[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006070860A1 - Novel screening method for inflammatory cytokine inhibitor - Google Patents

Novel screening method for inflammatory cytokine inhibitor Download PDF

Info

Publication number
WO2006070860A1
WO2006070860A1 PCT/JP2005/024043 JP2005024043W WO2006070860A1 WO 2006070860 A1 WO2006070860 A1 WO 2006070860A1 JP 2005024043 W JP2005024043 W JP 2005024043W WO 2006070860 A1 WO2006070860 A1 WO 2006070860A1
Authority
WO
WIPO (PCT)
Prior art keywords
irf
test substance
protein
myd88
cells
Prior art date
Application number
PCT/JP2005/024043
Other languages
French (fr)
Japanese (ja)
Inventor
Tadatsugu Taniguchi
Akinori Takaoka
Tak W. Mak
Kenya Honda
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Publication of WO2006070860A1 publication Critical patent/WO2006070860A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • G01N33/6866Interferon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/564Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/24Immunology or allergic disorders

Definitions

  • the present invention relates to the use of IRF-4 and IRF-5 in the suppression of inflammatory site force-in, and specifically to a novel screening method for an inflammatory site force-in inhibitor.
  • TLRs Toll-like receptors
  • TLRs Toll-like receptors
  • LPS lipopolysaccharide
  • peptide daricans a protein present in motile bacteria.
  • flajulin a protein present in motile bacteria.
  • LPS is a ligand for TLR4
  • peptidoglycan is a ligand for TLR2
  • furadulin is a ligand for TLR5.
  • TLR9 recognizes CpGDNA
  • TLR3 recognizes double-stranded RNA and poly (I: C) functionally similar to double-stranded RNA.
  • TLR ligands other than pathogenic molecules are known, and imidazoquinoline derivatives are TLR7 ligands.
  • TLR is activated by various ligands.
  • TLR activation is central to the regulation and organization of the innate and adaptive immune systems against pathogens (Non-Patent Documents 1 and 2).
  • a typical effect caused by TLR signaling is the induction of various site force-ins and chemokines, including various inflammatory site force-ins.
  • the induction of cytoforce-ins and chemokines depends on a common molecular pathway linked by an adapter protein called MyD88 (1-3).
  • MyD88 contains a structural region called the death domain. The force death domain allows MyD88 force S to associate with further signaling molecules (Non-Patent Documents 3 and 4).
  • TLR signaling include IL-1 receptor-associated kinase 1 (IRAKI) and IRAK4 (both of which contain the death domain) and the adapter molecule TNF Receptor associated factor (TRAF) 6 is included, and these signal transduction molecules are important for the activity of NF- ⁇ B and AP-1 transcription factors (Non-patent Documents 1, 2, 5, 6). ).
  • IRAKI IL-1 receptor-associated kinase 1
  • IRAK4 both of which contain the death domain
  • TNF Receptor associated factor 6 TNF Receptor associated factor 6
  • TLR signaling is involved in the induction of site force-in is thought to have the potential to suppress excessive immune responses by controlling TLR signaling.
  • substances that regulate TLR signal transmission are expected to be useful in the treatment and prevention of diseases involving cytodynamic force-in.
  • TLR signaling is not well understood, TLR signaling is not fully activated as a target for therapeutic agents for diseases related to cytoforce-in.
  • Non-patent literature l Janeway, CA A "Jr., & Medzhitov, R. (2002) Annu. Rev. Immunol. 20, 197-216.
  • Non-Patent Document 2 Akira, S. & Takeda, K. (2004) Nat. Rev. Immunol. 4, 499-511.
  • Non-Patent Document 3 Medzhitov, R., Preston- Hurlburt, P., Kopp, E., Stadlen, A., Chen, C
  • Non-Patent Document 4 Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. (1997) I mmunity 7, 837-847.
  • Non-Patent Document 5 Suzuki, N "Suzuki, S. & Yeh, W. C. (2002) Trends Immunol. 23, 503- 506.
  • Non-Patent Document 6 Janssens, S. & Beyaert, R. (2003) Mol. Cell 11, 293-302.
  • Non-Patent Document 7 Mamane, Y. et al. Interferon regulatory factors: the next generation.
  • Non-Patent Document 8 Tanigucm, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623—6 55 (2001) .
  • Non-Patent Document 9 Levy, DE, Marie, I. & Prakash, A. Ringing the interferon alarm: diff erential regulation of gene expression at the interface between innate and adaptive i mmunity. Curr. Opin. Immunol. 15, 52-58 (2003).
  • Non-Patent Document 10 Barnes, B., Lubyova, B. & Pitha, P. M. On the role of IRF in host d efense. J. Interferon Cytokine Res. 22, 59—71 (2002)
  • the present invention has been made in view of the above situation, and the problem to be solved by the present invention is to provide a novel screening method for an inflammatory site force-in inhibitor.
  • IRF Interferon regulatory fact
  • the present inventors stimulated hematopoietic cells derived from IRF-5 gene-deficient mice (IRF-5 — / _ mice) and wild-type mice with various TLR ligands, and IRF-5 "'mice Hematopoietic cells have been shown to impair the induction of inflammation-induced site force-in such as interleukin-6 (IL-6), IL-12, and tumor necrosis factor- ⁇ (TNF- ⁇ ).
  • IRF-5 — / _ mice IRF-5 gene-deficient mice
  • TLR ligands IRF-5 "'mice Hematopoietic cells have been shown to impair the induction of inflammation-induced site force-in such as interleukin-6 (IL-6), IL-12, and tumor necrosis factor- ⁇ (TNF- ⁇ ).
  • IL-6 interleukin-6
  • TNF- ⁇ tumor necrosis factor- ⁇
  • IRF-5 interacts with and is activated by MyD88 and TRA F6, and that TLR activity causes nuclear translocation of IRF-5 and activates transcription of the site force-in gene IRF-5 " ⁇ mice always showed resistance to lethal shock induced by unmethylated DNA or lipopolysaccharide (LPS), which is associated with serum levels of pro-inflammatory site force-in. Correlate with significant decline. Thus, the inventors have revealed that IRF-5 is a new major downstream regulator of the TLR_MyD88 signaling pathway and a potential target for therapeutic intervention to suppress adverse immune responses .
  • LPS lipopolysaccharide
  • IRF-5 was found to be an immune
  • a substance that suppresses the activity or expression of IRF-5 such as IRF-4, negatively regulates the expression of inflammatory site force-in and can be a novel therapeutic agent for immune diseases. That is, the present invention relates to the use of IRF-4 and IRF-5 in the control of inflammatory site force-in expression, and more specifically, provides the following inventions.
  • TLR is any one of TLR3, TLR4, TLR5, TLR7, TLR8, TLR9.
  • a screening method for an inflammatory site force-in inhibitor comprising the following steps (a) and (c):
  • the donor fluorescent protein gene and the acceptor fluorescent protein gene are linked to either the MyD88 gene or the IRF-5 gene, and the fluorescent protein gene-MyD88 gene construct and the fluorescent protein gene-IRF-5 The process of introducing the gene construct into the cell
  • the cells placed in the presence of the test substance are irradiated with an excitation wavelength peculiar to the donor fluorescent protein to excite the donor fluorescent protein, and based on the fluorescence intensity based on the donor fluorescent protein and the acceptor fluorescent protein Detecting fluorescence intensity and analyzing FRET between donor fluorescence protein and acceptor fluorescence intensity protein from fluorescence intensity based on donor fluorescence protein and fluorescence intensity based on acceptor fluorescence protein
  • step (c) FRET in the presence of the test substance analyzed in step (b) above is Selecting a test substance that is attenuated or disappears from FRET
  • a screening method for an inflammatory site force-in inhibitor comprising the following steps (a) and (d):
  • a screening method for an inflammatory site force-in inhibitor using, as an index, the amount of IRF-4 expression in an IRF-4 expressing cell when the test substance is brought into contact with the test substance,
  • Inflammatory site force in is any of IL-1, IL-6, IL-8, IL-12, IL-18, TNF- ⁇ , IFN- ⁇ .
  • a therapeutic agent for a disease associated with inflammatory site force-in comprising the MyD88-IRF-5 binding inhibitor described in (19) above.
  • FIG. L A drawing for the production of IRF-5-deficient mice.
  • a Targeted disruption of the mouse IriS gene. Construction of mouse W5 gene, targeting vector and mutant allele.
  • the black frame represents Exon (2 to 9): The first (non-coding) Exon is located approximately 4.4 kb upstream of the second Exon (NCBI database session number NC 0007 2). Arrows and asterisks indicate the translation initiation ATG sequence and termination TAA sequence, respectively.
  • Restriction enzymes H, HindIII; A, Apal.
  • b DNA plot analysis using the radiolabeled probe shown in a for the genomic tail DNA digested with Hindlll.
  • RNA (10 / zg) was extracted and analyzed for IRF-5 expression by hybridization with a cDNA probe corresponding to the 278-739 fragment. Bromination after RNA transfer to membrane Um staining was included as a control (below). Note that IRF-5 mRNA is up-regulated by poly (I: C) that activates TLR3.
  • d Immunoblot analysis of spleen cell lysates from wild type ( + / + ) mice, heterozygous ( + ”) and homozygous (" _ ) IRF-5 mutant mice. Spleen lysates were incubated with an antiserum against IRF-5 peptide, PSPEDIPSDKQ (SEQ ID NO: 95), corresponding to a region in exon 6.
  • This antiserum was also examined for specificity by preincubation with an excess of IRF-5 peptide.
  • the same membrane was blotted with anti-j8-actin as a loading control (see below). Arrows indicate nonspecific bands. This figure shows that no band corresponding to the correct size (57 kDa) of IRF-5 protein is present in the spleen from IRF-5 chi mice.
  • FIG. 2a-c Diagram of pro-inflammatory site force-in and their mRNA-induced damage in response to TLR ligands in hematopoietic cells derived from IRF-5 Chi mice.
  • cDC normal DC
  • WT wild type mice
  • IRF-5— ⁇ mice open bars
  • CpG-B type CpG ODN
  • CpG-A CpG-A
  • the supernatant was also measured for IFN-a induction. Similar results were obtained in three independent experiments. Data show mean ⁇ sd. ND not detected.
  • b Stimulate plasmacytoid DCs (pDC) derived from the spleen of WT mice (black bars) or IRF-5— ⁇ mice (white bars) (medium only) or the same as described in a In this way, stimulation with CpG-B ODN or CpG-A ODN was performed, and the concentration of cytodynamic force in the culture supernatant was measured by ELISA. Similar results were obtained in three independent experiments. Data shows average sd. ND not detected.
  • spleen macrophages from WT mice black bars
  • IRF-5— ⁇ mice open bars
  • CpG-A ODN 1.0 ⁇
  • CpG- ⁇ ODN 1.0 ⁇
  • SOUml— 1 Stimulated for 24 hours in the presence (IL-12) or absence (IL-6 and TNF-a) of IFN-y, IL-6, IL-12p40 in the culture supernatant as described in a 2 is a graph showing the concentration of TNF-a measured by ELISA.
  • FIG. 2d is a diagram following FIG. 2a-c. d, WT mouse (black bar) or IRF-5— ⁇ mouse (Open bars) spleen macrophages are left unstimulated or various TLR ligands such as TLR3 (polyinosine-polycytidylic acid [poly (I: C)]; 100 g / ml), TLR 4 (lipo Polysaccharides [LPS]; 10 ngZml), TLR5 (furazirine; 10 / z gZml) and TLR7 (8) (ss-RNA; polyuridylic acid [poly (U)]; 5 / zg / ml) 1 Stimulated for 24 hours in the presence (IL-12) or absence (IL-6 and TNF-a) of IFN- ⁇ , and TNF- ⁇ , IL- 6 is a graph showing the concentrations of 6 and IL-12p40 measured by ELISA. Data are representative of two independent experiments.
  • Fig. 2ef This is a diagram following Fig. 2d.
  • e is a graph showing the induction of mRNA of pro-inflammatory site force-in.
  • Spleen macrophages were prepared by WT and IRF-5- ⁇ mouse force and stimulated with CpG-B ODN, LPS or poly (I: C) under the same conditions as described in d.
  • Total RNA was extracted at designated time points and subsequently subjected to quantitative RT-PCR analysis.
  • f is a graph showing the induction of I ⁇ B ⁇ mRNA. Splenic macrophages were stimulated with the designated PAMP and mRNA expression was monitored as described in e.
  • FIG. 3 Diagram of the interaction of IRF-5 with MyD88 and TRAF6 adapters involved in TLR signaling.
  • a Photograph showing the intracellular localization of IRF-5 and MyD88.
  • Cells expressing YFP-IRF-5 and CFP-MyD88 were collected using an inverted fluorescence microscope equipped with a cooled CCD camera.
  • FRETC corrected FRET
  • HEK293T cells were transiently transfected with pCAGGS-HA-IRF-5 or pCAGGS-HA-IR F-3 and pME-FLAG-TRAF6. The analysis was performed as described in the upper figures. The expression levels of these molecules were also determined by analyzing whole cell lysates by immunoblotting. d, Graph showing activation of IRF-5 by MyD88 and TRAF6. Luciferase reporter construct (p-55ClBLuc) (50 ng) containing multimerized ISRE alone or HERF293T cells or designated IRF-5 (20 ng), My D88 (20 ng), TRAF6 (20 ng) Transfected with expression vectors for the combined combinations (top graph).
  • HEK293 cells expressing TLR9 cDNA were used (see method section) (graph below). Cell lysates were extracted after 24 hours of transfection and subjected to luciferase assay.
  • FIG. 4ab is a diagram showing IRF-5 activation by TLR stimulation and binding to IL-12p40 promoter.
  • CpG-B is a graph showing nuclear translocation of IRF-5 by ODN stimulation. Images of Raw 264.7 cells expressing YFP-I RF-5 were collected with a time-lapse microscope and stimulated with CpG-B ODN. Images of YFP and CFP were collected every minute, and CpG-B ODN was added 5 minutes after the start of recording. The normalized fluorescence intensity of the nuclear region identified by the DIC image was plotted against time.
  • b Myp88-dependent nuclear translocation of IRF-5 in MEF stimulated with CpG-B ODN.
  • PBabe-HA-IRF-5 was transferred to WT or MyD88—MEF by retroviral gene transfer and treated with CpG-B ODN (1.0 ⁇ ) for the specified period.
  • Cells were fractionated and 30 ⁇ g of nuclear extract was analyzed for nuclear translocation of HA-labeled IRF-5 by SDS-PAGE and immunoblotting followed by stripping and USF-2 (nuclear protein), / 3-tubulin Reprobing for (cytoplasmic protein) was performed.
  • the IRF-5 expression level in the cytosolic fraction is also shown in the figure below.
  • FIG. 4c-e This is a diagram following Fig. 4ab. c, showing the results of chromatin immunoprecipitation assembly.
  • PCR was performed to detect endogenous ISR E in the gene in the immunoprecipitated chromatin fragment: lanes 1 and 2 show the results of PCR amplification using the immunoprecipitated sample with the control antibody.
  • Lanes 3 and 4 show the results of PCR amplification of the target sequence (248 bp) in the chromatin fragment immunoprecipitated with anti-HA antibody. The results of PCR amplification using primers that detect the 3-UTR of the IL-12p40 gene are also shown.
  • ChIP assembly was performed in the same manner using a primer that allows PCR amplification of the IFN-jS promoter region (right drawing).
  • the IFN-j8 gene is not induced in these RAW 264.7 cells when stimulated by either CpG-A ODN or CpG-B ODN (H. Y-, unpublished data) and therefore serves as a negative control. Also shown is PCR amplification of all input DNA in each sample (input DNA).
  • the DNA size marker is shown on the right in bp. d, NF- ⁇ B activation in the absence of IRF-5.
  • Spleen B cells from WT, IRF-5 __ / _ and MyD88— ⁇ mice were stimulated by CpG-B ODN (0.3 M) for the specified period.
  • the activity of NF- ⁇ B was evaluated by EMSA.
  • Activation of NF- ⁇ B by poly (I: C) was essentially normal in IRF-5 thiomacrophages (AT, unpublished data).
  • e MAP kinase activation in the absence of IRF-5.
  • CpG-B ODN (0.3 M) was added to WT or IRF-5- ⁇ splenic B cells and treated for the specified period.
  • the activity of ⁇ 38 and JNK was analyzed using phospho-specific antibodies. An immunoblotting method using antibodies against ⁇ 38 and JNK was used as a loading control.
  • FIG. 5ab is a graph showing the resistance of IRF-5 chimaus to lethal shock induced by CpG-B ODN or LPS.
  • D-GalN D-galactosamine
  • 5cd is a diagram following FIG. 5ab.
  • D-GalN 8mg.
  • sera from mice injected with LPS were collected 1 hour and 2 hours after injection.
  • FIG. 6 is a photograph showing the tissue distribution of IRF-5 mRNA expression.
  • Mouse multifilament and woven Northern blot (Clontech) containing 2 ⁇ g poly (A) + RNA was hybridized with mouse IRF-5 cDNA fragment.
  • b TLR9 ligand in normal rodent cells (cDC), CpG-B oligonucleotide (ODN) stimulation (left), or LPS and poly (I: C) in splenic macrophages (right), IRF -5 Graph showing up-regulation of mRNA expression.
  • CpG-B 1.0 1.0 / ⁇ ⁇
  • LPS lasZml
  • poly (I: C) 100 g Zml
  • FIG. 7 is a diagram showing induction of IFN-a mRNA and 1FN- ⁇ mRNA by poly (I: C) in splenocytes.
  • Spleen cells from heterozygous and homozygous mice were stimulated with poly (I: C) (200 ⁇ g / ml) for 6.5 hours and total RNA was pan-IFN-a (a4 and non- ⁇ 4) or It was subjected to semi-quantitative RT-PCR analysis using any of IFN- ⁇ 8. No genomic DNA was found in any cDNA obtained by RT reaction.
  • FIG. 8 is a graph showing IL-6 induction by CpG ODN stimulation in splenic B cells.
  • WT wild-type mice
  • IRF-5— ⁇ mice open bars
  • CpG-A ODN 1.0 i u M
  • CpG-B ODN l.O ⁇ M
  • IL-6 production by ELISA as described in Figure 2a.
  • Supernatants were collected for raw determination.
  • b A graph showing the induction of IL-6 mRNA by CpG ODN in splenic B cells. Induction of mRNA was monitored by quantitative RT-PC R as described in Figure 2e.
  • FIG. 9ab is a graph showing TLR mRNA expression in splenic macrophages.
  • FIG. 9cd is a diagram following FIG. 9ab.
  • c (Left) WT and IRF-5 chi spleen B cells were treated with 1.0 / z M C pG-A or CpG-B for 12 hours, or left untreated (medium).
  • Cells were collected and analyzed by flow cytometry. Histograms show MHC class II and CD86 expression levels. (Right drawing) The ability to incubate WT and IRF-5- 'mouse-derived spleen cells with 1.0 M CpG-B for 12 hours, or left untreated (medium).
  • Histograms of cells collected and analyzed by flow cytometry show CD40 expression levels in lymphocytes (cDC) gated to CD11C + B220-.
  • cDC lymphocytes
  • FIG. 10 ISRE signs in mouse IL-6, IL-12p40, TNF-a and I ⁇ genes It is a figure which shows an complement. NCBI mouse genome databases of these genes (accession numbers N1039300, S82420, Y00467 and AB050901S1 respectively) were analyzed using TRANSFAC. This figure shows ISRE candidates whose score calculated by TFSEARCH (ver.l.3) exceeded 70.0 points. Under this criterion, four ISRE candidates are found in the promoter region of ⁇ .
  • FIG. 11 Diagram of nuclear translocation of IRF-5 by LPS or CpG-B ODN stimulation.
  • a Raw 264.7 cells expressing YF P-IRF-5 were left to be stimulated by LPS or left untreated (None). YFP images were collected every minute and LPS was added 5 minutes after the start of recording. The average intensity of the nuclear region was plotted against time.
  • b Images of Raw 264.7 cells expressing YFP-IRF-5 were collected with a Timelabs microscope and left untreated (-) or stimulated with CpG-B ODN for 2 hours (+).
  • FIG. 12 shows the interaction between IRF-4 and MyD88.
  • A A photograph showing a confocal image of HEK293T cells that transiently express YFP-IRF-4 or YFP-IRF-8 together with CFP_MyD88. The arrow indicates the coexistence of IRF-4 and MyD88.
  • B and c Analysis of intermolecular FRET between CFP-MyD88 and YFP-IRF was performed using HEK293T cells. FRETc was calculated and displayed using a pseudo color image (b) or FRETcZCFP value (c).
  • FIG. 13 shows competition between IRF-4 and IRF-5 for MyD88 interaction.
  • HA-IRF-5 expression vector 1.0 g
  • HA-IRF-7 expression vector 2.0 ⁇ g
  • FLAG-MyD88 expression vector 1 g
  • the HA-IRF-4 expression vector or HA-IRF-3 expression vector (0, 0.1, 0.2, 0.5, or 1.0 g) was transferred in increasing amounts.
  • Cell lysates were immunoprecipitated (IP) using anti-FLAG antibody and subjected to immunoblot (IB) analysis using anti-HA or anti-FLAG antibody as indicated.
  • FIG. 14 shows negative regulation of MyD88-dependent IRF-5 activation by IRF-4.
  • DBD DNA binding domain
  • AD active domain
  • RD regulatory domain.
  • B Confocal image of HEK293T cells that transiently express YFP-IRF-4, YFP-IRF-4 ⁇ DBD or YFP-IRF-4 ⁇ RD.
  • C Transiently transfer the specified combination of FLAG-labeled MyD88 and HA-labeled full-length IRF-4 or a deletion mutant of IRF-4 to HEK293T cells, and perform immunoprecipitation It was used for Atssey.
  • D shows the effect of IRF-4 expression on MyD88-TRAF6-dependent IRF-5 activity.
  • HEK293T cells For HEK293T cells, p55ClB-Luc and MyD88 (25ng), TRAF6 (25ng), IRF-5 (25ng) and full-length IRF-4 or IRF-4 variants (0, 1, 5 or 15ng) The expression vectors for the designated combinations were transiently co-transferred. The luciferase activity was measured 24 hours later. (e) shows the influence of IRF-4 expression on MyD88-dependent IRF-7 activity. For HEK293T cells, transiently pl25-Luc and an expression vector for the specified combination of MyD88 (25ng), IRF-7 (25ng) and full-length IRF-4 (0, 5 or 15ng) Simultaneously transferred. Luciferase activity was measured 24 hours after the transformation.
  • FIG. 15 is a graph showing hypersensitivity to TLR stimulation in Irf_4 — / _ peritoneal macrophages.
  • A Residual peritoneal macrophages from wild type mice were stimulated for a specified period with ODN1668, LPS or poly (U). Total RNA was prepared and analyzed for IRF-4 mRNA expression by quantitative real-time RT-PCR.
  • B Resident peritoneal macrophages derived from wild-type mice or Irf4 ⁇ / _ mice were stimulated for 24 hours with the designated TLR ligand in the presence of IFN- ⁇ . The concentrations of IL-12p40, IL-6 and TNF- ⁇ in the culture supernatant were measured by ELIS.
  • FIG. 16 shows cell type-specific contributions of IRF-4 and IRF-5 systems.
  • BMM from wild-type mice, IriS — / _ or Irf4 — / _ mice was stimulated with the specified stimulus in the presence of IFN- ⁇ .
  • concentrations of IL-12p40, IL-6 and TNF-a in the culture supernatant were measured by ELISA.
  • B Control vectors, full-length IRF-4 or IRF-4 ⁇ DBD expression vectors were transiently transfected into RAW264.7 cells by electroporation. OD cells after 12 hours
  • FIG. 17 shows the role of IRF-4 in vivo.
  • A Serum concentrations of IL-6, IL-12p40 and TNF- ⁇ were measured by ELISA. Results shown are the average of serum samples (SD).
  • B The survival of these mice was observed for 15 hours.
  • the present invention relates to a novel method for screening for an inflammatory site force-in inhibitor using IRF-5.
  • IRF-5 plays an essential role in inducing inflammatory site force-in via the TLR signal pathway.
  • the present inventors have also found a new screening method for an inflammatory site force-in inhibitor using IRF-5.
  • the present invention provides, as a first aspect of the screening method described above, "Inflammatory site force-in, using IRF-5 activity in an IRF-5-expressing cell as an index when the test substance is contacted with the test substance.
  • a screening method for inhibitors is provided.
  • IRF-5-expressing cells may be any cells that express IRF-5. Even if IRF-5 is endogenous IRF-5, artificially introduced IRF-5 It may be. IRF-5 is a transcription factor of IRF family members As mentioned above, it interacts with MyD88 and TRAF6 and is involved in the induction of inflammatory site force-in.
  • the cell expressing endogenous IRF-5 used in the method of the present invention is not particularly limited as long as it is a mammalian cell capable of expressing endogenous IRF-5, but is preferably endogenous IRF. It is a mammalian cell that can express a large amount of -5. Specific examples of mammalian cells that can express a large amount of endogenous IRF-5 include blood cells, and more specific examples include B cells, T cells, macrophages, erythrocytes, rod cells, neutrophils Spheres, eosinophils, basophils and the like. Cells capable of expressing endogenous IRF-5 can also be prepared for mammalian organs or tissue forces by methods well known to those skilled in the art.
  • IRF-5 is highly expressed in blood cells, and it is considered that an organ or tissue force that contains a large amount of blood cells can efficiently prepare IRF-5. More specifically, an antibody specific for a surface antigen characteristic of a target cell is used from a mammalian organ or tissue rich in blood cells, for example, a blood system tissue such as spleen, liver, thymus, lymph gland, It can be prepared using a cell sorter (FACS), magnetic cell sorting (MACS) using micro magnetic beads, and a affinity column.
  • FACS cell sorter
  • MCS magnetic cell sorting
  • affinity column affinity column.
  • an antibody against such a surface antigen can be prepared by a well-known method, and many specific antibodies against such a surface antigen are commercially available, and commercially available antibodies can also be used.
  • mouse T cells and B cells can be prepared using beads coated with anti-CD5 antibody and anti-CD19 antibody from the mouse spleen, for example, as in Examples described later.
  • cDC and plasmacytoid dendritic cells pDC
  • the above organ or tissue force can also be prepared using an anti-CD1 lb antibody.
  • the human IRF-5 cDNA sequence is SEQ ID NO: 1
  • the amino acid sequence of human IRF-5 is SEQ ID NO: 2
  • the mouse IRF-5 cDNA sequence is SEQ ID NO: 3
  • the IRF-5 gene can be prepared by a known method. For example, it is possible to prepare a single cDNA library in which the whole or part of the sequence shown in SEQ ID NO: 1 or 3 is used as a probe and the human or mouse tissue force is prepared using the probe.
  • a primer having the sequence ability described in SEQ ID NO: 1 or 3 is also designed, and the total RNA prepared by human or mouse can be used as a kit, and can be prepared by RT-PCR using the primer. Alternatively, it can be synthesized using a nucleic acid synthesizer based on the sequence information described in SEQ ID NO: most.
  • exogenous IRF-5 The gene used for exogenous introduction (hereinafter referred to as exogenous IRF-5) is not limited to HI-HRF-5 (SEQ ID NO: 1) or mouse IRF-5 (SEQ ID NO: 3) shown above, but includes orthologs, homologs, It may be a natural IRF-5 variant.
  • the type of mammal is not particularly limited as long as it is a mammal that can be IRF-5 derived from animals other than humans and mice. In addition to mice and humans, rats, guinea pigs, hamsters and other rodents, rabbits, dogs, cats, pigs, rushes, horses, goats, hidges, donkeys, birds, chimpanzees, monkeys, etc.
  • the derived IRF-5 can be used in the method of the present invention.
  • a variant of the IRF-5 gene sequence is also an exogenous IRF-5 gene that can be used in the present invention as long as the variant has IRF-5 activity.
  • Such an IRF-5 gene is, for example, a stringent library using a whole or part of the sequence shown in SEQ ID NO: 1 or 3 as a probe, and a human or mouse tissue force prepared using the probe. It can be prepared by isolating a polynucleotide that undergoes hybridization under various conditions. Stringent hybridization conditions can be selected as appropriate by those skilled in the art.
  • a hybridization containing 25% formamide, 50% formamide under more severe conditions 4 X SSC, 50 mM Hepes pH 7.0, 10 X Denhardt's solution, 20 g / ml denatured salmon sperm DNA. Prehybridize in solution at 42 ° C, then hybridize with labeled probe at 42 ° C. Subsequent washing, for example, ⁇ 0.5xSSC, 0.1% SDS, 42 ° C '' is more severe than ⁇ lxSSC, 0.1% SDS, 37 ° C ''. Washing may be performed with “xSSC, 0.1% SDS, 65 ° C.”.
  • hybridization conditions are examples, and stringent hybridization can be performed even under conditions different from the above conditions.
  • One skilled in the art will know the probe concentration, probe length, and reaction time.
  • An appropriate stringency can be realized in consideration of other conditions such as the above.
  • the polypeptide encoded by the polynucleotide isolated using such hybridization technology is usually an IRF-5 protein consisting of the amino acid sequence of SEQ ID NO: 2 or 4 in the amino acid sequence.
  • high homology means at least 40% or more, preferably 60% or more, more preferably 80% or more, more preferably 90% or more, more preferably at least 95% or more, more preferably at least 97% or more (e.g. 9 8 to 99%) sequence homology.
  • the identity of the amino acid sequence can be determined by, for example, the algorithm BLAST (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990, Proc. Natl. Acad. Sci.
  • a polynucleotide in which the IRF-5 gene is artificially mutated can be used in the screening method of the present invention as long as the polynucleotide has IRF-5 activity.
  • a polynucleotide encoding a polypeptide containing one or more deletions, substitutions, insertions, and / or additions in the amino acid sequence set forth in SEQ ID NO: 2 or 4 is suitable for the screening method of the present invention.
  • the number of amino acids added, deleted, inserted, or Z and substituted is not particularly limited as long as the polynucleotide has IRF-5 activity.
  • a polynucleotide can be prepared by a person skilled in the art by a well-known technique.
  • IRF-5 gene containing artificial mutation can be prepared by site-specific or random mutation of IRF-5 gene by cassette mutagenesis or mutagenesis by PCR method. It is.
  • a polynucleotide containing a nucleotide sequence in which a mutation is introduced into the nucleotide sequence of SEQ ID NO: 3 or 3 can be synthesized by a commercially available nucleic acid synthesizer.
  • IRF-5 homologs, orthologs, natural mutants, artificial mutants obtained as described above Whether a polynucleotide such as a test polynucleotide has IRF-5 activity can be determined by introducing the test polynucleotide into a mammalian cell line expressing TLR, MyD88TRAF6, and any inflammatory site force-in. This can be determined by detecting the expression of inflammatory site force-in when the ligand is contacted. If the expression level of inflammatory site force-in is high, it can be judged that the IRF-5 activity of the test polynucleotide is high.
  • the cells into which the exogenous IRF-5 gene is introduced can be appropriately selected as a cell or cell line capable of retaining and expressing the IRF-5 gene.
  • Mammalian cells and cell lines are generally cells capable of retaining and expressing an IRF-5 gene.
  • HEK293T is a suitable example for introducing an exogenous IRF-5 gene.
  • the IRF-5 gene may be introduced directly into the cell by means of a particle gun or the like, but a vector suitable for the cell to be introduced can be appropriately selected and used for IRF-5 gene introduction.
  • vectors based on various viruses such as adenovirus, papillomavirus, papovavirus, and retrovirus can be used.
  • the "IRF_5-expressing cells" used in the method of the present invention are required to have a mechanism for activating IRF-5.
  • the function of IRF-5 in TLR signaling is exerted by the signaling force IRF-5 activated by binding to the ligand and TLR activation, and being transmitted downstream through interaction with MyD88 and TRAF6.
  • the expressed TLR, MyD88 and TRAF6 may be endogenous TLR, MyD88 and TRAF6 or an artificially introduced exogenous TLR, MyD88 and TRAF6.
  • TLR3 When artificially introducing a gene into a foreign country, without introducing all of MyD88, TRAF6, and TLR, the ability to co-express both TRAF6 and MyD88, or TLR, can be introduced.
  • IRF-5 activity can be achieved by either stimulating TLR with a TLR ligand.
  • TLRs need only express one of TLRs located upstream of the interaction between MyD88, TRAF6, and IRF-5 in TLR signaling.For example, TLR3, TLR 4, TLR5, TLR7, TLR8, TLR9 The ability to express any one or more is preferable.
  • Nucleotide sequences of various types of TLR, MyD88 and TRAF6 are known. For example, the following Accession N Available from the Public Database (NCBI) by O. TLR3
  • the IRF-5 activity used as an index in the method of the present invention refers to an activity that qualitatively or quantitatively indicates the relationship of IRF-5 with respect to TLR signaling. That is, in the method of the present invention, if IRF-5 is an event obtained as a result of TLR signal transduction, deviation can be used as an index. Examples of such an indicator include the expression level of a reporter gene linked to a promoter region containing an ISRE sequence (hereinafter also referred to as “reporter activity”). As will be described later in the Examples, the present inventors have revealed that upon activation of TLR, IRF-5 interacts with MyD88 and TR AD6 to induce inflammatory site force-in.
  • a reporter gene linked downstream of the promoter region containing the ISRE sequence is constructed, the reporter gene construct is introduced into a cell having a TLR signal transduction pathway, and the cell is contacted with a TLR ligand. It is considered that TLR is activated and a signal based on TLR activation induces expression of the reporter gene through formation of a complex composed of IRF_5, MyD88 and TRAF. That is, the reporter activity based on the reporter gene construct can be an indicator in the screening method of the present invention.
  • the ISRE (Interferon Stimulated Response Element) sequence is a DNA base sequence motif that is specifically recognized by transcription factors of the IRF family, and includes a consensus sequence: -GAAA-. ISRE sequences have been found in IFN a and IFN jS genes that are transcriptionally regulated by the IRF family. In the method of the present invention, any nucleotide sequence that can be recognized by IRF-5 can be used as an ISRE sequence. Not only known ISRE sequences but also sequences highly homologous to known ISREs can be used in the method of the present invention. It can be used as an array.
  • an ISRE sequence in the present invention a promoter using “TFSEARCH” (http: ⁇ www.cbrc.jp/research/db/TFSEARCHJ.html), which is an application for predicting a transcription factor binding site on DNA, is used.
  • a sequence obtained by setting the score to 50 points or more Examples include ISRE sequences, IRF-1 binding sequences, and sequences detected as Z or IRF-2 binding sequences.
  • SEQ ID NOs: to 58 can be exemplified.
  • the reporter gene can be selected from known reporter genes that are suitable for the conditions such as the detection method.
  • known reporter genes such as BFP, GFP, CFP, YFP, DsRed, AmCyan, ZsYellow, ZsGreen, luciferase and other fluorescent proteins, and enzymes such as 13-Darc Mouth-Durase (GUS) and alkaline phosphatase can be used. Noh.
  • a method for linking a reporter gene downstream of a promoter region containing an ISRE sequence is known. For example, it can be performed according to the method described in the examples.
  • the above-described screening method using reporter gene activity as an index can include, for example, the following steps:
  • test substance refers to TLR signal transduction in the cell.
  • test substances include low-molecular compounds such as synthetic chemical substances, nucleic acids, proteins, peptides, plant extracts, cell extracts, animal tissue extracts, and products produced by microbial fermentation, but are not limited thereto. I can't.
  • test substance is not limited to a new substance, and may be a known substance. Among known substances, it is known to have an inflammatory site force-in inhibitory action, and it is considered that compounds exist.
  • the above-mentioned "step of contacting the IRF-5-expressing cell with a TLR ligand or virus” comprises TLR This is a process for starting signal transmission.
  • TLR TLR
  • a virus that is compatible with the TLR expressed by the cells used. For example, if TLR3 is expressed in TLR3, double-stranded RNA or poly (I: C) derived from various viruses is used.
  • TLR4 is LPS
  • TLR5 is flagellin
  • TLR7 and TLR8 are synthetic.
  • RNAs such as single-stranded RNA [poly (U)], imidazoquinoline derivatives, influenza virus, human immunodeficiency virus, Newcastle disease virus, and TLR9 by CpGDN A such as ODN1668, simple herpes virus, and mouse cytomegalovirus TLR can be activated.
  • CpGDN A such as ODN1668, simple herpes virus, and mouse cytomegalovirus TLR
  • the above ligands and viruses are examples, and usable ligands and viruses are not limited to these.
  • step of detecting the reporter activity of the IRF-5-expressing cell is a step of specifying the influence of the test substance on the IRF-5 activity of the present invention.
  • Reporter activity can be measured as a measure of the fluorescence intensity and enzyme activity of the reporter gene type.
  • the reporter activity obtained as described above is used as an index.
  • selecting a test substance that can be an inflammatory site force-in inhibitor is used as an index.
  • the reporter activity when the test substance is contacted is compared with the reporter activity of the control obtained in the same manner when the test substance is not contacted. 5 It is considered to be a substance that suppresses the function and suppresses the expression of inflammatory site force-in.
  • the second aspect of the screening method according to the present invention is as follows: "Inflammatory site force-in, using the expression level of IRF-5 in an IRF-5-expressing cell as an index when the test substance is contacted with the test substance. Provides screening methods for inhibitors. " The inventor has revealed that IRF-5 is intrinsically involved in the induction of inflammatory site force-in as a member of the TRL signaling pathway. If the expression of IRF-5 decreases, the expression level of inflammatory cytokines via the TRL signaling pathway is thought to decrease. Therefore, a substance that suppresses the expression of IRF-5 can be a candidate for an inflammatory site force-in inhibitor.
  • the expression level of IRF-5 can be measured as the amount of protein or the amount of mRNA. Tampa In the case of measuring as a mass, for example, it can be measured by a known immunoassay using an anti-IRF-5 antibody.
  • the method of the present invention for measuring the expression level of IRF-5 as the amount of protein includes the following steps.
  • the nucleotide sequence of the IRF-5 gene for example, the sequence ability described in SEQ ID NO: 1 or 3 can also be measured by RT-PCR method by designing primers. Examples of such primers are SEQ ID NOs: 5 and 6.
  • the third aspect of the screening method according to the present invention is as follows: "Inhibition of binding between MyD88 and IRF-5 by a test substance when My D88 is contacted with IRF-5 in the presence of the test substance"
  • IRF-5 forms a complex with MyD88 and TRAF6 and interacts with it to exert its function.
  • IRF-4 binds MyD88 to IRF-5.
  • the method of the present invention is a method for screening a substance that inhibits the binding between MyD88 and IRF-5 (also referred to as “MyD88-IRF-5 binding inhibitor” in the present invention).
  • MyD88-IRF_5 binding inhibitor like IRF-4, can suppress the expression of inflammatory site force-in.
  • the ability to inhibit the binding between MyD88 and IRF-5 means the ability to inhibit the binding between MyD88 and IRF-5.
