WO2006075460A1 - Process for producing optical fiber preform and optical fiber preform - Google Patents
Process for producing optical fiber preform and optical fiber preform Download PDFInfo
- Publication number
- WO2006075460A1 WO2006075460A1 PCT/JP2005/022486 JP2005022486W WO2006075460A1 WO 2006075460 A1 WO2006075460 A1 WO 2006075460A1 JP 2005022486 W JP2005022486 W JP 2005022486W WO 2006075460 A1 WO2006075460 A1 WO 2006075460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- optical fiber
- core rod
- fiber preform
- clad
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
Definitions
- the present invention relates to an optical fiber preform manufacturing method and an optical fiber preform. More specifically
- the present invention relates to optical fiber preform manufacturing methods and optical fiber preforms used in the manufacture of relatively special optical fibers. Relates to a jacketing method in which a core rod and a tube are melted together.
- An optical fiber preform used for manufacturing a single mode fiber can be manufactured by, for example, the VAD method.
- the content of GeCl in the raw material gas supplied to the core burner is the content of GeCl in the raw material gas supplied to the core burner.
- Another manufacturing method is a jacketing method.
- a core rod prepared by adjusting the refractive index distribution in advance is set in a clad tube and melted together.
- the optical fiber preform manufactured by the jacketing method may be left with defects such as bubbles and impurities at the interface between the core rod and the cladding tube in the process of melting and integrating. Therefore, it is known that the optical fiber produced by this method has a large optical transmission loss.
- Patent Documents 1 and 2 describe measures against the above defects. According to these documents, the gap between the core rod and the clad tube is filled with a halogen gas and melted together to remove the dirt and adsorbed moisture on the glass surface to obtain an optical fiber preform. Are listed. It is also described that such a method reduces the optical transmission loss of the optical fiber manufactured by the optical fiber preform.
- Patent Documents 3 to 5 describe such a core rod setting method.
- Patent Documents 3 and 4 describe a two-point support method for both ends of the core rod, a support method for the lower end portion, a support member, and the like when the jacketing method is performed in a vertical furnace.
- Patent Document 5 discloses a method of setting a core rod in a cladding tube by providing notches in the core rod for vapor phase etching and decompression, reducing the diameter of dummy tubes connected to both ends of the cladding tube. Are listed.
- Patent Document 1 JP-A-6-117126
- Patent Document 2 Japanese Patent Laid-Open No. 2003-48737
- Patent Document 3 Japanese Patent Laid-Open No. U-139841
- Patent Document 4 Japanese Patent Laid-Open No. 2001-247326
- Patent Document 5 Japanese Patent Laid-Open No. 2003-160351
- the present invention even if a sufficient amount of processing gas is allowed to flow between the cladding tube and the core rod, the core rod set therein is moved by the gas flow, and the cladding is not damaged.
- the purpose is to provide a manufacturing method of the material.
- Another object of the present invention is to provide a high-performance and high-quality optical fiber manufactured by the jacketing method. One.
- a method of manufacturing an optical fiber preform having a core portion and a clad portion surrounding the core portion, the constant being formed by a material that becomes the clad portion Connecting a dummy tube for air supply / exhaust having an inner diameter larger than the inner diameter of the cladding tube to the gas at both ends, and an inner diameter of the dummy tube larger than the inner diameter of the cladding tube
- a method of manufacturing an optical fiber preform including a step of flowing a processing gas into the inner tube to clean the inner surface of the cladding tube and the surface of the core rod, and a step of heating and melting and integrating the core rod and the cladding tube. Provided. As a result, it is possible to manufacture a high-quality recorded fiber base material having no defects, in which the core rod is prevented from shifting in the longitudinal direction in the step of melting and integrating.
- the core tube and the clad tube may be melted and integrated together.
- the core rod in the clad tube can be stabilized and a high-quality optical fiber preform can be manufactured.
- the length of the head portion of the core rod is preferably 30 mm or more.
- the length of the head portion of the core rod is preferably 30 mm or less. As a result, the core rod material can be saved and the optical fiber material cost can be reduced.
- an optical fiber preform manufactured by the method for manufacturing an optical fiber preform. This provides an optical fiber in which each of the core and the cladding has desired optical characteristics.
- optical fiber preform manufacturing method described above, a sufficient amount of processing gas is supplied because the core rod is not moved by the processing gas supplied between the cladding tube and the core rod during jacketing. be able to. Therefore, an optical fiber preform with no defects at the interface between the core rod and the clad tube, which has good workability, can be obtained, which contributes to improving quality and reducing production costs.
- the optical fiber preform manufactured by the above method is a high-quality optical fiber preform with no defects at the interface between the core rod and the clad tube, and is a preform that can produce an optical fiber with little transmission loss.
- FIG. 1 is a schematic explanatory view for explaining a method of manufacturing an optical fiber preform according to Example 1.
- FIG. 2 is a schematic explanatory view for explaining a method of manufacturing an optical fiber preform according to Example 2.
- FIG. 3 is a schematic explanatory view illustrating a method for manufacturing an optical fiber preform according to Comparative Example 1.
- FIG. 1 is a schematic diagram illustrating a method for manufacturing the optical fiber preform 10 according to the first embodiment.
- a dummy tube 300 having an inner diameter larger than that of the cladding tube 100 is coupled to both ends of the cladding tube 100 having a constant inner diameter. Cladch Since the tube 100 and the dummy tube 300 are in communication with each other, the gas can be circulated from one end to the other end. In Example 1, the left force in the figure is also directed to the right for dehydration treatment. Of gas.
- a straight body portion 210 of the core rod 200 is passed through the clad tube 100.
- the corrod 200 has a straight part 210 that is thinner than the inner diameter of the clad tube 100 and a head 220 that is larger in diameter than the inner diameter of the clad tube 100 and smaller in diameter than the dummy tube 300. It is inserted through the dummy tube 300 from the upstream side of the flow. Accordingly, when the head 220 comes into contact with the end face of the clad tube 100, the core rod 200 does not move rightward any further.
