[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006054718A1 - Zeolitic composition and, utilizing the same, porous firing product and building material - Google Patents

Zeolitic composition and, utilizing the same, porous firing product and building material Download PDF

Info

Publication number
WO2006054718A1
WO2006054718A1 PCT/JP2005/021286 JP2005021286W WO2006054718A1 WO 2006054718 A1 WO2006054718 A1 WO 2006054718A1 JP 2005021286 W JP2005021286 W JP 2005021286W WO 2006054718 A1 WO2006054718 A1 WO 2006054718A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
containing composition
earth
alkali
clay
Prior art date
Application number
PCT/JP2005/021286
Other languages
French (fr)
Japanese (ja)
Inventor
Takenori Masada
Masahiko Matsukata
Original Assignee
Takenori Masada
Masahiko Matsukata
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenori Masada, Masahiko Matsukata filed Critical Takenori Masada
Priority to JP2006545179A priority Critical patent/JPWO2006054718A1/en
Publication of WO2006054718A1 publication Critical patent/WO2006054718A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate

Definitions

  • the present invention relates to a zeolite-containing composition excellent in mixture plasticity before firing, strength and porosity after firing, and uses such as a porous fired body and a building material using the same.
  • Zeolite is a generic term for microporous aluminosilicate crystals, and exhibits excellent molecular adsorption, sieving, ion exchange, and catalysis due to the negative charge possessed by micropores and their frameworks, and therefore an adsorbent. It is widely used as an environmental purification material and catalyst, etc.
  • a material with vitality to the properties of zeolite is usually a fired body obtained by molding and firing using a binder.
  • a sintered body obtained by molding and firing using a binder.
  • Japanese Patent Application Laid-Open No. 2-160616 and many of them are used as adsorbents and catalysts.
  • the sintered body In order for the sintered body to exhibit excellent functions as an adsorbent and a catalyst, it has not only excellent porosity, such as specific surface area and porosity, but also has a certain strength or more in practical use. And at the same time, it is necessary to have a degree of freedom in molding that can be molded into a suitable shape according to the application.
  • the porosity of the sintered body can be easily improved by increasing the blending amount of NOINDA.
  • Numerous studies have been conducted so far to improve both properties (for example, Japanese Patent Laid-Open No. 11-246282), but as described above, basically the porosity of the fired body and It is very difficult to improve the strength together.
  • the content of the zeolite as the main component is 50% by weight or more, usually, the plasticity (the degree of freedom of molding), the dispersibility and the fluidity of the raw material mixture before firing are significantly lost.
  • the plasticity the degree of freedom of molding
  • the dispersibility and the fluidity of the raw material mixture before firing are significantly lost.
  • Organic vine to improve its plasticity, dispersibility and fluidity Although it is sufficient to blend the daters, the cost of producing the fired body is increased, the strength is lowered, and there is a problem that the sintered body remains in the inside after firing to reduce the porosity. This improvement is the most important issue in molding of zeolite-containing fired bodies, as it is generally very difficult to secure plasticity.
  • a zeolite-containing composition having excellent plasticity before firing, ie, high strength after molding and a high degree of freedom after firing, and a fired composition obtained by firing the composition. Intended to provide the body.
  • the inventors of the present invention have so far manufactured a fired body having relatively excellent strength and porosity by examining various combinations of zeolite and binder, but carefully select zeolite and a known binder. It is thought that it is impossible to obtain a zeolite-containing composition that satisfies all the above-mentioned problems, and a fired product thereof alone, and as a result of intensive studies, Zeolite is the main component and a specific binder is the essential component.
  • a zeolitic-containing composition containing the same within a predetermined temperature range a zeolitic-containing composition and a fired body thereof which satisfy all of the above characteristics simultaneously at a high level and a level can be successfully produced, and the present invention is achieved. It came to
  • the present invention is characterized by the matters described in the following (1) to (27).
  • a zeolite-containing composition comprising 50 to 90% by weight of Zeolite, 5 to 49.9% by weight of a plastic clay, and 0.1 to 30% by weight of an alkaline (earth) metal compound.
  • plastic clay is one or more selected from the group consisting of woodblock clay, lepidome clay, kaolin, shale clay, and pottery.
  • plastic clay is one or more selected from the group consisting of woodblock clay, lepidome clay, kaolin, shale clay, and pottery.
  • the plastic clay has an average particle diameter D of not more than the average particle diameter D of the zeolite. And the particle size ratio of the effective diameter D or less of the zeolite is 15% by weight or more.
  • the zeolite-containing composition according to any one of the above (1) to (3), which is characterized by the above.
  • the alkali (earth) metal compound is an alkali (earth) metal carbonate, an alkali (earth) metal hydroxide, an alkali (earth) metal nitrate, and an alkali (earth) metal.
  • (6) 1 type selected from the group consisting of lithium carbonate, magnesium carbonate, calcium carbonate, basic magnesium carbonate, magnesite, limestone, and dolomite as the alkali (earth metal) metal carbonate.
  • a zeolite-containing composition according to the above (5) which is a mixture or a mixture of two or more thereof.
  • the zeolite-containing composition according to the above (5) which is a mixture or mixture of one or more selected or a mixture of two or more.
  • the above alkaline (earth) metal nitrate is characterized in that it is a mixture of at least one selected from one or more selected from potassium nitrate and a group also having sodium nitrate power, or mixed milled matter.
  • the zeolite-containing composition according to (5) is characterized in that it is a mixture of at least one selected from one or more selected from potassium nitrate and a group also having sodium nitrate power, or mixed milled matter.
  • the zeolite has a group power which is also selected from copper ion, silver ion and zinc ion power.
  • One or two or more metal ions are supported on the zeolite.
  • V a zeolite-containing composition according to any of the preceding claims.
  • a porosity is 30% or more, and a bending strength is I MPa or more. (12) above.
  • the specific surface area of the zeolite component contained in the fired body is at least 0.8 times the specific surface area of the zeolite component contained in the zeolite-containing composition.
  • the photocatalyst particle is supported on the surface, or the photocatalyst particle is contained as a composition,
  • a Zeolite-containing composition comprising Zeolite, plastic clay, and an alkali (earth) metal compound, wherein the measured value of Yamanaka-type soil hardness meter in the plastic state is 14 or less.
  • zeolite having a porosity after firing of 30% or more, a flexural strength of IMPa or more, and a specific surface area of the zeolite component of at least 0.8 times the specific surface area of the zeolite component before firing.
  • the plastic clay has an average particle size D which is less than or equal to the average particle size D of the zeolite.
  • the particle diameter ratio of 50 50 and the effective diameter D or less of the zeolite is 15% by weight or more
  • a coated article characterized by being coated by the porous fired body according to (20).
  • a zeolite-containing composition containing 50% or more of zeolite is molded, and fired at 500 to 800 ° C., and has a flexural strength of 3 MPa or more and a porosity of 30% or more or a volume standard.
  • a softer comprising: a plasticizable clay having a particle size ratio of not less than 50 50 10 15 wt% or more; and an alkali (earth) metal compound.
  • the composition of the composition was made to be the present invention.
  • the examples go beyond, so it can be said that the present invention is a novel and very innovative invention.
  • the present invention it is possible to provide a porous fired body having excellent plasticity and strength despite the high zeolitic content.
  • FIG. 1 is a schematic view of a deodorizing evaluation device.
  • Fig. 2 is a graph showing the temporal change of ammonia concentration in the deodorization evaluation.
  • FIG. 3 is a graph showing the time-dependent change of acetaldehyde concentration in the deodorization evaluation.
  • FIG. 4 is a graph showing temporal change of acetic acid concentration in deodorization evaluation
  • FIG. 5 is a particle size distribution curve of the lepidopteran clay and zeolite used in the present example. Best mode for carrying out the invention
  • the zeolite-containing composition of the present invention comprises zeolite, a plastic clay and an alkali (earth) metal compound as essential components.
  • alkali (earth) metal means an alkali metal (Li, Na, K or the like) or an alkaline earth metal (Mg, Ca, Sr, Ba or the like).
  • Examples of the above-mentioned zeolite include the characteristics of natural zeolite such as clinopti mouth light, mordenite, A-type, X-type, Y-type, USY-type (ultrastable Y-type), silicalite, ZSM-5, and zeolite. Porous materials having silica, silica such as coal ash, wastes containing aluminum components, and synthetic zeolites such as A-type, X-type and Y-type synthesized from recycled raw materials, and are not particularly limited, but USY-type or silica It is preferable to use hydrophobic or natural zeolites such as lights because they tend to exert particularly large effects.
  • hydrophobic zeolite generally refers to a material which does not have high water adsorption properties like hydrophilic zeolite and has a relatively high Si content in the zeolite component.
  • natural zeolite it is preferable to use one having a maximum particle size of 150 m or less from the viewpoint of moldability and plasticity, and it is more preferable to use one having 100 m or less. .
  • porous body having the characteristics of the above-mentioned zeolite include a mesoporous body (mesoporous material) having a pore diameter of 2 to 50 nm and having a very narrow pore size distribution. More specifically, there are FS M-16 and MCM 41 etc.
  • the blending amount of zeolite is not particularly limited, but in order to obtain a sintered body having excellent adsorption performance, ion exchange performance, and porosity, 50 to 90 with respect to the whole zeolite-containing composition. It is more preferable to mix
  • the raw material slurry has excellent plasticity because the plastic clay and the binder containing the alkaline (earth) metal compound are further blended even when the composition contains the zeolite in an amount of more than 50% by weight.
  • the material strength and porosity after firing can be provided. It becomes possible.
  • the plastic clay mainly includes clay minerals such as kaolinite, halloysite, sericite and montmorillonite in its composition.
  • Such plastic clays have been used as clay materials for pottery for the past hundreds of years in the Tokai region such as Aichi, Gifu, Mie, particularly in the Tono region of Gifu Prefecture and the Seto Region of Aichi Prefecture. It has excellent formability, porosity and low temperature sintering.
  • the plastic clay which can be used in the present invention is not particularly limited, but it is not particularly limited, but, for example, woodblock clay, lepidopteran clay, kaolin, shale clay, earthenware clay, red earth, blue earth, china stone, bentonite, wax stone, sepiolite, Catapulgite and the like can be mentioned, and these can be used alone or in combination of two or more.
  • a moss clay which is preferred to use a woodblock clay, a moss clay, a kaolin, a shale clay, or a potash.
  • plastic clay is considered to be able to be fully understood by those skilled in the art from the above description, but more specifically, “Ceramics Engineering Japan, Ed. (2nd edition) [Application] Please refer to pages 581 to 585 of “Techhohodo Publishing Co., Ltd. Publication”.
  • the above-mentioned plastic clay is preferably one whose particle size has been adjusted by a water drop.