  • To detect the ability of the test substance to inhibit the binding of MyD88 to IRF-5 bind MyD88 to IRF-5 in the presence of the test substance and compare it to the absence of the test substance. You can see if the binding between MyD88 and IRF-5 decreases or disappears.
  • the binding between MyD88 and IRF-5 is a combination of various in situ and in vitro assays that detect protein interactions. It can be detected by intelligent methods. For example, it can be detected by immunoprecipitation, fluorescence resonance energy transfer analysis (FRET), two-hybrid method, surface plasmon analysis method, high throughput analysis using a microarray, and the like.
  • FRET fluorescence resonance energy transfer analysis
  • MyD88 is known as an adapter molecule involved in cytoforce-in or chemokine induction.
  • MyD88 usable in the method of the present invention is not limited as long as it has the ability to bind to IRF-5 and induce inflammatory site force-in.
  • the human MyD88 cDNA sequence is SEQ ID NO: 63
  • the amino acid sequence is SEQ ID NO: 64
  • the mouse MyD88 cDNA sequence is SEQ ID NO: 65
  • the amino acid sequence is It is shown in SEQ ID NO: 66, but is not limited thereto.
  • MyD88 derived from mammals other than humans and mice, homologs, natural mutants, and artificially introduced mutants have the ability to bind to IRF-5 and induce inflammatory cytokines As long as it can be used in the method of the present invention.
  • the MyD88 protein or gene can be prepared by a known method similar to that described above for the preparation of IRF-5.
  • the method for detecting the binding between MyD88 and IRF-5 in situ includes, for example, the following steps.
  • the donor fluorescent protein gene and the acceptor fluorescent protein gene are linked to either the MyD88 gene or the IRF-5 gene, and the fluorescent protein gene-MyD88 gene construct and the fluorescent protein gene-IRF-5 Introducing the gene construct into the cell;
  • the cells placed in the presence of the test substance are irradiated with an excitation wavelength peculiar to the donor fluorescent protein to excite the donor fluorescent protein, and based on the fluorescence intensity based on the donor fluorescent protein and the acceptor fluorescent protein Detecting fluorescence intensity and analyzing FRET between donor fluorescence protein and acceptor fluorescence intensity protein from fluorescence intensity based on donor fluorescence protein and fluorescence intensity based on acceptor fluorescence protein
  • step (c) A step of selecting a test substance in which FRET in the presence of the test substance analyzed in step (b) is less attenuated or disappears than FRET in the absence of the test substance.
  • step (a) a method using analysis by FRET can be shown.
  • cell MyD88 and IRF-5 can be detected by FRET.
  • Te in the process of labeling.
  • FRET Fluorescence resonance energy transfer
  • the “donor fluorescent protein” is a fluorescent protein that gives energy to another fluorescent protein (acceptor fluorescent protein) in FRET
  • the “acceptor fluorescent protein” is another fluorescent protein (donor fluorescent protein).
  • Force is also a fluorescent protein that receives energy. Donor and acceptor fluorescent proteins can also be selected from known fluorescent proteins.
  • Donor and acceptor are different fluorescent proteins, and it is necessary that there is an overlap between the donor's fluorescence spectrum and the absorption spectrum of the acceptor.
  • selection using CFP as a donor and YFP as an acceptor is one of the selection examples that satisfy the above conditions, but is not limited to this, and any combination of fluorescent proteins that satisfies the conditions of the donor and the acceptor may cause a deviation. It can be used.
  • the donor fluorescent protein is excited by irradiating the prepared cells with an excitation wavelength peculiar to the donor fluorescent protein in the presence of the test substance.
  • FRET between the donor and the acceptor is analyzed from the fluorescence intensity based on the fluorescence intensity based on the fluorescence intensity based on the fluorescence intensity based on the fluorescence intensity based on the fluorescence fluorescence based on the donor fluorescence protein and the acceptor fluorescence protein.
  • Negative regulation of IF N- a / j8 signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells Proc. Natl. Acad. Sci. USA 101, 2416-2421 (2004), Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., Suzuki, N., Ohba'Y., Takaoka, A. Yeh, WC & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416-15421.
  • the MyD88 protein and IRF-5 protein expressed in the “cells expressing MyD88 protein and IRF-5 protein” used in this method may be endogenous proteins, but may be exogenous.
  • the exogenous MyD88 protein and IR F-5 protein may be fusion proteins of known labeled peptides such as FRAG and HA.
  • either anti-MyD88 antibody or anti-I RF-5 antibody (or anti-labeled peptide antibody) is added to the cell lysate, and the MyD88 protein or IRF-5 protein and antibody in the cell preparation are combined with the antigen. After binding by the antibody reaction, the protein-antibody conjugate is fractionated by centrifugation. Alternatively, the cell preparation is contacted with the immobilized antibody to adsorb MyD88 protein or IRF-5 protein. To fractionate.
  • step (c) it is detected whether the MyD88 protein and the IRF-5 protein are bound in the separated fraction.
  • the detection can be performed, for example, by bringing the anti-IRF-5 antibody, anti-MyD88 antibody, and anti-labeled peptide antibody into contact with the separated fraction.
  • the antibody may be labeled for convenience during detection. Specifically, if IRF-5 is detected as a result of contacting an anti-IRF-5 antibody with a fraction containing MyD88 protein, the result indicates that MyD88 and IRF-5 bind to each other in the fractionated fraction.
  • the anti-MyD88 antibody is brought into contact with the fraction containing the separated IRF-5 protein, and the binding between MyD88 and IRF-5 in the separated fraction is detected.
  • the binding force between MyD88 and IRF-5 detected as described above when contacting the test substance. If the binding force is less than or disappearing from the binding between MyD88 and IRF-5 detected when the test substance is not in contact
  • the test substance is a substance that inhibits the formation of a complex of MyD88 and IRF-5 and suppresses the induction of inflammatory site force in via the TRL signal pathway.
  • Another example of a method for detecting in vitro the binding inhibition ability of MyD88 and IRF-5 by a test substance is a method including the following steps.
  • the method including the steps (a) to (c) can be performed by various known methods. For example, it can be carried out by a method using a surface plasmon resonance spectrum (BIACORE).
  • BIACORE surface plasmon resonance spectrum
  • step (a) above either MyD88 protein or IRF-5 protein is immobilized on the sensor chip (ligand), and the other is applied as a solution (analyte) to the sensor chip for contact. Let The test substance is mixed with the analyte.
  • step (b) above the sensor chip is irradiated with light and the change in the refractive index of the reflected light is monitored.
  • the binding activity between the ligand and the analyte can be known.
  • the use and operation of BIACORE can be found on the BIACOR E website (http: ⁇ www.biacore.co.jp/).
  • the present invention provides a novel screening method for further inhibitors of inflammatory site force-in, using "an IRF-4 expression level in an IRF-4 expression cell when the test substance is contacted with the test substance as an index.” , A screening method for an inflammatory site force-in inhibitor. As will be described later, the present inventors have revealed that IRF-4 works to suppress inflammatory site force-in. Therefore, a substance that enhances the expression of IRF-4 is considered to act to suppress inflammatory site force-in.
  • the expression level of IRF-4 can be measured as the amount of protein or the amount of mRNA. When measuring as a protein mass, it can measure by a well-known immunoassay using an anti- IRF-4 antibody, for example.
  • the method of the present invention for measuring the expression level of IRF-4 as the amount of protein includes the following steps.
  • the nucleotide sequence of the IRF-4 gene for example, the sequence ability described in SEQ ID NO: 59 or 61 can also be measured by RT-PCR by designing primers. .
  • the various screening methods of the present invention enable the development of novel inflammatory site force-in inhibitors.
  • the inflammatory site force-in inhibitor obtained by the method of the present invention is a novel substance or a known substance, and suppresses the expression of inflammatory site force-in via the TLR signal transduction pathway. Inflammatory site force-in to be suppressed is caused by TLR signaling. For example, IL-1, IL-6, IL-8, IL-12, IL-18, TNF- ⁇ , IFN- ⁇ You can choose from.
  • the present invention suppresses the expression of inflammatory site force-in through inhibition of the binding between the inflammatory site force-in inhibitor obtained by the above-described screening method, that is, MyD88 and IRF-5.
  • the inflammatory site force-in inhibitor obtained by the above-described screening method, that is, MyD88 and IRF-5.
  • IRF-4 protein is provided.
  • IRE-4 has been known as a T cell and B cell specific member of the IRF family that plays a role in the activation and differentiation of lymphocytes
  • the present inventors have determined that the binding between MyD88 and IRF-5 is IRF- 4 is competitively inhibited, and the together and reveal in the in vitro that IRF -4 suppresses the expression of inflammatory sites force in respect stimulation with TLR ligands, wild in IRF-4- / _ mice Compared with type mice, the inflammatory site force in level was significantly increased, indicating that it died earlier. Therefore, when IRF-4 protein is administered to an individual who develops inflammatory site force-in, the binding between MyD88 and TLR-5 is competitively inhibited with TLR-5. It can be expected to suppress the expression of inflammatory site force-in.
  • the human IRF-4 cDNA sequence is SEQ ID NO: 59
  • the amino acid sequence is SEQ ID NO: 60
  • the mouse IRF-4 cDNA sequence is SEQ ID NO: 61.
  • the amino acid sequence is shown in SEQ ID NO: 62.
  • positions 21 and 127 are the DNA binding domain
  • positions 200 and 267 are the active domain
  • positions 268 to 450 are the regulatory domains.
  • IRF-4 protein can be prepared by known methods of IRF-5.
  • a probe is prepared based on the sequence described in SEQ ID NO: 59 or SEQ ID NO: 61, the target cDNA is selected from a cDNA library prepared with human or mouse hematopoietic cell force, and the cDNA is expressed in an appropriate host-expression. It can be prepared by expressing with a vector system and purifying with a affinity column using an anti-IRF-4 antibody.
  • a primer was designed from the sequence shown in SEQ ID NO: 59 or SEQ ID NO: 61, and cDNA was prepared by performing RT-PCR using total RNA prepared from human or mouse hematopoietic cells in a cage shape. IRF-4 protein can be prepared.
  • IRF-4 in the present invention is not limited to human and mouse IRF-4 represented by the above-mentioned sequences. As long as it has a function to suppress inflammatory site force-in expression, IRF-4 derived from other mammals, homologues, natural mutants, and mutants obtained by artificially mutating natural IRF-4 sequences Are also included in the IRF-4 of the present invention.
  • cDNA was prepared in the same manner as IRF-5 preparation described above using a probe or primer prepared based on the sequence shown in SEQ ID NO: 59 or SEQ ID NO: 61.
  • the desired IRF-4 protein can be prepared by selecting an appropriate host-expression vector system for expression and purification.
  • the present invention also provides the IRF-4 gene as an inflammatory site force-in inhibitor.
  • the IRF-4 gene is expressed in the patient's body, so a sustained inflammatory site force-in inhibitory effect is expected. it can.
  • the inflammatory site force-in inhibitor obtained by the screening of the present invention containing the above IRF-4 (hereinafter abbreviated as "inflammatory site force-in inhibitor of the present invention") is an inflammatory site force-in inhibitor. It is useful as a therapeutic or prophylactic agent for diseases involving ins.
  • the inflammatory cytokine inhibitor of the present invention includes endotoxin shock, anaphylactic shock, autoimmune disease, insulin-dependent diabetes mellitus, allergic disease, rheumatoid arthritis, sepsis, myasthenia gravis, systemic lupus erythematosus, scleroderma Symptom, polymyositis, nodular polyarteritis, Crohn's disease, asthma, collagen disease, inflammatory bowel disease, multiple sclerosis, various infectious diseases, malignant tumor, stroke inflammation, etc. It is considered effective in the treatment or prevention of other diseases.
  • the inflammatory site force-in inhibitor of the present invention containing IRF-4 is used as a therapeutic or prophylactic agent for the above diseases
  • the physicochemical properties of the inflammatory site force-in inhibitor, target disease In consideration of various conditions such as age, weight, etc. of the patient to be administered, make it an appropriate formulation by known formulation technology, information necessary for taking indications such as efficacy 'effect, usage' dose, contraindication 'side effects, etc. Can be used as a therapeutic or prophylactic agent.
  • pharmacologically acceptable media for formulation, pharmacologically acceptable media, bases, excipients, stabilizers, sweeteners, corrigents, binders, tonicity agents, softeners, disintegrants, solubilizers, In combination with suspending agents, emulsifiers, dispersing agents, surfactants, coating agents, preservatives, preservatives, PH regulators, solubilizers, coloring agents, fragrances, etc., powders, pills, tablets, lozenges , Capsules, solutions, ointments, creams, suppositories, poultices, injections, and the like.
  • IRF-5 is a major member of the TRL signaling pathway based on the novel findings of the present inventors. As a bar, it became clear that it was essentially involved in the regulation of inflammatory site force-in expression.
  • the steric structure of the transcription factor IRF-5 was analyzed, and based on the steric structure, IRF-5 containing low molecular weight compounds, peptides, and polynucleotides. It is possible to provide a method for designing or searching for a function-inhibiting substance. Furthermore, it is also possible to provide a method for designing or searching for a function-inhibiting substance such as a peptide that inhibits the function of IRF-5 from the amino acid sequence or gene sequence information of the transcription factor IRF-5.
  • Genomic DNA encoding the IRF-5 gene was isolated from a 129J mouse genomic library.
  • the targeting vector was constructed by replacing a 2.1 kb fragment (corresponding to ethason 2) encoding part of the DNA binding domain with a neomycin resistance gene cassette (neo).
  • This IRF-5 gene targeting vector was transfected into embryonic stem cells (E14K). Neomycin resistant colonies were selected and screened by PCR and Southern plot analysis. Two homologous recombinants were microinjected into C57BLZ6 blastocysts. This chimeric mouse was mated with a C57BLZ6 female mouse and heterozygous F1 offspring were cross-bred to obtain IRF-5 chi mice. Mice from these independent clones showed the same phenotype.
  • mice and reagents [Other mice and reagents]
  • MyD88 mice were donated by Shizuo Akira (Osaka University) Tsujiko. All mice were housed under special aseptic conditions in the animal facility of Tokyo University and used after at least 7 backcrosses with C57BLZ6 mice.
  • Poly (U) and LPS were purchased from Sigma. A complex of poly (U) and DOTAP (Roche Diagnostics) was prepared according to the manufacturer's instructions.
  • poly (l: C) was purchased from Amersham.
  • CpG-A ODN, CpG-B ODN, and all synthetic oligodeoxynucleotides were purchased from Hokkaido. Purified flagellin from L. monocytogenes was donated by Alan Aderem (Institute for Systems Biology, Seattle, USA).
  • T cells and B cells were treated with Dynabeads (Dynal) treated with lmgZml collagenase A (Roche Biochemicals) and 20 mM EDTA and coated with anti-CD5 and anti-CD19 antibodies (BD Biosciences) and anti-HgG. Negative selection was performed. B220-Z CDllc + cDC and B220 + ZCD11C-pDC were selected using FACS Diva (BD Bioscience). Spleen Mcphage was collected using a MACS column using CDl lb MicroBeads (Miltenyi Biotec) and negatively selected for splenic B cells using a B cell isolation kit according to the manufacturer's protocol (Miltenyi Biotec). The cells were cultured in RPMI1680 (Invitrogen) supplemented with 10% urine fetal serum.
  • cDC and pDC (2 X 10 5 ml— 1 ), B cells (5 X 10 5 ml— 1 ) or macrophages (7 X 10 5 ml— 1 ) are seeded on 96-well plates and designated The cells were cultured for 24 hours under the stimulated conditions.
  • IL-12p40, IL-6, TNF-a and IFN-a were measured by solid-phase enzyme immunoassay (ELISA).
  • ELISA kits for mouse IL-12p40, IL-6 and TNF- ⁇ were obtained from R & D Systems. Seven ELISA kits for mouse IFN- ⁇ were purchased from PBL Biomedical Laboratories.
  • RNA extraction and polymerase chain reaction (RT-PCR) analysis with reverse transcription have been previously described.
  • IRF-5 5- AATACCCCACCACCTTTTGA-3 (SEQ ID NO: 5) (sense)
  • TLR3 5- TTAGAGTCCAACGGCTTAGAT-3 (SEQ ID NO: 69) (sense)
  • TLR4 5-GAGCCGGAAGGTTATTGTGGT-3 (SEQ ID NO: 71) (sense)
  • TLR5 5-AAGTTCCGGGGAATCTGTTT-3 (SEQ ID NO: 73) (sense)
  • TLR7 5—GTTCTTGACCTTGGCACTA— 3 (SEQ ID NO: 75) (sense;)
  • TLR9 5-ATGGACGGGAACTGCTACTACA-3 (SEQ ID NO: 77) (sense)
  • FLAG-MyD88 cyan fluorescent protein labeled MyD88 (CFP-MyD88), yellow fluorescent protein labeled IRF-3 (YFP-IRF-3), YFP-IRF-7 and HA-IRF3 expression vectors (See the Supplemental Information section).
  • Mouse IRF-5 cDNA was obtained by RT-PCR of total MEF-derived RNA and cloned into a pCRII (Stratagene) vector.
  • YFP-IRF-5 expression vector or HA-tagged IRF-5 expression vector use pCAG
  • the cDNA was cloned into the Xhol and Notl sites of the GS-YFP vector or pCAGGS-HA vector.
  • the pCAGGS vector and Venus (called YFP) were donated to chiro Miyazaki (Osaka University) and Satoshi Sowaki (RIKEN), respectively.
  • the HA-IRF-5 DNA fragment was excised from pCAGGS-HA-IRF-5 and cloned into the EcoRI site and Sail site of the pBabe-puro retrovirus expression vector.
  • Retroviral gene introduction into MEF was performed as described in the previous literature (Takaoka, A. et al. Integration of interfere n ⁇ a / ⁇ signaling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516 -523 (2003)).
  • pCAGGS-HA-IRF-5 was transfected into RAW264.7 cells using Superfect reagent (Qiagen).
  • the expression vector for FLAG-tagged TRAF6 was donated to Junichiro Inoue (University of Tokyo)!
  • FRET analysis was performed as previously described (Honda, K., Mizutani, T. & Taniguchi, ⁇ . Negative regulation or irN-a / ⁇ signaling oy IFN regulatory factor 2 for home ostatic development of dendritic Proc. Natl. Acad. Sci. USA. 101, 2416-2421 (2004)) o
  • Antibodies against the following proteins were purchased: HA (Roche), FLAG (Sigma- Aldrich Co
  • Mouse embryonic fibroblast (MEF) was prepared according to standard procedures (Takaoka, A. et al. Integration or interferon- / ⁇ signaling to p53 resp onses in tumour suppression and antiviral defense. Nature 424, 516-523 (2003)). Fractions of Itoda and nuclear Western immunoblotting were performed as described elsewhere (Lee, HH, Dadgostar, H., Shiheng, Q., Shu, J. & Cheng, G. NF — ⁇ B— mediated up— r egulation of Bcl- ⁇ and Bfl-1 / Al is required for CD40 survival signaling in B lympho cytes. Proc. Natl. Acad. Sci. USA. 96, 9136-9141 (1999)). Anti-USF-2 and anti-j8-tubulin antibodies were obtained from Santa Cruz Biotechnologies.
  • EMSA for NF- ⁇ was performed as previously described (Matsuyama, T. et al. Targeted disruption of IRF— 1 or IRF— 2 results in abnormal type 1 1 FN gene inaucti on and aberrant lymphocyte development. Cell 75, 83-97. (1993)).
  • ChIP Atsey was performed as described in the previous literature (Takaoka, A. et al. Integration of interferon-a / ⁇ signaling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516-523 ( 2003)). Specific antibodies used for immunoprecipitation were anti-HA antibody (Roche) and anti-Lck antibody (Upstate) as an isotype control.
  • a negative control primer pair that recognizes the DNA sequence of the 3'-untranslated region (UTR) of the IL-12p40 gene (from +12863 to +13906):
  • the region of the IFN- ⁇ promoter contains the following primers: 5 -GGGAGAACTGAAAGTGGGAAA-3 '(SEQ ID NO: 83) (sense)
  • Transfection force was also lysed after 24 hours and luciferase activity was measured using the DuaHuciferase reporter assay system (Promega) as previously described (Honda, K., Mizutani, T. & Taniguchi, T. N egative regulation of IFN- a / ⁇ signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells.Proc. Natl. Acad. Sci. USA. 101, 2416-2421 (2004)
  • Reporter plasmid used in this assembly contains many ISREs (Yoney ama, M. et al. Direct triggering of the type I interferon system by virus infection: ac tivation of a transcription factor complex containing IRF -3 and CBP / p300. EMBO J. 17, 1087-1095 (1998)), this is Takashi Fujita (The metropolitan institute of Medical Science).
  • Anti-CD40 conjugated with FITC and anti-H2Kb conjugated with PE, CD86, B220 and anti-CDllc conjugated with biotin were purchased from BD Pharmingen. Streptavidin
  • APC was purchased from Molecular Probes.
  • IRF-5 a member of this family, is involved in the induction of type I interferon (IFN) genes. Although it has attracted a lot of attention, its function is hardly known at this time.
  • IRF-5 mRNA is expressed at high levels in spleen cells ( Figure 6a) and is normal when activated by various TLR ligands (ie, pathogen-associated molecular patterns; PAMP). It is upregulated in cells (cDC) and macrophages ( Figure 6b).
  • IRF family members IRF-3 and IRF-7 are known to be activated toward induction of type I IFN by TLR stimulation, but IRF-5 is involved in TLR signaling Whether or not is unknown.
  • IRF-5 is involved in TLR signal transduction
  • the inventors of the present invention used standard homologous recombination in mice lacking the IRF-5 gene (IRF-5— mice). Produced by the protocol (Fig. La) and its null conjugation was confirmed by DNA and RNA blotting and immunoblot analysis (Fig. Lb, c , d).
  • mice developed normally and were strong with no apparent difference in the hematopoietic cell population (Fig. 6c).
  • CpG-B ODN also known as 1668 or K-type ODN
  • CpG-A ODN D 19 (Also referred to as D-type ODN)
  • cytokines the induction of cytokines by the activity of TLR9 in spleen-derived cDCs and plasmacytoid DCs (pDCs) of IRF-5 and wild-type (WT) mice was examined.
  • WT or IRF-5 mock stimulation of normal DC (cDC) from mouse spleen (medium only) or 1.0 M type B CpG ODN (CpG-B) or CpG- A ODN ( CpG-A) was stimulated for 24 hours, and the concentrations of IL-6, IL-12p40 and TNF- ⁇ in the culture supernatant were measured by ELISA. The supernatant was also measured for IFN-o; induction.
  • plasmacytoid DC (pDC) derived from the spleen of WT mice or IRF-5 ⁇ / _ mice was also examined in the same manner as cDC.
  • splenic macrophages of WT mice or IRF-5 chi mice were treated with CpG-A ODN (1.0 ⁇ ) or CpG- ⁇ ODN dO ⁇ M) in the presence of IFN- ⁇ in SOUml- 1 (IL- 12) or in the absence (stimulated with IL-6 and TNF-o for 24 hours, and the concentrations of IL-6, IL-12p40 and TNF- ⁇ in the culture supernatant were measured by ELISA as described above.
  • TLR 3 polyinosine -Polycytidylic acid [poly (I: C)]; 100 gZml
  • TLR4 lipopolysaccharide [LPS]; 10 ngZml
  • TLR5 fulagellin lO / z gZml
  • TLR7 (8) ss-RNA; polyuridylic acid [poly (U)]; 5 / zg / ml), in the presence (IL-12) or absence (IL-6 and T) of 301 ⁇ 1 _1 IFN- ⁇
  • concentrations of TNF-a, IL-6 and IL-12p40 in the culture supernatant were measured by ELISA in the same
  • TLR3 ligand polyinosine-polycytidylic acid [poly (I: C)]
  • TLR4 ligand lipopolysaccharide [LPS]
  • IRF-5 which is present in the cytoplasm, was then converted to MyD88 and tumor necrosis factor receptor-related factor 6 ( TRAF6) (both of which play a crucial role in all TLR-induced signaling) and whether they form intermolecular complexes.
  • TRAF6 tumor necrosis factor receptor-related factor 6
  • YFP-IRF-5 and YFP-IRF-3 are expressed in mouse macrophage RAW264.7 cell line and human fetal kidney 293T (HEK293T) cell line, These cells were subjected to fluorescence microscopy analysis.
  • IRF-5 was expressed in the cytoplasm and a significant percentage of YFP-IRF-5 was consistent with MyD88 labeled with cyan fluorescent protein (CFP_MyD88). Consistent with this, fluorescence resonance energy transfer (FRET) was selectively observed between co-expressed YFP-IRF-5 and CFP-MyD88, indicating that they are in direct contact with each other. Indicated ( Figure 3a, b)
  • pCAGGS-HAIRF-5 or pEF-HA-IRF-3 was combined with pCXN2-FLAG-MyD88 on HEK293T cells. This transfection was performed, and the cell lysate was subjected to immunoprecipitation with an anti-FLAG antibody, followed by immunoblotting using an anti-HA antibody. After stripping, immunoblotting of FLAG-labeled MyD 88 was then performed with anti-FLAG antibody.
  • HEK293T cells were transiently transfected with pCAGGS-HA-IRF-5 or pCAGGS-HA-IRF-3 and pME-FLAG-TRAF6.
  • the expression levels of these molecules were also determined by analyzing whole cell lysates by immunoblotting. Result, the force IRF-3 when coexpressed with IRF-5 a MyD88 or TRA F 62 in HEK293T cells these were co-immunoprecipitation this happen such ChikaraTsuta ( Figure 3 c) 0
  • the present inventors next examined MyD88-dependent and TRAF6-dependent activation of ISRE sequences by IRF-5 in HEK293T cells using a p-55ClBLuc reporter gene containing a large number of ISREs. As shown in Figure 3d, weak activation of the reporter gene by expression of IRF-5 alone is dramatically enhanced by either co-expression with MyD88 and TRAF6 or CpG-B ODN stimulation This confirmed that IRF-5 was fully integrated into the MyD88-TRAF6 signal transduction pathway.
  • IRF-5 (HA-IRF-5) labeled with hemadalchun was expressed in mouse fetal fibroblasts (MEF) .
  • MEF mouse fetal fibroblasts
  • IRF-5 is one of the cytoforce-in genes, ie, the IL-12p40 gene containing a standard ISRE element within the promoter (IL-12p40-ISRE; -67 to -55 to the transcription start site) (See Fig. 10).
  • IL-12p40-ISRE a standard ISRE element within the promoter
  • chromatin immunoprecipitation (ChIP) assay was also performed by introducing HA-IRF-5 into RAW264.7 cells. These cells also respond to Cp GB ODN, leading to the induction of these site forces (Cowdery, JS, Boerth, NJ, Nonan, LA, Myung, PS & Koretzky,. A.
  • TLR-dependent activation of NF- ⁇ B, (SAPK) ZJNK kinase and p38 MAP kinase is dependent on the canonical MyD88-TRAF6 pathway 25 . Since IRF-5 interacts with both MyD88 and TRAF6, we examined whether lack of IRF-5 affects the activation of these pathways. Spleen B cells from WT, IRF-5 and MyD88— mice were stimulated with Cp GB ODN (0.3 ⁇ ) for the specified period. Activation of NF- ⁇ was evaluated by EM SA. As a result, it was found that the activity of NF- ⁇ , ⁇ 38, and JNK by CpG-B ODN was almost normal in IRF-5— 'cells (Fig.
  • TLR-MyD88 The difference in the contribution of IRF-5 and IRF-7 in the null transmission results in a sufficient TLR response.
  • the TLR-MyD88 signal is successfully processed by intracellular CTTP complexes, for example, by spatial and temporal regulation. It is suggested that a unique mechanism works and that a variety of transcription factors activated downstream of MyD88 by TLR9 may also occur with other TLRs.
  • mice D-galactosamine (D-GalN) -sensitized mice.
  • serum of mice injected with CpG-B ODN was collected 1 hour and 3 hours after injection, and the serum concentrations of TNF-a, IL-12p40 and IL-6 were measured by ELISA.
  • C57BLZ6 mice were purchased from CLEA Japan, Osaka.
  • the production of IriS— ⁇ mice and Irf4— mice has been described in the literature (Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizutani, T., Kano, S., Hyundai, K., Ohba, Y., Mak, TW & Taniguchi, T.
  • FFP cyan fluorescent protein
  • YFP fluorescent protein
  • CpG-ODN Unmethylated CpG-oligodeoxynucleotide
  • ODN1668 13) and 0 DN-D19 (14) are literature: Honda, K., Yanai, H "Negishi, H., Asagiri, M., Sato, M., Mizu It was synthesized as described in tani, T., Shimada, N., Ohba, Y., Takaoka, A., Yoshida, N. & Taniguchi, T. (2005) Nature 434, 772-777.
  • LPS Lipopolysaccharide
  • poly (U)] lebutomycin B and D-galactosamine were purchased from Sigma.
  • Poly (U) is based on the above reference (Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A complex with DOTAP (Roche Diagnostics) was developed as described in A., Yoshida, N. & Taniguchi, T. (2005) Nature 43 4, 772-77). Peptide darican was purchased from Fluka.
  • the cells are cultured on a glass bottom 35 mm tissue culture dish (Matsunami Glass, Osaka), and an expression vector for a fusion protein labeled with a fluorescent protein is used as a FuGENE 6 reagent (Roche Diagnostics) or SuperFect transfer. Transfection was carried out using an exci- tion reagent (Qiagen, Valencia, CA). Confocal microscopy analysis was performed using an Olympus FV-1000 confocal microscope. Two-color images were collected in sequential acquisition mode to avoid cross excitation.
  • reporter plasmid [P55C1B-Luc or pl25-Luc], along with expression plasmids for IRF, MyD88 and TRAF6, on human embryonic kidney (HEK) 293T cells seeded on 24 well plates Transiently transferred using 6 reagents (Roche Diagnostics). The total amount of DNA was kept constant by supplementing the empty vector [pcDNA3.1 (Invitrogen)]. Transfer cells 24 hours later and collect luciferase activity.
  • peritoneal macrophages were obtained by peritoneal lavage.
  • lipDC (8220 ⁇ 011 ⁇ ° mediate cell) is available in the literature ( Honda ,, Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizuta ni, T "Shimada, N., Ohba, Y”) Takaoka, A., Yoshida, N. & Taniguchi, T. (2005) Nature 434, 772-777).
  • BMM bone marrow derived macrophages
  • bone marrow cells were cultured with 20 ng Zml M-CSF (Genzyme) for 6 days.
  • RAW 264.7 cells (5 x 10 7 Zml) transfected with full-length or mutant IRF-4 were prepared by electroporation of an expression vector (3 ⁇ g) using the Nucleofector apparatus (Amaxa, Gaithersburg, MD) did. Cells are plated on 96-well plates at 2 x 10 5 cells / ml, 0.3 M OD ⁇ 1668, 3 ⁇ ⁇ ODN-D19, 1 ⁇ g / ml LPS and 5 ⁇ g Zml poly (U) (complexed with DOTAP ) Or 10 ⁇ g Zml peptide darlicans for the specified period. When specified, 30 units Zml of IFN- ⁇ (Genzyme) was added to the medium.
  • the concentrations of IL-12p40, IL-6 and TNF-a in the culture supernatant were determined using an ELISA kit (R & D Systems).
  • An ELISA kit for mouse IFN- ⁇ was purchased from PBL Biomedical Laboratories (Piscataway, NJ).
  • RNA analysis total RNA was extracted using Sepaso RNA I Super (Nacalai Tesque, Kyoto), and quantitative real-time RT-PCR analysis was performed using LightCycler and SYBR Green system (Roche Diagnostics). Data were normalized to the level of ⁇ -actin in each sample.
  • the same primers as in Example 1 were used for IL-12p40, IL-6, TNF-a and ⁇ -actin.
  • the following primers were used for IRF-4, I ⁇ , FLI CE inhibitory protein (FLIP), vascular cell adhesion molecule-1 (VCAM-1) and macrophage inflammatory protein (MIP) 2.
  • VCAM-1 5 '-GCTCTCACCAATCTCCATCAG-3' (SEQ ID NO: 90); VCAM-1 5 '-CCGTCATTGAGGATATTGG-3' (SEQ ID NO: 91) and
  • IRF-5 and IRF-7 two members of IRF, interact with MyD88, and these IRFs are TLR-dependent in pro-inflammatory site force-in and type I IFNs, respectively. It was shown to be important for sexual induction.
  • the present inventors have revealed that IRF-7 also plays a similar role by interacting with MyD88. These findings raised the question of whether other IRF members are also involved in TLR-MyD88 signaling. Therefore, the present inventors examined the interaction between IRF-4 and IRF-8 (both expressed mainly in cells derived from the hematopoietic system) and MyD88.
  • IRF-4 and IRF-8 labeled with YFP are expressed in HEK293T cells together with CFP-labeled MyD88 (CFP-MyD88).
  • the cells were subjected to fluorescence microscope analysis.
  • YFP-IRF-4 was expressed primarily in the nucleus, but a significant proportion was also expressed in the cytoplasm and co-existed with CFP-MyD88.
  • YFP-IRF-8 did not coexist with CFP-MyD88.
  • the FR ETc image shows that there is a high energy transfer from CFP-MyD88 to YFP-IRF-4.
  • a deletion mutant of MyD88 labeled with a FLAG epitope was prepared.
  • the MyD88 region responsible for interaction with IRF-4 was examined (Fig. 13a).
  • HEK293T cells were coexpressed with HA-IRF-4 after each FLAG-MyD88 mutant was subjected to co-immunoprecipitation analysis.
  • FLAG-MyD88 (A 1-151) and FLA G-MyD88 ( ⁇ 173-296) interact with HA-IRF-4 FLAG-MyD88 ( ⁇ 1-193)
  • FLAG-MyD88 A 60-296) did not interact.
  • IRF-7 a different region of MyD88, namely the N-terminal region, interacts with IRF-7 (Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., buzuki , N., Ohba, Y., Takao ka, A., Yeh, WC & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416-1 5421), IRF-4 interacts with MyD88 It seems to compete with IRF-5 but not with IRF-7. To test this possibility, we designed a competitive assembly that evaluates the binding of IRF-5 or IRF-7 to MyD88 while increasing the expression level of IRF-4.
  • HA-IRF-3 Honda, K., Yanai, H., Mizutani, T., Negishi,,., Shimada, ⁇ ., Suzuki, ⁇ ., Ohba, which does not interact with MyD88 ⁇ , Takaoka, A., Yeh, WC & Tanig uchi, T. (2004) Proc. Natl. Acad. Sci.
  • Example 1 above showed that IRF-5 was activated by MyD88 and TRAF6. That is, co-expression of IRF-5 with MyD88 and TRAF6 results in the activity of the p55ClB-Luc reporter gene containing multiple IFN response elements (ISRE). Based on the above results, the present inventors examined whether or not the ISRE activation mediated by IRF-4 and its mutant force IRF-5 is prevented. As shown in Figure 14d, reporter gene activation by co-expression of IRF_5, MyD88 and TRAF6 was suppressed in a dose-dependent manner by full-length IRF-4 expression. In addition, a similar inhibitory effect was still observed in HA-IRF-4 A RD and HA-IRF-4 ⁇ DBD mutants (Fig.
  • IRF-4 was initially identified as an IRF family T cell and B cell specific member that acts on lymphocyte activity and differentiation. -4 shows powerful functions that have not been known so far.
  • TLR ligands ODN1668 (for TLR9), LPS (for TLR4) and Single-stranded RNA [poly (U)] (to TLR7) (as shown in Example 1, all of which activate the IRF-5 pathway for pro-inflammatory site force-in production)
  • TLR7 Single-stranded RNA [poly (U)]
  • Irf4 — / _ peritoneal macaque phages are IL-3, IL-12p40 and TNF- ⁇ at levels 2-3 times higher than wild type macrophages when stimulated with various TLR stimuli.
  • Figure 15b IFN- ⁇ induction by TLR9 activation by IFN-induced CpG-ODN and ODN-D19 (14) was normal in Irf-mouse-derived pDC (FIG. 15c). This result is indispensable for induction of IFN- ⁇ , and is consistent with the conventional and the above results, indicating that it is not affected by the functional ability of IRF-7, IRF-4.
  • the present inventors also examined the induction of proinflammatory site force in BMM cultured under M-CSF. Curiously, the level of induction of proinflammatory site force-in observed in BMM in the absence of either IRF-5 or IRF-4 was normal ( Figure 16a). The reason for this difference in the need for IRF-5 in TLR signaling is currently Unclear power in terms We have obtained similar results with GM-CSF or Flt3 ligand in rodent cells cultured in vitro (data not shown). For this reason, the present inventors presume that the need for IRF-5 in TLR signaling varies depending on the cell type and Z or sorting state. These cells may have undergone in vitro sorting that differs from in vivo sorting. Whatever the mechanism, our results suggest that IRF-4 exerts an inhibitory effect on cells where the function of the MyD88-IRF_5 pathway is important.
  • IRF-4 is normally expressed at low levels (data not shown).
  • the IRF-4 expression vector was transiently transferred to the vesicles, and the induction of site force-in mRNA by ODN1668 stimulation was analyzed.
  • FIG. 16b induction of IL-6 mRNA and IL-12p40 mRNA was remarkably suppressed in IRF-4 expressing cells.
  • the induction of these site force in genes in RAW264.7 cells was also suppressed by the expression of IRF-4A DBD (FIG. 14d).
  • I ⁇ mRNA Fig.
  • Irf4 — / _ mice have a stronger inflammatory response than wild-type mice, as can be attributed to the significant increase in serum site power levels after lethal ODN1668 challenge. Indicated. In fact, Irf4- ⁇ mice died earlier (8-10 hours after injection) than wild-type control mice ( Figure 17b). In Irf4- / _ spleen cells from mice and hepatocytes induced levels of IL-12p40 mRNA and IL-6 mRNA was constantly increased (data not shown). These results strongly indicate the in vivo role of IRF-4 as a crucial negative regulator of TLR signaling.
  • a novel screening method for an inflammatory site force-in inhibitor is provided.
  • the present invention is a screening method focusing on the point that IRF-5 is involved in the expression of inflammatory site force in as a major member of the TRL signal pathway. It is clear for the first time by the present invention that IRF-5 is involved in the TRL signaling pathway, and the screening method of the present invention is an unprecedented and completely innovative screening method.
  • Inflammatory cytokine inhibitors can be therapeutic agents for immune diseases and the like. Therefore, according to the screening method of the present invention, it is possible to develop a therapeutic agent for immune diseases and the like that cannot be detected by conventional screening methods.
  • the present invention has found IRF-4 as a substance that suppresses the expression of inflammatory site force-in by inhibiting the function of IRF-5 in the TRL signal pathway.
  • IR F-4 can be a novel therapeutic agent for immune diseases and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Rehabilitation Therapy (AREA)
  • Rheumatology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to provide a novel screening method for an inflammatory cytokine inhibitor. Transcription factor IRF-5, whose relationship with IFN induction is known but whose function is hardly known, was focused and its function was elucidated. As a result, it was elucidated that IRF-5 is an important transcription factor for inflammatory cytokine induction by TLR activation. More specifically, it was elucidated that IRF-5 is associated with MyD88 and TRAF6 and activated by these molecules, and the TLR activation induces the nuclear transport of IRF-5 and activates the transcription of a cytokine gene. Further, it was elucidated that IRF-4 binds to MyD88 competitively with IRF-5 and the induction of inflammatory cytokine is inhibited. Based on these findings, a screening method for an inflammatory cytokine inhibitor with a focus on IRF-5 or IRF-4 was constructed.