- a quartz tube having an inner diameter of 10 mm ⁇ and a length of 300 mm was prepared as the cladding tube 100.
- a dummy tube 300 having an inner diameter of 19 mm was welded to the clad tube 100.
- a core rod 200 a core rod having an outer diameter 8 ⁇ ⁇ , a straight part 210 with a length of 320 mm, and a head 220 with an outer diameter 15 ⁇ ⁇ , a length of 50 mm, is prepared. As shown in FIG. Set within 100.
- the inner surface of the cladding tube 100 and the surface of the core rod 200 are sufficiently dehydrated by flowing chlorine gas of 500 ml / min and helium of 2000 ml / min as dehydration gas. Thereafter, the entire core rod 200 including the head 220 was melted and integrated. Thus, an optical fiber preform including the clad part and the core part was obtained.
- FIG. 2 is a schematic diagram illustrating a method for manufacturing the optical fiber preform 11 according to the second embodiment.
- the same members as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
- the clad tube 100 and the dummy tube 300 used in the second embodiment are the same as those used in the first embodiment including specifications such as dimensions.
- the length force of its head 222 is compared with that used in Example 1. It is getting shorter.
- a head 222 having an outer diameter of 15 mm and a length of 10 mm is formed at one end of the straight part 210 having an outer diameter of 8 mm and a length of 320 mm.
- Such a core rod 200 was set in the clad tube 100 as shown in FIG. In the figure, 500 ml / min of chlorine gas and 2000 ml / min of helium gas were allowed to flow from the dummy tube 300 on the left as dehydration gas, and the inner surface of the cladding tube 100 and the surface of the core rod 200 were sufficiently dehydrated.
- Example 2 since the length of the head 222 of the core rod 200 is short, the change in the position of the core rod 200 is greater than that in Example 1. For this reason, a slightly defective part was formed. However, the core rod was also excellent in workability without being pushed and moved downstream by the processing gas.
- FIG. 3 is a schematic diagram for explaining a method of manufacturing the optical fiber preform 20 according to the comparative example.
- the same members as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and redundant description is omitted.
- the clad tube 100 and the dummy tube 300 used in Comparative Example 1 are the same as those used in Example 1 and Example 2, including specifications such as dimensions.
- the core rod 200 has an outer diameter smaller than the inner diameter of the clad tube 100 as a whole, and a head having a different outer diameter is not formed.
- the core rod 200 used in Comparative Example 1 is a glass rod with an outer diameter of 8 mm over the entire length of 320 mm.
- the core rod 200 as described above was set in the quad tube 100 to which the dummy tube 300 was attached as shown in FIG. From the left side of the dummy tube 300 in the figure, 500 mlZ of chlorine gas and 2000 mlZ of helium are allowed to flow as dehydration gas to sufficiently dehydrate the inner surface of the cladding tube 100 and the surface of the core rod 200, and then Melting Integrated. Thus, an optical fiber preform including the clad part and the core part was obtained.
- the processing chamber was opened when the core rod was pushed back, the clad tube 100 and the core rod 200 were exposed to the atmosphere. For this reason, water vapor, dust, etc. in the atmosphere adhere to the clad tube 100 and the core rod 200 that have been dehydrated once, and in the optical fiber preform 20 that has been fused and integrated, defects that occur between the core and the clad are eliminated. Increased. Therefore, the optical transmission loss of the optical fiber manufactured using the optical fiber preform 20 as a raw material is also clearly compared with those using the optical fiber preforms 10 and 11 according to Examples 1 and 2. It was increasing.
- Table 1 shows the specifications of the clad tube 100 and the core rod 200 used in Examples 1 and 2 and Comparative Example 1 and the evaluation of the work for manufacturing the optical fiber preforms 10, 11, and 20 together.
- an optical fiber preform having no defect on the interface between the core rod 200 and the cladding tube 100 can be obtained. Further, by using the optical fiber preform manufactured in this way, an optical fiber with a small transmission loss can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
A process for producing an optical fiber preform having a core portion and, surrounding the core portion, a clad portion, comprising the steps of connecting dummy tubes (300) for gas supply and discharge to both ends of clad tube (100) consisting of a clad portion constituting material, the dummy tube (300) having an inner diameter greater than that of the clad tube (100); providing core rod portion (200) consisting of a core portion constituting material which has head portion (220) with an outer diameter greater than the inner diameter of the clad tube (100) but smaller than the inner diameter of the dummy tube (300) and has straight trunk portion (210) with an outer diameter smaller than the inner diameter of the clad tube (100), inserting the straight trunk portion (210) in the clad tube (100), and passing a treating gas through the dummy tube (300) and clad tube (100) to thereby clean the internal surface of the clad tube (100) and the surface of the core rod portion (200); and heating the core rod portion (200) and clad tube (100) to thereby effect fusion integration.
Description
明 細 書 Specification
光ファイバ母材の製造方法及び光ファイバ母材 Optical fiber preform manufacturing method and optical fiber preform
技術分野 Technical field
[0001] 本発明は、光ファイバ母材の製造方法及び光ファイバ母材に関する。より詳細には The present invention relates to an optical fiber preform manufacturing method and an optical fiber preform. More specifically
、シングルモードファイバと呼ばれる汎用光ファイバの製造に用いられる光ファイバ母 材とは異なり、比較的特殊な光ファイバの製造に用いられる光ファイバ母材の製造方 法及び光ファイバ母材に係り、特には、コアロッドとチューブを溶融して一体ィ匕するジ ャケッティング法に関する。 Unlike optical fiber preforms used in the manufacture of general-purpose optical fibers called single-mode fibers, the present invention relates to optical fiber preform manufacturing methods and optical fiber preforms used in the manufacture of relatively special optical fibers. Relates to a jacketing method in which a core rod and a tube are melted together.