  • the average particle diameter D is about the same as the average particle diameter of the zeolite to be formed or the zeolite
  • the average particle diameter D is less than or equal to
  • the 50 10 diameter ratio is more preferably 15% by weight or more.
  • the use of a plastic clay which satisfies such conditions has an important meaning in improving the particle size distribution and the forming density of the whole composition, and in improving the strength of the fired body.
  • plasticity in which the particle diameter below the zeolite effective diameter D governing the voids in the composition is 15% by weight or more.
  • the average particle size is
  • the effective diameter D and the effective diameter D are respectively 5% by mass passing through the sieve with respect to 100% by weight of the sample.
  • the blending amount of the plastic clay is more preferably 10 to 48% by weight, which is preferably blended in an amount of 5 to 49.9% by weight based on the whole of the zeolite containing composition.
  • alkali (earth) metal compound is not particularly limited.
  • Earths Metal carbonates, hydroxides, hydrogencarbonates, acetates, sulfates, nitrates and the like may be mentioned, and they may be natural mineral raw materials comprising these alkali (earth) metal compounds.
  • alkali metal (earth) metal compounds preferably, alkali (earth) metal carbonates, alkali (earth) metal hydroxides, alkali (earth) metal nitrates, and alkali (earth) metal acetates One or two or more selected.
  • alkali (earth) metal carbonate lithium carbonate, magnesium carbonate, calcium carbonate, basic magnesium carbonate, magnesite, limestone, and dolomite are selected.
  • alkali (earths) metal hydroxides which are preferably mixtures of lithium, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and magnesium hydroxide
  • a brute force group selected from the group consisting of potassium nitrate, sodium nitrate, and mixtures thereof as the above alkali (earth) metal nitrate salt which is preferably a mixture of one or more selected Force is also preferred to be selected one or more!
  • the mixture of alkali (earth) metal compounds can be a grinding mixture that has been subjected to mechanical grinding processing and if the baking temperature of the composition can be set low by grinding
  • the above calcium carbonate, limestone, dolomite is a mixture of calcium carbonate, limestone, or dolomite with magnesium carbonate or magnesite, which is preferably used in combination with other alkali (earth) metal compounds. Is more preferred.
  • the fired body of the present invention is formed by firing the zeolite-containing composition of the present invention, but it is pyrolyzed at the time of firing to form a gas such as carbon dioxide or an acid oxide.
  • the strength and porosity of the fired body tend to be improved by using an alkali (earth) metal compound which is generated. Therefore, it is preferable to select as the above-mentioned alkali (earth) metal compound, one which thermally decomposes below the actual calcination temperature. For example, when the firing temperature is 700.degree. C., it is preferable to use an alkali (earth) metal compound which thermally decomposes at a temperature of 700.degree. C. or less.
  • the alkali (earth) is basically used. It is preferable to select a metal compound that thermally decomposes at 800 ° C. or less. However, when the thermal decomposition temperature of the composition alone is higher than 800 ° C., it is 800 ° C. due to the combination with other components in the force composition. Alkali (earth) metal compounds that fall below 10% shall be treated as "thermal decomposition at 800 ° C or lower" when such a combination is made.
  • calcium carbonate for example, has a thermal decomposition temperature of about 900 ° C. when it contains a silica component and other alkali (earth) metal compounds in its force composition, and that temperature Falls below 800 ° C.
  • the above alkali metal (earth) compound is more preferably blended in an amount of 0.1 to 30% by weight to the whole of the zeolite-containing composition, more preferably 1 to 20% by weight. If the amount of the alkali (earth) metal compound is less than 0.1% by weight, the effect of the compounding tends to be insufficient, and if it exceeds 30% by weight, the proportion of zeolite or plastic clay is It tends to be lowered, and the properties tend to be biased to one of plasticity, strength and porosity, making it difficult to improve all the properties.
  • the pH of the zeolite-containing composition of the present invention is inclined to the alkali side by the addition of an alkali metal (earth) complex, and the pH at this time is 11.5 or less. More preferably, it is 11 or less. If the fired body is produced at a pH exceeding 11.5, the properties of the zeolite in the composition may be impaired.
  • the pH can be adjusted, for example, by using an inorganic acid compound (eg, aluminum sulfate, iron sulfate, etc.) containing an inorganic acid (eg, sulfuric acid, hydrochloric acid, nitric acid) to suppress the amount of the alkali metal (earth) complex. It is possible to carry out by a method such as blending a metal sulfate compound, hydrochloric acid complex, etc.).
  • the zeolite-containing composition of the present invention can obtain good plasticity by itself because it uses a binder containing the above-described plasticizable clay and an alkali (earth) metal compound.
  • known dispersants and shaping aids such as phosphorus condensed salts such as sodium tripolyphosphate, sodium lignin sulfonate, cellulose derivative complex, curdlan, starch, polybutyl alcohol, bentonite, water glass, etc.
  • phosphorus condensed salts such as sodium tripolyphosphate, sodium lignin sulfonate, cellulose derivative complex, curdlan, starch, polybutyl alcohol, bentonite, water glass, etc.
  • a binder containing the above-mentioned plastic clay and an alkali (earth) metal compound can impart good plasticity and excellent low-temperature sinterability to a sintered body material, and therefore other than zeolite It is also suitable as a binder material for forming a porous body.
  • chromium And oxides of transition metals such as manganese, complex and nickel, antimony oxides, iron oxide (iron oxide), cupric oxide and other coloring materials
  • the properties of the fired body such as porosity, plasticity and strength are impaired. You may add, in the range which is not.
  • the porous fired body of the present invention is prepared by adjusting a slurry obtained by kneading the zeoliite-containing composition of the present invention having excellent plasticity, dispersibility, and fluidity with a solvent such as water to a desired viscosity, It can be obtained by molding by a molding method and baking.
  • the above-mentioned molding method is not particularly limited, but it is possible to carry out, for example, known molding techniques in sintered body production such as insert molding, press molding, extrusion molding, mechanical roller molding, spray drying and the like. It is possible to select an appropriate molding method according to the application etc. From the viewpoint that the strength of the molded body can be increased, it is particularly preferable that extrusion molding is preferably press molding, extrusion molding, or roll press molding. Moreover, it is preferable to adjust the viscosity (water content) of the above-mentioned slurry depending on the forming method to be applied.
  • the ceramic raw material mixture slurry changes its bonding state (consistency) according to the water content, and turns into various states of solid, semi-solid, plastic, and liquid. Therefore, the moisture content and consistency of the raw material mixture are appropriately determined according to the forming processing means to be applied in the forming processing process of the ceramic raw material mixture, and the flowability, dispersibility, plasticity, etc. are secured. It is extremely important.
  • pellet-like molded articles for water treatment and gas treatment that are generally used as molded articles of zeolite-containing compositions, molded articles of honeycombs, etc., are generally from the viewpoint of molding processability. It is manufactured by a molding method, and in this case, it is desirable to adjust its water content so that the raw material mixture is in a plastic state between the plastic limit and the liquid limit.
  • zeolite-containing compositions tend to narrow the range of water content generally exhibiting a plastic state and to have poor plasticity in a plastic state, and this tendency is particularly pronounced by containing Zeolite containing at least 50% by weight of zeolite. It is remarkable in the composition.
  • the zeolite-containing composition of the present invention can be easily brought into a plastic state by adding water and kneading, and the appropriate amount of water differs depending on the type of zeolite contained, the type of binder raw material, the particle diameter and the like.
  • the measured value with a Yamanaka type soil hardness tester is one indicator, and when this measured value is 14 or less, excellent extrusion moldability can be secured. preferable.
  • the water content of the above-mentioned slurry is relatively compounded (for example, 100 parts by weight of solid content) (60 to 80 parts by weight of water), and it is preferable to make it liquid and to give fluidity.
  • a press forming method suitable for obtaining a tile or a flat plate-shaped product It is preferable to adjust the water content of water to a relatively low level to make it semisolid.
  • the zeolite-containing composition slurry of the present invention appropriately determines its water content and consistency according to the type of zeolite used, the raw material composition, the particle size of each component, the forming method to be applied, etc. And can be molded.
  • the shape and size of the zeolite-containing yarn or composite of the present invention after molding can be processed into a desired shape and size depending on the application, and is not particularly limited. It can be processed into any shape such as a cam shape, a columnar shape, a plate shape or a spherical shape.
  • the above-mentioned slurry has the same fluidity as or more than that in the case of the above-mentioned lead molding.
  • the object to be coated is applied to the object to be coated and fired to form the porous material of the present invention on the surface to be coated.
  • a fired body film can be formed, which makes it possible to provide the properties of the porous fired body of the present invention at low cost to a wide variety of objects to be coated. Since the slurry used at this time is extremely excellent in fluidity and dispersibility, the viscosity can be freely prepared according to the application target and workability by properly adjusting the amount of the solvent to be blended. it can.
  • this slurry for example, the diving method, the spray method, the mouth
  • a known means of application can be applied, such as application using a single brush or a brush, or using a coating apparatus.
  • particularly high adhesion can be obtained when the object to be coated is a porous material such as pumice, perlite, and the fired body of the present invention.
  • a porous body composed of an inorganic material having a heat resistance of about 800 ° C., and adhering the zeolite-containing composition of the present invention to this surface and inside, the pressure loss of fluid is small. It is possible to obtain a filter material suitable for air purification and water purification applications.
  • the temperature for firing is not particularly limited as long as it is a temperature at which the porosity can be sufficiently maintained without amorphizing the zeolite in the composition, but it is 800 ° C or less Is preferred. Furthermore, in order to improve the strength of the fired body, the range of 500 to 800 ° C. is preferable. Depending on the type of zeolite used, the range of 500 to 700 ° C. is preferable. For example, in the case of using a high silica type zeolite such as silicalite, the range of 500 to 800 ° C. is preferable.
  • a low silica type zeolite such as A type or X type
  • 500 to 500 It is preferable to set it as the range of 700 degreeC.
  • the firing pattern such as the temperature rise rate and the peak temperature (firing temperature) holding time, because the optimum value varies depending on the type of essential components used, the composition, the characteristics of the intended fired body, etc. .
  • the porous fired body of the present invention obtained as described above preferably has a porosity of 30% or more, preferably 35% or more.
  • its bending strength is preferably 2 MPa or more, which is preferably 1 MPa or more, and particularly preferably 3 MPa or more.
  • the specific surface area of the zeolite component contained in the porous fired body of the present invention is preferably at least 0.8 times the specific surface area of the zeolite component contained in the zeolite-containing composition of the present invention. It is more preferable that it is 9 times or more.
