[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006073088A1 - 超音波診断装置、超音波撮像プログラム及び超音波撮像方法 - Google Patents

超音波診断装置、超音波撮像プログラム及び超音波撮像方法 Download PDF

Info

Publication number
WO2006073088A1
WO2006073088A1 PCT/JP2005/023886 JP2005023886W WO2006073088A1 WO 2006073088 A1 WO2006073088 A1 WO 2006073088A1 JP 2005023886 W JP2005023886 W JP 2005023886W WO 2006073088 A1 WO2006073088 A1 WO 2006073088A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
tissue
ultrasonic
search
interest
Prior art date
Application number
PCT/JP2005/023886
Other languages
English (en)
French (fr)
Inventor
Koji Waki
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to CN2005800458659A priority Critical patent/CN101094611B/zh
Priority to EP05822712A priority patent/EP1834588B1/en
Priority to JP2006550791A priority patent/JPWO2006073088A1/ja
Priority to US11/813,291 priority patent/US7766836B2/en
Publication of WO2006073088A1 publication Critical patent/WO2006073088A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8977Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using special techniques for image reconstruction, e.g. FFT, geometrical transformations, spatial deconvolution, time deconvolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52063Sector scan display

Definitions

  • Ultrasonic diagnostic apparatus Ultrasonic imaging program, and ultrasonic imaging method
  • the present invention relates to an ultrasonic imaging technique for capturing an elastic image in which properties such as strain and hardness of a living tissue of a subject appear.
  • An ultrasonic diagnostic apparatus that captures an ultrasonic image emits ultrasonic waves to a subject by supplying a driving signal for transmission to an ultrasonic probe, and reflects reflected echo generated from the subject. Waves are received by the ultrasound probe, and an ultrasound image is reconstructed and displayed based on the received signal output from the ultrasound probe.
  • an ultrasonic diagnostic apparatus an apparatus that captures an elastic image in which properties such as strain and hardness of a living tissue of a subject are shown is known.
  • an ultrasonic diagnostic apparatus acquires a time-series image related to a biological tissue when pressure is applied to a subject, measures the displacement of the biological tissue by correlating the acquired time-series image, and calculates the measured displacement. Based on this, elasticity data (for example, strain, elastic modulus) is obtained and an elastic image is constructed.
  • elasticity data for example, strain, elastic modulus
  • the conventional methods including patent documents measure the direction in which the living tissue is actually displaced when pressure is applied to the subject (hereinafter referred to as the tissue displacement direction) and the displacement of the living tissue.
  • the relationship with the calculation direction (hereinafter referred to as the displacement search direction) is not fully considered.
  • the conventional displacement search direction is fixedly set in a direction perpendicular to the ultrasonic transmission / reception surface, for example, while the tissue displacement direction flows due to the compression direction or the shape of the compression surface against the living tissue. Changes. Therefore, when measuring the displacement of the biological tissue, a deviation may occur between the displacement search direction and the tissue displacement direction. In that case, there is a possibility that an error caused by the deviation is included in the measurement value. If an elastic image is constructed based on such measurement values, the elastic image may not accurately represent the properties of the living tissue. Disclosure of the invention
  • An object of the present invention is to provide an ultrasound diagnostic apparatus and an ultrasound imaging program suitable for capturing an elastic image that improves the measurement accuracy of the displacement of the living tissue and more reliably represents the properties of the living tissue. And an ultrasonic imaging method.
  • an ultrasonic diagnostic apparatus of the present invention includes an ultrasonic probe that transmits and receives ultrasonic waves to and from a subject, and a drive for transmitting waves to the ultrasonic probe.
  • An elastic image is constructed based on the displacement of the living tissue measured from the transmission means for supplying the signal, the reception means for processing the reception signal output from the ultrasound probe, and the output signal of the reception means.
  • the construction means is characterized in that the elasticity image is constructed by measuring a displacement in the search direction.
  • the displacement search direction can be matched with the tissue displacement direction. If the displacement of the living tissue is measured along the displacement search direction, the displacement is measured along the direction in which the living tissue is actually displaced, so that the accuracy of the measurement value is improved.
  • an elastic image By constructing an elastic image based on such measured values, artifacts generated in the elastic image are reduced. As a result, a high-quality elastic image faithfully showing the properties of the living tissue is acquired.
  • the ultrasound imaging program of the present invention provides a setting procedure for setting the search direction of the displacement in accordance with a tissue displacement direction in which the living tissue of the subject is displaced, and ultrasonic waves between the subject and the subject.
  • a procedure for supplying a driving signal for transmission to an ultrasonic probe to be transmitted / received, a procedure for processing a reception signal output from the ultrasonic probe, and a search direction from the signal after the reception processing The control computer is caused to execute a procedure for measuring the displacement, a procedure for constructing an elasticity image based on the measured value of the displacement, and a procedure for displaying the elasticity image.
  • the ultrasonic imaging method of the present invention includes a setting step of setting the search direction of the displacement in accordance with a tissue displacement direction in which a living tissue of the subject is displaced, and an ultrasonic wave between the subject and the subject.
  • a step of supplying a driving signal for transmission to an ultrasonic probe for transmitting and receiving waves, a step of processing a reception signal output from the ultrasonic probe, and the search from the signal after the reception processing includes a step of measuring a displacement in a direction, a step of forming an elastic image based on the measured value of the displacement, and a step of displaying the elastic image.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to an embodiment to which the present invention is applied.
  • FIG. 2 is a diagram showing a configuration of a control calculation unit in FIG. 1.
  • FIG. 3 is a diagram showing an elastic image capturing mode when the displacement search direction and the tissue displacement direction are different. 4) A diagram showing an elastic image capturing mode when the displacement search direction and the tissue displacement direction match.
  • FIG. 5 is a diagram showing processing for calculating a displacement in a search direction.
  • FIG. 6 is a diagram showing an example of setting regions of interest for various vessels.
  • FIG. 7 is a diagram showing a process for automatically detecting the tissue displacement direction.
  • FIG. 8 is a diagram showing an elastic image capturing mode when the displacement search direction set in the region of interest is matched with the tissue displacement direction.
  • FIG. 9 is a diagram showing another process for automatically detecting the tissue displacement direction.
  • FIG. 10 is a view showing a display example of guide information indicating an inclination direction and an inclination angle of an ultrasonic probe.
  • FIG. 11 is a diagram showing a form in which guide information indicating angle information is displayed side by side in a region of interest.
  • FIG. 1 is a block diagram of the ultrasonic diagnostic apparatus of the present embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the control calculation unit of FIG.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe (hereinafter referred to as a probe 102) that transmits and receives ultrasonic waves to and from a subject 101, and a probe.
  • a probe 102 that transmits and receives ultrasonic waves to and from a subject 101
  • a probe Drive signal for transmission to 102
  • An ultrasonic transmission / reception unit 103 for supplying and processing a reception signal output from the probe 102 and an output signal force of the ultrasonic transmission / reception unit 103
  • Elastic image configuration for forming an elastic image based on the measured displacement of living tissue
  • an image display 112 as display means for displaying an elastic image.
  • the elastic image forming means here includes forces such as a displacement calculation unit 105, a distortion calculation unit 106, an elastic modulus calculation unit 107, a color digital scan converter 108 (hereinafter, color DSC 108).
  • a control calculation unit 113 that outputs a control command to the ultrasonic transmission / reception unit 103, the elastic image forming unit, and the like is provided.
  • the control calculation unit 113 applied to the ultrasonic diagnostic apparatus of the present embodiment is provided with a displacement search direction setting unit 113B.
  • the displacement search direction setting means 113B measures the displacement of the biological tissue of the subject 101 when taking an elastic image.
  • the elastic calculation direction (hereinafter referred to as the displacement search direction) is the direction in which the biological tissue is actually displaced (hereinafter referred to as the displacement search direction). , Referred to as the tissue displacement direction).
  • the displacement search direction setting means 113B causes the elastic image construction means to measure the displacement of the living tissue in the displacement search direction after setting.
  • the displacement search direction can be matched with the tissue displacement direction. Therefore, since the displacement is measured along the direction in which the living tissue is actually displaced, the accuracy of the measurement value is improved.
  • the properties of the living tissue can be faithfully shown in the elastic image.
  • Ultrasonic diagnostic apparatuses are roughly classified into an ultrasonic transmission / reception system, a tomographic imaging system, an elastic imaging system, a display system, and a control system.
  • the ultrasonic transmission / reception system includes a probe 102 and an ultrasonic transmission / reception unit 103.
  • the probe 102 has an ultrasonic transmission / reception surface that transmits / receives ultrasonic waves to / from the subject 101 by performing beam scanning mechanically or electronically.
  • On the ultrasonic transmission / reception surface a plurality of transducers are arranged side by side. Each transducer converts electrical signals and ultrasonic waves to each other.
  • a pressure sensor is disposed on the ultrasonic transmission / reception surface. The pressure sensor detects the pressure applied to the ultrasonic transmission / reception surface and outputs it to the pressure measurement unit.
  • the pressure measurement unit outputs pressure data to the strain calculation unit 106 and the elastic modulus calculation unit 107.
  • the ultrasonic transmission / reception unit 103 includes transmission means 120 for supplying a driving signal (pulse) for transmission to the probe 102 via the transmission / reception means 121, and the probe 102.
  • Receiving means 122 for processing a reception signal output via the transmission / reception means 121.
  • the transmission means 120 of the ultrasonic transmission / reception unit 103 is a circuit for transmitting a transmission pulse as a drive signal for driving the transducer of the probe 102 to generate ultrasonic waves at a set interval, or a probe 1 A circuit for setting the depth of the convergence point of the ultrasonic transmission beam emitted from 02 is provided.
  • the transmission unit 120 of the present embodiment selects a group of vibrators that supply pulses via the transmission / reception unit 121 and scans the ultrasonic beam transmitted from the probe 102 in the tissue displacement direction. Controls the timing of transmission pulse generation. That is, the transmission means 120 controls the scanning direction of the ultrasonic beam by controlling the delay time of the pulse signal.
  • the reception means 122 of the ultrasonic transmission / reception unit 103 is a circuit that amplifies the signal output from the probe 102 via the transmission / reception means 121 with a predetermined gain to generate an RF signal, that is, an echo reception signal. It has a circuit that generates RF signal data in time series by phasing and adding the phases of the RF signals.
  • Such receiving means 122 adds a predetermined delay time to the received echo signal acquired by the ultrasonic beam transmitted from the probe 102 via the transmission / reception means 121, aligns the phases, and performs phasing addition.
  • the tomographic image capturing system includes a tomographic image forming unit 104.
  • the tomographic image forming unit 104 includes a signal processing unit and a monochrome scan converter.
  • the signal processing unit performs image processing on the RF signal output from the ultrasonic transmission / reception unit 103, thereby forming grayscale layer image data (for example, monochrome tomographic image data) related to the subject 101.
  • the image processing here includes gain correction, log compression, detection, contour enhancement, filter processing, and the like.
  • the black and white scan converter reads tomographic image data relating to the subject 101 stored in the frame memory in units of frames, and outputs the read tomographic image data in synchronization with the television.
  • the black-and-white scan converter here converts the tomographic image data output from the signal processing unit into a digital signal, a frame memory that stores a plurality of digitalized tomographic image data in time series, It has a control controller that outputs a command to read out tomographic image data from the frame memory.
  • the elastic imaging system includes a displacement calculation unit 105, a strain calculation unit 106, an elastic modulus calculation unit 107, and a color DSC 108 provided by branching the output side force of the ultrasonic transmission / reception unit 103. .
  • the displacement calculation unit 105 measures the displacement of the living tissue of the subject 101 based on the RF signal data output from the ultrasonic transmission / reception unit 103.
  • the displacement calculation unit 105 includes an RF signal selection unit, a calculation unit, and a filter unit.
  • the RF signal selection unit of the displacement calculation unit 105 includes a frame memory and a selection unit.
  • This RF signal selection unit stores time-series RF signal data output from the ultrasonic transmission / reception unit 103 in the frame memory, and selects one set, that is, two RF signal frame data from the stored RF signal frame data group. Select by. More specifically, the RF signal selection unit sequentially secures time-series RF signal data output from the ultrasonic transmission / reception unit 103 in the frame memory according to the image frame rate. Then, the RF signal selection unit selects the RF signal frame data (N) as the first data from the RF signal data group stored in the frame memory in accordance with the command output from the control calculation unit 113.
  • the RF signal selection unit selects the RF signal frame data (X) as the second force data in the RF signal data group stored in the frame memory according to the command output from the control calculation unit 113.
  • the RF signal frame data (X) here is a group of RF signal frame data (N-l, N-2, N-) stored in the frame memory in the past in time than the RF signal frame data (N). 3, ... N—M) Medium power.