[0002] なお、文献の参照による組み込みが認められる指定国については、下記特許出願 の明細書に記載された内容を参照により本出願に組み込み、本件明細書の記載の 一部とする。 [0002] For designated countries where incorporation by reference of documents is permitted, the contents described in the specification of the following patent application are incorporated into the present application by reference and made a part of the description of the present specification.
特願 2005— 006435号 出願曰 2005年 1月 13曰 Japanese Patent Application No. 2005-006435 Application No.
背景技術 Background art
[0003] シングルモードファイバの製造に用いられる光ファイバ母材は、例えば、 VAD法で 製造できる。 VAD法では、コア用バーナーに供給する原料ガス中の GeClの含有量 [0003] An optical fiber preform used for manufacturing a single mode fiber can be manufactured by, for example, the VAD method. In the VAD method, the content of GeCl in the raw material gas supplied to the core burner
4 を変えてコア部の屈折率分布を調整しつつコア部を形成し、その上にクラッド用バー ナ一で SiOを含むガラス微粒子を堆積させてクラッド部を形成する。更に、堆積され 4 is changed to adjust the refractive index profile of the core part, and then the core part is formed, and glass clad containing SiO is deposited thereon with a cladding burner to form the cladding part. Furthermore, it is deposited
2 2
たガラス微粒子を、脱水、透明ガラス化して製造される。 It is manufactured by dehydrating and forming transparent glass particles.
[0004] 他の製造方法として、ジャケッティング法がある。ジャケッティング法では、予め屈折 率分布を調整して作製したコアロッドをクラッドチューブ内にセットして溶融一体ィ匕す る。ジャケッティング法により作製された光ファイバ母材は、溶融一体化する工程で、 コアロッドとクラッドチューブの界面に気泡、不純物等の欠陥が残ることがある。その ため、この方法で製造された光ファイバ母材力 得られる光ファイバは、光伝送ロスが 大きくなることが知られて 、る。 [0004] Another manufacturing method is a jacketing method. In the jacketing method, a core rod prepared by adjusting the refractive index distribution in advance is set in a clad tube and melted together. The optical fiber preform manufactured by the jacketing method may be left with defects such as bubbles and impurities at the interface between the core rod and the cladding tube in the process of melting and integrating. Therefore, it is known that the optical fiber produced by this method has a large optical transmission loss.
[0005] 特許文献 1、 2には、上記の欠陥に対する対策が記載されている。これらの文献に よると、コアロッドおよびクラッドチューブの間隙をハロゲンガスで満たして溶融一体ィ匕 することにより、ガラス表面の汚れや吸着水分を除去して光ファイバ母材とすることが
記載されている。また、このような方法により、その光ファイバ母材力も製造される光フ アイバの光伝送ロスが低減される旨が記載されて 、る。 [0005] Patent Documents 1 and 2 describe measures against the above defects. According to these documents, the gap between the core rod and the clad tube is filled with a halogen gas and melted together to remove the dirt and adsorbed moisture on the glass surface to obtain an optical fiber preform. Are listed. It is also described that such a method reduces the optical transmission loss of the optical fiber manufactured by the optical fiber preform.
[0006] また、上記のような方法を実施する場合には、クラッドチューブおよびコアロッドを互 いに接触させないことが重要である。特許文献 3〜5には、そのようなコアロッドのセッ ト方法について記載がある。 [0006] In carrying out the above method, it is important that the clad tube and the core rod are not brought into contact with each other. Patent Documents 3 to 5 describe such a core rod setting method.
[0007] 特許文献 3、 4には、縦型炉でジャケッティング法を実施する場合の、コアロッドの両 端の 2点支持方法と下端部の支持方法、支持部材等についての記載がある。また、 特許文献 5には、気相エッチングおよび減圧のためにコアロッドに切り欠き部を設け、 クラッドチューブの両端部に接続したダミーチューブを縮径して、コアロッドをクラッド チューブ内にセットする方法が記載されている。 [0007] Patent Documents 3 and 4 describe a two-point support method for both ends of the core rod, a support method for the lower end portion, a support member, and the like when the jacketing method is performed in a vertical furnace. Patent Document 5 discloses a method of setting a core rod in a cladding tube by providing notches in the core rod for vapor phase etching and decompression, reducing the diameter of dummy tubes connected to both ends of the cladding tube. Are listed.
特許文献 1 :特開昭 6卜 117126号公報 Patent Document 1: JP-A-6-117126
特許文献 2:特開 2003-48737号公報 Patent Document 2: Japanese Patent Laid-Open No. 2003-48737
特許文献 3 :特開平: U-139841号公報 Patent Document 3: Japanese Patent Laid-Open No. U-139841
特許文献 4:特開 2001- 247326号公報 Patent Document 4: Japanese Patent Laid-Open No. 2001-247326
特許文献 5 :特開 2003-160351号公報 Patent Document 5: Japanese Patent Laid-Open No. 2003-160351
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] し力しながら、上記特許文献 3〜5に記載された方法は、コアロッドの重量が軽いと 、クラッドチューブ内に導入されたガス流の勢いによりコアロッドが移動する場合があ る。このような場合、(a)チューブの内面及びコアロッドの外面に傷が付ぐ(b)十分な
、、 (c)移動したコアロッドは元の位置に戻す作業が大変である等 の問題が生じる。これらの問題は、製造された光ファイバ母材から最終的に得られる 光ファイバの特性にも影響を及ぼす。従って、コアロッドに傷を付けず、かつ十分な 量のハロゲンガスでコアロッド及びチューブ内を処理する技術が求められている。 [0008] However, in the methods described in Patent Documents 3 to 5 described above, if the weight of the core rod is light, the core rod may move due to the momentum of the gas flow introduced into the cladding tube. In such a case, (a) the inner surface of the tube and the outer surface of the core rod are damaged (b) ,, (C) The core rod that has moved has a problem that it is difficult to return it to its original position. These problems also affect the properties of the final optical fiber obtained from the manufactured optical fiber preform. Therefore, there is a need for a technique for treating the inside of the core rod and the tube with a sufficient amount of halogen gas without damaging the core rod.