  • the “specific surface area of the zeolite component contained in the zeolite-containing composition” or the “specific surface area of the zeolite component contained in the porous fired body” means the zeolite itself contained therein
  • the specific surface area of the portion contributed by zeolite refers to the specific surface area of the zeolite alone, It changes depending on the content, baking conditions, binder species and their content. More specifically, the specific surface area of the zeolite component contained in the porous sintered body If the specific surface area of the binder component used is negligibly small compared to the specific surface area of the whole composition!
  • the specific surface area of the binder component is about 3% or less of the specific surface area of the whole composition
  • a plastic clay having a relatively large specific surface area such as sepiolite
  • the specific surface area of the porous sintered body and the specific surface area of the porous sintered body can be approximately calculated.
  • the specific surface area of the zeolite component contained in the zeolite-containing composition is expressed by the following formula
  • the porous fired body of the present invention uses an inorganic binder composition and is further fired at a temperature at which the zeolite does not become amorphous, the characteristics of the contained zeolite can be sufficiently exhibited. Its porosity can be maintained at a high level.
  • the specific surface value of the sintered body of the present invention is preferably 200 m 2 Zg or more when synthetic zeolite is used.
  • the sintered body described in the preferred and characteristic value range described above can be particularly suitably used as an adsorbent, a heat insulating material, a hygroscopic material, a humidity control material, etc. in civil engineering and construction fields where relatively high strength is required. .
  • the porous fired body of the present invention can be made into a fine powder fired body by a method such as spray drying or by crushing after firing, and this fine powder is dispersed together with a solvent such as alcohol or water or a binder.
  • a solvent such as alcohol or water or a binder.
  • the porous fired body film of the present invention can be formed even on a low application target. On the other hand, with regard to the strength of the film, the above-mentioned fired body film formed by the mixture slurry before baking which is fired after application is superior.
  • the porous fired body of the present invention may further contain a functional material such as photocatalyst particles supported on the surface thereof, or a functional material as a composition.
  • a functional material such as photocatalyst particles supported on the surface thereof, or a functional material as a composition.
  • the functional substance may be supported on the surface and may be included in the composition. Functional thing By combining the qualities, it is possible to obtain a porous sintered body having a desired function in addition to excellent plasticity, porosity and strength.
  • the functional substance include, in addition to photocatalysts, platinum, noridium, rhodium and the like which are catalyst substances used for exhaust gas purification.
  • the substance adsorbed by the porous sintered body is decomposed by the photocatalytic function, and the adsorptive capacity of the sintered body can be regenerated, so that the porous material of the present invention
  • the quality fired body can be used for applications such as anti-soiling and anti-bacterial, and furthermore, it is possible to maintain the adsorption effect of VOC and odorous substances for a long time.
  • the photocatalytic particles are not particularly limited! Examples thereof include metal oxide semiconductors such as titanium oxide, zinc oxide, zinc oxide, tungsten oxide and the like, Two or more can be used simultaneously. Among them, it is preferable to use titanium oxide. In addition, those having a primary particle size of 0.01 to 0.1.m of titanium oxide are preferable because they exhibit excellent photocatalytic activity.
  • a solution containing the photocatalyst particles or a precursor thereof for example, titanium alkoxide, tetrabasic titanium, etc.
  • the amount of photocatalyst particles supported on the surface of the porous sintered body is not particularly limited as long as the sintered body after supporting the photocatalyst particles exhibits photocatalytic activity which does not impair the porosity.
  • the compounding quantity will not be specifically limited if it is a range which shows a photocatalytic activity, without reducing the various characteristics of a porous sintered body.
  • metal ions such as copper ions, silver ions and zinc ions may be supported by one or more kinds.
  • metal ions such as copper ions, silver ions and zinc ions may be supported by one or more kinds.
  • the porous fired body of the present invention is used in various applications in which the adsorption properties, ion exchange properties, catalytic properties, etc. that the zeolite normally has are activated. can do.
  • deodorizers, VOCs, etc. are used as vital applications of adsorption characteristics.
  • Adsorbents for toxic substances such as quality and dioxins, hygroscopic materials, moisture control materials, water holding materials, freshness holding materials for fresh foods, waste oil treatment materials, microbial carriers, filter media for water treatment, additives for fertilizers and feeds, air purification
  • water purification materials for removing ammonia, heavy metals, radionuclide cations, etc. soil conditioners, water softeners for hard water, and the like.
  • Examples of applications that make use of the catalytic properties include petroleum refining, purification of exhaust gases from internal combustion engines, decomposition and removal of organic chlorine compounds, and conversion of waste plastics into oils.
  • the porous fired body of the present invention is excellent in porosity, strength, plasticity, water absorption and the like, and therefore, the application in which these characteristics are vitalized, for example, humidity control, deodorization, VOC removal, etc.
  • Indoor environment Improving materials, building materials with water holding function and gradual release function of moisture, water retaining materials with high water retention and fertility, suitable for greening of roofs and deserts, having antibacterial function
  • It is suitable as a material in the civil engineering and construction field, such as building materials, piping materials, and construction materials with water purification functions.
  • it is applied to fields used under relatively severe conditions such as the aerospace field and the nuclear field. Is also suitable.
  • the building material of the present invention can be produced by molding and firing the zeolite-containing composition of the present invention, but in order to enhance its strength, the zeolite-containing composition of the present invention is extruded. It is preferable to manufacture by processing by molding, press molding, or core molding, and baking this at 500 to 800 ° C.
  • the building material thus obtained preferably has a bending strength of 3 MPa or more and a porosity of 30% or more.
  • the building material of the present invention which is particularly excellent in water retention function and water gradual release function, as an outer wall of a building, a paving block, a roofing material, etc.
  • artificial waste heat has increased recently.
  • the loss of natural space can significantly contribute to the suppression of the heat island phenomenon, which becomes a problem in large cities.
  • the “JASS 7 M101 Interlocking Block Quality Standard” in the “Architectural Construction Standard Specification” of the Architectural Institute of Japan has set the flexural strength of the permeable interlocking block at 30 kgf / cm 3 or more. Therefore, such a water-retaining construction material preferably has a flexural strength of 3 MPa or more and a volume standard water absorption of 35% or more.
  • the porous sintered body of the present invention exhibits high water absorption and absorbs water, since the zeolite is retained inside without damage. Since it is strongly adsorbed to the zeolite pores, it exhibits excellent water retention.
  • the zeolite-containing composition of the present invention and the porous fired body obtained by firing the same can be used by flexibly changing the application method for a wide variety of fields and applications. It is.
  • Zeolite, plastic clay, and alkali (earth) metal compounds are blended as shown in Table 1 below, 100 to 150 parts by weight of water is added to 100 parts by weight of solid content, and the mixture is kneaded for 2 to 4 hours with a pot mill. After making a mud, it is dewatered until it becomes plastic on a gypsum board (general water content is 30 to 35%), and filled in a plaster mold (cross section 10 mm, thickness 10 mm, length 70 mm), After dehydration for about 10 minutes, it was demolded and dried in a room for 1 day. Next, firing was performed under predetermined firing conditions to produce fired bodies of Examples 1 to 21.
  • Example 60 Lepidoptera clay synthesis X type Zeolite 7 magnesite
  • ⁇ 1 Made of small ceramic, special grade water-hikedame clay, average particle size less than 5 m,
  • the fired body sample is dried at 110 ° C., the weight at constant weight is W1, and the baked body sample is put in water and boiled for 3 hours or more to completely release the air in the pores.
  • the weight of the fired body sample is suspended in water W2 and the weight of the fired body sample is also taken out under water, and the surface is only wiped with a wet cloth and the weight after removing water drops is W3.
  • the porosity was determined using Wl, W2, and W3 and the following equation.
  • Porosity ⁇ (W3-Wl) / (W3-W2) ⁇ X 100 Water absorption rate: Calculated using the above-described method of measuring the porosity, W1 and W3 measured, and the following equation.
  • Plasticity The plasticity of the mixture in the plastic state before firing was measured three times each using a Yamanaka type soil hardness tester, and the average value was calculated. If the indicated value of the soil hardness tester exceeds 14, molding by a general extrusion molding method becomes difficult, so the hardness tester indicated value Force S 14 or less is ⁇ (good plasticity), and those exceeding 14 are X evaluated.
  • the fired bodies of Examples 1 to 21 are excellent in porosity and excellent in plasticity and strength despite the fact that the zeolite content is 70% by weight or more.
  • the sintered body of Example 2 has excellent plasticity and strength in spite of the high proportion of the zeolite.
  • the specific surface area of the zeolite component contained in each of the sintered products using synthetic zeolite is approximately the same as the specific surface area of the sintered product since the specific surface area of the binder component used here is so small that it can be ignored. It can be seen that these values are at least 0.9 times the relative surface area of the zeolite components contained in the respective zeolite-containing compositions before firing.
  • the zeolite in the composition greatly contributes to the excellent porosity of the fired body which is not amorphized by firing.
  • the fired bodies of Examples 13 and 15 had water absorptions of 47. 1% and 32.8%, and volume standard water absorptions of 49.5% and 43.0%, respectively. That is, it can be seen that the fired body in the example can absorb water by 40% or more of the volume and has excellent water absorbability.
  • the volume standard water absorption rate was calculated using the water absorption rate and the values of the volume and bulk ratio of the molded product.
  • the kneaded material of the composition shown in the following Table 3 is kneaded with water, formed into ⁇ 3 mm pellets by an extrusion molding machine, and fired at 600 ° C. for 1 hour in an electric furnace at a temperature rising rate of 100 ° C. Zh.
  • Deodorant samples were produced (Examples 22 and 23).
  • commercially available activated carbon (Nitsubishi Chemical Co., Ltd., crushed carbon white glaze G2c) was used as a control sample (Comparative Example 1).
  • Each of the obtained samples was sandwiched between 150 cc and 160 cc between stainless steel meshes (18 ⁇ 25 cm) to prepare a deodorizing filter.
  • the lepidopteran clay used as the plastic clay is the same special grade hydridite clay as that used in Example 1.
  • Deodorization evaluation was performed according to the following procedure using each deodorizing filter prepared as described above.
  • Example 22 exhibits extremely high adsorption characteristics for all gas components regardless of whether they are the first or second pipe.
  • the calcined product of Example 23 may have hydrophilic zeolite as the clinopty mouth light, and although the adsorptivity of acetaldehyde which is a VOC gas is low, the adsorptivity to ammonia and acetic acid is excellent.
  • the activated carbon of Comparative Example 1 had high adsorptivity to acetaldehyde but low adsorptivity to ammonia and acetic acid.
  • the lepidopteran clay used as the plastic clay is the same special grade hydrolyzate clay as that used in Example 1.
  • Table 4 shows that the addition of the alkali (earth) metal compound greatly improves the plasticity of the raw material mixture before firing.