Description

明 細 書  Specification
炎症性サイト力イン抑制剤の新規スクリーニング方法  Novel screening method for inflammatory site force-in inhibitor
技術分野  Technical field
[0001] 本発明は、炎症性サイト力イン抑制における IRF-4および IRF-5の利用に関し、具体 的には、炎症性サイト力イン抑制剤の新規スクリーニング方法に関する。  [0001] The present invention relates to the use of IRF-4 and IRF-5 in the suppression of inflammatory site force-in, and specifically to a novel screening method for an inflammatory site force-in inhibitor.
背景技術  Background art
[0002] Toll様受容体(Toll-like receptor, TLR)は、病原体関連分子パターンと呼ばれる保 存的微生物構造を認識し、先天免疫および適応免疫の中核を成す。これまでにヒト では 10種類の TLRの存在が知られて ヽる。 TLRに認識される病原体関連分子パター ンとして、グラム陰性菌外膜成分であるリポ多糖 (LPS)、ペプチドダリカンや、運動性 細菌等に存在するタンパク質であるフラジュリンが上げられる。 LPSは TLR4、ペプチド グリカンは TLR2、フラジュリンは TLR5のリガンドである。また、 TLR9は CpGDNAを、 TL R3は二本鎖 RNAや二本鎖 RNAと機能的に類似する poly(I:C)を認識する。さら〖こは病 原体由来分子以外の TLRリガンドが知られており、イミダゾキノリン誘導体は TLR7のリ ガンドである。このように TLRは、様々なリガンドによって活性ィ匕される。  [0002] Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-related molecular patterns and form the core of innate and adaptive immunity. So far, there are 10 known TLRs in humans. Pathogen-related molecular patterns recognized by TLR include gram-negative bacterial outer membrane components lipopolysaccharide (LPS), peptide daricans, and flajulin, a protein present in motile bacteria. LPS is a ligand for TLR4, peptidoglycan is a ligand for TLR2, and furadulin is a ligand for TLR5. TLR9 recognizes CpGDNA, and TLR3 recognizes double-stranded RNA and poly (I: C) functionally similar to double-stranded RNA. In addition, TLR ligands other than pathogenic molecules are known, and imidazoquinoline derivatives are TLR7 ligands. Thus, TLR is activated by various ligands.
[0003] TLRの活性化は病原体に対する先天免疫系および適応免疫系の調節および組織 化の中核を成す (非特許文献 1 ,2)。 TLRシグナル伝達によって引き起こされる代表的 な作用は、各種炎症性サイト力インを含む、種々のサイト力インおよびケモカインの誘 導である。ほとんどの場合、サイト力インおよびケモカインの誘導は、 MyD88と呼ばれ るアダプタータンパク質によってつながる共通の分子経路に依存する(非特許文献 1 -3)。 MyD88は deathドメインと呼ばれる構造領域を含む力 deathドメインは、 MyD88 力 Sさらなるシグナル伝達分子と会合することを可能にする(非特許文献 3,4)。このよう な MyD88と会合して TLRシグナル伝達に関わる MyD88相互作用分子には、 IL-1受容 体会合キナーゼ 1 (IRAKI)および IRAK4 (これらはどちらも deathドメインを含む)なら びにアダプター分子である TNF受容体会合因子 (TRAF) 6が含まれ、これらのシグナ ル伝達分子は NF- κ B転写因子および AP-1転写因子の活性ィ匕にとって重要である( 非特許文献 1 ,2,5,6)。 TLRシグナル伝達がサイト力イン誘導に関わるということは、 TLRシグナル伝達の制 御によって過剰な免疫反応を抑制しうる可能性があると考えられる。つまり、 TLRシグ ナル伝達を制御する物質は、サイト力インが関与する疾患の治療や予防に役立つと 予想される。し力しながら、 TLRシグナル伝達は十分解明されていないため、 TLRシ グナル伝達は、サイト力イン関与疾患の治療薬の標的としては、充分に活力されてい ない。 [0003] TLR activation is central to the regulation and organization of the innate and adaptive immune systems against pathogens (Non-Patent Documents 1 and 2). A typical effect caused by TLR signaling is the induction of various site force-ins and chemokines, including various inflammatory site force-ins. In most cases, the induction of cytoforce-ins and chemokines depends on a common molecular pathway linked by an adapter protein called MyD88 (1-3). MyD88 contains a structural region called the death domain. The force death domain allows MyD88 force S to associate with further signaling molecules (Non-Patent Documents 3 and 4). These MyD88-interacting molecules that associate with MyD88 and are involved in TLR signaling include IL-1 receptor-associated kinase 1 (IRAKI) and IRAK4 (both of which contain the death domain) and the adapter molecule TNF Receptor associated factor (TRAF) 6 is included, and these signal transduction molecules are important for the activity of NF-κB and AP-1 transcription factors (Non-patent Documents 1, 2, 5, 6). ). The fact that TLR signaling is involved in the induction of site force-in is thought to have the potential to suppress excessive immune responses by controlling TLR signaling. In other words, substances that regulate TLR signal transmission are expected to be useful in the treatment and prevention of diseases involving cytodynamic force-in. However, since TLR signaling is not well understood, TLR signaling is not fully activated as a target for therapeutic agents for diseases related to cytoforce-in.
非特許文献 l :Janeway, C. A" Jr., & Medzhitov, R. (2002) Annu. Rev. Immunol. 20, 197-216. Non-patent literature l: Janeway, CA A "Jr., & Medzhitov, R. (2002) Annu. Rev. Immunol. 20, 197-216.
非特許文献 2 :Akira, S. & Takeda, K. (2004) Nat. Rev. Immunol. 4, 499-511. Non-Patent Document 2: Akira, S. & Takeda, K. (2004) Nat. Rev. Immunol. 4, 499-511.
非特許文献 3 : Medzhitov, R., Preston- Hurlburt, P., Kopp, E., Stadlen, A., Chen, CNon-Patent Document 3: Medzhitov, R., Preston- Hurlburt, P., Kopp, E., Stadlen, A., Chen, C
., Ghosh, S. & Janeway, C. A" Jr. (1998) Mol. Cell 2, 253-258. ., Ghosh, S. & Janeway, C. A "Jr. (1998) Mol. Cell 2, 253-258.
非特許文献 4:Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. (1997) I mmunity 7, 837-847. Non-Patent Document 4: Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. (1997) I mmunity 7, 837-847.
非特許文献 5 : Suzuki, N" Suzuki, S. & Yeh, W. C. (2002) Trends Immunol. 23, 503- 506. Non-Patent Document 5: Suzuki, N "Suzuki, S. & Yeh, W. C. (2002) Trends Immunol. 23, 503- 506.
非特許文献 6 :Janssens, S. & Beyaert, R. (2003) Mol. Cell 11, 293-302. Non-Patent Document 6: Janssens, S. & Beyaert, R. (2003) Mol. Cell 11, 293-302.
非特許文献 7 :Mamane, Y. et al. Interferon regulatory factors: the next generation.Non-Patent Document 7: Mamane, Y. et al. Interferon regulatory factors: the next generation.
Gene 237, 1-14 (1999). Gene 237, 1-14 (1999).
非特許文献 8 : Tanigucm, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family o f transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623—6 55 (2001). Non-Patent Document 8: Tanigucm, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623—6 55 (2001) .
非特許文献 9 : Levy, D. E., Marie, I. & Prakash, A. Ringing the interferon alarm: diff erential regulation of gene expression at the interface between innate and adaptive i mmunity. Curr. Opin. Immunol. 15, 52-58 (2003). Non-Patent Document 9: Levy, DE, Marie, I. & Prakash, A. Ringing the interferon alarm: diff erential regulation of gene expression at the interface between innate and adaptive i mmunity. Curr. Opin. Immunol. 15, 52-58 (2003).
非特許文献 10 : Barnes, B., Lubyova, B. & Pitha, P. M. On the role of IRF in host d efense. J. Interferon Cytokine Res. 22, 59—71 (2002) Non-Patent Document 10: Barnes, B., Lubyova, B. & Pitha, P. M. On the role of IRF in host d efense. J. Interferon Cytokine Res. 22, 59—71 (2002)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 [0005] 本発明は、上記状況を鑑みてなされたものであり、本発明が解決しょうとする課題 は、炎症性サイト力イン抑制剤の新規スクリーニング方法の提供である。 Problems to be solved by the invention [0005] The present invention has been made in view of the above situation, and the problem to be solved by the present invention is to provide a novel screening method for an inflammatory site force-in inhibitor.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、上記課題を解決すべく鋭意努力を重ね、 Interferon regulatory fact or (IRF)ファミリーに着目した。 IRFは転写因子であり、免疫系の調節に寄与すること 力も大きな注目を集めて 、る(非特許文献 7- 9)。 IRFファミリーのメンバーである IRF- 5 は、 I型インターフェロン (IFN)遺伝子の誘導との関連で大きな注目を集めているが、 現時点ではその機能はほとんど知られて 、な ヽ (非特許文献 10)。  [0006] The present inventors made extensive efforts to solve the above problems, and focused on the Interferon regulatory fact or (IRF) family. IRF is a transcription factor, and its ability to contribute to the regulation of the immune system is also attracting much attention (Non-patent Documents 7-9). IRF-5, a member of the IRF family, has received a lot of attention in relation to the induction of type I interferon (IFN) gene, but its function is almost unknown at the moment (Non-patent Document 10). .
[0007] 本発明者らは、 IRF-5遺伝子が欠損したマウス(IRF-5— /_マウス)および野生型マウ ス由来の造血細胞を種々の TLRリガンドで刺激し、 IRF-5"'マウス由来造血細胞では インターロイキン- 6 (IL-6)、 IL-12および腫瘍壊死因子 - α (TNF- α )などの炎症誘 発性サイト力インの誘導が障害されることを示した。また、 IRF-5が MyD88および TRA F6と相互作用して、それらによって活性ィ匕されること、ならびに TLR活性ィ匕が IRF-5の 核移行を引き起こしてサイト力イン遺伝子の転写を活性ィ匕することを解明した。 IRF-5" Λマウスは常に、非メチル化 DNAまたはリポ多糖 (LPS)によって誘導される致死性ショ ックに対する抵抗性を示し、これは炎症誘発性サイト力インの血清レベルの顕著な低 下と相関する。このように、本発明者らは、 IRF-5が TLR_MyD88シグナル伝達経路の 新たな主要な下流調節因子であり、有害な免疫応答を抑えるための治療的介入の 標的候補であることを明らかにした。 [0007] The present inventors stimulated hematopoietic cells derived from IRF-5 gene-deficient mice (IRF-5 — / _ mice) and wild-type mice with various TLR ligands, and IRF-5 "'mice Hematopoietic cells have been shown to impair the induction of inflammation-induced site force-in such as interleukin-6 (IL-6), IL-12, and tumor necrosis factor-α (TNF-α). That IRF-5 interacts with and is activated by MyD88 and TRA F6, and that TLR activity causes nuclear translocation of IRF-5 and activates transcription of the site force-in gene IRF-5 "Λ mice always showed resistance to lethal shock induced by unmethylated DNA or lipopolysaccharide (LPS), which is associated with serum levels of pro-inflammatory site force-in. Correlate with significant decline. Thus, the inventors have revealed that IRF-5 is a new major downstream regulator of the TLR_MyD88 signaling pathway and a potential target for therapeutic intervention to suppress adverse immune responses .
[0008] 上述の新規知見を踏まえ、本発明者らはさらに、 TLR-MyD88シグナル伝達経路に 他の IRFファミリーが関与する可能性について検討した。 IRF-4および IRF-8について MyD- 88との相互作用を分析したところ、 IRF-4は IRF-8と相互作用することが明らか になった。 IRF-4と相互作用する MyD88の領域を解析したところ、興味深いことに、 IR F-4は IRF-5と競合することが示唆されたため、本発明者らは IRF-4と IRF-5が競合す る可能性についてさらなる検討を行った。その結果、 IRF-4は、 IRF-5と MyD88との結 合に対し競合的に働 ヽて IRF-5の核移行を阻害し、 TLRシグナル伝達による炎症性 サイト力インの誘導において負の調節因子として機能することが明らかになった。本 発明者らの上記一連の検討により、 IRF-5は、炎症性サイト力イン制御による免疫疾 患治療薬開発の新たな標的となることが初めて明らかになった。 IRF-4のように、 IRF- 5の活性または発現を抑制する物質は、炎症性サイト力インの発現を負に制御し、新 規な免疫疾患治療薬とすることができる。すなわち本発明は、炎症性サイト力イン発 現制御における IRF-4および IRF-5の利用に関し、より具体的には以下の発明を提供 するものである。 [0008] Based on the above-mentioned novel findings, the present inventors further examined the possibility of involvement of other IRF families in the TLR-MyD88 signaling pathway. Analysis of the interaction of IRF-4 and IRF-8 with MyD-88 revealed that IRF-4 interacts with IRF-8. Interestingly, the analysis of the region of MyD88 that interacts with IRF-4 suggests that IR F-4 competes with IRF-5, so we are competing with IRF-4 and IRF-5. Further investigation was conducted on the possibility of this. As a result, IRF-4 competitively binds to the binding of IRF-5 to MyD88, inhibits IRF-5 nuclear translocation, and negatively regulates the induction of inflammatory site force-in by TLR signaling It became clear that it functions as a factor. Based on the above-described series of studies by the present inventors, IRF-5 was found to be an immune For the first time, it became clear that it would be a new target for the development of treatments for patients. A substance that suppresses the activity or expression of IRF-5, such as IRF-4, negatively regulates the expression of inflammatory site force-in and can be a novel therapeutic agent for immune diseases. That is, the present invention relates to the use of IRF-4 and IRF-5 in the control of inflammatory site force-in expression, and more specifically, provides the following inventions.
(D IRF-5発現細胞に被検物質を接触させたときの該細胞における IRF-5活性を指 標とする、炎症性サイト力イン抑制剤のスクリーニング方法、  (D Screening method for inflammatory site force-in inhibitor using as a marker the IRF-5 activity in a test substance when the test substance is brought into contact with an IRF-5-expressing cell,
(2)下記 (a)力も (d)の工程を含む、炎症性サイト力イン抑制剤のスクリーニング方法  (2) A screening method for an inflammatory site force-in inhibitor comprising the following steps (a) and (d):
(a) ISRE配列を含むプロモーター領域の下流に機能的に連結したレポーター遺伝子 を保持する IRF-5発現細胞に、被検物質を接触させる工程 (a) A step of bringing a test substance into contact with an IRF-5 expressing cell carrying a reporter gene operably linked downstream of a promoter region containing an ISRE sequence
(b)該 IRF-5発現細胞に TLRのリガンドまたはウィルスを接触させる工程  (b) contacting the TRF ligand or virus with the IRF-5 expressing cells
(c)該 IRF-5発現細胞のレポーター活性を検出する工程  (c) detecting the reporter activity of the IRF-5 expressing cell
(d)被検物質接触によるレポーター活性が、被検物質非接触のコントロールよりも低 Vヽ値を示す被検物質を選択する工程、  (d) a step of selecting a test substance whose reporter activity due to the test substance contact shows a lower V value than the non-test substance non-contact control;
(3) IRF-5発現細胞が内因性 IRF-5を発現する細胞である、上記(1)または(2)に記 載のスクリーニング方法、  (3) The screening method according to (1) or (2) above, wherein the IRF-5-expressing cell is a cell that expresses endogenous IRF-5,
(4) IRF-5発現細胞力 外来導入された IRF-5を発現する細胞である、上記(1)また は(2)に記載のスクリーニング方法、  (4) IRF-5-expressing cell force The screening method according to (1) or (2) above, which is a cell expressing IRF-5 introduced exogenously,
(5) DNA上の転写因子結合部位を予測するアプリケーションである「TFSEARCH」 (ht tp:〃 www.cbrc.jp/research/db/TFSEARCHJ.html)を用いて、プロモーター領域を含 む炎症性サイト力インの遺伝子全領域上の転写因子結合領域を検索した場合に、 sc oreを 50ポイント以上に設定して得られる配列のうち、 ISRE配列、 IRF-1結合配列およ び Zまたは IRF-2結合配列として検出された配列を ISRE配列として用いる、上記(2) から (4)の 、ずれかに記載のスクリーニング方法、  (5) Using TFSEARCH (ht tp: 〃 www.cbrc.jp/research/db/TFSEARCHJ.html), an application that predicts transcription factor binding sites on DNA, an inflammatory site containing a promoter region Among the sequences obtained by searching for transcription factor binding regions in the entire region of the force-in gene, by setting the scole to 50 points or more, ISRE sequences, IRF-1 binding sequences and Z or IRF-2 The screening method according to any one of (2) to (4) above, wherein a sequence detected as a binding sequence is used as an ISRE sequence,
(6) ISRE配列力 配列番号 7から配列番号 58のいずれ力 1つ以上の配列である上記 (2)から(5)に記載のスクリーニング方法、  (6) ISRE sequence ability SEQ ID NO: 7 to SEQ ID NO: 58 Any one of the strengths The screening method according to (2) to (5) above,
(7) TLRが、 TLR3、 TLR4、 TLR5、 TLR7、 TLR8、 TLR9のいずれ力 1つ以上の TLRで ある、上記(1)から(8)の 、ずれかに記載のスクリーニング方法、 (7) TLR is any one of TLR3, TLR4, TLR5, TLR7, TLR8, TLR9. The screening method according to any one of (1) to (8) above,
(8) IRF-5発現細胞に被検物質を接触させたときの該細胞における IRF-5発現量を 指標とする、炎症性サイト力イン抑制剤のスクリーニング方法、  (8) A screening method for an inflammatory site force-in inhibitor using as a marker the amount of IRF-5 expression in a cell when IRF-5-expressing cells are contacted with a test substance,
(9)下記 (a)から(c)の工程を含む、上記(8)に記載のスクリーニング方法  (9) The screening method according to (8) above, comprising the following steps (a) to (c):
(a) IRF-5発現細胞に被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-5 expressing cell
(b)該 IRF-5発現細胞中の IRF-5 mRNAを測定する工程  (b) a step of measuring IRF-5 mRNA in the IRF-5-expressing cells
(c)被検物質接触による mRNA量力 被検物質非接触のコントロールの mRNA量より 小さ!ゝ被検物質を選択する工程、  (c) The amount of mRNA due to contact with the test substance is smaller than the amount of mRNA in the non-test substance contact control!
(10)下記 (a)から(c)の工程を含む、上記(8)記載のスクリーニング方法  (10) The screening method according to (8) above, comprising the following steps (a) to (c):
(a) IRF-5発現細胞に被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-5 expressing cell
(b)該 IRF-5発現細胞中の IRF-5タンパク質を定量する工程  (b) Quantifying the IRF-5 protein in the IRF-5 expressing cells
(c)被検物質接触によるタンパク質の量力 被検物質非接触のコントロールのタンパ ク質の量より小さ!/ヽ被検物質を選択する工程  (c) Quantity of protein due to contact with test substance Smaller than the amount of protein for non-test substance contact control!
(11)被検物質存在下にお 、て MyD88と IRF-5とを接触させたときの、被検物質によ る MyD88と IRF-5との結合阻害能を指標とする、炎症性サイト力イン抑制剤のスクリー ユング方法、  (11) Inflammatory site force using as an index the ability to inhibit the binding of MyD88 to IRF-5 by the test substance when MyD88 is contacted with IRF-5 in the presence of the test substance In inhibitor screening method,
(12)下記 (a)力も (c)の工程を含む、炎症性サイト力イン抑制剤のスクリーニング方 法、  (12) A screening method for an inflammatory site force-in inhibitor comprising the following steps (a) and (c):
(a)ドナー蛍光タンパク質遺伝子とァクセプタ蛍光タンパク質遺伝子を、 MyD88遺伝 子または IRF-5遺伝子のうち、それぞれ異なるどちらかに連結し、蛍光タンパク質遺 伝子- MyD88遺伝子構築物および蛍光タンパク質遺伝子- IRF-5遺伝子構築物を細 胞に導入する工程  (a) The donor fluorescent protein gene and the acceptor fluorescent protein gene are linked to either the MyD88 gene or the IRF-5 gene, and the fluorescent protein gene-MyD88 gene construct and the fluorescent protein gene-IRF-5 The process of introducing the gene construct into the cell
(b)被検物質存在下に置かれた前記細胞に、ドナー蛍光タンパク質に特有な励起波 長を照射してドナー蛍光タンパク質を励起し、ドナー蛍光タンパク質に基づく蛍光強 度とァクセプタ蛍光タンパク質に基づく蛍光強度を検出し、ドナー蛍光タンパク質に 基づく蛍光強度とァクセプタ蛍光タンパク質に基づく蛍光強度から、ドナー蛍光タン パク質とァクセプタ蛍光強度タンパク質間の FRETを解析する工程  (b) The cells placed in the presence of the test substance are irradiated with an excitation wavelength peculiar to the donor fluorescent protein to excite the donor fluorescent protein, and based on the fluorescence intensity based on the donor fluorescent protein and the acceptor fluorescent protein Detecting fluorescence intensity and analyzing FRET between donor fluorescence protein and acceptor fluorescence intensity protein from fluorescence intensity based on donor fluorescence protein and fluorescence intensity based on acceptor fluorescence protein
(c)上記 (b)工程により解析された被検物質存在下における FRETが、被検物質非存 在下における FRETよりも減弱、または消滅する被検物質を選択する工程、 (c) FRET in the presence of the test substance analyzed in step (b) above is Selecting a test substance that is attenuated or disappears from FRET
(13)下記 (a)力も (d)の工程を含む、炎症性サイト力イン抑制剤のスクリーニング方 法  (13) A screening method for an inflammatory site force-in inhibitor comprising the following steps (a) and (d):
(a) MyD88タンパク質および IRF-5タンパク質を発現する細胞に被検物質を接触させ る工程  (a) A step of bringing a test substance into contact with cells expressing MyD88 protein and IRF-5 protein
(b)前記 MyD88タンパク質および IRF-5タンパク質を発現する細胞力ゝらの細胞溶解液 から MyD88タンパク質を含む画分または IRF-5を含む画分を分離する工程  (b) a step of separating a fraction containing MyD88 protein or a fraction containing IRF-5 from a cell lysate of a cell strain expressing the MyD88 protein and IRF-5 protein.
(c)前記分離画分中の、 MyD88タンパク質と IRF-5タンパク質との結合を検出するェ 程  (c) Detecting the binding of MyD88 protein to IRF-5 protein in the separated fraction
(d)前記 MyD88タンパク質と IRF-5タンパク質との結合力 被検物質非接触のコント口 ールよりも減少する被検物質を選択する工程、  (d) the step of selecting a test substance that decreases compared to the binding force between the MyD88 protein and the IRF-5 protein compared to a non-test substance contact control;
(14) IRF-4発現細胞に被検物質を接触させたときの該細胞における IRF-4発現量を 指標とする、炎症性サイト力イン抑制剤のスクリーニング方法、  (14) A screening method for an inflammatory site force-in inhibitor using, as an index, the amount of IRF-4 expression in an IRF-4 expressing cell when the test substance is brought into contact with the test substance,
( 15)下記 (a)から(c)の工程を含む、上記(14)に記載のスクリーニング方法 (15) The screening method according to (14) above, comprising the following steps (a) to (c):
(a) IRF-4発現細胞に被検物質を接触させる工程 (a) A step of bringing a test substance into contact with an IRF-4 expressing cell
(b)該 IRF-4発現細胞中の IRF-4 mRNAを測定する工程  (b) measuring IRF-4 mRNA in the IRF-4 expressing cells
(c)被検物質接触による mRNA量力 被検物質非接触のコントロールの mRNA量より 小さ!ゝ被検物質を選択する工程、  (c) The amount of mRNA due to contact with the test substance is smaller than the amount of mRNA in the non-test substance contact control!
(16)下記 (a)から(c)の工程を含む、上記(14)記載のスクリーニング方法  (16) The screening method according to (14) above, comprising the following steps (a) to (c):
(a) IRF-4発現細胞に被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-4 expressing cell
(b)該 IRF-4発現細胞中の IRF-4タンパク質を定量する工程  (b) quantifying the IRF-4 protein in the IRF-4 expressing cells
(c)被検物質接触によるタンパク質の量力 被検物質非接触のコントロールのタンパ ク質の量より小さ!/ヽ被検物質を選択する工程、  (c) The amount of protein due to the contact of the test substance is smaller than the amount of the protein in the non-test substance contact control! / ヽ The process of selecting the test substance,
(17)炎症性サイト力インが、 IL- 1、 IL- 6、 IL- 8、 IL- 12、 IL- 18、 TNF- α、 IFN- γのい ずれ力 1つ以上の炎症性サイト力インである、上記(1)から(16)の 、ずれかに記載の スクリーニング方法、  (17) Inflammatory site force in is any of IL-1, IL-6, IL-8, IL-12, IL-18, TNF-α, IFN-γ. The screening method according to any one of (1) to (16) above,
( 18)上記( 1)から( 17)の 、ずれかに記載の方法を用 、た、炎症性サイト力インが関 与する疾患の治療薬のスクリーニング方法、 ( 19)下記(a)から(e)の 、ずれかを含む、 MyD88-IRF-5結合阻害剤 (18) Using the method described in any one of (1) to (17) above, a method for screening a therapeutic agent for a disease associated with inflammatory site force-in, (19) MyD88-IRF-5 binding inhibitor comprising any of the following (a) to (e)
(a)配列番号: 60または 62記載のアミノ酸配列を含むポリペプチドをコードする、単離 されたポリヌクレオチド  (a) an isolated polynucleotide encoding a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 60 or 62
(b)配列番号: 60または 62記載のアミノ酸配列の一または複数のアミノ酸が欠失、付 カロ、置換、および Zまたは挿入されたポリペプチドをコードする、単離されたポリヌク レオチド  (b) an isolated polynucleotide encoding a polypeptide in which one or more amino acids of SEQ ID NO: 60 or 62 are deleted, appended, substituted, Z or inserted.
(c)配列番号: 59または 61記載の塩基配列を含む、単離されたポリヌクレオチド (c) an isolated polynucleotide comprising the nucleotide sequence of SEQ ID NO: 59 or 61
(d)配列番号: 59または 61記載の塩基配列を含むポリヌクレオチドにストリンジェント な条件でハイブリダィズする、単離されたポリヌクレオチド (d) an isolated polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 59 or 61
(e)上記(a)から(d)の 、ずれかのポリヌクレオチドによってコードされる、単離された ポリペプチド、  (e) an isolated polypeptide encoded by any of the polynucleotides of (a) to (d) above,
(20)上記(19)に記載の MyD88-IRF-5結合阻害剤を含む、炎症性サイト力インが関 与する疾患の治療薬。  (20) A therapeutic agent for a disease associated with inflammatory site force-in, comprising the MyD88-IRF-5 binding inhibitor described in (19) above.
図面の簡単な説明 Brief Description of Drawings
[図 l]IRF-5欠損マウスの作製についての図である。 a、マウス IriS遺伝子の標的指向 性破壊を示す図である。マウス W5遺伝子、ターゲテイングベクターおよび変異アレル の構成。黒塗り枠はェクソン (2から 9まで)を表す:第 1の(非コード性)ェクソンは第 2 のェクソンの約 4.4kb上流に位置する(NCBIデータベースァクセッション番号 NC 0007 2)。矢印および星印はそれぞれ翻訳開始 ATG配列および終結 TAA配列を示す。制 限酵素: H、 HindIII ;A、 Apal。 b、 Hindlllにより消化処理したゲノム尾部 DNAに対する 、 aに示した放射標識プローブを用いた DNAプロット分析を示す図である。これらの結 果は、野生型マウス (+/+)に関しては単一の 6.7kbバンド、ホモ接合性マウス (― /_ )に関 しては 4.4kbバンド、ヘテロ接合性 (+/—)マウスに関してはこの両方を示している。 c、 pol y (l : C)により刺激した MEF由来の RNAに関する RNAブロット分析を示す図である。野 生型 (+/+)マウス、ヘテロ接合性 (+/— )およびホモ接合性 (― ) IRF- 5変異マウス由来の M EFを poly(I : C) (200 /z gZml)により 3時間および 6時間刺激した。全 RNA(10 /z g)を抽 出し、 278-739断片に対応する cDNAプローブとのハイブリダィゼーシヨンにより、 IRF- 5の発現に関して分析した。メンブランに対する RNAのトランスファー後の臭化工チジ ゥム染色を対照として含めた(下図)。 TLR3を活性ィ匕する poly (I : C)によって IRF-5 m RNAがアップレギュレートされることに注目されたい。 d、野生型 (+/+)マウス、ヘテロ接 合性 (+ ")およびホモ接合性 (" _) IRF-5変異マウス由来の脾細胞の溶解物に関するィ ムノブロット分析を示す図である。脾臓溶解物を、ェクソン 6中の一領域に対応する IR F-5ペプチド、 PSPEDIPSDKQ (配列番号: 95)に対する抗血清とともにインキュベート した。この抗血清を、過剰量の IRF-5ペプチドとのプレインキュベーションによって特 異性に関しても調べた。同じメンブランに対して、ローデイング対照として抗 j8 -ァクチ ンによるブロッテイングも行った(下図)。矢印は非特異的バンドを示す。この図は、正 しいサイズ(57kDa)の IRF-5タンパク質に対応するバンドが IRF-5チマウス由来の脾臓 には存在しな 、ことを示して 、る。 [Fig. L] A drawing for the production of IRF-5-deficient mice. a, Targeted disruption of the mouse IriS gene. Construction of mouse W5 gene, targeting vector and mutant allele. The black frame represents Exon (2 to 9): The first (non-coding) Exon is located approximately 4.4 kb upstream of the second Exon (NCBI database session number NC 0007 2). Arrows and asterisks indicate the translation initiation ATG sequence and termination TAA sequence, respectively. Restriction enzymes: H, HindIII; A, Apal. b, DNA plot analysis using the radiolabeled probe shown in a for the genomic tail DNA digested with Hindlll. These results show a single 6.7 kb band for wild type mice ( + / + ), a 4.4 kb band for homozygous mice (- / _ ), and heterozygous ( +/- ) mice. Both show both. c, RNA blot analysis of MEF-derived RNA stimulated by c, pol y (l: C). Wild-type ( + / + ) mice, heterozygous ( +/- ) and homozygous (-) MRF from IRF-5 mutant mice with poly (I: C) (200 / z gZml) for 3 hours And stimulated for 6 hours. Total RNA (10 / zg) was extracted and analyzed for IRF-5 expression by hybridization with a cDNA probe corresponding to the 278-739 fragment. Bromination after RNA transfer to membrane Um staining was included as a control (below). Note that IRF-5 mRNA is up-regulated by poly (I: C) that activates TLR3. d, Immunoblot analysis of spleen cell lysates from wild type ( + / + ) mice, heterozygous ( + ") and homozygous (" _ ) IRF-5 mutant mice. Spleen lysates were incubated with an antiserum against IRF-5 peptide, PSPEDIPSDKQ (SEQ ID NO: 95), corresponding to a region in exon 6. This antiserum was also examined for specificity by preincubation with an excess of IRF-5 peptide. The same membrane was blotted with anti-j8-actin as a loading control (see below). Arrows indicate nonspecific bands. This figure shows that no band corresponding to the correct size (57 kDa) of IRF-5 protein is present in the spleen from IRF-5 chi mice.
[図 2a-c]IRF-5チマウス由来の造血細胞における、 TLRリガンドに応答して起こる炎症 誘発性サイト力インおよびそれらの mRNA誘導の障害についての図である。 a、野生 型 (WT)マウス(黒塗りバー)または IRF- 5— Λマウス(白抜きバー)の脾臓由来の通常の DC (cDC)を模擬刺激する力 (媒質のみ)、または 1.0 Μの Β型 CpG ODN (CpG- B)も しくは CpG-A ODN (CpG-A)により 24時間刺激し、培養上清中の IL-6、 IL-12p40およ び TNF- aの濃度を ELISAにより測定したグラフである。上清を IFN- a誘導に関しても 測定した。 3回の独立した実験で同様の結果が得られた。データは平均 ±s.d.を示し ている。 N.D.検出されず。 b、 WTマウス(黒塗りバー)または IRF- 5— Λマウス(白抜きバ 一)の脾臓由来の形質細胞様 DC (pDC)を模擬刺激するか (媒質のみ)、または aに おける記載と同じように CpG-B ODNもしくは CpG-A ODNにより刺激し、培養上清中 のサイト力インの濃度を ELISAにより測定したグラフである。 3回の独立した実験で同 様の結果が得られた。データは平均士 s.d.を示している。 N.D.検出されず。 c、 WTマ ウス(黒塗りバー)または IRF- 5— Λマウス(白抜きバー)の脾臓マクロファージを CpG- A ODN (1.0 μ Μ)または CpG- Β ODN (1.0 μ Μ)により、 SOUml—1の IFN- yの存在下(IL- 12)または非存在下 (IL-6および TNF- a )で 24時間刺激し、 aにおける記載と同じよう に培養上清中の IL- 6、 IL-12p40および TNF- aの濃度を ELISAにより測定したグラフ である。 [Fig. 2a-c] Diagram of pro-inflammatory site force-in and their mRNA-induced damage in response to TLR ligands in hematopoietic cells derived from IRF-5 Chi mice. a, Ability to simulate normal DC (cDC) derived from the spleen of wild type (WT) mice (black bars) or IRF-5— Λ mice (open bars) (medium only), or 1.0 Β Stimulated for 24 hours with type CpG ODN (CpG-B) or CpG-A ODN (CpG-A), and measured the concentrations of IL-6, IL-12p40 and TNF-a in the culture supernatant by ELISA It is a graph. The supernatant was also measured for IFN-a induction. Similar results were obtained in three independent experiments. Data show mean ± sd. ND not detected. b. Stimulate plasmacytoid DCs (pDC) derived from the spleen of WT mice (black bars) or IRF-5— Λ mice (white bars) (medium only) or the same as described in a In this way, stimulation with CpG-B ODN or CpG-A ODN was performed, and the concentration of cytodynamic force in the culture supernatant was measured by ELISA. Similar results were obtained in three independent experiments. Data shows average sd. ND not detected. c, spleen macrophages from WT mice (black bars) or IRF-5— Λ mice (open bars) with CpG-A ODN (1.0 μΜ) or CpG-Β ODN (1.0 μΜ) SOUml— 1 Stimulated for 24 hours in the presence (IL-12) or absence (IL-6 and TNF-a) of IFN-y, IL-6, IL-12p40 in the culture supernatant as described in a 2 is a graph showing the concentration of TNF-a measured by ELISA.
[図 2d]図 2a- cに続く図であるである。 d、 WTマウス(黒塗りバー)または IRF- 5— Λマウス (白抜きバー)の脾臓マクロファージを刺激しないままにおくか、または種々の TLRリ ガンド、例えば、 TLR3 (ポリイノシン-ポリシチジル酸 [poly (I : C) ]; 100 g/ml)、 TLR 4 (リポ多糖 [LPS] ; 10ngZml)、 TLR5 (フラジ リン; 10 /z gZml)および TLR7 (8) (ss- R NA;ポリゥリジル酸 [ポリ(U) ] ; 5 /z g/ml)に対するものにより、 SOUnd-1の IFN- γの存 在下(IL-12)または非存在下(IL-6および TNF- a )で 24時間刺激し、 aにおける記載 と同じように培養上清中の TNF- α、 IL-6および IL-12p40の濃度を ELISAにより測定し たグラフである。データは 2回の独立した実験の代表値を示している。 N.D.、検出され ず。 FIG. 2d is a diagram following FIG. 2a-c. d, WT mouse (black bar) or IRF-5— Λ mouse (Open bars) spleen macrophages are left unstimulated or various TLR ligands such as TLR3 (polyinosine-polycytidylic acid [poly (I: C)]; 100 g / ml), TLR 4 (lipo Polysaccharides [LPS]; 10 ngZml), TLR5 (furazirine; 10 / z gZml) and TLR7 (8) (ss-RNA; polyuridylic acid [poly (U)]; 5 / zg / ml) 1 Stimulated for 24 hours in the presence (IL-12) or absence (IL-6 and TNF-a) of IFN-γ, and TNF-α, IL- 6 is a graph showing the concentrations of 6 and IL-12p40 measured by ELISA. Data are representative of two independent experiments. ND, not detected.
[図 2ef]図 2dに続く図である。 e、炎症誘発性サイト力インの mRNAの誘導を示すグラフ である。脾臓マクロファージを WTマウスおよび IRF- 5— Λマウス力 調製し、 dに記載し たものと同じ条件下で CpG-B ODN、 LPSまたは poly (I : C)により刺激した。指定され た時点で全 RNAを抽出し、続いて定量的 RT-PCR分析に供した。 f、 I κ B ζ mRNAの 誘導を示すグラフである。脾臓マクロファージを指定された PAMPによって刺激し、 mR NA発現を eに記載した通りにモニターした。 [Fig. 2ef] This is a diagram following Fig. 2d. e is a graph showing the induction of mRNA of pro-inflammatory site force-in. Spleen macrophages were prepared by WT and IRF-5- Λ mouse force and stimulated with CpG-B ODN, LPS or poly (I: C) under the same conditions as described in d. Total RNA was extracted at designated time points and subsequently subjected to quantitative RT-PCR analysis. f is a graph showing the induction of IκBζ mRNA. Splenic macrophages were stimulated with the designated PAMP and mRNA expression was monitored as described in e.
[図 3]TLRシグナル伝達にかかわる IRF-5と MyD88および TRAF6アダプターとの相互 作用についての図である。 a、 IRF-5および MyD88の細胞内局在を示す写真である。 RAW264.7 (上方の数図面)および HEK293T (下方の数図面)の YFPおよび CFP蛍光 像、ならびに FRET画像。 YFP- IRF- 5および CFP- MyD88を発現する細胞を、冷却型 CCDカメラを装着した倒立蛍光顕微鏡を用いて収集した。 FRETC (補正 FRET)は以 前の記載の通りに決定した(Honda, K., Mizutani, T. & Taniguchi, T. Negative regul ation of IFN- a / β signaling by IFN regulatory factor 2 for homeostatic developmen t of dendritic cells. Proc. Natl. Acad. Sci. USA. 101, 2416-2421 (2004).) 0左図面か ら右図面の順にそれぞれ CFPおよび YFP蛍光像、合成像および FRETC (疑似カラー モードで表示)画像を示している。 b、 3種類の IRFと MyD88との結合に関する分子間 F RET分析を示す図である。表記された YFP標識 IRFの 1つおよび CFP-MyD88を共発 現する HEK293T細胞の FRETCを算出し、 FRETCZCFP値をヒストグラムとしてプロッ トした。 c、 IRF-5または IRF-3と MyD88 (上方の数図面)または TRAF6 (下方の数図面 )との免疫共沈の結果を示す図である。 HEK293T細胞に対して pCAGGS-HAIRF-5ま たは pEF- HA- IRF- 3を pCXN2- FLAG- MyD88とともにトランスフエタトし、細胞溶解物 を抗 FLAG抗体との免疫沈降にかけ、続、て抗 HA抗体を用いるィムノブロット法を行 つた。ストリツビングの後に、今度は FLAG標識 MyD88のィムノブロット法を抗 FLAG抗 体により行った。 HEK293T細胞に対して pCAGGS- HA-IRF- 5または pCAGGS- HA-IR F-3と pME-FLAG- TRAF6とを一過性にトランスフエタトした。分析は上方の数図面に 記載した通りに行った。これらの分子の発現レベルも、全細胞溶解物をィムノブロット 法により分析することによって決定した。 d、 MyD88および TRAF6による IRF-5の活性 化を示すグラフである。多量体ィ匕された ISREを含むルシフェラーゼレポーター構築物 (p- 55ClBLuc) (50ng)を、 HEK293T細胞に対して単独で、または IRF-5 (20ng)、 My D88 (20ng)、 TRAF6 (20ng)の指定された組み合わせに関する発現ベクターとともにト ランスフエタトした(上のグラフ)。 IRF-5による ISREの TLR9依存的活性化につ!、て検 討するために、 TLR9 cDNAを発現する HEK293細胞を用いた (方法の項を参照)(下 のグラフ)。 24時間のトランスフエクシヨン後に細胞溶解物を抽出し、ルシフェラーゼァ ッセィに供した。 [Fig. 3] Diagram of the interaction of IRF-5 with MyD88 and TRAF6 adapters involved in TLR signaling. a, Photograph showing the intracellular localization of IRF-5 and MyD88. YFP and CFP fluorescence images of RAW264.7 (upper figures) and HEK293T (lower figures), and FRET images. Cells expressing YFP-IRF-5 and CFP-MyD88 were collected using an inverted fluorescence microscope equipped with a cooled CCD camera. FRETC (corrected FRET) was determined as described previously (Honda, K., Mizutani, T. & Taniguchi, T. Negative regulation of IFN-a / β signaling by IFN regulatory factor 2 for homeostatic developmen t of Dendritic cells. Proc. Natl. Acad. Sci. USA. 101, 2416-2421 (2004).) 0 CFP and YFP fluorescence images, composite image and FRETC (displayed in pseudo color mode) from left to right drawings, respectively. An image is shown. b, Intermolecular FRET analysis for binding of three types of IRF to MyD88. The FRETC of HEK293T cells co-expressing one of the indicated YFP-labeled IRF and CFP-MyD88 was calculated, and the FRETCZCFP value was plotted as a histogram. c, shows results of co-immunoprecipitation of IRF-5 or IRF-3 with MyD88 (upper figures) or TRAF6 (lower figures). PCAGGS-HAIRF-5 for HEK293T cells Alternatively, pEF-HA-IRF-3 was transfected with pCXN2-FLAG-MyD88, and the cell lysate was subjected to immunoprecipitation with anti-FLAG antibody, followed by immunoblotting using anti-HA antibody. After stripping, immunoblotting of FLAG-labeled MyD88 was then performed with anti-FLAG antibody. HEK293T cells were transiently transfected with pCAGGS-HA-IRF-5 or pCAGGS-HA-IR F-3 and pME-FLAG-TRAF6. The analysis was performed as described in the upper figures. The expression levels of these molecules were also determined by analyzing whole cell lysates by immunoblotting. d, Graph showing activation of IRF-5 by MyD88 and TRAF6. Luciferase reporter construct (p-55ClBLuc) (50 ng) containing multimerized ISRE alone or HERF293T cells or designated IRF-5 (20 ng), My D88 (20 ng), TRAF6 (20 ng) Transfected with expression vectors for the combined combinations (top graph). To examine TLR9-dependent activation of ISRE by IRF-5, HEK293 cells expressing TLR9 cDNA were used (see method section) (graph below). Cell lysates were extracted after 24 hours of transfection and subjected to luciferase assay.
[図 4ab]TLR刺激による IRF-5の活性化および IL-12p40プロモーターとの結合につい ての図である。 a、 CpG-B ODN刺激による IRF-5の核移行を示すグラフである。 YFP-I RF-5を発現する Raw 264.7細胞の画像をタイムラプス顕微鏡で収集し、 CpG-B ODN により刺激した。 YFPおよび CFPに関する画像を 1分間毎に収集し、 CpG-B ODNは 記録開始から 5分間後に添加した。 DIC画像により特定した核領域の標準化蛍光強 度を時間に対してプロットした。 b、 CpG-B ODNにより刺激した MEFにおける IRF-5の MyD88依存的核移行を示す図である。 WTまたは MyD88— ' MEFに対して pBabe-HA -IRF-5をレトロウイルス遺伝子導入によりトランスフエタトし、指定された期間にわたり CpG-B ODN (1.0 μ Μ)で処理した。細胞を分画化し、核抽出物 30 μ gを SDS- PAGE およびィムノブロット法により HA標識 IRF-5の核移行に関して分析し、その後にストリ ッビングおよび USF-2 (核タンパク質)、 /3 -チューブリン (細胞質タンパク質)に関する 再プロ一ビングを行った。サイトゾル画分における IRF-5発現レベルも下図に示して いる。  FIG. 4ab is a diagram showing IRF-5 activation by TLR stimulation and binding to IL-12p40 promoter. a, CpG-B is a graph showing nuclear translocation of IRF-5 by ODN stimulation. Images of Raw 264.7 cells expressing YFP-I RF-5 were collected with a time-lapse microscope and stimulated with CpG-B ODN. Images of YFP and CFP were collected every minute, and CpG-B ODN was added 5 minutes after the start of recording. The normalized fluorescence intensity of the nuclear region identified by the DIC image was plotted against time. b, Myp88-dependent nuclear translocation of IRF-5 in MEF stimulated with CpG-B ODN. PBabe-HA-IRF-5 was transferred to WT or MyD88—MEF by retroviral gene transfer and treated with CpG-B ODN (1.0 μΜ) for the specified period. Cells were fractionated and 30 μg of nuclear extract was analyzed for nuclear translocation of HA-labeled IRF-5 by SDS-PAGE and immunoblotting followed by stripping and USF-2 (nuclear protein), / 3-tubulin Reprobing for (cytoplasmic protein) was performed. The IRF-5 expression level in the cytosolic fraction is also shown in the figure below.
[図 4c-e]図 4abに続く図である。 c、クロマチン免疫沈降アツセィの結果を示す図であ る。 HA標識 IRF- 5を一過性に発現させた Raw 264.7細胞を用いて、 CpG- B ODN (l μ Μ)による 6時間の刺激後に、 IL-12p40遺伝子中の内因性 ISREに対する IRF-5の結合 を調べた (左図面)。免疫沈降させたクロマチン断片における遺伝子中の内因性 ISR Eを検出するために PCRを行った:レーン 1および 2は対照抗体との免疫沈降試料を 用いることによる PCR増幅の結果を示している。レーン 3および 4は、抗 HA抗体を用い て免疫沈降させたクロマチン断片における標的配列(248bp)の PCR増幅の結果を示 して 、る。 IL-12p40遺伝子の 3-UTRを検出するプライマーを用いた PCR増幅の結果 も示している。 ChIPアツセィは IFN- jSプロモーター領域の PCR増幅を可能にするプラ イマ一を用いて同様に行った (右図面)。 IFN- j8遺伝子は CpG-A ODNおよび CpG- B ODNのいずれによって刺激してもこれらの RAW 264.7細胞では誘導されない(H. Y -、未発表データ)ため、陰性対照としての役割を果たす。各試料における全投入 D NAの PCR増幅も示している(投入 DNA)。 DN Aサイズマーカーを bp単位で右側に示 している。 d、 IRF-5の非存在下での NF- κ Bの活性化を示す図である。 WT、 IRF-5_/_ および MyD88— Λマウス由来の脾臓 B細胞を CpG- B ODN (0.3 M)により指定された 期間にわたり刺激した。 NF- κ Bの活性ィ匕は EMSAにより評価した。 poly (I : C)による N F- κ Bの活性化は IRF-5チマクロファージでも本質的には正常であった (A. T.、未発 表データ)。 e、 IRF-5の非存在下での MAPキナーゼの活性化を示す図である。 CpG- B ODN (0.3 M)を WTまたは IRF- 5— Λ脾臓 B細胞に添カ卩し、指定された期間にわたり 処理した。 ρ38および JNKの活性ィ匕はホスホ特異的抗体を用いて分析した。 ρ38およ び JNKを併せたものに対する抗体を用いるィムノブロット法をローデイング対照として 行った。 [Fig. 4c-e] This is a diagram following Fig. 4ab. c, showing the results of chromatin immunoprecipitation assembly. The Using Raw 264.7 cells transiently expressing HA-tagged IRF-5, IRF-5 against endogenous ISRE in IL-12p40 gene after 6 hours stimulation with CpG-B ODN (l μ Μ) The bond was examined (left drawing). PCR was performed to detect endogenous ISR E in the gene in the immunoprecipitated chromatin fragment: lanes 1 and 2 show the results of PCR amplification using the immunoprecipitated sample with the control antibody. Lanes 3 and 4 show the results of PCR amplification of the target sequence (248 bp) in the chromatin fragment immunoprecipitated with anti-HA antibody. The results of PCR amplification using primers that detect the 3-UTR of the IL-12p40 gene are also shown. ChIP assembly was performed in the same manner using a primer that allows PCR amplification of the IFN-jS promoter region (right drawing). The IFN-j8 gene is not induced in these RAW 264.7 cells when stimulated by either CpG-A ODN or CpG-B ODN (H. Y-, unpublished data) and therefore serves as a negative control. Also shown is PCR amplification of all input DNA in each sample (input DNA). The DNA size marker is shown on the right in bp. d, NF-κB activation in the absence of IRF-5. Spleen B cells from WT, IRF-5 __ / _ and MyD88— Λ mice were stimulated by CpG-B ODN (0.3 M) for the specified period. The activity of NF-κB was evaluated by EMSA. Activation of NF-κB by poly (I: C) was essentially normal in IRF-5 thiomacrophages (AT, unpublished data). e, MAP kinase activation in the absence of IRF-5. CpG-B ODN (0.3 M) was added to WT or IRF-5- Λ splenic B cells and treated for the specified period. The activity of ρ38 and JNK was analyzed using phospho-specific antibodies. An immunoblotting method using antibodies against ρ38 and JNK was used as a loading control.
[図 5ab]CpG-B ODNまたは LPSにより誘発される致死性ショックに対する IRF-5チマウ スの抵抗性についての図である。 a、齢数を一致させた野生型 (n = 5)および IRF-5チ (n=4)マウスに対して、 CpGB ODN (5nmol)を D-ガラクトサミン(D- GalN) (20mg)とと もに腹腔内注射した。生存に関して 4日間観察した。 b、 CpG-B ODNを注射したマウ スの血清を注射 1時間後および 3時間後に採取した。 TNF- a、 IL-12p40および IL-6 の血清中濃度を ELISAにより測定した。 ND.、検出されず。結果はマウス 3匹の血清試 料の平均士 s.d.を示している。 [図 5cd]図 5abに続く図である。 c、齢数を一致させた野生型 (n = 4)および IRF- 5チ (n = 3)マウスに対して、 LPS (0.7 iu g)をD-GalN (8mg)とともに腹腔内注射した。生存に 関して 4日間観察した。 d、 bにおける記載と同じように、 LPSを注射したマウスの血清を 注射 1時間後および 2時間後に採取した。 FIG. 5ab is a graph showing the resistance of IRF-5 chimaus to lethal shock induced by CpG-B ODN or LPS. a, CpGB ODN (5 nmol) with D-galactosamine (D-GalN) (20 mg) in age-matched wild-type (n = 5) and IRF-5 chi (n = 4) mice Were injected intraperitoneally. Survival was observed for 4 days. b. Serum of mice injected with CpG-B ODN was collected 1 hour and 3 hours after injection. Serum concentrations of TNF-a, IL-12p40 and IL-6 were measured by ELISA. ND., Not detected. The results show the mean sd of serum samples from 3 mice. FIG. 5cd is a diagram following FIG. 5ab. c, wild-type-matched the number of age against (n = 4) and IRF- 5 Ji (n = 3) mice, LPS and (0.7 i ug) were injected intraperitoneally with D-GalN (8mg). Survival was observed for 4 days. As described in d and b, sera from mice injected with LPS were collected 1 hour and 2 hours after injection.
