細に説明するが、本発明はこれらに より何ら限定されるものではない。なお、実施例、比較例において「%」は「質量%」を 意味する。  [0048] The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In Examples and Comparative Examples, “%” means “% by mass”.
[0049] 〔ァロファネート変性ポリイソシァネートの製造〕  [Manufacture of alophanate-modified polyisocyanate]
実施例 1  Example 1
攪拌機、温度計、冷却器及び窒素ガス導入管のついた容量: 1Lの反応器に、へキ サメチレンジイソシァネートを 975g、メタノールを 25g仕込み、 90°Cで 2時間ウレタン 化反応を行った。反応生成物を FT— IRにて分析したところ、水酸基は消失していた 。次に力プリル酸ジルコニウム (ジルコニウムテトラオクチル酸塩、三津和化学薬品製 、以下同じ)を 0. 2g仕込み、 90°Cにて 3時間反応させた。反応生成物を FT— IR及 び 13C— NMRにて分析したところ、ウレタン基は消失していた。次いで、リン酸を 0. lg仕込み 50°Cで 1時間停止反応を行った。停止反応後の反応生成物のイソシァネ ート含量は 42. 1%であった。この反応生成物を 130°C '0. 04kPaにて薄膜蒸留を 行い、イソシァネート含量が 21. 1%、 25°Cの粘度が 118mPa' s、遊離のへキサメチ レンジイソシァネート含有量が 0. 1%、色数が 20APHA、 2官能成分が 73%のポリ イソシァネート P—1を得た。 P— 1を FT— IR、 13C— NMRにて分析したところ、ウレ タン基はその存在が認められず、ァロファネート基の存在が確認された。また、ウレト ジオン基及びイソシァヌレート基は痕跡程度認められた。結果を表 1に示す。 Capacity with stirrer, thermometer, cooler and nitrogen gas inlet tube: 1L reactor, hex 975 g of samethylene diisocyanate and 25 g of methanol were charged, and urethanization reaction was performed at 90 ° C for 2 hours. When the reaction product was analyzed by FT-IR, the hydroxyl group disappeared. Next, 0.2 g of power zirconium zirconium pyrrate (zirconium tetraoctylate, manufactured by Mitsuwa Chemicals, the same applies below) was charged and reacted at 90 ° C for 3 hours. When the reaction product was analyzed by FT-IR and 13C-NMR, the urethane group had disappeared. Subsequently, 0.1 g of phosphoric acid was charged, and a stop reaction was performed at 50 ° C. for 1 hour. The isocyanate content of the reaction product after the termination reaction was 42.1%. This reaction product was subjected to thin-film distillation at 130 ° C '0.04 kPa, the isocyanate content was 21.1%, the viscosity at 25 ° C was 118 mPa's, and the free hexamethylene diisocyanate content was 0. Polyisocyanate P-1 with 1%, 20APHA color number and 73% difunctional component was obtained. When P-1 was analyzed by FT-IR and 13C-NMR, the presence of a urethane group was not confirmed, and the presence of an allophanate group was confirmed. In addition, traces of uretdione groups and isocyanurate groups were observed. The results are shown in Table 1.
[0050] 実施例 2〜9  [0050] Examples 2-9
表 1に示す原料、反応条件を用いて、実施例 1とほぼ同様な手順で製造してポリイ ソシァネート P— 2〜9を得た。結果を表 1に示す。  Using the raw materials and reaction conditions shown in Table 1, polyisocyanate P-2 to 9 were obtained by the same procedure as in Example 1. The results are shown in Table 1.
[0051] 実施例 10  [0051] Example 10
実施例 1と同様な反応器に、へキサメチレンジイソシァネートを 975g、メタノールを 25 g、力プリル酸ジルコニウムを 0. lg仕込み、 90°Cにて 5時間反応させた。反応生成物 を FT— IR及び 13C— NMRにて分析したところ、水酸基及びウレタン基は 確認されなかった。次いで、リン酸を 0. 05g仕込み 50°Cで 1時間停止反応を行った 。停止反応後の反応生成物のイソシァネート含量は 42. 0%であった。この反応生成 物を 130°C '0. 04kPaにて薄膜蒸留を行い、イソシァネート含量が 21. 2%、 25°C の粘度が 112mPa' s、遊離のへキサメチレンジイソシァネート含有量が 0. 1%、色数 が 20APHA、 2官能成分が 72%のポリイソシァネート P— 12を得た。 P— 12を FT— IR、 13C— NMRにて分析したところ、ウレタン基はその存在が認められず、ァロファ ネート基の存在が確認された。また、ウレトジオン基及びイソシァヌレート基は痕跡程 度認められた。結果を表 1に示す。  The same reactor as in Example 1 was charged with 975 g of hexamethylene diisocyanate, 25 g of methanol, and 0.1 lg of strong zirconium pyrophosphate, and reacted at 90 ° C. for 5 hours. When the reaction product was analyzed by FT-IR and 13C-NMR, a hydroxyl group and a urethane group were not confirmed. Next, 0.05 g of phosphoric acid was added, and a stop reaction was performed at 50 ° C. for 1 hour. The isocyanate content of the reaction product after the termination reaction was 42.0%. This reaction product was subjected to thin-film distillation at 130 ° C '0.04kPa, the isocyanate content was 21.2%, the viscosity at 25 ° C was 112mPa's, and the content of free hexamethylene diisocyanate was 0. A polyisocyanate P-12 with 1%, 20 APHA color number and 72% difunctional component was obtained. When P-12 was analyzed by FT-IR and 13C-NMR, the presence of urethane groups was not confirmed, and the presence of allophanate groups was confirmed. In addition, traces of uretdione groups and isocyanurate groups were observed. The results are shown in Table 1.