[0009] そこで、この発明は、クラッドチューブおよびコアロッドの間に十分な量の処理ガス を流しても、ガス流によって内部にセットされたコアロッドが移動し、クラッドチューブを 傷付けることがない光ファイバ母材の製造方法の提供を目的としている。また、ジャケ ッティング法で製造された、高性能且つ高品質な光ファイバを提供することも目的の
ひとつである。 [0009] Therefore, according to the present invention, even if a sufficient amount of processing gas is allowed to flow between the cladding tube and the core rod, the core rod set therein is moved by the gas flow, and the cladding is not damaged. The purpose is to provide a manufacturing method of the material. Another object of the present invention is to provide a high-performance and high-quality optical fiber manufactured by the jacketing method. One.
課題を解決するための手段 Means for solving the problem
[0010] 本発明の第 1の形態として、コア部と、コア部を包囲するクラッド部とを有する光ファ ィバ母材を製造する方法であって、クラッド部となる材料により形成された一定の内径 を有するクラッドチューブの両端に、クラッドチューブの内径よりも大きな内径を有して ガスを流通させる給排気用のダミーチューブを接続する工程と、クラッドチューブの内 径より大きく且つダミーチューブの内径より小さな外径を有する頭部、および、クラッド チューブの内径よりも小さな外径を有する直胴部を有して、コア部となる材料により形 成されたコアロッドを、前記頭部と前記ダミーチューブおよび前記クラッドチューブと の間に前記ガスを流通させるガス流路を形成しつつ直胴部をクラッドチューブ内に挿 入した後ダミーチューブおよびクラッドチューブ内に処理ガスを流して、クラッドチュー ブの内面およびコアロッドの表面を清浄にする工程と、コアロッドおよびクラッドチュー ブを加熱して溶融一体化する工程とを含む光ファイバ母材の製造方法が提供される 。これにより、溶融一体ィ匕する工程において、コアロッドがその長手方向に変移するこ とが防止された、欠陥のない高品質な被記録物ファイバ母材を製造できる。 [0010] As a first aspect of the present invention, there is provided a method of manufacturing an optical fiber preform having a core portion and a clad portion surrounding the core portion, the constant being formed by a material that becomes the clad portion. Connecting a dummy tube for air supply / exhaust having an inner diameter larger than the inner diameter of the cladding tube to the gas at both ends, and an inner diameter of the dummy tube larger than the inner diameter of the cladding tube A core rod having a head having a smaller outer diameter and a straight body having an outer diameter smaller than the inner diameter of the clad tube, and formed of a material that becomes a core, the head and the dummy tube In addition, after forming the gas flow path through which the gas flows between the clad tube and the straight body portion into the clad tube, the dummy tube and the clad tube are inserted. A method of manufacturing an optical fiber preform including a step of flowing a processing gas into the inner tube to clean the inner surface of the cladding tube and the surface of the core rod, and a step of heating and melting and integrating the core rod and the cladding tube. Provided. As a result, it is possible to manufacture a high-quality recorded fiber base material having no defects, in which the core rod is prevented from shifting in the longitudinal direction in the step of melting and integrating.
[0011] また、ひとつの実施形態によると、上記光ファイバの製造方法の溶融一体化するェ 程において、コアロッドの頭部を含めて、クラッドチューブと溶融一体ィ匕してもよい。こ れにより、クラッドチューブ内におけるコアロッドを安定させて、高品質な光ファイバ母 材を製造できる。 [0011] Further, according to one embodiment, in the process of melting and integrating in the optical fiber manufacturing method, the core tube and the clad tube may be melted and integrated together. As a result, the core rod in the clad tube can be stabilized and a high-quality optical fiber preform can be manufactured.
[0012] また、上記光ファイバの製造方法において、コアロッドの頭部の長さが 30mm以上 とすることが好ましい。これにより、溶融一体ィ匕工程において、コアロッドの頭部の一 部が軟ィ匕せずにコアロッドの位置決めに寄与するので、コアロッドの位置決めが安定 する。 [0012] In the method for manufacturing an optical fiber, the length of the head portion of the core rod is preferably 30 mm or more. As a result, in the melt-integrating process, a part of the head of the core rod does not soften and contributes to the positioning of the core rod, so that the positioning of the core rod is stabilized.
[0013] また、他の実施形態によると、上記光ファイバの製造方法の溶融一体ィ匕する工程に おいて、コアロッドの直月同部だけをクラッドチューブに溶融一体ィ匕してもよい。これに より、最終的に光ファイバのコアとなるコア部の形成に寄与しない頭部を含まない光 ファイバ母材が製造されるので、効率よく光ファイバを製造できる光ファイバ母材が提 供される。
[0014] また、上記光ファイバの製造方法において、コアロッドの頭部の長さが 30mm以下 であることが好ましい。これにより、コアロッドの材料を節約して、光ファイバの材料コ ストを低減できる。 [0013] According to another embodiment, in the step of fusing and integrating the above-described optical fiber manufacturing method, only the same part of the core rod of the straight moon may be fused and integrated with the clad tube. As a result, an optical fiber preform that does not contribute to the formation of the core portion that will ultimately become the core of the optical fiber is produced, so that an optical fiber preform that can efficiently produce an optical fiber is provided. The [0014] In the method for manufacturing an optical fiber, the length of the head portion of the core rod is preferably 30 mm or less. As a result, the core rod material can be saved and the optical fiber material cost can be reduced.
[0015] 更に、本発明の第 2の形態として、上記光ファイバ母材の製造方法により製造され た光ファイバ母材が提供される。これにより、コアおよびクラッドのそれぞれが所望の 光学特性を有する光ファイバが提供される。 [0015] Furthermore, as a second embodiment of the present invention, there is provided an optical fiber preform manufactured by the method for manufacturing an optical fiber preform. This provides an optical fiber in which each of the core and the cladding has desired optical characteristics.
[0016] ただし、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではな V、。これらの特徴群のサブコンビネーションもまた発明となり得る。 [0016] However, the above summary of the invention does not enumerate all the necessary features of the present invention. Sub-combinations of these feature groups can also be an invention.