[図 6]a、 IRF- 5 mRNA発現の組織分布を示す写真である。 2 μ gのポリ(A) +RNAを含 むマウス多糸且織ノーザンブロット (Clontech)をマウス IRF-5 cDNA断片とハイブリダィ ズさせた。 b、通常の榭状細胞(cDC)における TLR9リガンド、 CpG-Bオリゴデォキシヌ クレオチド(ODN)刺激による(左図面)、または脾臓マクロファージにおける LPSおよ び poly (I : C)による(右図面)、 IRF-5 mRNA発現のアップレギュレーションを示すグラ フである。細胞を CpG- B ΟΟΝ (1.0 /ζ Μ)、 LPS (lOngZml)および poly (I : C) (100 g Zml)で 2時間刺激した後に全 RNAを調製し、 IRF-5 mRNA発現に関する RT-PCR分 祈に供した。 c、 IRF-5チマウスにおける造血細胞集団を示す表である。ヘテロ接合性 およびホモ接合性マウスの指定された組織からの細胞および PBL (末梢血白血球)を フローサイトメトリー(BD biosciences)により IRF-5アレルに関して分析し、各細胞集団 の相対的百分率を算出した。 IRF-5— /_マウスは胸腺、脾臓、リンパ節および骨髄に関 する正常な細胞性を示し、これはへテロ接合性マウスのものに類似して ヽた。 FIG. 6 is a photograph showing the tissue distribution of IRF-5 mRNA expression. Mouse multifilament and woven Northern blot (Clontech) containing 2 μg poly (A) + RNA was hybridized with mouse IRF-5 cDNA fragment. b, TLR9 ligand in normal rodent cells (cDC), CpG-B oligonucleotide (ODN) stimulation (left), or LPS and poly (I: C) in splenic macrophages (right), IRF -5 Graph showing up-regulation of mRNA expression. RT-PCR for IRF-5 mRNA expression after cells were stimulated with CpG-B 1.0 (1.0 / ζ Μ), LPS (lOngZml) and poly (I: C) (100 g Zml) for 2 hours Minutes served for prayer. c, Table showing hematopoietic cell population in IRF-5 chi mice. Cells from designated tissues of heterozygous and homozygous mice and PBL (peripheral blood leukocytes) were analyzed for IRF-5 alleles by flow cytometry (BD biosciences) to calculate the relative percentage of each cell population . IRF-5 — / _ mice showed normal cellularity with respect to thymus, spleen, lymph nodes and bone marrow, which resembled that of heterozygous mice.
[図 7]脾細胞における poly (I: C)〖こよる IFN- a mRNAおよび 1FN- β mRNAの誘導を示 す図である。ヘテロ接合性およびホモ接合性マウス由来の脾細胞を poly (I : C) (200 μ g/ml)により 6.5時間刺激し、全 RNAを、 pan- IFN- a ( a 4および非 α 4)または IFN - ι8のいずれかを用いる半定量的 RT-PCR分析に供した。 RT反応によって得られた c DNAのいずれにもゲノム DNAの混入は認められなかった。この結果に関して、 VSV ( 水疱性口内炎ウィルス)または HSV (単純へルぺスウィルス)による感染に応答した、 I RF-5— 'マウス由来の pDCおよび cDCにおける IFN- αの誘導は正常通りに観察された (Η. Υ.、未発表データ)。 FIG. 7 is a diagram showing induction of IFN-a mRNA and 1FN-β mRNA by poly (I: C) in splenocytes. Spleen cells from heterozygous and homozygous mice were stimulated with poly (I: C) (200 μg / ml) for 6.5 hours and total RNA was pan-IFN-a (a4 and non-α4) or It was subjected to semi-quantitative RT-PCR analysis using any of IFN-ι8. No genomic DNA was found in any cDNA obtained by RT reaction. In relation to this result, induction of IFN-α in pDC and cDC from IRF-5— 'mice in response to infection with VSV (vesicular stomatitis virus) or HSV (herpes simplex virus) was observed normally. (Η. Υ., Unpublished data).
[図 8]a、脾臓 B細胞における CpG ODN刺激による IL-6の誘導を示すグラフである。野 生型マウス (WT;黒塗りバー)または IRF-5— Λマウス(白抜きバー)の脾臓から Β細胞を 調製し、刺激しないままにおく力 または CpG-A ODN (1.0 iu M)もしくはCpG-B ODN (l .O ^ M)によって刺激した。 24時間後に、図 2aに記載した通りに ELISAによる IL-6産 生の決定のために上清を収集した。 b、脾臓 B細胞における CpG ODNによる IL-6 mR NAの誘導を示すグラフである。 mRNAの誘導は図 2eに記載した通りに定量的 RT-PC Rによってモニターした。 FIG. 8 is a graph showing IL-6 induction by CpG ODN stimulation in splenic B cells. Prepare sputum cells from the spleen of wild-type mice (WT; black bars) or IRF-5— Λ mice (open bars) or leave them unstimulated or CpG-A ODN (1.0 i u M) or Stimulated with CpG-B ODN (l.O ^ M). After 24 hours, IL-6 production by ELISA as described in Figure 2a. Supernatants were collected for raw determination. b, A graph showing the induction of IL-6 mRNA by CpG ODN in splenic B cells. Induction of mRNA was monitored by quantitative RT-PC R as described in Figure 2e.
[図 9ab]a、脾臓マクロファージにおける TLR mRNAの発現を表すグラフである。 WTマ ウスおよび IRF-5— マウスの脾臓マクロファージから得た全 RNAをリアルタイム RT-PC Rに供した。検討したすべての TLR5の mRNA発現レベルに関して、 WTマクロファージ と IRF-5— マクロファージとの間に有意差はみられない。これは NF- κ BZMAPK活性 化および IFN- α誘導(どちらも MyD88、 TRAF6および IRAKを必要とする)が IRF-5欠 損細胞で正常に起こるという事実に一致する。 b、(左図面) WTマウスまたは IRF-5チ マウス由来の脾臓 B細胞を指定量の CpG-B (RPMI、 10%FCS中)で処理した結果を 示すグラフである。 24時間後に細胞に対して [3H]チミジンによるパルス刺激を 12時間 行い、放射能取り込みを j8 -シンチレーシヨンカウンターで測定した。(右図面) WTマ ウスまたは 1RF- 5— Λマウス由来の脾臓 B細胞を 1.0 μ Μの CpG- B (RPMI、 10%FCS中) で処理した結果を示すグラフである。指定された期間の後に細胞に対して [3H]チミジ ンによるパルス刺激を 12時間行い、放射能取り込みを j8シンチレーシヨンカウンター で測定した。 FIG. 9ab is a graph showing TLR mRNA expression in splenic macrophages. Total RNA obtained from spleen macrophages of WT mice and IRF-5— mice was subjected to real-time RT-PCR. There is no significant difference between WT macrophages and IRF-5-macrophages for all TLR5 mRNA expression levels examined. This is consistent with the fact that NF-κBZMAPK activation and IFN-α induction (both require MyD88, TRAF6 and IRAK) occur normally in IRF-5-deficient cells. b, (Left) A graph showing the results of treating splenic B cells derived from WT mice or IRF-5 Chi mice with a specified amount of CpG-B (RPMI in 10% FCS). After 24 hours, the cells were pulsed with [ 3 H] thymidine for 12 hours, and the radioactivity uptake was measured with a j8-scintillation counter. (Right drawing) This is a graph showing the results of treating spleen B cells derived from WT mice or 1RF-5- Λ mice with 1.0 μΜ CpG-B (RPMI in 10% FCS). After a specified period, cells were pulsed with [ 3 H] thymidine for 12 hours, and radioactivity uptake was measured with a j8 scintillation counter.
[図 9cd]図 9abに続く図である。 c、(左図面) WTおよび IRF- 5チ脾臓 B細胞を 1.0 /z M C pG-Aもしくは CpG-Bにより 12時間処理する力、または未処理のまま (培地)とした。細 胞を収集してフローサイトメトリーにより分析した。ヒストグラムは MHCクラス IIおよび CD 86の発現レベルを示している。(右図面) WTマウスおよび IRF-5— 'マウス由来の脾細 胞を 1.0 M CpG- Bとともに 12時間培養する力、または未処理のままとした (培地)。 細胞を収集してフローサイトメトリーにより分析したヒストグラムは CD11C+B220-にゲー ト設定したリンパ球(cDC)における CD40の発現レベルを示している。 d、 TLR刺激ま たは X線照射の後のマクロファージの細胞生存度。 WTマウスおよび IRF-5— 'マウス由 来の脾臓マクロファージを CpG- B (1.0 μ Μ)、 LPS (lOngZml)または X線照射(5.0Gy )により刺激した。 24時間後にヨウ化プロビジゥム (PI)染色によって生存度を評価した  FIG. 9cd is a diagram following FIG. 9ab. c, (Left) WT and IRF-5 chi spleen B cells were treated with 1.0 / z M C pG-A or CpG-B for 12 hours, or left untreated (medium). Cells were collected and analyzed by flow cytometry. Histograms show MHC class II and CD86 expression levels. (Right drawing) The ability to incubate WT and IRF-5- 'mouse-derived spleen cells with 1.0 M CpG-B for 12 hours, or left untreated (medium). Histograms of cells collected and analyzed by flow cytometry show CD40 expression levels in lymphocytes (cDC) gated to CD11C + B220-. d, Cell viability of macrophages after TLR stimulation or X-ray irradiation. Spleen macrophages derived from WT and IRF-5— 'mice were stimulated by CpG-B (1.0 μ μ), LPS (lOngZml) or X-ray irradiation (5.0 Gy). Viability was assessed 24 hours later by Probidium iodide (PI) staining
[図 10]マウスの IL- 6、 IL- 12p40、 TNF- aおよび I κ Β ζの各遺伝子における ISREの候 補を示す図である。これらの遺伝子の NCBIのマウスゲノムデータベース(それぞれァ クセッション番号 N1039300、 S82420, Y00467および AB050901S1)を TRANSFACを用 いて解析した。この図には、 TFSEARCH (ver.l.3)によって算出したスコアが 70.0ポィ ントを上回った ISRE候補を示している。この基準の下では、 Ι κ Β ζのプロモーター領 域内に 4つの ISRE候補が見いだされる。 [Fig. 10] ISRE signs in mouse IL-6, IL-12p40, TNF-a and IκΒζ genes It is a figure which shows an complement. NCBI mouse genome databases of these genes (accession numbers N1039300, S82420, Y00467 and AB050901S1 respectively) were analyzed using TRANSFAC. This figure shows ISRE candidates whose score calculated by TFSEARCH (ver.l.3) exceeded 70.0 points. Under this criterion, four ISRE candidates are found in the promoter region of Ικκζ.
[図 11]LPSまたは CpG- B ODN刺激による IRF-5の核移行についての図である。 a、 YF P-IRF-5を発現する Raw 264.7細胞を LPSにより刺激する力 または未処理のままとし た (None)。 YFP画像を 1分毎に収集し、記録開始から 5分後に LPSを添加した。核の 領域の平均強度を時間に対してプロットした。 b、 YFP-IRF-5を発現する Raw 264.7細 胞の画像をタイムラブス顕微鏡で収集し、未処理のままとするか (-)、または CpG-B ODNにより 2時間刺激した (+)。  [Fig. 11] Diagram of nuclear translocation of IRF-5 by LPS or CpG-B ODN stimulation. a, Raw 264.7 cells expressing YF P-IRF-5 were left to be stimulated by LPS or left untreated (None). YFP images were collected every minute and LPS was added 5 minutes after the start of recording. The average intensity of the nuclear region was plotted against time. b, Images of Raw 264.7 cells expressing YFP-IRF-5 were collected with a Timelabs microscope and left untreated (-) or stimulated with CpG-B ODN for 2 hours (+).
[図 12]IRF-4と MyD88との相互作用を示す図である。(a) YFP-IRF-4または YFP-IRF- 8を CFP_MyD88とともに一過性に発現する HEK293T細胞の共焦点画像を示す写真 である。矢印は IRF-4と MyD88との共存を示す。(bおよび c) CFP-MyD88と YFP-IRFと の間の分子間 FRETの分析を HEK293T細胞を用いて行った。 FRETcを算出し、疑似 カラー画像 (b)または FRETcZCFP値(c)を用いて表示した。(d) FLAG- MyD88と HA -IRFとの組み合わせを一過性に発現する HEK293T細胞力も調製した細胞溶解物を 、抗 FLAG抗体を用いて免疫沈降(IP)させ、表記の通りに抗 HAまたは抗 FLAG抗体 を用いるィムノブロット (IB)分析に供した。 WCL、全細胞抽出物。  FIG. 12 shows the interaction between IRF-4 and MyD88. (A) A photograph showing a confocal image of HEK293T cells that transiently express YFP-IRF-4 or YFP-IRF-8 together with CFP_MyD88. The arrow indicates the coexistence of IRF-4 and MyD88. (B and c) Analysis of intermolecular FRET between CFP-MyD88 and YFP-IRF was performed using HEK293T cells. FRETc was calculated and displayed using a pseudo color image (b) or FRETcZCFP value (c). (D) Cell lysates that have also been prepared with HEK293T cells that transiently express the combination of FLAG-MyD88 and HA-IRF were immunoprecipitated (IP) using anti-FLAG antibodies and anti-HA or It was subjected to immunoblot (IB) analysis using anti-FLAG antibody. WCL, whole cell extract.
[図 13]MyD88相互作用に関する IRF-4と IRF-5との競合を示す図である。 (a) MyD88 短縮変異体の概略図である。 +、 IRFとの正の相互作用; -、相互作用なし (免疫沈降 アツセィによる評価)。(b) HEK293T細胞にお!、て各 FLAG- MyD88変異体を HA- IRF -4 (左)または HA-IRF-5 (右)と共発現させ、免疫共沈分析に供した。 (c) HEK293T 細胞に対して、一定量の HA-IRF-5発現ベクター(1.0 g)または HA-IRF-7発現べク ター(2.0 μ g)、 FLAG- MyD88発現ベクター(1 g)、さらには量を漸増させながら HA- IRF-4発現ベクターまたは HA-IRF-3発現ベクター(0、 0.1、 0.2、 0.5または 1.0 g)をト ランスフ タトした。細胞溶解物を抗 FLAG抗体を用いて免疫沈降 (IP)させ、表記の 通りに抗 HAまたは抗 FLAG抗体を用いるィムノブロット(IB)分析に供した。 [図 14]IRF-4による MyD88依存的 IRF-5活性化の負の調節を示す図である。 (a) IRF- 4短縮変異体の概略図である。 DBD、 DNA結合ドメイン; AD、活性ィ匕ドメイン; RD、調 節ドメイン。 (b) YFP- IRF- 4、 YFP-IRF-4 Δ DBDまたは YFP- IRF- 4 Δ RDを一過性に発 現する HEK293T細胞の共焦点画像である。(c) HEK293T細胞に対して、 FLAG標識 MyD88と HA標識した完全長 IRF-4または IRF-4の欠失変異体との指定された組み合 わせを一過性にトランスフエタトし、免疫沈降アツセィに供した。(d) MyD88-TRAF6依 存的 IRF-5活性ィ匕に対する IRF-4発現の影響を示す図である。 HEK293T細胞に対し て、 p55ClB- Lucと、 MyD88 (25ng)、 TRAF6 (25ng)、 IRF-5 (25ng)および完全長 IRF- 4または IRF-4の変異体 (0、 1、 5または 15ng)の指定された組み合わせに関する発現 ベクターとを一過性に同時トランスフエタトした。トランスフエクシヨン 24時間後にルシフ エラーゼ活性を測定した。 (e) MyD88依存的 IRF-7活性ィ匕に対する IRF-4発現の影響 を示す図である。 HEK293T細胞に対して、 pl25- Lucと、 MyD88 (25ng) , IRF-7 (25ng )および完全長 IRF-4 (0、 5または 15ng)の指定された組み合わせに関する発現べクタ 一とを一過性に同時トランスフエタトした。トランスフエクシヨン 24時間後にルシフェラー ゼ活性を測定した。 (f) ODN1668刺激により誘導される IRF-5の核移行に対する IRF- 4の影響を示す図である。 YFP-IRF-5単独または YFP-IRF-5と RFP-IRF-4との両方を 発現する RAW264.7細胞をタイムラブス顕微鏡に載せ、画像を 1分間隔で収集した。 細胞を 1 μ M ODN1668で刺激するか未処理のままとし、 lOngZmlレプトマイシン Βの 存在下で最長 60分間インキュベートした。核領域の標準化 YFP強度を時間に対して プロットした。 FIG. 13 shows competition between IRF-4 and IRF-5 for MyD88 interaction. (a) Schematic representation of MyD88 truncation mutant. +, Positive interaction with IRF;-, no interaction (assessment by immunoprecipitation assay). (B) In HEK293T cells, each FLAG-MyD88 mutant was co-expressed with HA-IRF-4 (left) or HA-IRF-5 (right) and subjected to co-immunoprecipitation analysis. (c) For HEK293T cells, a certain amount of HA-IRF-5 expression vector (1.0 g) or HA-IRF-7 expression vector (2.0 μg), FLAG-MyD88 expression vector (1 g), and The HA-IRF-4 expression vector or HA-IRF-3 expression vector (0, 0.1, 0.2, 0.5, or 1.0 g) was transferred in increasing amounts. Cell lysates were immunoprecipitated (IP) using anti-FLAG antibody and subjected to immunoblot (IB) analysis using anti-HA or anti-FLAG antibody as indicated. FIG. 14 shows negative regulation of MyD88-dependent IRF-5 activation by IRF-4. (a) Schematic of IRF-4 truncation mutant. DBD, DNA binding domain; AD, active domain; RD, regulatory domain. (B) Confocal image of HEK293T cells that transiently express YFP-IRF-4, YFP-IRF-4ΔDBD or YFP-IRF-4ΔRD. (C) Transiently transfer the specified combination of FLAG-labeled MyD88 and HA-labeled full-length IRF-4 or a deletion mutant of IRF-4 to HEK293T cells, and perform immunoprecipitation It was used for Atssey. (D) shows the effect of IRF-4 expression on MyD88-TRAF6-dependent IRF-5 activity. For HEK293T cells, p55ClB-Luc and MyD88 (25ng), TRAF6 (25ng), IRF-5 (25ng) and full-length IRF-4 or IRF-4 variants (0, 1, 5 or 15ng) The expression vectors for the designated combinations were transiently co-transferred. The luciferase activity was measured 24 hours later. (e) shows the influence of IRF-4 expression on MyD88-dependent IRF-7 activity. For HEK293T cells, transiently pl25-Luc and an expression vector for the specified combination of MyD88 (25ng), IRF-7 (25ng) and full-length IRF-4 (0, 5 or 15ng) Simultaneously transferred. Luciferase activity was measured 24 hours after the transformation. (f) It is a figure which shows the influence of IRF-4 with respect to the nuclear translocation of IRF-5 induced by ODN1668 stimulation. RAW264.7 cells expressing YFP-IRF-5 alone or both YFP-IRF-5 and RFP-IRF-4 were placed on a Timelabs microscope and images were collected at 1 minute intervals. Cells were stimulated with 1 μM ODN1668 or left untreated and incubated for up to 60 minutes in the presence of lOngZml leptomycin. Nuclear region normalization YFP intensity was plotted against time.
[図 15]Irf_4— /_腹腔マクロファージにおける TLR刺激に対する過敏性についての図で ある。(a)野生型マウス由来の常在性腹腔マクロファージを ODN1668、 LPSまたはポリ (U)により指定された期間にわたり刺激した。全 RNAを調製し、定量的リアルタイム RT - PCRにより IRF- 4 mRNA発現に関して分析した。(b)野生型マウスまたは Irf4— /_マウス に由来する常在性腹腔マクロファージを、 IFN- γの存在下で、指定された TLRリガン ドにより 24時間刺激した。培養上清中の IL- 12p40、 IL- 6および TNF- αの濃度を ELIS Αにより測定した。示した結果は 3回ずつの測定の平均(士 SD)である。(c)野生型マ ウスおよび Irf4— /_マウスから調製した脾臓 pDCを ODN- D19またはポリ(U)により 24時 間刺激した。 IFN- α濃度を ELISAにより測定した。(d)炎症誘発性サイト力イン、ケモ 力インおよび NF- κ Bにより誘導される遺伝子の mRNAの誘導を示すグラフである。野 生型マウス、 Irf4チまたは IriSチマウス由来の常在性腹腔マクロファージを ODN1668に より指定された期間にわたり刺激した。全 RNAを調製し、指定された遺伝子の定量的 リアルタイム RT-PCR分析に供した。 FIG. 15 is a graph showing hypersensitivity to TLR stimulation in Irf_4 — / _ peritoneal macrophages. (A) Residual peritoneal macrophages from wild type mice were stimulated for a specified period with ODN1668, LPS or poly (U). Total RNA was prepared and analyzed for IRF-4 mRNA expression by quantitative real-time RT-PCR. (B) Resident peritoneal macrophages derived from wild-type mice or Irf4 − / _ mice were stimulated for 24 hours with the designated TLR ligand in the presence of IFN-γ. The concentrations of IL-12p40, IL-6 and TNF-α in the culture supernatant were measured by ELIS. The results shown are the average of three measurements (Shi SD). (C) Spleen pDCs prepared from wild-type mice and Irf4 − / _ mice were treated with ODN-D19 or poly (U) at 24 hours Stimulated for a while. IFN-α concentration was measured by ELISA. (D) It is a graph which shows the induction | guidance | derivation of mRNA of the gene induced | guided | derived by proinflammatory site force in, chemo force in, and NF-κB. Resident peritoneal macrophages from wild-type mice, Irf4 or IriS mice were stimulated by ODN1668 for the specified period. Total RNA was prepared and subjected to quantitative real-time RT-PCR analysis of designated genes.
[図 16]IRF-4および IRF-5系の細胞種特異的な寄与を示す図である。 (a)野生型マウ ス、 IriS— /_または Irf4— /_マウス由来の BMMを、 IFN- γの存在下で指定された刺激により 刺激した。培養上清中の IL- 12p40、 IL- 6および TNF- aの濃度を ELISAにより測定し た。(b) RAW264.7細胞に対して、対照ベクター、完全長 IRF-4または IRF-4 Δ DBD発 現ベクターを電気穿孔法により一過性にトランスフエタトした。 12時間後に細胞を ODFIG. 16 shows cell type-specific contributions of IRF-4 and IRF-5 systems. (a) BMM from wild-type mice, IriS — / _ or Irf4 — / _ mice was stimulated with the specified stimulus in the presence of IFN-γ. The concentrations of IL-12p40, IL-6 and TNF-a in the culture supernatant were measured by ELISA. (B) Control vectors, full-length IRF-4 or IRF-4ΔDBD expression vectors were transiently transfected into RAW264.7 cells by electroporation. OD cells after 12 hours
N1668により指定された期間にわたり刺激した。全 RNAを調製し、定量的リアルタイム RT-PCR分析に供した。 Stimulated for the period specified by N1668. Total RNA was prepared and subjected to quantitative real-time RT-PCR analysis.
[図 17]インビボでの IRF-4の役割を示す図である。齢数を一致させた野生型マウス (n = 7)および Irf4— Λマウス(n=4)に対して、 ODN1668 (10nmol)および D- GalN (20mg) を腹腔内注射した。(a) IL-6、 IL-12p40および TNF- αの血清中濃度を ELISAにより 測定した。示した結果は血清試料の平均(士 SD)である。(b)これらのマウスの生存に 関して 15時間観察した。 FIG. 17 shows the role of IRF-4 in vivo. ODN1668 (10 nmol) and D-GalN (20 mg) were injected intraperitoneally into age-matched wild-type mice (n = 7) and Irf4- Λ mice (n = 4). (A) Serum concentrations of IL-6, IL-12p40 and TNF-α were measured by ELISA. Results shown are the average of serum samples (SD). (B) The survival of these mice was observed for 15 hours.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明は、 IRF-5を利用して、炎症性サイト力イン抑制剤をスクリーニングする新規 方法に関する。上述のとおり、 TLRシグナル経路を介した炎症性サイト力イン誘導に おいて IRF-5が本質的な役割を果たすことが本発明者によって初めて明らかにされ た。この新規知見力も本発明者らは、 IRF-5を用いた炎症性サイト力イン抑制剤の新 規スクリーニング方法を見出した。 [0010] The present invention relates to a novel method for screening for an inflammatory site force-in inhibitor using IRF-5. As described above, for the first time, the present inventors have revealed that IRF-5 plays an essential role in inducing inflammatory site force-in via the TLR signal pathway. With this new knowledge, the present inventors have also found a new screening method for an inflammatory site force-in inhibitor using IRF-5.
[0011] 本発明は、上記スクリーニング方法第一の態様として、「IRF-5発現細胞に被検物 質を接触させたときの該細胞における IRF-5活性を指標とする、炎症性サイト力イン抑 制剤のスクリーニング方法」を提供する。本発明において「IRF-5発現細胞」とは、 IRF -5を発現する細胞であればよぐ IRF-5は内因性 IRF-5であっても、人為的に外来導 入された IRF-5であってもよい。 IRF-5は、 IRFファミリー構成メンバーの転写因子であ り、上述のとおり、 MyD88および TRAF6と相互作用をし、炎症性サイト力イン誘導に関 わる。 [0011] The present invention provides, as a first aspect of the screening method described above, "Inflammatory site force-in, using IRF-5 activity in an IRF-5-expressing cell as an index when the test substance is contacted with the test substance. A screening method for inhibitors is provided. In the present invention, “IRF-5-expressing cells” may be any cells that express IRF-5. Even if IRF-5 is endogenous IRF-5, artificially introduced IRF-5 It may be. IRF-5 is a transcription factor of IRF family members As mentioned above, it interacts with MyD88 and TRAF6 and is involved in the induction of inflammatory site force-in.
[0012] 本発明の方法で使用する内因性 IRF-5を発現する細胞としては、内因性 IRF-5を発 現しうる哺乳動物細胞であれば特に種類を問わないが、好ましくは、内因性 IRF-5を 多く発現しうる哺乳動物細胞である。内因性 IRF-5を多く発現しうる哺乳動物細胞の 具体例として、血液細胞を挙げることができ、より具体的な例としては、 B細胞、 T細胞 、マクロファージ、赤血球、榭状細胞、好中球、好酸球、好塩基球などを挙げることが できる。内因性 IRF-5を発現しうる細胞は、当業者に周知方法の方法によって哺乳動 物の臓器または組織力も調製することができる。 IRF-5は血液細胞に多く発現するこ とが知られており、血液細胞を多く含む臓器または組織力も効率的に IRF-5を調製で きると考えられる。より具体的に説明すると、血液細胞を多く含む哺乳類臓器または 組織、例えば、脾臓、肝臓、胸腺、リンパ腺などの血液系組織から、目的細胞に特徴 的な表面抗原に特異的な抗体を用い、セルソーター(FACS)、マイクロ磁気ビーズに よる Magnetic Cell Sorting (MACS)、ァフィ-ティカラム等により調製することができる 。各種細胞に特異的な表面抗原の例は、既に多数知られている(例えば、秀潤社細 胞工学別冊ノヽンドブックシリーズ「新版接着分子ハンドブック」を参照)。このような表 面抗原に対する抗体は周知方法によって調製することもできるが、またそのような表 面抗原に対する特異的抗体が多数市販されており、市販の抗体を利用することもで きる。具体的には、例えば後述の実施例のように、マウス脾臓から抗 CD5抗体および 抗 CD19抗体をコーティングしたビーズを用いて、マウス T細胞および B細胞を調製す ることができる。また榭状細胞(Dendric Cell)であれば、 B220と CDllcの有無を指標 として、 cDCや形質細胞様榭状細胞(Plasmacytoid dendritic cell:pDC)を選別するこ とができる。またマクロファージであれば、上述の臓器または組織力も抗 CD1 lb抗体 を用いて調製することが可能である。  [0012] The cell expressing endogenous IRF-5 used in the method of the present invention is not particularly limited as long as it is a mammalian cell capable of expressing endogenous IRF-5, but is preferably endogenous IRF. It is a mammalian cell that can express a large amount of -5. Specific examples of mammalian cells that can express a large amount of endogenous IRF-5 include blood cells, and more specific examples include B cells, T cells, macrophages, erythrocytes, rod cells, neutrophils Spheres, eosinophils, basophils and the like. Cells capable of expressing endogenous IRF-5 can also be prepared for mammalian organs or tissue forces by methods well known to those skilled in the art. It is known that IRF-5 is highly expressed in blood cells, and it is considered that an organ or tissue force that contains a large amount of blood cells can efficiently prepare IRF-5. More specifically, an antibody specific for a surface antigen characteristic of a target cell is used from a mammalian organ or tissue rich in blood cells, for example, a blood system tissue such as spleen, liver, thymus, lymph gland, It can be prepared using a cell sorter (FACS), magnetic cell sorting (MACS) using micro magnetic beads, and a affinity column. Many examples of surface antigens specific to various cells are already known (see, for example, Shujunsha Cell Engineering Separate Volume Book Book “New Edition Handbook of Adhesion Molecules”). An antibody against such a surface antigen can be prepared by a well-known method, and many specific antibodies against such a surface antigen are commercially available, and commercially available antibodies can also be used. Specifically, mouse T cells and B cells can be prepared using beads coated with anti-CD5 antibody and anti-CD19 antibody from the mouse spleen, for example, as in Examples described later. In the case of dendritic cells, cDC and plasmacytoid dendritic cells (pDC) can be selected using B220 and CDllc as indicators. In the case of macrophages, the above organ or tissue force can also be prepared using an anti-CD1 lb antibody.
[0013] 外来導入された IRF-5を発現する細胞を用いる場合は、単離された IRF-5遺伝子を 適当な細胞に導入することにより、所望の細胞を調製することができる。 IRF-5遺伝子 の例として、ヒト IRF-5の cDNA配列を配列番号: 1に、ヒト IRF-5のアミノ酸配列を配列 番号: 2に、マウス IRF-5の cDNA配列を配列番号: 3に、マウス IRF-5のアミノ酸配列を 配列番号: 4に示す。上記 IRF-5遺伝子は、公知方法によって調製することができる。 例えば、配列番号: 1または 3記載の配列の全部または一部をプローブとし、該プロー ブを用いてヒトまたはマウスの組織力も調製した cDNAライブラリ一力も調製することが できる。または、配列番号: 1または 3記載の配列力もプライマーを設計し、ヒトまたは マウスカゝら調製した Total RNAを铸型とし、該プライマーを用いて RT-PCR法により調 製可能である。あるいは、配列番号:ほたは 3記載の配列情報に基づき、核酸合成装 置を使用して合成することも可能である。 [0013] When cells expressing IRF-5 introduced exogenously are used, desired cells can be prepared by introducing the isolated IRF-5 gene into appropriate cells. As an example of the IRF-5 gene, the human IRF-5 cDNA sequence is SEQ ID NO: 1, the amino acid sequence of human IRF-5 is SEQ ID NO: 2, the mouse IRF-5 cDNA sequence is SEQ ID NO: 3, The amino acid sequence of mouse IRF-5 SEQ ID NO: 4 The IRF-5 gene can be prepared by a known method. For example, it is possible to prepare a single cDNA library in which the whole or part of the sequence shown in SEQ ID NO: 1 or 3 is used as a probe and the human or mouse tissue force is prepared using the probe. Alternatively, a primer having the sequence ability described in SEQ ID NO: 1 or 3 is also designed, and the total RNA prepared by human or mouse can be used as a kit, and can be prepared by RT-PCR using the primer. Alternatively, it can be synthesized using a nucleic acid synthesizer based on the sequence information described in SEQ ID NO: most.
上記外来導入に用いる遺伝子(以下外因性 IRF-5)は、上記に示したヒ HRF-5 (配 列番号: 1)またはマウス IRF-5 (配列番号: 3)に限られず、ォーソログ、ホモログ、天然 の IRF-5変異体であってもよい。例えば、ヒトおよびマウス以外の動物に由来する IRF -5でもよぐ哺乳動物であれば特に種類は問わない。マウスおよびヒト以外にも、ラッ ト、モルモット、ハムスター等のげつ歯類、ゥサギ、ィヌ、ネコ、ブタ、ゥシ、ゥマ、ャギ、 ヒッジ、ロバ、トリ、チンパンジー、サル、等に由来する IRF-5を本発明の方法に使用 することができる。また、 IRF-5遺伝子配列の変異体もまた、該変異体が IRF-5活性を 有する限り、本発明において使用可能な外因性 IRF-5遺伝子である。このような IRF- 5遺伝子は、例えば、配列番号: 1または 3記載の配列の全部または一部をプローブと し、該プローブを用いてヒトまたはマウスの組織力も調製した cDNAライブラリ一力もス トリンジェントな条件でノヽイブリダィゼーシヨンするポリヌクレオチドを単離することによ り調製できる。ストリンジェントなハイブリダィゼーシヨン条件は、当業者であれば適宜 選択することができる。一例を示すならば、例えば、 25%ホルムアミド、より厳しい条件 では 50%ホルムアミド、 4 X SSC、 50mM Hepes pH7.0、 10 Xデンハルト溶液、 20 g/ ml変性サケ精子 DNAを含むハイブリダィゼーシヨン溶液中、 42°Cでプレハイブリダィ ゼーシヨンを行った後、標識したプローブと 42°Cでハイブリダィゼーシヨンを行う。その 後の洗浄は、例えば「lxSSC, 0.1% SDS, 37°C」の条件下で行うことができる力 より 厳しい条件として「0.5xSSC, 0.1% SDS, 42°C」、さらに厳しい条件として「0.2xSSC, 0.1 % SDS, 65°C」で洗浄を実施してもよい。なお、上記ハイブリダィゼーシヨン条件は例 示であり、上記条件と異なる条件であってもストリンジヱントなハイブリダィゼーシヨン の実施は可能である。当業者であれば、プローブ濃度、プローブの長さ、反応時間 等の他の条件を考慮しながら、適当なストリンジエンシーが実現可能である。 The gene used for exogenous introduction (hereinafter referred to as exogenous IRF-5) is not limited to HI-HRF-5 (SEQ ID NO: 1) or mouse IRF-5 (SEQ ID NO: 3) shown above, but includes orthologs, homologs, It may be a natural IRF-5 variant. For example, the type of mammal is not particularly limited as long as it is a mammal that can be IRF-5 derived from animals other than humans and mice. In addition to mice and humans, rats, guinea pigs, hamsters and other rodents, rabbits, dogs, cats, pigs, rushes, horses, goats, hidges, donkeys, birds, chimpanzees, monkeys, etc. The derived IRF-5 can be used in the method of the present invention. A variant of the IRF-5 gene sequence is also an exogenous IRF-5 gene that can be used in the present invention as long as the variant has IRF-5 activity. Such an IRF-5 gene is, for example, a stringent library using a whole or part of the sequence shown in SEQ ID NO: 1 or 3 as a probe, and a human or mouse tissue force prepared using the probe. It can be prepared by isolating a polynucleotide that undergoes hybridization under various conditions. Stringent hybridization conditions can be selected as appropriate by those skilled in the art. For example, a hybridization containing 25% formamide, 50% formamide under more severe conditions, 4 X SSC, 50 mM Hepes pH 7.0, 10 X Denhardt's solution, 20 g / ml denatured salmon sperm DNA. Prehybridize in solution at 42 ° C, then hybridize with labeled probe at 42 ° C. Subsequent washing, for example, `` 0.5xSSC, 0.1% SDS, 42 ° C '' is more severe than `` lxSSC, 0.1% SDS, 37 ° C ''. Washing may be performed with “xSSC, 0.1% SDS, 65 ° C.”. It should be noted that the above hybridization conditions are examples, and stringent hybridization can be performed even under conditions different from the above conditions. One skilled in the art will know the probe concentration, probe length, and reaction time. An appropriate stringency can be realized in consideration of other conditions such as the above.
[0015] このようなハイブリダィゼーシヨン技術を利用して単離されるポリヌクレオチドがコー ドするポリペプチドは、通常、アミノ酸配列において配列番号: 2または 4のアミノ酸配 列からなる IRF-5タンパク質と高い相同性を有する。高い相同性とは、少なくとも 40% 以上、好ましくは 60%以上、さらに好ましくは 80%以上、さらに好ましくは 90%以上、 さらに好ましくは少なくとも 95%以上、さらに好ましくは少なくとも 97%以上 (例えば、 9 8から 99%)の配列の相同性を指す。アミノ酸配列の同一性は、例えば、 Karlin and Al tschulによるアルゴリズム BLAST (Proc. Natl. Acad. Sci. USA 87:2264-2268, 1990、 Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993)によって決定することができる。この アルゴリズムに基づいて、 BLASTXと呼ばれるプログラムが開発されている (Altschul e t al. J. Mol. Biol.215:403-410, 1990)。 BLASTXによってアミノ酸配列を解析する場合 には、パラメータ一はたとえば score = 50、 wordlength = 3とする。 BLASTと Gapped B LASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。 これらの解析方法の具体的な手法は公知である (http:〃 www.ncbi.nlm.nih.gov.)。  [0015] The polypeptide encoded by the polynucleotide isolated using such hybridization technology is usually an IRF-5 protein consisting of the amino acid sequence of SEQ ID NO: 2 or 4 in the amino acid sequence. And high homology. High homology means at least 40% or more, preferably 60% or more, more preferably 80% or more, more preferably 90% or more, more preferably at least 95% or more, more preferably at least 97% or more (e.g. 9 8 to 99%) sequence homology. The identity of the amino acid sequence can be determined by, for example, the algorithm BLAST (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990, Proc. Natl. Acad. Sci. USA 90: 5873-5877, 1993 by Karlin and Altschul. ) Can be determined. Based on this algorithm, a program called BLASTX has been developed (Altschule al. J. Mol. Biol. 215: 403-410, 1990). When the amino acid sequence is analyzed by BLASTX, the parameter 1 is, for example, score = 50 and wordlength = 3. When using BLAST and Gapped B LAST programs, use the default parameters of each program. Specific methods for these analysis methods are known (http: 〃 www.ncbi.nlm.nih.gov.).
[0016] さらに、 IRF-5遺伝子に人為的に変異を施したポリヌクレオチドであっても、該ポリヌ クレオチドが IRF-5活性を有する限り、本発明のスクリーニング方法に用いることがで きる。例えば、配列番号: 2または 4に記載のアミノ酸配列中に 1または複数の欠失、置 換、挿入、および/または付加を含むポリペプチドをコードするポリヌクレオチドは、本 発明のスクリーニング方法に好適に使用できる。本発明において付加、欠失、挿入、 または Zおよび置換されるアミノ酸の数は、該ポリヌクレオチドが IRF-5活性を有する 限り、特に制限はない。通常は、全アミノ酸数の 10%以内、好ましくは全アミノ酸数の 3%以内、より好ましくは全アミノ酸数の 1%以内である。このようなポリヌクレオチドは、 当業者であれば周知技術によって調製することができる。例えば、カセット変異法や P CR法による変異導入法等により、 IRF-5遺伝子に対し部位特異的にまたはランダム に変異を施すことにより、人為的変異を含む IRF-5遺伝子を調製することが可能であ る。あるいは、配列番号ほたは 3記載の塩基配列に変異を導入した塩基配列を含む ポリヌクレオチドを、市販の核酸合成装置によって合成することも可能である。  Furthermore, even a polynucleotide in which the IRF-5 gene is artificially mutated can be used in the screening method of the present invention as long as the polynucleotide has IRF-5 activity. For example, a polynucleotide encoding a polypeptide containing one or more deletions, substitutions, insertions, and / or additions in the amino acid sequence set forth in SEQ ID NO: 2 or 4 is suitable for the screening method of the present invention. Can be used. In the present invention, the number of amino acids added, deleted, inserted, or Z and substituted is not particularly limited as long as the polynucleotide has IRF-5 activity. Usually, it is within 10% of the total number of amino acids, preferably within 3% of the total number of amino acids, more preferably within 1% of the total number of amino acids. Such a polynucleotide can be prepared by a person skilled in the art by a well-known technique. For example, IRF-5 gene containing artificial mutation can be prepared by site-specific or random mutation of IRF-5 gene by cassette mutagenesis or mutagenesis by PCR method. It is. Alternatively, a polynucleotide containing a nucleotide sequence in which a mutation is introduced into the nucleotide sequence of SEQ ID NO: 3 or 3 can be synthesized by a commercially available nucleic acid synthesizer.
[0017] 上記のようにして得られた IRF-5ホモログ、ォーソログ、天然変異体、人為的変異体 等のポリヌクレオチドが IRF-5活性を有するかどうかは、例えば、被検ポリヌクレオチド を、 TLR、 MyD88TRAF6、および任意の炎症性サイト力インを発現する哺乳動物細胞 株に導入し、該細胞に TLRリガンドを接触させたときの炎症性サイト力インの発現を検 出することで知ることができる。炎症性サイト力インの発現量が高ければ、被検ポリヌク レオチドの IRF- 5活性は高いと判断可能である。 [0017] IRF-5 homologs, orthologs, natural mutants, artificial mutants obtained as described above Whether a polynucleotide such as a test polynucleotide has IRF-5 activity can be determined by introducing the test polynucleotide into a mammalian cell line expressing TLR, MyD88TRAF6, and any inflammatory site force-in. This can be determined by detecting the expression of inflammatory site force-in when the ligand is contacted. If the expression level of inflammatory site force-in is high, it can be judged that the IRF-5 activity of the test polynucleotide is high.
[0018] 上記外因性 IRF-5遺伝子を導入する細胞は、 IRF-5遺伝子の保持および発現が可 能な細胞または細胞株力 適宜選択することができる。哺乳動物由来の細胞および 細胞株は、一般的に、 IRF-5遺伝子の保持および発現が可能な細胞であり、例えば 、 HEK293Tは外因性 IRF-5遺伝子を導入する細胞として好適な例である。 IRF-5遺伝 子の細胞への導入は、パーティクルガン等により直接導入してもよいが、導入しようと する細胞に合ったベクターを適宜選択して IRF-5遺伝子導入に用いることができる。 哺乳動物由来細胞または細胞株であれば、例えば、アデノウイルス、パピローマウイ ルス、パポバウィルス、レトロウイルス等の各種ウィルスに基づいたベクターを用いる ことができる。 [0018] The cells into which the exogenous IRF-5 gene is introduced can be appropriately selected as a cell or cell line capable of retaining and expressing the IRF-5 gene. Mammalian cells and cell lines are generally cells capable of retaining and expressing an IRF-5 gene. For example, HEK293T is a suitable example for introducing an exogenous IRF-5 gene. The IRF-5 gene may be introduced directly into the cell by means of a particle gun or the like, but a vector suitable for the cell to be introduced can be appropriately selected and used for IRF-5 gene introduction. As long as it is a mammal-derived cell or cell line, vectors based on various viruses such as adenovirus, papillomavirus, papovavirus, and retrovirus can be used.
[0019] また本発明の方法に使用する「IRF_5発現細胞」は、 IRF-5が活性化される機構を 備えていることが必要である。 TLRシグナル伝達における IRF-5の機能は、リガンドと 結合して TLRが活性化されたシグナル力 IRF-5が MyD88および TRAF6と相互作用 することを介して下流に伝達されることによって発揮される。本発明の方法に使用す る「IRF-5発現細胞」として、 TLR、 MyD88および Zまたは TRAF6を発現することが望 ましい。発現する TLR、 MyD88および TRAF6は、内因性 TLR、 MyD88および TRAF6 であってもよぐ人為的に導入された外因性 TLR、 MyD88および TRAF6であってもよ い。人為的に遺伝子を外来導入する場合は、 MyD88、 TRAF6、 TLRのすベてを導入 しなくても、 TRAF6と MyD88の 2つを共発現させる力、または、 TLRのいずれかを導入 し、各種 TLRリガンドで TLRを刺激するかのいずれか〖こよって、 IRF-5活性ィ匕が可能 である。 TLRは、 TLRシグナル伝達において MyD88、 TRAF6、および IRF-5間の相互 作用の上流に位置する TLRのいずれか一つが発現すればよぐ例えば、 TLR3、 TLR 4、 TLR5、 TLR7、 TLR8、 TLR9のいずれか一つ以上を発現すること力 好ましい。各 種 TLR、 MyD88および TRAF6の塩基配列は公知であり、例えば、下記の Accession N O.によって公共データベース(NCBI)から入手することができる。 TLR3 [0019] The "IRF_5-expressing cells" used in the method of the present invention are required to have a mechanism for activating IRF-5. The function of IRF-5 in TLR signaling is exerted by the signaling force IRF-5 activated by binding to the ligand and TLR activation, and being transmitted downstream through interaction with MyD88 and TRAF6. It is desirable to express TLR, MyD88 and Z or TRAF6 as the “IRF-5 expressing cell” used in the method of the present invention. The expressed TLR, MyD88 and TRAF6 may be endogenous TLR, MyD88 and TRAF6 or an artificially introduced exogenous TLR, MyD88 and TRAF6. When artificially introducing a gene into a foreign country, without introducing all of MyD88, TRAF6, and TLR, the ability to co-express both TRAF6 and MyD88, or TLR, can be introduced. IRF-5 activity can be achieved by either stimulating TLR with a TLR ligand. TLRs need only express one of TLRs located upstream of the interaction between MyD88, TRAF6, and IRF-5 in TLR signaling.For example, TLR3, TLR 4, TLR5, TLR7, TLR8, TLR9 The ability to express any one or more is preferable. Nucleotide sequences of various types of TLR, MyD88 and TRAF6 are known. For example, the following Accession N Available from the Public Database (NCBI) by O. TLR3
Homo NM.003265  Homo NM.003265
Mouse NM— 126166  Mouse NM— 126166
TLR4  TLR4
Human variant 1 雇— 138554  Human variant 1 hires—138554
variant2 NM一 138556  variant2 NMichi 138556
variant3 NM一 003266  variant3 NMichi 003266
variant4 NM一 138557  variant4 NMichi 138557
Mouse 顧— 021297  Mouse Advisor— 021297
TLR5 TLR5
Human NM— 003268  Human NM— 003268
mouse AF186107 mouse AF186107
TLR7 TLR7
Human NM— 016562  Human NM— 016562
Mouse NM— 133211  Mouse NM— 133211
TLR8 TLR8
Human variant 1 NM— 016610  Human variant 1 NM— 016610
variant2 NM一 138636  variant2 NMichi 138636
Mouse NM— 133212  Mouse NM— 133212
Tし R9 T and R9
Human variantA NM— 017442  Human variantA NM— 017442
variantB NM一 138688  variantB NMichi 138688
Mouse NM一 031178  Mouse NM one 031178
MyD88 MyD88
Human NM.002468 (アミノ酸配列 NP—002459) Human NM.002468 (Amino acid sequence NP—002459)
Mouse NM— 010851 (アミノ酸配列 NP_034981) TRAF6 Human variant 1 NM— 145803 (アミノ酸配列 NP— 665802.1) Mouse NM— 010851 (amino acid sequence NP_034981) TRAF6 Human variant 1 NM— 145803 (amino acid sequence NP— 665802.1)
variant2 NM— 004620 (アミノ酸配列 NP— 004611.1)  variant2 NM— 004620 (amino acid sequence NP— 004611.1)
Mouse NM.009424 (アミノ酸配列 NP_033450.2)  Mouse NM.009424 (Amino acid sequence NP_033450.2)
[0020] 本発明の方法で指標とする IRF-5活性とは、 TLRシグナル伝達に関し、 IRF-5の関 与を定性的または定量的に示すものをいう。すなわち本発明の方法は、 IRF-5が TLR シグナル伝達に関わった結果得られる事象であれば、 、ずれも指標とすることができ る。このような指標として、 ISRE配列を含むプロモーター領域に連結したレポーター 遺伝子の発現量 (以下、「レポーター活性」ともいう)を挙げることができる。実施例に 後述するとおり、本発明者らにより、 TLRの活性化を受けて IRF-5は MyD88および TR AD6と相互作用し、炎症性サイト力インを誘導することが明らかになり、さらに、 IRF-5 結合部位と考えられる、 ISRE配列が炎症性サイト力イン遺伝子に含まれることが示さ れた。したがって、 ISRE配列を含むプロモーター領域の下流に連結したレポーター 遺伝子を構築し、上記レポーター遺伝子構築物を、 TLRシグナル伝達経路を有する 細胞に導入し、さらに該細胞に TLRリガンドを接触させれば、リガンドにより TLRが活 性化され、 TLR活性化に基づくシグナルが IRF_5、 MyD88および TRAFが構成する複 合体の形成を介して該レポーター遺伝子の発現を誘導すると考えられる。すなわち、 上記レポーター遺伝子構築物にもとづくレポーター活性は、本発明のスクリーニング 方法における指標となり得る。  [0020] The IRF-5 activity used as an index in the method of the present invention refers to an activity that qualitatively or quantitatively indicates the relationship of IRF-5 with respect to TLR signaling. That is, in the method of the present invention, if IRF-5 is an event obtained as a result of TLR signal transduction, deviation can be used as an index. Examples of such an indicator include the expression level of a reporter gene linked to a promoter region containing an ISRE sequence (hereinafter also referred to as “reporter activity”). As will be described later in the Examples, the present inventors have revealed that upon activation of TLR, IRF-5 interacts with MyD88 and TR AD6 to induce inflammatory site force-in. -5 ISRE sequence, considered to be a binding site, was shown to be included in the inflammatory site force in gene. Therefore, a reporter gene linked downstream of the promoter region containing the ISRE sequence is constructed, the reporter gene construct is introduced into a cell having a TLR signal transduction pathway, and the cell is contacted with a TLR ligand. It is considered that TLR is activated and a signal based on TLR activation induces expression of the reporter gene through formation of a complex composed of IRF_5, MyD88 and TRAF. That is, the reporter activity based on the reporter gene construct can be an indicator in the screening method of the present invention.