  • the alkali (earth) metal compound when calcium carbonate or dolomite alone is used as the alkali (earth) metal compound, it is difficult to obtain a composition having good plasticity. Its plasticity can be improved by using it in combination with iS magnesite and the like.
  • a composition having good plasticity can be obtained even if calcium carbonate or dolomite is used alone. There is also a possibility.
  • plasticity clay 20 wt% of special grade Hijime clay having an average particle diameter D of 2.4 ⁇ m was used.
  • the fired body sample of the above-mentioned Example 2 (the zeolite is HISIV-3000), and the average particle diameter D 7.1.
  • Example 25 The plasticity, flexural strength, and porosity of each of the fired body samples (Example 25) prepared in the same manner as Example 2 except that IX m of clay was used. The results are shown in Table 5.
  • Example 1 using 15 wt% of special grade Hijime clay having an average particle diameter D of 2.4 ⁇ m.
  • Sample No. 2 (Zeolite is mordenite) and a grain size of average particle diameter D 7.1 ⁇ m
  • Example 26 With respect to the fired body sample (Example 26) prepared in the same manner as Example 12 except that soil was used, the plasticity, the bending strength and the porosity were measured. The results are shown in Table 5.
  • Example 12 and Example 26 using mordenite as the zeolite showed no remarkable difference in the strength, but the experiment using HISIV-3000 as the zeolite was carried out. Comparing the fired body samples of Example 2 and Example 25, The fired body of Example 2 using the special grade hydrologically ordered clay having a grain size D of 2.4 ⁇ m is clearer
  • FIG. 5 shows, for reference, the particle size cumulative distribution curves of the two types of Lemidoclay and various zeolites used in this example.
  • the particle size analysis was performed using a laser diffraction type particle size distribution analyzer SALD-2000J manufactured by Shimadzu Corporation.
  • this granular clay was filled into a 100 mm XI OO mm x 40 mm cast iron mold, a pressure of 50 cm 2 Zg was applied by a hydraulic jack, and press molding was performed to obtain a press-molded product.
  • the average thickness of press molding was 10.2 mm.
  • the pressed compact was dried at room temperature for 3 days, and fired at a temperature rising rate of 100 ° C. for 5 hours at a peak temperature of 600 ° C. to produce a fired body.
  • the obtained sintered body has a bending strength of 3.5 MPa, a porosity of 41.9%, a water absorption of 30.4% (volume standard water absorption of 41.6%), and a bulk specific gravity of 1.37 g Zcm 3 and thus has good properties. I had it.
  • a hot air low pressure coater (A BAC SG2500, manufactured by Chiron Japan Co., Ltd.) is coated on the surface of the above-mentioned sintered body with an acid titanium coating agent (a solution obtained by diluting TKC-304 50 times by Tica Co., Ltd.). ) was used to spray 0. 41gZm 2. The sprayed coating exhibited good adhesion at normal temperature.
  • composition slurry of Example 1 in which the moisture content was adjusted to 40% and 50% was applied to the surface of the above press-molded product dried for 3 days, to a thickness of about 50 m using a warm air low pressure coater. Sprayed to form a film. Then, the coated molded body was dried at room temperature for 1 day, and baked at 650 ° C. for 5 hours to obtain a baked body in which the hydrophobic zeolite composition film was well fixed to the surface. According to this method, it is possible to produce a building material which exhibits the performance such as the adsorption effect of the hydrophobic zeolite on VOC very inexpensively. Further, it was possible to apply a titanium oxide coating to this baked body with a film in the same manner as described above and to impart a photocatalytic property thereto. (Preparation of sintered body by extrusion molding method)
  • a predetermined amount of water is added to the composition shown in Table 6 below, and premixed with Ashizaki Iron Works Co., Ltd. product, mixer MH S-100, and further, this is subjected to kneading vacuum extrusion with Amagasaki Iron Works Ltd. product.
  • this molded body is dried at room temperature for 3 days and fired under the conditions described in Table 6.
  • the fired bodies of Examples 27 and 28 were obtained.
  • the flexural strength, the porosity, the bulk specific gravity, the water absorption rate, and the volume standard water absorption were determined for the obtained sintered body.
  • the results are shown in Table 7.
  • the clay of clay used here is made of round ceramics and has a particle diameter of 100 ⁇ m or less, and the others are the same as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

A zeolitic composition that excels in all of plasticity before firing and strength and porosity after firing; and a porous firing product obtained by firing of the composition. There is provided a porous firing product characterized in that it is obtained by firing of a zeolitic composition comprising zeolite, a plastic clay and an alkali (alkaline earth) metal compound.

Description

明 細 書  Specification
ゼォライト含有組成物、ならびにこれを用いた多孔質焼成体および建材 技術分野  Zeolite-containing composition, and porous fired body and building material using the same
[0001] 本発明は、焼成前の混合物可塑性および焼成後の強度と多孔質性に優れるゼォ ライト含有組成物、ならびにこれを用いた多孔質焼成体および建材等の用途に関す る。  The present invention relates to a zeolite-containing composition excellent in mixture plasticity before firing, strength and porosity after firing, and uses such as a porous fired body and a building material using the same.
背景技術  Background art
[0002] ゼォライトは、ミクロ多孔質のアルミノシリケート結晶の総称であり、ミクロ細孔とその 骨格のもつ負電荷により、優れた分子吸着 ·ふるい作用、イオン交換作用、触媒作用 を示すため、吸着剤や分離材などの環境浄化材料や触媒などとして広く用いられて いる。  Zeolite is a generic term for microporous aluminosilicate crystals, and exhibits excellent molecular adsorption, sieving, ion exchange, and catalysis due to the negative charge possessed by micropores and their frameworks, and therefore an adsorbent. It is widely used as an environmental purification material and catalyst, etc.
[0003] ゼォライトの特性を活力ゝした材料は、通常、バインダーを用いて成形、焼成して得ら れる焼成体である。このような焼成体に関する従来技術としては、例えば、日本国特 開 2— 160616号公報が挙げられる力 この他にも数多く存在し、その多くは吸着剤 や触媒として用いられている。焼成体が、吸着剤や触媒として優れた機能を発揮する ためには、その比表面積や気孔率などの多孔質性が優れていることはもちろんのこと 、実用上、一定以上の強度を有し、なおかつ用途に応じて適した形状に成形すること ができる成形自由度を有することが必要である。  [0003] A material with vitality to the properties of zeolite is usually a fired body obtained by molding and firing using a binder. There are many other conventional techniques related to such a sintered body, for example, Japanese Patent Application Laid-Open No. 2-160616, and many of them are used as adsorbents and catalysts. In order for the sintered body to exhibit excellent functions as an adsorbent and a catalyst, it has not only excellent porosity, such as specific surface area and porosity, but also has a certain strength or more in practical use. And at the same time, it is necessary to have a degree of freedom in molding that can be molded into a suitable shape according to the application.
[0004] し力しながら、多孔質性に優れたゼォライトを主成分として多めに配合し、焼成体の 多孔質性を向上させようとすると、バインダーの配合量が相対的に低下し、焼成体の 強度は低下してしまう。逆に、ノインダ一の配合量を増加させることで焼成体の強度 を容易に向上させることができる力 その多孔質性は低下してしまう。これまでにも両 特性を向上させようとする数多くの研究が為されている(例えば、日本国特開 11— 2 46282号公報)が、上記の通り、基本的に焼成体の多孔質性と強度を共に向上させ ることは非常に困難なことである。さらに、ゼォライトを主成分として 50重量%以上配 合すると、通常、焼成前の原料混合物の可塑性 (成形自由度)、分散性、流動性が 著しく失われてしまう。この可塑性、分散性、流動性を改善するためには有機バイン ダーを配合すればよいが、焼成体の製造コストが高くなる上、その強度は低下し、さ らに焼成後も内部に残存して多孔質性を低下させるという問題がある。ゼォライト含 有焼成体の成形においては、一般的に可塑性の確保が非常に困難であるため、こ の改善が最も重要な課題である。 If it is attempted to improve the porosity of the fired body by using a large amount of zeolite having excellent porosity as the main component while trying to improve the porosity of the fired body, the blending amount of the binder relatively decreases, and the fired body The strength of the On the contrary, the porosity of the sintered body can be easily improved by increasing the blending amount of NOINDA. Numerous studies have been conducted so far to improve both properties (for example, Japanese Patent Laid-Open No. 11-246282), but as described above, basically the porosity of the fired body and It is very difficult to improve the strength together. Furthermore, if the content of the zeolite as the main component is 50% by weight or more, usually, the plasticity (the degree of freedom of molding), the dispersibility and the fluidity of the raw material mixture before firing are significantly lost. Organic vine to improve its plasticity, dispersibility and fluidity Although it is sufficient to blend the daters, the cost of producing the fired body is increased, the strength is lowered, and there is a problem that the sintered body remains in the inside after firing to reduce the porosity. This improvement is the most important issue in molding of zeolite-containing fired bodies, as it is generally very difficult to secure plasticity.
[0005] 以上の事実から、焼成前の可塑性および焼成後の強度と多孔質性の全てを高いレ ベルで満たすゼォライト含有組成物ならびにこれを焼成してなる焼成体を製造するこ とは非常に困難なことである。  From the above facts, it is extremely important to produce a zeolite-containing composition that satisfies all of plasticity before firing and strength and porosity after firing at a high level, and a fired body obtained by firing the composition. It is difficult.
発明の開示  Disclosure of the invention
[0006] 上記を鑑みて、本発明は、焼成前の可塑性、すなわち成形自由度が高ぐなおか つ焼成後の強度と多孔質性に優れたゼォライト含有組成物ならびにこれを焼成して なる焼成体を提供することを目的とする。  In view of the above, according to the present invention, there is provided a zeolite-containing composition having excellent plasticity before firing, ie, high strength after molding and a high degree of freedom after firing, and a fired composition obtained by firing the composition. Intended to provide the body.
[0007] 発明者らは、これまでにもゼォライトとバインダーを種々組み合わせ、検討行うこと で比較的優れた強度と多孔質性を有する焼成体を製造してきたが、ゼォライトおよび 公知のバインダーを厳選するのみでは、上記課題となる特性を全て満たすゼォライト 含有組成物およびその焼成体を得ることはできな 、と考え、鋭意検討を重ねた結果 、ゼォライトを主成分とし、さらに特定のバインダーを必須成分として含むゼォライト含 有組成物を所定の温度範囲内にて焼成することで、上記特性を全て高!、レベルで 同時に満たすゼォライト含有組成物およびその焼成体を製造することに成功し、本 発明を為すに至った。  The inventors of the present invention have so far manufactured a fired body having relatively excellent strength and porosity by examining various combinations of zeolite and binder, but carefully select zeolite and a known binder. It is thought that it is impossible to obtain a zeolite-containing composition that satisfies all the above-mentioned problems, and a fired product thereof alone, and as a result of intensive studies, Zeolite is the main component and a specific binder is the essential component. By firing a zeolitic-containing composition containing the same within a predetermined temperature range, a zeolitic-containing composition and a fired body thereof which satisfy all of the above characteristics simultaneously at a high level and a level can be successfully produced, and the present invention is achieved. It came to
[0008] すなわち、本発明は、下記(1)〜(27)に記載の事項をその特徴とする。  That is, the present invention is characterized by the matters described in the following (1) to (27).