[0052] 比較例 1〜4 表 2に示す原料、反応条件を用いて、実施例 1とほぼ同様な手順で製造操作を行 つた。 P— 11、 12は、ァロファネートイ匕反応が進行しなかったため、モノマー除去の 蒸留以後の操作は行わな力つた。 P— 13と P— 14の結果を表 2に示す。 [0052] Comparative Examples 1 to 4 Using the raw materials and reaction conditions shown in Table 2, the production operation was performed in substantially the same procedure as in Example 1. In P-11 and 12, since the allophanate reaction did not proceed, the operation after the distillation for removing the monomer was powerful. Table 2 shows the results for P-13 and P-14.
[0053] 比較例 5 [0053] Comparative Example 5
実施例 1と同様な反応器に、へキサメチレンジイソシァネートを 930g、ノルマルへキ サノールを 70g仕込み、 90°Cで 2時間ウレタンィ匕反応を行った。反応生成物を FT— I Rにて分析したところ、水酸基は消失していた。次に 160°Cに加熱して同温度で 5時 間反応させた。反応後のイソシァネート含量は 40. 7%であった。この反応生成物を 130°C -0. 04kPaにて薄膜蒸留を行い、イソシァネート含量が 17. 8%、 25°Cの粘 度が 84mPa' s、遊離のへキサメチレンジイソシァネート含有量が 0. 1%、色数が 20 OAPHA、 2官能成分が 68%のポリイソシァネート P— 15を得た。 P— 15を FT— IR 及び 13C—NMRにて分析したところ、ァロファネート基の存在が確認された力 相 当量のウレタン基の存在も確認された。また、ウレトジオン基の存在も確認され、また 、イソシァヌレート基の存在が痕跡程度認められた。結果を表 2に示す。  The same reactor as in Example 1 was charged with 930 g of hexamethylene diisocyanate and 70 g of normal hexanol, and a urethane reaction was performed at 90 ° C. for 2 hours. When the reaction product was analyzed by FT-IR, the hydroxyl group disappeared. Next, it was heated to 160 ° C and reacted at the same temperature for 5 hours. The isocyanate content after the reaction was 40.7%. This reaction product was subjected to thin-film distillation at 130 ° C -0.04 kPa, the isocyanate content was 17.8%, the viscosity at 25 ° C was 84mPa's, and the content of free hexamethylene diisocyanate was 0.1% of polyisocyanate P-15 having a color number of 20 OAPHA and a bifunctional component of 68% was obtained. When P-15 was analyzed by FT-IR and 13C-NMR, it was also confirmed that a urethane equivalent of a strong phase equivalent to the presence of an allophanate group was present. The presence of uretdione groups was also confirmed, and the presence of isocyanurate groups was recognized to a trace. The results are shown in Table 2.
[0054] 比較例 6 [0054] Comparative Example 6
実施例 1と同様な反応器に、へキサメチレンジイソシァネートを 995g、ネオペンチル グリコールを 5g仕込み、 90°Cで 2時間ウレタンィ匕反応を行った。反応生成物を FT— I Rにて分析したところ、水酸基は消失していた。次にトリブチルホスフィンを 1. Og仕込 み 50°Cにて 14時間反応させた。反応生成物を FT— IR及び 13C— NMRにて分析 したところ、ウレタン基、ウレトジオン基、イソシァヌレート基はその存在が確認できた 力 ァロファネート基は確認されな力つた。更にリン酸を 0. 6g仕込み 50°Cで 1時間停 止反応を行った。生成物のイソシァネート含量は 42. 1%であった。この反応生成物 を 130°C '0. 04kPaにて薄膜蒸留を行い、イソシァネート含量が 22. 3%、 25°Cの 粘度が 78mPa' s、遊離のへキサメチレンジイソシァネート含有量が 0. 2%、色数が 4 0APHAのポリイソシァネート P— 16を得た。結果を表 2に示す。  A reactor similar to that in Example 1 was charged with 995 g of hexamethylene diisocyanate and 5 g of neopentyl glycol and subjected to urethane reaction at 90 ° C. for 2 hours. When the reaction product was analyzed by FT-IR, the hydroxyl group disappeared. Next, tributylphosphine was charged with 1. Og and reacted at 50 ° C for 14 hours. When the reaction product was analyzed by FT-IR and 13C-NMR, the presence of urethane groups, uretdione groups, and isocyanurate groups was confirmed. Further, 0.6 g of phosphoric acid was added, and the reaction was stopped at 50 ° C for 1 hour. The isocyanate content of the product was 42.1%. This reaction product was subjected to thin-film distillation at 130 ° C '0.04kPa, the isocyanate content was 22.3%, the viscosity at 25 ° C was 78mPa's, and the free hexamethylene diisocyanate content was 0. Polyisocyanate P-16 with 2% and 40 APHA color number was obtained. The results are shown in Table 2.