[0021] ISRE (Interferon Stimulated Response Element)配列は、 IRFファミリーの転写因子 が特異的に認識する DNA塩基配列モチーフであり、コンセンサス配列: -GAAA-を含 む。 ISRE配列は、 IRFファミリーによって転写調節を受ける IFN aや IFN jSの遺伝子に 存在が認められている。本発明の方法においては、 IRF-5が認識しうる塩基配列であ れば ISRE配列として使用可能であり、公知 ISRE配列のみならず、公知 ISREに相同性 の高い配列も本発明の方法において ISRE配列として使用可能と考えられる。このよう な本発明における ISRE配列として、 DNA上の転写因子結合部位を予測するアプリケ ーシヨンである「TFSEARCH」(http:〃 www.cbrc.jp/research/db/TFSEARCHJ.html) を用いて、プロモーター領域を含む炎症性サイト力インの遺伝子全領域上の転写因 子結合領域を検索した場合に、 scoreを 50ポイント以上に設定して得られる配列のう ち、 ISRE配列、 IRF-1結合配列および Zまたは IRF-2結合配列として検出された配列 を挙げることができる。本発明の方法に使用可能な具体的な ISRE配列としては、配列 番号?〜 58に記載した配列を例示することができる。 [0021] The ISRE (Interferon Stimulated Response Element) sequence is a DNA base sequence motif that is specifically recognized by transcription factors of the IRF family, and includes a consensus sequence: -GAAA-. ISRE sequences have been found in IFN a and IFN jS genes that are transcriptionally regulated by the IRF family. In the method of the present invention, any nucleotide sequence that can be recognized by IRF-5 can be used as an ISRE sequence. Not only known ISRE sequences but also sequences highly homologous to known ISREs can be used in the method of the present invention. It can be used as an array. As such an ISRE sequence in the present invention, a promoter using “TFSEARCH” (http: 〃 www.cbrc.jp/research/db/TFSEARCHJ.html), which is an application for predicting a transcription factor binding site on DNA, is used. When searching for a transcription factor binding region on the entire inflammatory site force-in gene region, including the region, a sequence obtained by setting the score to 50 points or more Examples include ISRE sequences, IRF-1 binding sequences, and sequences detected as Z or IRF-2 binding sequences. As specific ISRE sequences that can be used in the method of the present invention, the sequences described in SEQ ID NOs: to 58 can be exemplified.
[0022] レポーター遺伝子は、公知レポーター遺伝子の中から、検出方法等の実施条件に 適合したものを選択して使用できる。例えば、 BFP、 GFP、 CFP、 YFP、 DsRed、 AmCya n、 ZsYellow、 ZsGreen、ルシフェラーゼなどの蛍光タンパク質や、 13 -ダルク口-ダー ゼ(GUS)、アルカリフォスファターゼ等の酵素等の公知レポーター遺伝子を使用可 能である。 [0022] The reporter gene can be selected from known reporter genes that are suitable for the conditions such as the detection method. For example, known reporter genes such as BFP, GFP, CFP, YFP, DsRed, AmCyan, ZsYellow, ZsGreen, luciferase and other fluorescent proteins, and enzymes such as 13-Darc Mouth-Durase (GUS) and alkaline phosphatase can be used. Noh.
[0023] ISRE配列を含むプロモーター領域の下流にレポーター遺伝子を連結する方法は 公知である。例えば、実施例記載の方法にしたがって行うことができる。  [0023] A method for linking a reporter gene downstream of a promoter region containing an ISRE sequence is known. For example, it can be performed according to the method described in the examples.
[0024] 上述の、レポーター遺伝子活性を指標とするスクリーニング方法は、例えば、以下 のような工程を含むことができる:  [0024] The above-described screening method using reporter gene activity as an index can include, for example, the following steps:
(a) ISRE配列を含むプロモーター領域の下流に機能的に連結したレポーター遺伝子 を保持する IRF-5発現細胞に、被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-5 expressing cell carrying a reporter gene operably linked downstream of a promoter region containing an ISRE sequence
(b)該 IRF-5発現細胞に TLRのリガンドまたはウィルスを接触させる工程  (b) contacting the TRF ligand or virus with the IRF-5 expressing cells
(c)該 IRF-5発現細胞のレポーター活性を検出する工程  (c) detecting the reporter activity of the IRF-5 expressing cell
(d)被検物質接触によるレポーター活性が、被検物質非接触のコントロールよりも低 V、値を示す被検物質を選択する工程  (d) A step of selecting a test substance that shows a value that is lower in the reporter activity due to the contact of the test substance than in the non-test substance contact control.
[0025] 上記「ISRE配列を含むプロモーター領域の下流に機能的に連結したレポーター遺 伝子を保持する IRF-5発現細胞に、被検物質を接触させる工程」は、細胞中の TLRシ グナル伝達を構成するメンバーと被検物質とを接触させるための工程である。本発明 のスクリーニング方法において、被検物質の種類は特に問わない。被検物質の種類 として、合成化学物質等の低分子化合物、核酸、タンパク質、ペプチド、植物抽出物 、細胞抽出物、動物組織抽出物、微生物発酵による生産物等、を例示できるがこれ らに限られない。また、被検物質は新規物質に限られず、公知物質であってもよい。 公知物質の中にも、炎症性サイト力イン抑制作用を有することが知られて 、な 、ィ匕合 物が存在すると考えられる。  [0025] The above-mentioned "step of contacting a test substance with an IRF-5-expressing cell holding a reporter gene operably linked downstream of a promoter region containing an ISRE sequence" refers to TLR signal transduction in the cell. Is a step for bringing the member constituting the sample into contact with the test substance. In the screening method of the present invention, the type of test substance is not particularly limited. Examples of test substances include low-molecular compounds such as synthetic chemical substances, nucleic acids, proteins, peptides, plant extracts, cell extracts, animal tissue extracts, and products produced by microbial fermentation, but are not limited thereto. I can't. Further, the test substance is not limited to a new substance, and may be a known substance. Among known substances, it is known to have an inflammatory site force-in inhibitory action, and it is considered that compounds exist.
[0026] 上記「該 IRF- 5発現細胞に TLRのリガンドまたはウィルスを接触させる工程」は、 TLR シグナル伝達をスタートさせるための工程である。本方法にお!、て用いる TLRリガンド は、使用する細胞が発現する TLRに適合するリガンドゃウィルスを使用する。例えば 、発現する TLR力TLR3であれば各種ウィルス由来の二本鎖 RNAや poly(I:C)によって 、同様に、 TLR4であれば LPS、 TLR5であればフラジェリン、 TLR7および TLR8であれ ば合成一本鎖 RNA [ポリ(U) ]やイミダゾキノリン誘導体、インフルエンザウイルス、ヒト 免疫不全ウィルス、ニューカッスル病ウィルス、 TLR9であれば ODN1668等の CpGDN Aや単純へルぺスウィルス、マウスサイトメガロウィルスによって、各種 TLRを活性化す ることができる。なお、上記リガンドおよびウィルスは例示であり、使用可能なリガンド およびウィルスはこれらに限られな 、。 [0026] The above-mentioned "step of contacting the IRF-5-expressing cell with a TLR ligand or virus" comprises TLR This is a process for starting signal transmission. For the TLR ligand used in this method, use a virus that is compatible with the TLR expressed by the cells used. For example, if TLR3 is expressed in TLR3, double-stranded RNA or poly (I: C) derived from various viruses is used. Similarly, TLR4 is LPS, TLR5 is flagellin, TLR7 and TLR8 are synthetic. Various RNAs such as single-stranded RNA [poly (U)], imidazoquinoline derivatives, influenza virus, human immunodeficiency virus, Newcastle disease virus, and TLR9 by CpGDN A such as ODN1668, simple herpes virus, and mouse cytomegalovirus TLR can be activated. The above ligands and viruses are examples, and usable ligands and viruses are not limited to these.
[0027] 上記「該 IRF- 5発現細胞のレポーター活性を検出する工程」は、被検物質が本発明 の IRF-5活性に与える影響を具体ィ匕する工程である。レポーター活性の測定は、レポ 一ター遺伝子の種類にしたカ^ヽ、蛍光強度や酵素活性の測定として実施することが できる。 [0027] The above-mentioned "step of detecting the reporter activity of the IRF-5-expressing cell" is a step of specifying the influence of the test substance on the IRF-5 activity of the present invention. Reporter activity can be measured as a measure of the fluorescence intensity and enzyme activity of the reporter gene type.
[0028] 上記「被検物質接触によるレポーター活性が、被検物質非接触のコントロールより も低 ヽ値を示す被検物質を選択する工程」では、上記のようして得られたレポーター 活性を指標に炎症性サイト力イン抑制剤となりうる被検物質を選択する工程である。 被検物質接触時のレポーター活性を被検物質非接触時に同様にして得られたコント ロールのレポーター活性と比較し、非接触時よりもレポーター活性が低ければ、その 物質は TRLシグナル経路における IRE-5機能を抑制し、炎症性サイト力インの発現を 抑制する物質であると考えられる。  [0028] In the above-mentioned "step of selecting a test substance in which the reporter activity by contact with the test substance shows a lower value than the control without contact with the test substance", the reporter activity obtained as described above is used as an index. And selecting a test substance that can be an inflammatory site force-in inhibitor. The reporter activity when the test substance is contacted is compared with the reporter activity of the control obtained in the same manner when the test substance is not contacted. 5 It is considered to be a substance that suppresses the function and suppresses the expression of inflammatory site force-in.
[0029] 本発明は、スクリーニング方法の第二の態様として、「IRF-5発現細胞に被検物質を 接触させたときの該細胞における IRF-5発現量を指標とする、炎症性サイト力イン抑 制剤のスクリーニング方法。」を提供する。本発明者によって、 IRF-5が TRLシグナル 経路のメンバーとして炎症性サイト力イン誘導に本質的に関与していることが明らか になった。 IRF-5の発現が減少すれば、 TRLシグナル経路を介した炎症性サイトカイ ンの発現量は減少するものと考えられる。したがって、 IRF-5の発現を抑制する物質 は、炎症性サイト力イン抑制剤の候補となり得る。  [0029] The second aspect of the screening method according to the present invention is as follows: "Inflammatory site force-in, using the expression level of IRF-5 in an IRF-5-expressing cell as an index when the test substance is contacted with the test substance. Provides screening methods for inhibitors. " The inventor has revealed that IRF-5 is intrinsically involved in the induction of inflammatory site force-in as a member of the TRL signaling pathway. If the expression of IRF-5 decreases, the expression level of inflammatory cytokines via the TRL signaling pathway is thought to decrease. Therefore, a substance that suppresses the expression of IRF-5 can be a candidate for an inflammatory site force-in inhibitor.
[0030] IRF-5の発現量は、タンパク質量または mRNA量として測定することができる。タンパ ク質量として測定する場合は、例えば抗 IRF-5抗体を利用して公知免疫測定法により 測定することができる。 IRF-5発現量をタンパク質量として測定する本発明の方法は、 以下のような工程を含む。 [0030] The expression level of IRF-5 can be measured as the amount of protein or the amount of mRNA. Tampa In the case of measuring as a mass, for example, it can be measured by a known immunoassay using an anti-IRF-5 antibody. The method of the present invention for measuring the expression level of IRF-5 as the amount of protein includes the following steps.
(a) IRF-5発現細胞に被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-5 expressing cell
(b)該 IRF-5発現細胞中の IRF-5タンパク質を定量する工程  (b) Quantifying the IRF-5 protein in the IRF-5 expressing cells
(c)被検物質接触によるタンパク質の量力 被検物質非接触のコントロールのタンパ ク質の量より小さ!/ヽ被検物質を選択する工程  (c) Quantity of protein due to contact with test substance Smaller than the amount of protein for non-test substance contact control!
[0031] mRNA量として測定する場合は、 IRF-5遺伝子の塩基配列、例えば、配列番号 1ま たは 3に記載の配列力もプライマーを設計して RT-PCR法により測定することができる 。このようなプライマーの例として、配列番号 5および 6を例示する。  [0031] When measuring the amount of mRNA, the nucleotide sequence of the IRF-5 gene, for example, the sequence ability described in SEQ ID NO: 1 or 3 can also be measured by RT-PCR method by designing primers. Examples of such primers are SEQ ID NOs: 5 and 6.
(a) IRF-5発現細胞に被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-5 expressing cell
(b)該 IRF-5発現細胞中の IRF-5 mRNAを測定する工程  (b) a step of measuring IRF-5 mRNA in the IRF-5-expressing cells
(c)被検物質接触による mRNA量力 被検物質非接触のコントロールの mRNA量より 小さ!ゝ被検物質を選択する工程  (c) Amount of mRNA due to contact with test substance Less than the amount of mRNA in non-test substance contact control!
[0032] 本発明は、スクリーニング方法の第三の態様として、「被検物質存在下において My D88と IRF-5とを接触させたときの、被検物質による MyD88と IRF-5との結合阻害能を 指標とする、炎症性サイト力イン抑制剤のスクリーニング方法」を提供する。 TRLシグ ナル経路において、 IRF-5は、 MyD88および TRAF6と複合体を形成して相互作用を することにより、その機能を発揮する力 IRF-4は、 MyD88と IRF-5の結合を IRF-5と競 合的に阻害し、炎症性サイト力インの発現を抑制する。本発明の方法は、 MyD88と IR F-5との結合を阻害する物質 (本発明にお 、て、「MyD88-IRF-5結合阻害剤」とも 、う )をスクリーニングする方法である。 MyD88-IRF_5結合阻害剤は、 IRF-4と同様に、炎 症性サイト力インの発現を抑制することが可能である。  [0032] The third aspect of the screening method according to the present invention is as follows: "Inhibition of binding between MyD88 and IRF-5 by a test substance when My D88 is contacted with IRF-5 in the presence of the test substance" A screening method for inflammatory site force-in inhibitors using the ability as an index. In the TRL signal pathway, IRF-5 forms a complex with MyD88 and TRAF6 and interacts with it to exert its function. IRF-4 binds MyD88 to IRF-5. Competitively inhibits the expression of inflammatory site force-in. The method of the present invention is a method for screening a substance that inhibits the binding between MyD88 and IRF-5 (also referred to as “MyD88-IRF-5 binding inhibitor” in the present invention). MyD88-IRF_5 binding inhibitor, like IRF-4, can suppress the expression of inflammatory site force-in.
[0033] 本発明にお 、て、「MyD88と IRF-5との結合阻害能」とは、 MyD88と IRF-5との結合を 阻害する能力を意味する。被検物質の MyD88と IRF-5との結合阻害能を検出するに は、被検物質存在下で MyD88と IRF-5とを結合させ、被検物質非存在下の場合と比 較して、 MyD88と IRF-5の結合が低下または消失するかどうかを見ればよい。 MyD88 と IRF-5との結合は、タンパク質の相互作用を検出する in situまたは in vitroの各種公 知方法によって検出することができる。例えば、免疫沈降、蛍光共鳴エネルギー移動 分析(FRET)、 Two- Hybrid法、表面プラズモン解析法、マイクロアレイを用いたハイス ループット解析等によって検出可能である。 In the present invention, “the ability to inhibit the binding between MyD88 and IRF-5” means the ability to inhibit the binding between MyD88 and IRF-5. To detect the ability of the test substance to inhibit the binding of MyD88 to IRF-5, bind MyD88 to IRF-5 in the presence of the test substance and compare it to the absence of the test substance. You can see if the binding between MyD88 and IRF-5 decreases or disappears. The binding between MyD88 and IRF-5 is a combination of various in situ and in vitro assays that detect protein interactions. It can be detected by intelligent methods. For example, it can be detected by immunoprecipitation, fluorescence resonance energy transfer analysis (FRET), two-hybrid method, surface plasmon analysis method, high throughput analysis using a microarray, and the like.
[0034] MyD88は、サイト力インまたはケモカイン誘導に関わるアダプター分子として知られ る。本発明の方法に使用可能な MyD88は、 IRF-5と結合して炎症性サイト力インを誘 導する能力を有する限り、種類を問わない。本発明の方法に使用可能な MyD88の例 として、ヒト MyD88の cDNA配列を配列番号: 63に、アミノ酸配列を配列番号: 64に、マ ウス MyD88の cDNA配列を配列番号: 65に、アミノ酸配列を配列番号: 66に、示すが、 これに限られない。ヒト、マウス以外の哺乳類由来の MyD88、ホモログ、天然の変異 体、人為的に変異を導入された変異体であっても、 IRF-5と結合して炎症性サイトカイ ンを誘導する能力を有する限り、本発明の方法に使用可能である。 MyD88タンパク 質または遺伝子の調製は、上記 IRF-5の調製にっ 、て説明したのと同様の公知方法 によって可能である。 [0034] MyD88 is known as an adapter molecule involved in cytoforce-in or chemokine induction. MyD88 usable in the method of the present invention is not limited as long as it has the ability to bind to IRF-5 and induce inflammatory site force-in. As an example of MyD88 that can be used in the method of the present invention, the human MyD88 cDNA sequence is SEQ ID NO: 63, the amino acid sequence is SEQ ID NO: 64, the mouse MyD88 cDNA sequence is SEQ ID NO: 65, and the amino acid sequence is It is shown in SEQ ID NO: 66, but is not limited thereto. Even MyD88 derived from mammals other than humans and mice, homologs, natural mutants, and artificially introduced mutants have the ability to bind to IRF-5 and induce inflammatory cytokines As long as it can be used in the method of the present invention. The MyD88 protein or gene can be prepared by a known method similar to that described above for the preparation of IRF-5.
[0035] MyD88と IRF-5との結合を in situにおいて検出する方法は、例えば以下の工程を含 む。  [0035] The method for detecting the binding between MyD88 and IRF-5 in situ includes, for example, the following steps.
(a)ドナー蛍光タンパク質遺伝子とァクセプタ蛍光タンパク質遺伝子を、 MyD88遺伝 子または IRF-5遺伝子のうち、それぞれ異なるどちらかに連結し、蛍光タンパク質遺 伝子- MyD88遺伝子構築物および蛍光タンパク質遺伝子- IRF-5遺伝子構築物を細 胞に導入する工程、  (a) The donor fluorescent protein gene and the acceptor fluorescent protein gene are linked to either the MyD88 gene or the IRF-5 gene, and the fluorescent protein gene-MyD88 gene construct and the fluorescent protein gene-IRF-5 Introducing the gene construct into the cell;
(b)被検物質存在下に置かれた前記細胞に、ドナー蛍光タンパク質に特有な励起波 長を照射してドナー蛍光タンパク質を励起し、ドナー蛍光タンパク質に基づく蛍光強 度とァクセプタ蛍光タンパク質に基づく蛍光強度を検出し、ドナー蛍光タンパク質に 基づく蛍光強度とァクセプタ蛍光タンパク質に基づく蛍光強度から、ドナー蛍光タン パク質とァクセプタ蛍光強度タンパク質間の FRETを解析する工程  (b) The cells placed in the presence of the test substance are irradiated with an excitation wavelength peculiar to the donor fluorescent protein to excite the donor fluorescent protein, and based on the fluorescence intensity based on the donor fluorescent protein and the acceptor fluorescent protein Detecting fluorescence intensity and analyzing FRET between donor fluorescence protein and acceptor fluorescence intensity protein from fluorescence intensity based on donor fluorescence protein and fluorescence intensity based on acceptor fluorescence protein
(c)上記 (b)工程により解析された被検物質存在下における FRETが、被検物質非存 在下における FRETよりも減弱、または消滅する被検物質を選択する工程。  (c) A step of selecting a test substance in which FRET in the presence of the test substance analyzed in step (b) is less attenuated or disappears than FRET in the absence of the test substance.
[0036] 上記 (a)から(c)工程を含む方法として、 FRETによる解析を利用した方法を示すこ とができる。上記(a)工程は、細胞の MyD88と IRF-5とを、 FRETにより検出できるよう に標識ィ匕するための工程で te 。 FRET (Fluorescence resonance energy transfer)は 、ある蛍光分子力も他の蛍光分子へ励起エネルギーが移動する現象である。本発明 において「ドナー蛍光タンパク質」とは、 FRETにおいて、他の蛍光タンパク質 (ァクセ プタ蛍光タンパク質)にエネルギーを与える蛍光タンパク質であり、「ァクセプタ蛍光タ ンパク質」とは他の蛍光タンパク質 (ドナー蛍光タンパク質)力もエネルギーを受け取 る蛍光タンパク質である。ドナーおよびァクセプタ蛍光タンパク質は、公知蛍光タンパ ク質の中力も選択することができる。蛍光タンパク質の例として、 BFP、 GFP、 CFP、 YF P、 DsRed、 AmCyan、 ZsYellow、 ZsGreen等が実際に使用されている。ドナーとァクセ プタは、異なる蛍光タンパク質であり、ドナーの蛍光スペクトルとァクセプタの吸収ス ベクトルに重なりがあることが必要である。たとえば、 CFPをドナー、 YFPをァクセプタ とする選択は、上記条件を満たす選択例の一つであるがこれに限られず、ドナーお よびァクセプタの条件を満たす蛍光タンパク質の組み合わせであれば、 、ずれも使 用可能である。 [0036] As a method including the steps (a) to (c), a method using analysis by FRET can be shown. In step (a) above, cell MyD88 and IRF-5 can be detected by FRET. Te in the process of labeling. FRET (Fluorescence resonance energy transfer) is a phenomenon in which excitation energy is transferred from one fluorescent molecular force to another fluorescent molecule. In the present invention, the “donor fluorescent protein” is a fluorescent protein that gives energy to another fluorescent protein (acceptor fluorescent protein) in FRET, and the “acceptor fluorescent protein” is another fluorescent protein (donor fluorescent protein). ) Force is also a fluorescent protein that receives energy. Donor and acceptor fluorescent proteins can also be selected from known fluorescent proteins. As examples of fluorescent proteins, BFP, GFP, CFP, YFP, DsRed, AmCyan, ZsYellow, ZsGreen, etc. are actually used. Donor and acceptor are different fluorescent proteins, and it is necessary that there is an overlap between the donor's fluorescence spectrum and the absorption spectrum of the acceptor. For example, selection using CFP as a donor and YFP as an acceptor is one of the selection examples that satisfy the above conditions, but is not limited to this, and any combination of fluorescent proteins that satisfies the conditions of the donor and the acceptor may cause a deviation. It can be used.
[0037] 上記 (b)工程では、被検物質存在下にお 、て、上記調製した細胞に対しドナー蛍 光タンパク質に特有な励起波長を照射してドナー蛍光タンパク質を励起し、ドナー蛍 光タンパク質に基づく蛍光強度とァクセプタ蛍光タンパク質に基づく蛍光強度を検出 し、ドナー蛍光タンパク質に基づく蛍光強度とァクセプタ蛍光タンパク質に基づく蛍 光強度から、ドナーとァクセプタ間の FRETを解析する。上記 FRET解析の具体的方 法は、たと? Jま、、 Honda, K., Mizutani, T. & Tanigucm, T. Negative regulation of IF N- a / j8 signaling by IFN regulatory factor 2 for homeostatic development of dendri tic cells. Proc. Natl. Acad. Sci. USA. 101, 2416-2421 (2004)や、 Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., Suzuki, N., Ohba'Y., Takaoka, A., Yeh, W. C. & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416- 15421に記載 の方法にしたがうことができる。  [0037] In the step (b), the donor fluorescent protein is excited by irradiating the prepared cells with an excitation wavelength peculiar to the donor fluorescent protein in the presence of the test substance. FRET between the donor and the acceptor is analyzed from the fluorescence intensity based on the fluorescence intensity based on the fluorescence intensity based on the fluorescence intensity based on the fluorescence intensity based on the fluorescence fluorescence based on the donor fluorescence protein and the acceptor fluorescence protein. What is the specific method of FRET analysis above? J, Honda, K., Mizutani, T. & Tanigucm, T. Negative regulation of IF N- a / j8 signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells.Proc. Natl. Acad. Sci. USA 101, 2416-2421 (2004), Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., Suzuki, N., Ohba'Y., Takaoka, A. Yeh, WC & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416-15421.
[0038] 上記解析の結果、被検物質存在下における FRET力 被検物質非存在下における FRETよりも減弱、または消滅している場合は、被検物質が MyD88と IRF-5との結合を 阻害していると考えられる。したがって、被検物質存在下における FRET力 被検物 質非存在下における FRETよりも減弱、または消滅する被検物質は、炎症性サイト力 インの発現を抑制する物質であると考えられる。 [0038] As a result of the above analysis, if the FRET force in the presence of the test substance is less attenuated or disappears than FRET in the absence of the test substance, the test substance inhibits the binding between MyD88 and IRF-5. it seems to do. Therefore, the FRET power in the presence of the test substance The test substance attenuated or disappears more than the FRET in the absence of the test substance It is considered to be a substance that suppresses the expression of ins.
[0039] また、被検物質による MyD88と IRF-5との結合阻害能を in vitroで検出する場合は、 例えば以下の工程を含む方法で実施できる。  [0039] In addition, when detecting in vitro the ability to inhibit the binding between MyD88 and IRF-5 by a test substance, it can be carried out by a method including the following steps, for example.
(a) MyD88タンパク質および IRF-5タンパク質を発現する細胞に被検物質を接触させ る工程、  (a) contacting a test substance with cells expressing MyD88 protein and IRF-5 protein;
(b)前記 MyD88タンパク質および IRF-5タンパク質を発現する細胞力ゝらの細胞溶解液 カゝら MyD88タンパク質を含む画分または IRF-5を含む画分をを分離する工程、  (b) a step of separating the cell lysate of the cell force expressing the MyD88 protein and the IRF-5 protein, the fraction containing the MyD88 protein or the fraction containing the IRF-5,
(c)前記分離画分中の、 MyD88タンパク質と IRF-5タンパク質との結合を検出するェ 程、  (c) detecting the binding of MyD88 protein to IRF-5 protein in the separated fraction;
(d)前記 MyD88タンパク質と IRF-5タンパク質との結合力 被検物質非接触のコント口 ールよりも減少する被検物質を選択する工程。  (d) A step of selecting a test substance that decreases the binding force between the MyD88 protein and the IRF-5 protein as compared to a non-test substance contact control.
[0040] 本方法にお!、て使用する「MyD88タンパク質および IRF-5タンパク質を発現する細 胞」に発現する MyD88タンパク質と IRF-5タンパク質は、内因性のタンパク質であって もよいが、外因性タンパク質であってもよぐさらに外因性 MyD88タンパク質および IR F-5タンパク質は、 FRAG、 HA等の公知標識ペプチドの融合タンパク質であってもよ い。  [0040] The MyD88 protein and IRF-5 protein expressed in the “cells expressing MyD88 protein and IRF-5 protein” used in this method may be endogenous proteins, but may be exogenous. The exogenous MyD88 protein and IR F-5 protein may be fusion proteins of known labeled peptides such as FRAG and HA.
[0041] 上記 (a)工程で被検物質と「MyD88タンパク質および IRF-5タンパク質を発現する 細胞」とを接触させた後、(b)工程において、上記細胞から調製した細胞溶解液の中 から MyD88タンパク質または IRF-5を含む画分を分離する。 MyD88タンパク質または I RF-5を含む画分の分離は、例えば、抗 MyD88抗体または抗 IRF-5抗体を用いて行う ことができる。また、外因性 MyD88タンパク質および IRF-5タンパク質として、 FRAG、 HA等の公知標識ペプチドとの融合タンパク質を発現する細胞を用いる場合は、抗 F RAG抗体、抗 HA抗体等の、標識ペプチドに対する抗体を用いて、所望のタンパク質 を含む画分を分離することもできる。例えば、細胞溶解液に抗 MyD88抗体または抗 I RF-5抗体 (あるいは、抗標識ペプチド抗体)のいずれかを添加し、細胞調製物中の M yD88タンパク質とまたは IRF-5タンパク質と抗体とを抗原抗体反応により結合させた 後、遠心してタンパク質-抗体結合物を分画する。あるいは、固定化した抗体に上記 細胞調製物を接触させ、 MyD88タンパク質または IRF-5タンパク質を吸着させること により分画する。 [0041] After contacting the test substance and the "cells expressing MyD88 protein and IRF-5 protein" in the step (a), from the cell lysate prepared from the cells in the step (b) Separate fractions containing MyD88 protein or IRF-5. Separation of a fraction containing MyD88 protein or IRF-5 can be performed using, for example, an anti-MyD88 antibody or an anti-IRF-5 antibody. When cells expressing a fusion protein with a known labeled peptide such as FRAG or HA are used as the exogenous MyD88 protein and IRF-5 protein, an antibody against the labeled peptide such as anti-FRAG antibody or anti-HA antibody is used. It can also be used to separate a fraction containing the desired protein. For example, either anti-MyD88 antibody or anti-I RF-5 antibody (or anti-labeled peptide antibody) is added to the cell lysate, and the MyD88 protein or IRF-5 protein and antibody in the cell preparation are combined with the antigen. After binding by the antibody reaction, the protein-antibody conjugate is fractionated by centrifugation. Alternatively, the cell preparation is contacted with the immobilized antibody to adsorb MyD88 protein or IRF-5 protein. To fractionate.
[0042] 上記(c)工程では、分離した画分中で MyD88タンパク質と IRF-5タンパク質が結合 しているかについて検出する。上記検出は、例えば、抗 IRF-5抗体、抗 MyD88抗体、 抗標識ペプチド抗体を分離した画分に接触させることにより可能である。検出時の便 宜のために、抗体が標識されていてもよい。具体的に説明すると、 MyD88タンパク質 を含む画分に抗 IRF-5抗体を接触させた結果 IRF-5が検出されれば、該結果は、分 離画分中において MyD88と IRF-5が結合していることを示す。または、分離した IRF-5 タンパク質を含む画分中に抗 MyD88抗体を接触させ、分離画分中の MyD88と IRF-5 との結合を検出する。被検物質接触時において上記のように検出された MyD88と IRF -5の結合力 被検物質非接触時において検出された MyD88と IRF-5との結合よりも 減少、または消失していた場合は、該被検物質は MyD88と IRF-5との複合体の形成 を阻止し、 TRLシグナル経路を介した炎症性サイト力インの誘導を抑制する物質であ る。  [0042] In the step (c), it is detected whether the MyD88 protein and the IRF-5 protein are bound in the separated fraction. The detection can be performed, for example, by bringing the anti-IRF-5 antibody, anti-MyD88 antibody, and anti-labeled peptide antibody into contact with the separated fraction. The antibody may be labeled for convenience during detection. Specifically, if IRF-5 is detected as a result of contacting an anti-IRF-5 antibody with a fraction containing MyD88 protein, the result indicates that MyD88 and IRF-5 bind to each other in the fractionated fraction. Indicates that Alternatively, the anti-MyD88 antibody is brought into contact with the fraction containing the separated IRF-5 protein, and the binding between MyD88 and IRF-5 in the separated fraction is detected. The binding force between MyD88 and IRF-5 detected as described above when contacting the test substance. If the binding force is less than or disappearing from the binding between MyD88 and IRF-5 detected when the test substance is not in contact The test substance is a substance that inhibits the formation of a complex of MyD88 and IRF-5 and suppresses the induction of inflammatory site force in via the TRL signal pathway.
[0043] また、被検物質による MyD88と IRF-5との結合阻害能を in vitroで検出する方法の別 の例として、下記の工程を含む方法を挙げることができる。  [0043] Another example of a method for detecting in vitro the binding inhibition ability of MyD88 and IRF-5 by a test substance is a method including the following steps.
(a)被検物質存在下で MyD88タンパク質と IRF-5タンパク質とを接触させる工程、 (a) contacting MyD88 protein with IRF-5 protein in the presence of a test substance;
(b)被検物質存在下における MyD88タンパク質と IRF-5タンパク質との結合活性を検 出する工程、 (b) a step of detecting the binding activity between MyD88 protein and IRF-5 protein in the presence of the test substance;
(c)被検物質存在下における MyD88タンパク質と IRF-5タンパク質との結合活性を、 被検物質非存在下における MyD88タンパク質と IRFタンパク質との結合活性と比較し 、被検物質非存在下における結合活性よりも低 ヽ結合活性を示す被検物質を選択 する工程。  (c) Compare the binding activity of MyD88 protein and IRF-5 protein in the presence of the test substance with the binding activity of MyD88 protein and IRF protein in the absence of the test substance. A step of selecting a test substance that exhibits a lower binding activity than its activity.
[0044] 上記 (a)〜(c)工程を含む方法は、各種公知方法によって可能である。例えば、表 面プラズモン共鳴スペクトルを利用した方法 (BIACORE)により、実施することができ る。 BIACOREによる場合、上記(a)工程では、 MyD88タンパク質と IRF-5タンパク質の うち、どちらかをセンサーチップに固定し (リガンド)、もう片方を溶液 (アナライト)とし てセンサーチップに流して、接触させる。被検物質は、アナライトに混合する。上記 (b )工程において、センサーチップに光をあて、反射光の屈折率の変化をモニターする ことにより、リガンドとアナライトとの結合活性を知ることができる。リガンドとアナライトの 結合を減弱または消失させる被検物質は、 BIACOREの使用 ·操作方法は、 BIACOR Eのホームページ(http:〃 www.biacore.co.jp/)等により知ることができる。 [0044] The method including the steps (a) to (c) can be performed by various known methods. For example, it can be carried out by a method using a surface plasmon resonance spectrum (BIACORE). In the case of BIACORE, in step (a) above, either MyD88 protein or IRF-5 protein is immobilized on the sensor chip (ligand), and the other is applied as a solution (analyte) to the sensor chip for contact. Let The test substance is mixed with the analyte. In step (b) above, the sensor chip is irradiated with light and the change in the refractive index of the reflected light is monitored. Thus, the binding activity between the ligand and the analyte can be known. For test substances that reduce or eliminate the binding between the ligand and the analyte, the use and operation of BIACORE can be found on the BIACOR E website (http: 〃 www.biacore.co.jp/).
[0045] 本発明は、さらなる炎症性サイト力イン抑制剤の新規スクリーニング方法として、「IR F-4発現細胞に被検物質を接触させたときの該細胞における IRF-4発現量を指標と する、炎症性サイト力イン抑制剤のスクリーニング方法」を提供する。後述するとおり、 本発明者らによって、 IRF-4が炎症性サイト力イン抑制に働くことが明らかになった。し たがって、 IRF-4の発現を増強する物質は、炎症性サイト力イン抑制に働くと考えられ る。 [0045] The present invention provides a novel screening method for further inhibitors of inflammatory site force-in, using "an IRF-4 expression level in an IRF-4 expression cell when the test substance is contacted with the test substance as an index." , A screening method for an inflammatory site force-in inhibitor. As will be described later, the present inventors have revealed that IRF-4 works to suppress inflammatory site force-in. Therefore, a substance that enhances the expression of IRF-4 is considered to act to suppress inflammatory site force-in.
[0046] IRF-4の発現量は、タンパク質量または mRNA量として測定することができる。タンパ ク質量として測定する場合は、例えば抗 IRF-4抗体を利用して公知免疫測定法により 測定することができる。 IRF-4発現量をタンパク質量として測定する本発明の方法は、 以下のような工程を含む。  [0046] The expression level of IRF-4 can be measured as the amount of protein or the amount of mRNA. When measuring as a protein mass, it can measure by a well-known immunoassay using an anti- IRF-4 antibody, for example. The method of the present invention for measuring the expression level of IRF-4 as the amount of protein includes the following steps.
(a) IRF-4発現細胞に被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-4 expressing cell
(b)該 IRF-4発現細胞中の IRF-4タンパク質を定量する工程  (b) quantifying the IRF-4 protein in the IRF-4 expressing cells
(c)被検物質接触によるタンパク質の量力 被検物質非接触のコントロールのタンパ ク質の量より小さ!/ヽ被検物質を選択する工程  (c) Quantity of protein due to contact with test substance Smaller than the amount of protein for non-test substance contact control!
[0047] mRNA量として測定する場合は、 IRF-4遺伝子の塩基配列、例えば、配列番号: 59ま たは 61に記載の配列力もプライマーを設計して RT-PCR法により測定することができ る。  [0047] When measuring the amount of mRNA, the nucleotide sequence of the IRF-4 gene, for example, the sequence ability described in SEQ ID NO: 59 or 61 can also be measured by RT-PCR by designing primers. .
(a) IRF-4発現細胞に被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-4 expressing cell
(b)該 IRF-4発現細胞中の IRF-4 mRNAを測定する工程  (b) measuring IRF-4 mRNA in the IRF-4 expressing cells
(c)被検物質接触による mRNA量力 被検物質非接触のコントロールの mRNA量より 小さ!ゝ被検物質を選択する工程  (c) Amount of mRNA due to contact with test substance Less than the amount of mRNA in non-test substance contact control!
[0048] 上述のとおり、本発明の各種スクリーニング方法は、新規炎症性サイト力イン抑制剤 の開発を可能にする。本発明の方法によって得られた炎症性サイト力イン抑制剤は、 新規物質または公知物質であり、 TLRシグナル伝達経路を介して炎症性サイト力イン の発現を抑制する。抑制対象となる炎症性サイト力インは、 TLRシグナル伝達によつ て発現を誘導される炎症性サイト力インであればいずれでもよぐ例えば、 IL-1、 IL-6 、 IL— 8、 IL-12, IL— 18、 TNF— α、 IFN— γの中力ら選択すること力できる。 [0048] As described above, the various screening methods of the present invention enable the development of novel inflammatory site force-in inhibitors. The inflammatory site force-in inhibitor obtained by the method of the present invention is a novel substance or a known substance, and suppresses the expression of inflammatory site force-in via the TLR signal transduction pathway. Inflammatory site force-in to be suppressed is caused by TLR signaling. For example, IL-1, IL-6, IL-8, IL-12, IL-18, TNF-α, IFN-γ You can choose from.
[0049] 本発明は、上述のスクリーニング方法によって得られる炎症性サイト力イン阻害物質 、すなわち、 MyD88と IRF-5との結合を阻害することを介して炎症性サイト力インの発 現を抑制する物質として、 IRF-4タンパク質を提供する。 IRE-4は、リンパ球の活性ィ匕 および分化に働く IRFファミリーの T細胞および B細胞特異的メンバーとして知られて きたが、本発明者らは、 MyD88と IRF-5との結合を IRF-4が競合的に阻害し、かつ IRF -4が炎症性サイト力インの発現を抑制することを in vitroにおいて明らかにするととも に、 TLRリガンドによる刺激に対し、 IRF-4— /_マウスでは野生型マウスに比して大幅に 炎症性サイト力インレベルが上昇し、早く死亡することを示した。したがって、 IRF-4タ ンパク質を炎症性サイト力インの発現が起きて 、る個体に投与すれば、 MyD88と TLR -5との結合を TLR-5と競合的に阻害することを介して、炎症性サイト力インの発現を 抑制するものと期待できる。 [0049] The present invention suppresses the expression of inflammatory site force-in through inhibition of the binding between the inflammatory site force-in inhibitor obtained by the above-described screening method, that is, MyD88 and IRF-5. As a substance, IRF-4 protein is provided. Although IRE-4 has been known as a T cell and B cell specific member of the IRF family that plays a role in the activation and differentiation of lymphocytes, the present inventors have determined that the binding between MyD88 and IRF-5 is IRF- 4 is competitively inhibited, and the together and reveal in the in vitro that IRF -4 suppresses the expression of inflammatory sites force in respect stimulation with TLR ligands, wild in IRF-4- / _ mice Compared with type mice, the inflammatory site force in level was significantly increased, indicating that it died earlier. Therefore, when IRF-4 protein is administered to an individual who develops inflammatory site force-in, the binding between MyD88 and TLR-5 is competitively inhibited with TLR-5. It can be expected to suppress the expression of inflammatory site force-in.
[0050] 本発明における IRF-4の例として、ヒト IRF-4の cDNA配列を配列番号: 59に、ァミノ 酸配列を配列番号: 60に、マウス IRF-4の cDNA配列を配列番号: 61に、アミノ酸配列 を配列番号: 62に示す。マウス IRF-4アミノ酸配列(配列番号: 62)において、第 21位 力も第 127位は DNA結合ドメイン、第 200位力も第 267位は活性ィ匕ドメイン、第 268から 第 450位は調節ドメインである。 IRF-4タンパク質の調製は、 IRF-5公知方法によって 可能である。例えば、配列番号: 59または配列番号: 61記載の配列をもとにプローブ を作成し、ヒトまたはマウス造血細胞力も調製した cDNAライブラリーから目的の cDNA を選択し、該 cDNAを適当な宿主-発現ベクター系によって発現させ、抗 IRF-4抗体を 用いたァフィ-ティカラム等により精製することで調製できる。また、配列番号: 59また は配列番号: 61記載の配列からプライマーを設計し、ヒトまたはマウス造血細胞から 調製した Total RNAを铸型に RT-PCRを実施して cDNAを調製し、上記と同様に IRF-4 タンパク質を調製することができる。  [0050] As an example of IRF-4 in the present invention, the human IRF-4 cDNA sequence is SEQ ID NO: 59, the amino acid sequence is SEQ ID NO: 60, and the mouse IRF-4 cDNA sequence is SEQ ID NO: 61. The amino acid sequence is shown in SEQ ID NO: 62. In the mouse IRF-4 amino acid sequence (SEQ ID NO: 62), positions 21 and 127 are the DNA binding domain, positions 200 and 267 are the active domain, and positions 268 to 450 are the regulatory domains. . IRF-4 protein can be prepared by known methods of IRF-5. For example, a probe is prepared based on the sequence described in SEQ ID NO: 59 or SEQ ID NO: 61, the target cDNA is selected from a cDNA library prepared with human or mouse hematopoietic cell force, and the cDNA is expressed in an appropriate host-expression. It can be prepared by expressing with a vector system and purifying with a affinity column using an anti-IRF-4 antibody. In addition, a primer was designed from the sequence shown in SEQ ID NO: 59 or SEQ ID NO: 61, and cDNA was prepared by performing RT-PCR using total RNA prepared from human or mouse hematopoietic cells in a cage shape. IRF-4 protein can be prepared.
[0051] 本発明における IRF-4は、上述の配列で示されるヒトおよびマウス IRF-4にかぎられ ない。炎症性サイト力イン発現抑制機能を有する限り、他の哺乳類由来の IRF-4、ホ モログ、天然の変異体、天然の IRF-4配列に人工的に変異を施した変異体であって も本発明の IRF-4に包含される。これらの IRF-4の調製も、配列番号: 59または配列番 号: 61記載の配列をもとに作成したプローブまたはプライマーを用い、上述の IRF-5 の調製と同様の方法によって cDNAを調製し、適当な宿主-発現ベクター系を選択し て発現させて精製することにより、所望の IRF-4タンパク質の調製が可能である。 [0051] IRF-4 in the present invention is not limited to human and mouse IRF-4 represented by the above-mentioned sequences. As long as it has a function to suppress inflammatory site force-in expression, IRF-4 derived from other mammals, homologues, natural mutants, and mutants obtained by artificially mutating natural IRF-4 sequences Are also included in the IRF-4 of the present invention. For preparation of these IRF-4s, cDNA was prepared in the same manner as IRF-5 preparation described above using a probe or primer prepared based on the sequence shown in SEQ ID NO: 59 or SEQ ID NO: 61. The desired IRF-4 protein can be prepared by selecting an appropriate host-expression vector system for expression and purification.
[0052] また IRF-4タンパク質のみならず、本発明は IRF-4遺伝子も炎症性サイト力イン抑制 剤として提供する。炎症性サイト力イン発現が亢進している患者に対し、 IRF-4遺伝子 を投与することにより、 IRF-4遺伝子が患者の体内において発現するため、持続的な 炎症性サイト力イン抑制効果が期待できる。  [0052] In addition to the IRF-4 protein, the present invention also provides the IRF-4 gene as an inflammatory site force-in inhibitor. By administering the IRF-4 gene to patients with increased inflammatory site force-in expression, the IRF-4 gene is expressed in the patient's body, so a sustained inflammatory site force-in inhibitory effect is expected. it can.
[0053] 上記 IRF-4を含む、本発明のスクリーニングによって得られた炎症性サイト力イン抑 制剤(以下、「本発明の炎症性サイト力イン抑制剤」と略す)は、炎症性サイト力インが 関与する疾患の治療薬または予防薬として有用である。例えば本発明の炎症性サイ トカイン抑制剤は、エンドトキシンショック、アナフィラキシーショック、自己免疫疾患、 インスリン依存性糖尿病、アレルギー疾患、慢性関節リウマチ、敗血症、重症筋無力 症、シエーダレン症候群、全身性エリテマトーデス、強皮症、多発性筋炎、結節性多 発動脈炎、クローン病、喘息、膠原病、炎症性腸疾患、多発性硬化症、各種感染症 、悪性腫瘍、脳卒中等の脳における炎症、または炎症症状を呈するその他の疾患の 治療または予防に有効であると考えられる。  [0053] The inflammatory site force-in inhibitor obtained by the screening of the present invention containing the above IRF-4 (hereinafter abbreviated as "inflammatory site force-in inhibitor of the present invention") is an inflammatory site force-in inhibitor. It is useful as a therapeutic or prophylactic agent for diseases involving ins. For example, the inflammatory cytokine inhibitor of the present invention includes endotoxin shock, anaphylactic shock, autoimmune disease, insulin-dependent diabetes mellitus, allergic disease, rheumatoid arthritis, sepsis, myasthenia gravis, systemic lupus erythematosus, scleroderma Symptom, polymyositis, nodular polyarteritis, Crohn's disease, asthma, collagen disease, inflammatory bowel disease, multiple sclerosis, various infectious diseases, malignant tumor, stroke inflammation, etc. It is considered effective in the treatment or prevention of other diseases.
[0054] IRF-4を含む、本発明の炎症性サイト力イン抑制剤を上記疾患の治療薬または予防 薬とする場合は、該炎症性サイト力イン抑制剤の物理化学的性状、対象疾患、投与 される患者の年齢、体重等の諸条件を考慮し、公知製剤技術によって適当な製剤と し、効能'効果、用法'用量、禁忌'副作用等の注意事項、等の服用に際し必要な情 報を記載した使用書とともに、治療薬または予防薬とすることができる。製剤化にあた つては、薬理上許容される媒体、基剤、賦形剤、安定化剤、甘味剤、矯味剤、結合剤 、等張化剤、軟化剤、崩壊剤、可溶化剤、懸濁化剤、乳化剤、分散化剤、界面活性 剤、コーティング剤、防腐剤、保存剤、 PH調節剤、溶解補助剤、着色剤、香料、等と 組み合わせ、散剤、丸剤、錠剤、トローチ剤、カプセル剤、液剤、軟膏剤、クリーム剤 、座剤、パップ剤、注射剤、等の製剤とすることができる。  [0054] When the inflammatory site force-in inhibitor of the present invention containing IRF-4 is used as a therapeutic or prophylactic agent for the above diseases, the physicochemical properties of the inflammatory site force-in inhibitor, target disease, In consideration of various conditions such as age, weight, etc. of the patient to be administered, make it an appropriate formulation by known formulation technology, information necessary for taking indications such as efficacy 'effect, usage' dose, contraindication 'side effects, etc. Can be used as a therapeutic or prophylactic agent. For formulation, pharmacologically acceptable media, bases, excipients, stabilizers, sweeteners, corrigents, binders, tonicity agents, softeners, disintegrants, solubilizers, In combination with suspending agents, emulsifiers, dispersing agents, surfactants, coating agents, preservatives, preservatives, PH regulators, solubilizers, coloring agents, fragrances, etc., powders, pills, tablets, lozenges , Capsules, solutions, ointments, creams, suppositories, poultices, injections, and the like.