[0009] (1)ゼォライト 50〜90重量%と、可塑性粘土 5〜49. 9重量%と、アルカリ(土類) 金属化合物 0. 1〜30重量%と、を含むゼォライト含有組成物。  (1) A zeolite-containing composition comprising 50 to 90% by weight of Zeolite, 5 to 49.9% by weight of a plastic clay, and 0.1 to 30% by weight of an alkaline (earth) metal compound.
[0010] (2)前記アルカリ(土類)金属化合物が、 800°C以下で熱分解するものであることを 特徴とする上記(1)記載のゼォライト含有組成物。  (2) The zeolite-containing composition according to the above (1), wherein the alkali (earth) metal compound is thermally decomposed at 800 ° C. or less.
[0011] (3)前記可塑性粘土が木節粘土、蛙目粘土、カオリン、頁岩粘土、陶石からなる群 力 選択される 1種または 2種以上であることを特徴とする上記(1)または(2)記載の ゼォライト含有組成物。  [0011] (3) The above-mentioned (1) or (1) or (2), wherein the plastic clay is one or more selected from the group consisting of woodblock clay, lepidome clay, kaolin, shale clay, and pottery. (2) The zeolite-containing composition according to the above.
[0012] (4)前記可塑性粘土は、その平均粒径 D が前記ゼォライトの平均粒径 D 以下で あり、かつ前記ゼォライトの有効径 D 以下の粒径割合が 15重量%以上であることを (4) The plastic clay has an average particle diameter D of not more than the average particle diameter D of the zeolite. And the particle size ratio of the effective diameter D or less of the zeolite is 15% by weight or more.
10  Ten
特徴とする上記(1)〜(3)の 、ずれかに記載のゼォライト含有組成物。  The zeolite-containing composition according to any one of the above (1) to (3), which is characterized by the above.
[0013] (5)前記アルカリ(土類)金属化合物が、アルカリ(土類)金属炭酸塩、アルカリ(土 類)金属水酸化物、アルカリ(土類)金属硝酸塩、およびアルカリ(土類)金属酢酸塩 力 なる群力も選択される 1種または 2種以上であることを特徴とする上記(1)〜 (4) の!、ずれかに記載のゼォライト含有組成物。 (5) The alkali (earth) metal compound is an alkali (earth) metal carbonate, an alkali (earth) metal hydroxide, an alkali (earth) metal nitrate, and an alkali (earth) metal. The zeolite-containing composition according to any one of the above (1) to (4), wherein the group power of acetate is also one or two or more selected.
[0014] (6)前記アルカリ(土類)金属炭酸塩が、炭酸リチウム、炭酸マグネシウム、炭酸力 ルシゥム、塩基性炭酸マグネシウム、マグネサイト、石灰石、およびドロマイトからなる 群カゝら選択される 1種または 2種以上の混合物もしくは混合摩砕物であることを特徴と する上記(5)に記載のゼォライト含有組成物。 (6) 1 type selected from the group consisting of lithium carbonate, magnesium carbonate, calcium carbonate, basic magnesium carbonate, magnesite, limestone, and dolomite as the alkali (earth metal) metal carbonate. Or a zeolite-containing composition according to the above (5), which is a mixture or a mixture of two or more thereof.
[0015] (7)前記炭酸カルシウム、前記石灰石、および前記ドロマイトは、その他のアルカリ( 土類)金属化合物との混合物もしくは混合摩砕物として用いられることを特徴とする 上記(6)に記載のゼォライト含有組成物。 (7) The zeolite according to (6) above, characterized in that the calcium carbonate, the limestone, and the dolomite are used as a mixture or a mixture with other alkali (earth) metal compounds. Containing composition.
[0016] (8)前記アルカリ(土類)金属水酸化物が、水酸化リチウム、水酸化ナトリウム、水酸 化カリウム、水酸ィ匕カルシウム、水酸化マグネシウム、およびブルーサイトからなる群 カゝら選択される 1種または 2種以上の混合物もしくは混合摩砕物であることを特徴とす る上記(5)に記載のゼォライト含有組成物。 (8) A group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and brucite as the alkali (earth metal) hydroxide. The zeolite-containing composition according to the above (5), which is a mixture or mixture of one or more selected or a mixture of two or more.
[0017] (9)前記アルカリ(土類)金属硝酸塩が、硝酸カリウム、および硝酸ナトリウム力もな る群力 選択される 1種または 2種以上の混合物もしくは混合摩砕物であることを特 徴とする上記(5)に記載のゼォライト含有組成物。 (9) The above alkaline (earth) metal nitrate is characterized in that it is a mixture of at least one selected from one or more selected from potassium nitrate and a group also having sodium nitrate power, or mixed milled matter. The zeolite-containing composition according to (5).
[0018] (10)前記ゼォライトに銅イオン、銀イオン、亜鉛イオン力もなる群力も選択される 1 種または 2種以上の金属イオンが担持されて 、ることを特徴とする上記(1)〜(9)の(10) The zeolite has a group power which is also selected from copper ion, silver ion and zinc ion power. One or two or more metal ions are supported on the zeolite. 9)
V、ずれかに記載のゼォライト含有組成物。 V, a zeolite-containing composition according to any of the preceding claims.
[0019] (11)塑性状態における山中式土壌硬度計測定値が 14以下であることを特徴とす る上記(1)〜(10)のいずれかに記載のゼォライト含有組成物。 (11) The zeolite-containing composition according to any one of the above (1) to (10), which has a measured value of Yamanaka-type soil hardness meter in a plastic state of 14 or less.
[0020] (12)上記(1)〜(11)のいずれかに記載のゼォライト含有組成物を 500〜800°C で焼成してなることを特徴とする多孔質焼成体。 (12) A porous fired body obtained by firing the zeolite-containing composition according to any one of the above (1) to (11) at 500 to 800 ° C.
[0021] (13)気孔率が 30%以上であり、かつ曲げ強度が IMPa以上であることを特徴とす る上記(12)に記載の多孔質焼成体。 (13) A porosity is 30% or more, and a bending strength is I MPa or more. (12) above.
[0022] (14)焼成体に含まれるゼォライト成分の比表面積が、前記ゼォライト含有組成物 に含まれるゼォライト成分の比表面積の 0. 8倍以上であることを特徴とする上記(12(14) The specific surface area of the zeolite component contained in the fired body is at least 0.8 times the specific surface area of the zeolite component contained in the zeolite-containing composition.
)または(13)に記載の多孔質焼成体。 Or (13).
[0023] (15)表面上に光触媒粒子が担持されているか、または組成として光触媒粒子が含 まれて 、ることを特徴とする上記( 12)〜( 14)の 、ずれかに記載の多孔質焼成体。 (15) The photocatalyst particle is supported on the surface, or the photocatalyst particle is contained as a composition, The porous according to any one of the above (12) to (14), characterized in that Fired body.
[0024] (16)ゼォライトと、可塑性粘土と、アルカリ(土類)金属化合物と、を含むゼォライト 含有組成物であって、塑性状態における山中式土壌硬度計測定値が 14以下であり(16) A Zeolite-containing composition comprising Zeolite, plastic clay, and an alkali (earth) metal compound, wherein the measured value of Yamanaka-type soil hardness meter in the plastic state is 14 or less.
、焼成後の気孔率が 30%以上、曲げ強度が IMPa以上、前記ゼォライト成分の比表 面積が焼成前の前記ゼォライト成分の比表面積の 0. 8倍以上であることを特徴とす るゼオライト含有組成物。 And zeolite having a porosity after firing of 30% or more, a flexural strength of IMPa or more, and a specific surface area of the zeolite component of at least 0.8 times the specific surface area of the zeolite component before firing. Composition.
[0025] (17)前記ゼォライトの含有率が 50〜90重量%であることを特徴とする上記(16)に 記載のゼォライト含有組成物。 (17) The zeolite-containing composition as described in (16) above, wherein the content of the zeolite is 50 to 90% by weight.
[0026] (18)前記可塑性粘土は、その平均粒径 D が前記ゼォライトの平均粒径 D 以下 (18) The plastic clay has an average particle size D which is less than or equal to the average particle size D of the zeolite.
50 50 であり、かつ前記ゼォライトの有効径 D 以下の粒径割合が 15重量%以上であること  The particle diameter ratio of 50 50 and the effective diameter D or less of the zeolite is 15% by weight or more
10  Ten
を特徴とする上記(16)または(17)に記載のゼォライト含有組成物。  The zeolite-containing composition according to the above (16) or (17), characterized in that
[0027] (19)上記(16)〜(18)のいずれかに記載のゼォライト含有組成物を 500〜800°C で焼成してなることを特徴とする多孔質焼成体。 (19) A porous fired body obtained by firing the zeolite-containing composition according to any one of the above (16) to (18) at 500 to 800 ° C.
[0028] (20)表面上に光触媒粒子が担持されているか、または組成として光触媒粒子が含 まれていることを特徴とする上記(19)に記載の多孔質焼成体。 (20) The porous fired body according to the above (19), wherein photocatalyst particles are supported on the surface, or photocatalyst particles are contained as a composition.
[0029] (21)上記(12)〜(15)の 、ずれかに記載の多孔質焼成体または上記(19)または (21) The porous fired body according to any one of the above (12) to (15) or the above (19) or
(20)に記載の多孔質焼成体により被膜されて 、ることを特徴とする被膜物。  A coated article characterized by being coated by the porous fired body according to (20).
[0030] (22)上記(1)〜(11)のいずれかに記載のゼォライト含有組成物、または上記(16(22) The zeolite-containing composition according to any one of (1) to (11) above, or the above (16)
)〜(18)のいずれかに記載のゼォライト含有組成物を、押し出し成形、プレス成形、 または铸込み成形により成形加工し、これを 500〜800°Cで焼成してなることを特徴 とする建材。 A building material characterized in that the zeolite-containing composition according to any one of (1) to (18) is formed and processed by extrusion molding, press molding, or entanglement molding, and fired at 500 to 800 ° C. .