  • N, M, and X are natural numbers as index numbers associated with the RF signal frame data.
  • the calculation unit of the displacement calculation unit 105 obtains the displacement in the displacement search direction of the living tissue from one set of RF signal frame data. More specifically, the calculation unit performs one-dimensional or two-dimensional processing between the first RF signal frame data (N) selected by the RF signal selection unit and the second RF signal frame data (X). Perform dimension correlation. For example, the calculation unit obtains a displacement or a movement vector (hereinafter collectively referred to as displacement) of the biological tissue in the displacement search direction corresponding to each pixel of the tomographic image by applying a block matching method as the correlation processing.
  • the movement vector here is a one-dimensional or two-dimensional displacement distribution relating to the direction and magnitude of the displacement.
  • the block matching method divides an image into blocks consisting of, for example, NXN pixels.
  • attention is paid to the block in the region of interest, the past frame force is searched for a block that approximates the block after the focus, and the sample value is determined based on the prediction code ⁇ , that is, the difference by referring to this.
  • the filter unit of the displacement calculation unit 105 has a filter circuit that equalizes the variation in the displacement of the living tissue output from the displacement calculation unit, and performs the subsequent signal processing smoothly. Apply processing.
  • Two-dimensional elasticity image data is obtained by obtaining elastic modulus data corresponding to each point of the tomographic image, where the tangential is the simple tensile stress held in the object and the tensile force. It is the ratio to the strain that occurs in parallel, and is referred to as elasticity data including strain data and elastic modulus data as appropriate, and the elasticity data for each frame is referred to as elasticity frame data as appropriate.
  • the color DSC 108 constitutes a color elasticity image related to the living tissue of the subject 101 based on the elasticity data output from the strain calculation unit 106 or the elastic modulus calculation unit 107.
  • the color DSC 108 includes an elastic data processing unit, a color scan converter, and a frame memory.
  • the elastic data processing unit stores the elastic frame data output from the strain calculating unit 106 or the elastic modulus calculating unit 107 in the frame memory.
  • the elasticity data processing unit performs image processing on the elasticity frame data read from the frame memory in response to the command output from the control calculation unit 113.
  • the color scan converter of the color DSC 108 is a color tone conversion unit that executes color tone conversion processing based on a color map for the elastic frame data output from the elasticity data processing unit.
  • the color map here associates hue information determined by the three primary colors of light, that is, red (R), green (G), and blue (B), with the magnitude of the elasticity data. Red (R), green
  • RGB red
  • G green
  • B blue
  • Red (R) red
  • Each of (G) and blue (B) has 256 gradations, and is displayed with higher brightness as it approaches 255 gradations, and is displayed with lower brightness as it approaches zero gradations.
  • the color scan converter of the color DSC108 converts a red code when the distortion data output from the elastic data processing unit is small, and converts it into a blue code when the distortion data is large, and converts it into a frame memory.
  • the color scan converter reads the elastic frame data from the frame memory in synchronism with the television and displays it on the image display 112.
  • the elastic image based on the elastic frame data after color tone conversion here is a hard part (for example, a tumor) of a living tissue drawn in red, and the part around the hard part drawn in blue become. By visually recognizing such an inertial image, for example, the spread and size of the tumor can be visually grasped.
  • the color DSC 108 is connected to an operation unit 114 such as a keyboard via a control calculation unit 113. In response to a command input via the operation unit 114, the color DSC 108 can change the color saturation of the power color map.
  • the display system includes a graphic unit 109, a color scale generation unit 110, an image synthesis unit 111, an image display 112, and the like.
  • the graphic unit 109 generates an image (for example, a screen framework or a graphical user interface) other than a tomographic image or an elastic image.
  • the color scale generator 110 generates a force scale in which hue changes are displayed step by step.
  • the color scale here can correspond to the color map of the color DSC 108.
  • the image composition unit 111 outputs the tomographic image output from the tomographic image constructing unit 104, the elastic image output from the color DSC 108, the image output from the graphic unit 109, and the output from the color scale generating unit 110.
  • An ultrasonic image is generated by combining the color scale.
  • the image composition unit 111 includes a frame memory, an image processing unit, and an image selection unit.
  • the frame memory is a tomographic image output from the tomographic image forming unit 104, an elastic image output from the color DSC 108, a frame mark image output from the graphic unit 109, or an output from the color scale generating unit 110. Stored color scale.
  • the image processing unit In response to the control command, the image processing unit reads the tomographic image and the elastic image from the frame memory, and for the pixels corresponding to each other in the same coordinate system of the slice image and the elastic image, the luminance information of each pixel. Information and hue information are added at a set ratio and combined. That is, the image processing unit relatively superimposes the elastic image on the tomographic image in the same coordinate system.
  • the image selection unit selects an image to be displayed on the image display 112 from the image group stored in the frame memory according to the control command.
  • the image display 112 includes a monitor that displays the image data output from the image composition unit 111.
  • control system includes a control calculation unit 113, an operation unit 114, and the like.
  • the control calculation unit 113 includes a basic control unit 113A, a displacement search direction setting unit 113B, a tissue displacement direction detection unit 113C, a region of interest setting unit 113D, a region of interest angle correction unit 113E, and guide information.
  • Generating means 113F is generated.
  • the basic control means 113A outputs various control commands to the ultrasonic transmission / reception system, tomographic imaging system, elastic imaging system, and display system.
  • the displacement search direction setting means 113B resets the displacement search direction according to the tissue displacement direction when the displacement search direction is shifted from the tissue displacement direction.
  • the displacement search direction here is an elastic data calculation direction to be used as a reference when measuring the displacement of the living tissue of the subject 101.
  • the tissue displacement direction detection means 113C detects the tissue displacement direction in which the biological tissue is actually displaced when pressure is applied to the biological tissue of the subject 101.
  • the region-of-interest setting means 113D sets a region of interest (ROI) in the tomographic image displayed on the image display 112 in response to a command input via the operation unit 114.
  • ROI region of interest
  • the region of interest angle correction unit 113E corrects the region of interest setting angle by rotating the region of interest set by the setting unit 113D.
  • the guide information generation means 113F generates guidance information indicating the inclination of the probe 102 when the displacement search direction matches the tissue displacement direction, and displays it on the image display 112.
  • the operation unit 114 has a keyboard and a pointing device as various setting interfaces.
  • control calculation unit 113 of the present embodiment will be described in more detail with reference to the drawings.
  • the tissue displacement direction is specified semi-automatically, and the ultrasonic beam is deflected in the displacement search direction set in accordance with the tissue displacement direction.
  • Figure 3 shows the displacement search direction and It is a schematic diagram which shows the form which has generate
  • FIG. 4 is a schematic diagram showing a form in which the displacement search direction is matched to the tissue displacement direction.
  • the ultrasonic transmission / reception surface 201a of the probe 102 is in contact with the body surface of the subject 101, for example.
  • the displacement search directions 206a to 206h here are initially set in the direction of the ultrasonic beam transmitted and received by the probe 102, that is, substantially perpendicular to the ultrasonic transmission / reception surface 201a.
  • a blood vessel (blood vessel) 204 in the subject 101 is assumed to exist in a straight line inclined with respect to the ultrasonic transmission / reception surface 201a.
  • the region of interest 203 of the biological tissue from which the elastic image is to be acquired is set to a rectangle whose long side is substantially parallel to the ultrasonic transmission / reception surface 201a, that is, a rectangle, as shown by the dotted line in the figure.
  • the region of interest 203 is set on a tomographic image displayed on the image display 112 in accordance with a command input via the operation unit 114.
  • the surrounding tissue of the vessel 204 is compressed by the periodic pulsation of the vessel 204.
  • the displacement of the living tissue in the region of interest 203 is measured by the displacement calculation unit 105.
  • elasticity data is calculated by the strain calculation unit 106 and the elastic modulus calculation unit 107.
  • the elasticity image is composed of the color DSC 108.
  • the displacement search directions 206a to 206h are the ultrasonic beam direction, that is, the short direction of the region of interest 203.
  • the tissue displacement directions 205a to 203 ⁇ 4 derived from the pulsation of the vessel 204 are the radial direction of the vessel 204. Therefore, the displacement search directions 206a to 206h and the tissue displacement directions 205a to 205j intersect at a predetermined angle. That is, there is a deviation between the displacement search directions 206a to 206h and the tissue displacement directions 205a to 205j.
  • the displacement search direction is specified in accordance with the tissue displacement direction by correcting the angle of the region of interest 203 semi-automatically. More specifically, as shown in FIG. 3, the operator visually recognizes the tomographic image displayed on the image display 112, and the upper edge of the vessel 204 and the region of interest 203 through the operation unit 114. Standard for each of the two places where the short sides of Specify a point (hereinafter referred to as intersections 207 and 208). Instead of the upper edge of the vessel 204, an intersection with the short side at the lower edge may be designated. Further, the intersections 207 and 208 may be set using the luminance of the tomographic image.
  • the control calculation unit 113 sets the intersection points between the high luminance line formed on the wall surface of the vessel 204 and the region of interest 203 as the intersection points 207 and 208.
  • tissue displacement direction detection means 11 3C determines the direction perpendicular to the line segment connecting intersections 207 and 208 as the tissue displacement direction. .
  • the present embodiment semi-automatically detects the tissue displacement direction by designating the intersections 207 and 208.
  • the region-of-interest angle correction means 113E adjusts the region of interest 203 so that the deviation between the direction perpendicular to the line segment connecting the intersections 207 and 208 and the short direction of the region of interest 203 becomes zero. Correct the rotation. That is, the region-of-interest angle correcting means 113E resets the region of interest 308 whose short direction matches the direction orthogonal to the line segment connecting the intersections 207 and 208.
  • the displacement search direction setting means 113B specifies new displacement search directions 306a to 306f by correcting the displacement search directions 206a to 206h in accordance with the short direction of the region of interest 308.
  • the ultrasonic transmission / reception unit 103 deflects the ultrasonic beam in accordance with the displacement search directions 306a to 306f. Then, the displacement calculation unit 105 measures the displacement of the living tissue in the displacement search directions 306a to 306f based on the received signals arranged along the displacement search directions 306a to 306f.
  • FIG. 5 is a diagram showing an example of measuring the displacement of the biological tissue when the displacement search direction is matched with the tissue displacement direction.
  • a region of interest 501 shown in FIG. 5 is a parallelogram obtained by angle-correcting the original region of interest by the region-of-interest angle correcting means 113E.
  • the tissue displacement direction here is the direction along the inclined side of the region of interest 501, that is, the direction indicated by the arrow in the region of interest 501.
  • the displacement search direction is reset by the displacement search direction setting means 113B in a direction along the inclined side of the region of interest 501.
  • the displacement search direction matches the tissue displacement direction.
  • the ultrasonic transmission / reception unit 103 transmits an ultrasonic wave in accordance with the displacement search direction via the probe 102. Received signals are acquired in time series by transmitting and receiving wave beams.
  • the displacement calculator 105 selects the currently acquired RF signal frame data (N) 502 as the first data.
  • the RF signal frame data (N) 502 here is a signal group arranged in accordance with the direction of inclination of the side of the region of interest 501, that is, the displacement search direction.
  • the displacement calculation unit 105 also selects the RF signal frame data (X) 503 acquired in the past in time.
  • the RF signal frame data (X) 503 here is also a signal group arranged according to the inclination direction of the side of the region of interest 501, that is, the displacement search direction. Then, the displacement calculation unit 105 performs a correlation process on the RF signal frame data (N) 502 and the RF signal frame data (X) 503 to measure the amount of movement of the living tissue in the displacement search direction, that is, the amount of displacement. To do.
  • the tissue displacement directions 205a to 205 j when the displacement search directions 206a to 206h are deviated from the tissue displacement directions 205a to 205j, the tissue displacement directions 205a to 205 j
  • the displacement search directions 306a to 306f in accordance with are reset. Therefore, if the displacement of the living tissue is measured along the displacement search directions 306a to 306f, the displacement is measured along the direction in which the living tissue is actually displaced, so that the accuracy of the measured value of the displacement is improved.
  • artifacts generated in the elastic image can be reduced. As a result, it is possible to acquire high-quality elastic images that faithfully show properties such as strain and hardness of the living tissue, regardless of the direction in which the living tissue is compressed or the shape of the surface that presses the living tissue. .
  • the surrounding tissue is distorted due to the pulsation of the carotid artery. Therefore, when taking an elastic image of the thyroid region, the displacement of the surrounding tissue distorted by the pulsation of the carotid artery can be measured, and the elastic image can be constructed based on the measured displacement value.