[0055] 上述のとおり、本発明者らの新規知見により、 IRF-5が TRLシグナル経路の主要メン バーとして炎症性サイト力イン発現制御に本質的にかかわることが明らかになった。 上記説明した発明に加えて、本発明者らの新規知見から、転写因子 IRF-5の立体構 造を解析し、該立体構造に基づき、低分子化合物、ペプチド、ポリヌクレオチドを含 む IRF-5の機能阻害物質を、デザイン、または探索する方法を提供できる。さらには、 転写因子 IRF-5のアミノ酸配列または遺伝子配列情報から、 IRF-5の機能を阻害する ペプチドなどの機能阻害物質をデザインあるいは探索する方法を提供することも可 能である。 [0055] As described above, IRF-5 is a major member of the TRL signaling pathway based on the novel findings of the present inventors. As a bar, it became clear that it was essentially involved in the regulation of inflammatory site force-in expression. In addition to the invention described above, based on the novel findings of the present inventors, the steric structure of the transcription factor IRF-5 was analyzed, and based on the steric structure, IRF-5 containing low molecular weight compounds, peptides, and polynucleotides. It is possible to provide a method for designing or searching for a function-inhibiting substance. Furthermore, it is also possible to provide a method for designing or searching for a function-inhibiting substance such as a peptide that inhibits the function of IRF-5 from the amino acid sequence or gene sequence information of the transcription factor IRF-5.
[0056] なお、本明細書において引用された全ての先行技術文献は、参照として本明細書 に組み入れられる。  [0056] It should be noted that all prior art documents cited in the present specification are incorporated herein by reference.
実施例  Example
[0057] 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に制 限されるものではない。  Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
(実施例 1) TLR活性ィ匕による遺伝子誘導における IRF- 5の機能  (Example 1) Function of IRF-5 in gene induction by TLR activity
(1 1)材料および方法  (1 1) Materials and methods
[IRF- 5チマウスの作製] [Production of IRF- 5 Chi-Mouse]
[0058] IRF-5遺伝子をコードするゲノム DNAを、 129Jマウスゲノムライブラリーから単離した 。ターゲテイングベクターは、 DNA結合ドメインの一部をコードする 2.1kb断片(エタソ ン 2に対応)をネオマイシン耐性遺伝子カセット (neo)に置き換えることによって構築し た。この IRF-5遺伝子ターゲテイングベクターを胚性幹細胞(E14K)にトランスフエタト した。ネオマイシン耐性コロニーを選択し、 PCRおよびサザンプロット分析によるスクリ 一ユングを行った。 2種類の相同組換え体を C57BLZ6胚盤胞に微量注入した。この キメラマウスを C57BLZ6雌性マウスと交配させ、ヘテロ接合性 F1子孫の異種交配を 行わせて IRF-5チマウスを得た。これらの独立したクローン由来のマウスは同一の表 現型を示した。 [0058] Genomic DNA encoding the IRF-5 gene was isolated from a 129J mouse genomic library. The targeting vector was constructed by replacing a 2.1 kb fragment (corresponding to ethason 2) encoding part of the DNA binding domain with a neomycin resistance gene cassette (neo). This IRF-5 gene targeting vector was transfected into embryonic stem cells (E14K). Neomycin resistant colonies were selected and screened by PCR and Southern plot analysis. Two homologous recombinants were microinjected into C57BLZ6 blastocysts. This chimeric mouse was mated with a C57BLZ6 female mouse and heterozygous F1 offspring were cross-bred to obtain IRF-5 chi mice. Mice from these independent clones showed the same phenotype.
[その他のマウスおよび試薬]  [Other mice and reagents]
[0059] MyD88マウスは Shizuo Akira氏(大阪大学)〖こ寄贈 、ただ 、た。マウスはすべて東 京大学の動物用施設において特別な無菌条件下で飼育し、 C57BLZ6マウスと少な くとも 7回の戻し交配を行った後に用いた。 [0060] ポリ(U)および LPSは Sigma社から購入した。ポリ(U)と DOTAP (Roche Diagnostics) との複合体は製造元の指示に従って調製した。 poly (l : C)は Amersham社から購入し た。 CpG-A ODN、 CpG-B ODNおよびすベての合成オリゴデォキシヌクレオチドは北 海道システム ·サイエンス(札幌、 日本)力 購入した。リステリア菌(L. monocytogenes )由来の精製フラジェリンは Alan Aderem氏(Institute for Systems Biology,シアトル、 米国)に寄贈いただいた。 [0059] MyD88 mice were donated by Shizuo Akira (Osaka University) Tsujiko. All mice were housed under special aseptic conditions in the animal facility of Tokyo University and used after at least 7 backcrosses with C57BLZ6 mice. [0060] Poly (U) and LPS were purchased from Sigma. A complex of poly (U) and DOTAP (Roche Diagnostics) was prepared according to the manufacturer's instructions. poly (l: C) was purchased from Amersham. CpG-A ODN, CpG-B ODN, and all synthetic oligodeoxynucleotides were purchased from Hokkaido. Purified flagellin from L. monocytogenes was donated by Alan Aderem (Institute for Systems Biology, Seattle, USA).
[榭状細胞、マクロファージおよび B細胞の調製]  [Preparation of rod cells, macrophages and B cells]
[0061] 脾臓を lmgZmlコラゲナーゼ A (Roche Biochemicals)および 20mM EDTAで処理し、 抗 CD5抗体および抗 CD19抗体(BD Biosciences)ならびに抗ラッ HgGをコーティング した Dynabeads (Dynal)を用いて、 T細胞および B細胞の陰性選択を行った。 B220-Z CDl lc+cDCおよび B220+ZCD11C- pDCを FACS Diva (BD Bioscience)を用いて選 別した。 CDl lb MicroBeads (Miltenyi Biotec)を用いた MACSカラムを用いて脾臓マク 口ファージを収集し、 B細胞単離キットを製造元のプロトコール(Miltenyi Biotec)に従 つて用いて脾臓 B細胞を陰性選択した上で、 10%ゥシ胎仔血清を加えた RPMI1680 (I nvitrogen)中で培養した。  [0061] T cells and B cells were treated with Dynabeads (Dynal) treated with lmgZml collagenase A (Roche Biochemicals) and 20 mM EDTA and coated with anti-CD5 and anti-CD19 antibodies (BD Biosciences) and anti-HgG. Negative selection was performed. B220-Z CDllc + cDC and B220 + ZCD11C-pDC were selected using FACS Diva (BD Bioscience). Spleen Mcphage was collected using a MACS column using CDl lb MicroBeads (Miltenyi Biotec) and negatively selected for splenic B cells using a B cell isolation kit according to the manufacturer's protocol (Miltenyi Biotec). The cells were cultured in RPMI1680 (Invitrogen) supplemented with 10% urine fetal serum.
[サイト力イン産生の測定]  [Measurement of site force in production]
[0062] cDCおよび pDC (2 X 105個 ml—1)、 B細胞(5 X 105個 ml—1)またはマクロファージ(7 X 10 5個 ml—1)を 96ゥエルプレートに播き、指定された刺激下で 24時間培養した。 [0062] cDC and pDC (2 X 10 5 ml— 1 ), B cells (5 X 10 5 ml— 1 ) or macrophages (7 X 10 5 ml— 1 ) are seeded on 96-well plates and designated The cells were cultured for 24 hours under the stimulated conditions.
[0063] 培養上清中の IL-12p40、 IL-6、 TNF- aおよび IFN- aの濃度は固相酵素免疫アツ セィ(ELISA)により測定した。マウス IL- 12p40、 IL- 6および TNF- α用の ELISAキット は R&D Systems社から入手した。マウス IFN- α用の ELISAキットは PBL Biomedical La boratories社力ら購入し 7こ。  [0063] The concentrations of IL-12p40, IL-6, TNF-a and IFN-a in the culture supernatant were measured by solid-phase enzyme immunoassay (ELISA). ELISA kits for mouse IL-12p40, IL-6 and TNF-α were obtained from R & D Systems. Seven ELISA kits for mouse IFN-α were purchased from PBL Biomedical Laboratories.
CRNA分析]  CRNA analysis]
[0064] RNAの抽出、および逆転写を伴うポリメラーゼ連鎖反応 (RT-PCR)分析は以前の文 献【こ した通り【こ? Tつ 7こ U'akaoka, A. et al. Integration of interferon- / β signal ling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516— 523 (2003)) o定量的リアルタイム RT- PCR分析は、 LightCyclerおよび SYBRGreenシス テム (Roche)を用いて行った。データは各試料における 13 -ァクチン発現に対して標 準化した。 j8 -ァクチン、 IL-6、 TNF- αおよび IL-12p40に対するプライマーは、以前 の文献【こ己 し 7こものを用 ヽ (¾aKaguchi, b. et al. Essential role of IRF-3 in lipopoly saccharide― inducedinterferon― β gene expression and endotoxin shock. Biochem. Biophys. Res. Commun. 306, 860-866 (2003))。 RT- PCRに使用したプライマーは具 体的には以下の通りである。 [0064] RNA extraction and polymerase chain reaction (RT-PCR) analysis with reverse transcription have been previously described. T'7 ko U'akaoka, A. et al. Integration of interferon- / β signal ling to p53 responses in tumour suppression and antiviral defense (Nature 424, 516—523 (2003)) o Quantitative real-time RT-PCR analysis , LightCycler and SYBRGreen system (Roche). Data are standard for 13-actin expression in each sample. Normalized. Primers for j8-actin, IL-6, TNF-α, and IL-12p40 are based on previous literature [7aKaguchi, b. et al. Essential role of IRF-3 in lipopolysaccharide- inducedinterferon-β gene expression and endotoxin shock. Biochem. Biophys. Res. Commun. 306, 860-866 (2003)). The primers used for RT-PCR are specifically as follows.
IRF-5 : 5- AATACCCCACCACCTTTTGA- 3 (配列番号: 5) (センス)  IRF-5: 5- AATACCCCACCACCTTTTGA-3 (SEQ ID NO: 5) (sense)
5- TTGAGATCCGGGTTTGAGAT- 3 (配列番号: 6) (アンチセンス)  5- TTGAGATCCGGGTTTGAGAT-3 (SEQ ID NO: 6) (antisense)
Ι κ Β ζ : 5- ATCCGAAGCAACAAGCAGAA- 3 (配列番号: 67) (センス)  Ι κ Β ζ: 5- ATCCGAAGCAACAAGCAGAA-3 (SEQ ID NO: 67) (sense)
5-CACGAAGTGAGAAGGCAACA-3 (配列番号: 68) (アンチセンス)  5-CACGAAGTGAGAAGGCAACA-3 (SEQ ID NO: 68) (antisense)
TLR3: 5- TTAGAGTCCAACGGCTTAGAT- 3 (配列番号: 69) (センス)  TLR3: 5- TTAGAGTCCAACGGCTTAGAT-3 (SEQ ID NO: 69) (sense)
5-AACGGATTGAAGCGCATA-3 (配列番号: 70) (アンチセンス) TLR4: 5-GAGCCGGAAGGTTATTGTGGT-3 (配列番号:71) (センス)  5-AACGGATTGAAGCGCATA-3 (SEQ ID NO: 70) (antisense) TLR4: 5-GAGCCGGAAGGTTATTGTGGT-3 (SEQ ID NO: 71) (sense)
5- CCTCTGCTGTTTGCTCAGGAT- 3 (配列番号: 72) (アンチセンス) TLR5: 5-AAGTTCCGGGGAATCTGTTT-3 (配列番号: 73) (センス)  5- CCTCTGCTGTTTGCTCAGGAT-3 (SEQ ID NO: 72) (antisense) TLR5: 5-AAGTTCCGGGGAATCTGTTT-3 (SEQ ID NO: 73) (sense)
5- GCATAGCCTGAGCCTGTTTC- 3 (配列番号: 74) (アンチセンス)  5- GCATAGCCTGAGCCTGTTTC-3 (SEQ ID NO: 74) (antisense)
(Renshaw, M. et al. Cutting edge: impaired Γοΐΐ- like receptor expression and functi on in aging. J. Immunol. 169, 4697-4701 (2002))  (Renshaw, M. et al. Cutting edge: impaired Γοΐΐ- like receptor expression and functi on in aging. J. Immunol. 169, 4697-4701 (2002))
TLR7: 5— GTTCTTGACCTTGGCACTA— 3 (配列番号: 75) (センス;)  TLR7: 5—GTTCTTGACCTTGGCACTA— 3 (SEQ ID NO: 75) (sense;)
5- CCGTGCATATTCATCGTA- 3 (配列番号: 76) (アンチセンス) TLR9: 5-ATGGACGGGAACTGCTACTACA-3 (配列番号: 77) (センス)  5- CCGTGCATATTCATCGTA-3 (SEQ ID NO: 76) (antisense) TLR9: 5-ATGGACGGGAACTGCTACTACA-3 (SEQ ID NO: 77) (sense)
5-GACCTTGGAACCAGGAAGAGTT-3 (配列番号: 78) (アンチセンス)  5-GACCTTGGAACCAGGAAGAGTT-3 (SEQ ID NO: 78) (antisense)
[プラスミドおよび遺伝子導入]  [Plasmid and gene transfer]
[0065] FLAG- MyD88、シアン蛍光タンパク質標識 MyD88 (CFP-MyD88)、黄色蛍光タンパ ク質標識 IRF-3 (YFP-IRF-3)、 YFP-IRF-7および HA-IRF3の発現ベクターに関して は以前に記載した (補足情報の項を参照)。 [0065] For FLAG-MyD88, cyan fluorescent protein labeled MyD88 (CFP-MyD88), yellow fluorescent protein labeled IRF-3 (YFP-IRF-3), YFP-IRF-7 and HA-IRF3 expression vectors (See the Supplemental Information section).
[0066] マウス IRF- 5 cDNAは MEF由来の全 RNAの RT- PCRによって入手し、 pCRII (Stratag ene)ベクター中にクローユングした。 [0066] Mouse IRF-5 cDNA was obtained by RT-PCR of total MEF-derived RNA and cloned into a pCRII (Stratagene) vector.
[0067] YFP-IRF-5発現ベクターまたは HA標識 IRF-5発現ベクターを作製するには、 pCAG GS- YFPベクターまたは pCAGGS- HAベクターの Xhol部位および Notl部位に cDNAを クロー-ングした。 pCAGGSベクターおよび Venus (YFPと呼ばれる)は、それぞれ ば chiro Miyazaki氏(大阪大学)および宫脇敦史氏(理研)に寄贈 、ただ 、た。 HA-IRF- 5 DNA断片を pCAGGS- HA- IRF- 5から切り出し、 pBabe-puroレトロウイルス発現べク ターの EcoRI部位および Sail部位にクローユングした。 MEFへのレトロウイルス遺伝子 導入は以前の文献に記載の通りに行った(Takaoka, A. et al. Integration of interfere n~ a / β signalling to p53 responses in tumour suppression and antiviral defence. Na ture 424, 516-523 (2003))。 [0067] To create a YFP-IRF-5 expression vector or HA-tagged IRF-5 expression vector, use pCAG The cDNA was cloned into the Xhol and Notl sites of the GS-YFP vector or pCAGGS-HA vector. The pCAGGS vector and Venus (called YFP) were donated to chiro Miyazaki (Osaka University) and Satoshi Sowaki (RIKEN), respectively. The HA-IRF-5 DNA fragment was excised from pCAGGS-HA-IRF-5 and cloned into the EcoRI site and Sail site of the pBabe-puro retrovirus expression vector. Retroviral gene introduction into MEF was performed as described in the previous literature (Takaoka, A. et al. Integration of interfere n ~ a / β signaling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516 -523 (2003)).
[0068] ChIPアツセィに関しては、 RAW264.7細胞に対して Superfect試薬(Qiagen)を用いて pCAGGS-HA-IRF-5をトランスフエタトした。 FLAG標識 TRAF6用の発現ベクターは井 上純一郎氏 (東京大学)に寄贈!、ただ 、た。 [0068] For ChIP assembly, pCAGGS-HA-IRF-5 was transfected into RAW264.7 cells using Superfect reagent (Qiagen). The expression vector for FLAG-tagged TRAF6 was donated to Junichiro Inoue (University of Tokyo)!
[蛍光顕微鏡検査]  [Fluorescence microscopy]
[0069] 細胞をガラス底 35mm組織培養皿(MATSUNAMI GLASS)上で培養し、以前の文献 に記載の通りに蛍光顕微鏡により画像化した(Honda, K. , Mizutani, T. & Taniguchi, T. Negative regulation of IFN— a / β signaling by IFN regulatory factor 2 ror nomeo static development of dendritic cells. Proc. Natl. Acad. Sci. USA. 101 , 2416-2421 ( 2004)) o  [0069] Cells were cultured on glass bottom 35mm tissue culture dishes (MATSUNAMI GLASS) and imaged by fluorescence microscopy as described previously (Honda, K., Mizutani, T. & Taniguchi, T. Negative regulation of IFN— a / β signaling by IFN regulatory factor 2 ror nomeo static development of dendritic cells. Proc. Natl. Acad. Sci. USA. 101, 2416-2421 (2004)) o
[0070] FRET分析は以前の文献記載の通りに行った (Honda, K. , Mizutani, T. & Taniguchi , Τ. Negative regulation or irN- a / β signaling oy IFN regulatory factor 2 for home ostatic development of dendritic cells. Proc. Natl. Acad. Sci. USA. 101 , 2416-2421 (2004)) o  [0070] FRET analysis was performed as previously described (Honda, K., Mizutani, T. & Taniguchi, Τ. Negative regulation or irN-a / β signaling oy IFN regulatory factor 2 for home ostatic development of dendritic Proc. Natl. Acad. Sci. USA. 101, 2416-2421 (2004)) o
[免疫沈降およびィムノブロット法]  [Immunoprecipitation and immunoblotting]
[0071] 細胞可溶化、免疫沈降およびィムノブロット法は以前の文献に記載の通りに行った [0071] Cell solubilization, immunoprecipitation and immunoblotting were performed as described in previous literature.
(Takaoka, A. et al. Integration or interreron— a / β signalling to p53 responses in tu mour suppression and antiviral defence. Nature 424, 516-523 (2003))。  (Takaoka, A. et al. Integration or interreron—a / β signaling to p53 responses in tumour suppression and antiviral defense. Nature 424, 516-523 (2003)).
[0072] 以下のタンパク質に対する抗体を購入した: HA (Roche)、 FLAG (Sigma- Aldrich Co[0072] Antibodies against the following proteins were purchased: HA (Roche), FLAG (Sigma- Aldrich Co
.)、ホスホ- SAPK/JNK、 SAPK/JNK,ホスホ- p38 MAPKおよび p38 MAPK (Cell Sig naling Technology)。 [核ウェスタンブロット法および電気泳動移動度シフトアツセィ (EMSA) ] これらのアツセィは以前の記載の通りに行った (補足情報の項も参照された 、)。 .), Phospho-SAPK / JNK, SAPK / JNK, Phospho-p38 MAPK and p38 MAPK (Cell Signaling Technology). [Nuclear Western Blotting and Electrophoretic Mobility Shift Assay (EMSA)] These assays were performed as previously described (see also the Supplemental Information section).
[0073] マウス胎仔線維芽細胞(mouse embryonic fibroblast: MEF)を標準的な手順に従つ て調^した (Takaoka, A. et al. Integration or interferon- / β signalling to p53 resp onses in tumour suppression and antiviral defence. Nature 424, 516-523 (2003))。糸田 胞の分画および核ウェスタンィムノブロット法は別の文献に記載された通りに行った( Lee, H. H., Dadgostar, H., し heng, Q., Shu, J. & Cheng, G. NF— κ B— mediated up— r egulation of Bcl-χ and Bfl- 1/Al is required for CD40 survival signaling in B lympho cytes. Proc. Natl. Acad. Sci. USA. 96, 9136-9141 (1999))。抗 USF- 2および抗 j8 -チ ユーブリン抗体は Santa Cruz Biotechnologies社から入手した。  [0073] Mouse embryonic fibroblast (MEF) was prepared according to standard procedures (Takaoka, A. et al. Integration or interferon- / β signaling to p53 resp onses in tumour suppression and antiviral defense. Nature 424, 516-523 (2003)). Fractions of Itoda and nuclear Western immunoblotting were performed as described elsewhere (Lee, HH, Dadgostar, H., Shiheng, Q., Shu, J. & Cheng, G. NF — Κ B— mediated up— r egulation of Bcl-χ and Bfl-1 / Al is required for CD40 survival signaling in B lympho cytes. Proc. Natl. Acad. Sci. USA. 96, 9136-9141 (1999)). Anti-USF-2 and anti-j8-tubulin antibodies were obtained from Santa Cruz Biotechnologies.
[0074] NF- κ Βに関する EMSAは、以前の文献に記載の通りに行った (Matsuyama, T. et al . Targeted disruption of IRF— 1 or IRF— 2 results in abnormal type 1 1 FN gene inaucti on and aberrant lymphocyte development. Cell 75, 83-97. (1993))。  [0074] EMSA for NF-κΒ was performed as previously described (Matsuyama, T. et al. Targeted disruption of IRF— 1 or IRF— 2 results in abnormal type 1 1 FN gene inaucti on and aberrant lymphocyte development. Cell 75, 83-97. (1993)).
[クロマチン免疫沈降アツセィ (ChIP) ]  [Chromatin Immunoprecipitation Atsey (ChIP)]
[0075] ChIPアツセィは以前の文献に記載の通りに行った(Takaoka, A. et al. Integration o f interferon- a / β signalling to p53 responses in tumour suppression and antiviral d efence. Nature 424, 516-523 (2003))。免疫沈降のために用いた特異抗体は、抗 HA 抗体 (Roche)およびアイソタイプ対照としての抗 Lck抗体 (Upstate)とした。  [0075] ChIP Atsey was performed as described in the previous literature (Takaoka, A. et al. Integration of interferon-a / β signaling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516-523 ( 2003)). Specific antibodies used for immunoprecipitation were anti-HA antibody (Roche) and anti-Lck antibody (Upstate) as an isotype control.
[0076] 精製した DNAを、 IL-12p40-ISREを含む配列(ヌクレオチド番号- 67から- 55まで)を 検出する下記プライマー:  [0076] From the purified DNA, the following primers for detecting a sequence (nucleotide numbers -67 to -55) containing IL-12p40-ISRE:
5-ACCCCGAAGTCATTTCCTCT-3 (配列番号: 79) (センス)  5-ACCCCGAAGTCATTTCCTCT-3 (SEQ ID NO: 79) (sense)
5- ACCCACTGTTCCTTCTGCT- 3 (配列番号: 80) (アンチセンス)、  5- ACCCACTGTTCCTTCTGCT-3 (SEQ ID NO: 80) (antisense),
ならびに IL-12p40遺伝子の 3'-非翻訳領域(UTR)の DNA配列(+12863から +13906ま で)を認識する陰性対照プライマー対:  And a negative control primer pair that recognizes the DNA sequence of the 3'-untranslated region (UTR) of the IL-12p40 gene (from +12863 to +13906):
5-GATGCAACGTTGGAAAGGA-3 (配列番号: 81) (センス)  5-GATGCAACGTTGGAAAGGA-3 (SEQ ID NO: 81) (sense)
5-TTCAACAGCATAAGGCCAAG-3 (配列番号: 82) (アンチセンス)  5-TTCAACAGCATAAGGCCAAG-3 (SEQ ID NO: 82) (antisense)
を用いる PCR増幅によって分析した。  Analyzed by PCR amplification.
[0077] IFN- βプロモーターの領域(ヌクレオチド番号- 74から +48)は、以下のプライマー: 5 -GGGAGAACTGAAAGTGGGAAA-3 ' (配列番号: 83) (センス) [0077] The region of the IFN-β promoter (nucleotide numbers -74 to +48) contains the following primers: 5 -GGGAGAACTGAAAGTGGGAAA-3 '(SEQ ID NO: 83) (sense)
5-ACCTGCAAGATGAGGCAAAG-3 (配列番号: 84) (アンチセンス)  5-ACCTGCAAGATGAGGCAAAG-3 (SEQ ID NO: 84) (antisense)
を用いることによって増幅した。  Was amplified by using
[0078] PCR産物を臭化工チジゥムゲルにより可視化した。 [0078] PCR products were visualized by bromide modified gel.
[レポーターアツセィ]  [Reporter Atssey]
[0079] 12ゥエルプレートに播 、た HEK293T細胞に対して、 FuGene試薬(Roche)を用いて 、 50ngのレポータープラスミド p-55ClBLucならびに IRF- 5、 MyD88および TRAF6に対 する指定量の発現プラスミドによる一過性の同時トランスフエクシヨンを行った。 CpG- B ODN刺激実験に関しては、 TLR9を発現する HEK293細胞(InvivoGen)に対して 50 ngのレポータープラスミドおよび lOOngの pCAGGS-HA-IRF-5をトランスフエタトし、そ の後に CpG-B ODN刺激を 12時間行った。トランスフエクシヨン力も 24時間後に細胞を 溶解し、ルシフェラーゼ活性を以前の記載の通りに DuaHuciferaseレポーターアツセ ィシステム(Promega)を用いて測定した(Honda, K., Mizutani, T. & Taniguchi, T. N egative regulation of IFN- a / β signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells. Proc. Natl. Acad. Sci. USA. 101, 2416-2421 (2004) [0079] On HEK293T cells plated on 12-well plates, using FuGene reagent (Roche), with 50 ng of reporter plasmid p-55ClBLuc and the specified amount of expression plasmid for IRF-5, MyD88 and TRAF6 A transient simultaneous transfection was performed. For CpG-B ODN stimulation experiments, 50 ng reporter plasmid and lOOng pCAGGS-HA-IRF-5 were transferred to HEK293 cells expressing TLR9 (InvivoGen), followed by CpG-B ODN stimulation. For 12 hours. Transfection force was also lysed after 24 hours and luciferase activity was measured using the DuaHuciferase reporter assay system (Promega) as previously described (Honda, K., Mizutani, T. & Taniguchi, T. N egative regulation of IFN- a / β signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells.Proc. Natl. Acad. Sci. USA. 101, 2416-2421 (2004)
) o ) o
[0080] 本アツセィに用いたレポータープラスミド: p- 55ClBLucは多数の ISREを含み(Yoney ama, M. et al. Direct triggering of the type I interferon system by virus infection: ac tivation of a transcription factor complex containing IRF- 3 and CBP/p300. EMBO J . 17, 1087-1095 (1998))、これは Takashi Fujita氏(The metropolitan institute of Med ical Science)【こ寄貝曽! ヽ f †i\ヽた。  [0080] Reporter plasmid used in this assembly: p-55ClBLuc contains many ISREs (Yoney ama, M. et al. Direct triggering of the type I interferon system by virus infection: ac tivation of a transcription factor complex containing IRF -3 and CBP / p300. EMBO J. 17, 1087-1095 (1998)), this is Takashi Fujita (The metropolitan institute of Medical Science).
[フローサイトメトリー分析のための試薬]  [Reagents for flow cytometry analysis]
[0081] FITCを結合させた抗 CD40および PEを結合させた抗 H2Kb、 CD86、 B220およびビ ォチンを結合させた抗 CDl lcを、 BD Pharmingen社から購入した。ストレプトアビジン- [0081] Anti-CD40 conjugated with FITC and anti-H2Kb conjugated with PE, CD86, B220 and anti-CDllc conjugated with biotin were purchased from BD Pharmingen. Streptavidin
APCは Molecular Probes社から購入した。 APC was purchased from Molecular Probes.
(1 - 2) IRF-5遺伝子欠損マウス  (1-2) IRF-5 gene-deficient mice
[0082] IRFファミリーの転写因子は、免疫系の調節に寄与することから大きな注目を集めて いる。このファミリーに属する IRF-5は、 I型インターフェロン (IFN)遺伝子の誘導との関 連で大きな注目を集めているが、現時点ではその機能はほとんど知られていない。 注目されることとして、 IRF-5 mRNAは脾細胞で高レベルに発現され(図 6a)、種々の TLRリガンド (すなわち、病原体関連分子パターン; PAMP)によって活性ィ匕されると通 常の榭状細胞(cDC)およびマクロファージにおいて上方制御される(図 6b)。 IRFファ ミリ一メンバーである IRF- 3および IRF- 7は、 TLR刺激によって I型 IFNの誘導に向けて 活性ィ匕されることは知られているが、 IRF-5が TLRシグナル伝達に関与するか否かは 不明である。 [0082] Transcription factors of the IRF family have attracted much attention because they contribute to the regulation of the immune system. IRF-5, a member of this family, is involved in the induction of type I interferon (IFN) genes. Although it has attracted a lot of attention, its function is hardly known at this time. Of note, IRF-5 mRNA is expressed at high levels in spleen cells (Figure 6a) and is normal when activated by various TLR ligands (ie, pathogen-associated molecular patterns; PAMP). It is upregulated in cells (cDC) and macrophages (Figure 6b). IRF family members IRF-3 and IRF-7 are known to be activated toward induction of type I IFN by TLR stimulation, but IRF-5 is involved in TLR signaling Whether or not is unknown.
[0083] IRF-5が TLRシグナル伝達に関与する力否かを明らかにするために、本発明者らは IRF- 5遺伝子が欠損したマウス (IRF- 5— マウス)を標準的な相同組換えプロトコール( 図 la)によって作製し、そのヌル接合性を DNAブロット法および RNAブロット法ならび にィムノブロット分析によって確認した(図 lb、 c、 d)。 [0083] To elucidate whether IRF-5 is involved in TLR signal transduction, the inventors of the present invention used standard homologous recombination in mice lacking the IRF-5 gene (IRF-5— mice). Produced by the protocol (Fig. La) and its null conjugation was confirmed by DNA and RNA blotting and immunoblot analysis (Fig. Lb, c , d).
[0084] このマウスは正常に発生し、造血細胞集団に明らかな差異は認められな力つた(図 6c)。  [0084] The mice developed normally and were strong with no apparent difference in the hematopoietic cell population (Fig. 6c).
(1 - 3) TLRシグナル伝達への IRF-5関与の検討  (1-3) Involvement of IRF-5 in TLR signaling
[0085] 詳細な研究が行われている 2種類の TLR9リガンド、 CpG-Bオリゴデォキシヌクレオ チド(CpG- B ODN、これは 1668または K型 ODNとも呼ばれる)および CpG- A ODN (D 19または D型 ODNとも呼ばれる)を用いて、 IRF-5チマウスおよび野生型 (WT)マウス 脾臓由来 cDCおよび形質細胞様 DC (pDC)における TLR9の活性ィ匕によるサイトカイ ンの誘導に関し検討した。  [0085] Two TLR9 ligands that have been extensively studied, CpG-B oligonucleotide (CpG-B ODN, also known as 1668 or K-type ODN) and CpG-A ODN (D 19 (Also referred to as D-type ODN), and the induction of cytokines by the activity of TLR9 in spleen-derived cDCs and plasmacytoid DCs (pDCs) of IRF-5 and wild-type (WT) mice was examined.
[0086] WTマウスまたは IRF-5— マウスの脾臓由来の通常の DC (cDC)を模擬刺激するか( 媒質のみ)、または 1.0 Mの B型 CpG ODN (CpG- B)もしくは CpG- A ODN (CpG- A) により 24時間刺激し、培養上清中の IL-6、 IL-12p40および TNF- αの濃度を ELISAに より測定した。上清を IFN- o;誘導に関しても測定した。また、 WTマウスまたは IRF-5— /_ マウスの脾臓由来の形質細胞様 DC (pDC)についても、 cDCと同様の検討を行った。 [0086] WT or IRF-5—mock stimulation of normal DC (cDC) from mouse spleen (medium only) or 1.0 M type B CpG ODN (CpG-B) or CpG- A ODN ( CpG-A) was stimulated for 24 hours, and the concentrations of IL-6, IL-12p40 and TNF-α in the culture supernatant were measured by ELISA. The supernatant was also measured for IFN-o; induction. In addition, plasmacytoid DC (pDC) derived from the spleen of WT mice or IRF-5 − / _ mice was also examined in the same manner as cDC.
[0087] CpG- B ODNまたは CpG- A ODNにより刺激した cDCにおける IL- 6、 IL- 12および TN F- aの誘導は、 IRF-5— /_ cDCでは野生型 (WT) cDCに比して著しく低下して 、た(図 2 a)。サイト力イン産生の同様の低下は IRF-5チマウス由来の pDCでも観察された(図 2b ;)。これとは対照的に、 CpG-A ODNにより刺激した pDCのみに認められる IFN- αの 誘導は、 IRF-5_/—pDCでは正常であるかかえって増強されており、このことから IRF-5 は I型 IFN誘導には関与しな 、ことが示された(図 2b;図 7参照)。 [0087] Induction of IL-6, IL-12, and TN F-a in cDCs stimulated with CpG-B ODN or CpG-A ODN was compared to wild-type (WT) cDC in IRF-5 — / _ cDC (Fig. 2a). A similar reduction in cytoforce-in production was also observed in pDCs from IRF-5 chi mice (Figure 2b;). In contrast, the IFN-α levels observed only in pDC stimulated by CpG-A ODN Induction was normally enhanced in IRF-5 _ / —pDC, indicating that IRF-5 is not involved in induction of type I IFN (see Figure 2b; Figure 7) ).
[0088] 次に、 WTマウスまたは IRF- 5チマウスの脾臓マクロファージを CpG- A ODN (1.0 μ Μ )または CpG- Β ODN d.O ^ M)により、 SOUml—1の IFN- γの存在下(IL- 12)または非 存在下 (IL-6および TNF- o で 24時間刺激し、上記と同様に培養上清中の IL-6、 IL- 12p40および TNF- αの濃度を ELISAにより測定した。さらに、他の TLRリガンドによる 刺激に対するサイト力イン産生を観察するため、 WTマウスまたは IRF-5_/—マウスの脾 臓マクロファージを刺激しないままにおくか、または種々の TLRリガンド、例えば、 TLR 3 (ポリイノシン-ポリシチジル酸 [poly (I: C) ]; 100 gZml)、 TLR4 (リポ多糖 [LPS]; 10 ngZml)、 TLR5 (フラジェリン lO /z gZml)および TLR7 (8) (ss— RNA;ポリゥリジル酸 [ ポリ(U) ] ; 5 /z g/ml)に対するものにより、 301^1_1の IFN- γの存在下(IL-12)または 非存在下 (IL-6および TNF- a )で 24時間刺激し、上記と同様に培養上清中の TNF- a、 IL-6および IL-12p40の濃度を ELISAにより測定した。 [0088] Next, splenic macrophages of WT mice or IRF-5 chi mice were treated with CpG-A ODN (1.0 μΜ) or CpG-Β ODN dO ^ M) in the presence of IFN-γ in SOUml- 1 (IL- 12) or in the absence (stimulated with IL-6 and TNF-o for 24 hours, and the concentrations of IL-6, IL-12p40 and TNF-α in the culture supernatant were measured by ELISA as described above. To observe cytoforce-in production upon stimulation by other TLR ligands, leave splenic macrophages of WT mice or IRF-5 __ / — mice unstimulated, or use various TLR ligands such as TLR 3 (polyinosine -Polycytidylic acid [poly (I: C)]; 100 gZml), TLR4 (lipopolysaccharide [LPS]; 10 ngZml), TLR5 (flagellin lO / z gZml) and TLR7 (8) (ss-RNA; polyuridylic acid [poly (U)]; 5 / zg / ml), in the presence (IL-12) or absence (IL-6 and T) of 301 ^ 1 _1 IFN-γ After stimulation with NF-a) for 24 hours, the concentrations of TNF-a, IL-6 and IL-12p40 in the culture supernatant were measured by ELISA in the same manner as described above.
[0089] CpG- B ODN刺激による、脾臓マクロファージにおける IL- 6、 IL- 12および TNF- aの 誘導ならびに B細胞における IL-6の誘導も、 IRF-5— /_マウス由来の細胞では障害され ていた(図 2cおよび図 8a、 b)。興味深いことに、サイト力イン誘導の障害は、脾臓マク 口ファージを他の TLRリガンド、すなわち TLR3リガンド(ポリイノシン-ポリシチジル酸 [p oly (I: C) ] )、 TLR4リガンド(リポ多糖 [LPS] )、 TLR5リガンド(フラジェリン)および TLR7 (8)リガンド (ポリゥリジル酸 [ポリ(U) ] )により刺激した場合にも観察された(図 2d)。 IRF -5の非存在下において、 TLR mRNAの発現は影響されないままであり、 B細胞の増 殖、ならびに B細胞および cDCにおける CD40、 CD86などの免疫調節性細胞表面分 子の誘導も正常であった(図 9a、 b、 c)。さらに、 IRF-5の欠如は TLR刺激後のマクロフ ァージの生存度にも影響を及ぼさなかった(図 9d)。したがって、 IRF-5はこれらの TLR によって誘発される炎症誘発性サイト力インの誘導に選択的に関与し、おそらくは他 のすベての TLRにつ!/ヽても同様と思われる。 [0089] Induction of IL-6, IL-12 and TNF-a in splenic macrophages and IL-6 in B cells by CpG-B ODN stimulation was also impaired in cells derived from IRF-5- / _ mice (Figure 2c and Figure 8a, b). Interestingly, the failure of cytoforce-in induction can cause spleen mouth phages to bind to other TLR ligands, namely TLR3 ligand (polyinosine-polycytidylic acid [poly (I: C)]), TLR4 ligand (lipopolysaccharide [LPS]) It was also observed when stimulated with TLR5 ligand (flagellin) and TLR7 (8) ligand (polyuridylic acid [poly (U)]) (Fig. 2d). In the absence of IRF-5, TLR mRNA expression remained unaffected, and B cell proliferation and induction of immunoregulatory cell surface molecules such as CD40 and CD86 in B cells and cDC were normal. (Fig. 9a, b, c). Furthermore, the lack of IRF-5 did not affect macrophage viability after TLR stimulation (Fig. 9d). Therefore, IRF-5 is selectively involved in the induction of pro-inflammatory site force-in induced by these TLRs, and probably seems to be the same for all other TLRs!
[0090] 上記炎症誘発性サイト力インの mRNAの誘導について分析した。脾臓マクロファー ジを WTマウスおよび IRF-5 マウスから調製し、 dに記載したものと同じ条件下で CpG - B ODN、 LPSまたは poly (I : C)により刺激した。指定された時点で全 RNAを抽出し、 続いて定量的 RT- PCR分析に供した。また、脾臓マクロファージを指定された PAMP によって刺激し、 Ι κ Β ζ mRNA発現について、上述の炎症誘発性サイト力インの場合 と同様にモニターした。 [0090] The induction of mRNA of the pro-inflammatory site force-in was analyzed. Spleen macrophages were prepared from WT and IRF-5 mice and stimulated with CpG-B ODN, LPS or poly (I: C) under the same conditions as described in d. Extract total RNA at specified time points, Subsequently, it was subjected to quantitative RT-PCR analysis. In addition, splenic macrophages were stimulated with the designated PAMP, and ΙκΒζ mRNA expression was monitored in the same manner as in the case of the above-mentioned proinflammatory site force-in.
[0091] 定量的 RT-PCR分析により、この誘導は mRNAレベルで障害されていることが判明し 、このことから IRF-5によるこれらのサイト力イン遺伝子の転写活性ィ匕が示唆された(図 2e) 0実際に、インターフェロン応答配列(ISRE)と命名されている、 IRF-5結合部位と 考えられる部位力 Sこれらのサイト力イン遺伝子で同定された(図 10)。これらの遺伝子 はすべて、 NF- κ B結合部位、ならびにストレス活性ィ匕プロテインキナーゼ(SAPK)Z JNKおよび p38MAPキナーゼ(これらは TLRシグナル伝達によっても活性化される)に よって活性化される転写因子の結合部位をさらに含むため、本発明者らは IRF-5がこ れらの転写因子と協調的に作用してこれらの遺伝子を活性化すると推測している。本 発明者らはまた、 ヽくつかの IRF-5細胞で観察された残存性 mRNA誘導はこれらの転 写因子の寄与の差異の反映であり、細胞の種類または刺激に依存すると推測してい る。本発明者らは I κ B ζのプロモーター中にも ISRE候補を 4つ発見したため(図 10)、 種々の ΡΑΜΡにより刺激したマクロファージにおける RNA誘導に関して検討し、この誘 導が IRF-5の非存在下では有意に低下し、このためこの遺伝子が IRF-5のもう 1つの 標的であると示唆されることを見いだした(図 2f)。 I K B ζは TLRシグナル伝達を調節 することが示されている力 s (Yamamoto, M. et al. Regulation of Toll/IL—1— receptor— m ediated gene expression by the inducible nuclear protein I κ B ζ . Nature 430, 218—2 22 (2004))、 IRF-5チマウスに関する著者らのインビトロデータ(図 2a-e)およびインビ ボデータ(下記参照)は、 I κ B ζ欠損マウスのものとは炎症性サイト力インの誘導の点 で異なる。このため、興味深くはあるものの、 I κ Β ζ依存的イベントに対する IRF-5の 役割についてはさらに検討を要する。 [0091] Quantitative RT-PCR analysis revealed that this induction was impaired at the mRNA level, suggesting the transcriptional activity of these site-force-in genes by IRF-5 (Fig. 2e) 0 The site force S, which is considered the IRF-5 binding site, which is actually named the interferon response element (ISRE), was identified in these site force-in genes (Fig. 10). All of these genes are NF-κB binding sites, as well as transcription factors activated by stress-activated protein kinase (SAPK) Z JNK and p38 MAP kinases, which are also activated by TLR signaling. Since it further includes a binding site, we speculate that IRF-5 acts in concert with these transcription factors to activate these genes. We also speculate that the residual mRNA induction observed in some IRF-5 cells is a reflection of differences in the contribution of these transcription factors and depends on the cell type or stimulus. . Since the present inventors discovered four ISRE candidates in the promoter of IκBζ (Fig. 10), we investigated RNA induction in macrophages stimulated by various sputum, and this induction was absent in IRF-5. We found that it was significantly reduced below, suggesting that this gene is another target for IRF-5 (Figure 2f). I K B zeta the force has been shown to regulate TLR signaling s (Yamamoto, M. et al. Regulation of Toll / IL-1- receptor- m ediated gene expression by the inducible nuclear protein I κ B ζ Nature 430, 218—22 (2004)), our in vitro data (Figure 2a-e) and in vivo data (see below) for IRF-5 chi mice are inflammatory compared to those in I κ B ζ-deficient mice. It differs in the point of guidance of site power in. For this reason, although interesting, the role of IRF-5 for I κ 依存 ζ dependent events needs further investigation.
( 1—4) IRF-5と MyD88-TRAF6シグナル伝達経路との関係の検討  (1-4) Examination of the relationship between IRF-5 and MyD88-TRAF6 signaling pathway
[0092] TLRによる IRF-5活性ィ匕の機序にっ 、ての洞察を得るために、次に、細胞質中に存 在する IRF-5が、 MyD88および腫瘍壊死因子受容体関連因子 6 (TRAF6) (どちらもす ベての TLRによって誘発されるシグナル伝達にぉ 、て決定的な役割を果たす)と分 子間複合体を形成するか否かを検討した。まず、 IRF-5または IRF-3をそれぞれ黄色 蛍光タンパク質 (YFP)で標識したもの(以後は YFP-IRF-5および YFP-IRF-3と称する )を、マウスマクロファージ RAW264.7細胞株およびヒト胎児腎臓 293T (HEK293T)細 胞株で発現させ、これらの細胞を蛍光顕微鏡分析に供した。図 3aに示されているよう に、 IRF-5は細胞質中で発現され、 YFP-IRF-5のかなりの割合は、 MyD88をシアン蛍 光タンパク質で標識したもの(CFP_MyD88)と合致した。これに一致して、蛍光共鳴 エネルギー移動(FRET)は共発現させた YFP-IRF-5と CFP-MyD88との間で選択的 に観察され、このことからそれらが互いに直接接触していることが示された(図 3a、 b) [0092] To gain insight into the mechanism of TRF-induced IRF-5 activity, IRF-5, which is present in the cytoplasm, was then converted to MyD88 and tumor necrosis factor receptor-related factor 6 ( TRAF6) (both of which play a crucial role in all TLR-induced signaling) and whether they form intermolecular complexes. First, turn IRF-5 or IRF-3 yellow Labeled with fluorescent protein (YFP) (hereinafter referred to as YFP-IRF-5 and YFP-IRF-3) is expressed in mouse macrophage RAW264.7 cell line and human fetal kidney 293T (HEK293T) cell line, These cells were subjected to fluorescence microscopy analysis. As shown in Figure 3a, IRF-5 was expressed in the cytoplasm and a significant percentage of YFP-IRF-5 was consistent with MyD88 labeled with cyan fluorescent protein (CFP_MyD88). Consistent with this, fluorescence resonance energy transfer (FRET) was selectively observed between co-expressed YFP-IRF-5 and CFP-MyD88, indicating that they are in direct contact with each other. Indicated (Figure 3a, b)
[0093] さらに、 IRF-5と MyD88および TRAF6との分子間複合体の形成について、 HEK293T 細胞に対して pCAGGS- HAIRF- 5または pEF- HA- IRF- 3を pCXN2- FLAG- MyD88とと も〖こトランスフエタトし、細胞溶解物を抗 FLAG抗体との免疫沈降にかけ、続いて抗 HA 抗体を用いるィムノブロット法を行った。ストリツビングの後に、今度は FLAG標識 MyD 88のィムノブロット法を抗 FLAG抗体により行った。 HEK293T細胞に対して pCAGGS- HA- IRF- 5または pCAGGS- HA- IRF- 3と pME- FLAG- TRAF6とを一過性にトランスフ ェタトした。これらの分子の発現レベルも、全細胞溶解物をィムノブロット法により分析 することによって決定した。結果、 HEK293T細胞において IRF-5を MyD88または TRA F62と共発現させるとこれらは免疫共沈した力 IRF-3ではこれは起こらな力つた(図 3 c) 0 [0093] Furthermore, regarding the formation of an intermolecular complex between IRF-5 and MyD88 and TRAF6, pCAGGS-HAIRF-5 or pEF-HA-IRF-3 was combined with pCXN2-FLAG-MyD88 on HEK293T cells. This transfection was performed, and the cell lysate was subjected to immunoprecipitation with an anti-FLAG antibody, followed by immunoblotting using an anti-HA antibody. After stripping, immunoblotting of FLAG-labeled MyD 88 was then performed with anti-FLAG antibody. HEK293T cells were transiently transfected with pCAGGS-HA-IRF-5 or pCAGGS-HA-IRF-3 and pME-FLAG-TRAF6. The expression levels of these molecules were also determined by analyzing whole cell lysates by immunoblotting. Result, the force IRF-3 when coexpressed with IRF-5 a MyD88 or TRA F 62 in HEK293T cells these were co-immunoprecipitation this happen such ChikaraTsuta (Figure 3 c) 0
[0094] 本発明者らは次に、 HEK293T細胞における IRF-5による ISRE配列の MyD88依存的 および TRAF6依存的な活性化に関して、多数の ISREを含む p-55ClBLucレポーター 遺伝子を用いて検討した。図 3dに示されている通り、 IRF-5のみの発現によるレポ一 ター遺伝子の弱い活性化は、 MyD88および TRAF6との共発現、または CpG- B ODN 刺激のいずれかによつて劇的に増強され、このことから IRF-5が MyD88-TRAF6シグ ナル伝達経路に完全に組み込まれて 、ることが裏づけられた。これらの観察所見は 、 pDCにおいて同じくこれらの分子と相互作用し、これらによって活性ィ匕されて I型 IFN を誘導する IRF-7を連想させるとともに、 MyD88-TRAF6経路が分岐してこれらの 2種 類の IRF分子を活性化し、それらが続 、て異なるクラスのサイト力イン遺伝子を活性ィ匕 すると 、うユニークな機構を示唆する。 (1 - 5) IRF- 5と TLR刺激との関係 [0094] The present inventors next examined MyD88-dependent and TRAF6-dependent activation of ISRE sequences by IRF-5 in HEK293T cells using a p-55ClBLuc reporter gene containing a large number of ISREs. As shown in Figure 3d, weak activation of the reporter gene by expression of IRF-5 alone is dramatically enhanced by either co-expression with MyD88 and TRAF6 or CpG-B ODN stimulation This confirmed that IRF-5 was fully integrated into the MyD88-TRAF6 signal transduction pathway. These observations suggest that IRF-7, which also interacts with these molecules in pDC and is activated by them to induce type I IFN, and the MyD88-TRAF6 pathway diverges into these two types The activation of a class of IRF molecules, which in turn, activates different classes of site force-in genes, suggesting a unique mechanism. (1-5) Relationship between IRF-5 and TLR stimulation
[0095] YFP-IRF-5を RAW264.7細胞で発現させることにより、 IRF-5が TLR刺激に対してど のように振る舞うかに関して検討した。 CpG-B ODNまたは LPSによって刺激すると YF P-IRF-5のかなりの割合が核内に検出されるようになり、このこと力ら TLR9および TLR 4の活性化が IRF- 5の核移行を引き起こすという見解が裏づけられた(図 4a、図 l la、 b )。一方、これらの細胞で同様に発現させた CFP-MyD88は、 CpG-B ODNによる刺激 後にも核内で検出されな力つた(図 4a)。さらに、へマダルチュンで標識した IRF-5 (H A-IRF-5)をマウス胎仔線維芽細胞 (MEF)で発現させたところ、 CpG-B ODN刺激後 に HA-IRF-5は WT MEFの核内で検出されたが、 MyD88— ' MEFにおいては検出され ず、このこと力 TLR9により誘発される IRF-5の核移行が実際に MyD88依存的である ことが示された(図 4b)。 TLR_MyD88経路によって IRF-5がどのようにして活性化され るかは現時点では不明であり、これは今後検討すべき興味深 、課題であると思われ る。 [0095] We investigated how IRF-5 behaves in response to TLR stimulation by expressing YFP-IRF-5 in RAW264.7 cells. When stimulated with CpG-B ODN or LPS, a significant proportion of YF P-IRF-5 can be detected in the nucleus, which suggests that activation of TLR9 and TLR4 causes nuclear translocation of IRF-5 (Fig. 4a, Fig. L la, b). On the other hand, CFP-MyD88 expressed in these cells in the same manner was not detected in the nucleus after stimulation with CpG-B ODN (Fig. 4a). Furthermore, IRF-5 (HA-IRF-5) labeled with hemadalchun was expressed in mouse fetal fibroblasts (MEF) .After CpG-B ODN stimulation, HA-IRF-5 became WT MEF nucleus. However, it was not detected in MyD88— 'MEF, indicating that the nuclear translocation of IRF-5 induced by force TLR9 is actually MyD88-dependent (Fig. 4b). It is currently unknown how IRF-5 is activated by the TLR_MyD88 pathway, and this seems to be an interesting topic to be studied in the future.
[0096] また、 IRF-5がサイト力イン遺伝子の 1つ、すなわちプロモーター内部に標準的 ISRE エレメントを含む IL-12p40遺伝子(IL-12p40-ISRE;転写開始部位に対して- 67から- 5 5まで;図 10参照)と結合するか否かを調べるために、 HA-IRF-5を RAW264.7細胞に 導入することにより、クロマチン免疫沈降 (ChIP)アツセィも行った。これらの細胞は Cp G-B ODNに対しても応答し、これらのサイト力インの誘導をもたらす(Cowdery, J. S., Boerth, N. J., Nonan, L. A., Myung, P. S. & Koretzky, . A. Differential regulation of the IL-12 p40 promoter and of p40 secretion by CpG DNA and lipopolysaccharid e. J. Immunol. 162, 6770-6775 (1999))。図 4c (左図面)に示されているように、 CpG- B ODNによる刺激を 6時間行った細胞の抗 HA抗体免疫沈降物中に IL-12p40-ISRE に対応する PCR増幅 DNAバンドが選択的に検出された。 IFN- |8プロモーターに対応 する DNAバンドはこの免疫沈降物では増幅されず(図 4c、右図面)、この観察所見は これらの細胞では CpG-B ODNによって IFN- jS遺伝子が誘導されないという事実に 一致する(データ示さず)。これらの結果は全体として、 TLR9シグナル伝達が IRF-5の MyD88依存的活性ィ匕を引き起こし、それが続いて IL_12p40遺伝子の転写を誘導す ることを示唆する。 IL-6遺伝子および TNF- a遺伝子の内部に多数の ISREが存在す ることを考慮して(図 10)、本発明者らは、これらの遺伝子がこれらの ISREの 1つまたは 複数を通じて IRF-5によって同じように活性ィ匕されると推測した。 ISREが実際に IRF-5 によって活性ィ匕されることを確かめるにはさらに分析が必要である。 [0096] In addition, IRF-5 is one of the cytoforce-in genes, ie, the IL-12p40 gene containing a standard ISRE element within the promoter (IL-12p40-ISRE; -67 to -55 to the transcription start site) (See Fig. 10). In order to investigate whether or not it binds, chromatin immunoprecipitation (ChIP) assay was also performed by introducing HA-IRF-5 into RAW264.7 cells. These cells also respond to Cp GB ODN, leading to the induction of these site forces (Cowdery, JS, Boerth, NJ, Nonan, LA, Myung, PS & Koretzky,. A. Differential regulation of the IL -12 p40 promoter and of p40 secretion by CpG DNA and lipopolysaccharid e. J. Immunol. 162, 6770-6775 (1999)). As shown in Figure 4c (left), a PCR-amplified DNA band corresponding to IL-12p40-ISRE is selective in the anti-HA antibody immunoprecipitates of cells stimulated with CpG-B ODN for 6 hours. Detected. The DNA band corresponding to the IFN- | 8 promoter is not amplified in this immunoprecipitate (Figure 4c, right), and this observation is due to the fact that the IFN-jS gene is not induced by CpG-B ODN in these cells. Match (data not shown). Overall, these results suggest that TLR9 signaling causes a MyD88-dependent activity of IRF-5, which in turn induces transcription of the IL_12p40 gene. There are many ISREs inside the IL-6 and TNF-a genes In view of this (FIG. 10), we speculated that these genes would be similarly activated by IRF-5 through one or more of these ISREs. Further analysis is needed to confirm that the ISRE is actually activated by IRF-5.