[0031] (23)気孔率が 30%以上でかつ曲げ強度が 3MPa以上であることを特徴とする上 記(22)に記載の建材。 [0032] (24)体積標準吸水率が 35%以上でかつ曲げ強度が 3MPa以上であることを特徴 とする上記(22)または(23)に記載の建材。 (23) The building material according to (22), which has a porosity of 30% or more and a bending strength of 3 MPa or more. (24) The building material according to (22) or (23) above, which has a volume standard water absorption of 35% or more and a flexural strength of 3 MPa or more.
[0033] (25)ゼォライトを 50%以上含有するゼオライト含有組成物を成形し、 500〜800°C で焼成してなり、曲げ強度が 3MPa以上で、かつ気孔率が 30%以上もしくは体積標 準吸水率が 35%以上であることを特徴とする建材。 (25) A zeolite-containing composition containing 50% or more of zeolite is molded, and fired at 500 to 800 ° C., and has a flexural strength of 3 MPa or more and a porosity of 30% or more or a volume standard. A building material characterized by having a water absorption rate of 35% or more.
[0034] (26)表面上に光触媒粒子が担持されているか、または組成として光触媒粒子が含 まれて 、ることを特徴とする上記(22)〜(25)の 、ずれかに記載の建材。 (26) The building material according to any one of (22) to (25), wherein photocatalyst particles are supported on the surface, or photocatalyst particles are contained as a composition.
[0035] (27)多孔体を焼成してなる多孔質焼成体に配合されるバインダーであって、平均 粒径 D が前記多孔体の平均粒径 D 以下であり、かつ前記多孔体の有効径 D 以(27) A binder to be added to a porous fired body obtained by firing a porous body, the average particle diameter D being less than or equal to the average particle diameter D of the porous body, and the effective diameter of the porous body D or more
50 50 10 下の粒径割合が 15重量%以上である可塑性粘土と、アルカリ(土類)金属化合物と、 を含むことを特徴とするノインダー。 A softer comprising: a plasticizable clay having a particle size ratio of not less than 50 50 10 15 wt% or more; and an alkali (earth) metal compound.
[0036] 従来技術において、焼成前の可塑性と焼成後の強度および多孔質性の全てに優 れたゼオライト含有組成物およびその焼成体を得るために、組成物の構成を本発明 のようにした例はなぐそれゆえ、本発明は新規でかつ非常に画期的な発明であると いうことができる。本発明によれば、ゼォライト含有量が高いにもかかわらず、優れた 可塑性と強度を有する多孔質焼成体を提供することが可能となるため、従来力 の 多孔質焼成体の応用分野にはもちろんのこと、上記各特性を高いレベルで同時に要 求されるために適用が困難であった新たな応用分野にも本発明のゼォライト含有組 成物およびその焼成体を積極的に用いることが可能となる。  In the prior art, in order to obtain a zeolite-containing composition excellent in all of the plasticity before calcination and the strength and porosity after calcination and the calcined product thereof, the composition of the composition was made to be the present invention. The examples go beyond, so it can be said that the present invention is a novel and very innovative invention. According to the present invention, it is possible to provide a porous fired body having excellent plasticity and strength despite the high zeolitic content. In addition, it is possible to actively use the zeolite-containing composition of the present invention and the sintered body thereof for new application fields where application is difficult because the above properties are simultaneously required at high levels. Become.
[0037] 本出願は、同出願人により先にされた日本国特許出願、すなわち、 2004- 33550 4号(出願日 2004年 11月 19日)に基づく優先権主張を伴うものであって、これらの 明細書を参照のためにここに組み込むものとする。  This application is accompanied by a priority claim based on the Japanese patent applications filed by the same applicant, namely, 2004-335504 (filing date: November 19, 2004), The specification of is incorporated here for reference.
図面の簡単な説明  Brief description of the drawings
[0038] [図 1]図 1は、脱臭評価用装置の概略図である。 FIG. 1 is a schematic view of a deodorizing evaluation device.
[図 2]図 2は、脱臭評価におけるアンモニア濃度の経時変化を示すグラフである。  [Fig. 2] Fig. 2 is a graph showing the temporal change of ammonia concentration in the deodorization evaluation.
[図 3]図 3は、脱臭評価におけるァセトアルデヒド濃度の経時変化を示すグラフである  [FIG. 3] FIG. 3 is a graph showing the time-dependent change of acetaldehyde concentration in the deodorization evaluation.
[図 4]図 4は、脱臭評価における酢酸濃度の経時変化を示すグラフである [図 5]図 5は、本実施例において用いた蛙目粘土とゼォライトの粒度分布曲線である 発明を実施するための最良の形態 [Fig. 4] Fig. 4 is a graph showing temporal change of acetic acid concentration in deodorization evaluation [FIG. 5] FIG. 5 is a particle size distribution curve of the lepidopteran clay and zeolite used in the present example. Best mode for carrying out the invention
[0039] 本発明のゼォライト含有組成物は、ゼォライトと、可塑性粘土と、アルカリ(土類)金 属化合物を必須成分として含む。なお、本発明において、「アルカリ(土類)金属」と は、アルカリ金属(Li、 Na、 K等)またはアルカリ土類金属(Mg、 Ca、 Sr、 Ba等)を意 味する。 The zeolite-containing composition of the present invention comprises zeolite, a plastic clay and an alkali (earth) metal compound as essential components. In the present invention, the term "alkali (earth) metal" means an alkali metal (Li, Na, K or the like) or an alkaline earth metal (Mg, Ca, Sr, Ba or the like).
[0040] 上記ゼォライトとしては、例えば、クリノプチ口ライト、モルデナイトなどの天然ゼオラ イト、 A型、 X型、 Y型、 USY型 (超安定 Y型)、シリカライト、 ZSM— 5、ゼォライトの特 性を有する多孔体、石炭灰等のシリカ、アルミ成分を含む廃棄物やリサイクル原料か ら合成された A型、 X型、 Y型などの合成ゼォライトが挙げられ、特に限定されないが 、 USY型やシリカライトなどの疎水性ゼォライトや天然ゼォライトを用いると特に大き な効果を発揮する傾向があるため好ましい。ただし、建材や農業資材など大量消費 の利用用途においては、コストの観点からは、天然ゼォライトや廃棄物等力 合成さ れた合成ゼォライトを用いることが好ましい。なお、「疎水性ゼォライト」とは、一般的 に親水性ゼォライトのような高い水分吸着特性を有さず、ゼォライト成分中の Si分が 比較的高いものを指す。また、天然ゼォライトを用いる場合には、成形性、可塑性確 保の観点から、その最大粒径が 150 m以下のものを使用することが好ましぐ 100 m以下のものを使用することがより好ましい。また、上記ゼォライトの特性を有する 多孔体とは、例えば、 2〜50nmの細孔径を有し、かつ細孔径分布が非常に狭いこと を特徴とするメソ多孔体 (メソポーラス物質)を挙げることができ、より具体的には、 FS M— 16や MCM—41などである。  [0040] Examples of the above-mentioned zeolite include the characteristics of natural zeolite such as clinopti mouth light, mordenite, A-type, X-type, Y-type, USY-type (ultrastable Y-type), silicalite, ZSM-5, and zeolite. Porous materials having silica, silica such as coal ash, wastes containing aluminum components, and synthetic zeolites such as A-type, X-type and Y-type synthesized from recycled raw materials, and are not particularly limited, but USY-type or silica It is preferable to use hydrophobic or natural zeolites such as lights because they tend to exert particularly large effects. However, it is preferable to use natural zeolite and synthetic zeolite synthesized from waste and the like from the viewpoint of cost in applications of mass consumption such as building materials and agricultural materials. The term "hydrophobic zeolite" generally refers to a material which does not have high water adsorption properties like hydrophilic zeolite and has a relatively high Si content in the zeolite component. When natural zeolite is used, it is preferable to use one having a maximum particle size of 150 m or less from the viewpoint of moldability and plasticity, and it is more preferable to use one having 100 m or less. . Further, examples of the porous body having the characteristics of the above-mentioned zeolite include a mesoporous body (mesoporous material) having a pore diameter of 2 to 50 nm and having a very narrow pore size distribution. More specifically, there are FS M-16 and MCM 41 etc.
[0041] また、ゼォライトの配合量は特に限定されな 、が、優れた吸着性能、イオン交換性 能、多孔質性を有する焼成体を得るために、ゼォライト含有組成物全体に対して 50 〜90重量%配合することが好ましぐ 60〜80重量%配合することがより好ましい。本 発明では、組成として 50重量%を超える量のゼォライトを配合した場合にも、可塑性 粘土とアルカリ(土類)金属化合物を含むバインダーをさらに配合するため、原料スラ リーは優れた可塑性をもち、さらに焼成後の材料強度と多孔質性をも付与することが 可能となる。 Further, the blending amount of zeolite is not particularly limited, but in order to obtain a sintered body having excellent adsorption performance, ion exchange performance, and porosity, 50 to 90 with respect to the whole zeolite-containing composition. It is more preferable to mix | blend 60 to 80 weight% which is preferable to mix | blend weight%. In the present invention, the raw material slurry has excellent plasticity because the plastic clay and the binder containing the alkaline (earth) metal compound are further blended even when the composition contains the zeolite in an amount of more than 50% by weight. In addition, the material strength and porosity after firing can be provided. It becomes possible.
[0042] 上記可塑性粘土は、主にカオリナイト、ハロイサイト、セリサイト、モンモリロナイトなど の粘土鉱物をその組成に含むものである。このような可塑性粘土は、これまでにも愛 知、岐阜、三重などの東海地方、特に、岐阜県東濃地方や愛知県瀬戸地方におい て陶器用粘土原料として過去数百年にわたり使用されてきたものであり、成形性、多 孔性、低温焼結が大変優れている。本発明に用いることのできる可塑性粘土としては 、特に限定されないが、例えば、木節粘土、蛙目粘土、カオリン、頁岩粘土、せっ器 粘土、赤土、青土、陶石、ベントナイト、ろう石、セピオライト、ァタパルジャイトなどが 挙げられ、これらは 1種または 2種以上同時に用いることができる。本発明では、木節 粘土、蛙目粘土、カオリン、頁岩粘土、陶石を用いることが好ましぐ蛙目粘土を用い ることがより好ましい。なお、可塑性粘土に関しては、当業者であれば上記の記述か ら十分に理解することが可能であると思われるが、より詳細には、「社団法人日本セラ ミックス協会編、セラミックス工学ノ、ンドブック (第 2版) [応用]、技報堂出版株式会社 出版」の 581〜585頁を参照されたい。  The plastic clay mainly includes clay minerals such as kaolinite, halloysite, sericite and montmorillonite in its composition. Such plastic clays have been used as clay materials for pottery for the past hundreds of years in the Tokai region such as Aichi, Gifu, Mie, particularly in the Tono region of Gifu Prefecture and the Seto Region of Aichi Prefecture. It has excellent formability, porosity and low temperature sintering. The plastic clay which can be used in the present invention is not particularly limited, but it is not particularly limited, but, for example, woodblock clay, lepidopteran clay, kaolin, shale clay, earthenware clay, red earth, blue earth, china stone, bentonite, wax stone, sepiolite, Catapulgite and the like can be mentioned, and these can be used alone or in combination of two or more. In the present invention, it is more preferable to use a moss clay which is preferred to use a woodblock clay, a moss clay, a kaolin, a shale clay, or a potash. The plastic clay is considered to be able to be fully understood by those skilled in the art from the above description, but more specifically, “Ceramics Engineering Japan, Ed. (2nd edition) [Application] Please refer to pages 581 to 585 of “Techhohodo Publishing Co., Ltd. Publication”.
