[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006070941A1 - 蛍光分子プローブを用いた新規薬剤スクリーニング方法 - Google Patents

蛍光分子プローブを用いた新規薬剤スクリーニング方法 Download PDF

Info

Publication number
WO2006070941A1
WO2006070941A1 PCT/JP2005/024274 JP2005024274W WO2006070941A1 WO 2006070941 A1 WO2006070941 A1 WO 2006070941A1 JP 2005024274 W JP2005024274 W JP 2005024274W WO 2006070941 A1 WO2006070941 A1 WO 2006070941A1
Authority
WO
WIPO (PCT)
Prior art keywords
target molecule
fluorescent
compound
fluorescence
molecular probe
Prior art date
Application number
PCT/JP2005/024274
Other languages
English (en)
French (fr)
Inventor
Seiichi Tanuma
Atsushi Yoshimori
Original Assignee
Tokyo University Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University Of Science filed Critical Tokyo University Of Science
Priority to JP2006550880A priority Critical patent/JP5099675B2/ja
Publication of WO2006070941A1 publication Critical patent/WO2006070941A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Definitions

  • the present invention relates to a fluorescence analysis method using a fluorescent molecular probe having intrinsic fluorescence, and further relates to a drug discovery screening system using the probe.
  • a ligand labeled with a fluorescent compound As a method for analyzing the interaction between a protein such as a receptor and the protein and a ligand, a ligand labeled with a fluorescent compound has been conventionally used. For example, in the case of screening a compound that can be a drug candidate that interacts with a specific receptor protein, a compound that is known to interact with the protein is labeled with a fluorescent substance, and the fluorescent substance The drug candidate compound competed for binding to the target protein, and the drug candidate compound that interacts with the protein was screened. In this case, for example, the target substance protein is immobilized on a plate or the like, a fluorescent label ligand is bound to the immobilized protein, and the interaction is studied. However, by solidifying the protein, the three-dimensional structure of the protein changes from the structure in the natural state, so that interactions occurring in the living body could not be correctly analyzed.
  • single-molecule fluorescence analysis methods such as fluorescence correlation spectroscopy, fluorescence intensity distribution analysis, or fluorescence polarization analysis have been developed as methods for analyzing interactions in solution without solidifying proteins (W02002). / 048693 International Publication Pamphlet and JP
  • the compound is labeled with a fluorescent substance and used.
  • various methods for labeling compounds with fluorescent substances have been established, it takes time and money to label, and it has not been easy to analyze the interaction of many target proteins.
  • fluorescent substances are bonded to the compounds by covalent bonds using the functional groups of the compounds.
  • the three-dimensional structure of the compounds changes and is not labeled by binding the fluorescent substances. Compared to the case, there was a problem that the binding affinity with the protein was lowered.
  • the present invention searches for a compound that interacts with a target protein and has intrinsic fluorescence, and uses the compound to determine the interaction between the target protein and the compound.
  • the purpose is to provide an analysis method, an analysis device, and an analysis kit.
  • a compound that can interact with a target molecule by screening a fluorescent molecular probe, which is a compound that has unique fluorescence from a compound library containing a wide variety of compounds and can bind to a specific target molecule. It was found that this screening can be performed without causing the above problems. That is, the present inventors select a compound having intrinsic fluorescence from one compound library, construct a fluorescence probe library, and then perform a target by performing docking studies on a computer from the fluorescence probe library.
  • the aspect of this invention is as follows.
  • a screening method for a compound capable of interacting with a target molecule wherein a ligand capable of binding to the target molecule and having intrinsic fluorescence without being fluorescently labeled is used as a fluorescent molecular probe
  • a method for screening a compound capable of interacting with a target molecule comprising competitively reacting a candidate compound in binding to the target molecule, and selecting a compound that competes with the fluorescent molecular probe by fluorescence analysis.
  • [2] The method for screening a compound capable of interacting with the target molecule of [1], wherein the target molecule is a protein.
  • [3] Measure the competition in the binding of the fluorescent molecular probe and the candidate compound to the target molecule using the change in the fluorescent signal due to the binding of the fluorescent molecular probe and the target molecule in solution as an index [1] or [2] A method for screening compounds capable of interacting with a target molecule.
  • [5] A method for screening a compound capable of interacting with any one of the target molecules according to any one of [1] to [4], wherein the fluorescent molecular probe is selected from a compound library using the binding property to the target molecule as an index.
  • Fluorescent molecular probes are selected from a docking study with a target molecule from a fluorescent probe library constructed by selecting molecules with intrinsic fluorescence from a compound library, or further structurally optimized. [1] ⁇
  • [5] A screening method for a compound capable of interacting with any of the target molecules.
  • [7] A method for screening a compound capable of interacting with a target molecule according to [6], wherein the construction of a fluorescent probe library from one compound library is performed by at least one of the following methods (a) to (c): .
  • a compound having a fluorophore as a partial structure is selected from the structural formula of the compound
  • a desired binding constant between the target molecule and the fluorescent molecular probe is set in advance. If the binding constant between the target molecule and the fluorescent molecular probe is larger than the set desired binding constant, the fluorescent molecular probe is targeted.
  • [10] Preliminarily measure the optimum excitation wavelength and the optimum fluorescence wavelength of the fluorescent molecular probe, excite the fluorescent molecular probe at a wavelength near the optimum excitation wavelength, and detect fluorescence at a wavelength near the optimum fluorescence wavelength.
  • a fluorescence analyzer for screening a light irradiation means capable of continuously irradiating light of the wavelength of the excitation light of the target molecule-specific fluorescent molecule probe to be used; Photodetection means capable of continuously detecting the wavelength of the fluorescence light of the specific fluorescent molecular probe, photodetection means capable of continuously changing the wavelength of the detection light, reaction means for causing a competitive reaction between the fluorescent molecular probe and the candidate compound in the binding of the target molecule Including a fluorescence analyzer.
  • the wavelength of the irradiation light and the wavelength of the detection light can be changed according to the excitation wavelength and fluorescence wavelength of the target molecule-specific fluorescent molecular probe measured in advance.
  • reaction means is a reaction vessel that causes a competitive reaction between a fluorescent molecular probe and a candidate compound in a solution in a solution.
  • a kit for screening for a compound capable of interacting with a target molecule comprising a target molecule-specific fluorescent molecular probe which is a fluorescent ligand.
  • Fluorescent molecular probes are selected from a fluorescent probe library constructed by selecting a molecule with intrinsic fluorescence from a compound library by docking studies with the target molecule, or further structural optimization A kit for screening for a compound capable of interacting with the target molecule of any one of [16] to [18].
  • Construction of a fluorescent probe library from a compound library is performed by at least one of the following methods (a) to (c): [19] Kit for screening for compounds that can interact with the target molecule .
  • a compound having a fluorophore as a partial structure is selected from the structural formula of the compound
  • [2 1] A kit for screening a compound capable of interacting with a target molecule according to [19] or [20], wherein the structure of the fluorescent molecular probe is optimized by introducing a substituent.
  • Figure 1 shows a conceptual diagram of the construction of a fluorescent probe library.
  • Figure 2 shows a conceptual diagram of how to select the optimal fluorescent molecular probe.
  • FIG. 3 is a conceptual diagram of a method for selecting an optimal fluorescent molecular probe, and shows that a fluorescent molecular probe having a unique excitation and fluorescent wavelength exists for each target molecule.
  • FIG. 4 shows a conceptual diagram of a method for selecting a compound that can interact with a target molecule.
  • FIG. 5 is a diagram showing the configuration of the apparatus of the present invention.
  • FIG. 6 shows the three-dimensional structure of DNase r.
  • FIG. 7 shows the structure of R396842, the optimal fluorescent molecular probe for DNase r.
  • FIG. 8 is a diagram showing the binding of DNase r and the optimal fluorescent probe.
  • FIG. 9 is a diagram showing the dissociation of DNase and the optimal fluorescent probe DR396842 complex by ATA (Aut in Tricarboxyl Acid). Explanation of symbols
  • the target molecule is not limited, and includes molecules that interact with all other substances existing in the living body.
  • the target molecule is preferably DNA, RNA, or protein, more preferably a protein, and particularly preferably a receptor protein that can interact with a specific ligand.
  • Receptor proteins interact with specific ligands, transmit receptor signals, and cause various reactions in vivo.
  • the receptor protein signal is associated with various diseases in the living body.
  • the compound that interacts with the receptor protein can function as a prophylactic or therapeutic agent for diseases by controlling the signal transduction of the receptor protein in vivo.
  • a protein as a target molecule DNase, G protein coupled receptor etc.
  • the compound that can interact with the target molecule is, for example, a ligand compound that can interact with the target molecule.
  • a ligand compound refers to a low molecular weight compound that binds to a biopolymer such as a protein.
  • a ligand compound that can interact with a target molecule refers to a ligand compound that can bind to a target molecule and activate or inhibit the function of the target molecule.
  • the ligand compound can act as an agonist or antagonist.
  • An agonist refers to a substance that binds to a receptor and exhibits various physiological functions
  • an antagonist refers to a substance that binds to a receptor and inhibits the effect of agonis.
  • the type of compound, molecular weight, etc. are not limited.
  • a compound to be screened interacts with a specific protein such as a receptor, exhibits a physiological effect, and can be used as a prophylactic or therapeutic agent for a disease associated with the receptor. It is expected.
  • the compound can also be used as a lead compound in drug discovery.
  • a ligand that is inherently fluorescent and capable of interacting with a target molecule without using a fluorescent label is used.
  • This ligand is referred to as a fluorescent molecular probe in the present invention.
  • Fluorescent molecular probes are prepared for each target molecule as being capable of interacting specifically with the target molecule.
  • the fluorescent molecular probe used in the present invention is 450! A compound having an excitation / fluorescence wavelength within a wavelength range of ⁇ 650 mn.
  • the fluorescent molecular probe is prepared as follows.
  • a compound having intrinsic fluorescence is selected from the compound library.
  • a compound library is a library that includes chemical formula structures and three-dimensional structure information of compounds with known structures.
  • the compound library includes not only a collection of compounds containing commercially available reagents and natural substances, but also a database constructed on a computer storing compound information.
  • a compound library contains information on millions of compounds. As a compound library, various compounds stored in existing databases can be used. One huge library of millions of compounds is also commercially available, and one of these commercially available libraries may be used.
  • a partial structure search fluorescence / absorption spectrum prediction or actual measurement using a light absorption analyzer, select a fluorescent compound that emits fluorescence uniquely, Build a fluorescent probe library.
  • a compound having a fluorophore as a partial structure is searched.
  • the fluorophore include a xanthene skeleton, an azobenzene skeleton, a benzofuran skeleton, an indole skeleton, and an anthracene skeleton.
  • the partial structure search may be performed by using a chemical structure as an index from a catalog of known compounds, literature, etc., not only using a database storing a compound library.