  • the displacement search direction may be a deviation between the displacement search direction and the tissue displacement direction, for example, the carotid artery is inclined with respect to the ultrasound transmission / reception surface of the probe 102.
  • the displacement search direction coincide with the tissue displacement direction, it is possible to improve the measurement accuracy of the displacement of the living tissue, so that useful clinical data can be acquired.
  • FIG. 6 is a diagram illustrating examples of setting states of the regions of interest for various vessels.
  • FIGS. 6 (A) and 6 (C) show a form in which the vasculature is inclined with respect to the ultrasonic transmission / reception surface.
  • the region of interest (ROI) in this case is such that its short direction is perpendicular to the longitudinal direction of the vessel.
  • the displacement search direction is set to match the short direction of the region of interest, that is, the tissue displacement direction. That is, the displacement search direction matches the tissue displacement direction.
  • the vessel is inclined in the reverse direction with respect to the vessel shown in FIG. 6 (A). By rotating the region of interest, the displacement search direction is matched with the tissue displacement direction.
  • FIG. 6 (B) shows a form in which the vasculature is parallel to the ultrasonic wave transmitting / receiving surface.
  • the short direction of the region of interest that is, the displacement search direction coincides with the tissue displacement direction, angle correction of the region of interest is unnecessary.
  • Fig. 6 (D) shows a form in which the vascular curve is present with respect to the ultrasonic transmission / reception surface.
  • the region of interest is set to a fan shape having an arc corresponding to the curvature of the vascular curve.
  • the displacement search direction setting means 113B resets the direction perpendicular to the arc tangent of the region of interest as the displacement search direction.
  • the ultrasonic transmission / reception unit 103 transmits and receives an ultrasonic beam while gradually changing the direction of the ultrasonic beam according to the arc of the region of interest.
  • This fan-shaped region of interest is generated by connecting a plurality of minute rectangular regions of interest.
  • three small rectangular regions of interest ROIl to ROI3 etc. can be obtained by using the same method as Fig. 2, Fig. 3, Fig. 6 (A) to Fig. 6 (C).
  • the small rectangular region of interest ROIl to ROI3 is divided along the vessel by matching the short direction of the tube and the tangential direction of the vessel, and the long direction and the direction perpendicular to the tangent of the vessel. Multiple settings are made. In this way, a plurality of minute rectangular regions of interest are set over the entire fan-shaped region of interest. This small rectangular region of interest is set within a range where the curvature shape of the vessel can be ignored!
  • the displacement search direction is set in accordance with the longitudinal direction of each small rectangular region of interest ROI1, ROI2, ROI3, etc., that is, the tissue displacement direction.
  • the displacement search direction and the tissue displacement direction can be matched in each minute rectangular region of interest.
  • the displacement search direction and the tissue displacement direction can be matched over the entire fan-shaped region of interest.
  • the shape of a vascular vessel is not limited to a fan shape, and a complex shape can be handled.
  • the pulsation of the vascular 204 is used as a pressure source, and an elastic image of the living tissue when compressed by the pulsation of the vascular 204 is acquired.
  • the present invention can be applied to a form in which the probe 102 brought into contact with the body surface of the subject 101 is manually pressed and compressed, or a form in which the probe 102 is brought into contact with the body surface of the subject 101 and compressed.
  • the present invention may be applied when a deviation occurs between the displacement search direction and the tissue displacement direction.
  • FIG. 7 is a diagram for explaining the operation of the displacement search direction setting means 113B of the present embodiment.
  • the form shown in FIG. 7 is different from the form shown in FIG. 4 in that the emission direction of the ultrasonic beam remains perpendicular to the ultrasonic transmission / reception surface 201a.
  • the ultrasonic transmission / reception unit 103 transmits and receives an ultrasonic beam perpendicular to the ultrasonic transmission / reception surface 201a to thereby generate a signal related to the subject 101.
  • the displacement search direction setting means 113B sets the displacement search direction preset in the region of interest 303 in accordance with the tissue displacement directions 205a to 205j. Then, the displacement search direction setting means 113B is based on a command for selecting the signals listed in correspondence with the corrected displacement search direction from the signals output from the ultrasonic transmission / reception unit 103 and the signal after selection. A command for measuring the displacement in the displacement search direction of the biological tissue is output to the displacement calculation unit 105.
  • the displacement search direction in the region of interest 303 can be matched with the tissue displacement direction without deflecting the ultrasonic beam.
  • the displacement search direction is changed according to the complex movement of the living tissue. It becomes easy to adjust to the direction.
  • This embodiment is different from the first embodiment in which the tissue displacement direction is specified semi-automatically in that the tissue displacement direction is automatically detected. Therefore, the difference will be mainly described.
  • FIG. 8 is a conceptual diagram showing an example of the operation of the tissue displacement direction detection means 113C of FIG.
  • the horizontal axis in FIG. 8 indicates the subject coordinate axis in a direction substantially parallel to the ultrasonic transmission / reception surface 201a.
  • the vertical axis represents the object coordinate axis in a direction substantially perpendicular to the ultrasonic transmission / reception surface 201a.
  • the units for the horizontal and vertical axes are millimeters (mm).
  • the tissue displacement direction detection means 113C performs a correlation operation over a wide range on the tomographic images before and after applying pressure to the living tissue based on signals corresponding to each pixel. . More specifically, the detection means 113C acquires the signal 601 before applying pressure to the living tissue.
  • the signal 601 is assumed to be at l [mm] in the vertical direction and l [mm] in the horizontal direction.
  • the detection unit 113C detects the movement destination of the signal 601 when pressure is applied to the living tissue by correlation processing, and determines the tissue displacement direction based on the detection result.
  • the tissue displacement direction is the vertical direction (for example, 0 Degree).
  • the tissue displacement direction is the lateral direction (for example, 90 degrees).
  • the tissue displacement direction is an oblique direction (for example, 45 degrees).
  • the detection unit 113C executes a tissue displacement direction detection process for each coordinate, and detects a value obtained by averaging the detected values of each coordinate as the tissue displacement direction.
  • the tissue displacement direction is output to the angle correction means 113E for the region of interest and the displacement search direction setting means 113B. Note that the process of measuring the displacement of the biological tissue by matching the displacement search direction with the tissue displacement direction is the same as in the first embodiment.
  • the tissue displacement direction can be automatically detected objectively and quantitatively, so that the measurement accuracy of the displacement of the living tissue can be further enhanced.
  • the present embodiment is different from the third embodiment in that the blood flow direction of the blood vessel is used when the tissue displacement direction is automatically detected. Therefore, the difference will be mainly described.
  • the ultrasonic diagnostic apparatus of the present embodiment is provided with a Doppler image forming unit 900.
  • the Doppler image construction unit 900 calculates the Doppler deviation based on the time-series received signals taken from the ultrasonic transmission / reception unit 103, and constructs the Doppler deviation force Doppler image (for example, a color blood flow image).
  • the displacement search direction setting means 113B of the present embodiment determines a displacement search direction that matches the tissue displacement direction based on the blood flow direction that can be determined by the Doppler image forming unit 900.
  • FIG. 9 is a diagram for explaining the operation of the displacement search direction setting means 113B of the present embodiment.
  • FIG. 9A is a diagram in which a color blood flow image is displayed superimposed on the vessel 204 in FIG.
  • the color blood flow image here is output from the Doppler image construction unit 900 to the image display unit 112 via the image synthesis unit 111.
  • FIG. 9B is a schematic diagram showing a mode in which the displacement search direction is set in accordance with the tissue displacement direction based on the blood flow direction.
  • the tissue displacement direction detection means 113C detects the blood flow direction based on the color blood flow image shown in FIG. 9A, and determines the direction orthogonal to the blood flow direction as the tissue displacement direction.
  • the displacement search direction setting means 113B determines the displacement search direction according to the tissue displacement direction determined by the detection means 113C.
  • the process of setting the region of interest 303 or the rotation correction process and the process of deflecting the ultrasonic beam direction according to the displacement search direction are the same as in the first embodiment. Further, as described in the second embodiment, a process of matching the displacement search direction of the region of interest 303 with the tissue displacement direction may be applied.
  • the tissue displacement direction can be automatically determined based on the blood flow direction detectable from the Doppler blood flow image, so that the task of aligning the displacement search direction with the tissue displacement direction is simplified. For example, even when the subject 101 exists in a complicated shape with curved blood vessels, the displacement search direction can be easily determined based on the Doppler blood flow image related to the blood vessels.
  • Example 5 The present embodiment is different from the first embodiment in which the ultrasonic beam transmitted and received by the probe 102 is deflected in that the inclination of the probe 102 is manually adjusted when the displacement search direction is adjusted to the tissue displacement direction. Therefore, the difference will be mainly described.
  • the inclination angle of the ultrasonic transmission / reception surface 201a of the probe 102 changes, so that the direction of the ultrasonic beam transmitted and received on the ultrasonic transmission / reception surface 201a can be adjusted. That is, when the displacement search direction is set in the ultrasonic beam direction, the displacement search direction can be adjusted to the tissue displacement direction by adjusting the inclination of the probe 102.
  • the guide information generation means 1 13F in FIG. 2 generates guidance information indicating the tilt direction and tilt angle of the probe 102 when the displacement search direction matches the tissue displacement direction, and displays it on the image display 112.
  • FIG. 10 is a display example of guide information indicating the tilt direction and tilt angle of the probe 102. It is assumed that a position sensor that detects the position and tilt of the probe 102 in real time is provided.
  • the guide information generating unit 113F matches the schematic image 920 of the probe 102 that has contacted the body surface of the subject 101 and the ultrasonic beam direction of the probe 102.
  • a guidance image 923 indicating the direction is generated and displayed.
  • angle information 924 indicating the correction angle ⁇ corresponding to the deviation between the displacement search direction and the tissue displacement direction may be displayed.
  • the correction angle ⁇ here is also guide information indicating the tilt angle of the probe 102.
  • the guide information such as the guide image 923 and the angle information 924 is an objective and assisting operation for adjusting the inclination of the probe 102 and matching the displacement search direction with the tissue displacement direction. It becomes a quantitative indicator. Therefore, since the operator can visually grasp the target inclination direction of the probe 102, the operation of matching the displacement search direction with the tissue displacement direction can be performed accurately and easily. As a result, the measurement accuracy of the displacement of the living tissue is improved and the usability of the device is enhanced. Further, as shown in FIG. 11, the guide information generating unit 113F includes angle information indicating an angle ⁇ formed between the displacement search direction and the vertical direction (for example, the depth direction of the subject 101). 9 26 and angle information indicating the angle ⁇ formed between the displacement search direction and the tissue displacement direction 92
  • the operator can grasp the displacement search direction with respect to the region of interest 925 of the subject 101 and the tissue displacement direction relatively and visually.
  • properties such as strain and hardness of the biological tissue are faithfully displayed regardless of the direction in which the biological tissue is compressed and the shape of the surface that compresses the biological tissue. High quality elastic images can be easily acquired.
  • each control function is integrated as an ultrasonic imaging program, and It is also possible to cause the control computer to execute the ultrasonic imaging program.
  • the ultrasound imaging program sets a procedure for setting a search direction for displacement according to the tissue displacement direction in which the living tissue of the subject 101 is displaced, and transmits and receives ultrasound between the subject 101 and the probe 102.
  • a procedure for supplying a drive signal for transmission to the probe, a procedure for processing the received signal output from the probe 102, a procedure for measuring the displacement in the search direction from the signal after the reception processing, and the displacement The control computer is caused to execute a procedure for constructing an elasticity image based on the measured value and a procedure for displaying the elasticity image.
  • the ultrasonic diagnostic apparatus As described above, the ultrasonic diagnostic apparatus according to an embodiment to which the present invention is applied has been described. However, the ultrasonic diagnostic apparatus to which the present invention is applied is not limited to the spirit or main features thereof. It can be implemented in various forms. Therefore, the above-mentioned embodiment is only an illustration in all points, and is not interpreted limitedly. That is, the scope of the present invention includes modifications and changes belonging to the equal range.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 超音波診断装置は、被検体との間で超音波を送受する探触子102と、探触子102に送波用の駆動信号を供給する送信手段120と、探触子102から出力される受信信号を処理する受信手段122と、超音波送受信部103の出力信号から生体組織の変位を計測する変位演算部105と、生体組織の変位に基づき弾性像を構成するカラーDSC108と、弾性画像を表示する画像表示器112とを備え、前記生体組織が変位する組織変位方向に合わせて前記変位の探索方向を設定する変位探索方向の設定手段113Bを有し、カラーDSC108は、前記探索方向の変位の計測値に基づき前記弾性画像を構成する。