[0043] また、上記可塑性粘土は、水ひによって粒度調整されたものであることが好ましぐ その平均粒径 D が成形対象となるゼォライトの平均粒径と同程度もしくはゼォライト  Further, the above-mentioned plastic clay is preferably one whose particle size has been adjusted by a water drop. The average particle diameter D is about the same as the average particle diameter of the zeolite to be formed or the zeolite
50  50
の平均粒径 D 以下であることがより好ましぐさらにゼォライトの有効径 D 以下の粒  It is more preferable that the average particle diameter D is less than or equal to
50 10 径割合が 15重量%以上であることがより好ましい。このような条件を満たす可塑性粘 土を用いることは、組成物全体の粒度分布、成形密度を向上させ、焼成体の強度向 上を図る上で重要な意味を有する。特に、ゼォライト自身が狭い粒度範囲に分布す る、ほぼ均一径の工業ゼォライトを使用する場合に、組成物中の空隙を支配するゼ オライト有効径 D 以下の粒径が 15重量%以上を占める可塑性粘土を組み合わせる  The 50 10 diameter ratio is more preferably 15% by weight or more. The use of a plastic clay which satisfies such conditions has an important meaning in improving the particle size distribution and the forming density of the whole composition, and in improving the strength of the fired body. In particular, when using industrial zeolite of substantially uniform diameter, in which the zeolite itself is distributed in a narrow particle size range, plasticity in which the particle diameter below the zeolite effective diameter D governing the voids in the composition is 15% by weight or more. Combine clay
10  Ten
と、焼成体の強度向上に大きく寄与することになる。なお、本発明において平均粒径 Thus, the strength of the fired body is greatly improved. In the present invention, the average particle size is
D 、有効径 D は、それぞれ、試料 100重量%に対し、ふるい通過質量百分率で 5The effective diameter D and the effective diameter D are respectively 5% by mass passing through the sieve with respect to 100% by weight of the sample.
50 10 50 10
0重量%、 10重量%がその粒経以下であることを示す。  It shows that 0 wt% and 10 wt% are less than the particle size.
[0044] また、上記可塑性粘土の配合量は、ゼォライト含有組成物全体に対して 5〜49. 9 重量%配合することが好ましぐ 10〜48重量%配合することがより好ましい。 Further, the blending amount of the plastic clay is more preferably 10 to 48% by weight, which is preferably blended in an amount of 5 to 49.9% by weight based on the whole of the zeolite containing composition.
[0045] 上記アルカリ(土類)金属化合物としては、特に限定されないが、例えば、アルカリ( 土類)金属の炭酸塩、水酸化物、炭酸水素塩、酢酸塩、シユウ酸塩、硝酸塩などが挙 げられ、これらアルカリ(土類)金属化合物からなる天然鉱物原料であってもよい。ァ ルカリ(土類)金属化合物として、好ましくは、アルカリ(土類)金属炭酸塩、アルカリ( 土類)金属水酸化物、アルカリ(土類)金属硝酸塩、およびアルカリ(土類)金属酢酸 塩力 なる群力 選択される 1種または 2種以上である。 The above-mentioned alkali (earth) metal compound is not particularly limited. Earths) Metal carbonates, hydroxides, hydrogencarbonates, acetates, sulfates, nitrates and the like may be mentioned, and they may be natural mineral raw materials comprising these alkali (earth) metal compounds. As alkali metal (earth) metal compounds, preferably, alkali (earth) metal carbonates, alkali (earth) metal hydroxides, alkali (earth) metal nitrates, and alkali (earth) metal acetates One or two or more selected.
[0046] 上記アルカリ(土類)金属炭酸塩としては、炭酸リチウム、炭酸マグネシウム、炭酸力 ルシゥム、塩基性炭酸マグネシウム、マグネサイト、石灰石、およびドロマイトからなる 群力 選択される 1種または 2種以上の混合物であることが好ましぐ上記アルカリ(土 類)金属水酸ィ匕物としては、水酸化リチウム、水酸化ナトリウム、水酸ィ匕カリウム、およ び水酸ィ匕カルシウム、水酸化マグネシウム、およびブルーサイトからなる群力 選択さ れる 1種または 2種以上の混合物であることが好ましぐ上記アルカリ(土類)金属硝酸 塩としては、硝酸カリウム、硝酸ナトリウム、およびこれらの混合物力もなる群力も選択 される 1種以上であることが好まし!/、。  As the above-mentioned alkali (earth) metal carbonate, lithium carbonate, magnesium carbonate, calcium carbonate, basic magnesium carbonate, magnesite, limestone, and dolomite are selected. One or more selected As the above-mentioned alkali (earths) metal hydroxides which are preferably mixtures of lithium, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and magnesium hydroxide And a brute force group selected from the group consisting of potassium nitrate, sodium nitrate, and mixtures thereof as the above alkali (earth) metal nitrate salt which is preferably a mixture of one or more selected Force is also preferred to be selected one or more!
[0047] また、アルカリ(土類)金属化合物の混合物は、機械的に摩砕加工された摩砕混合 物であってもよぐ摩砕することにより、組成物の焼成温度を低く設定できる場合があ る。さらに、上記炭酸カルシウム、石灰石、ドロマイトは、その他のアルカリ(土類)金属 化合物と混合して用いることが好ましぐ炭酸カルシウム、石灰石、またはドロマイトと 、炭酸マグネシウムまたはマグネサイトとの混合物であることがより好まし 、。  [0047] In the case where the mixture of alkali (earth) metal compounds can be a grinding mixture that has been subjected to mechanical grinding processing and if the baking temperature of the composition can be set low by grinding There is Furthermore, the above calcium carbonate, limestone, dolomite is a mixture of calcium carbonate, limestone, or dolomite with magnesium carbonate or magnesite, which is preferably used in combination with other alkali (earth) metal compounds. Is more preferred.
[0048] また、本発明の焼成体は、本発明のゼォライト含有組成物を焼成してなるものであ るが、焼成時に熱分解して、二酸ィ匕炭素などのガスや酸ィ匕物が生成するアルカリ(土 類)金属化合物を用いると、焼成体の強度や気孔率が向上する傾向にある。したがつ て、上記アルカリ(土類)金属化合物として、実際の焼成温度以下で熱分解するもの を選択することが好ましい。例えば、焼成温度が 700°Cである場合には、 700°C以下 の温度で熱分解するアルカリ(土類)金属化合物を用いることが好ましい。なお、本発 明の焼成体は、後述するように、本発明のゼォライト含有組成物を 500〜800°Cで焼 成して作製することが好ましいため、基本的には上記アルカリ(土類)金属化合物とし て、 800°C以下で熱分解するものを選択することが好ましい。ただし、単体での熱分 解温度が 800°C超である力 組成物中の他成分との組み合わせによりそれが 800°C 未満に低下するようなアルカリ(土類)金属化合物については、そのような組み合わ せになる場合に「800°C以下で熱分解するもの」として扱うこととする。具体的には、 例えば、炭酸カルシウムは、単体での熱分解温度が約 900°Cである力 組成物中に シリカ成分や他のアルカリ(土類)金属化合物が含まれて 、るとその温度が 800°C以 下になる。 Further, the fired body of the present invention is formed by firing the zeolite-containing composition of the present invention, but it is pyrolyzed at the time of firing to form a gas such as carbon dioxide or an acid oxide. The strength and porosity of the fired body tend to be improved by using an alkali (earth) metal compound which is generated. Therefore, it is preferable to select as the above-mentioned alkali (earth) metal compound, one which thermally decomposes below the actual calcination temperature. For example, when the firing temperature is 700.degree. C., it is preferable to use an alkali (earth) metal compound which thermally decomposes at a temperature of 700.degree. C. or less. In addition, since it is preferable to bake the zeolite-containing composition of the present invention at 500 to 800 ° C. to produce the fired body of the present invention as described later, basically, the alkali (earth) is basically used. It is preferable to select a metal compound that thermally decomposes at 800 ° C. or less. However, when the thermal decomposition temperature of the composition alone is higher than 800 ° C., it is 800 ° C. due to the combination with other components in the force composition. Alkali (earth) metal compounds that fall below 10% shall be treated as "thermal decomposition at 800 ° C or lower" when such a combination is made. Specifically, calcium carbonate, for example, has a thermal decomposition temperature of about 900 ° C. when it contains a silica component and other alkali (earth) metal compounds in its force composition, and that temperature Falls below 800 ° C.
[0049] また、上記アルカリ金属(土類)化合物は、ゼォライト含有組成物全体に対して 0. 1 〜30重量%配合することが好ましぐ 1〜20重量%配合することがより好ましい。アル カリ(土類)金属化合物の配合量が、 0. 1重量%未満であると、配合による効果が十 分に発揮されない傾向があり、 30重量%を超えると、ゼォライトや可塑性粘土の割合 が低下し、可塑性と強度と多孔質性のいずれかに特性が偏ってしまう傾向があり、全 ての特性を向上させることが困難となる。また、アルカリ金属(土類)ィ匕合物を添加す ることで、本発明のゼォライト含有組成物の pHはアルカリ側に傾くことになる力 この ときの pHは 11. 5以下であることが好ましぐ 11以下であることがより好ましい。 pHが 11. 5を越えた状態で焼成体を製造した場合には、組成物中のゼォライトの特性を 損なう恐れがある。なお、 pHの調整は、例えば、アルカリ金属(土類)ィ匕合物の配合 量を抑制する、無機酸 (硫酸、塩酸、硝酸など)を配合する、無機酸性化合物 (硫酸 アルミニウム、硫酸鉄など金属の硫酸化合物、塩酸ィ匕合物など)を配合する、などの 方法により行うことが可能である。  Further, the above alkali metal (earth) compound is more preferably blended in an amount of 0.1 to 30% by weight to the whole of the zeolite-containing composition, more preferably 1 to 20% by weight. If the amount of the alkali (earth) metal compound is less than 0.1% by weight, the effect of the compounding tends to be insufficient, and if it exceeds 30% by weight, the proportion of zeolite or plastic clay is It tends to be lowered, and the properties tend to be biased to one of plasticity, strength and porosity, making it difficult to improve all the properties. In addition, the pH of the zeolite-containing composition of the present invention is inclined to the alkali side by the addition of an alkali metal (earth) complex, and the pH at this time is 11.5 or less. More preferably, it is 11 or less. If the fired body is produced at a pH exceeding 11.5, the properties of the zeolite in the composition may be impaired. The pH can be adjusted, for example, by using an inorganic acid compound (eg, aluminum sulfate, iron sulfate, etc.) containing an inorganic acid (eg, sulfuric acid, hydrochloric acid, nitric acid) to suppress the amount of the alkali metal (earth) complex. It is possible to carry out by a method such as blending a metal sulfate compound, hydrochloric acid complex, etc.).