  • the fluorescence / absorption spectrum is predicted from the molecular structure information of the above compound library.
  • the prediction can be performed by, for example, molecular orbital calculation.
  • Molecular orbital means the existence probability distribution of electrons in a molecule. By calculating the molecular orbitals, it is possible to know how much energy electrons are present in the molecule. By examining the energy distribution, it is possible to predict optical properties such as light absorption.
  • the spectrum calculation by the M0S-F program is described, for example, by L Abe and Y. Shirai, J. Am. Chem. So, 118, 4705 (1996), J. Abe,
  • the compounds contained in the compound library are obtained, and the fluorescence / excitation wavelength of the compound is actually measured using a commercially available optical absorption analyzer, and the fluorescent compound is selected.
  • Figure 1 shows a conceptual diagram of the construction of a fluorescent molecular probe library.
  • a fluorescent molecule having affinity with the target molecule is selected for each target molecule.
  • a fluorescent molecular probe having affinity for a target molecule is called a target molecule-specific fluorescent molecular probe, and has a high affinity for the finally selected target molecule, and is inherently fluorescent.
  • the fluorescent molecular probe is called an optimal fluorescent molecular probe.
  • To select the optimal fluorescent probe from the fluorescent probe library first select a binding fluorescent molecular probe that can bind to the target molecule from the fluorescent probe library, and construct a binding fluorescent probe library. Whether or not the fluorescent molecular probe contained in the fluorescent probe library binds to the target molecule may be determined by a docking study, for example.
  • Docking study 1 refers to a method of predicting the complex structure by virtually binding a target molecule to a drug discovery target and a ligand on a computer, calculating its binding affinity score.
  • the calculation of the binding affinity score includes a force field-based scoring function, an empirical scoring function, and a knowledge-based scoring function ( Golke H et al., Angew Chem. Int. Ed. Engl. (2002) 41, 2644-2676) 0
  • 3D structure information can be obtained from 3D structure databases such as Protein Data Bank (tt: //www.rcsb.org/pd.
  • the 3D structure of the target molecule is not registered in the 3D structure database.
  • the predicted three-dimensional structure can be constructed using the homology modeling method based on the three-dimensional structure of the related molecule, where homology modeling is based on the three-dimensional structure of proteins with sequence homology.
  • the homology modeling the amino acid sequence of the protein to be modeled is determined, and the portion having the secondary structure or the loop portion is predicted, and then the homology search is performed.
  • a homology search searches for homology with a known domain, and if the sequence is short, it is performed with the same length, and if the sequence is long, the appropriate length is selected. Next, identify the protein structure to be cocoon-shaped, and select rational ones that have high sequence homology and low homology. In addition, the type information used for homology modeling is organized, the three-dimensional structure of the protein is displayed, and the amino acid sequence is aligned with the type 3 on the modeling software. Homology modeling can be performed using the above docking study software program, and there are various homology modeling software programs (for example, , PDFAMS Pro,
  • PDFAMS Ligand can also be used.
  • any site such as an active site or interaction site may be specified.
  • a docking study is performed using the fluorescent compound in the fluorescent probe library and the three-dimensional structure of the target site, and a binding compound is selected and stored in the binding fluorescent probe library.
  • Various algorithms can be used in the docking day. For example, the shape-oriented docking algorithm compares the shape of the binding site with the generated multiple ligand conformations one by one using a shape comparison filter, and finds the optimal ligand position that matches each other. Explore.
  • the poses identified by Phil Yuichi are then minimized by evaluating the interaction energy between the protein and the ligand at the binding site using a dalid-based approach. Energy grid The error caused by using is greatly reduced by non-linear interpolation. If a small ligand candidate is desired in comparison with the binding site, site binding may be performed by dividing the binding site into smaller sections and docking.
  • site binding may be performed by dividing the binding site into smaller sections and docking.
  • the steps of constructing a compound library, a fluorescent probe library, and a binding fluorescent probe library are performed, and the structure optimization described later is performed appropriately, so that a fluorescent molecular probe for an arbitrary target library can be obtained. Can be selected.
  • the actual compound selected from the fluorescent probe library is obtained, and a fluorescent molecular probe that binds to the target molecule is identified using an in vitro assay corresponding to the target molecule.
  • the fluorescent molecular probe is used as the optimal fluorescent molecular probe.
  • the selected fluorescent probe is used as a parent, introducing a wide variety of substituents into the mother, diversifying the mother, and further conducting a docking study And determine the substituents that enhance the affinity. Synthesize fluorescent molecular probe with high affinity and perform in vitro assay again. Until a compound with the required affinity is obtained, diversification of the personality, docking study and in vitro assembly are repeated, and finally an optimal fluorescent molecular probe is obtained.
  • an optimal fluorescent molecular probe is a compound that emits sufficient fluorescence to study the interaction between a target molecule and a compound, and can bind to the target molecule with an affinity greater than the set affinity.
  • Fig. 2 and Fig. 3 show a conceptual diagram of the method for selecting the optimal fluorescent molecular probe. Fig. 3 shows that each target molecule (A, B, C, etc. in Fig. 3) has a fluorescent molecular probe (a, b, c, etc. in Fig.
  • This screening is performed by utilizing a phenomenon in which a fluorescent molecular probe and a candidate compound that is a drug candidate compete and bind to a target site of a target molecule. That is, when the compound of interest binds to the target site, the fluorescent molecular probe cannot be bound to the target site and is released. Therefore, the degree of binding of the compound to the target molecule can be quantitatively measured based on the abundance ratio between the target molecule fluorescent molecule probe complex and the free fluorescent molecule probe.
  • the fluctuation of the fluorescence signal refers to the change in the signal that can be detected by the binding of the fluorescent molecule probe and the target molecule.
  • the fluorescence intensity by the single molecule fluorescence analysis method or the fluorescence polarization analysis method is used.
  • changes in fluorescence intensity detected after separating a complex of a fluorescent molecular probe and a target molecule and a free fluorescent molecular probe is used.
  • a target molecule is solid-phased on a solid phase carrier such as 96 well plate, and a fluorescent molecule probe that is an optimal fluorescent molecular probe for the target molecule and a fixed amount of candidate compound on the solid-phased target molecule.
  • the fluorescent molecular probe and the candidate compound are allowed to compete for binding to the target molecule, and the free fluorescent molecular probe and the target molecule Z fluorescent molecular probe complex are separated and bound to the immobilized target molecule.
  • the excitation and fluorescence wavelengths characteristic of the fluorescent molecule are used to determine the interaction between the candidate compound and the target molecule.
  • a standard curve may be prepared by measuring in advance fluorescence when a certain amount of fluorescent molecular probe is bound to the target molecule.
  • the target molecule is solid-phased, the three-dimensional structure of the target molecule is often different from the natural three-dimensional structure when it exists in the living body, and in vitro between the solid-phased target molecule and the candidate compound. Interactions are not limited to reflecting interactions in vivo.
  • fluorescent molecular probes are low-molecular compounds, and the molecular weights of target molecules and fluorescent molecular probes are often very different, and it is often difficult to separate the complex as described above from free fluorescent molecular probes. .
  • Single-molecule fluorescence analysis is a method that can detect fluorescent molecules at the single molecule level, and measures fluorescence fluctuations when fluorescent molecular probes and target molecules bind in solution. Capturing the binding between a molecular probe and a target molecule.
  • Single-molecule fluorescence analysis is performed by measuring the fluctuation motion of fluorescent molecules entering and exiting a small confocal region and analyzing the data obtained by this measurement using functions.
  • Single molecule fluorescence analysis includes fluorescence correlation spectroscopy
  • Fluorescence correlation spectroscopy is a method for measuring the micromotion of individual probe molecules by measuring the fluctuation motion of a fluorescent molecular probe in a solution and using an autocorrelation function (D. Magde et al., Biopolymers 1974 13 (1)
  • Fluorescence correlation spectroscopy uses a laser confocal microscope to capture the Brownian motion of a fluorescent molecular probe in a solution in a very small area, thereby analyzing the diffusion time from the fluctuation of fluorescence intensity and measuring physical quantities (number of molecules and size). Is done. In fluorescence correlation spectroscopy, it is only necessary to detect and quantify a fluorescent signal generated from a small visual field in a sample. Since the fluorescently labeled target molecules in the medium are always in motion (Brownian motion), the detected fluorescence intensity depends on the frequency with which the target molecules enter the micro-field region and the time for which they remain in the region. Changes.
  • the molecular weight of the complex that emits fluorescence is large, so the movement of the molecule becomes slow and the apparent number of molecules decreases. As a result, it falls within the micro field of view. The frequency of coming in decreases, and as a result, the fluorescence intensity changes.
  • the binding between the target molecule and the fluorescent molecular probe can be detected.
  • the sample is irradiated with laser, the excitation light of the fluorescent molecules emitted from the sample is measured with a high-sensitivity photo detector, and the measured fluorescence signal is resolved in a very short time of 40 xs.
  • Fluorescence intensity multi-distribution analysis is the simultaneous analysis of fluorescence correlation spectroscopy and fluorescence intensity distribution analysis, and provides data on the translational diffusion time, number of molecules, and fluorescence intensity per molecule (brightness) at once. (K Palo, Biophysical Journal, 79, 2858-2866, 2000).
  • Single-molecule fluorescence analysis can be performed according to the description in JP 2003-275000 A, JP 2003-279566 A, W02002 / 048693 International Publications, etc. Further, it can be carried out using a commercially available single molecule fluorescence analyzer such as MF20 / MF10S manufactured by Olympus.
  • the method of the present invention uses fluorescent molecular probes having various excitation / fluorescence wavelengths that can bind to various target molecules, and therefore the excitation wavelength and the fluorescence wavelength must be continuously variable. There is.
  • compounds can be screened by fluorescence ellipsometry.
  • fluorescence polarization analysis method when a fluorescent molecule in a liquid is excited by plane-polarized light, it emits fluorescence in the same polarization plane when the fluorophore in the fluorescent molecule is in an excited state and a steady state. This is an analysis method using the fact that when a fluorescent molecule moves, such as rotating, during the excited state of the group, fluorescence is emitted to a plane different from the excitation plane and the fluorescence polarization is canceled (J. Horinaka et al., Polym. L, 31, 172 (1999); J. Hor inaka et al., Co immediately.
  • the movement of the molecule is affected by the molecular weight, and if the fluorescent molecule is a small molecule, the movement speed is Since it is fast, the polarization of fluorescence is eliminated and the degree of fluorescence polarization is small.
  • the movement of molecules during the excited state decreases, so that the fluorescence cannot be depolarized and exhibits a large degree of fluorescence polarization.
  • the binding between the fluorescent molecular probe and the target molecule can be detected by measuring the fluorescence polarization when the fluorescent molecular probe is bound to the target molecule.