Description

超音波診断装置、超音波撮像プログラム及び超音波撮像方法 技術分野
[0001] 本発明は、被検体の生体組織の歪みや硬さなどの性状が現わされた弾性画像を 撮像する超音波撮像技術に関する。
[0002] 超音波像を撮像する超音波診断装置は、超音波探触子に送波用の駆動信号を供 給することによって被検体に超音波を射出し、被検体から発生した反射エコーを超 音波探触子で受波し、超音波探触子から出力される受信信号に基づき超音波像を 再構成して表示する。
[0003] このような超音波診断装置として、被検体の生体組織の歪みや硬さなどの性状が 現わされた弾性画像を撮像するものが知られている。例えば、超音波診断装置は、 被検体に圧力が加えられた際の生体組織に関する時系列画像を取得し、取得した 時系列画像の相関を取って生体組織の変位を計測し、計測した変位に基づき弾性 データ (例えば、歪み、弾性率)を求めて弾性画像を構成する。
[0004] 生体組織の変位を計測するに際し、被検体に圧力を加える手法としては、例えば、 組織を周期的に圧迫する体動 (例えば、脈管の拍動)を圧力源として利用する方法 や、被検体に超音波探触子を手動で押付けて圧迫する方法や、バイブレータなどで 被検体を圧迫する方法 (例えば特許文献 JP2000-60853)がある。
[0005] ところで、特許文献を含めた従前の方式は、被検体に圧力を与えた際に生体組織 が実際に変位する方向(以下、組織変位方向という)と、生体組織の変位を計測する 弾性演算方向(以下、変位探索方向という)との関係については十分に考慮されてい ない。すなわち、従前の変位探索方向は、例えば超音波送受面に対して垂直方向 に固定的に設定されるのに対し、組織変位方向は、生体組織に対する圧迫方向や 圧迫面の形状に由来して流動的に変化する。したがって、生体組織の変位を計測す るに際し、変位探索方向と組織変位方向との間にずれが生じることがある。その場合 、前記ずれに起因した誤差が計測値に含まれるおそれがある。このような計測値に基 づいて弾性画像を構成すると、その弾性画像は、生体組織の性状を忠実に現わされ たものにならない場合がある。 発明の開示
[0006] 本発明の目的は、生体組織の変位の計測精度を向上して生体組織の性状をより忠 実に現わした弾性画像を撮像するのに好適な超音波診断装置、超音波撮像プログ ラム及び超音波撮像方法を実現することにある。
[0007] 上記目的を実現するために、本発明の超音波診断装置は、被検体との間で超音波 を送受する超音波探触子と、該超音波探触子に送波用の駆動信号を供給する送信 手段と、前記超音波探触子から出力される受信信号を処理する受信手段と、該受信 手段の出力信号カゝら計測される生体組織の変位に基づき弾性画像を構成する弾性 像構成手段と、前記弾性画像を表示する表示手段とを備え、前記生体組織が変位 する組織変位方向に合わせて前記変位の探索方向を設定する変位探索方向設定 手段を有し、前記弾性像構成手段は前記探索方向の変位を計測して前記弾性画像 を構成することを特徴とする。
[0008] 本発明の望ま 、一態様によれば、変位探索方向が組織変位方向に対してずれ ている場合でも、変位探索方向を組織変位方向に一致させることができる。そして、 変位探索方向に沿って生体組織の変位を計測すると、生体組織が実際に変位した 方向に沿って変位を計測することになるから、計測値の精度が向上する。このような 計測値に基づいて弾性画像を構成することにより、弾性画像に生じるアーチファクト が低減される。その結果、生体組織の性状を忠実に現わした高品質の弾性画像が 取得される。
[0009] また、本発明の超音波撮像プログラムは、被検体の生体組織が変位する組織変位 方向に合わせて前記変位の探索方向を設定する設定手順と、前記被検体との間で 超音波を送受する超音波探触子に送波用の駆動信号を供給する手順と、前記超音 波探触子から出力される受信信号を処理する手順と、前記受信処理後の信号から前 記探索方向の変位を計測する手順と、前記変位の計測値に基づき弾性画像を構成 する手順と、前記弾性画像を表示する手順とを制御用コンピュータに実行させること を特徴とする。
[0010] また、本発明の超音波撮像方法は、被検体の生体組織が変位する組織変位方向 に合わせて前記変位の探索方向を設定する設定工程と、前記被検体との間で超音 波を送受する超音波探触子に送波用の駆動信号を供給する工程と、前記超音波探 触子から出力される受信信号を処理する工程と、前記受信処理後の信号から前記探 索方向の変位を計測する工程と、前記変位の計測値に基づき弾性画像を構成する 工程と、前記弾性画像を表示する工程とを備えたことを特徴とする。
図面の簡単な説明
[0011] [図 1]本発明を適用した一実施形態の超音波診断装置の構成を示すブロック図であ る。
[図 2]図 1の制御演算部の構成を示す図である。
[図 3]変位探索方向と組織変位方向が異なる場合の弾性像撮像形態を示す図である 圆 4]変位探索方向と組織変位方向が一致する場合の弾性像撮像形態を示す図で ある。
[図 5]探索方向の変位を演算する処理を示す図である。
[図 6]種々の脈管に対する関心領域の設定例を示す図である。
[図 7]組織変位方向を自動検出する処理を示す図である。
[図 8]関心領域に設定された変位探索方向を組織変位方向に合わせた場合の弾性 像撮像形態を示す図である。
[図 9]組織変位方向を自動検出する他の処理を示す図である。
[図 10]超音波探触子の傾斜方向と傾斜角度を示すガイド情報の表示例を示す図で ある。
[図 11]関心領域に並べて角度情報を示すガイド情報を表示した形態を示す図である 発明を実施するための最良の形態
[0012] 本発明を適用した超音波診断装置及び超音波撮像方法の実施形態について図面 を参照して説明する。図 1は、本実施形態の超音波診断装置のブロック図である。図 2は、図 1の制御演算部の構成を示す図である。
[0013] 図 1及び図 2に示すように、超音波診断装置は、被検体 101との間で超音波を送受 する超音波探触子 (以下、探触子 102という)と、探触子 102に送波用の駆動信号を 供給すると共に探触子 102から出力される受信信号を処理する超音波送受信部 10 3と、超音波送受信部 103の出力信号力 計測される生体組織の変位に基づき弾性 画像を構成する弾性画像構成手段と、弾性画像を表示する表示手段としての画像 表示器 112などを備えている。ここでの弾性画像構成手段は、変位演算部 105、歪 み演算部 106、弾性率演算部 107、カラーディジタルスキャンコンバータ 108 (以下、 カラー DSC108)など力も構成されている。また、超音波送受信部 103や弾性画像 構成手段などに制御指令を出力する制御演算部 113が設けられている。
[0014] そして、本実施形態の超音波診断装置に適用する制御演算部 113は、図 2に示す ように、変位探索方向の設定手段 113Bが実装されている。変位探索方向の設定手 段 113Bは、弾性画像を撮像するに際し、被検体 101の生体組織の変位を計測する 弾性演算方向(以下、変位探索方向という)を生体組織が実際に変位した方向(以下 、組織変位方向という)に合わせて設定する。次いで、変位探索方向の設定手段 11 3Bは、設定後の変位探索方向における生体組織の変位を弾性画像構成手段に計 測させる。
[0015] これにより、変位探索方向が組織変位方向に対してずれている場合でも、変位探 索方向を組織変位方向に一致させることができる。したがって、生体組織が実際に変 位した方向に沿って変位を計測することになるから、計測値の精度が向上する。この ような計測値に基づいて弾性画像を構成することにより、生体組織の性状を忠実に 弾性画像に現すことができる。
[0016] より詳細に本実施形態の超音波診断装置について説明する。超音波診断装置は、 超音波送受系、断層像撮像系、弾性画像撮像系、表示系、制御系に大別される。
[0017] 超音波送受系は、探触子 102と超音波送受信部 103を備えている。探触子 102は 、機械的又は電子的にビーム走査を行うことによって被検体 101との間で超音波を 送受する超音波送受面を有する。超音波送受面は、複数の振動子が並べて配設さ れている。各振動子は、電気信号と超音波とを相互に変換する。また、探触子 102は 、超音波送受面に圧力センサが配設されている。圧力センサは、超音波送受面に加 えられた圧力を検出して圧力計測部に出力する。圧力計測部は、歪み演算部 106 や弾性率演算部 107に圧力データを出力する。 [0018] 超音波送受信部 103は、図 2に示すように、探触子 102に送受信手段 121を介して 送波用の駆動信号 (パルス)を供給する送信手段 120と、探触子 102から送受信手 段 121を介して出力される受信信号を処理する受信手段 122とを有する。
[0019] 超音波送受信部 103の送信手段 120は、探触子 102の振動子を駆動して超音波 を発生させる駆動信号としての送波パルスを設定間隔で送信する回路や、探触子 1 02から射出される超音波送波ビームの収束点の深度を設定する回路を有する。ここ で本実施形態の送信手段 120は、送受信手段 121を介してパルスを供給する振動 子群を選択すると共に、探触子 102から送信される超音波ビームが組織変位方向に 走査するように、送波パルスの発生タイミングを制御する。すなわち、送信手段 120 は、該パルス信号の遅延時間を制御することにより、超音波ビームの走査方向を制 御するようになっている。
[0020] 超音波送受信部 103の受信手段 122は、探触子 102から送受信手段 121を介して 出力される信号に対して所定のゲインで増幅して RF信号すなわち受エコー信号を 生成する回路や、 RF信号の位相を整相加算して RF信号データを時系列に生成す る回路を有する。このような受信手段 122は、送受信手段 121を介して探触子 102か ら送信された超音波ビームによって取得した受信エコー信号に所定の遅延時間を与 え位相を揃えて整相加算する。
[0021] 断層像撮像系は、断層像構成部 104を備えている。断層像構成部 104は、信号処 理部ゃ白黒スキャンコンバータを有する。信号処理部は、超音波送受信部 103から 出力された RF信号に対し画像処理を施すことによって、被検体 101に関する濃淡断 層像データ(例えば、白黒断層像データ)を構成する。ここでの画像処理は、ゲイン 補正、ログ圧縮、検波、輪郭強調、フィルタ処理などである。白黒スキャンコンバータ は、フレームメモリに格納された被検体 101に関する断層像データをフレーム単位で 読出し、読み出した断層像データをテレビ同期で出力する。ここでの白黒スキャンコ ンバータは、信号処理部から出力された断層像データをディジタル信号に変換する AZD変^^と、ディジタルィ匕された複数の断層像データを時系列に記憶するフレ ームメモリと、フレームメモリから断層像データを読み出す指令を出力する制御コント ローラを有する。 [0022] 弾性画像撮像系は、超音波送受信部 103の出力側力 分岐して設けられた変位 演算部 105と、歪み演算部 106と、弾性率演算部 107と、カラー DSC108とを備えて いる。
[0023] 変位演算部 105は、超音波送受信部 103から出力される RF信号データに基づき 被検体 101の生体組織の変位を計測する。この変位演算部 105は、 RF信号選択部 と、計算部と、フィルタ部とを有する。
[0024] 変位演算部 105の RF信号選択部は、フレームメモリと選択部とを有する。この RF 信号選択部は、超音波送受信部 103から出力された時系列の RF信号データをフレ ームメモリに格納し、格納後の RF信号フレームデータ群から 1組すなわち 2つの RF 信号フレームデータを選択部により選択する。より具体的には、 RF信号選択部は、 画像フレームレートに従って超音波送受信部 103から出力される時系列の RF信号 データをフレームメモリに順次確保する。そして RF信号選択部は、制御演算部 113 から出力された指令に応じ、フレームメモリに格納された RF信号データ群の中から第 1のデータとしての RF信号フレームデータ(N)を選択する。次いで、 RF信号選択部 は、制御演算部 113から出力された指令に応じ、フレームメモリに格納された RF信 号データ群の中力 第 2のデータとしての RF信号フレームデータ (X)を選択する。こ こでの RF信号フレームデータ (X)は、 RF信号フレームデータ(N)よりも時間的に過 去にフレームメモリに格納された RF信号フレームデータ群(N—l, N- 2, N- 3,… N— M)の中力 選択されたものである。なお、 N、 M、 Xは、 RF信号フレームデータ に関連付けられたインデックス番号としての自然数である。
[0025] 変位演算部 105の計算部は、 1組の RF信号フレームデータから生体組織の変位探 索方向における変位を求める。より具体的には、その計算部は、 RF信号選択部によ り選択された第 1の RF信号フレームデータ (N)と第 2の RF信号フレームデータ (X)と の間で一次元又は二次元の相関処理を実行する。例えば、計算部は、相関処理とし てブロックマッチング法を適用することによって、断層像の各ピクセルに対応する生体 組織の変位探索方向における変位や移動ベクトル (以下、変位と総称する)を求める 。ここでの移動ベクトルとは、変位の方向と大きさに関する一次元又は二次元変位分 布である。ブロックマッチング法とは、画像を例えば N X N画素からなるブロックに分 け、関心領域内のブロックに着目し、着目後のブロックに近似するブロックを時間的 に過去のフレーム力 探し、これを参照して予測符号ィ匕すなわち差分により標本値を 決定する処理である。
[0026] なお、変位演算部 105のフィルタ部は、変位計算部から出力された生体組織の変 位のばらつきを平準化するフィルタ回路を有し、後段の信号処理をスムースに実行 するための前処理を施す。