発明の効果 The invention's effect
[0017] 上記の光ファイバ母材の製造方法によれば、ジャケッティング中、クラッドチューブと コアロッドとの間に供給される処理ガスによって、コアロッドが移動しないので、十分な 量の処理ガスを供給することができる。よって、作業性がよぐ力つコアロッドとクラッド チューブとの界面に欠陥のない光ファイバ母材が得られ、品質の向上及び生産コス トの低減に寄与する。また、上記方法により製造された光ファイバ母材は、コアロッドと クラッドチューブとの界面に欠陥のない高品質な光ファイバ母材であり、伝送損失の 少な 、光ファイバを製造できる母材である。 [0017] According to the optical fiber preform manufacturing method described above, a sufficient amount of processing gas is supplied because the core rod is not moved by the processing gas supplied between the cladding tube and the core rod during jacketing. be able to. Therefore, an optical fiber preform with no defects at the interface between the core rod and the clad tube, which has good workability, can be obtained, which contributes to improving quality and reducing production costs. The optical fiber preform manufactured by the above method is a high-quality optical fiber preform with no defects at the interface between the core rod and the clad tube, and is a preform that can produce an optical fiber with little transmission loss.
図面の簡単な説明 Brief Description of Drawings
[0018] [図 1]実施例 1に係る光ファイバ母材の製造方法を説明する概略説明図である。 FIG. 1 is a schematic explanatory view for explaining a method of manufacturing an optical fiber preform according to Example 1.
[図 2]実施例 2に係る光ファイバ母材の製造方法を説明する概略説明図である。 FIG. 2 is a schematic explanatory view for explaining a method of manufacturing an optical fiber preform according to Example 2.
[図 3]比較例 1に係る光ファイバ母材の製造方法を説明する概略説明図である。 FIG. 3 is a schematic explanatory view illustrating a method for manufacturing an optical fiber preform according to Comparative Example 1.
[0019] 以下、発明の実施の形態を通じて本発明を説明する。ただし、以下の実施形態は 請求の範隨こかかる発明を限定するものではない。また、実施形態の中で説明され て 、る特徴の組み合わせの全てが発明の解決手段に必須であるとは限らな 、。 発明を実施するための最良の形態 Hereinafter, the present invention will be described through embodiments of the present invention. However, the following embodiments do not limit the claimed invention. In addition, all the combinations of features described in the embodiments are not necessarily essential for the solution of the invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0020] (実施例 1) [0020] (Example 1)
図 1は、実施例 1に係る光ファイバ母材 10の製造方法を説明する概略図である。同 図に示すように、一定の内径を有するクラッドチューブ 100の両端には、クラッドチュ ーブ 100よりも大きな内径を有するダミーチューブ 300が結合されている。クラッドチ
ユーブ 100およびダミーチューブ 300は相互に連通しているので、一端から他端にガ スを流通させることができ、実施例 1では、図上の左方力も右方に向力つて脱水処理 のためのガスが流される。 FIG. 1 is a schematic diagram illustrating a method for manufacturing the optical fiber preform 10 according to the first embodiment. As shown in the figure, a dummy tube 300 having an inner diameter larger than that of the cladding tube 100 is coupled to both ends of the cladding tube 100 having a constant inner diameter. Cladch Since the tube 100 and the dummy tube 300 are in communication with each other, the gas can be circulated from one end to the other end. In Example 1, the left force in the figure is also directed to the right for dehydration treatment. Of gas.
[0021] また、クラッドチューブ 100には、コアロッド 200の直胴部 210が揷通されている。コ ァロッド 200は、クラッドチューブ 100の内径よりも細い直月同部 210と、クラッドチュー ブ 100の内径よりも大径で、ダミーチューブ 300よりは小径の頭部 220とを有しており 、ガス流の上流側からダミーチューブ 300を通じて挿入されている。従って、頭部 22 0がクラッドチューブ 100の端面に当接すると、コアロッド 200は、それ以上は右方に 移動しなくなる。 In addition, a straight body portion 210 of the core rod 200 is passed through the clad tube 100. The corrod 200 has a straight part 210 that is thinner than the inner diameter of the clad tube 100 and a head 220 that is larger in diameter than the inner diameter of the clad tube 100 and smaller in diameter than the dummy tube 300. It is inserted through the dummy tube 300 from the upstream side of the flow. Accordingly, when the head 220 comes into contact with the end face of the clad tube 100, the core rod 200 does not move rightward any further.
[0022] まず、クラッドチューブ 100として、内径 10mm φ、長さ 300mmの石英管を用意し た。次に、このクラッドチューブ 100に、内径 19mm φのダミーチューブ 300を溶着し た。更に、コアロッド 200として、外径 8πιπι φ、長さ 320mmの直月同部 210と、外径 15 πιπι φ、長さ 50mmの頭部 220を有するコアロッドを用意し、図 1に示すようにクラッド チューブ 100内にセットした。 First, a quartz tube having an inner diameter of 10 mmφ and a length of 300 mm was prepared as the cladding tube 100. Next, a dummy tube 300 having an inner diameter of 19 mm was welded to the clad tube 100. Furthermore, as the core rod 200, a core rod having an outer diameter 8πιπι φ, a straight part 210 with a length of 320 mm, and a head 220 with an outer diameter 15 πιπι φ, a length of 50 mm, is prepared. As shown in FIG. Set within 100.
[0023] 図上で左方のダミーチューブ 300側から、脱水処理ガスとして 500ml/分の塩素ガ スと 2000ml/分のヘリウムを流してクラッドチューブ 100の内面およびコアロッド 200 の表面を十分に脱水した後、コアロッド 200の頭部 220も含めて全体を溶融一体ィ匕し た。こうして、クラッド部およびコア部を含む光ファイバ母材が得られた。 [0023] From the left side of the dummy tube 300 in the figure, the inner surface of the cladding tube 100 and the surface of the core rod 200 are sufficiently dehydrated by flowing chlorine gas of 500 ml / min and helium of 2000 ml / min as dehydration gas. Thereafter, the entire core rod 200 including the head 220 was melted and integrated. Thus, an optical fiber preform including the clad part and the core part was obtained.