  • the excitation light is irradiated through a polarizing filter, and the fluorescence emitted by the fluorescent molecular probe is emitted on both the vertical polarization plane perpendicular to the polarization plane of the excitation light and the horizontal polarization plane horizontal. taking measurement.
  • the degree of fluorescence polarization can be determined by the formula (fluorescence intensity of parallel polarization plane vs. fluorescence intensity of vertical polarization plane) / (fluorescence intensity of parallel polarization plane + fluorescence intensity of vertical polarization plane).
  • the solution may be performed in a solution capable of binding the candidate compound and the target molecule, such as physiological saline or a phosphate buffer near neutrality. Can be used. Reaction conditions such as temperature, pH, and reaction time at this time may be set as appropriate according to the type of target molecule.
  • the apparatus of the present invention is preferably an apparatus capable of performing multi-well assay using a 96 well plate or the like and performing high-throughput screening.
  • the amount of target molecule, fluorescent molecular probe, and candidate compound in the case of performing a competitive reaction may be set as appropriate depending on the type of target molecule, the affinity of the fluorescent molecular probe to the target molecule, etc.
  • the target molecule has a final concentration of 0 . O lnM lOO ⁇ M degree, preferably 0.1
  • candidate compounds to be added to the solution have a final concentration of 0.01 nM
  • the fluorescent molecular probe added to the solution is about I OO M, preferably about 0.1 to 10 M, more preferably about 0.01 to 100 nM, and still more preferably about 0.1 to 50 ⁇ .
  • the fluorescent molecular probe added to the solution is
  • the reaction of the target molecule, the fluorescent molecular probe and the candidate compound may be performed in an appropriate container such as a test tube, a well, or a cell.
  • the container size is not limited, since the reaction is carried out in several tens of il to several mL, it is sufficient to use a container that can accommodate an amount in that range.
  • a fluorescent molecular probe is used for each target molecule. Since the excitation wavelength and the fluorescence wavelength are different, the fluorescence is detected by changing the excitation wavelength and the detection wavelength for each fluorescent molecular probe. As excitation light, 450nn!
  • a filter such as a bandpass filter that passes only light of a desired wavelength or a beam split filter. You can also change the wavelength using a spectroscope.
  • a spectrometer any of a spectrometer using an optical filter, a dispersion spectrometer, and a Fourier transform spectrometer can be used.
  • a wavelength tunable laser such as an optical parametric laser (0P0 laser) may be used.
  • the fluorescence emitted by the fluorescent molecular probe may be detected by a photodetector through a band-pass filter that passes only light of the wavelength of the fluorescence.
  • the excitation wavelength and the detection wavelength of the light used need not be completely the same as the optimum excitation wavelength and the fluorescence wavelength of the fluorescent molecular probe, and may be a wavelength in the vicinity of the optimum wavelength.
  • the excitation wavelength and the detection wavelength to be used may be within the range of ⁇ 30 nm, preferably ⁇ 20 nm, more preferably ⁇ 10 nm of the optimum excitation wavelength.
  • the abundance ratio between the candidate compound bound to the target molecule and the candidate compound existing in a free state in the reaction solution can be measured, and the binding of the candidate compound to the target molecule is facilitated.
  • (Affinity) can be determined as a binding constant.
  • the binding constant between the candidate compound and the target molecule is z DT, and the binding constant between the target molecule and the fluorescent molecule probe is y — 1 ]
  • the candidate compound satisfying the formula z / y> l is obtained. Select as drug candidate compound.
  • the IC 5D value obtained by the competitive inhibition experiment of the compound capable of interacting with the target molecule screened by the method of the present invention is about the following.
  • FIG. 4 shows a conceptual diagram of a method for selecting a compound that can interact with a target molecule in the present invention.
  • the drug candidate compound selected from the candidate compounds may be subjected to further structural optimization.
  • the selected drug compound is used as a lead compound for drug discovery.
  • the lead compound structure is optimized by substituting and modifying the functional group of the lead compound, creating compounds having various structures, and measuring the binding ability of these compounds to the target molecule.
  • Structural optimization can be performed by combining docking simulation and actual measurement as described above.
  • the present invention is a screening for a compound capable of interacting with a target molecule, wherein a ligand that is capable of binding to the target molecule and has intrinsic fluorescence without being fluorescently labeled is used as the target molecule-specific fluorescent molecule probe. It also includes a fluorescence analyzer for screening.
  • the apparatus of the present invention comprises at least a light irradiation means capable of continuously irradiating light having the wavelength of the excitation light of a target molecule-specific fluorescent molecular probe to be used, and capable of continuously changing the wavelength of the irradiated light, and a target molecule-specific fluorescent molecule to be used Photodetection means capable of continuously detecting the wavelength of the detection light that can detect the light having the fluorescence wavelength of the probe, and reaction means for causing a competitive reaction between the fluorescent molecular probe and the candidate compound in binding to the target molecule.
  • the light irradiation means has a light source that can irradiate excitation light, and 450 nn!
  • a light source that can excite a fluorescent material such as an argon ion laser, a helium neon laser, krypton, xenon, helium and a force dome laser, which has a wavelength range of ⁇ 650 mn may be used.
  • a filter such as a bandpass filter that allows only light of the desired wavelength to pass through, and a beam splitter. It is also possible to change the wavelength using a spectroscope.
  • any spectroscope using an optical filter, a dispersive spectroscope, or a Fourier transform spectroscope can be used.
  • a wavelength tunable laser such as an optical parametric laser (0P0 laser) may be used.
  • the wavelength of the irradiation light that can be irradiated with the light of the excitation light wavelength of the target molecule-specific fluorescent molecular probe is continuously changed.
  • the light detection means is a means capable of detecting fluorescence of a specific wavelength, and includes a light detector such as a photodiode.
  • the fluorescence emitted by the fluorescent molecular probe may be detected by a photodetector through a pass-pass filter that passes only light of the fluorescence wavelength.
  • a reaction means for competitively reacting a fluorescent molecule probe and a candidate compound in binding to a target molecule is a reaction volume. Test tubes, wells, cells, etc. may be used.
  • the reaction means is preferably capable of multi-assembling such as a multi-well plate so that multiple samples can be assayed at once.
  • the reaction means also includes a reaction vessel table for containing the reaction vessel.
  • the apparatus of the present invention includes data processing means, and can process the data of the above-described single molecule fluorescence analysis and fluorescence polarization analysis.
  • the apparatus of the present invention may be an automated apparatus so that a large number of specimens can be measured. In this case, the reaction vessel, reagent dispensing means, data processing means, etc.
  • FIG. 5 shows an example of the configuration of the apparatus of the present invention, but the apparatus of the present invention is not limited by the figure.
  • a light irradiation means (light source) 1 that irradiates excitation light
  • a filter 2 that changes the wavelength of the excitation light
  • a light detection means 3 that detects fluorescence emitted from a fluorescent molecular probe, and a wavelength of fluorescence.
  • It includes a changing filter 4, a mirror 5 for changing the optical path, a lens 6 for collecting light, and a reaction means 7.
  • the arrow in Fig. 5 indicates the optical path.
  • a confocal microscope may be installed at the lens 6 portion.
  • the present invention includes a screening kit for compounds capable of interacting with a target molecule.
  • the kit includes a target molecule and a target molecule-specific fluorescent molecule probe that is capable of binding to the target molecule and is a ligand that is intrinsically fluorescent without fluorescent labeling.
  • the target molecule is not limited and includes biopolymers such as DNA, RNA, and protein.
  • a target molecule-specific fluorescent molecule probe that can bind to the target molecule and has intrinsic fluorescence without fluorescent labeling constructs a fluorescent molecule probe library from a compound library as described above, and It can be obtained by measuring the binding affinity with the target molecule.
  • the kit of the present invention includes a reaction buffer and the like.
  • a plurality of target molecules and target molecule-specific fluorescent molecular probes for each target molecule may be included.
  • the same binding site for one target molecule may be included.
  • a plurality of target molecule-specific fluorescent molecular probes that can bind to different binding sites may be included.
  • DNase r is an endonuclease with a molecular weight of 33 kDa and an optimum pH of 7.2.
  • the DNasel family to which DNase belongs is currently known in four types: DNaseI, DNaseX, DNasea, and DNASIL2. Furthermore, it has been shown that only DNase r can be activated by inducing apoptosis in cells and causing DNA fragmentation in units of nucleosomes. However, it is known that DNA fragmentation at the nucleosome unit in apoptosis is catalyzed by multiple DNases such as CAD and endonuc leaseG in addition to DNase r. There are many unclear points about how they are properly used depending on the type and state of separation.
  • DNase r inhibitors that specifically inhibit DNase T and suppress DNA fragmentation during apoptosis are important tools for elucidating the mechanism of action and physiological functions of DNase r in vivo. In addition, it is expected to act as a DNA protective agent in apoptosis that is enhanced by disease.
  • DNase r inhibitors were screened using the method of the present invention.
  • the compound library was constructed by collecting libraries provided by suppliers of screening compounds and general reagents.
  • a fluorescent molecular probe library containing about 2000 kinds of compounds was constructed by partial structure search, fluorescence 'absorption spectrum prediction or actual measurement using a light absorption analyzer.
  • the fluorescent molecule probe library is used for docking on a computer, and as a DNaser-specific binding fluorescent molecule probe, R396842 (obtained from Sigma Aldricli) with xanthene skeleton is the optimal fluorescent molecule. Identified as a professional. At this time, 1 X 10 M— was set in advance as a desirable coupling constant. chosen
  • the binding constant of R396842 was 3. 13 X 10 5 [M-li.
  • Figure 7 shows the structural formula of 39684.
  • the program used for docking simulation was AutoDock3.0.
  • the optimum excitation wavelength and fluorescence wavelength of R396842 were measured using Gemini manufactured by Molecular Devices, they were 468.5 nm and 514.5 mn, respectively. From this value, fluorescence was detected using a 488 nm Ar laser as the excitation light and a 510-560 nm band filter.
  • As a fluorescence analyzer Olympus MF20, which is a single molecule fluorescence analyzer, was used.
  • the binding of both was measured using 2 nM R396842 and 0, 3 and IOM DNase.
  • the buffer used was 50 mM Mops-NaOH (pH 7.2).
  • the abundance was calculated using the two-component fitting analysis in the MF20 software.
  • the DNaser concentration was set to 3 x M
  • the R396842 concentration was set to 2 nM
  • ATA a known inhibitor of DNaser (obtained from Aut in Tricarboxylic Acid, Wako Pure Chemical Industries, Ltd.) Were added at concentrations of 0, 3 and 10 / M and a competition experiment was performed.
  • Figure 9 shows the results.
  • the abundance of DNase r and the optimal fluorescent molecular probe complex decreased depending on the ATA concentration. This result indicates that ATA binds to the target site of DNase r competitively with the optimal fluorescent molecular probe.
  • a compound that has intrinsic fluorescence and can interact with a target molecule without using a fluorescent label for a ligand that binds to the target molecule can be used as a molecular probe. Can be screened.
  • fluorescent labeling of ligands is difficult to fluorescently label, and there is a problem of reduced cost and ligand reactivity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 標的タンパク質と相互作用し、かつ固有の蛍光性を有する化合物を探索し、該化合物を用いて標的タンパク質と化合物との相互作用を解析する方法、解析する装置および解析するキットの提供。 標的分子に相互作用し得る化合物のスクリーニング方法であって、該標的分子に結合し得、蛍光ラベルすることなく固有に蛍光性を有するリガンドを蛍光分子プローブとして用い、該蛍光分子プローブと候補化合物を標的分子への結合において競合反応させること、および前記蛍光分子プローブと競合する化合物を蛍光分析により選択することを含む、標的分子に相互作用し得る化合物のスクリーニング方法。