[0097] NF- κ B、 (SAPK) ZJNKキナーゼおよび p38 MAPキナーゼの TLR依存的活性化は 、標準的 MyD88-TRAF6経路に依存する25。 IRF-5は MyD88および TRAF6の両方と相 互作用するため、本発明者らは、 IRF-5の欠如がこれらの経路の活性化に影響する か否について検討した。 WT、 IRF- 5チおよび MyD88— マウス由来の脾臓 B細胞を Cp G-B ODN (0.3 μ Μ)により指定された期間にわたり刺激した。 NF- κ Βの活性化は EM SAにより評価した。その結果、 IRF- 5— '細胞では CpG- B ODNによる NF- κ Β、 ρ38お よび JNKの活性ィ匕がほぼ正常であることを見いだした(図 4d、 。本発明者らは以前 、細胞質形質導入転写プロセッサー(CTTP)の存在を提唱したが、これはその内部 で MyD88が IRF_7、 TRAF6および IRAK4との多分子複合体を形成し、これが続いて 下流遺伝子誘導プログラムを誘導する細胞外シグナルを適切に「プロセスする」 t ヽ つ ¾のである (Honda, K., Mizutani, T. & Taniguchi, T. Negative regulation of IFN- I j8 signaling by IFN regulatory factor 2 for homeostatic development of dendritic ce lis. Proc. Natl. Acad. Sci. USA. 101, 2416-2421 (2004)) 0今回の検討により、 IRF-5 力 SCTTP複合体の一部を成すもう 1つの構成要素であることが示唆された。 TLRシグ ナル伝達における IRF-5および IRF-7の寄与の違!、からは、十分な TLR応答を生じさ せるためにこれらをはじめとする転写因子が確実に活性ィ匕されるように、例えば、空 間的時間的な調節により、 TLR-MyD88シグナルが細胞内の CTTP複合体によって巧 妙にプロセスされる特有の機序が働 、て 、ることが示唆される。 TLR9によって MyD88 の下流で活性ィ匕される転写因子の多岐ィ匕は他の TLRに関しても起こっている可能性 がある。 [0097] TLR-dependent activation of NF-κB, (SAPK) ZJNK kinase and p38 MAP kinase is dependent on the canonical MyD88-TRAF6 pathway 25 . Since IRF-5 interacts with both MyD88 and TRAF6, we examined whether lack of IRF-5 affects the activation of these pathways. Spleen B cells from WT, IRF-5 and MyD88— mice were stimulated with Cp GB ODN (0.3 μΜ) for the specified period. Activation of NF-κΒ was evaluated by EM SA. As a result, it was found that the activity of NF-κΒ, ρ38, and JNK by CpG-B ODN was almost normal in IRF-5— 'cells (Fig. 4d. Proposed the presence of a transduction transcription processor (CTTP), in which MyD88 forms a multimolecular complex with IRF_7, TRAF6 and IRAK4, which subsequently leads to an extracellular signal that induces a downstream gene induction program. Proc. `` Process '' properly (Honda, K., Mizutani, T. & Taniguchi, T. Negative regulation of IFN- I j8 signaling by IFN regulatory factor 2 for homeostatic development of dendritic ce lis. Acad. Sci. USA. 101, 2416-2421 (2004)) 0 This study suggests that it is another component of the IRF-5 force SCTTP complex. The difference in the contribution of IRF-5 and IRF-7 in the null transmission results in a sufficient TLR response. To ensure that these and other transcription factors are activated, the TLR-MyD88 signal is successfully processed by intracellular CTTP complexes, for example, by spatial and temporal regulation. It is suggested that a unique mechanism works and that a variety of transcription factors activated downstream of MyD88 by TLR9 may also occur with other TLRs.
( 1 6)インビボでの IRF-5の役割の検討  (16) Examination of the role of IRF-5 in vivo
[0098] インビボでの IRF-5の役割を調べるために、 D-ガラクトサミン(D- GalN)感作マウスに おいて CpG-B ODNまたは LPSによって誘導される致死性ショックについて調べた。 齢数を一致させた野生型(n= 5)および IRF- 5チ (n= 4)マウスに対して、 CpGB ODN ( 5nmol)を D-ガラクトサミン (D- GalN) (20mg)とともに腹腔内注射し、生存に関して 4日 間観察した。また、 CpG-B ODNを注射したマウスの血清を注射 1時間後および 3時間 後に採取し、 TNF- a、 IL-12p40および IL-6の血清中濃度を ELISAにより測定した。 L PS^ 、ては、齢数を一致させた野生型 (n=4)および IRF-5チ (n=3)マウスに対し て、 LPS (0.7 g)をD-GalN (8mg)とともに腹腔内注射し、生存に関して 4日間観察し た。また D-GalNと同じように、 LPSを注射したマウスの血清を注射 1時間後および 2時 間後に採取した。 [0098] To investigate the role of IRF-5 in vivo, lethal shock induced by CpG-B ODN or LPS was examined in D-galactosamine (D-GalN) -sensitized mice. CpGB ODN (5 nmol) was injected intraperitoneally with D-galactosamine (D-GalN) (20 mg) in age-matched wild-type (n = 5) and IRF-5 chi (n = 4) mice. 4 days regarding survival Observed for a while. In addition, serum of mice injected with CpG-B ODN was collected 1 hour and 3 hours after injection, and the serum concentrations of TNF-a, IL-12p40 and IL-6 were measured by ELISA. L PS ^ was intraperitoneally injected with LPS (0.7 g) with D-GalN (8 mg) for age-matched wild-type (n = 4) and IRF-5 chi (n = 3) mice. The animals were injected and observed for survival for 4 days. Similarly to D-GalN, serum from mice injected with LPS was collected 1 hour and 2 hours after injection.
[0099] 以目 ijに報告されている つに (Sparwasser, T. et al. Macrophages sense pathogens v ia DNA motifs: induction of tumor necrosis factor- -mediated shock. Eur . J . Imm unol . 27, 1671-1679 (1997))、 WTマウスは CpG- B ODN投与後 10時間以内に死亡 し、これに伴って血清中の IL- 6、 IL- 12および TNF- α濃度の顕著な上昇がみられた 力 IRF-5— /_マウスは生存し、血清中のこれらのサイト力インの誘導は顕著に抑制され た(図 5a、 b)。さらに、 IRF-5— /_マウスは LPS誘発性エンドトキシンショックに対する抵抗 性も示した(図 5c、 d)。これらの結果は上記のインビトロデータと一致し、以上を総合 すると、これらは TLR9および TLR4の活性ィ匕における IRF-5の必須な役割を示すとと もに、おそらくは他のすべての TLRについても同様と思われることを示している。これ らのデータから予想されたように、予備的な結果では、 IRF-5チマウスが Thl型免疫応 答の障害を示すことが示されて!/ヽる (データ示さず)。 [0099] As reported in ij (Sparwasser, T. et al. Macrophages sense pathogens v ia DNA motifs: induction of tumor necrosis factor- -mediated shock. Eur. J. Imm unol. 27, 1671- 1679 (1997)), WT mice died within 10 hours after CpG-B ODN administration, and this was accompanied by a marked increase in serum IL-6, IL-12 and TNF-α levels. IRF-5- / _ mice survived, and the induction of these cytoforce-ins in serum was markedly suppressed (Fig. 5a, b). In addition, IRF-5- / _ mice also showed resistance to LPS-induced endotoxin shock (Fig. 5c, d). These results are consistent with the above in vitro data, and together, they show the essential role of IRF-5 in the activity of TLR9 and TLR4, and probably the same for all other TLRs. It seems that it seems. As expected from these data, preliminary results indicate that IRF-5 chi mice exhibit impaired Thl-type immune response! / Sound (data not shown).
[0100] 本発明者らの今回の検討は、 TLRシグナル伝達の下流にある遺伝子誘導プロダラ ムの機序の解明に光を投じるものである。実際、 NF- κ Bおよび MAPキナーゼにより 活性ィ匕される転写因子に関しては詳細な研究が行われており、 TRF-3および IRF-7 も I型インターフェロン系の活性ィ匕にかかわる。本発明者らの結果は、 IRF-3および IR F-7とは異なり、 IRF-5は TLR-MyD88シグナル伝達経路の概ね下流で、種々の病原 体由来分子による炎症性サイト力インの遺伝子 (おそらくは他の遺伝子も)の活性ィ匕 におけるマスター転写因子として関与することを示している。このように、本発明者ら の結果は IRF-5が有害な免疫応答を抑えることを目的とする治療介入の新たな標的 の候補であることを示唆する。  [0100] The present investigation by the present inventors sheds light on the elucidation of the mechanism of the gene induction program downstream of TLR signaling. In fact, detailed studies have been conducted on transcription factors activated by NF-κB and MAP kinase, and TRF-3 and IRF-7 are also involved in the activity of type I interferon system. Our results differ from IRF-3 and IRF-7, where IRF-5 is generally downstream of the TLR-MyD88 signaling pathway and is a gene for inflammatory site force-in by various pathogen-derived molecules ( Probably other genes are also involved as master transcription factors in the activity of other genes. Thus, our results suggest that IRF-5 is a candidate for a new target for therapeutic intervention aimed at suppressing adverse immune responses.
(実施例 2) TLRシグナル伝達における IRF-4  (Example 2) IRF-4 in TLR signaling
(2— 1)材料と方法 [マウス] (2-1) Materials and methods [mouse]
[0101] C57BLZ6マウスは CLEA Japan, Osakaから購入した。 IriS— Λマウスおよび Irf4— マウ スの作製は文献(Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizu tani, T., Kano, S., Honda, K., Ohba, Y., Mak, T. W. & Taniguchi, T. (2005) Nature 434, 243—249、および Mittrucker, H. W., Matsuyama, T., Grossman, A., Kundig, T. M., Potter, J., Shahinian, A., Wakeham, A., Patterson, B., Ohashi, P. S. & Mak, T. W. (1997) Science 275, 540-543)に記載されたとおりである。 [0101] C57BLZ6 mice were purchased from CLEA Japan, Osaka. The production of IriS— Λ mice and Irf4— mice has been described in the literature (Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizutani, T., Kano, S., Honda, K., Ohba, Y., Mak, TW & Taniguchi, T. (2005) Nature 434, 243-249, and Mittrucker, HW, Matsuyama, T., Grossman, A., Kundig, TM, Potter, J ., Shahinian, A., Wakeham, A., Patterson, B., Ohashi, PS & Mak, TW (1997) Science 275, 540-543).
[プラスミドの構築]  [Plasmid construction]
[0102] へマグルチニン(HA)標識マウス IRF-3、 IRF-5および IRF-7、 FLAG標識完全長マ ウス MyD88および MyD88の一連の欠失変異体、シアン蛍光タンパク質(CFP)標識 M yD88および黄色蛍光タンパク質 (YFP)標識 IRF-5に関する発現ベクターは文献 (Mit trucker, H. W., Matsuyama, T., urossman, A., Kundig, T. M., Potter, J., Shahinian, [0102] Hemagglutinin (HA) labeled mice IRF-3, IRF-5 and IRF-7, FLAG labeled full length mice MyD88 and a series of deletion mutants of MyD88, cyan fluorescent protein (CFP) labeled MyD88 and yellow Expression vectors related to fluorescent protein (YFP) -labeled IRF-5 are available in literature (Mit trucker, HW, Matsuyama, T., urossman, A., Kundig, TM, Potter, J., Shahinian,
A., Wakeham, A., Patterson, B., Ohashi, P. S. & Mak, T. W. (1997) Science 275, 5 40-543、および Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizuta ni, T., Kano, S., Honda, K., Ohba, Y., Mak, T. W. & Taniguchi, T. (2005) Nature 4 34, 243-249)に記載されている。完全長マウス IRF-4、 IRF-8および IRF-9、ならびに DNA結合ドメイン欠失変異型 IRF-4 (IRF-4 Δ DBD)および調節ドメイン欠失変異型 IR F- 4 (IRF- 4 A RD)の断片は RT- PCRにより入手し、 pCAGGS- HA、 pCAGGS- YFPまた は pCAGGS-red蛍光タンパク質ベクター中に個別にクローユングした(Mittrucker, H.A., Wakeham, A., Patterson, B., Ohashi, PS & Mak, TW (1997) Science 275, 5 40-543, and Takaoka, A., Yanai, H., Kondo, S., Duncan, G ., Negishi, H., Mizuta ni, T., Kano, S., Honda, K., Ohba, Y., Mak, TW & Taniguchi, T. (2005) Nature 4 34, 243-249) ing. Full-length mice IRF-4, IRF-8 and IRF-9, and DNA binding domain deletion mutant IRF-4 (IRF-4 Δ DBD) and regulatory domain deletion mutant IR F-4 (IRF-4 A RD ) Fragments were obtained by RT-PCR and cloned individually into pCAGGS-HA, pCAGGS-YFP or pCAGGS-red fluorescent protein vectors (Mittrucker, H.
W., Matsuyama, T., Grossman, A., Kundig, T. M., Potter, J., bhaninian, A., Wakeh am, A., Patterson, B., Ohashi, P. S. & Mak, T. W. (1997) Science 275, 540—543、お よび Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizutani, T., Kan o, S., Honda, K., Ohba, Y., Mak, T. W. & Taniguchi, T. (2005) Nature 434, 243-24 9)。 FLAG標識 TRAF6用の発現ベクターは J. Inoue氏(東京大学)に寄贈いただいた W., Matsuyama, T., Grossman, A., Kundig, TM, Potter, J., bhaninian, A., Wakeh am, A., Patterson, B., Ohashi, PS & Mak, TW (1997) Science 275 , 540-543, and Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizutani, T., Kan o, S., Honda, K., Ohba, Y., Mak, TW & Taniguchi, T. (2005) Nature 434, 243-24 9). FLAG-tagged expression vector for TRAF6 was donated by J. Inoue (University of Tokyo)
C試薬] C reagent]
[0103] 非メチル化 CpG-オリゴデォキシヌクレオチド(CpG- ODN)、 ODN1668 (13)および 0 DN-D19 (14)は文献: Honda, K., Yanai, H" Negishi, H., Asagiri, M., Sato, M., Mizu tani, T., Shimada, N., Ohba, Y., Takaoka, A., Yoshida, N. & Taniguchi, T. (2005) N ature 434, 772-777.における記載の通りに合成した。リポ多糖 (LPS)、ポリゥリジル酸 [ポリ(U) ]、レブトマイシン Bおよび D-ガラクトサミンは Sigma社から購入した。ポリ(U) は上記文献 (Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A., Yoshida, N. & Taniguchi, T. (2005) Nature 43 4, 772-77)における記載の通りに DOTAP (Roche Diagnostics)と複合体を开成させた 。ペプチドダリカンは Fluka社から購入した。 [0103] Unmethylated CpG-oligodeoxynucleotide (CpG-ODN), ODN1668 (13) and 0 DN-D19 (14) are literature: Honda, K., Yanai, H "Negishi, H., Asagiri, M., Sato, M., Mizu It was synthesized as described in tani, T., Shimada, N., Ohba, Y., Takaoka, A., Yoshida, N. & Taniguchi, T. (2005) Nature 434, 772-777. Lipopolysaccharide (LPS), polyuridylic acid [poly (U)], lebutomycin B and D-galactosamine were purchased from Sigma. Poly (U) is based on the above reference (Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A complex with DOTAP (Roche Diagnostics) was developed as described in A., Yoshida, N. & Taniguchi, T. (2005) Nature 43 4, 772-77). Peptide darican was purchased from Fluka.
[画像化]  [Imaging]
[0104] 細胞はガラス底 35mm組織培養皿(Matsunami Glass, Osaka)上で培養し、蛍光性タ ンパク質で標識された融合タンパク質のための発現ベクターを FuGENE 6試薬 (Roch e Diagnostics)または SuperFectトランスフエクシヨン試薬(Qiagen, Valencia, CA)を用 いてトランスフエタトした。共焦点顕微鏡分析は Olympus FV-1000共焦点顕微鏡を用 いることによって行った。二色画像は交差励起を避けるために逐次収集モードで収 集した。タイムラブス画像の収集、蛍光共鳴エネルギー移動(FRET)分析および補正 FRET (FRETC)の算出は文献(Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shim ada, N., Suzuki, N., Ohba'Y., Takaoka, A., Yeh, W. C. & Taniguchi, T. (2004) Proc . Natl. Acad. Sci. USA 101, 15416- 15421)に詳述されている。 [0104] The cells are cultured on a glass bottom 35 mm tissue culture dish (Matsunami Glass, Osaka), and an expression vector for a fusion protein labeled with a fluorescent protein is used as a FuGENE 6 reagent (Roche Diagnostics) or SuperFect transfer. Transfection was carried out using an exci- tion reagent (Qiagen, Valencia, CA). Confocal microscopy analysis was performed using an Olympus FV-1000 confocal microscope. Two-color images were collected in sequential acquisition mode to avoid cross excitation. Timelabs image collection, fluorescence resonance energy transfer (FRET) analysis and correction FRET (FRET C ) calculations are available in the literature (Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N. , Suzuki, N., Ohba'Y., Takaoka, A., Yeh, WC & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416-15421).
[免疫沈降およびィムノブロット法]  [Immunoprecipitation and immunoblotting]
[0105] 免疫沈降およびィムノブロット法は文献(Honda, K., Yanai, H., Mizutani, T., Negis hi, H., Shimada, N., Suzuki, N., Ohba'Y., Takaoka, A., Yeh, W. C. & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416-15421)における記載の通りに行った 。抗 HAおよび抗 FLAGモノクローナル抗体は Sigma社力 購入した。  [0105] Immunoprecipitation and immunoblotting were performed in the literature (Honda, K., Yanai, H., Mizutani, T., Negis hi, H., Shimada, N., Suzuki, N., Ohba'Y., Takaoka, A , Yeh, WC & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416-15421). Anti-HA and anti-FLAG monoclonal antibodies were purchased from Sigma.
[レポーターアツセィ]  [Reporter Atssey]
[0106] 24ゥエルプレートに播いたヒト胎児腎臓(HEK) 293T細胞に対して、 100ngのレポ一 タープラスミド [P55C1B- Lucまたは pl25- Luc]を、 IRF、 MyD88および TRAF6に関する 発現プラスミドとともに、 FuGENE 6試薬(Roche Diagnostics)を用いて一過性にトラン スフエタトした。ェンプティベクター [pcDNA3.1 (Invitrogen) ]の補充により、 DNAの総 量を一定に保った。トランスフエクシヨン 24時間後に細胞を収集し、ルシフェラーゼ活 性を文献(Honda, K., Yanai, H" Mizutani, T" Negishi, H" Shimada, N" Suzuki, N" Ohba, Y., Takaoka, A., Yeh, W. C. & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101 , 15416-15421)における記載の通りに測定した。 [0106] 100 ng of reporter plasmid [P55C1B-Luc or pl25-Luc], along with expression plasmids for IRF, MyD88 and TRAF6, on human embryonic kidney (HEK) 293T cells seeded on 24 well plates Transiently transferred using 6 reagents (Roche Diagnostics). The total amount of DNA was kept constant by supplementing the empty vector [pcDNA3.1 (Invitrogen)]. Transfer cells 24 hours later and collect luciferase activity. Sexuality (Honda, K., Yanai, H "Mizutani, T" Negishi, H "Shimada, N" Suzuki, N "Ohba, Y., Takaoka, A., Yeh, WC & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416-15421).
[サイト力イン産生の測定] [Measurement of site force in production]
常在性腹腔マクロファージを腹腔洗浄によって入手した。 lipDC (8220^011^° mediate細胞)は文献(Honda, , Yanai, H., Negishi, H., Asagiri, M., Sato, M. , Mizuta ni, T" Shimada, N. , Ohba, Y" Takaoka, A. , Yoshida, N. & Taniguchi, T. (2005) Nat ure 434, 772-777)における記載の通りに調製した。骨髄由来マクロファージ(BMM) の入手に関しては、骨髄細胞を 20ngZml M-CSF (Genzyme)とともに 6日間培養した 。完全長または変異型 IRF-4をトランスフエタトした RAW 264.7細胞(5 X 107個 Zml)は 、 Nucleofector装置(Amaxa, Gaithersburg, MD)を用いた発現ベクター (3 μ g)の電気 穿孔によって調製した。細胞を 96ゥエルプレートに 2 X 105個/ mlで播き、 0.3 M OD Ν1668、 3 ^ Μ ODN- D19、 1 μ g/ml LPSおよび 5 μ gZmlポリ (U) (DOTAPと複合体 化させたもの)または 10 μ gZmlペプチドダリカンにより指定された期間にわたり刺激 した。指定された場合には、 30単位 Zmlの IFN- γ (Genzyme)を培地に添カ卩した。培 養上清中の IL-12p40、 IL-6および TNF- aの濃度は ELISAキット(R & D Systems)を 用いて決定した。マウス IFN- α用の ELISAキットは PBL Biomedical Laboratories社(Pi scataway, NJ)から購入した。 RNA分析に関しては、全 RNAを Sepaso卜 RNA I Super (N acalai Tesque, Kyoto)を用いて抽出し、定量的リアルタイム RT- PCR分析を LightCycl erおよび SYBR Green system (Roche Diagnostics)を用いて行った。データは各試料 における β -ァクチンのレベルに対して標準化した。 IL- 12p40、 IL-6, TNF- aおよび β -ァクチンに対するプライマーは実施例 1と同じものを用いた。 IRF- 4、 I κ Β ζ 、 FLI CE阻害タンパク質(FLIP)、血管細胞接着分子- 1 (VCAM-1)およびマクロファージ炎 症性タンパク質 (MIP) 2に対しては以下のプライマーを用いた。 Resident peritoneal macrophages were obtained by peritoneal lavage. lipDC (8220 ^ 011 ^ ° mediate cell) is available in the literature ( Honda ,, Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizuta ni, T "Shimada, N., Ohba, Y") Takaoka, A., Yoshida, N. & Taniguchi, T. (2005) Nature 434, 772-777). For obtaining bone marrow derived macrophages (BMM), bone marrow cells were cultured with 20 ng Zml M-CSF (Genzyme) for 6 days. RAW 264.7 cells (5 x 10 7 Zml) transfected with full-length or mutant IRF-4 were prepared by electroporation of an expression vector (3 μg) using the Nucleofector apparatus (Amaxa, Gaithersburg, MD) did. Cells are plated on 96-well plates at 2 x 10 5 cells / ml, 0.3 M OD Ν1668, 3 ^ Μ ODN-D19, 1 μg / ml LPS and 5 μg Zml poly (U) (complexed with DOTAP ) Or 10 μg Zml peptide darlicans for the specified period. When specified, 30 units Zml of IFN-γ (Genzyme) was added to the medium. The concentrations of IL-12p40, IL-6 and TNF-a in the culture supernatant were determined using an ELISA kit (R & D Systems). An ELISA kit for mouse IFN-α was purchased from PBL Biomedical Laboratories (Piscataway, NJ). For RNA analysis, total RNA was extracted using Sepaso RNA I Super (Nacalai Tesque, Kyoto), and quantitative real-time RT-PCR analysis was performed using LightCycler and SYBR Green system (Roche Diagnostics). Data were normalized to the level of β-actin in each sample. The same primers as in Example 1 were used for IL-12p40, IL-6, TNF-a and β-actin. The following primers were used for IRF-4, IκΒζ, FLI CE inhibitory protein (FLIP), vascular cell adhesion molecule-1 (VCAM-1) and macrophage inflammatory protein (MIP) 2.
IRF-4 5 -GCCCAACAAGCTAGAAAG-3' (配列番号: 85)および IRF-4 5 -GCCCAACAAGCTAGAAAG-3 '(SEQ ID NO: 85) and
5 '-TCTCTGAGGGTCTGGAAACT-3 ' (配列番号: 86);  5 '-TCTCTGAGGGTCTGGAAACT-3' (SEQ ID NO: 86);
Ι κ Β ζ 5 '-TTGGTGACTTTGGGTGCT-3 ' (配列番号: 87)および Ι κ ζ ζ 5 '-TTGGTGACTTTGGGTGCT-3' (SEQ ID NO: 87) and
5'- TGACATCAGCCCCACATTT- 3' (配列番号: 88); FLIP 5 '-ACAGAGTGAGGCGGTTTGAC-3 ' (配列番号: 89)および5'- TGACATCAGCCCCACATTT-3 '(SEQ ID NO: 88); FLIP 5 '-ACAGAGTGAGGCGGTTTGAC-3' (SEQ ID NO: 89) and
5 '-GCTCTCACCAATCTCCATCAG-3 ' (配列番号: 90); VCAM-1 5 '-CCGTCATTGAGGATATTGG-3 ' (配列番号: 91)および 5 '-GCTCTCACCAATCTCCATCAG-3' (SEQ ID NO: 90); VCAM-1 5 '-CCGTCATTGAGGATATTGG-3' (SEQ ID NO: 91) and
5 '-TCATTGTCACAGCACCAC-3 ' (配列番号: 92);  5 '-TCATTGTCACAGCACCAC-3' (SEQ ID NO: 92);
MIP2 5 '-GTGCCTCGCTGTCTGAGAGTT-3 ' (配列番号: 93)および  MIP2 5 '-GTGCCTCGCTGTCTGAGAGTT-3' (SEQ ID NO: 93) and
5し AGTTCCCAACTCACCCTCTCC- 3' (配列番号: 94)  5 AGTTCCCAACTCACCCTCTCC-3 '(SEQ ID NO: 94)
(2— 2) IRF-4と MyD88との相互作用  (2-2) Interaction between IRF-4 and MyD88
[0108] 上記実施例 1により、 IRFの 2つのメンバーである IRF-5および IRF-7が MyD88と相互 作用すること、ならびにこれらの IRFがそれぞれ炎症誘発性サイト力インおよび I型 IFN の TLR依存的誘導に重要であることが示された。また、本発明者らは、 IRF-7も MyD8 8と相互作用することにより、同様の役割を担うことが明らかにしている。これらの知見 により、他の IRFメンバーも同じく TLR-MyD88シグナル伝達に関与するか否かという 問題が提起された。そこで本発明者らは、 IRF-4および IRF-8 (いずれも主として造血 系由来の細胞で発現される)と MyD88との相互作用について検討した。まず、 IRF-4 および IRF-8のそれぞれを YFPで標識したもの(YFP-IRF-4および YFP-IRF-8と称す る)を、 CFPで標識した MyD88 (CFP-MyD88)とともに HEK293T細胞で発現させ、この 細胞に対する蛍光顕微鏡分析を行った。図 12aに示されているように、 YFP-IRF-4は 主として核で発現されたが、カゝなりの割合が細胞質でも発現され、 CFP-MyD88と共 存していた。これに対して、 YFP-IRF-8は CFP-MyD88と共存しなかった。さらに、 FR ETc画像により、 CFP-MyD88から YFP-IRF-4への高度のエネルギー移動がみられる 力 これは YFP-IRF-8にはみられないことが判明し、このことから MyD88および IRF-4 が互いに直接接触していることが示された(図 12bおよび c)。これに一致して、 HEK29 3T細胞で共発現させた場合に、 HA標識 IRF-4 (HAIRF-4)は FLAG標識 MyD88 (FLA G-MyD88)と免疫共沈したが、 HA-IRF-8とは共沈しなかった(図 12d)。もう 1つの IRF メンバーであり、 IFNシグナル伝達に関与することが知られている IRF-9は、これらのァ ッセィにお 、て相互作用の徴候を何ら示さな力つた(図 12cおよび d)。 [0108] According to Example 1 above, IRF-5 and IRF-7, two members of IRF, interact with MyD88, and these IRFs are TLR-dependent in pro-inflammatory site force-in and type I IFNs, respectively. It was shown to be important for sexual induction. In addition, the present inventors have revealed that IRF-7 also plays a similar role by interacting with MyD88. These findings raised the question of whether other IRF members are also involved in TLR-MyD88 signaling. Therefore, the present inventors examined the interaction between IRF-4 and IRF-8 (both expressed mainly in cells derived from the hematopoietic system) and MyD88. First, IRF-4 and IRF-8 labeled with YFP (referred to as YFP-IRF-4 and YFP-IRF-8) are expressed in HEK293T cells together with CFP-labeled MyD88 (CFP-MyD88). The cells were subjected to fluorescence microscope analysis. As shown in Figure 12a, YFP-IRF-4 was expressed primarily in the nucleus, but a significant proportion was also expressed in the cytoplasm and co-existed with CFP-MyD88. In contrast, YFP-IRF-8 did not coexist with CFP-MyD88. In addition, the FR ETc image shows that there is a high energy transfer from CFP-MyD88 to YFP-IRF-4. This is not seen in YFP-IRF-8, which indicates that MyD88 and IRF- 4 were shown to be in direct contact with each other (Figures 12b and c). Consistent with this, when co-expressed in HEK29 3T cells, HA-tagged IRF-4 (HAIRF-4) co-immunoprecipitated with FLAG-tagged MyD88 (FLA G-MyD88), but with HA-IRF-8 Did not coprecipitate (Fig. 12d). IRF-9, another IRF member, known to be involved in IFN signaling, has shown no signs of interaction in these assays (Figures 12c and d).
(2— 3) IRF-4と相互作用する MyD88の領域  (2-3) MyD88 region interacting with IRF-4
[0109] 次に、 FLAGェピトープでそれぞれ標識した MyD88の欠失変異体を作製することに より、 IRF-4との相互作用を担う MyD88の領域について検討した(図 13a)。 HEK293T 細胞にぉ 、て各々の FLAG- MyD88変異体を HA-IRF-4と共発現させた上で免疫共 沈分析に供した。図 13bに示されているように、 FLAG- MyD88 ( A 1-151)および FLA G-MyD88 ( Δ 173-296)は HA- IRF- 4と相互作用した力 FLAG- MyD88 ( Δ 1-193)お よび FLAG-MyD88 ( A 60-296)は相互作用しなかった。興味深いことに、 HA- IRF-5と 相互作用する FLAG_MyD88の領域を本発明者らが分析した際にも同様の結果が得 られ(図 13b)、このことから、 IRF-4および IRF-5が、 MyD88の中央領域(中間ドメイン、 および TollZlL-1受容体ドメインの一部)との相互作用に関して互いに競合すること が示唆された。 [0109] Next, a deletion mutant of MyD88 labeled with a FLAG epitope was prepared. Thus, the MyD88 region responsible for interaction with IRF-4 was examined (Fig. 13a). HEK293T cells were coexpressed with HA-IRF-4 after each FLAG-MyD88 mutant was subjected to co-immunoprecipitation analysis. As shown in Figure 13b, FLAG-MyD88 (A 1-151) and FLA G-MyD88 (Δ 173-296) interact with HA-IRF-4 FLAG-MyD88 (Δ 1-193) And FLAG-MyD88 (A 60-296) did not interact. Interestingly, similar results were obtained when the inventors analyzed the region of FLAG_MyD88 that interacts with HA-IRF-5 (Fig. 13b), indicating that IRF-4 and IRF-5 It was suggested that they compete with each other for interaction with the central region of MyD88 (intermediate domain and part of the TollZlL-1 receptor domain).
(2— 4) MyD88相互作用に関する IRF-4と IRF-5との競合  (2-4) Competition between IRF-4 and IRF-5 for MyD88 interaction
[0110] MyD88の異なる領域、すなわち N末端領域が IRF-7との相互作用を担うため(Honda , K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., buzuki, N., Ohba, Y., Takao ka, A., Yeh, W. C. & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416-1 5421)、 IRF-4は MyD88相互作用に関して IRF-5とは競合するが IRF-7とは競合しない と思われる。この可能性を検証するために、本発明者らは、 IRF-5または IRF-7と MyD 88との結合を IRF-4の発現レベルを上昇させながら評価する競合アツセィをデザイン した。 HEK293T細胞に対して、一定量の HA-IRF-5または HA-IRF-7発現ベクター、 F LAG- MyD88発現ベクター、さらには量を漸増させながら HA-IRF-4発現ベクターをト ランスフエタトし、 IRF_MyD88相互作用を免疫共沈分析によってモニターした。これに 並行して、 MyD88とは相互作用しない HA- IRF- 3 (Honda, K., Yanai, H., Mizutani, T. , Negishi, Η., Shimada, Ν., Suzuki, Ν., Ohba, Υ., Takaoka, A., Yeh, W. C. & Tanig uchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416- 15421)も対照として含めた。 図 13cに示されているように、 IRF-4は IRF-5と MyD88との相互作用を用量依存的な様 式で阻害したが(上方)、 IRF-4の発現は IRF-7と MyD88との相互作用には影響を及 ぼさな力つた(下方)。 [0110] Because a different region of MyD88, namely the N-terminal region, interacts with IRF-7 (Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., buzuki , N., Ohba, Y., Takao ka, A., Yeh, WC & Taniguchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416-1 5421), IRF-4 interacts with MyD88 It seems to compete with IRF-5 but not with IRF-7. To test this possibility, we designed a competitive assembly that evaluates the binding of IRF-5 or IRF-7 to MyD88 while increasing the expression level of IRF-4. For HEK293T cells, transfer a certain amount of HA-IRF-5 or HA-IRF-7 expression vector, FLAG-MyD88 expression vector, and gradually increase the amount of HA-IRF-4 expression vector, then IRF_MyD88 The interaction was monitored by co-immunoprecipitation analysis. In parallel, HA-IRF-3 (Honda, K., Yanai, H., Mizutani, T., Negishi,,., Shimada, Ν., Suzuki, Ν., Ohba, which does not interact with MyD88 Υ, Takaoka, A., Yeh, WC & Tanig uchi, T. (2004) Proc. Natl. Acad. Sci. USA 101, 15416-15421) were also included as controls. As shown in Figure 13c, IRF-4 inhibited the interaction between IRF-5 and MyD88 in a dose-dependent manner (upper), but IRF-4 expression was reduced between IRF-7 and MyD88. It exerted no influence on the interaction (downward).
(2— 5) IRF-4による IRF-5依存的遺伝子誘導の阻害  (2-5) Inhibition of IRF-5-dependent gene induction by IRF-4
[0111] MyD88相互作用に関して IRF-5と選択的に競合する IRF-4の意義をさらに検討する ための 1つのアプローチとして、本発明者らは次に、一方が調節ドメインを欠失し (IRF -4 Δ RD)、もう一方が DNA結合ドメインを欠失して!/、る(IRF- 4 Δ DBD)、 2種類の IRF- 4変異体を、 YFPで標識したもの(それぞれ YFP- IRF- 4 Δ RDおよび YFP- IRF- 4 Δ DB D;図 14a)を作製した。 V、ずれも主として核内で発現される YFP-IRF-4および YFP-IR F-4 Δ DBDとは対照的に、 YFP-IRF-4 Δ RDは主として細胞質で発現された(図 14b) 。図 14cに示されているように、これらの IRF-4変異体は両方とも依然として MyD88と相 互作用した。 [0111] As one approach to further explore the significance of IRF-4, which selectively competes with IRF-5 for MyD88 interaction, we next deleted one of the regulatory domains (IRF -4 Δ RD), the other lacks a DNA-binding domain! /, (IRF-4 Δ DBD), and two types of IRF-4 mutants labeled with YFP (each YFP-IRF- 4ΔRD and YFP-IRF-4ΔDBD; FIG. 14a) were prepared. V, in contrast to YFP-IRF-4 and YFP-IRF-4ΔDBD, which are also predominantly expressed in the nucleus, YFP-IRF-4ΔRD was mainly expressed in the cytoplasm (FIG. 14b). Both these IRF-4 variants still interacted with MyD88, as shown in Figure 14c.
[0112] 上述の実施例 1によって、 IRF-5が MyD88および TRAF6によって活性化されること が示された。すなわち、 IRF-5と MyD88および TRAF6との共発現は、多数の IFN応答 配列(ISRE)を含む p55ClB-Lucレポーター遺伝子の活性ィ匕をもたらす。以上の結果 を受けて、本発明者らは、 IRF-4およびその変異体力 IRF-5により媒介される ISRE活 性化を妨げるか否かを検討した。図 14dに示されているように、 IRF_5、 MyD88および TRAF6の共発現によるレポーター遺伝子の活性化は、完全長 IRF-4の発現によって 用量依存的な様式で抑制された。さらに、同様の抑制効果が HA-IRF-4 A RDおよび HA-IRF-4 Δ DBD変異体でも依然として観察され(図 14d)、このことから IRF-4が細胞 質中の IRF-5に対して抑制効果を発揮することが裏づけられた。 IRF-4が MyD88に関 して IRF-7と競合しなかったことから予想されるように(図 13c)、 IRF-4発現は IFN- βプ 口モーター(pl25-Luc)の MyD88-IRF-7依存的活性化に対して影響を及ぼさなかつ た(図 14 。 [0112] Example 1 above showed that IRF-5 was activated by MyD88 and TRAF6. That is, co-expression of IRF-5 with MyD88 and TRAF6 results in the activity of the p55ClB-Luc reporter gene containing multiple IFN response elements (ISRE). Based on the above results, the present inventors examined whether or not the ISRE activation mediated by IRF-4 and its mutant force IRF-5 is prevented. As shown in Figure 14d, reporter gene activation by co-expression of IRF_5, MyD88 and TRAF6 was suppressed in a dose-dependent manner by full-length IRF-4 expression. In addition, a similar inhibitory effect was still observed in HA-IRF-4 A RD and HA-IRF-4 Δ DBD mutants (Fig. 14d), suggesting that IRF-4 is less potent than IRF-5 in the cytoplasm. It was confirmed that the inhibitory effect was exhibited. As IRF-4 is expected since it did not compete with IRF-7 in about the MyD88 (FIG. 13c), MyD88-IRF of IRF-4 expression IFN-beta-flop opening motor (pl25 -L uc) No effect on -7 dependent activation (Figure 14).
[0113] 本発明者らはまた、 ODN1668と命名された CpG- ODNによる TLR9活性化に応答し て起こる、 RAW264.7細胞における YFP標識 IRF-5の核移行に対する IRF-4発現の影 響も検討した。図 14fに示されているように、 ODN1668刺激を行うと YFP- IRF- 5のかな りの割合が核内に検出されるようになり、この核移行は IRF-4を共発現させると抑制さ れた。  [0113] We also observed the effect of IRF-4 expression on nuclear translocation of YFP-labeled IRF-5 in RAW264.7 cells, in response to TLR9 activation by CpG-ODN, designated ODN1668. investigated. As shown in Figure 14f, a significant percentage of YFP-IRF-5 is detected in the nucleus after ODN1668 stimulation, and this nuclear translocation is suppressed when IRF-4 is co-expressed. It was.
(2— 6) IRF4-欠損マクロファージにおける TLR刺激に対する過敏性  (2-6) Hypersensitivity to TLR stimulation in IRF4-deficient macrophages
[0114] IRF-4は当初、リンパ球の活性ィ匕および分化に働く IRFファミリーの T細胞および B細 胞特異的なメンバーとして同定された力 以上の結果は全体として、 TLRシグナル伝 達における IRF-4の従来知られていな力つた機能を示している。本発明者らは、種々 の TLRリガンド、すなわち ODN1668 (TLR9に対する)、 LPS (TLR4に対する)および合 成一本鎖 RNA [ポリ(U) ] (TLR7に対する)(実施例 1に示したとおり、これらはいずれ も炎症誘発性サイト力イン産生に関する IRF-5経路を活性ィ匕する)で刺激した際の、 野生型マウス由来の腹腔マクロファージにおける IRF-4 mRNAの誘導について検討 した。図 15aに示されているように、 IRF-4 mRNAはこれらの刺激によって誘導され、こ のことから IRF-4-発現レベル力 TLR刺激後に上昇し、この際に IRF-4が負のフィード ノ ック調節因子として作用する可能性が示唆された。興味深いことに、 Irf4— /_腹腔マク 口ファージは、種々の TLR刺激で刺激された場合、野生型マクロファージに比して 2? 3倍高いレベルでの IL- 6、 IL-12p40および TNF- αの誘導を示した(図 15b)。これに 対して、 Irf —マウス由来の pDCにおける、 IFN誘導性 CpG- ODN、 ODN- D19 (14)に よる TLR9活性化による IFN- α誘導は正常であった(図 15c)。この結果は、 IFN- α誘 導のために必須であると 、う IRF-7の機能力 IRF-4による影響を受けな 、ことを示す 、従来および上記の結果と一致する。 [0114] IRF-4 was initially identified as an IRF family T cell and B cell specific member that acts on lymphocyte activity and differentiation. -4 shows powerful functions that have not been known so far. We have various TLR ligands: ODN1668 (for TLR9), LPS (for TLR4) and Single-stranded RNA [poly (U)] (to TLR7) (as shown in Example 1, all of which activate the IRF-5 pathway for pro-inflammatory site force-in production) We investigated the induction of IRF-4 mRNA in peritoneal macrophages derived from wild-type mice. As shown in Figure 15a, IRF-4 mRNA is induced by these stimuli, which increases the level of IRF-4-expression level after TLR stimulation, when IRF-4 is negatively fed. This suggests the possibility of acting as a regulator. Interestingly, Irf4 — / _ peritoneal macaque phages are IL-3, IL-12p40 and TNF-α at levels 2-3 times higher than wild type macrophages when stimulated with various TLR stimuli. (Figure 15b). In contrast, IFN-α induction by TLR9 activation by IFN-induced CpG-ODN and ODN-D19 (14) was normal in Irf-mouse-derived pDC (FIG. 15c). This result is indispensable for induction of IFN-α, and is consistent with the conventional and the above results, indicating that it is not affected by the functional ability of IRF-7, IRF-4.
[0115] 野生型マウス、 Irf4— /_または IriS— 'マウス由来の常在性腹腔マクロファージを ODN16 68により刺激し、炎症誘発性サイト力イン、ケモカインおよび NF- κ Bにより誘導される 遺伝子の mRNAの誘導を分析した。定量的 RT-PCR分析による評価で、 Irf4— Λマクロ ファージが ODN1668刺激に対して IriS— 'マクロファージの鏡像となる mRNA誘導プロ ファイルを示したことは注目に値する。 TLR9による mRNA誘導が IRF-5依存的である 遺伝子(IL-12p40、 IL-6および MIP2)に関しては、誘導レベルが IRF-4の非存在下で 上昇したが、 IRF-5が mRNA誘導のために必要でない他の遺伝子に関する Irf4— /_マク 口ファージにおける mRNA誘導レベル(IB、 FLIPおよび VC AM- 1)は、野生型マクロフ ァージにおけるものと同じままであった(図 15d)。後者の遺伝子は NF- κ B転写因子 に依存的であることが知られており、本発明者らの結果は、少なくとも本発明者らの 実験条件下では、 TLR-NF- κ B経路が IRF-4による影響を受けないことを意味する。 (2 - 7) IRF-5および IRF-4の細胞種特異的作用 [0115] Residual peritoneal macrophages from wild-type mice, Irf4 — / _ or IriS—'stimulated with ODN16 68, and mRNA of genes induced by pro-inflammatory site force-in, chemokines and NF-κB The induction of was analyzed. It is noteworthy that, by quantitative RT-PCR analysis, Irf4- Λ macrophage showed an mRNA induction profile that mirrored IriS— macrophages upon ODN1668 stimulation. Induction of mRNA by TLR9 is dependent on IRF-5 (IL-12p40, IL-6 and MIP2), the induction level increased in the absence of IRF-4, but IRF-5 was induced by mRNA. mRNA induction level (IB, FLIP, and VC AM- 1) in Irf4- / _ macro port phage for other genes not required for remained the same as in wild-type macrophages (FIG. 15d). The latter gene is known to be dependent on the NF-κB transcription factor, and our results indicate that, at least under our experimental conditions, the TLR-NF-κB pathway is It means not affected by -4. (2-7) Cell type-specific effects of IRF-5 and IRF-4
[0116] 本発明者らはまた、 M-CSF下で培養した BMMにおける炎症誘発性サイト力イン誘 導についても検討した。奇妙なことに、 IRF-5または IRF-4のいずれかの非存在下で の BMMにお 、て観察された炎症誘発性サイト力インの誘導レベルは正常であった( 図 16a)。TLRシグナル伝達における IRF-5の必要性に関するこの差異の理由は現時 点では不明である力 本発明者らはインビトロで培養した榭状細胞で GM-CSFまたは Flt3リガンドによって同様の結果を得ている(非提示データ)。このため、本発明者ら は TLRシグナル伝達における IRF-5の必要性は細胞の種類および Zまたは分ィ匕状 態に応じて異なると推定して 、る。これらの細胞はインビボでの分ィ匕とは異なるインビ トロ分ィ匕を来した可能性がある。いかなる機序であるにせよ、本発明者らの結果は、 I RF-4が、 MyD88-IRF_5経路の機能が重要である細胞にぉ 、て阻害効果を発揮する ことを示唆している。 [0116] The present inventors also examined the induction of proinflammatory site force in BMM cultured under M-CSF. Curiously, the level of induction of proinflammatory site force-in observed in BMM in the absence of either IRF-5 or IRF-4 was normal (Figure 16a). The reason for this difference in the need for IRF-5 in TLR signaling is currently Unclear power in terms We have obtained similar results with GM-CSF or Flt3 ligand in rodent cells cultured in vitro (data not shown). For this reason, the present inventors presume that the need for IRF-5 in TLR signaling varies depending on the cell type and Z or sorting state. These cells may have undergone in vitro sorting that differs from in vivo sorting. Whatever the mechanism, our results suggest that IRF-4 exerts an inhibitory effect on cells where the function of the MyD88-IRF_5 pathway is important.
[0117] IRF-4による TLRシグナル伝達の負の調節をさらに評価するための 1つのァプロ一 チとして、通常であれば IRF-4が低レベルで発現される(非提示データ) RAW264.7細 胞に対して IRF-4発現ベクターを一過性にトランスフエタトし、 ODN1668刺激によるサ イト力イン mRNAの誘導を分析した。図 16bに示されているように、 IRF-4発現細胞では IL-6 mRNAおよび IL-12p40 mRNAの誘導が顕著に抑制された。上記のレポーターァ ッセィと一致して、 RAW264.7細胞におけるこれらのサイト力イン遺伝子の誘導が IRF- 4 A DBDの発現によっても抑制されたことは注目に値する(図 14d)。一方、 IRF-5には 依存せず NF- κ Bに依存的である I κ Β ζ mRNAの誘導(図 15d)は、 IRF-4発現細胞 および IRF-4 Δ DBD発現細胞の!/ヽずれにお ヽても正常に起こった(図 16b)。これらの 結果は全体として、 IRF-4が IRF-5と選択的に競合することによって負の調節因子とし て機能するという見解を裏づける。  [0117] As an approach to further evaluate the negative regulation of TLR signaling by IRF-4, IRF-4 is normally expressed at low levels (data not shown). The IRF-4 expression vector was transiently transferred to the vesicles, and the induction of site force-in mRNA by ODN1668 stimulation was analyzed. As shown in FIG. 16b, induction of IL-6 mRNA and IL-12p40 mRNA was remarkably suppressed in IRF-4 expressing cells. Consistent with the reporter assay above, it is noteworthy that the induction of these site force in genes in RAW264.7 cells was also suppressed by the expression of IRF-4A DBD (FIG. 14d). On the other hand, the induction of Iκζζ mRNA (Fig. 15d), which is independent of IRF-5 and dependent on NF-κB, was observed between IRF-4 expressing cells and IRF-4 ΔDBD expressing cells. However, it occurred normally (Fig. 16b). Overall, these results support the view that IRF-4 functions as a negative regulator by selectively competing with IRF-5.
(2 - 8) TLRシグナル伝達における IRF-4のインビボでの役割  (2-8) In vivo role of IRF-4 in TLR signaling
[0118] IRF-4のインビボでの機能を評価するために、野生型マウスおよび Irf4— /_マウスに対 して ODN1668を静注した。図 17aに示されたように、 Irf4— /_マウスは、致死性 ODN1668 負荷投与後の血清サイト力インレベルが大幅に上昇したことから分力るように、野生 型マウスよりも強い炎症反応を示した。実際、 Irf4— Λマウスは野生型対照マウスよりも 早く(注射後 8〜10時間の間に)死亡した(図 17b)。 Irf4— /_マウス由来の脾細胞および 肝細胞では IL-12p40 mRNAおよび IL-6 mRNAの誘導レベルが常に上昇していた( 非提示データ)。これらの結果は、 TLRシグナル伝達の極めて重要な負の調節因子と しての IRF-4のインビボでの役割を強く示すものである。 [0118] To evaluate the in vivo function of IRF-4, ODN1668 was intravenously administered to wild-type mice and Irf4- / _ mice. As shown in Figure 17a, Irf4 — / _ mice have a stronger inflammatory response than wild-type mice, as can be attributed to the significant increase in serum site power levels after lethal ODN1668 challenge. Indicated. In fact, Irf4- Λ mice died earlier (8-10 hours after injection) than wild-type control mice (Figure 17b). In Irf4- / _ spleen cells from mice and hepatocytes induced levels of IL-12p40 mRNA and IL-6 mRNA was constantly increased (data not shown). These results strongly indicate the in vivo role of IRF-4 as a crucial negative regulator of TLR signaling.
産業上の利用可能性 本発明によって、炎症性サイト力イン抑制剤の新規スクリーニング方法が提供され た。本発明は、 IRF-5が TRLシグナル経路の主要メンバーとして炎症性サイト力イン発 現に関与する点に着目したスクリーニング方法である。 IRF-5が TRLシグナル経路に かかわることは、本発明によって初めて明らかになつたものであり、本発明のスクリー ユング方法は、従来にない全く画期的なスクリーニング方法である。炎症性サイトカイ ン抑制剤は、免疫疾患等の治療薬となりうる。したがって、本発明のスクリーニング方 法によれば、従来のスクリーニング方法では検出し得な力つた、免疫疾患治療薬など の開発を可能とする。また、本発明は、 TRLシグナル経路における IRF-5の機能を阻 害することにより炎症性サイト力イン発現を抑制する物質として、 IRF-4を見出した。 IR F-4は、免疫疾患などの新規治療薬となりうる。 Industrial applicability According to the present invention, a novel screening method for an inflammatory site force-in inhibitor is provided. The present invention is a screening method focusing on the point that IRF-5 is involved in the expression of inflammatory site force in as a major member of the TRL signal pathway. It is clear for the first time by the present invention that IRF-5 is involved in the TRL signaling pathway, and the screening method of the present invention is an unprecedented and completely innovative screening method. Inflammatory cytokine inhibitors can be therapeutic agents for immune diseases and the like. Therefore, according to the screening method of the present invention, it is possible to develop a therapeutic agent for immune diseases and the like that cannot be detected by conventional screening methods. In addition, the present invention has found IRF-4 as a substance that suppresses the expression of inflammatory site force-in by inhibiting the function of IRF-5 in the TRL signal pathway. IR F-4 can be a novel therapeutic agent for immune diseases and the like.