[0024] 上記の作業では十分な量の処理ガスをチューブ内に流した力 コアロッドの頭部が クラッドチューブの内径よりも太く加工されているため、コアロッドが処理ガスによって 下流側に押されて移動することもなぐ作業性は良好であった。 [0024] In the above operation, a force that allows a sufficient amount of processing gas to flow into the tube. Since the head of the core rod is processed to be thicker than the inner diameter of the cladding tube, the core rod is pushed and moved downstream by the processing gas. The workability was also good.
[0025] (実施例 2) [Example 2]
図 2は、実施例 2に係る光ファイバ母材 11の製造方法を説明する概略図である。な お、同図において、実施例 1と同じ部材には同じ参照符号を付して重複する説明を 省く。 FIG. 2 is a schematic diagram illustrating a method for manufacturing the optical fiber preform 11 according to the second embodiment. In the figure, the same members as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
[0026] 同図に示す通り、実施例 2において用いたクラッドチューブ 100およびダミーチュー ブ 300は、寸法等の仕様も含めて、実施例 1において使用したものと同じである。一 方、コアロッド 200については、その頭部 222の長さ力 実施例 1で用いたものに比
較して短くなつている。 [0026] As shown in the figure, the clad tube 100 and the dummy tube 300 used in the second embodiment are the same as those used in the first embodiment including specifications such as dimensions. On the other hand, for the core rod 200, the length force of its head 222 is compared with that used in Example 1. It is getting shorter.
[0027] 即ち、実施例 2で用いたコアロッド 200では、外径 8mm φ、長さ 320mmの直月同部 210の一端に、外径 15mm φ、長さ 10mmの頭部 222が形成されている。このような コアロッド 200を、図 2に示すようにクラッドチューブ 100内にセットした。図上で左方 のダミーチューブ 300から、脱水処理ガスとして 500ml/分の塩素ガス及び 2000ml/ 分のヘリウムガスを流して、クラッドチューブ 100の内面およびコアロッド 200の表面 を十分に脱水した。 That is, in the core rod 200 used in the second embodiment, a head 222 having an outer diameter of 15 mm and a length of 10 mm is formed at one end of the straight part 210 having an outer diameter of 8 mm and a length of 320 mm. . Such a core rod 200 was set in the clad tube 100 as shown in FIG. In the figure, 500 ml / min of chlorine gas and 2000 ml / min of helium gas were allowed to flow from the dummy tube 300 on the left as dehydration gas, and the inner surface of the cladding tube 100 and the surface of the core rod 200 were sufficiently dehydrated.
[0028] 次に、クラッドチューブ 100およびコアロッド 200の溶融一体化を、クラッドチューブ 100の一端から開始して、他端までを一体化した。従って、クラッドチューブ 100の外 側に位置する頭部 222は一体ィ匕されな力つた。 [0028] Next, fusion integration of the clad tube 100 and the core rod 200 was started from one end of the clad tube 100 and integrated to the other end. Therefore, the head 222 located outside the clad tube 100 is not united.
[0029] 上記のような実施例 2においては、コアロッド 200の頭部 222の長さが短いので、実 施例 1よりもコアロッド 200の位置の変化が大き力つた。このため、僅かに不良部が形 成された。し力しながら、コアロッドは、処理ガスによってその下流側に押されて移動 することはなぐ作業性も良好であった。 In Example 2 as described above, since the length of the head 222 of the core rod 200 is short, the change in the position of the core rod 200 is greater than that in Example 1. For this reason, a slightly defective part was formed. However, the core rod was also excellent in workability without being pushed and moved downstream by the processing gas.
[0030] (比較例 1) [0030] (Comparative Example 1)
図 3は、比較例に係る光ファイバ母材 20の製造方法を説明する概略図である。な お、同図において、実施例 1および実施例 2と同じ部材には同じ参照符号を付して重 複する説明を省く。 FIG. 3 is a schematic diagram for explaining a method of manufacturing the optical fiber preform 20 according to the comparative example. In the figure, the same members as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and redundant description is omitted.
[0031] 同図に示す通り、比較例 1において用いたクラッドチューブ 100およびダミーチュー ブ 300は、寸法等の仕様も含めて、実施例 1および実施例 2において使用したものと 同じである。一方、コアロッド 200は、全体がクラッドチューブ 100の内径よりも小さな 外径を有しており、外径の異なる頭部は形成されていない。具体的には、比較例 1で 用いたコアロッド 200は、 320mmの全長にわたって外径が 8mm φのガラスロッドで めつに。 [0031] As shown in the figure, the clad tube 100 and the dummy tube 300 used in Comparative Example 1 are the same as those used in Example 1 and Example 2, including specifications such as dimensions. On the other hand, the core rod 200 has an outer diameter smaller than the inner diameter of the clad tube 100 as a whole, and a head having a different outer diameter is not formed. Specifically, the core rod 200 used in Comparative Example 1 is a glass rod with an outer diameter of 8 mm over the entire length of 320 mm.
[0032] 上記のようなコアロッド 200を、図 3に示すようにダミーチューブ 300を装着されたク ラッドチューブ 100にセットした。図上で左方のダミーチューブ 300側から、脱水処理 ガスとして、 500mlZ分の塩素ガスおよび 2000mlZ分のヘリウムを流して、クラッド チューブ 100の内面およびコアロッド 200の表面を十分に脱水した後、全体を溶融
一体化した。こうして、クラッド部およびコア部を含む光ファイバ母材が得られた。 [0032] The core rod 200 as described above was set in the quad tube 100 to which the dummy tube 300 was attached as shown in FIG. From the left side of the dummy tube 300 in the figure, 500 mlZ of chlorine gas and 2000 mlZ of helium are allowed to flow as dehydration gas to sufficiently dehydrate the inner surface of the cladding tube 100 and the surface of the core rod 200, and then Melting Integrated. Thus, an optical fiber preform including the clad part and the core part was obtained.