Description

明 細 書 蛍光分子プローブを用いた新規薬剤スクリーニング方法 技術分野
本発明は、 固有に蛍光性を有する蛍光分子プローブを用いた蛍光分析方法に関 し、 さらに該プローブを用いた創薬スクリーニング系に関する。 背景技術
レセプ夕一等のタンパク質と該タンパク質とリガンドとの相互作用の解析方法 として、従来より蛍光性化合物でラベル(標識)したリガンドが用いられていた。 例えば、 特定のレセプ夕一タンパク質と相互作用する、 薬剤候補となり得る化合 物をスクリーニングする場合、 前記タンパク質と相互作用することが知られてい る化合物を蛍光性物質で標識し、 該蛍光性物質と薬剤候補化合物を標的タンパク 質への結合において、 競合させ、 タンパク質と相互作用する薬剤候補化合物をス クリーニングしていた。 この場合、 例えば、 標的物質であるタンパク質をプレー ト等に固相化し、 該固相化タンパク質へ蛍光ラベルリガンドを結合させ、 相互作 用の検討が行われていた。 しかしながら、 タンパク質を固相化することにより、 タンパク質の立体構造が天然状態の構造とは変化する等により、 生体内で起こる 相互作用を正しく解析することはできなかった。
そこで、 タンパク質を固相化することなく、 溶液中で相互作用を解析する方法 として、 蛍光相関分光法、 蛍光強度分布解析法または蛍光偏光解析法等の 1分子 蛍光分析法が開発された (W02002/048693 号国際公開パンフレットおよび特開
2003- 275GG0号公報参照)。
しかしながら、 上記 1分子蛍光分析法も含めて、 従来の蛍光性化合物を用いた タンパク質と化合物の相互作用の解析においては、 化合物を TAMRA等の蛍光性化 合物でラベルして用いていた。 これは、 特定の標的タンパク質に結合する化合物 であって固有の蛍光を発しえる化合物が存在しなかったこめである。 また、 蛍光 性物質を用いて他の化合物をラベルする方法も種々報告されており、 蛍光性化合 物を用いたタンパク質とリガンドとの相互作用解析において、 タンパク質と相互 作用し得る化合物を蛍光ラベルして用いるのが、 標準的方法として確立されてい る。 発明の開示
上記のように、 従来のタンパク質と化合物の相互作用の解析において、 化合物 を蛍光性物質でラベルして用いていた。 しかしながら、 化合物を蛍光性物質でラ ベルする方法は、種々確立されているものの、ラベルには手間とコス卜がかかり、 多数の標的タンパク質の相互作用の解析を行うのは容易ではなかった。 また、 蛍 光性物質は化合物の官能基を利用した共有結合により該化合物に結合させるが、 低分子化合物等においては、 蛍光性物質を結合させることにより、 化合物の立体 構造が変化し、 ラベルしない場合に比較して、 タンパク質との結合親和性が低下 する等の問題があった。
本発明は、 上記の従来の問題点を解決するために、 標的タンパク質と相互作用 し、 かつ固有の蛍光性を有する化合物を探索し、 該化合物を用いて標的タンパク 質と化合物との相互作用を解析する方法、 解析する装置および解析するキットの 提供を目的とする。
本発明者等は、 従来の蛍光色素等の蛍光性物質を用いてラベルした蛍光プロ一 ブを用いたタンパク質と化合物の蛍光分析における上記問題点を解決すべく鋭意 検討を行った結果、 数百万種類の化合物を含む化合物ライブラリ一から固有に蛍 光を有し、 なおかつ特定の標的分子に結合し得る化合物である蛍光分子プローブ をスクリ一二ングすることにより、 標的分子と相互作用し得る化合物のスクリ一 ニングを上記の問題が生じることなく行えることを見出した。 すなわち、 本発明 者等は化合物ライブラリ一から固有に蛍光性を有する化合物を選択し、 蛍光プロ —ブライブラリ一を構築し、 さらに該蛍光プローブライブラリ一からコンピュー ター上でのドッキングスタディ一により、 標的分子と結合性を有する化合物を選 択することにより、 任意の標的分子に対して結合し、 なおかつ固有に蛍光性を有 する化合物を入手できることを見出し、 該化合物を用いた薬剤候補化合物のスク リーニングに関する本発明を完成させるに至った。 すなわち、 本発明の態様は以下のとおりである。
[1] 標的分子に相互作用し得る化合物のスクリーニング方法であって、 該標的 分子に結合し得、 蛍光ラベルすることなく固有に蛍光性を有するリガンドを蛍光 分子プローブとして用い、 該蛍光分子プローブと候補化合物を標的分子への結合 において競合反応させること、 および前記蛍光分子プローブと競合する化合物を 蛍光分析により選択することを含む、 標的分子に相互作用し得る化合物のスクリ 一二ング方法。
[2] 標的分子がタンパク質である [1]の標的分子に相互作用し得る化合物のス クリーニング方法。
[3] 蛍光分子プローブと候補化合物の標的分子への結合における競合を、 溶液 中での蛍光分子プローブと標的分子の結合による蛍光シグナルの変動を指標に測 定する [ 1 ]または [ 2 ]の標的分子に相互作用し得る化合物のスクリ一二ング方法。
[4] 蛍光分子プローブと候補化合物の標的分子への結合における競合を、 蛍光 相関分光法、 蛍光強度分布解析法または蛍光偏光解析法で測定する [3]の標的分 子に相互作用し得る化合物のスクリ一二ング方法。
[5] 蛍光分子プローブが化合物ライブラリーから標的分子との結合性を指標に 選択されたものである [1]〜 [4]のいずれかの標的分子に相互作用し得る化合物 のスクリーニング方法。
[6] 蛍光分子プローブが、 化合物ライブラリーから固有に蛍光性を有する分子 を選択して構築された蛍光プロ一プライブラリーから、 標的分子とのドッキング スタディ一により選択され、 またはさらに構造最適化されたものである [1]〜
[5]のいずれかの標的分子に相互作用し得る化合物のスクリーニング方法。
[7] 化合物ライブラリ一からの蛍光プローブライブラリ一の構築が、以下の(a) 〜(c)の手法の少なくとも 1手法により行われる [ 6 ]の標的分子に相互作用し得 る化合物のスクリーニング方法。
(a) 蛍光団を部分構造として有する化合物を化合物の構造式から選択する
(b) 分子軌道計算ソフトウェアにより、蛍光性を有する化合物を選択する、およ ぴ
(c) 光吸収分析装置を用いての実測により蛍光性を有する化合物を選択する [8] 蛍光分子プローブの構造最適化が置換基の導入により行われる [6]または [7]の標的分子に相互作用し得る化合物のスクリーニング方法。
[9] あらかじめ標的分子と蛍光分子プローブの所望の結合定数を設定し、 標的 分子と蛍光分子プローブの結合定数が、 前記設定された所望の結合定数より大き い場合に、 該蛍光分子プローブを標的分子の蛍光分子プローブとして選択する [5:]〜 [8]のいずれかの標的分子に相互作用し得る化合物のスクリーニング方法。
[10] 蛍光分子プローブの最適励起波長および最適蛍光波長を予め測定し、 該 最適励起波長付近の波長で蛍光分子プローブを励起させ、 該最適蛍光波長付近の 波長で蛍光を検出する、 [ 1 ]〜 [ 9 ]のいずれかの標的分子に相互作用し得る化合 物のスクリーニング方法。
[1 1] 標的分子に相互作用し得る化合物のスクリーニングであって、 該標的分 子に結合し得、 蛍光ラベルすることなく固有に蛍光性を有するリガンドを前記標 的分子特異的蛍光分子プローブとして用いる、 スクリーニングのための蛍光分析 装置であって、 用いる標的分子特異的蛍光分子プローブの励起光の波長の光を照 射し得る連続的に照射光の波長を変え得る光照射手段、 用いる標的分子特異的蛍 光分子プローブの蛍光の波長の光を検出し得る連続的に検出光の波長を変え得る 光検出手段、 上記蛍光分子プローブと候補化合物とを標的分子との結合において 競合反応させる反応手段を含む、 蛍光分析装置。
[12] 標的分子がタンパク質である [1 1]の蛍光分析装置。
[1 3] 予め測定した標的分子特異的蛍光分子プローブの励起波長および蛍光波 長に適合させて、照射光の波長および検出光の波長を変えることが可能な、 [1 1] または [12]の蛍光分析装置。
[14] 反応手段が溶液中で蛍光分子プローブと候補化合物とを標的分子との結 合において競合反応させる反応容器である、 [1 1]〜[1 3]のいずれかの蛍光分 析装置。
[1 5] 蛍光分子プローブと候補化合物の標的分子への結合における競合を、 蛍 光相関分光法、蛍光強度分布解析法または蛍光偏光解析法で測定する [1 1]〜 4]のいずれかの蛍光分析装置。
[1 6] 標的分子および該標的分子に結合し得、 蛍光ラベルすることなく固有に 蛍光性を有するリガンドである標的分子特異的蛍光分子プローブを含む、 標的分 子に相互作用し得る化合物のスクリーニング用キット。
[1 7] 標的分子がタンパク質である [1 6]のスクリーニング用キット。
[1 8] 蛍光分子プローブが化合物ライブラリーから標的分子との結合性を指標 に選択されたものである [16]または [1 7]の標的分子に相互作用し得る化合物 のスクリーニング用キット。
[1 9] 蛍光分子プローブが、 化合物ライブラリーから固有に蛍光性を有する分 子を選択して構築された蛍光プローブライブラリーから、 標的分子とのドッキン グスタディ一により選択され、 またはさらに構造最適化されたものである [16] 〜[18]のいずれかの標的分子に相互作用し得る化合物のスクリーニング用キッ 卜。
[20] 化合物ライブラリーからの蛍光プローブライブラリ一の構築が、 以下の (a)〜(c)の手法の少なくとも 1手法により行われる [19]の標的分子に相互作用 し得る化合物のスクリーニング用キット。
(a) 蛍光団を部分構造として有する化合物を化合物の構造式から選択する
(b) 分子軌道計算ソフトウェアにより、蛍光性を有する化合物を選択する、およ び
(c) 光吸収分析装置を用いての実測により蛍光性を有する化合物を選択する
[2 1] 蛍光分子プローブの構造最適化が置換基の導入により行われる [19]ま たは [20]の標的分子に相互作用し得る化合物のスクリーニング用キット。
本明細書は本願の優先権の基礎である日本国特許出願 2004-381671号の明細書 および Zまたは図面に記載される内容を包含する。 図面の簡単な説明
図 1は、 蛍光プローブライプラリーの構築の概念図を示す。
図 2は、 最適蛍光分子プローブの選択方法の概念図を示す。
図 3は、 最適蛍光分子プローブの選択方法の概念図であり、 標的分子ごとに固 有の励起および蛍光波長を有する蛍光分子プローブが存在することを示す図であ る。 図 4は、 標的分子と相互作用し得る化合物の選択方法の概念図を示す。
図 5は、 本発明の装置の構成を示す図である。
図 6は、 DNase rの立体構造を示す図である。
図 7は、 DNase rの最適蛍光分子プローブである R396842の構造を示す図である。 図 8は、 DNase rと最適蛍光プローブの結合を示す図である。
図 9は、 ATA (Aut in Tricarboxyl ic Ac id)による DNaseァと最適蛍光プロ一ブ DR396842複合体の解離を示す図である。 符号の説明
1 光照射手段
2 フィルタ一
3 光検出手段
4 フィルター
5 ミラー
6 レンズ
7 反応手段 発明を実施するための最良の形態
以下、 本発明について詳細に説明する。
本発明の標的分子と相互作用する化合物のスクリーニング方法において、 標的 分子は、 限定されず生体内に存在する、 すべての他の物質と相互作用する分子が 含まれる。 標的分子は、 好ましくは DNA、 RNA、 タンパク質であり、 さらに好まし くは夕ンパク質であり、 特に好ましくは特定のリガンドと相互作用し得るレセプ 夕一タンパク質である。 レセプ夕一タンパク質は特定のリガンドと相互作用し、 レセプターシグナルを伝達し、 生体内で種々の反応を引き起こす。 望ましくは、 レセプタ一タンパク質のシグナルが生体内の種々の疾患と関連するものが望まし い。 該レセプ夕一タンパク質と相互作用する化合物は、 生体内での該レセプ夕ー タンパク質のシグナル伝達を制御することにより、 疾患の予防または治療薬とし て機能することができる。 本発明において、 標的分子となるタンパク質の例とし て、 DNase、 Gタンパク質共役レセプ夕一等が挙げられる。