[0055] [表 1] 実 E 例 [0055] [Table 1] Real E example
1 2 3 4 5 6 7 8 9 1 0 有機ジイソシァネート(g)  1 2 3 4 5 6 7 8 9 1 0 Organic diisocyanate (g)
H D I 975 950 930 910 910 900 800 800 965 975 水酸基含有化合物 (g)  H D I 975 950 930 910 910 900 800 800 965 975 Hydroxyl-containing compound (g)
メタノール 25 25 イソプロパノ一ル 50  Methanol 25 25 Isopropanol 50
ノルマルへキサノール 70 90  Normal hexanol 70 90
2—ェチルへキサノール 90  2-Ethylhexanol 90
トリデカノ一ル 100 Tridecanol 100
e P PG-400 200  e P PG-400 200
Me P EG-400 200  Me P EG-400 200
1 , 3—ブタンジオール 35 ァロファネ一ト化触媒 (g)  1,3-Butanediol 35-arophaneization catalyst (g)
力プリル酸ジルコニウム 0. 2 0.1 Power Zirconyl Pyrrate 0.2 0.2
(三津和化学薬品製) (Mitsuwa Chemicals)
触媒毒 (g) Catalyst poison (g)
リン酸 0. 1 0.05 薄膜蒸留前ィソシァネート含量 (%) 42.1 40.3 40.7 38.5 39.9 40.8 35.7 35.7 41.3 42.0 ポリイソシァネート名称 P-1 P-2 P-3 P-4 P- 5 P-6 P-7 P-8 P-9 P-10 製造結果  Phosphoric acid 0.1 0.05 Isocyanate content before thin film distillation (%) 42.1 40.3 40.7 38.5 39.9 40.8 35.7 35.7 41.3 42.0 Polyisocyanate name P-1 P-2 P-3 P-4 P- 5 P-6 P-7 P-8 P-9 P-10 Manufacturing result
イソシァネート含量 (» 21.1 19.3 17.7 17.2 16.7 14.6 10.5 10.6 20.2 21.2 Isocyanate content (»21.1 19.3 17.7 17.2 16.7 14.6 10.5 10.6 20.2 21.2
25°Cの粘度(mPa-s) 118 105 79 120 110 160 171 183 2, 550 112 遊離 HD I含有量 (%) 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 色数 (APHA) 20 10 20 20 20 20 30 40 10 20Viscosity at 25 ° C (mPa-s) 118 105 79 120 110 160 171 183 2, 550 112 Free HD I content (%) 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 Color number (APHA) 20 10 20 20 20 20 30 40 10 20
2官能成分含有量 73 71 71 61 68 73 70 70 ― 72 ウレタン基 X X X X X X X X X X Bifunctional component content 73 71 71 61 68 73 70 70 ― 72 Urethane group X X X X X X X X X X
O O O O O O O O O O  O O O O O O O O O O
官能基ウ:レ^卜ン才ン Δ △ Δ Δ Δ Δ Δ Δ △ Δ イソシァヌレ一ト基 Δ 厶 厶 Δ 厶 厶 厶 Δ Δ 厶Functional group C: Δ △ Δ Δ Δ Δ Δ Δ △ Δ Isocyanurate group Δ 厶 厶 Δ 厶 厶 厶 Δ Δ 厶
※官能基: 0→ぁリ △—痕跡程度 X—なし 2] * Functional group: 0 → Ari △ —Trace level X—None 2]
比 較 例 Comparison example
1 2 3 4 5 6 有機ジイソシァネート(g)  1 2 3 4 5 6 Organic diisocyanate (g)
H D I 950 965 950 965 930 995 水酸基含有化合物 (g)  H D I 950 965 950 965 930 995 Hydroxyl-containing compound (g)
ィソプロパノ一ル 50 50 Isopropanol 50 50
1 , 3—ブタンジオール 35 35 1,3-Butanediol 35 35
ノルマルへキサノ一ル 70 ネオペンチルグリコール 5 ァロファネ一ト化触媒 (g)  Normal hexanol 70 Neopentyl glycol 5 alphaphanate catalyst (g)
酢酸ジルコニール (Zr02=30%) 第一稀元素化学製 0. 2 Zirconyl acetate (Zr0 2 = 30%) Made by Daiichi Rare Elemental Chemistry 0.2
2—ェチルへキサン酸亜 IS 0. 2  2-Ethylhexanoic acid IS 0.2
イソシァヌレート化触媒 (g)  Isocyanurate catalyst (g)
トリブチルホスフィン 1.0 触媒毒 (g)  Tributylphosphine 1.0 Catalyst poison (g)