[0033] ただし、比較例 1に係る光ファイバ母材 20の製造工程にお 、ては、脱水処理の効 果が十分にあがるに足る上記のような流量の脱水処理ガスを流すと、ガス流によりコ ァロッド 200が下流側に押されて移動した。このため、溶融一体化する前に、クラッド チューブ 100の下流合力も移動したコアロッド 200を清浄なガラス棒で押して、元の セット位置まで戻す作業をしなければならな力つた。また、この作業のときに、コアロッ ド 200およびクラッドチューブ 100が相互に擦れて傷つけられ、最終的に一体化され た光ファイバ母材 20において泡が生じる原因となった。 [0033] However, in the manufacturing process of the optical fiber preform 20 according to Comparative Example 1, if a dehydration gas having a flow rate as described above that is sufficient for the effect of the dehydration is flowed, the gas flow As a result, the core rod 200 was pushed downstream and moved. For this reason, before melting and integrating, the core rod 200, which also moved the downstream resultant force of the clad tube 100, was pushed with a clean glass rod, and it was necessary to work to return to the original set position. Further, during this operation, the core rod 200 and the clad tube 100 were rubbed against each other and damaged, which eventually caused bubbles in the integrated optical fiber preform 20.
[0034] また、コアロッドを押し戻す作業のときに処理室を開いたので、クラッドチューブ 100 およびコアロッド 200が大気に触れた。このために、いったん脱水処理されたクラッド チューブ 100およびコアロッド 200に大気中の水蒸気、塵芥等が付着し、溶融一体 化後の光ファイバ母材 20において、コア部およびクラッド部の間に生じる欠陥が増加 した。従って、この光ファイバ母材 20を原料にして作製した光ファイバの光伝送ロスも 、が実施例 1および実施例 2に係る光ファイバ母材 10、 11を原料にしたものと比較し て明らかに増加していた。 [0034] Further, since the processing chamber was opened when the core rod was pushed back, the clad tube 100 and the core rod 200 were exposed to the atmosphere. For this reason, water vapor, dust, etc. in the atmosphere adhere to the clad tube 100 and the core rod 200 that have been dehydrated once, and in the optical fiber preform 20 that has been fused and integrated, defects that occur between the core and the clad are eliminated. Increased. Therefore, the optical transmission loss of the optical fiber manufactured using the optical fiber preform 20 as a raw material is also clearly compared with those using the optical fiber preforms 10 and 11 according to Examples 1 and 2. It was increasing.
[0035] 実施例 1、 2及び比較例 1で用いたクラッドチューブ 100およびコアロッド 200の各 仕様と、光ファイバ母材 10、 11、 20を作製する作業に対する評価を併せて表 1に示 す。 [0035] Table 1 shows the specifications of the clad tube 100 and the core rod 200 used in Examples 1 and 2 and Comparative Example 1 and the evaluation of the work for manufacturing the optical fiber preforms 10, 11, and 20 together.
[表 1] [table 1]
産業上の利用可能性 Industrial applicability
上記の光ファイバの製造方法によれば、コアロッド 200とクラッドチューブ 100との界 面に欠陥のない光ファイバ母材が得られる。また、こうして製造された光ファイバ母材 を用いることにより、伝送損失の少ない光ファイバが得られる。
According to the above optical fiber manufacturing method, an optical fiber preform having no defect on the interface between the core rod 200 and the cladding tube 100 can be obtained. Further, by using the optical fiber preform manufactured in this way, an optical fiber with a small transmission loss can be obtained.
Claims
[1] コア部と、前記コア部を包囲するクラッド部とを有する光ファイバ母材を製造する方 法であって、 [1] A method for manufacturing an optical fiber preform having a core portion and a cladding portion surrounding the core portion,
前記クラッド部となる材料により形成された一定の内径を有するクラッドチューブの 両端に、前記クラッドチューブの内径よりも大きな内径を有してガスを流通させる給排 気用のダミーチューブを接続する工程と、 Connecting a supply / exhaust dummy tube having an inner diameter larger than the inner diameter of the cladding tube to both ends of a cladding tube having a certain inner diameter formed of the material to be the cladding portion; ,
前記クラッドチューブの内径より大きく且つ前記ダミーチューブの内径より小さな外 径を有する頭部、および、前記クラッドチューブの内径よりも小さな外径を有する直月同 部を有して、前記コア部となる材料により形成されたコアロッドを、前記頭部と前記ダミ 一チューブおよび前記クラッドチューブとの間に前記ガスを流通させるガス流路を形 成しつつ前記直胴部を前記クラッドチューブ内に挿入した後、前記ダミーチューブお よび前記クラッドチューブ内に処理ガスを流して、前記クラッドチューブの内面および 前記コアロッドの表面を清浄にする工程と、 The core portion has a head portion having an outer diameter larger than the inner diameter of the cladding tube and smaller than the inner diameter of the dummy tube, and a straight part having an outer diameter smaller than the inner diameter of the cladding tube. After inserting the straight body part into the clad tube while forming a gas flow path for allowing the gas to flow between the head and the dummy tube and the clad tube, the core rod formed of a material is formed. Flowing a processing gas into the dummy tube and the clad tube to clean the inner surface of the clad tube and the surface of the core rod;
前記コアロッドおよび前記クラッドチューブを加熱して溶融一体ィ匕する工程と を含む光ファイバ母材の製造方法。 Heating the core rod and the clad tube and fusing them together to produce an optical fiber preform.
[2] 前記溶融一体化する工程にぉ 、て、前記コアロッドの前記頭部を含めて、前記クラ ッドチューブと溶融一体ィヒする請求項 1に記載の光ファイバ母材の製造方法。 [2] The method for producing an optical fiber preform according to [1], wherein in the step of melting and integrating, the core tube is melted and integrated including the head portion of the core rod.