標的分子と相互作用し得る化合物は、 例えば標的分子と相互作用し得るリガン ド化合物である。 リガンド化合物とは、 タンパク質等の生体高分子に結合する低 分子量の化合物をいう。 標的分子と相互作用し得るリガンド化合物とは、 標的分 子に結合し、 標的分子の機能を活性化し、 あるいは阻害し得るリガンド化合物を いう。該リガンド化合物は、ァゴニストまたはアンタゴニストとして作用し得る。 ァゴニストとはレセプターと結合して種々の生理作用を示す物質をいい、 アン夕 ゴニストとはレセプ夕一に結合してァゴニス卜の効果を阻害する物質をいう。 化 合物の種類、 分子量等は限定されない。 本発明の方法により、 スクリーニングす る化合物は、レセプ夕一等の特定のタンパク質と相互作用して、生理作用を示し、 該レセプ夕一が関与する疾患の予防薬、 または治療薬として使用し得ることが期 待される。 また、 前記化合物は創薬におけるリード化合物としても用いることが できる。
本発明のスクリーニング方法においては、 蛍光ラベルすることなく固有に蛍光 性を有し、 かつ標的分子と相互作用し得るリガンドを用いる。 該リガンドを本発 明において、 蛍光分子プローブという。 蛍光分子プローブは、 標的分子ごとに、 標的分子に特異的に相互作用し得るものとして、 調製される。 本発明で用いる蛍 光分子プローブは、 450 !〜 650mnの波長範囲内に励起 ·蛍光波長を有する化合物 である。 蛍光分子プローブの調製は以下のようにして行う。
まず、 化合物ライブラリーから固有に蛍光性を有する化合物を選択する。 化合 物ライブラリ一とは、 構造が既知の化合物の化学式構造や立体構造情報を含むラ イブラリーである。 化合物ライブラリ一は、 市販の試薬や天然物質を含む化合物 の集合だけでなく、 化合物の情報を格納したコンピュータ上に構築したデータべ ースも含む。 化合物ライブラリ一は、 数百万種類の化合物の情報を含む。 化合物 ライブラリ一としては、 現存するデータベースに格納されている種々の化合物を 利用することができる。 数百万化合物の巨大ライブラリ一も市販されており、 こ れらの市販のライブラリ一を用いてもよい。
該化合物ライブラリーから部分構造検索、 蛍光 ·吸収スぺクトル予測または光 吸収分析装置を用いた実測により、 固有に蛍光を発する蛍光性化合物を選択し、 蛍光プローブライブラリーを構築する。 部分構造検索は、 蛍光団を部分構造とし て有する化合物を検索する。 蛍光団としては、 キサンテン骨格、 ァゾベンゼン骨 格、 ベンゾフラン骨格、 インドール骨格、 アントラセン骨格等が挙げられる。 部 分構造検索は、化合物ライブラリーを格納したデータベースを用いるだけでな 既知の化合物のカタログ、 文献等から化学構造を指標に選択してもよい。
蛍光 ·吸収スぺクトルの予測は、 上記化合物ライブラリーの分子構造情報から 行う。該予測は、例えば分子軌道計算によって行うことができる。分子軌道とは、 分子内の電子の存在確率分布のことをいう。 分子軌道を計算することにより、 電 子が分子内にどのくらいのエネルギーで存在しているかがわかるので、 そのエネ ルギ一分布を調べることにより、 光吸収などの光物性を予測することが可能とな る。 例えば、 M0S-F プログラムを用いることにより、 紫外 ·可視吸収 ·蛍光スぺ クトルを予測することができる。 M0S- F プログラムによるスペクトルの計算は、 例えば、 L Abe and Y. Shi rai, J. Am. Chem. So , 118, 4705 (1996)、 J. Abe,
Y. Shi rai, N. Nemo to and Y. Nagase, J. Phys. Chem. B, 101, 1910 (1997)、
J. Abe, Y. Shi rai, N. Nemo to and Y. Nagase, J. Phys. Chem. A, 101, 1 (1997)、
J. Abe, Y. Shirai, N. Nemo to, Y. Nagase and T. Iyoda, J. Phys. Chem. B, 101,
145 (1997)、 S. Tatsuura, W. Sotoyama, K. Motoyoshi, A. Mat suura, T. Hayano and T. Yos imura, Appl. Phys. Let t. , 62, 2182 (1993) K. Hiruta, S. Toki ta and K. Nishimoto, J. Chem. So Perkin Trans. 2, 1443 (1995)などの記載に 従って行うことができる。 また、 市販の M0S-Fプログラムソフトウェアを用いる こともでき、 例えば富士通社の WinMOPAC 3. 9などを用いればよい。
光吸収分析装置を用いた実測は、 化合物ライブラリーに含まれる化合物を入手 して、 市販の光吸収分析装置を用いて実際に化合物の蛍光 ·励起波長を測定し、 蛍光性化合物を選択する。
蛍光分子プロ一ブライブラリーの構築の概念図を図 1に示す。
このようにして得られた蛍光プローブライブラリ一から、 標的分子に対して親 和性を有する蛍光分子を標的分子ごとに選択する。 ここで、 標的分子に対して親 和性を有する蛍光分子プローブを標的分子特異的蛍光分子プローブといい、 その 中で最終的に選択された標的分子に対して親和性が高く、 固有に蛍光性を有する 蛍光分子プローブを最適蛍光分子プローブという。 蛍光プローブライブラリーか らの最適蛍光プローブの選択は、 まず蛍光プローブライブラリ一から標的分子に 結合し得る結合性蛍光分子プローブを選択し、 結合性蛍光プローブライブラリー を構築する。 蛍光プローブライブラリ一に含まれる蛍光分子プローブが標的分子 と結合するか否かは、 例えばドッキングスタディ一により行えばよい。 ドッキン グスタディ一とは、 コンピュータ上で、 創薬ターゲットとなる標的分子とリガン ドとを仮想的に結合させ、 その結合親和性スコアを計算し、 複合体構造を予測す る手法をいう。 結合親和性スコアの計算には、 分子場に基づくスコア関数(force field-based scoring function)、経験的スコア関数 (empirical scoring function)、 知識に基づくスコア関数(knowledge- based scoring function)などがある (Go lke H et al., Angew Chem. Int. Ed. Engl. (2002) 41, 2644-2676) 0 また、 標的分子と リガンド分子との複合体構造の探索には、 遺伝的アルゴリズム、 焼き鈍し法、 夕 ブー検索などが利用される (Taylor RD et al. , J. Co即 ut. Aided Mol. Des. (2002) 16, 15卜 166)。 このようにスコア関数及び検索手法を利用した複数のドッキング プログラムが開発されており (Taylor RD et al., J. Comput. Aided Mol. Des. (2002) 16, 151-166)、 阻害剤の同定及び設計に利用されている。 これまでに、 ド ッキングプログラムを用いて HIV- 1プロテアーゼ阻害剤(DesJarlais L et al. , Proc. Natl. Acad. Sci. USA (1990) 87, 6644-6648)、 キネシン阻害剤(Hopkins SC et al. , Biochemistry (2000) 39, 2805- 2814)、Bcl- 2阻害剤(Wang JL et al. , Proc. Natl. Acad. Sci. USA (1990) 97, 7124- 7129)など多くの新規阻害剤の同定、 設 計に成功している。 本発明においてはこれらの文献の記載に基づいてドッキング スタディーを行うことができ、 その他に AutoDock3.0 がよく知られており
(Goodsell DS et al. , Proteins (1990) 8, 195-202; Goodsell DS et al. , J Mol Design (1996) 9, 1-5; Morris GM et al. , J Comp Aided Mol Design (1996) 10, 293-304; Morris GM et al. , J Comput Chem (1998) 19, 1639-1662)、 好適に用 いることができる。 また、 市販のドッキングスタディー (ドッキングシミュレ一 シヨン) ソフトウェアプログラムを用いてもよい。 市販のドッキングスタディー ソフトウェアプログラムとしては、 例えば BioPackage (MolSoit社)、 LigandFit
(アクセルリス社) 等がある。 ドッキングスタディーを行うには、 まず標的分子の立体構造を入手する。 立体 構造情報は、 Pro te in Da ta Bank ( t t ://www. rcsb. org/pd 等の立体構造データ ベースから入手することができる。 標的分子の立体構造が立体構造データベース に登録されていない場合は、 類縁分子の立体構造を基にホモロジーモデリング法 を用いて予測立体構造を構築すればよい。 ここで、 ホモロジ一モデリングとは、 配列上相同性のあるタンパク質の立体構造を基として、 標的タンパク質の立体構 造を-推定する方法をいう。 ホモロジ一モデリングにおいては、 モデリングする夕 ンパク質のアミノ酸配列を決定し、 二次構造を持つ部分やループ部分の予測を行 つた後に、 ホモロジ一検索をする。 ホモロジ一検索は、 既知のドメインとの相同 性を検索し、 配列が短い場合はそのままの長さで行い、 配列が長い場合は適当な 長さのドメインに分けて行う。 次いで、 铸型にするタンパク質構造を特定し、 シ ークエンスの相同性が高く、 合理的なものを選択する。 この際、 相同性が低い場 合は二次構造の相同性が高いものを選択する。 さらに、 ホモロジ一モデリングに 使う铸型の情報を整理し、 タンパク質の立体構造を表示させ、 モデリングソフト 上で、 アミノ酸配列を鍀型に対してアラインメントする。 最後に構造最適化を行 い、 モデル構造の妥当性を検証する。 ホモロジ一モデリングは、 上記のドッキン グスタディー用ソフトウエアプログラムを用いて行うことができ、 また種々ホモ ロジ一モデリング用ソフトウェアプログラムも存在し (例えば、 PDFAMS Pro,
PDFAMS L igandなど)、 それらを用いて行うこともできる。 標的分子上の蛍光分子 プローブを結合させる標的部位の決定は、 活性部位、 相互作用部位などの任意の 部位を指定すればよい。 次いで、 上記蛍光プロ一ブライブラリーの蛍光性化合物 と標的部位の立体構造を用いてドッキングスタディーを行い、 結合性を有する化 合物を選択し、 結合性蛍光プロ一ブライブラリーに格納する。 ドッキングス夕デ ィ一において、 種々のアルゴリズムを採用することができる。 例えば、 形状指向 ドッキングアルゴリズムは、 形状比較フィルタ一により結合部位の形状と発生し た複数のリガンドコンフオメ一シヨンとの形状を一つ一つ比較し、 互いにマッチ する最適なリガンドのポ一ズを探索する。フィル夕一により峻別されたポーズは、 続いて、 ダリッドベース手法により結合部位においてタンパク質とリガンドの相 互作用エネルギーが評価され、 ミニマイズされる。 このときエネルギーグリッド を用いることによる誤差は非線型の内挿により大幅に軽減されている。 また、 結 合部位と比較して小さなリガンド候補が欲しい場合には、 結合部位を小さな区分 に分割してドッキングする s i te part i t ioningを行えばよい。 実際に特定の標的 分子に対する蛍光分子プローブを選択する場合、 あらかじめ最低必要と考えられ る任意の結合定数 X [M"1]を設定し、 蛍光プロ一ブライブラリー中の化合物の結合 定数 Yをコンピュータ上でまたは実測により測定し、条件 KY/X〈10を満たすもの を結合性蛍光プロ一ブライブラリ一に格納する。 通常蛍光分子プローブの結合定 数は、 1 X 10 M— 〜 1 Χ ΙΟ Μ-1]程度であることが望ましい。