[0027] 歪み演算部 106は、変位演算部 105から出力された生体組織の移動量例えば変 位 A Lを空間微分して生体組織の歪みデータ (S= A LZ AX)を算出する。また、弾 性率演算部 107は、圧力変化を変位の変化で除することによって生体組織の弾性率 データを算出する。例えば、弾性率演算部 107は、探触子 102の超音波送受面にカロ えられた圧力 Δ Ρを圧力計測部力も取得する。次いで、弾性率演算部 107は、圧力 Δ Pと変位 Δ Lに基づき弾性率データとして例えばヤング率 Ym (Ym= ( Δ Ρ) / ( Δ LZL)を求める。このように弾性率演算部 107は、断層像の各点に対応して弾性率 データをそれぞれ求めることによって二次元の弾性画像データを取得する。なお、ャ ング率とは、物体にカ卩えられた単純引張り応力と、引張りに平行に生じるひずみに対 する比である。また、歪みデータと弾性率データを含めて弾性データと適宜総称し、 フレーム単位の弾性データを弾性フレームデータと適宜称する。
[0028] カラー DSC108は、歪み演算部 106又は弾性率演算部 107から出力された弾性 データに基づき、被検体 101の生体組織に関するカラー弾性画像を構成する。例え ば、カラー DSC108は、弾性データ処理部と、カラースキャンコンバータと、フレーム メモリを有する。弾性データ処理部は、歪み演算部 106又は弾性率演算部 107から 出力される弾性フレームデータをフレームメモリに格納する。弾性データ処理部は、 制御演算部 113から出力された指令に応じ、フレームメモリから読み出した弾性フレ ームデータに対して画像処理を施す。
[0029] カラー DSC108のカラースキャンコンバータは、弾性データ処理部から出力された 弾性フレームデータに対し、カラーマップに基づき色調変換処理を実行する色調変 換部である。ここでのカラーマップは、弾性データの大きさに対し、光の 3原色つまり 赤 (R)、緑 (G)、青 (B)で定まる色相情報を関連付けたものである。なお、赤 (R)、緑 (G)、青 (B)のそれぞれは 256階調を有し、 255の階調に近づくにつれて大輝度に 表示されるし、ゼロの階調に近づくにつれて低輝度に表示される。
[0030] 例えば、カラー DSC108のカラースキャンコンバータは、弾性データ処理部から出 力された歪みデータが小さいときに赤色コードに変換するとともに、歪みデータが大 きいときは青色コードに変換してフレームメモリに格納する。そして、カラースキャンコ ンバータは、制御指令に応じ、フレームメモリから弾性フレームデータをテレビ同期で 読み出して画像表示器 112に表示させる。ここでの色調変換後の弾性フレームデー タに基づいた弾性画像は、生体組織の硬い部位 (例えば、腫瘍)が赤色系に描画さ れるとともに、硬い部位の周辺部位が青色系に描画されたものになる。そのような弹 性画像を視認することにより、例えば腫瘍の広がりや大きさを視覚的に把握できる。 なお、カラー DSC108は、制御演算部 113を介してキーボードなどの操作部 114が 接続されている。操作部 114を介して入力された指令に応じ、カラー DSC108は、力 ラーマップの色合 ヽなどを変更できる。
[0031] 表示系は、グラフィック部 109と、カラースケール発生部 110と、画像合成部 111と、 画像表示器 112などを備えている。グラフィック部 109は、断層像や弾性画像以外の 画像(例えば、画面のフレームワークやグラフィカルユーザインターフェース)を生成 する。カラースケール発生部 110は、色相の変化が段階を追って表示された力ラース ケールを生成する。ここでのカラースケールは、カラー DSC 108のカラーマップに対 応させることができる。
[0032] 画像合成部 111は、断層像構成部 104から出力された断層像と、カラー DSC108 から出力された弾性画像と、グラフィック部 109から出力された画像と、カラースケー ル発生部 110から出力されたカラースケールとを合成して 1つの超音波像を生成す る。例えば、画像合成部 111は、フレームメモリと、画像処理部と、画像選択部とを有 する。ここでのフレームメモリは、断層像構成部 104から出力された断層像や、カラー DSC108から出力された弾性画像や、グラフィック部 109から出力されたフレームヮ ーク画像や、カラースケール発生部 110から出力されたカラースケールを格納する。 画像処理部は、制御指令に応じ、フレームメモリから断層像や弾性画像を読出し、断 層像や弾性画像の同一座標系で相互に対応する画素に対し、その各画素の輝度情 報や色相情報を設定割合で加算して合成する。すなわち、画像処理部は、断層像 上に弾性画像を同一座標系で相対的に重畳させる。画像選択部は、制御指令に応 じ、フレームメモリに格納された画像群のうちから画像表示器 112に表示させる画像 を選択する。画像表示器 112は、画像合成部 111から出力された画像データを表示 するモニタなどを有する。
[0033] 制御系は、図 2に示すように、制御演算部 113と操作部 114などを備えている。制 御演算部 113は、基本制御手段 113Aと、変位探索方向の設定手段 113Bと、組織 変位方向の検出手段 113Cと、関心領域の設定手段 113Dと、関心領域の角度補正 手段 113Eと、ガイド情報の生成手段 113Fとを有する。
[0034] 基本制御手段 113Aは、超音波送受系、断層像撮像系、弾性画像撮像系、表示系 に各種の制御指令を出力する。変位探索方向の設定手段 113Bは、変位探索方向 が組織変位方向に対してずれて 、るときに、変位探索方向を組織変位方向に合わ せて再設定する。ここでの変位探索方向は、被検体 101の生体組織の変位を計測 する際の基準とすべき弾性データ演算方向である。組織変位方向の検出手段 113C は、被検体 101の生体組織に圧力が加えられた際に生体組織が実際に変位した組 織変位方向を検出する。関心領域の設定手段 113Dは、操作部 114を介して入力さ れた指令に応じ、画像表示器 112に表示された断層像に関心領域 (ROI: Region Of Interest)を設定する。関心領域の角度補正手段 113Eは、設定手段 113Dによって 設定された関心領域を回転させることにより、関心領域の設定角度を補正する。ガイ ド情報の生成手段 113Fは、変位探索方向が組織変位方向に一致するときの探触 子 102の傾きを示す誘導情報などを生成して画像表示器 112に表示させる。なお、 操作部 114は、各種設定用のインターフェースとしてのキーボードやポインティング デバイスなどを有している。
[0035] ここで本実施形態の制御演算部 113について図面を参照してより詳細に説明する
[0036] く実施例 1〉
本実施例は、組織変位方向を半自動で指定し、その組織変位方向に合わせて設 定した変位探索方向に超音波ビームを偏向する例である。図 3は、変位探索方向と 組織変位方向との間にずれが生じている形態を示す模式図である。図 4は、変位探 索方向を組織変位方向に合わせた形態を示す模式図である。
[0037] 図 3に示すように、被検体 101の例えば体表に、探触子 102の超音波送受面 201a が接触している。ここでの変位探索方向 206a〜206hは、探触子 102で送受される 超音波ビーム方向、すなわち超音波送受面 201aに対してほぼ垂直方向に初期設 定されている。また、被検体 101内の脈管(血管) 204は、超音波送受面 201aに対し て傾斜して直線状に存在するものとしている。そして、弾性画像を取得すべき生体組 織の関心領域 203は、図の点線で示すように、超音波送受面 201aに対して長辺部 がほぼ平行な矩形つまり長方形に設定されている。なお、ここでの関心領域 203は、 操作部 114を介して入力された指令に応じ、画像表示器 112に表示された断層像上 に設定されたものである。
[0038] 図 3に示す形態においては、脈管 204の周期的な拍動によって、脈管 204の周辺 組織が圧迫される。その周辺組織のうち関心領域 203内の生体組織の変位が、変位 演算部 105により計測される。変位の計測値に基づいて、弾性データが歪み演算部 106や弾性率演算部 107により算出される。そして、弾性データの算出値に基づい て、弾性画像がカラー DSC 108により構成される。
[0039] しかし、図 3に示す例では、関心領域 203内の生体組織の変位を計測するに際し、 変位探索方向 206a〜206hは、超音波ビーム方向つまり関心領域 203の短手方向 であるのに対し、脈管 204の拍動に由来する組織変位方向 205a〜20¾は、脈管 20 4の径方向である。したがって、変位探索方向 206a〜206hと組織変位方向 205a〜 205jが所定の角度で交差している。すなわち、変位探索方向 206a〜206hと組織 変位方向 205a〜205jとの間にずれが生じている。このような状態で生体組織の変 位を計測すると、例えば前記ずれを補正する演算精度の制限に起因して、変位の計 測値に誤差が含まれるおそれがある。
[0040] そこで、本実施例は、関心領域 203の角度を半自動で補正することによって組織変 位方向に合わせて変位探索方向を指定する。より具体的には、図 3に示すように、操 作者は、画像表示器 112に表示された断層像を視認しながら、操作部 114を介して 、脈管 204の上側縁部と関心領域 203の短辺部が交わる二箇所のそれぞれに基準 点(以下、交差点 207、 208という)を指定する。なお、脈管 204の上側縁部に代えて 、下側縁部における短辺部との交差点を指定してもよい。また、交差点 207、 208は 、断層像の輝度を利用して設定してもよい。すなわち、画像表示器 112の画面中で 脈管 204の壁面は、その輝度が高く表示される。制御演算部 113は、この輝度特性 を利用し、脈管 204の壁面に形成される高輝度ラインと関心領域 203との交点を交 差点 207、 208として設定する。
[0041] 交差点 207、 208が指定されると、図 4に示すように、組織変位方向の検出手段 11 3Cは、交差点 207、 208間を結ぶ線分に直交する方向を組織変位方向と判定する 。すなわち、本実施例は、交差点 207、 208を指定することによって組織変位方向を 半自動的に検出する。
[0042] そして、関心領域の角度補正手段 113Eは、交差点 207、 208間を結ぶ線分に直 交する方向と関心領域 203の短手方向とのずれがゼロになるように、関心領域 203 を回転補正する。すなわち、関心領域の角度補正手段 113Eは、交差点 207、 208 間を結ぶ線分に直交する方向に短手方向が合致する関心領域 308を再設定する。 次いで、変位探索方向の設定手段 113Bは、変位探索方向 206a〜206hを関心領 域 308の短手方向に合わせて補正することによって、新たな変位探索方向 306a〜3 06fを指定する。超音波送受信部 103は、変位探索方向 306a〜306fに合わせて超 音波ビームを偏向する。そして、変位演算部 105は、変位探索方向 306a〜306fに 沿って羅列された受信信号に基づき、変位探索方向 306a〜306fにおける生体組 織の変位を計測する。
[0043] 図 5は、変位探索方向を組織変位方向に合わせた際の生体組織の変位を計測す る例を示す図である。図 5に示す関心領域 501は、関心領域の角度補正手段 113E により元の関心領域を角度補正した平行四辺形のものである。ここでの組織変位方 向は、関心領域 501の傾斜側辺に沿った方向、つまり関心領域 501に矢印で図示し た方向である。変位探索方向は、変位探索方向の設定手段 113Bにより関心領域 50 1の傾斜側辺に沿った方向に再設定される。要するに、ここでの関心領域 501にお V、ては、変位探索方向が組織変位方向に一致して 、る。
[0044] まず、超音波送受信部 103は、探触子 102を介して変位探索方向に合わせて超音 波ビームを送受することによって時系列に受信信号を取得する。次いで、変位演算 部 105は、現在取得された RF信号フレームデータ(N) 502を第 1のデータとして選 択する。ここでの RF信号フレームデータ (N) 502は、関心領域 501の側辺の傾斜方 向、つまり変位探索方向に従って羅列された信号群である。変位演算部 105は、時 間的に過去に取得された RF信号フレームデータ (X) 503も選択する。ここでの RF信 号フレームデータ (X) 503も、関心領域 501の側辺の傾斜方向、つまり変位探索方 向に従って羅列された信号群である。そして、変位演算部 105は、 RF信号フレーム データ(N) 502と RF信号フレームデータ (X) 503に対して相関処理を実行すること によって、変位探索方向における生体組織の移動分すなわち変位量を計測する。
[0045] 本実施例によれば、図 2及び図 3に代表されるように、変位探索方向 206a〜206h が組織変位方向 205a〜205jに対してずれている場合、組織変位方向 205a〜205 jに合わせた変位探索方向 306a〜306fが再設定される。したがって、変位探索方向 306a〜306fに沿って生体組織の変位を計測すると、生体組織が実際に変位した方 向に沿って変位を計測することになるから、変位の計測値の精度が向上する。このよ うな計測値に基づいて弾性画像を構成することにより、弾性画像に生じるアーチファ タトが低減される。その結果、生体組織を圧迫する方向や生体組織を圧迫する面の 形状などに左右されずに、生体組織の歪みや硬さなどの性状を忠実に現わした高品 質の弾性画像を取得できる。
[0046] 例えば、甲状腺部位は、頸動脈の拍動に由来して周辺組織が歪みことは知られて いる。したがって、甲状腺部位に関する弾性像を撮像する際は、頸動脈の拍動によ つて歪んだ周辺組織の変位を計測し、変位の計測値に基づ 、て弾性像を構成でき ることになる。しかし、探触子 102の超音波送受面に対して頸動脈が傾斜して存在す るなど、変位探索方向と組織変位方向との間にずれが生じる場合がある。この点、本 実施例によれば、変位探索方向を組織変位方向に一致させることにより、生体組織 の変位の計測精度を向上させることができるため、有用な臨床データを取得できる。