Claims

請求の範囲 The scope of the claims
[1] IRF-5発現細胞に被検物質を接触させたときの該細胞における IRF-5活性を指標と する、炎症性サイト力イン抑制剤のスクリーニング方法。  [1] A screening method for an inflammatory site force-in inhibitor using as a marker the IRF-5 activity in an IRF-5-expressing cell brought into contact with a test substance.
[2] 下記 (a)力も (d)の工程を含む、炎症性サイト力イン抑制剤のスクリーニング方法。 [2] A screening method for an inflammatory site force-in inhibitor comprising the following steps (a) and (d):
(a) ISRE配列を含むプロモーター領域の下流に機能的に連結したレポーター遺伝子 を保持する IRF-5発現細胞に、被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-5 expressing cell carrying a reporter gene operably linked downstream of a promoter region containing an ISRE sequence
(b)該 IRF-5発現細胞に TLRのリガンドまたはウィルスを接触させる工程  (b) contacting the TRF ligand or virus with the IRF-5 expressing cells
(c)該 IRF-5発現細胞のレポーター活性を検出する工程  (c) detecting the reporter activity of the IRF-5 expressing cell
(d)被検物質接触によるレポーター活性が、被検物質非接触のコントロールよりも低 V、値を示す被検物質を選択する工程  (d) A step of selecting a test substance that shows a value that is lower in the reporter activity due to the contact of the test substance than in the non-test substance contact control.
[3] IRF-5発現細胞が内因性 IRF-5を発現する細胞である、請求項 1または請求項 2に記 載のスクリーニング方法。  [3] The screening method according to claim 1 or 2, wherein the IRF-5-expressing cells are cells that express endogenous IRF-5.
[4] IRF-5発現細胞が、外来導入された IRF-5を発現する細胞である、請求項 1または請 求項 2に記載のスクリーニング方法。 [4] The screening method according to claim 1 or claim 2, wherein the IRF-5-expressing cells are cells expressing IRF-5 introduced exogenously.
[5] DNA上の転写因子結合部位を予測するアプリケーションである「TFSEARCH」(http:/[5] "TFSEARCH" (http: /), an application that predicts transcription factor binding sites on DNA
/www.cbrc.jp/research/db/TFSEARCHJ.html)を用いて、プロモーター領域を含む 炎症性サイト力インの遺伝子全領域上の転写因子結合領域を検索した場合に、 scor eを 50ポイント以上に設定して得られる配列のうち、 ISRE配列、 IRF-1結合配列および/www.cbrc.jp/research/db/TFSEARCHJ.html) is used to search for transcription factor binding regions on the entire inflammatory site force-in gene region including the promoter region. Among sequences obtained by setting to ISRE sequence, IRF-1 binding sequence and
Zまたは IRF-2結合配列として検出された配列を ISRE配列として用いる、請求項 2か ら請求項 4のいずれかに記載のスクリーニング方法。 The screening method according to any one of claims 2 to 4, wherein a sequence detected as a Z or IRF-2 binding sequence is used as an ISRE sequence.
[6] ISRE配列が、配列番号 7から配列番号 58の!、ずれか 1つ以上の配列である請求項 2 力 請求項 5に記載のスクリーニング方法。 [6] The screening method according to claim 2, wherein the ISRE sequence is a sequence of SEQ ID NO: 7 to SEQ ID NO: 58, or one or more of them.
[7] TLR力 TLR3、 TLR4、 TLR5、 TLR7、 TLR8、 TLR9の!、ずれか 1つ以上の TLRである[7] TLR force TLR3, TLR4, TLR5, TLR7, TLR8, TLR9 !, one or more TLRs
、請求項 1から 8のいずれかに記載のスクリーニング方法。 The screening method according to any one of claims 1 to 8.
[8] IRF-5発現細胞に被検物質を接触させたときの該細胞における IRF-5発現量を指標 とする、炎症性サイト力イン抑制剤のスクリーニング方法。 [8] A screening method for an inflammatory site force-in inhibitor using, as an index, the amount of IRF-5 expressed in an IRF-5-expressing cell when the test substance is brought into contact with the test substance.
[9] 下記 (a)から(c)の工程を含む、請求項 8に記載のスクリーニング方法。 [9] The screening method according to claim 8, comprising the following steps (a) to (c):
(a) IRF-5発現細胞に被検物質を接触させる工程 (b)該 IRF-5発現細胞中の IRF-5 mRNAを測定する工程 (a) A step of bringing a test substance into contact with an IRF-5 expressing cell (b) a step of measuring IRF-5 mRNA in the IRF-5-expressing cells
(c)被検物質接触による mRNA量力 被検物質非接触のコントロールの mRNA量より 小さ!ゝ被検物質を選択する工程  (c) Amount of mRNA due to contact with test substance Less than the amount of mRNA in non-test substance contact control!
[10] 下記 (a)から(c)の工程を含む、請求項 8記載のスクリーニング方法。  [10] The screening method according to claim 8, comprising the following steps (a) to (c):
(a) IRF-5発現細胞に被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-5 expressing cell
(b)該 IRF-5発現細胞中の IRF-5タンパク質を定量する工程  (b) Quantifying the IRF-5 protein in the IRF-5 expressing cells
(c)被検物質接触によるタンパク質の量力 被検物質非接触のコントロールのタンパ ク質の量より小さ!/ヽ被検物質を選択する工程  (c) Quantity of protein due to contact with test substance Smaller than the amount of protein for non-test substance contact control!
[11] 被検物質存在下において MyD88と IRF-5とを接触させたときの、被検物質による MyD 88と IRF-5との結合阻害能を指標とする、炎症性サイト力イン抑制剤のスクリーニング 方法。  [11] An inflammatory site force-in inhibitor that uses the test substance's ability to inhibit the binding of MyD 88 and IRF-5 as an index when MyD88 is contacted with IRF-5 in the presence of the test substance. Screening method.
[12] 下記 (a)力も (c)の工程を含む、炎症性サイト力イン抑制剤のスクリーニング方法。  [12] A screening method for an inflammatory site force-in inhibitor comprising the following steps (a) and (c):
(a)ドナー蛍光タンパク質遺伝子とァクセプタ蛍光タンパク質遺伝子を、 MyD88遺伝 子または IRF-5遺伝子のうち、それぞれ異なるどちらかに連結し、蛍光タンパク質遺 伝子- MyD88遺伝子構築物および蛍光タンパク質遺伝子- IRF-5遺伝子構築物を細 胞に導入する工程  (a) The donor fluorescent protein gene and the acceptor fluorescent protein gene are linked to either the MyD88 gene or the IRF-5 gene, and the fluorescent protein gene-MyD88 gene construct and the fluorescent protein gene-IRF-5 The process of introducing the gene construct into the cell
(b)被検物質存在下に置かれた前記細胞に、ドナー蛍光タンパク質に特有な励起波 長を照射してドナー蛍光タンパク質を励起し、ドナー蛍光タンパク質に基づく蛍光強 度とァクセプタ蛍光タンパク質に基づく蛍光強度を検出し、ドナー蛍光タンパク質に 基づく蛍光強度とァクセプタ蛍光タンパク質に基づく蛍光強度から、ドナー蛍光タン パク質とァクセプタ蛍光強度タンパク質間の FRETを解析する工程  (b) The cells placed in the presence of the test substance are irradiated with an excitation wavelength peculiar to the donor fluorescent protein to excite the donor fluorescent protein, and based on the fluorescence intensity based on the donor fluorescent protein and the acceptor fluorescent protein Detecting fluorescence intensity and analyzing FRET between donor fluorescence protein and acceptor fluorescence intensity protein from fluorescence intensity based on donor fluorescence protein and fluorescence intensity based on acceptor fluorescence protein
(c)上記 (b)工程により解析された被検物質存在下における FRETが、被検物質非存 在下における FRETよりも減弱、または消滅する被検物質を選択する工程  (c) A step of selecting a test substance in which FRET in the presence of the test substance analyzed in step (b) is less attenuated or disappears than FRET in the absence of the test substance
[13] 下記 (a)力も (d)の工程を含む、炎症性サイト力イン抑制剤のスクリーニング方法。  [13] A screening method for an inflammatory site force-in inhibitor comprising the following steps (a) and (d):
(a) MyD88タンパク質および IRF-5タンパク質を発現する細胞に被検物質を接触させ る工程  (a) A step of bringing a test substance into contact with cells expressing MyD88 protein and IRF-5 protein
(b)前記 MyD88タンパク質および IRF-5タンパク質を発現する細胞力ゝらの細胞溶解液 から MyD88タンパク質を含む画分または IRF-5を含む画分を分離する工程 (c)前記分離画分中の、 MyD88タンパク質と IRF-5タンパク質との結合を検出するェ 程 (b) a step of separating a fraction containing MyD88 protein or a fraction containing IRF-5 from a cell lysate of a cell strain expressing the MyD88 protein and IRF-5 protein (c) Detecting the binding of MyD88 protein to IRF-5 protein in the separated fraction
(d)前記 MyD88タンパク質と IRF-5タンパク質との結合力 被検物質非接触のコント口 ールよりも減少する被検物質を選択する工程  (d) A step of selecting a test substance that decreases the binding force between the MyD88 protein and the IRF-5 protein compared to a non-test substance contact control.
[14] IRF-4発現細胞に被検物質を接触させたときの該細胞における IRF-4発現量を指標 とする、炎症性サイト力イン抑制剤のスクリーニング方法。  [14] A screening method for an inflammatory site force-in inhibitor using, as an index, the expression level of IRF-4 in an IRF-4-expressing cell when the test substance is brought into contact with the test substance.
[15] 下記 (a)から(c)の工程を含む、請求項 14に記載のスクリーニング方法。 [15] The screening method according to claim 14, comprising the following steps (a) to (c):
(a) IRF-4発現細胞に被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-4 expressing cell
(b)該 IRF-4発現細胞中の IRF-4 mRNAを測定する工程  (b) measuring IRF-4 mRNA in the IRF-4 expressing cells
(c)被検物質接触による mRNA量力 被検物質非接触のコントロールの mRNA量より 小さ!ゝ被検物質を選択する工程  (c) Amount of mRNA due to contact with test substance Less than the amount of mRNA in non-test substance contact control!
[16] 下記 (a)から(c)の工程を含む、請求項 14記載のスクリーニング方法。  [16] The screening method according to claim 14, comprising the following steps (a) to (c):
(a) IRF-4発現細胞に被検物質を接触させる工程  (a) A step of bringing a test substance into contact with an IRF-4 expressing cell
(b)該 IRF-4発現細胞中の IRF-4タンパク質を定量する工程  (b) quantifying the IRF-4 protein in the IRF-4 expressing cells
(c)被検物質接触によるタンパク質の量力 被検物質非接触のコントロールのタンパ ク質の量より小さ!/ヽ被検物質を選択する工程  (c) Quantity of protein due to contact with test substance Smaller than the amount of protein for non-test substance contact control!
[17] 炎症'性サイト力インが、 IL— 1、 IL— 6、 IL— 8、 IL— 12、 IL— 18、 TNF— α、 IFN— γのいずれ 力 1つ以上の炎症性サイト力インである、請求項 1から 16のいずれかに記載のスクリ 一ユング方法。  [17] Inflammatory 'inflammatory site force in is IL-1, IL-6, IL-8, IL-12, IL-18, TNF-α, IFN-γ. The screening method according to claim 1, wherein:
[18] 請求項 1から 17のいずれかに記載の方法を用いた、炎症性サイト力インが関与する 疾患の治療薬のスクリーニング方法。  [18] A screening method for a therapeutic agent for a disease involving inflammatory site force-in, using the method according to any one of claims 1 to 17.
[19] 下記(a)から(e)の ヽずれかを含む、 MyD88-IRF-5結合阻害剤。 [19] A MyD88-IRF-5 binding inhibitor comprising any of the following (a) to (e):
(a)配列番号: 60または 62記載のアミノ酸配列を含むポリペプチドをコードする、単離 されたポリヌクレオチド  (a) an isolated polynucleotide encoding a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 60 or 62
(b)配列番号: 60または 62記載のアミノ酸配列の一または複数のアミノ酸が欠失、付 カロ、置換、および Zまたは挿入されたポリペプチドをコードする、単離されたポリヌク レオチド  (b) an isolated polynucleotide encoding a polypeptide in which one or more amino acids of SEQ ID NO: 60 or 62 are deleted, appended, substituted, Z or inserted.
(c)配列番号: 59または 61記載の塩基配列を含む、単離されたポリヌクレオチド (d)配列番号: 59または 61記載の塩基配列を含むポリヌクレオチドにストリンジェント な条件でハイブリダィズする、単離されたポリヌクレオチド (c) an isolated polynucleotide comprising the nucleotide sequence of SEQ ID NO: 59 or 61 (d) an isolated polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 59 or 61
(e)上記(a)から(d)の 、ずれかのポリヌクレオチドによってコードされる、単離された ポリペプチド  (e) an isolated polypeptide encoded by any of the polynucleotides (a) to (d) above
請求項 19に記載の MyD88-IRF-5結合阻害剤を含む、炎症性サイト力インが関与す る疾患の治療薬。 A therapeutic agent for a disease involving inflammatory site force-in, comprising the MyD88-IRF-5 binding inhibitor according to claim 19.
PCT/JP2005/024043 2004-12-28 2005-12-28 Novel screening method for inflammatory cytokine inhibitor WO2006070860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63995504P 2004-12-28 2004-12-28
US60/639,955 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070860A1 true WO2006070860A1 (en) 2006-07-06

Family

ID=36614971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024043 WO2006070860A1 (en) 2004-12-28 2005-12-28 Novel screening method for inflammatory cytokine inhibitor

Country Status (1)

Country Link
WO (1) WO2006070860A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029220A (en) * 2006-07-26 2008-02-14 Chube Univ Method for examining harmful substance or beneficial substance by using nematode and method for acquiring detoxicating substance by using nematode
WO2012093258A3 (en) * 2011-01-05 2013-01-03 Imperial Innovations Limited Irf5- related treatment and screening
WO2013121034A1 (en) * 2012-02-17 2013-08-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for reducing adipose tissue inflammation
WO2019177099A1 (en) * 2018-03-15 2019-09-19 株式会社マンダム Method for evaluating test sample
US11208650B2 (en) 2018-11-15 2021-12-28 Ionis Pharmaceuticals, Inc. Modulators of IRF5 expression

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HONDA K. ET AL.: "Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling", PROC. NATL. ACAD. SCI. USA, vol. 101, no. 43, 26 October 2004 (2004-10-26), pages 15416 - 15421, XP002999660 *
HONMA K. ET AL.: "Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS", PROC. NATL. ACAD. SCI. USA, vol. 102, no. 44, 1 November 2005 (2005-11-01), pages 16001 - 16006, XP002999665 *
KAWAI T. ET AL.: "Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6", NAT. IMMUNOL., vol. 5, no. 10, October 2004 (2004-10-01), pages 1061 - 1068, XP002999661 *
NEGISHI H. ET AL.: "Negative regulation of Toll-like-receptor signaling by IRF-4", PROC. NATL. ACAD. SCI. USA, vol. 102, no. 44, 1 November 2005 (2005-11-01), pages 15989 - 15994, XP002999664 *
SCHOENEMEYER A. ET AL.: "IRF-3, -5, and -7 are targets of TLR-7/8 signaling", EUROPEAN CYTOKINE NETWORK, vol. 14, no. SUPPL. 3, 2003, pages 130, XP002999659 *
SCHOENEMEYER A. ET AL.: "The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling", J. BIOL. CHEM., vol. 280, no. 17, 29 April 2005 (2005-04-29), pages 17005 - 17012, XP002999663 *
TAKAOKA A. ET AL.: "Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors", NATURE, vol. 434, no. 7030, March 2005 (2005-03-01), pages 243 - 249, XP002999662 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029220A (en) * 2006-07-26 2008-02-14 Chube Univ Method for examining harmful substance or beneficial substance by using nematode and method for acquiring detoxicating substance by using nematode
WO2012093258A3 (en) * 2011-01-05 2013-01-03 Imperial Innovations Limited Irf5- related treatment and screening
WO2013121034A1 (en) * 2012-02-17 2013-08-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for reducing adipose tissue inflammation
WO2019177099A1 (en) * 2018-03-15 2019-09-19 株式会社マンダム Method for evaluating test sample
CN111601898A (en) * 2018-03-15 2020-08-28 株式会社漫丹 Method for evaluating test sample
JPWO2019177099A1 (en) * 2018-03-15 2020-12-17 株式会社マンダム Evaluation method of test sample
JP7027521B2 (en) 2018-03-15 2022-03-01 株式会社マンダム Evaluation method of test sample
US11208650B2 (en) 2018-11-15 2021-12-28 Ionis Pharmaceuticals, Inc. Modulators of IRF5 expression

Similar Documents

Publication Publication Date Title
Kawamoto et al. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain
Guiducci et al. RNA recognition by human TLR8 can lead to autoimmune inflammation
Esashi et al. PACSIN1 regulates the TLR7/9‐mediated type I interferon response in plasmacytoid dendritic cells
Chen et al. CNBP controls IL-12 gene transcription and Th1 immunity
Gao et al. F2L, a peptide derived from heme-binding protein, chemoattracts mouse neutrophils by specifically activating Fpr2, the low-affinity N-formylpeptide receptor
Sakai et al. The Rac activator DOCK2 regulates natural killer cell–mediated cytotoxicity in mice through the lytic synapse formation
Dowling et al. Toll-like receptors: ligands, cell-based models, and readouts for receptor action
US20090048117A1 (en) Modulation of immune system function by modulation of polypeptide arginine methyltransferases
Glud et al. A tumor-suppressor function for NFATc3 in T-cell lymphomagenesis by murine leukemia virus
WO2006070860A1 (en) Novel screening method for inflammatory cytokine inhibitor
US8323970B2 (en) Modulation of T cell recruitment
KR20210046027A (en) AhR-ROR-γt complex as a biomarker and therapeutic target for autoimmune diseases and IL-17A-related diseases
US20060246543A1 (en) Slim compositions and methods of use thereof
US8748403B2 (en) Modulation of HSV infection
EP1439223A1 (en) Novel class ii cytokine receptor
JP2007054042A (en) Interferon-inducing molecule ips-1
JP2008528005A (en) Regulation of TH2 genealogy commitment by T-bet
US8895011B2 (en) Insulin-resistance-improving drug
BRPI0616438A2 (en) protein, polynucleotide, antibody against a secretory or membrane protein, or a functional fragment thereof, hybridoma, therapeutic agent for an autoimmune disease, agent for inhibiting t-cell adhesion, and method for screening for a substance
WO2012016973A1 (en) Invention related to contact allergens
US8309687B2 (en) Biomarker specific for cancer
US20110239311A1 (en) Agonists of NR2F6 For Immunosupression
Visan The CD23 receptor-regulation of expression and signal transduction
Niederlová Role of Bardet-Biedl syndrome (BBS) protein complex in T cells
KR20240050695A (en) Pharmaceutical composition for preventing or treating inflammatory disease and method of providing information for predicting possibility thereof onset

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05844816

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5844816

Country of ref document: EP