上記のように、 化合物ライブラリ一、 蛍光プローブライブラリーおよび結合性 蛍光プローブライブラリーの構築という各ステップを行い、 なおかつ後記の構造 最適化を適切に行うことにより、 任意の標的ライプラリーに対する蛍光分子プロ ーブを選択することが可能である。
次いで、 蛍光プローブライブラリ一から選択された化合物の実物を入手し、 標 的分子に応じた in vi tro アツセィを用いて、 標的分子に結合する蛍光分子プロ ーブを同定する。 十分な親和性をもって結合する場合、 該蛍光分子プローブを最 適蛍光分子プローブとする。 より強い親和性を必要とする場合は、 選択された蛍 光分子プローブを母格とし、 母格に広い範囲の多様性を有する置換基を導入し、 母格を多様化し、 さらにドッキングスタディ一を行い、 親和性を高める置換基を 決定する。 親和性が高くなつた蛍光分子プローブを合成し、 再度 in vi tro アツ セィを行う。 必要な親和性を有する化合物が得られるまで、 母格の多様化、 ドッ キングスタディ一および in vi tro アツセィを繰り返し、 最終的に最適蛍光分子 プローブを得る。 この一連の工程を構造最適化という。 得られた最適蛍光分子プ ローブについて、 光吸収分析装置または M0S-F等の分子軌道計算プログラムを用 いて最適励波長および最適蛍光波長を測定し、 以降のスクリーニングに用いる。 最適蛍光分子プローブは、 標的分子と化合物との相互作用の検討を行うのに充分 な蛍光を発し、 標的分子と設定した親和性以上の親和性をもって結合し得る化合 物をいう。 最適蛍光分子プローブの選択方法の概念図を図 2および図 3に示す。 図 3は、 標的分子 (図 3中の A、 B、 C等) ごとに固有の励起および蛍光波長を有 する蛍光分子プローブ (図 3中の a、 b、 c等) が存在し、 各々の蛍光分子プロ一 ブに対して最適励起波長/蛍光波長 (図 3中の nノ ma、 nb/mb、 nc/nic等) が決定さ れることを示す。 1つの標的分子に対して複数の最適蛍光分子プローブが存在し 得る。
上記の方法で選択した標的分子に結合し得、 蛍光ラベルすることなく固有に蛍 光性を有するリガンドを蛍光分子プローブとして用いて標的分子と相互作用する 化合物であって標的分子と相互作用することにより薬剤としての作用を発揮し得 る化合物をスクリーニングする。 このスクリーニングは、 蛍光分子プローブと薬 物候補である候補化合物とが標的分子の標的部位に対し、 競合して結合する現象 を利用して行う。 すなわち、 対象とする化合物が標的部位に結合する場合、 蛍光 分子プローブは標的部位に結合できず、 遊離される。 従って、 標的分子 蛍光分 子プローブ複合体と遊離の蛍光分子プローブの存在比により、 化合物の標的分子 への結合度度合いを定量的に測定することができる。 実際には、 蛍光分子プロ一 ブが標的分子と結合した場合の蛍光シグナルの変動を測定すればよい。 ここで、 蛍光シグナルの変動とは、 蛍光分子プローブと標的分子の結合により、 検出でき るようになるシグナルの変化をいい、 後述のように 1分子蛍光分析方法や蛍光偏 光解析法による蛍光強度等の変化のみならず、 蛍光分子プローブと標的分子との 複合体と遊離の蛍光分子プローブを分離した後に検出される蛍光強度の変化等も 含まれる。本発明の方法において、標的分子を 96ゥエルプレ一ト等の固相担体に 固相化させ、 該固相化標的分子に一定量の候補化合物と標的分子に対する最適蛍 光分子プローブである蛍光分子プローブを添加し、 蛍光分子プローブと候補化合 物を標的分子への結合において競合反応させ、 遊離の蛍光分子プローブと標的分 子 Z蛍光分子プローブ複合体とを分離し、 固相化標的分子に結合した蛍光分子プ ローブの蛍光または固相化しない遊離の蛍光分子プローブの蛍光を、 蛍光分子に 特徴的な励起波長と蛍光波長を用いて測定することにより、 候補化合物と標的分 子との相互作用を測定することができる。 この際、 一定の量の蛍光分子プローブ が標的分子に結合させた場合の蛍光を予め測定して標準曲線を作成しておけばよ い。 但し、 標的分子を固相化した場合、 該標的分子の立体構造は、 生体内に存在 する場合の天然の立体構造と異なることが多く、 固相化標的分子と候補化合物と の in vi troにおける相互作用は、生体内における相互作用を反映しているとは限 らない。 また、 蛍光分子プローブは低分子化合物であり、 標的分子と蛍光分子プ ローブの分子量が大きく異なる場合が多く、 上記のような複合体と遊離の蛍光分 子プローブとの分離が困難な場合が多い。さらに、固相化標的分子を用いる場合、 標的分子、 蛍光分子プローブ、 候補化合物ともにある程度の量を用いる必要があ り、 微量分析には適さない。 従って、 標的分子は固相化せずに、 分子が自由に運 動できる溶液中で標的分子と候補化合物および蛍光分子プローブとの反応を測定 することが望ましい。 溶液中で標的分子と蛍光分子プローブとの結合を測定する 方法として、 1分子蛍光分析法がある。 1分子蛍光分析法とは、 単一分子レベル で蛍光分子を検出し得る方法であり、 溶液中で蛍光分子プローブと標的分子が結 合した場合の発せられる蛍光の変動を測定することにより、 蛍光分子プローブと 標的分子の結合を捉えることができる。 一分子蛍光分析は、 微小な共焦点領域に 出入りする蛍光分子のゆらぎ運動を計測し、 この計測により得られるデータを関 数により解析することにより行う。 1分子蛍光分析法には、 蛍光相関分光法
(Fluorescence Correlat ion Spectroscopy) による解析、 蛍光強度分布解析
(Fluorescence Intens i ty Distribut ionAnalys is) , およびこれら解析を同時に 行う蛍光強度多分布解析 (Fluorescence Intens i ty Mul t iple Dis tribut ion
Analys is) が含まれる。
蛍光相関分光法は、 蛍光分子プローブの溶液中でのゆらぎ運動を測定し、 自己 相関関数(Autocorrelat ion funct ion)を用いることにより、 個々のプローブ分子 の微小運動を測定する方法である (D. Magde et al. , Biopolymers 1974 13 (1)
29 - 61)。 蛍光相関分光法は、 溶液中の蛍光分子プローブのブラウン運動をレーザ 共焦点顕微鏡により微小領域で捉えることによって、 蛍光強度のゆらぎから拡散 時間を解析し、 物理量 (分子の数、 大きさ) を測定することにより行われる。 蛍 光相関分光法において、 試料中の微小視野領域から発生する蛍光信号を検出定量 すればよい。 媒質中の蛍光標識した標的分子は常に運動 (ブラウン運動) してい るので、 標的分子がこの微小視野領域内に進入する頻度および前記領域内に留ま る時間に応じて、 検出される蛍光強度が変化する。 例えば、 蛍光分子プローブが 標的分子に結合した場合、 蛍光を発する複合体の分子量が大きいので、 分子の運 動は緩慢になり、 見かけの分子数は減少する。 その結果、 微小視野領域内に入つ てくる頻度は低下し、 その結果蛍光強度が変化する。 蛍光強度の変化をモニター することにより、 標的分子と蛍光分子プローブの結合を検出することができる。 蛍光強度分布解析は、 サンプルにレーザ照射し、 サンプル中から発せられる蛍 光分子の励起光を、 高感度フォト検出器によって計測し、 計測した蛍光シグナル を、 40 x s という非常に短時間あたりに分解したフオトンカウントについて、 ダ ブル ·ポアソン分布関数解析し、統計処理解析する技術である(P Kask, e t al ; PNAS 23, 96, 13756-13761, 1999, W098/16814) . 蛍光強度分布解析を行うことにより、 一分子あたりの蛍光強度 (ブライトネス ; an) と蛍光分子の数 (cn) が算出され る。 このとき、 分子の種類が複数個あっても分布解析によって識別することがで き、 それぞれの分子種についてブライトネスと分子数を乗じた数値が総蛍光量と して計算できる。
蛍光強度多分布解析は、 蛍光相関分光法解析と蛍光強度分布解析を同時に行う ものであり、 蛍光分子の並進拡散時間、 分子数、 および一分子あたりの蛍光強度 (ブライ トネス) に関するデータを一度に取得することができる (K Palo, Biophys ical Journal, 79, 2858-2866, 2000 )。 1分子蛍光分析法は、 特開 2003- 275000号公報、特開 2003-279566号公報、 W02002/048693号国際公開パンフ レット等の記載に従って行うことができる。 また、 市販の 1分子蛍光分析装置、 例えばォリンパス社製の MF20/MF10S等を用いて行うことができる。 この際、本発 明の方法においては、 種々の標的分子に結合し得る種々の励起 ·蛍光波長を有す る蛍光分子プローブを用いるため、 励起波長および蛍光波長は連続的に可変であ る必要がある。
さらに、 蛍光偏光解析法で化合物をスクリーニングすることもできる。 蛍光偏 光解析法は液体中の蛍光性分子が平面偏光により励起されると、 蛍光性分子中の 蛍光団が励起状態かつ定常状態にある場合に、同一の偏光平面で蛍光を発するが、 蛍光団の励起状態中に蛍光性分子が回転などの運動を行った場合に、 励起平面と は異なった平面へ蛍光を発し蛍光偏光が解消されることを利用した解析方法であ る (J. Horinaka e t al. , Polym. L , 31, 172 (1999); J. Hor inaka e t al. , Co即.
Theor. Polym. Sc i. , 10, 365 (2000) ; H. Aoki et al. , Polym. J. , 33, 464 (2001) )。 分子の運動は、 分子量に影響を受け、 蛍光性分子が低分子の場合は、 運動速度が 速いので、蛍光の偏光が解消され、蛍光偏光度は小さい。一方、高分子の場合は、 励起状態の間の分子の運動が低下するので、 蛍光は偏光が解消できず、 大きな蛍 光偏光度を示す。 従って、 蛍光分子プローブが標的分子に結合した場合の蛍光偏 光度を測定することにより、 蛍光分子プローブと標的分子の結合を検出すること ができる。 蛍光偏光を測定するためには、 励起光を偏光フィルタ一を通して照射 し、 さらに蛍光分子プローブが発する蛍光を励起光の偏光平面に垂直である垂直 偏光面および水平である水平偏光面の両平面で測定する。 蛍光偏光度は、 式 (平 行偏光面の蛍光強度一垂直偏光面の蛍光強度) / (平行偏光面の蛍光強度 +垂直 偏光面の蛍光強度) により求めることができる。
標的分子に対する候補化合物と蛍光分子プローブの競合反応を溶液中で行う場 合には、 候補化合物と標的分子が結合可能な溶液で行えばよく、 生理食塩水や中 性付近のリン酸緩衝液等を使用すればよい。 この際の温度、 PH、 反応時間等の反 応条件は、 標的分子の種類等に応じて適宜設定すればよい。
溶液中で行う競合反応を蛍光分子プローブを用いて測定するためには、 上記の 1分子蛍光分析装置の他、 例えば、 パーキンエルマ一社の LS55、 モレキュラーデ バイス社の Spectra Max等をも用いることができる。
なお、 本発明の方法の実施において、 標的化合物と候補化合物の相互作用を検 討するため、 標的化合物、 候補化合物および蛍光分子プローブは種々の濃度で反 応させることが望ましい。 そのため、 一度に多数のアツセィを行うことが望まし い。 このためには、本発明の装置は 96ゥエルプレ一ト等を用いたマルチウエルァ ッセィを行い、 ハイスループットスクリーニングを行うことができる装置である ことが望ましい。
競合反応を行わせる場合の標的分子、 蛍光分子プローブおよび候補化合物の量 は、 標的分子の種類、 蛍光分子プローブの標的分子に対する親和性等により適宜 設定すればよいが、 標的分子は、 最終濃度 0. O lnM lOO ^ M程度、 好ましくは 0. 1
〜10 A M程度である。 また、 溶液中に添加する候補化合物は、 最終濃度 0. 01nM〜
I OO M程度、好ましくは 0. 1〜10 M程度、さらに好ましくは 0. 01〜100nM程度、 さらに好ましくは 0. 1〜50ιιΜ程度である。溶液中に添加する蛍光分子プローブは、