[0047] 図 6は、種々の脈管に対する関心領域の設定状態の例を示す図である。図 6 (A) 及び図 6 (C)は、超音波送受面に対して脈管が傾斜して存在する形態を示す。この 場合の関心領域 (ROI)は、その短手方向が脈管の長手方向に対して垂直になるよう に設定されている。そして、関心領域の短手方向つまり組織変位方向に合致させて 変位探索方向が設定されている。すなわち、変位探索方向と組織変位方向が一致し ている。なお、図 6 (C)に示す場合は、脈管が図 6 (A)に示す脈管に対して逆方向に 傾 、て 、るので、図 6 (A)の場合に対して逆方向に関心領域を回転補正することによ つて、変位探索方向を組織変位方向に合わせることになる。図 6 (B)は、超音波送受 面に対して脈管が平行に存在する形態を示す。この場合は、関心領域の短手方向 つまり変位探索方向が組織変位方向と一致するので、関心領域の角度補正は不要 である。
[0048] また、図 6 (D)は、超音波送受面に対して脈管が湾曲して存在する形態を示す。こ の場合、関心領域は、脈管の曲部の曲率に対応した弧を有する扇形に設定される。 変位探索方向の設定手段 113Bは、関心領域の弧の接線に垂直になる方向を変位 探索方向として再設定する。超音波送受信部 103は、関心領域の弧に応じて超音波 ビーム方向を徐々に変更しながら超音波ビームを送受させる。これによつて、超音波 送受面に対して脈管が湾曲して存在する場合でも、脈管の湾曲に由来する組織変 位方向の変化に追従して変位探索方向を合わせることができる。
[0049] この扇状の関心領域は、複数の微小矩形関心領域を繋いで生成される。例えば、 図 6 (D)右図に示すように、図 2,図 3,図 6 (A)〜図 6 (C)と同様な手法を用いること により、 3つの微小矩形関心領域 ROIl〜ROI3等の短手方向と脈管の接線方向とを 一致させるとともに、長手方向と脈管の接線に垂直になる方向とを一致させて、脈管 に沿って微小矩形関心領域 ROIl〜ROI3が分割して複数設定される。このようにし て扇状の関心領域全体に亘つて複数の微小矩形関心領域が設定される。なお、この 微小矩形関心領域は、脈管の曲率形状が無視できる範囲で設定されて!、る。
[0050] そして、それぞれの微小矩形関心領域 ROI1, ROI2, ROI3等の長手方向つまり 組織変位方向に合致させて変位探索方向が設定される。これによつて各微小矩形 関心領域において変位探索方向と組織変位方向を一致させることができる。つまり、 扇状の関心領域全体に亘つて変位探索方向と組織変位方向を一致させることができ る。このような関心領域の設定手法によれば、脈管の形状は扇状に限らず、複雑な 形状でも対応できる。 [0051] なお、本例では、脈管 204の拍動を圧力源とし、脈管 204の拍動によって圧迫され た際の生体組織の弾性画像を取得して ヽるが、このような形態に限れたものではな い。例えば、被検体 101の体表に接触させた探触子 102を手動で押付けて圧迫する 形態や、被検体 101の体表に接触させたバイブレータで圧迫する形態でも本発明を 適用できる。要するに、変位探索方向と組織変位方向との間にずれが生じる場合に 本発明を適用すればよい。
[0052] 〈実施例 2〉
本実施例は、変位探索方向を組織変位方向に合わせるに際し、関心領域内に予 め定められた弾性演算方向つまり関心領域内の変位探索方向だけを組織変位方向 に合わせる点で、超音波ビーム自体を偏向させた実施例 1と相違する。したがって、 その相違点を中心に説明する。
[0053] 図 7は、本実施例の変位探索方向の設定手段 113Bの動作を説明するための図で ある。図 7に示す形態は、超音波ビームの射出方向が超音波送受面 201aに対して 垂直なままである点で、図 4に示す形態と異なる。
[0054] 被検体 101の生体組織の弾性画像を撮像するに際しては、まず、超音波送受信部 103は、超音波送受面 201aに対して垂直に超音波ビームを送受することによって被 検体 101に関する信号を取得する。ここで、本実施例の変位探索方向の設定手段 1 13Bは、関心領域 303に予め設定された変位探索方向を組織変位方向 205a〜20 5jに合わせて設定する。そして、変位探索方向の設定手段 113Bは、超音波送受信 部 103から出力される信号のうち前記補正後の変位探索方向に対応して羅列した信 号を選択させる指令と、選択後の信号に基づき生体組織の変位探索方向における 変位を計測させる指令を変位演算部 105に出力する。
[0055] すなわち、超音波送受信部 103の出力信号から組織変位方向 205a〜20¾に対 応した信号を選択して弾性演算を実行すると、関心領域 303内の変位探索方向だけ を組織変位方向に合わせたことになる。したがって、本実施例によれば、変位探索方 向を組織変位方向に合わせるに際し、超音波ビームを偏向させずとも、関心領域 30 3における変位探索方向を組織変位方向に合わせることができる。その結果、実施例 1と同様な効果に加え、生体組織の複雑な動きに応じて変位探索方向を組織変位方 向に合わせることが簡単になる。
[0056] 〈実施例 3〉
本実施例は、組織変位方向を自動に検出する点で、組織変位方向を半自動で指 定する実施例 1と相違する。したがって、その相違点を中心に説明する。
[0057] 図 8は、図 2の組織変位方向の検出手段 113Cの動作の例を示す概念図である。
図 8の横軸は、超音波送受面 201aに対してほぼ平行な方向の被検体座標軸を示し ている。縦軸は、超音波送受面 201aに対してほぼ垂直な方向の被検体座標軸を示 して 、る。横軸及び縦軸のそれぞれの単位はミリメートル (mm)である。
[0058] 図 8に示すように、組織変位方向の検出手段 113Cは、生体組織に圧力を加える前 と後の断層像に対し、各ピクセルに対応する信号に基づき広範囲にわたって相関演 算を実行する。より具体的には、検出手段 113Cは、生体組織に圧力を加える前の 信号 601を取得する。ここでの信号 601は、縦方向に l[mm]で横方向に l[mm]の位 置にあるものとする。そして、検出手段 113Cは、生体組織に圧力が加えられた際の 信号 601の移動先を相関処理によって検出し、検出結果に基づき組織変位方向を 判定する。
[0059] 例えば、検出手段 113Cは、信号 601の移動先を信号 602の位置 (縦方向 8[mm] 、横方向 l[mm])に検出したときは、組織変位方向は縦方向(例えば 0度)であると判 定する。また、検出手段 113Cは、信号 601の移動先を信号 603の位置 (縦方向 l[m m]、横方向 8[mm])に検出したときは、組織変位方向は横方向(例えば 90度)である と判定する。また、検出手段 113Cは、信号 601の移動先を信号 604の位置 (縦方向 8[mm]、横方向 8[mm])に検出したときは、組織変位方向は斜め方向(例えば 45度 )であると判定する。検出手段 113Cは、組織変位方向の検出処理を座標ごとに実行 し、各座標の検出値を平均した値を組織変位方向として検出する。その組織変位方 向は、関心領域の角度補正手段 113Eや変位探索方向の設定手段 113Bに出力さ れる。なお、変位探索方向を組織変位方向に合わせて生体組織の変位を計測する 処理は、実施例 1と同様である。
[0060] すなわち、甲状腺などの弾性画像を撮像する際、甲状腺の組織に対して縦方向に 圧力を加えても組織が横方向に変位することがあるなど、組織変位方向の把握が困 難な場合がある。この点、本実施例によれば、組織変位方向を客観的かつ定量的に 自動検出できるため、生体組織の変位の計測精度をより一層高めることができる。
[0061] 〈実施例 4〉
本実施例は、組織変位方向を自動検出するに際し、血管の血流方向を利用する点 で実施例 3と相違する。したがって、相違点を中心に説明する。
[0062] 本実施例の超音波診断装置は、図 1に示すように、ドプラ像構成部 900が設けられ ている。ドプラ像構成部 900は、超音波送受信部 103から取り込んだ時系列の受信 信号に基づきドプラ偏位を演算し、そのドプラ偏位力 ドプラ像 (例えば、カラー血流 像)を構成する。そして、本実施例の変位探索方向の設定手段 113Bは、ドプラ像構 成部 900によって判定可能な血流方向に基づき、組織変位方向に一致する変位探 索方向を決定する。
[0063] 図 9は、本実施例の変位探索方向の設定手段 113Bの動作を説明するための図で ある。まず、図 9Aは、カラー血流像が図 3の脈管 204に重畳して表示された図である 。ここでのカラー血流像は、ドプラ像構成部 900から画像合成部 111を介して画像表 示器 112に出力されたものである。
[0064] 図 9Bは、血流方向に基づき組織変位方向に合わせて変位探索方向を設定する形 態を示す模式図である。組織変位方向の検出手段 113Cは、図 9Aに示すカラー血 流像に基づき血流方向を検出し、その血流方向に直交する方向を組織変位方向と 判定する。変位探索方向の設定手段 113Bは、検出手段 113Cにより判定された組 織変位方向に合わせて変位探索方向を決定する。なお、関心領域 303の設定処理 又は回転補正処理や、変位探索方向に従って超音波ビーム方向を偏向する処理な どは実施例 1と同様である。また実施例 2で説明したように、組織変位方向に合わせ て関心領域 303の変位探索方向を合わせる処理を適用してもよい。
[0065] 本実施例によれば、ドプラ血流像から検出可能な血流方向に基づき組織変位方向 を自動判定できるため、組織変位方向に変位探索方向を合わせる作業が簡単にな る。例えば、被検体 101に血管が湾曲した複雑な形態で存在する場合でも、その血 管に係るドプラ血流像に基づき変位探索方向を簡単に決めることができる。
[0066] 〈実施例 5〉 本実施例は、変位探索方向を組織変位方向に合わせるに際し、探触子 102の傾き を手動で調整する点で、探触子 102で送受する超音波ビームを偏向させる実施例 1 と相違する。したがって、相違点を中心に説明する。
[0067] 探触子 102の傾きを変更すると、探触子 102の超音波送受面 201aの傾斜角度が 変わるため、超音波送受面 201aで送受される超音波ビームの方向を調整できること になる。すなわち、超音波ビーム方向に変位探索方向が設定されている場合、探触 子 102の傾きを調整することにより、変位探索方向を組織変位方向に合わせることが できる。
[0068] ただし、探触子 102の傾きを経験則や直感に頼って調整すると、変位探索方向を 組織変位方向に合わせる作業が煩雑になる。そこで、図 2のガイド情報の生成手段 1 13Fは、変位探索方向が組織変位方向に一致するときの探触子 102の傾斜方向や 傾斜角度を示す誘導情報を生成して画像表示器 112に表示させる。
[0069] 図 10は、探触子 102の傾斜方向と傾斜角度を示すガイド情報の表示例である。な お、探触子 102の位置や傾きをリアルタイムに検出する位置センサが配設されている ものとする。ガイド情報の生成手段 113Fは、例えば、図 10に示すように、被検体 10 1の体表に接触した探触子 102の模式画像 920と、探触子 102の超音波ビーム方向 に合致して設定された変位探索方向を示す矢印画像 921と、被検体 101の生体組 織の組織変位方向を示す矢印画像 922と、変位探索方向が組織変位方向に一致す るときの探触子 102の傾斜方向を示す誘導画像 923とを生成して表示する。また、変 位探索方向と組織変位方向とのずれに対応した補正角 Θを示す角度情報 924を表 示してもよい。ここでの補正角 Θも、探触子 102の傾斜角度を示すガイド情報である
[0070] 本実施例によれば、誘導画像 923や角度情報 924などのガイド情報は、探触子 10 2の傾きを調整して変位探索方向と組織変位方向を合わせる作業を支援する客観的 かつ定量的な指標になる。したがって、操作者は、探触子 102の目標傾斜方向を視 覚的に把握できるので、変位探索方向を組織変位方向に合わせる作業が的確かつ 簡単に実施できる。その結果、生体組織の変位の計測精度が向上するとともに、装 置の使い勝手が高まる。 [0071] また、図 11に示すように、ガイド情報の生成手段 113Fは、変位探索方向と垂直方 向(例えば、被検体 101の深度方向)との間に形成される角度 Θ を示す角度情報 9 26と、変位探索方向と組織変位方向との間に形成される角度 Θ を示す角度情報 92
2
7などを関心領域 925に並べて表示してもよい。これにより、操作者は、被検体 101 の関心領域 925に対する変位探索方向と組織変位方向を相対的かつ視覚的に把 握できる。
[0072] 以上、本実施形態によれば、生体組織を圧迫する方向や生体組織を圧迫する面の 形状などに左右されずに、生体組織の歪みや硬さなどの性状を忠実に現わした高品 質の弾性画像を簡単に取得できる。
[0073] なお、図 1又は図 2などに示すように、本実施形態の超音波撮像に必要な制御機能 をブロック単位で説明したが、各制御機能を超音波撮像プログラムとして集約し、そ の超音波撮像プログラムを制御用コンピュータに実行させることもできる。例えば、超 音波撮像プログラムは、被検体 101の生体組織が変位する組織変位方向に合わせ て変位の探索方向を設定する設定手順と、被検体 101との間で超音波を送受する 探触子 102に送波用の駆動信号を供給する手順と、探触子 102から出力される受信 信号を処理する手順と、受信処理後の信号から前記探索方向の変位を計測する手 順と、その変位の計測値に基づき弾性画像を構成する手順と、その弾性画像を表示 する手順とを制御用コンピュータに実行させる。
[0074] 上述のとおり、本発明を適用した一実施形態の超音波診断装置を説明したが、本 発明を適用した超音波診断装置は、その精神または主要な特徴から逸脱することな ぐ他の様々な形態で実施できる。そのため、前述の実施形態はあらゆる点で単なる 例示に過ぎず、限定的に解釈されるものではない。すなわち、本発明の範囲は、均 等範囲に属する変形や変更を含むものとする。