リン酸 0. 1 0.6 薄膜蒸留前ィソシァネート含量 (¾) 40.5 41.6 40.5 41.5 40.7 42.1 ポリイソシァネ一ト名称 P- 11 P-12 P-13 P-14 P-15 P-16 製造結果  Phosphoric acid 0.1 0.6 Isocyanate content before thin film distillation (¾) 40.5 41.6 40.5 41.5 40.7 42.1 Polyisocyanate name P- 11 P-12 P-13 P-14 P-15 P-16 Production result
イソシァネート含量 (%) 19.9 21.5 17.8 22.3 Isocyanate content (%) 19.9 21.5 17.8 22.3
25°Cの粘度(mPa-s) 反応進まず 240 2840 84 78 遊離 HD I含有量 (%) 0.2 0.2 0.1 0.2 色数 (APHA) 未蒸留 20 10 200 40Viscosity at 25 ° C (mPa-s) No reaction progress 240 2840 84 78 Free HD I content (%) 0.2 0.2 0.1 0.2 Color number (APHA) Undistilled 20 10 200 40
2官能成分含有量 55 ― 68 Bifunctional component content 55 ― 68
ウレタン基 O O △ Δ O 〇 官^其※ ァロファネート基 Δ Δ O O O X Hc" ウレトジオン基 Δ Δ △ Δ O O イソシァヌレート基 △ Δ O O Δ OUrethane group OO △ Δ O 〇 government ^ 其 * Alophaneate group Δ Δ OOOXH c "Uretodione group Δ Δ △ Δ OO Isocyanurate group △ Δ OO Δ O
※官能基: o→ぁリ △—痕跡程度 X—なし * Functional group: o → Ari △ —Trace level X—None
[0057] 表 1、 2において [0057] In Tables 1 and 2
HDI :へキサメチレンジイソシァネート  HDI: Hexamethylene diisocyanate
MePPG— 400:メトキシポリプロピレングリコール  MePPG— 400: Methoxypolypropylene glycol
数平均分子量 =400  Number average molecular weight = 400
MePEG 400:メトキシポリエチレングリコール  MePEG 400: Methoxypolyethylene glycol
数平均分子量 =400  Number average molecular weight = 400
遊離 HDI含有量 :ガスクロマトグラフィー(GC)にて測定  Free HDI content: measured by gas chromatography (GC)
2官能成分含有量 : GPC、仕込み原料力も算出  Bifunctional component content: GPC, power of raw materials calculated
官能基 : FT— IR、 13C— NMRの各官能基のピーク強度を判断  Functional group: FT-IR, 13C- NMR peak intensity of each functional group is judged
[0058] 実施例におけるポリイソシァネート組成物の色数は低 L、ものであった。また、炭素数 10以下のモノオールを用いて得られたポリイソシァネートは、全て 25°Cの粘度が 13 OmPa · s以下と低 、ものであり、取り扱 、時にお 、て良好な作業性を有するものであ つた。しかし、酢酸ジルコニール (第一稀元素化学製)を用いて製造したポリイソシァ ネー [0058] The number of colors of the polyisocyanate composition in the examples was low L. Carbon number Polyisocyanates obtained using monools of 10 or less are all low in viscosity at 25 ° C of 13 OmPa · s or less, and have good workability when handling. It was. However, polyisocyanate produced using zirconyl acetate (Daiichi Rare Element Chemical Co., Ltd.)
トは、ウレタン化は進行するものの、ァロファネートイ匕触媒としての効果は認められな い。また、触媒が異なる以外は同糸且成である P— 2と P— 13を比較すると、 2—ェチル へキサン酸亜鉛を用いたものは、イソシァヌレート基含有量が多ぐ粘度が高ぐ 2官 能成分含有量が少な!、ものであった。  Although urethanization proceeds, the effect as an allophanate catalyst is not recognized. In addition, comparing P-2 and P-13, which have the same yarn and different composition except for the catalyst, the one using 2-ethyl hexyl hexanoate has a high isocyanurate group content and a high viscosity. The active ingredient content was low!