[3] 前記コアロッドの頭部の長さが 30mm以上である請求項 2に記載の光ファイバ母材 の製造方法。 [3] The method of manufacturing an optical fiber preform according to [2], wherein the length of the head of the core rod is 30 mm or more.
[4] 前記溶融一体化する工程において、前記コアロッドの直胴部だけを前記クラッドチ ユーブに溶融一体化する請求項 1に記載の光ファイバ母材の製造方法。 4. The method of manufacturing an optical fiber preform according to claim 1, wherein, in the step of melting and integrating, only the straight body portion of the core rod is melted and integrated with the clad tube.
[5] 前記コアロッドの頭部の長さが 30mm以下である請求項 4に記載の光ファイバ母材 の製造方法。 5. The method for manufacturing an optical fiber preform according to claim 4, wherein the length of the head of the core rod is 30 mm or less.
[6] 請求項 1から請求項 5までの 、ずれか 1項に記載の光ファイバ母材の製造方法によ り製造された光ファイバ母材。
[6] An optical fiber preform manufactured by the optical fiber preform manufacturing method according to any one of claims 1 to 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005006435A JP4704760B2 (en) | 2005-01-13 | 2005-01-13 | Optical fiber preform manufacturing method and optical fiber preform |
JP2005-006435 | 2005-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006075460A1 true WO2006075460A1 (en) | 2006-07-20 |
Family
ID=36677492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/022486 WO2006075460A1 (en) | 2005-01-13 | 2005-12-07 | Process for producing optical fiber preform and optical fiber preform |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4704760B2 (en) |
TW (1) | TWI399349B (en) |
WO (1) | WO2006075460A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023166840A1 (en) * | 2022-03-01 | 2023-09-07 | 住友電気工業株式会社 | Optical fiber base material production method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012137615A (en) * | 2010-12-27 | 2012-07-19 | Sumitomo Electric Ind Ltd | Optical fiber manufacturing method |
CN118076567A (en) * | 2021-11-22 | 2024-05-24 | 住友电气工业株式会社 | Rod insertion jig and method for manufacturing multi-core optical fiber preform |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001510430A (en) * | 1997-02-05 | 2001-07-31 | コーニング インコーポレイテッド | Method for manufacturing optical fiber having reduced refractive index core region |
JP2002179434A (en) * | 2000-12-08 | 2002-06-26 | Sumitomo Electric Ind Ltd | Method for manufacturing optical fiber preform, optical fiber preform and optical fiber |
JP2004051455A (en) * | 2002-07-23 | 2004-02-19 | Furukawa Electric Co Ltd:The | Method of manufacturing optical fiber |
-
2005
- 2005-01-13 JP JP2005006435A patent/JP4704760B2/en active Active
- 2005-12-07 WO PCT/JP2005/022486 patent/WO2006075460A1/en not_active Application Discontinuation
-
2006
- 2006-01-12 TW TW95101174A patent/TWI399349B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001510430A (en) * | 1997-02-05 | 2001-07-31 | コーニング インコーポレイテッド | Method for manufacturing optical fiber having reduced refractive index core region |
JP2002179434A (en) * | 2000-12-08 | 2002-06-26 | Sumitomo Electric Ind Ltd | Method for manufacturing optical fiber preform, optical fiber preform and optical fiber |
JP2004051455A (en) * | 2002-07-23 | 2004-02-19 | Furukawa Electric Co Ltd:The | Method of manufacturing optical fiber |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023166840A1 (en) * | 2022-03-01 | 2023-09-07 | 住友電気工業株式会社 | Optical fiber base material production method |
JP7359330B1 (en) * | 2022-03-01 | 2023-10-11 | 住友電気工業株式会社 | Manufacturing method of optical fiber base material |
Also Published As
Publication number | Publication date |
---|---|
JP4704760B2 (en) | 2011-06-22 |
JP2006193371A (en) | 2006-07-27 |
TW200628422A (en) | 2006-08-16 |
TWI399349B (en) | 2013-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4494968A (en) | Method of forming laminated single polarization fiber | |
US5090980A (en) | Method of producing glass bodies with simultaneous doping and sintering | |
EP3180293B1 (en) | Method for forming a quartz glass optical component and system | |
KR19990037447A (en) | Method for preparing fragmented core optical waveguide preforms | |
KR20090127300A (en) | Reduction of optical fiber cane/preform deformation during consolidation | |
JP2006131444A (en) | Optical fiber preform for optical component, its manufacturing method and optical fiber | |
JP5213116B2 (en) | Method for manufacturing preform for optical fiber | |
WO2002049974A1 (en) | Optical fiber preform producing method, optical fiber preform, and optical fiber | |
RU2236386C2 (en) | Method of manufacturing optic fiber intermediate product | |
US20130283863A1 (en) | Method of fusing and stretching a large diameter optical waveguide | |
TWI399349B (en) | Method of fiber base material and fiber base material | |
WO2011136324A1 (en) | Manufacturing method for glass base material | |
JP4297320B2 (en) | Cleaning method for optical fiber preform | |
JP5533205B2 (en) | Glass base material manufacturing method | |
US20030209516A1 (en) | Optical fiber preform manufacture using improved VAD | |
JP2005089241A (en) | Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform | |
US20070157674A1 (en) | Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same | |
JP5778895B2 (en) | Glass base material manufacturing method | |
JP2014221691A (en) | Dummy rod integrated optical fiber preform and preparation method thereof | |
JP5459241B2 (en) | Glass base material manufacturing method | |
KR100964548B1 (en) | Method for manufacturing the preform of optical fiber | |
JP4453680B2 (en) | Manufacturing method of glass base material | |
JP2004091304A (en) | Aligning method for optical fiber preform | |
JP2618260B2 (en) | Method for producing intermediate for optical fiber preform | |
JP2003335537A (en) | Method for manufacturing optical fiber preform and method for manufacturing optical fiber using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05814490 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 5814490 Country of ref document: EP |