Claims

請求の範囲
[1] 被検体との間で超音波を送受する超音波探触子と、該超音波探触子に送波用の 駆動信号を供給する送信手段と、前記超音波探触子から出力される受信信号を処 理する受信手段と、該受信手段の出力信号力 計測される生体組織の変位に基づ き弾性画像を構成する弾性像構成手段と、前記弾性画像を表示する表示手段とを 備えた超音波診断装置において、
前記生体組織が変位する組織変位方向に合わせて前記変位の探索方向を設定 する変位探索方向設定手段を有し、前記弾性像構成手段は前記探索方向の変位を 計測して前記弾性画像を構成することを特徴とする超音波診断装置。
[2] 前記変位探索方向設定手段は、前記超音波探触子の超音波ビーム方向に前記探 索方向が設定されている際、前記超音波ビームを前記組織変位方向に合わせて偏 向させる指令を前記送信手段又は前記受信手段に出力する請求項 1に記載の超音 波診断装置。
[3] 前記変位の探索方向が予め定められた関心領域を前記被検体の生体組織に対応 して設定する関心領域の設定手段と、前記関心領域を回転補正して前記探索方向 を前記組織変位方向に合わせる関心領域の角度補正手段を備え、
前記変位探索方向設定手段は、前記回転補正後の関心領域の前記探索方向に 合わせて前記超音波ビームを偏向させる指令を前記送信手段又は前記受信手段に 出力する請求項 1に記載の超音波診断装置。
[4] 前記関心領域の設定手段は、前記被検体の生体組織に対応して矩形又は扇形の 関心領域を設定する請求項 3に記載の超音波診断装置。
[5] 前記変位探索方向設定手段は、前記受信手段から出力される信号のうち前記探 索方向に対応して羅列した信号を選択させる指令と、該選択後の信号に基づき前記 探索方向の変位を計算させる指令を前記弾性像構成手段に出力する請求項 1に記 載の超音波診断装置。
[6] 前記変位の探索方向が予め定められた関心領域を前記被検体の生体組織に対応 して設定する関心領域の設定手段と、前記関心領域を回転補正して前記探索方向 を前記組織変位方向に合致させる関心領域の角度補正手段を備え、 前記変位探索方向設定手段は、前記受信手段から出力される信号のうち前記回 転補正後の関心領域の前記探索方向に対応して羅列した信号を選択させる指令と 、該選択後の信号に基づき前記探索方向の変位を計算させる指令を前記弾性像構 成手段に出力する請求項 1に記載の超音波診断装置。
[7] 前記関心領域の設定手段は、前記被検体の生体組織に対応して矩形又は扇形の 関心領域を設定する請求項 6に記載の超音波診断装置。
[8] 前記変位探索方向設定手段は、前記生体組織に設定された関心領域を複数の微 小矩形関心領域に分割し、それぞれの前記微小矩形関心領域の前記組織変位方 向を特定し、該組織変位方向に合わせて前記探索方向を設定する請求項 1に記載 の超音波診断装置。
[9] 前記組織変位方向を検出する組織変位方向の検出手段を備え、
前記組織変位方向の検出手段は、前記生体組織に関する断層像上に指定された 二つの基準点間の線分に直交する方向を前記組織変位方向と判定する請求項 1に 記載の超音波診断装置。
[10] 前記組織変位方向を検出する組織変位方向の検出手段を備え、
前記組織変位方向の検出手段は、前記生体組織の圧迫前の断層像と前記生体組 織の圧迫中の断層像との相関処理を実行して前記断層像上の部位の移動方向を求 め、該移動方向を前記組織変位方向と判定する請求項 1に記載の超音波診断装置
[11] 前記組織変位方向を検出する組織変位方向の検出手段を備え、
前記糸且織変位方向の検出手段は、前記受信手段の出力信号からドプラ演算処理 によって血流方向を求めさせ、前記血流方向に直交する方向を前記組織変位方向 と判定する請求項 1に記載の超音波診断装置。
[12] 前記表示手段は、前記超音波探触子の超音波ビーム方向に前記探索方向が設定 されている際、前記超音波ビーム方向が前記糸且織変位方向に一致する際の前記超 音波探触子の傾斜方向又は傾斜角度を示すガイド情報が表示される請求項 1に記 載の超音波診断装置。
[13] 前記表示手段は、前記組織変位方向を示す矢印画像と、前記変位の探索方向を 示す矢印画像と、前記超音波探触子の超音波ビーム方向を示す矢印画像の少なく とも 1つが表示される請求項 1に記載の超音波診断装置。
[14] 前記表示手段は、前記組織変位方向と前記変位の探索方向との間に形成される 角度が表示される請求項 1に記載の超音波診断装置。
[15] 被検体の生体組織が変位する組織変位方向に合わせて前記変位の探索方向を 設定する設定手順と、
前記被検体との間で超音波を送受する超音波探触子に送波用の駆動信号を供給 する手順と、前記超音波探触子力 出力される受信信号を処理する手順と、前記受 信処理後の信号から前記探索方向の変位を計測する手順と、前記変位の計測値に 基づき弾性画像を構成する手順と、前記弾性画像を表示する手順とを制御用コンビ ユータに実行させることを特徴とする超音波撮像プログラム。
[16] 被検体の生体組織が変位する組織変位方向に合わせて前記変位の探索方向を 設定する設定工程と、
前記被検体との間で超音波を送受する超音波探触子に送波用の駆動信号を供給 する工程と、前記超音波探触子から出力される受信信号を処理する工程と、前記受 信処理後の信号力 前記探索方向の変位を計測する工程と、前記変位の計測値に 基づき弾性画像を構成する工程と、前記弾性画像を表示する工程とを備えたことを 特徴とする超音波撮像方法。
[17] 前記変位探索方向の設定工程は、前記超音波探触子の超音波ビーム方向に前記 探索方向が設定されている際、前記超音波ビームを前記組織変位方向に合わせて 偏向させる工程を含む請求項 16に記載の超音波撮像方法。
[18] 前記変位探索方向の設定工程は、前記受信手段から出力される信号のうち前記探 索方向に対応して羅列した信号を選択させる工程と、該選択後の信号に基づき前記 探索方向の変位を計算させる工程を含む請求項 16に記載の超音波撮像方法。
[19] 前記変位探索方向の設定工程は、前記生体組織に設定された関心領域を複数の 微小矩形関心領域に分割し、それぞれの前記微小矩形関心領域の前記組織変位 方向を特定し、該組織変位方向に合わせて前記探索方向を設定する工程を含む請 求項 16に記載の超音波撮像方法。
[20] 前記組織変位方向に合わせて前記変位探索方向を設定する際に前記組織変位 方向を検出する組織変位方向の検出工程を備え、
前記組織変位方向の検出工程は、前記生体組織に関する断層像上に指定された 二つの基準点間の線分に直交する方向を前記組織変位方向と判定する工程を含む 請求項 16に記載の超音波撮像方法。
[21] 前記組織変位方向に合わせて前記変位探索方向を設定する際に前記組織変位 方向を検出する組織変位方向の検出工程を備え、
前記組織変位方向の検出工程は、前記生体組織の圧迫前の断層像と、前記生体 組織の圧迫中の断層像との相関処理を実行して前記断層像上の部位の移動方向を 求め、該移動方向を前記組織変位方向と判定する工程を含む請求項 16に記載の 超音波撮像方法。
[22] 前記組織変位方向に合わせて前記変位探索方向を設定する際に前記組織変位 方向を検出する組織変位方向の検出工程を備え、
前記組織変位方向の検出工程は、前記受信手段の出力信号力 ドプラ演算処理 によって血流方向を求めさせ、前記血流方向に直交する方向を前記組織変位方向 と判定する工程を含む請求項 16に記載の超音波撮像方法。
[23] 前記弾性画像を表示する工程は、前記超音波探触子の超音波ビーム方向に合致 して変位探索方向が設定される際、前記超音波ビーム方向が前記組織変位方向に 一致するときの前記超音波探触子の傾斜方向又は傾斜角度を示すガイド情報を表 示する工程を含む請求項 16に記載の超音波撮像方法。
[24] 前記弾性画像を表示する工程は、前記組織変位方向を示す矢印画像と、前記変 位の探索方向を示す矢印画像と、前記超音波探触子の超音波ビーム方向を示す矢 印画像の少なくとも 1つを表示する工程を含む請求項 16に記載の超音波撮像方法。
[25] 前記弾性画像を表示する工程は、前記組織変位方向と前記変位の探索方向との 間に形成される角度を表示する工程を含む請求項 16に記載の超音波撮像方法。
PCT/JP2005/023886 2005-01-04 2005-12-27 超音波診断装置、超音波撮像プログラム及び超音波撮像方法 WO2006073088A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800458659A CN101094611B (zh) 2005-01-04 2005-12-27 超声波诊断装置
EP05822712A EP1834588B1 (en) 2005-01-04 2005-12-27 Ultrasonographic device, ultrasonographic program, and ultrasonographic method
JP2006550791A JPWO2006073088A1 (ja) 2005-01-04 2005-12-27 超音波診断装置、超音波撮像プログラム及び超音波撮像方法
US11/813,291 US7766836B2 (en) 2005-01-04 2005-12-27 Ultrasound diagnostic apparatus, program for imaging an ultrasonogram, and method for imaging an ultrasonogram

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-000257 2005-01-04
JP2005000257 2005-01-04

Publications (1)

Publication Number Publication Date
WO2006073088A1 true WO2006073088A1 (ja) 2006-07-13

Family

ID=36647570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023886 WO2006073088A1 (ja) 2005-01-04 2005-12-27 超音波診断装置、超音波撮像プログラム及び超音波撮像方法

Country Status (5)

Country Link
US (1) US7766836B2 (ja)
EP (1) EP1834588B1 (ja)
JP (2) JPWO2006073088A1 (ja)
CN (1) CN101094611B (ja)
WO (1) WO2006073088A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000588A (ja) * 2006-05-25 2008-01-10 Hitachi Medical Corp 超音波診断装置
JP2008237664A (ja) * 2007-03-28 2008-10-09 Hitachi Medical Corp 超音波診断装置
WO2009031327A1 (ja) 2007-09-06 2009-03-12 Hitachi Medical Corporation 超音波撮像装置
JP2010017556A (ja) * 2008-07-11 2010-01-28 General Electric Co <Ge> 対象物に対して超音波プローブを可視化するためのシステムおよび方法
JP2010124946A (ja) * 2008-11-26 2010-06-10 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びプログラム
WO2010098233A1 (ja) * 2009-02-24 2010-09-02 株式会社 日立メディコ 超音波診断装置及び弾性画像表示方法
JP2011078744A (ja) * 2009-09-10 2011-04-21 Sophia School Corp 変位計測方法及び装置、並びに、超音波診断装置
JP2012029722A (ja) * 2010-07-28 2012-02-16 Hitachi Aloka Medical Ltd 超音波診断装置
JP2012090821A (ja) * 2010-10-27 2012-05-17 Ge Medical Systems Global Technology Co Llc 超音波診断装置
WO2013153857A1 (ja) * 2012-04-13 2013-10-17 日立アロカメディカル株式会社 超音波診断装置及び軌跡表示方法
KR101495526B1 (ko) 2011-12-29 2015-02-26 삼성메디슨 주식회사 탄성 영상 제공 방법 및 탄성 영상 제공 장치
KR101501519B1 (ko) 2012-09-18 2015-03-18 삼성메디슨 주식회사 컬러 도플러 영상을 이용한 스캔 라인 가이드 방법 및 장치
KR101512291B1 (ko) 2013-05-06 2015-04-15 삼성메디슨 주식회사 의료 영상 장치 및 의료 영상 제공 방법