[0059] 〔貯蔵安定性試験〕  [0059] [Storage stability test]
P— 2と P— 13を密閉容器に入れ、空隙部を窒素置換して 50°Cで 2週間保管後の イソシァネート含量を測定した。結果は、 P— 2が 19. 4質量%から 19. 3質量%と微 減であったのに対し、 P— 13は、 19. 9質量%から 18. 8質量%と大幅に減少した。 このことから、ジルコニウムテトラカルボン酸塩系触媒 (但しカルボン酸の炭素数は 6 以上)を用いると、貯蔵安定性に優れたァロファネート変性ポリイソシァネート組成物 が得られることが判明した。  P-2 and P-13 were placed in a sealed container, and the void content was replaced with nitrogen, and the isocyanate content after storage at 50 ° C for 2 weeks was measured. As a result, P-2 decreased slightly from 19.4% to 19.3% by weight, while P-13 decreased significantly from 19.9% to 18.8% by weight. From this, it was found that when a zirconium tetracarboxylate-based catalyst (wherein the carboxylic acid has 6 or more carbon atoms) is used, an allophanate-modified polyisocyanate composition having excellent storage stability can be obtained.
[0060] 〔熱安定性試験〕  [0060] [Thermal stability test]
応用実施例 1〜 10、応用比較例 1〜4  Application Examples 1-10, Application Comparison Examples 1-4
得られたポリイソシァネート(P— 11、 12を除く)を 150°Cにて 2時間加熱した後、 G Cにて遊離 HDI含有量を測定した。結果を表 3、 4に示す。  The obtained polyisocyanate (excluding P-11 and 12) was heated at 150 ° C for 2 hours, and then the free HDI content was measured by GC. The results are shown in Tables 3 and 4.
[0061] [表 3]  [0061] [Table 3]
Figure imgf000016_0001
Figure imgf000016_0001
[0062] [表 4] 応 用 比 較 例 [0062] [Table 4] Application comparison example
1 2 3 4  1 2 3 4
ポリイソシァネート P-13 P-14 P - 15 P - 16  Polyisocyanate P-13 P-14 P-15 P-16
加熱前 0. 2 0. 2 0. 1 0. 2  Before heating 0. 2 0. 2 0. 1 0. 2
遊離 H D I含量 (%)  Free H D I content (%)
加熱後 0. 3 0. 2 3. 4 15. 6  After heating 0. 3 0. 2 3. 4 15. 6
[0063] 表 3、 4から、実施例におけるポリイソシァネート組成物は、加熱前後の遊離 HDI含 有量が大きく変化していないことから、熱安定性は良好であると言える。一方、 P—15 、 16は加熱後の遊離 HDI含有量が増加している。これは耐熱性の低いウレトジオン 基の熱分解が起こったものと思われる。 [0063] From Tables 3 and 4, it can be said that the polyisocyanate compositions in the examples have good thermal stability because the free HDI content before and after heating did not change significantly. On the other hand, P-15 and 16 have increased free HDI content after heating. This is probably due to the thermal decomposition of the uretdione group with low heat resistance.
[0064] 〔貧溶剤溶解試験〕  [0064] [Poor solvent dissolution test]
応用実施例 11〜16、応用比較例 5〜8  Application Examples 11-16, Application Comparison Examples 5-8
得られたポリイソシァネートをソルベント A (日石三菱製石油系混合溶剤、貧溶剤) にポリイソシァネート Zソルベント A= 1/2 (質量比)で溶解させて、溶液の外観を確 認した。結果を表 5、 6に示す。  The resulting polyisocyanate is dissolved in Solvent A (Nippon Mitsubishi Petroleum Mixed Solvent, poor solvent) with Polyisocyanate Z Solvent A = 1/2 (mass ratio) to confirm the appearance of the solution. did. The results are shown in Tables 5 and 6.
[0065] [表 5]  [0065] [Table 5]
Figure imgf000017_0001
Figure imgf000017_0001
[0066] [表 6] 応 用 比 較 例 [0066] [Table 6] Application comparison example
5 6 7 8 ポリイソシァネート P-13 P-14 P-15 P - 16 希釈時外観 X X X X [0067] 表 5、 6において 5 6 7 8 Polyisocyanate P-13 P-14 P-15 P-16 Appearance when diluted XXXX [0067] In Tables 5 and 6
外観:〇→完全に溶解し、透明溶液となった。  Appearance: ○ → Completely dissolved to become a transparent solution.
X→沈殿又は濁りが発生して 、る。  X → Precipitation or turbidity occurs.
[0068] 表 5、 6より、実施例のポリイソシァネートの貧溶剤への溶解性は良好であった。一 方、比較例のポリイソシァネートの貧溶剤への溶解性は良くな力つた。この結果から、 実施例のポリイソシァネートは、いわゆるターペン塗料の硬化剤として用いることがで きる。 [0068] From Tables 5 and 6, the solubility of the polyisocyanate of Examples in a poor solvent was good. On the other hand, the solubility of the polyisocyanate of the comparative example in a poor solvent was good. From this result, the polyisocyanate of the example can be used as a curing agent for so-called turpentine paints.