0. 01〜100nM程度、 好ましくは 0· 1〜50ηΜ程度である。 標的分子、 蛍光分子プローブおよび候補化合物の反応は、 試験管、 ゥエル、 セ ル等の適当な容器中で行えばよい。 容器サイズは限定されないが、 反応は、 数十 il lから数 mLで行われるため、 その範囲の量を収容できる容器を用いればよレ^ 本発明の方法において、 標的分子ごとに蛍光分子プローブの励起波長および蛍 光波長は異なっているので、 蛍光の検出には、 蛍光分子プローブごとに励起波長 および検出波長を変えて行う。励起光としては、 450nn!〜 650nmの範囲の光を用い、 アルゴンイオンレーザ、 ヘリウム ·ネオンレーザ、 クリプトン、 キセノン、 ヘリ ゥム '力ドミゥムレ一ザ等の蛍光物質を励起することができる光を用いればよレ^ 励起光の波長を変化させるには、 所望の波長の光のみを通すバンドパスフィル夕 一等のフィルタ一やピームスプリッ夕一を用いればよい。 また、 分光器を用いて 波長を変えることもできる。 分光器としては、 光学フィルタ一を用いた分光器、 分散型分光器、 フーリエ変換型分光器のいずれも用いることができる。 また、 光 パラメトリックレーザ (0P0 レーザ) 等の波長可変レーザを用いてもよい。 蛍光 分子プロ一ブが発した蛍光はその蛍光の波長の光のみを通すバンドパスフィルタ 一を通して光検出器で検出すればよい。 なお、 この際、 用いる光の励起波長およ び検出波長は蛍光分子プローブの最適励起波長および蛍光波長と完全に同一であ る必要はなく最適波長付近の波長ならばよい。用いる励起波長および検出波長は、 最適励起波長の ± 30nm、 好ましくは ± 20nm、 さらに好ましくは ± 10nmの範囲に含 まれていればよい。
上記の方法により、 標的分子に結合している候補化合物と反応溶液中に遊離の 状態で存在している候補化合物の存在比を測定することができ、 候補化合物の標 的分子に対する結合のし易さ (親和性) を結合定数として求めることができる。 本発明では、 候補化合物と標的分子との結合定数を z DT 、 標的分子と蛍光分子 プローブとの結合定数を y —1]とした場合に、 z/y> l の式が成立する候補化合物 を薬剤候補化合物として選択する。
また、 本発明の方法でスクリーニングされる標的分子と相互作用し得る化合物 の競合阻害実験により得られる IC5D値は、 以下程度である。
本発明における標的分子と相互作用し得る化合物の選択方法の概念図を図 4に 示す。 候補化合物から、 選択された薬剤候補化合物は、 さらに構造最適化を行っても よい。 この場合、 選択された薬剤化合物は創薬のためのリ一ド化合物として用い られる。
リード化合物の構造最適化は、 リード化合物の官能基を置換、 改変し、 多様な 構造を有する化合物を作成し、 それらの化合物の標的分子への結合能を測定する ことにより行う。 構造最適化は、 上記のようにドッキングシミュレーションおよ び実測を組合せて行うことにより行うことができる。
本発明は、 標的分子に相互作用し得る化合物のスクリーニングであって、 該標 的分子に結合し得、 蛍光ラベルすることなく固有に蛍光性を有するリガンドを前 記標的分子特異的蛍光分子プローブとして用いる、 スクリーニングのための蛍光 分析装置をも包含する。 本発明の装置は、 少なくとも、 用いる標的分子特異的蛍 光分子プローブの励起光の波長の光を照射し得る連続的に照射光の波長を変え得 る光照射手段、 用いる標的分子特異的蛍光分子プローブの蛍光の波長の光を検出 し得る連続的に検出光の波長を変え得る光検出手段、 上記蛍光分子プローブと候 補化合物とを標的分子との結合において競合反応させる反応手段を含む。 光照射 手段は、 励起光を照射し得る光源を有し、 光源としては、 450nn!〜 650mnの波長範 囲の光であって、 アルゴンイオンレーザ、ヘリウム 'ネオンレーザ、 クリプトン、 キセノン、 ヘリウム ·力ドミゥムレ一ザ等の蛍光物質を励起することができる光 源を用いればよい。 照射光の波長を変化させるには、 所望の波長の光のみを通す バンドパスフィル夕一等のフィル夕一やビームスプリツ夕一を備えていればよレ、。 また、 分光器を用いて波長を変えることもできる。 分光器としては、 光学フィル 夕一を用いた分光器、 分散型分光器、 フーリエ変換型分光器のいずれも用いるこ とができる。 また、 光パラメトリックレーザ (0P0 レーザ) 等の波長可変レーザ を用いてもよく、 この場合も標的分子特異的蛍光分子プローブの励起光の波長の 光を照射し得る連続的に照射光の波長を変え得る光照射手段に含まれる。 光検出 手段は、 特定の波長の蛍光を検出し得る手段であり、 フォトダイオード等の光検 出器を含む。 蛍光分子プローブが発した蛍光はその蛍光の波長の光のみを通すパ ンドパスフィルターを通して光検出器で検出すればよい。 また、 蛍光分子プロ一 ブと候補化合物とを標的分子との結合において競合反応させる反応手段は反応容 器であり、 試験管、 ゥエル、 セル等を用いればよい。 一度に多検体のアツセィを 行えるようにするため反応手段はマルチウエルプレート等のマルチアツセィが可 能なものが望ましい。反応手段は反応容器を収める反応容器台をも含む。さらに、 本発明の装置は、 データ処理手段も含み、 上記の 1分子蛍光分析、 蛍光偏光解析 のデータを処理し得る。 さらに、 本発明の装置は、 多数検体を測定することがで きるように、 自動化装置であってもよい。 この場合、 反応容器、 試薬分注手段、 データ処理手段等がコンピュータで制御され、 自動的に多量検体を処理すること ができる。 本発明の方法を 1分子蛍光分析法で行う場合、 反応手段中の微小領域 の蛍光を測定するため、 反応手段中の蛍光分子プローブが存在する領域に共焦点 領域を設定し、 該領域に励起光を照射し、 該領域の蛍光を測定する必要がある。 この場合、 共焦点顕微鏡等の手段を用いればよい。 さらに、 本発明の装置は、 光 路上に適宜ミラー、 レンズを設置すればよい。 図 5に本発明の装置の構成の一例 を示すが、 本発明の装置は該図によっては、 限定されない。 図 5に示す装置は、 励起光を照射する光照射手段 (光源) 1、 励起光の波長を変化させるフィルター 2、 蛍光分子プローブから発せられた蛍光を検出する光検出手段 3、 蛍光の波長 を変化させるフィルター 4、 光路を変更するミラー 5、 光を集光するレンズ 6お よび反応手段 7を含む。 図 5中の矢印は光路を示す。 本発明の装置が 1分子蛍光 分析のための装置の場合は、 例えばレンズ 6の部分に共焦点顕微鏡を設置すれば よい。
さらに、 本発明は、 標的分子に相互作用し得る化合物のスクリーニング用キッ 卜を包含する。 該キットは、 標的分子および該標的分子に結合し得、 蛍光ラベル することなく固有に蛍光性を有するリガンドである標的分子特異的蛍光分子プロ ーブを含む。 標的分子は、 限定されず、 DNA、 RNA、 タンパク質等の生体高分子を 含む。 該標的分子に結合し得、 蛍光ラベルすることなく固有に蛍光性を有する標 的分子特異的蛍光分子プローブは、 上記のように化合物ライブラリーから蛍光分 子プロ一プライブラリ一を構築し、 さらに標的分子との結合親和性を測定するこ とにより得ることができる。 本発明のキットは、 その他反応用緩衝液等を含む。 また、 複数の標的分子およびそれぞれの標的分子に対する標的分子特異的蛍光分 子プローブを含んでいてもよい。 また、 1つの標的分子に対して同じ結合部位ま たは異なる結合部位に結合し得る複数の標的分子特異的蛍光分子プローブを含ん でいてもよい。
本発明を以下の実施例によって具体的に説明するが、 本発明はこれらの実施例 によって限定されるものではない。
実施例 1 DNase r阻害薬スクリ一ニング系の構築
DNase rは分子量 33kDa、至適 pHを 7. 2にもつエンドヌクレアーゼである。 DNase ァの属する DNaselファミリ一は現在 DNaseI、 DNaseX, DNaseァ、 DNASIL2の 4種 類が知られている。 さらに、 細胞内でのアポトーシス誘発に伴い活性化し、 ヌク レオソ一ム単位での DNA断片化を引き起こすことができるのは、 DNase rのみであ ることが示されている。 しかしながら、 アポト一シスにおけるヌクレオゾーム単 位での DNA断片化は、 DNase r以外にも CAD、 endonuc leaseGなど複数の DNaseに より触媒されることが知られており、 アポト一シスの誘導刺激、 細胞の種類、 分 化状態などにより、 どのように使い分けされているのかについては不明な点が多 い。そこで、 DNase Tを特異的に阻害し、 アポトーシスにおける DNA断片化を抑制 する DNase r阻害剤は、生体内における DNase rの作用機序および生理機能を解明 するための重要なツールとなる。 そればかりでなく、 疾患により亢進されるアポ トーシスにおいては、 DNA保護薬としての作用も期待される。
本実施例において、 本発明の方法を用いて DNase r阻害剤のスクリーニングを 行った。
化合物ライブラリ一は、 スクリーニング化合物および一般試薬のサプライヤー が提供するライブラリーを収集して構築した。
該化合物ライブラリーから、 部分構造検索、 蛍光 '吸収スペクトル予測または 光吸収分析装置を用いた実測により約 2000 種類の化合物を含む蛍光分子プロ一 ブライブラリ一を構築した。
該蛍光分子プロ一ブライブラリーから、 コンピュータ上でのドッキングス夕デ ィーを行い、 DNase r特異的結合性蛍光分子プローブとして、キサンテン骨格を有 する R396842 (Sigma Aldricli社より入手) を最適蛍光分子プロ一プとして同定し た。 この際、 望ましい結合定数として、 予め 1 X 10 M— を設定した。 選択された
R396842の結合定数は、 3. 13 X 105 [M-リであった。図 7に 39684 の構造式を示す。 ドッキングシミュレーションに用いたプログラムは AutoDock3. 0 であった。 R396842の最適励起波長及び蛍光波長をモレキュラーデバイス社製の Geminiを用 いて測定したところ、それぞれ 468. 5nm、 514. 5mnであった。 この値から励起光と しては、 488nmの Arレ一ザを用い、 510-560nmのバンドフィルタ一を用いて蛍光 の検出を行った。 蛍光分析装置としては、 1分子蛍光分析装置であるオリンパス 社製の MF20を用いた。
2 nMの R396842および 0、 3および IO Mの DNaseァを用い、 両者の結合を測 定した。 用いた緩衝液は、 50mM Mops- NaOH (pH7. 2)であった。 存在率は、 MF20 附 属ソフト中の Two- component f i t analys i sにより算出した。
この検討により、 DNase rの濃度を 3 x M、 R396842の濃度を 2 nMとし、 さらに DNase rの既知の阻害剤である ATA (Aut in Tricarboxyl ic Ac id, 和光純薬工業株 式会社より入手)を 0、 3および 10 / Mの濃度で添加し、 競合実験'を実施した。 図 9に結果を示す。 ATA濃度依存的に、 DNase rと最適蛍光分子プローブ複合体 の存在率が減少した。 この結果は、 ATAが最適蛍光分子プローブと競合的に DNase rの標的部位に結合していることを示す。 産業上の利用可能性
本発明により、 標的分子に結合するリガンドへの蛍光ラベルを行うことなく、 固有に蛍光性を有し、 標的分子に結合性を有する化合物を分子プローブとして用 いて標的分子と相互作用し得る化合物をスクリ一二ングし得る。 リガンドへの蛍 光ラベルは、 化合物によっては、 蛍光ラベルが困難であり、 さらにコストやリガ ンドの反応性の低下という問題点があり、 標的分子によっては、 相互作用し得る 化合物のスクリーニングが困難であった。 本発明は、 標的分子に対して結合性を 有し、 かつ固有に蛍光性を有する蛍光分子化合物を用いるため、 従来法の有して いた問題を解消できる。
本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。