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913875B1 (fr) * 2007-03-21 2009-08-07 Echosens Sa Dispositif pour mesurer des proprietes viscoelastiques de tissus biologiques et procede utilisant ce dispositif
JP5127371B2 (ja) * 2007-08-31 2013-01-23 キヤノン株式会社 超音波画像診断システム、及びその制御方法
US20100256494A1 (en) * 2007-11-16 2010-10-07 Takashi Azuma Ultrasonic imaging system
US20090203997A1 (en) * 2008-02-07 2009-08-13 Kutay Ustuner Ultrasound displacement imaging with spatial compounding
US8403850B2 (en) * 2008-03-25 2013-03-26 Wisconsin Alumni Research Foundation Rapid two/three-dimensional sector strain imaging
US8989837B2 (en) 2009-12-01 2015-03-24 Kyma Medical Technologies Ltd. Methods and systems for determining fluid content of tissue
WO2010001564A1 (ja) * 2008-07-01 2010-01-07 パナソニック株式会社 超音波診断装置
WO2010024168A1 (ja) * 2008-08-29 2010-03-04 株式会社 日立メディコ 超音波診断装置
WO2010053156A1 (ja) * 2008-11-10 2010-05-14 国立大学法人京都大学 超音波診断システムおよび超音波診断装置
KR101107392B1 (ko) * 2009-04-10 2012-01-19 삼성메디슨 주식회사 가이드 정보를 제공하는 초음파 시스템 및 방법
JP5356140B2 (ja) * 2009-07-22 2013-12-04 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
US9161736B2 (en) * 2009-09-10 2015-10-20 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and elasticity image display method
JP5647990B2 (ja) * 2009-10-28 2015-01-07 株式会社日立メディコ 超音波診断装置及び画像構成方法
CA2782499A1 (en) 2009-12-01 2011-06-09 Kyma Medical Technologies Ltd. Locating features in the heart using radio frequency imaging
JP5509437B2 (ja) * 2010-03-01 2014-06-04 国立大学法人山口大学 超音波診断装置
WO2011114830A1 (ja) * 2010-03-19 2011-09-22 株式会社 日立メディコ 超音波診断装置及び超音波画像表示方法
CN102939050B (zh) * 2010-06-04 2015-04-01 株式会社日立医疗器械 超声波诊断装置以及超声波收发方法
TWI444210B (zh) * 2010-06-09 2014-07-11 Univ Chang Gung 一種具有超音波溫度影像及彈性影像之高能聚焦式超音波裝置及其使用方法
JP5993372B2 (ja) 2010-07-21 2016-09-14 キマ メディカル テクノロジーズ リミテッド 埋込み式誘電測定装置
JP5882217B2 (ja) * 2010-09-21 2016-03-09 株式会社日立メディコ 超音波診断装置および超音波画像の表示方法
JP5501999B2 (ja) * 2011-03-08 2014-05-28 富士フイルム株式会社 超音波診断装置および弾性指標信頼性判定方法
US20120259224A1 (en) * 2011-04-08 2012-10-11 Mon-Ju Wu Ultrasound Machine for Improved Longitudinal Tissue Analysis
CN102423264B (zh) * 2011-09-01 2014-05-21 中国科学院深圳先进技术研究院 基于图像的生物组织弹性的测量方法及装置
WO2013116809A1 (en) 2012-02-03 2013-08-08 Los Alamos National Security, Llc Ultrasound waveform tomography with tv regularization
WO2013116783A1 (en) 2012-02-03 2013-08-08 Los Alamos National Security, Llc Windowed time-reversal music technique for super-resolution ultrasound imaging
JP6084424B2 (ja) 2012-10-04 2017-02-22 東芝メディカルシステムズ株式会社 超音波診断装置
WO2014058238A1 (ko) * 2012-10-12 2014-04-17 삼성메디슨 주식회사 도플러 데이터를 이용한 초음파 영상 표시 방법 및 초음파 의료 장치
KR102070262B1 (ko) * 2012-11-29 2020-03-02 삼성전자주식회사 초음파 프로브 장치 및 그의 제어 방법
JP5908852B2 (ja) 2013-02-06 2016-04-26 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
JP2014176544A (ja) * 2013-03-15 2014-09-25 Seiko Epson Corp 超音波測定装置及び超音波画像装置
JP6309096B2 (ja) 2013-10-29 2018-04-11 キマ メディカル テクノロジーズ リミテッド アンテナシステムおよびデバイス、およびそれらの製造方法
EP3102100B1 (en) 2014-02-05 2023-08-09 ZOLL Medical Israel Ltd. Apparatuses for determining blood pressure
JP6333608B2 (ja) * 2014-04-16 2018-05-30 キヤノンメディカルシステムズ株式会社 超音波診断装置及び制御プログラム
JP6246098B2 (ja) * 2014-08-27 2017-12-13 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
WO2016040337A1 (en) 2014-09-08 2016-03-17 KYMA Medical Technologies, Inc. Monitoring and diagnostics systems and methods
WO2016081321A2 (en) 2014-11-18 2016-05-26 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US10905396B2 (en) 2014-11-18 2021-02-02 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
WO2016115175A1 (en) 2015-01-12 2016-07-21 KYMA Medical Technologies, Inc. Systems, apparatuses and methods for radio frequency-based attachment sensing
US11020002B2 (en) 2017-08-10 2021-06-01 Zoll Medical Israel Ltd. Systems, devices and methods for physiological monitoring of patients
JP7334486B2 (ja) * 2019-06-07 2023-08-29 コニカミノルタ株式会社 超音波診断装置、超音波診断装置の制御方法、及び、超音波診断装置の制御プログラム
FR3104736B1 (fr) * 2019-12-13 2022-12-09 Supersonic Imagine Procédé ultrasonore pour quantifier l’élasticité non linéaire par ondes de cisaillement d’un milieu, et dispositif pour mettre en œuvre ce procédé
US11810224B2 (en) * 2021-02-18 2023-11-07 GE Precision Healthcare LLC Method and system for transposing markers added to a first ultrasound imaging mode dataset to a second ultrasound imaging mode dataset

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060853A (ja) 1998-08-20 2000-02-29 Hitachi Medical Corp 超音波診断装置
JP2000271117A (ja) * 1999-03-25 2000-10-03 Aloka Co Ltd 超音波血管計測装置
JP2004351062A (ja) * 2003-05-30 2004-12-16 Hitachi Medical Corp 超音波診断装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3195056B2 (ja) * 1992-07-15 2001-08-06 フクダ電子株式会社 超音波診断装置
JP3182479B2 (ja) * 1993-08-12 2001-07-03 淑 中山 弾性計測装置
NO975111L (no) * 1996-11-08 1998-05-11 Atl Ultrasound Inc Billeddannede ultralyd-diagnosesystem med beregning av volumstr÷mning i sann tid
US6048317A (en) 1998-09-18 2000-04-11 Hewlett-Packard Company Method and apparatus for assisting a user in positioning an ultrasonic transducer
JP4768100B2 (ja) * 2000-04-25 2011-09-07 日立アロカメディカル株式会社 超音波診断装置
JP3464185B2 (ja) * 2000-02-10 2003-11-05 アロカ株式会社 超音波診断装置
EP1123687A3 (en) * 2000-02-10 2004-02-04 Aloka Co., Ltd. Ultrasonic diagnostic apparatus
US6508768B1 (en) * 2000-11-22 2003-01-21 University Of Kansas Medical Center Ultrasonic elasticity imaging
US20040034304A1 (en) 2001-12-21 2004-02-19 Chikayoshi Sumi Displacement measurement method and apparatus, strain measurement method and apparatus elasticity and visco-elasticity constants measurement apparatus, and the elasticity and visco-elasticity constants measurement apparatus-based treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060853A (ja) 1998-08-20 2000-02-29 Hitachi Medical Corp 超音波診断装置
JP2000271117A (ja) * 1999-03-25 2000-10-03 Aloka Co Ltd 超音波血管計測装置
JP2004351062A (ja) * 2003-05-30 2004-12-16 Hitachi Medical Corp 超音波診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1834588A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000588A (ja) * 2006-05-25 2008-01-10 Hitachi Medical Corp 超音波診断装置
JP2008237664A (ja) * 2007-03-28 2008-10-09 Hitachi Medical Corp 超音波診断装置
US8333699B2 (en) 2007-09-06 2012-12-18 Hitachi Medical Corporation Ultrasonograph
WO2009031327A1 (ja) 2007-09-06 2009-03-12 Hitachi Medical Corporation 超音波撮像装置
JP2010017556A (ja) * 2008-07-11 2010-01-28 General Electric Co <Ge> 対象物に対して超音波プローブを可視化するためのシステムおよび方法
JP2010124946A (ja) * 2008-11-26 2010-06-10 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びプログラム
US8734353B2 (en) 2009-02-24 2014-05-27 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and elastic image display method
WO2010098233A1 (ja) * 2009-02-24 2010-09-02 株式会社 日立メディコ 超音波診断装置及び弾性画像表示方法
JP5436533B2 (ja) * 2009-02-24 2014-03-05 株式会社日立メディコ 超音波診断装置及び弾性画像表示方法
JP2011078744A (ja) * 2009-09-10 2011-04-21 Sophia School Corp 変位計測方法及び装置、並びに、超音波診断装置
US9993228B2 (en) 2009-09-10 2018-06-12 Chikayoshi Sumi Displacement measurement method and apparatus, and ultrasonic diagnostic apparatus
US8956297B2 (en) 2009-09-10 2015-02-17 Chikayoshi Sumi Displacement measurement method and apparatus, and ultrasonic diagnostic apparatus
US11026660B2 (en) 2009-09-10 2021-06-08 Chikayoshi Sumi Displacement measurement method and apparatus, and ultrasonic diagnostic apparatus
JP2012029722A (ja) * 2010-07-28 2012-02-16 Hitachi Aloka Medical Ltd 超音波診断装置
JP2012090821A (ja) * 2010-10-27 2012-05-17 Ge Medical Systems Global Technology Co Llc 超音波診断装置
KR101495526B1 (ko) 2011-12-29 2015-02-26 삼성메디슨 주식회사 탄성 영상 제공 방법 및 탄성 영상 제공 장치
WO2013153857A1 (ja) * 2012-04-13 2013-10-17 日立アロカメディカル株式会社 超音波診断装置及び軌跡表示方法
JPWO2013153857A1 (ja) * 2012-04-13 2015-12-17 日立アロカメディカル株式会社 超音波診断装置及び軌跡表示方法
US9192358B2 (en) 2012-09-18 2015-11-24 Samsung Medison Co., Ltd. Method and apparatus for guiding scan line by using color doppler image
KR101501519B1 (ko) 2012-09-18 2015-03-18 삼성메디슨 주식회사 컬러 도플러 영상을 이용한 스캔 라인 가이드 방법 및 장치
KR101512291B1 (ko) 2013-05-06 2015-04-15 삼성메디슨 주식회사 의료 영상 장치 및 의료 영상 제공 방법
US10004477B2 (en) 2013-05-06 2018-06-26 Samsung Medison Co., Ltd. Medical imaging apparatus and method of providing medical images

Also Published As

Publication number Publication date
CN101094611B (zh) 2010-08-18
US7766836B2 (en) 2010-08-03
JPWO2006073088A1 (ja) 2008-06-12
EP1834588A1 (en) 2007-09-19
CN101094611A (zh) 2007-12-26
JP5496302B2 (ja) 2014-05-21
EP1834588A4 (en) 2009-03-11
JP2013034883A (ja) 2013-02-21
US20080081993A1 (en) 2008-04-03
EP1834588B1 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP5496302B2 (ja) 超音波診断装置
JP5559788B2 (ja) 超音波診断装置
EP1800603B1 (en) Method and apparatus for displaying elastic image and ultrasonograph
US8491475B2 (en) Ultrasonic diagnostic apparatus, ultrasonic diagnostic method, and imaging processing program for ultrasonic diagnostic apparatus
JP5371199B2 (ja) 超音波診断装置
JP4314035B2 (ja) 超音波診断装置
US8485976B2 (en) Ultrasonic diagnostic apparatus
JP5436533B2 (ja) 超音波診断装置及び弾性画像表示方法
JP4903271B2 (ja) 超音波撮像システム
US7766832B2 (en) Ultrasonic diagnostic device and image processing device
JP5438012B2 (ja) 超音波診断装置
JP2017136451A (ja) 超音波診断装置
WO2006040967A1 (ja) 超音波診断装置
JPWO2010024023A1 (ja) 超音波診断装置及び超音波画像表示方法
WO2011001776A1 (ja) 超音波診断装置、せん断波の伝搬画像生成方法
JP4889540B2 (ja) 超音波診断装置
JP4368185B2 (ja) 超音波診断装置
US20140180090A1 (en) Ultrasound diagnostic apparatus, tissue elasticity measurement method, and recording medium
JP4601413B2 (ja) 超音波診断装置
US11051789B2 (en) Ultrasound image diagnostic apparatus
JP5337446B2 (ja) 超音波画像診断装置、画像処理装置及び超音波画像診断支援プログラム
WO2013073514A1 (ja) 超音波診断装置及び方法
EP3357428B1 (en) Acoustic wave diagnostic device and method for controlling same
JP2007159945A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550791

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005822712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11813291

Country of ref document: US

Ref document number: 200580045865.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005822712

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11813291

Country of ref document: US