[0069] 〔塗膜評価〕  [0069] [Evaluation of coating film]
応用実施例 17、 18  Application Examples 17, 18
表 7に示す配合で、ポリイソシァネート、アクリルポリオール溶液 (アタリディック A— 82 3、大日本インキ化学工業製、固形分 =50%、水酸基価 = 30mgKOHZg)、酢酸 ブチルを混合して、固形分 =50%のタリヤー塗料を調製した。その後、調製した塗 料を鋼板上に塗布し、 20°C、 65%RHの条件で 1週間静置して、乾燥膜厚 30〜40 μ mの塗膜を形成させた試験片を得た。得られた試験片を以下に示す試験を行った 。結果を表 7に示す。  In the formulation shown in Table 7, polyisocyanate, acrylic polyol solution (Atalidic A-823, manufactured by Dainippon Ink and Chemicals, solid content = 50%, hydroxyl value = 30 mgKOHZg), and butyl acetate are mixed to form a solid A min = 50% Talia paint was prepared. After that, the prepared coating was applied on a steel plate and allowed to stand at 20 ° C and 65% RH for 1 week to obtain a test piece on which a coating film having a dry film thickness of 30 to 40 µm was formed. . The obtained test piece was subjected to the following tests. The results are shown in Table 7.
[0070] [表 7] [0070] [Table 7]
応用実施例 Application examples
1 7 18 ァクリルポリオ一ル溶液 (g) 100  1 7 18 Acrylic polyol solution (g) 100
硬化剤 (g)  Curing agent (g)
P— 2 19. 3  P— 2 19. 3
P— 9 18. 3 酢酸ブチル (g) 19. 3 18. 3 塗膜評価  P— 9 18. 3 Butyl acetate (g) 19. 3 18. 3 Coating evaluation
鉛筆硬度 HB H 密着性 100 100 耐屈曲性 〇 〇 エリクセン値 9 材破 9 材破 試験項目、方法は以下の通り。  Pencil hardness HB H Adhesion 100 100 Flexibility 〇 〇 Erichsen value 9 Material break 9 Material break Test items and methods are as follows.
•鉛筆硬度試験: • Pencil hardness test:
JIS S— 6006で規定した鉛筆の先端を 45度の角度で押し出すようにして塗膜が 破れない最高の硬さの鉛筆の硬度を塗膜の硬度とした。  The tip of the pencil specified in JIS S-6006 was extruded at an angle of 45 degrees, and the hardness of the pencil with the highest hardness at which the coating did not break was defined as the coating hardness.
•付着性試験: • Adhesion test:
塗膜にカッターガイドをそえたカッターナイフを用いて lmm四方の 100個のマス目 状の切れ込みを入れ、その上力もセロハンテープを圧着し、その後瞬間的に剥がし、 残存する塗膜片の個数を数えた。  Using a cutter knife with a cutter guide on the coating film, make 100 square cuts in 1 mm square, press the cellophane tape on top of it, and then peel it off instantaneously to determine the number of remaining coating film pieces. I counted.
•エリクセン値:  • Eriksen value:
塗装面の裏力も鋼球をゆっくり押しつけ、塗膜に割れ *剥がれ等が生じたときの鋼 球の押し出し距離を測定した。  The steel ball was also pressed slowly against the back surface of the painted surface, and the extrusion distance of the steel ball when the coating film was cracked or peeled off was measured.
'耐屈曲性: 'Bend resistance:
塗装面を表にして塗膜板を直径 2mmの棒に当てて 180度折り曲げ、塗膜の割れ、 剥がれを調べた。 With the painted surface facing up, apply the coating plate to a 2mm diameter rod, fold it 180 degrees, crack the coating, The peeling was examined.
評価:〇→変化なし X→割れ、剥がれがある  Evaluation: ○ → No change X → There are cracks and peeling
[0072] 表 7より、実施例のポリイソシァネートを用いた塗膜は良好な物性を有していた。 [0072] From Table 7, the coating film using the polyisocyanate of the example had good physical properties.
[0073] 以上説明した通り、本発明によって得られたポリイソシァネート組成物は、良好な外 観を有した。また、炭素数 10以下のモノオールを用いて得られたポリイソシァネート 組成 [0073] As described above, the polyisocyanate composition obtained by the present invention had a good appearance. In addition, polyisocyanate composition obtained using monool having 10 or less carbon atoms
物は、特に低粘度であった。また、炭素数 3〜40のモノオールを用いて得られたポリ イソシァネート組成物は、貧溶剤への溶解性が良好であった。  The product was particularly low in viscosity. Further, the polyisocyanate composition obtained using monool having 3 to 40 carbon atoms had good solubility in a poor solvent.