Claims

請求の範囲
1 . 標的分子に相互作用し得る化合物のスクリーニング方法であって、 該標 的分子に結合し得、 蛍光ラベルすることなく固有に蛍光性を有するリガンドを蛍 光分子プローブとして用い、 該蛍光分子プローブと候補化合物を標的分子への結 合において競合反応させること、 および前記蛍光分子プローブと競合する化合物 を蛍光分析により選択することを含む、 標的分子に相互作用し得る化合物のスク リ一ニング方法。
2 . 標的分子が夕ンパク質である請求項 1記載の標的分子に相互作用し得る 化合物のスクリーニング方法。
3 . 蛍光分子プローブと候補化合物の標的分子への結合における競合を、 溶 液中での蛍光分子プローブと標的分子の結合による蛍光シグナルの変動を指標に 測定する請求項 1または 2に記載の標的分子に相互作用し得る化合物のスクリ一 ニング方法。
4 . 蛍光分子プローブと候補化合物の標的分子への結合における競合を、 蛍 光相関分光法、 蛍光強度分布解析法または蛍光偏光解析法で測定する請求項 3記 載の標的分子に相互作用し得る化合物のスクリ一二ング方法。
5 . 蛍光分子プローブが化合物ライブラリーから標的分子との結合性を指標 に選択されたものである請求項 1〜4のいずれか 1項に記載の標的分子に相互作 用し得る化合物のスクリーニング方法。
6 . 蛍光分子プローブが、 化合物ライブラリーから固有に蛍光性を有する分 子を選択して構築された蛍光プロ一ブライブラリーから、 標的分子とのドッキン グスタディ一により選択され、 またはさらに構造最適化されたものである請求項 1〜 5のいずれか 1項に記載の標的分子に相互作用し得る化合物のスクリ一ニン グ方法。
7 . 化合物ライブラリ一からの蛍光プロ一ブライブラリーの構築が、 以下の (a)〜(c)の手法の少なくとも 1手法により行われる請求項 6記載の標的分子に相 互作用し得る化合物のスクリ一ニング方法。
(a) 蛍光団を部分構造として有する化合物を化合物の構造式から選択する (b) 分子軌道計算ソフトウェアにより、蛍光性を有する化合物を選択する、およ び
(c) 光吸収分析装置を用いての実測により蛍光性を有する化合物を選択する
8 . 蛍光分子プローブの構造最適化が置換基の導入により行われる請求項 6 または 7に記載の標的分子に相互作用し得る化合物のスクリーニング方法。
9 . あらかじめ標的分子と蛍光分子プローブの所望の結合定数を設定し、 標 的分子と蛍光分子プローブの結合定数が、 前記設定された所望の結合定数より大 きい場合に、 該蛍光分子プローブを標的分子の蛍光分子プローブとして選択する 請求項 5〜 8のいずれか 1項に記載の標的分子に相互作用し得る化合物のスクリ 一二ング方法。
1 0 . 蛍光分子プローブの最適励起波長および最適蛍光波長を予め測定し、 該最適励起波長付近の波長で蛍光分子プローブを励起させ、 該最適蛍光波長付近 の波長で蛍光を検出する、 請求項 1〜 9のいずれか 1項に記載の標的分子に相互 作用し得る化合物のスクリーニング方法。
1 1 . 標的分子に相互作用し得る化合物のスクリーニングであって、 該標的 分子に結合し得、 蛍光ラベルすることなく固有に蛍光性を有するリガンドを前記 標的分子特異的蛍光分子プローブとして用いる、 スクリーニングのための蛍光分 析装置であって、 用いる標的分子特異的蛍光分子プローブの励起光の波長の光を 照射し得る連続的に照射光の波長を変え得る光照射手段、 用いる標的分子特異的 蛍光分子プローブの蛍光の波長の光を検出し得る連続的に検出光の波長を変え得 る光検出手段、 上記蛍光分子プローブと候補化合物とを標的分子との結合におい て競合反応させる反応手段を含む、 蛍光分析装置。
1 2 . 標的分子がタンパク質である請求項 1 1記載の蛍光分析装置。
1 3 . 予め測定した標的分子特異的蛍光分子プローブの励起波長および蛍光 波長に適合させて、 照射光の波長および検出光の波長を変えることが可能な、 請 求項 1 1または 1 2に記載の蛍光分析装置。
1 4 . 反応手段が溶液中で蛍光分子プローブと候補化合物とを標的分子との 結合において競合反応させる反応容器である、 請求項 1 1〜 1 3のいずれか 1項 に記載の蛍光分析装置。
1 5 . 蛍光分子プローブと候補化合物の標的分子への結合における競合を、 蛍光相関分光法、 蛍光強度分布解析法または蛍光偏光解析法で測定する請求項 1 :!〜 1 4のいずれか 1項に記載の蛍光分析装置。
1 6 . 標的分子および該標的分子に結合し得、 蛍光ラベルすることなく固有 に蛍光性を有するリガンドである標的分子特異的蛍光分子プローブを含む、 標的 分子に相互作用し得る化合物のスクリーニング用キッ卜。
1 7 . 標的分子がタンパク質である請求項 1 6記載のスクリーニング用キッ 卜。
1 8 . 蛍光分子プローブが化合物ライブラリ一から標的分子との結合性を指 標に選択されたものである請求項 1 6または 1 7に記載の標的分子に相互作用し 得る化合物のスクリーニング用キット。
1 9 . 蛍光分子プローブが、 化合物ライブラリーから固有に蛍光性を有する 分子を選択して構築された蛍光プローブライブラリーから、 標的分子とのドツキ ングスタディ一により選択され、 またはさらに構造最適化されたものである請求 項 1 6〜 1 8のいずれか 1項に記載の標的分子に相互作用し得る化合物のスクリ 一二ング用キッ卜。
2 0 . 化合物ライブラリーからの蛍光プローブライブラリーの構築が、 以下 の(a)〜(c)の手法の少なくとも 1手法により行われる請求項 1 9記載の標的分子 に相互作用し得る化合物のスクリーニング用キット。
(a) 蛍光団を部分構造として有する化合物を化合物の構造式から選択する
(b) 分子軌道計算ソフトウェアにより、蛍光性を有する化合物を選択する、およ び
(c) 光吸収分析装置を用いての実測により蛍光性を有する化合物を選択する
2 1 . 蛍光分子プローブの構造最適化が置換基の導入により行われる請求項 1 9または 2 0に記載の標的分子に相互作用し得る化合物のスクリーニング用キ ッ卜。
PCT/JP2005/024274 2004-12-28 2005-12-28 蛍光分子プローブを用いた新規薬剤スクリーニング方法 WO2006070941A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550880A JP5099675B2 (ja) 2004-12-28 2005-12-28 蛍光分子プローブを用いた新規薬剤スクリーニング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-381671 2004-12-28
JP2004381671 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070941A1 true WO2006070941A1 (ja) 2006-07-06

Family

ID=36615040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024274 WO2006070941A1 (ja) 2004-12-28 2005-12-28 蛍光分子プローブを用いた新規薬剤スクリーニング方法

Country Status (2)

Country Link
JP (1) JP5099675B2 (ja)
WO (1) WO2006070941A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249433A (ja) * 2007-03-29 2008-10-16 Kansai Bunri Sogo Gakuen 被験物質に対するプローブの結合親和性を測定する方法及びその利用
WO2015125851A1 (ja) * 2014-02-19 2015-08-27 国立大学法人京都大学 神経伝達物質受容体のリガンドスクリーニングシステムの開発
CN113189068A (zh) * 2021-04-27 2021-07-30 华南农业大学 一种基于荧光分析的农药检测方法
CN113406045A (zh) * 2020-03-16 2021-09-17 广州创瑞健康科技有限公司 一种疟原虫检测的荧光染色方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228542A (ja) * 1988-04-26 1990-01-30 Olympus Optical Co Ltd 蛍光顕微鏡装置
JP2001272404A (ja) * 2000-03-27 2001-10-05 Olympus Optical Co Ltd 蛍光相関分光法による抗原抗体反応
JP2003508788A (ja) * 1999-09-09 2003-03-04 マックス−プランク−ゲゼルシャフト ツール フォルデルング デル ヴィッセンシャフテン エー.ファウ. ペアードヘリカルフィラメントの核形成のための最小タウペプチド
JP2004110262A (ja) * 2002-09-17 2004-04-08 Enkaku Iryo Kenkyusho:Kk 計算機上の仮想プロテインアレイによる蛋白質−リガンド相互作用の解析方法
JP2004123568A (ja) * 2002-09-30 2004-04-22 Sanyo Boku ヘモグロビン・リガンド分子複合体の結晶、その製造方法および物質の探索方法
JP2004530125A (ja) * 2001-04-02 2004-09-30 ツェプトゼンス アクチエンゲゼルシャフト 多光子励起のための光学構造及びその使用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI98765C (fi) * 1995-01-16 1997-08-11 Erkki Soini Virtaussytometrinen menetelmä ja laite
DE10038382A1 (de) * 2000-08-07 2002-02-21 Direvo Biotech Ag Zweifarbiges fluorimetrisches Proteaseassay

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228542A (ja) * 1988-04-26 1990-01-30 Olympus Optical Co Ltd 蛍光顕微鏡装置
JP2003508788A (ja) * 1999-09-09 2003-03-04 マックス−プランク−ゲゼルシャフト ツール フォルデルング デル ヴィッセンシャフテン エー.ファウ. ペアードヘリカルフィラメントの核形成のための最小タウペプチド
JP2001272404A (ja) * 2000-03-27 2001-10-05 Olympus Optical Co Ltd 蛍光相関分光法による抗原抗体反応
JP2004530125A (ja) * 2001-04-02 2004-09-30 ツェプトゼンス アクチエンゲゼルシャフト 多光子励起のための光学構造及びその使用
JP2004110262A (ja) * 2002-09-17 2004-04-08 Enkaku Iryo Kenkyusho:Kk 計算機上の仮想プロテインアレイによる蛋白質−リガンド相互作用の解析方法
JP2004123568A (ja) * 2002-09-30 2004-04-22 Sanyo Boku ヘモグロビン・リガンド分子複合体の結晶、その製造方法および物質の探索方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249433A (ja) * 2007-03-29 2008-10-16 Kansai Bunri Sogo Gakuen 被験物質に対するプローブの結合親和性を測定する方法及びその利用
WO2015125851A1 (ja) * 2014-02-19 2015-08-27 国立大学法人京都大学 神経伝達物質受容体のリガンドスクリーニングシステムの開発
JPWO2015125851A1 (ja) * 2014-02-19 2017-03-30 国立大学法人京都大学 神経伝達物質受容体のリガンドスクリーニングシステムの開発
CN113406045A (zh) * 2020-03-16 2021-09-17 广州创瑞健康科技有限公司 一种疟原虫检测的荧光染色方法
CN113189068A (zh) * 2021-04-27 2021-07-30 华南农业大学 一种基于荧光分析的农药检测方法

Also Published As

Publication number Publication date
JPWO2006070941A1 (ja) 2008-06-12
JP5099675B2 (ja) 2012-12-19

Similar Documents

Publication Publication Date Title
Sengupta et al. Superresolution imaging of biological systems using photoactivated localization microscopy
Chen et al. Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy
EP0979409B1 (en) Plasmon resonant particles, methods and apparatus
US6603546B1 (en) Rapid high throughput spectrometer and method
KR101361652B1 (ko) 라만 분석 기반 고속 다중 약물 고속 스크리닝 장치
US9222881B2 (en) Vibrational spectroscopy for quantitative measurement of analytes
KR20200118227A (ko) 양자 센서를 이용한 단백질체 분석
CN110730826A (zh) 分析物检测
EP2700935A1 (en) Quantitative determination method for target particles, photometric analysis device, and computer program for photometric analysis
EP1794324A2 (en) Nonlinear spectroscopic methods for identifying and characterizing molecular interactions
US7241381B2 (en) Method and apparatus for detecting chemical binding
Scatena et al. Raman Spectroscopy and Aptamers for a Label‐Free Approach: Diagnostic and Application Tools
JP2009250721A (ja) 分子間相互作用の解析方法
JP5099675B2 (ja) 蛍光分子プローブを用いた新規薬剤スクリーニング方法
Berland Detection of specific DNA sequences using dual-color two-photon fluorescence correlation spectroscopy
Földes-Papp et al. Detection of single molecules: solution-phase single-molecule fluorescence correlation spectroscopy as an ultrasensitive, rapid and reliable system for immunological investigation
Wang et al. Protein structure and dynamics from single-molecule fluorescence resonance energy transfer
Fisher et al. Fast aerosol analysis by Fourier transform imaging fluorescence microscopy
JP2003275000A (ja) 一分子蛍光分析により核酸と核酸結合タンパク質との結合を検出する方法
WO2004095028A1 (ja) 受容体に結合可能な物質をスクリーニングする方法
JP2003279566A (ja) 受容体に結合可能な物質をスクリーニングする方法
Kocheril et al. Raman Scattering Spectroscopy on Strawberry DNA
Baertschi et al. An Update for Pharmaceutical Stress Testing Enabled by Modern Informatics Technologies
JP2005337805A (ja) 抗体または抗原の測定方法
Gao et al. Quantitative deconvolution of autocorrelations and cross correlations from two-dimensional lifetime decay maps in fluorescence lifetime correlation spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550880

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05824449

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5824449

Country of ref document: EP