Claims

請求の範囲 The scope of the claims
[1] アルコール性水酸基含有化合物 (A)と、脂肪族及び Z又は脂環族ジイソシァネー ト(B)から、ァロファネート化触媒 (C)を用いてァロファネート変性ポリイソシァネート 組成物を製造する方法において、該ァロファネート化触媒 (C)がジルコニウムテトラ カルボン酸塩で、そのカルボン酸の炭素数が 6以上であり、ァロファネート化反応を 停止させる際に触媒毒 (D)を用いること、を特徴とする前記製造方法。  [1] In a method for producing an allophanate-modified polyisocyanate composition from an alcoholic hydroxyl group-containing compound (A) and an aliphatic and Z or alicyclic diisocyanate (B) using an allophanate catalyst (C) The alfaphanate catalyst (C) is a zirconium tetracarboxylate, the carboxylic acid has 6 or more carbon atoms, and the catalyst poison (D) is used when stopping the alfaphanate reaction. Production method.
[2] ァロファネート化反応の停止後に、遊離の有機ジイソシァネート (B)を含有量が 1質 量%以下になるまで除去することを特徴とする、請求項 1記載の製造方法。  [2] The production method according to claim 1, wherein the free organic diisocyanate (B) is removed until the content becomes 1% by mass or less after the allophanatization reaction is stopped.
[3] (A)が炭素数 1〜40のモノオールィ匕合物であり、得られるァロファネート変性ポリィ ソシァネート組成物が、 2官能成分を 60質量%以上含有することを特徴とする、請求 項 1又は 2記載の製造方法。  [3] (A) is a monooleic compound having 1 to 40 carbon atoms, and the obtained allophanate-modified polysocyanate composition contains 60% by mass or more of a bifunctional component. 2. The production method according to 2.
[4] (A)が炭素数 1〜: LOのモノオールィ匕合物であり、得られるァロファネート変性ポリィ ソシァネート組成物の 25°Cでの粘度が 130mPa' s以下であることを特徴とする、請 求項 1〜3のいずれかに記載の製造方法。  [4] (A) is a mono-ol compound having 1 to C carbon atoms, and the viscosity of the obtained allophanate-modified polysocyanate composition at 25 ° C. is 130 mPa's or less. The manufacturing method in any one of Claims 1-3.
[5] (A)が炭素数 3〜40のモノオールィ匕合物であり、得られるァロファネート変性ポリィ ソシァネート組成物が貧溶剤に可溶であることを特徴とする、請求項 1〜4の 、ずれ かに記載の製造方法。  [5] (A) is a monooleic compound having 3 to 40 carbon atoms, and the obtained allophanate-modified polysocyanate composition is soluble in a poor solvent, The manufacturing method of crab.
PCT/JP2006/300245 2005-01-14 2006-01-12 Method for producing allophanate-modified polyisocyanate composition WO2006075636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-007552 2005-01-14
JP2005007552A JP2006193642A (en) 2005-01-14 2005-01-14 Method for producing allophanate-modified polyisocyanate composition

Publications (1)

Publication Number Publication Date
WO2006075636A1 true WO2006075636A1 (en) 2006-07-20

Family

ID=36677661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300245 WO2006075636A1 (en) 2005-01-14 2006-01-12 Method for producing allophanate-modified polyisocyanate composition

Country Status (2)

Country Link
JP (1) JP2006193642A (en)
WO (1) WO2006075636A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047761A1 (en) * 2006-10-16 2008-04-24 Asahi Kasei Chemicals Corporation Fluorine coating composition
CN110387031A (en) * 2019-07-12 2019-10-29 万华化学集团股份有限公司 A kind of isocyanates having light color preparation method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943004B2 (en) * 2005-12-28 2012-05-30 三井化学株式会社 Process for producing allophanate group-containing polyisocyanate, urethane prepolymer and polyurethane resin composition
JPWO2008065732A1 (en) * 2006-11-27 2010-03-04 日本ポリウレタン工業株式会社 Process for producing modified isocyanate mixture containing allophanate bond and isocyanurate bond
JP5262103B2 (en) * 2007-12-21 2013-08-14 日本ポリウレタン工業株式会社 Allophanation reaction terminator composition and method for producing allophanate-modified polyisocyanate using the same
JP5245741B2 (en) * 2008-11-14 2013-07-24 日本ポリウレタン工業株式会社 Polyisocyanate curing agent composition for fluorine-based polyol and two-component coating composition using the same
JP5407626B2 (en) * 2009-07-17 2014-02-05 オート化学工業株式会社 Curable composition
JP5003810B2 (en) * 2010-10-01 2012-08-15 日本ポリウレタン工業株式会社 Method for producing flexible polyurethane foam
JP2018002972A (en) * 2016-07-08 2018-01-11 東ソー株式会社 Polyisocyanate composition and coating composition using the same
WO2017094883A1 (en) * 2015-12-04 2017-06-08 東ソー株式会社 Polyisocyanate composition and coating composition using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032979A1 (en) * 2000-10-17 2002-04-25 Asahi Kasei Kabushiki Kaisha Process for preparation of polyisocyanate composition
JP2002249535A (en) * 2001-02-22 2002-09-06 Nippon Polyurethane Ind Co Ltd Method for producing allophanate modified polyisocyanate composition
JP2003073447A (en) * 2001-08-31 2003-03-12 Nippon Polyurethane Ind Co Ltd Self-emulsifying polyisocyanate composition and water- based coating material using the same
WO2003027163A1 (en) * 2001-09-20 2003-04-03 Asahi Kasei Chemicals Corporation Polyisocyanate composition having allophanate group and high-solid coating material
JP2003171435A (en) * 2001-12-05 2003-06-20 Nippon Polyurethane Ind Co Ltd Method for producing allophanate-modified polyisocyanate
JP2003171361A (en) * 2001-11-30 2003-06-20 Nippon Polyurethane Ind Co Ltd Method for producing allophanate group-containing polyisocyanate
JP2004195385A (en) * 2002-12-19 2004-07-15 Nippon Polyurethane Ind Co Ltd Emulsifying and dispersing agent, water emulsifying and dispersing isocyanate curing agent using the same, and water emulsifying and dispersing curable composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032979A1 (en) * 2000-10-17 2002-04-25 Asahi Kasei Kabushiki Kaisha Process for preparation of polyisocyanate composition
JP2002249535A (en) * 2001-02-22 2002-09-06 Nippon Polyurethane Ind Co Ltd Method for producing allophanate modified polyisocyanate composition
JP2003073447A (en) * 2001-08-31 2003-03-12 Nippon Polyurethane Ind Co Ltd Self-emulsifying polyisocyanate composition and water- based coating material using the same
WO2003027163A1 (en) * 2001-09-20 2003-04-03 Asahi Kasei Chemicals Corporation Polyisocyanate composition having allophanate group and high-solid coating material
JP2003171361A (en) * 2001-11-30 2003-06-20 Nippon Polyurethane Ind Co Ltd Method for producing allophanate group-containing polyisocyanate
JP2003171435A (en) * 2001-12-05 2003-06-20 Nippon Polyurethane Ind Co Ltd Method for producing allophanate-modified polyisocyanate
JP2004195385A (en) * 2002-12-19 2004-07-15 Nippon Polyurethane Ind Co Ltd Emulsifying and dispersing agent, water emulsifying and dispersing isocyanate curing agent using the same, and water emulsifying and dispersing curable composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047761A1 (en) * 2006-10-16 2008-04-24 Asahi Kasei Chemicals Corporation Fluorine coating composition
US8344071B2 (en) 2006-10-16 2013-01-01 Asahi Kasei Chemicals Corporation Fluorine coating composition
JP5481859B2 (en) * 2006-10-16 2014-04-23 旭硝子株式会社 Fluorine paint composition
CN110387031A (en) * 2019-07-12 2019-10-29 万华化学集团股份有限公司 A kind of isocyanates having light color preparation method
CN110387031B (en) * 2019-07-12 2021-06-29 万华化学集团股份有限公司 Preparation method of light-colored isocyanate

Also Published As

Publication number Publication date
JP2006193642A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
WO2006075636A1 (en) Method for producing allophanate-modified polyisocyanate composition
EP1970394B1 (en) Method for producing allophanate group-containing polyisocyanate
JP6161788B2 (en) Isocyanurate composition
US9666330B2 (en) Polyurethane resin composition for electrical insulation
JP5317019B2 (en) Low-hardness polyurethane elastomer-forming composition and pressure-sensitive adhesive sheet
EP0731119A2 (en) Ultra low voc polyurethane coatings
WO2008065732A1 (en) Process for production of modified isocyanate mixture containing allophanate bond and isocyanurate bond
JP3850895B2 (en) Allophanatization method and two-component resin composition
JP3511622B2 (en) Method for producing allophanate-modified polyisocyanate composition
KR20080070722A (en) Compound having isocyanate functionality, preparation thereof and use thereof in a process for preparing a coating
JP4476057B2 (en) Polyisocyanate composition and coating composition
EP1945727B1 (en) High solid coating compositions
JP2007530751A (en) Method for producing polyether allophanate using zinc compound as catalyst
JPH0368023B2 (en)
JPH09118735A (en) Solventless binder composition and its use in one- and two-component coating compositions
JP5368525B2 (en) Allophanate group-containing polyisocyanate, and urethane prepolymer, polyurethane resin composition and use thereof
JP6495449B2 (en) Polyisocyanate composition, polyurethane resin and two-component curable polyurethane composition
JP2003128989A (en) High-solid coating composition
JP3952673B2 (en) Method for producing modified isocyanate compound
JP4498850B2 (en) Polyisocyanate composition and two-component polyurethane coating composition
EP1538171B1 (en) Coating compositions with high solids content for vehicle repair coating
JP2003055427A (en) Process for producing self-emulsifiable allophanate- modified polyisocyanate
JP2003160630A (en) Highly functional self-emulsification polyisocyanate and production method thereof
JP5136964B2 (en) Modified polyisocyanate composition and two-component polyurethane coating composition using the same
JP2000264946A (en) One pack type moisture-curable polyurethane composition and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06702627

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6702627

Country of ref document: EP