[0050] 本発明のゼォライト含有組成物は、上記のような可塑性粘土と、アルカリ(土類)金 属化合物とを含むバインダーを使用するため、それだけで良好な可塑性を得ることが できるが、この他にトリポリリン酸ナトリウム等のリン縮合塩、リグ-ンスルホン酸ナトリウ ム、セルロース誘導体ィ匕合物、カードラン、澱粉、ポリビュルアルコール、ベントナイト 、水ガラスなど、公知の分散剤や成形助剤を添加してもよぐこれにより必須成分の 種類や配合によってはその可塑性をより向上させることが可能となる。  The zeolite-containing composition of the present invention can obtain good plasticity by itself because it uses a binder containing the above-described plasticizable clay and an alkali (earth) metal compound. In addition, known dispersants and shaping aids such as phosphorus condensed salts such as sodium tripolyphosphate, sodium lignin sulfonate, cellulose derivative complex, curdlan, starch, polybutyl alcohol, bentonite, water glass, etc. However, this makes it possible to further improve its plasticity depending on the kind and combination of essential components.
[0051] また、上記のような可塑性粘土とアルカリ(土類)金属化合物を含むバインダーは、 良好な可塑性と優れた低温焼結性を焼成体原料に付与することができるため、ゼォ ライト以外の多孔体の成形用バインダー材料としても好適である。  Further, a binder containing the above-mentioned plastic clay and an alkali (earth) metal compound can impart good plasticity and excellent low-temperature sinterability to a sintered body material, and therefore other than zeolite It is also suitable as a binder material for forming a porous body.
[0052] また、本発明のゼォライト含有組成物には、上記以外の成分として、例えば、クロム 、マンガン、コノ レト、ニッケル等の遷移金属の酸化物、酸化アンチモン、ベンガラ( 酸化鉄)、酸化第二銅などの着色材を、焼成体の多孔質性、可塑性、強度等の特性 が損なわれない範囲で、添加してもよい。 In the zeolite-containing composition of the present invention, as components other than the above, for example, chromium And oxides of transition metals such as manganese, complex and nickel, antimony oxides, iron oxide (iron oxide), cupric oxide and other coloring materials, the properties of the fired body such as porosity, plasticity and strength are impaired. You may add, in the range which is not.
[0053] 本発明の多孔質焼成体は、可塑性、分散性、流動性に優れる上記本発明のゼオラ イト含有組成物と水などの溶媒とを混練したスラリーを所望粘度に調整し、種々の成 形方法により成形し、焼成することで得ることができる。  [0053] The porous fired body of the present invention is prepared by adjusting a slurry obtained by kneading the zeoliite-containing composition of the present invention having excellent plasticity, dispersibility, and fluidity with a solvent such as water to a desired viscosity, It can be obtained by molding by a molding method and baking.
[0054] 上記成形方法としては、特に限定されな!、が、例えば、铸込み成形、プレス成形、 押し出し成形、機械ろくろ成形、スプレードライなど、焼成体製造における公知の成 形技術により行うことができ、用途等に応じて適当な成形方法を選択することができる 。成形体の強度を高めることができるという点では、プレス成形、押し出し成形、また はロールプレス成形であることが好ましぐ押し出し成形であることが特に好ましい。ま た、適用する成形方法により、上記スラリーの粘度 (含水率)を調製することが好まし い。  The above-mentioned molding method is not particularly limited, but it is possible to carry out, for example, known molding techniques in sintered body production such as insert molding, press molding, extrusion molding, mechanical roller molding, spray drying and the like. It is possible to select an appropriate molding method according to the application etc. From the viewpoint that the strength of the molded body can be increased, it is particularly preferable that extrusion molding is preferably press molding, extrusion molding, or roll press molding. Moreover, it is preferable to adjust the viscosity (water content) of the above-mentioned slurry depending on the forming method to be applied.
[0055] セラミックス原料混合物スラリーは、含有水分量によりその結合状態 (コンシステンシ 一)が変化し、固体状、半固体状、塑性状、液状の各種状態となる。それゆえ、セラミ ックス原料混合物の成形加工プロセスにお 、て、適用する成形加工手段に応じて原 料混合物の含水量とコンシステンシーを適宜決定し、その流動性、分散性、可塑性 等を確保することは極めて重要なことである。  The ceramic raw material mixture slurry changes its bonding state (consistency) according to the water content, and turns into various states of solid, semi-solid, plastic, and liquid. Therefore, the moisture content and consistency of the raw material mixture are appropriately determined according to the forming processing means to be applied in the forming processing process of the ceramic raw material mixture, and the flowability, dispersibility, plasticity, etc. are secured. It is extremely important.
[0056] 例えば、ゼォライト含有組成物の成形体として一般的に用いられている水処理用、 ガス処理用のペレット状成形体ゃハ-カム成形体などは、通常、成形加工性の観点 力 押し出し成形法により製造されており、この場合には、原料混合物が塑性限界と 液性限界の間にある塑性状態となるようにその含水量を調製することが望ま 、。一 方、ゼォライト含有組成物は、一般的に塑性状態を示す含水量の幅が狭ぐまた塑 性状態における可塑性も悪い傾向にあり、この傾向は、特にゼォライトを 50重量%以 上含むゼォライト含有組成物において顕著である。従来技術では、この可塑性を改 善するために、有機バインダー等の添加剤を加えることが広く行われている力 その 結果、焼成体の製造コストが上昇し、その強度や多孔質性を低下させてしまうという 別の問題が生じることは前述の通りである。また、有機成分を焼きとばすために長時 間の焼成が必要となり、大きなエネルギーを消費するという問題も生じることになる。 そこで、本発明では、バインダーとして、可塑性粘土とアルカリ(土類)金属化合物を 含むものを用いることとし、その結果、有機バインダー等を使用せずとも優れた可塑 性を示し、なおかつ優れた焼成体強度や多孔質性をも示すゼォライト含有組成物を 提供することを可能とした。本発明のゼォライト含有組成物は、水を加え混練すること で容易に塑性状態とすることができ、適正な水量は含まれるゼォライトの種類、バイン ダー原料の種類、粒径などのより異なる。また、塑性状態における可塑性の良し悪し については、山中式土壌硬度計における測定値が 1つの目安となり、この測定値が 1 4以下であると、優れた押し出し成形性を確保することができるため、好ましい。 For example, pellet-like molded articles for water treatment and gas treatment that are generally used as molded articles of zeolite-containing compositions, molded articles of honeycombs, etc., are generally from the viewpoint of molding processability. It is manufactured by a molding method, and in this case, it is desirable to adjust its water content so that the raw material mixture is in a plastic state between the plastic limit and the liquid limit. On the other hand, zeolite-containing compositions tend to narrow the range of water content generally exhibiting a plastic state and to have poor plasticity in a plastic state, and this tendency is particularly pronounced by containing Zeolite containing at least 50% by weight of zeolite. It is remarkable in the composition. In the prior art, it is widely used to add an additive such as an organic binder in order to improve this plasticity. As a result, the manufacturing cost of the fired body increases, and the strength and the porosity decrease. As mentioned above, another problem arises that Also, long time to burn off the organic ingredients Firing is required, which causes the problem of consuming a large amount of energy. Therefore, in the present invention, a binder containing plastic clay and an alkaline (earth) metal compound is used as a binder, and as a result, excellent plasticity is exhibited without using an organic binder or the like, and a sintered body excellent also. It has become possible to provide a zeolite-containing composition which also exhibits strength and porosity. The zeolite-containing composition of the present invention can be easily brought into a plastic state by adding water and kneading, and the appropriate amount of water differs depending on the type of zeolite contained, the type of binder raw material, the particle diameter and the like. In addition, with regard to the goodness or badness of plasticity in the plastic state, the measured value with a Yamanaka type soil hardness tester is one indicator, and when this measured value is 14 or less, excellent extrusion moldability can be secured. preferable.
[0057] また、例えば、複雑な形状の成形物を得るのに適した铸込み成形法を用いる場合 には、上記スラリーの含水量を比較的多めに配合して (例えば、固形分 100重量部 に対して水を 60〜80重量部程度)、液状とし、流動性を与えることが好ましぐまた、 タイルや平板状の成形物を得るのに適したプレス成形法を用いる場合には、スラリー の含水量を比較的少なめに調製し、半固体状とすることが好ましい。  Also, for example, in the case of using a plunging method suitable for obtaining a complex-shaped molded product, the water content of the above-mentioned slurry is relatively compounded (for example, 100 parts by weight of solid content) (60 to 80 parts by weight of water), and it is preferable to make it liquid and to give fluidity. Also, when using a press forming method suitable for obtaining a tile or a flat plate-shaped product, It is preferable to adjust the water content of water to a relatively low level to make it semisolid.
[0058] このように、本発明のゼォライト含有組成物スラリーは、使用するゼオライトの種類、 原料組成、各組成成分の粒度、適用する成形方法などに応じて、適宜その含水量と コンシステンシーを決定し、成形することが可能である。  Thus, the zeolite-containing composition slurry of the present invention appropriately determines its water content and consistency according to the type of zeolite used, the raw material composition, the particle size of each component, the forming method to be applied, etc. And can be molded.
[0059] また、本発明のゼォライト含有糸且成物の成形後の形状や寸法は用途により所望の 形状、寸法に加工することができ、特に限定されないが、例えば、粉末状、粒状、ハ 二カム状、柱状、板状、球状など任意の形状に加工することができる。  Further, the shape and size of the zeolite-containing yarn or composite of the present invention after molding can be processed into a desired shape and size depending on the application, and is not particularly limited. It can be processed into any shape such as a cam shape, a columnar shape, a plate shape or a spherical shape.
[0060] また、上記スラリーに、上記铸込み成形の場合と同程度もしくはそれ以上の流動性  [0060] In addition, the above-mentioned slurry has the same fluidity as or more than that in the case of the above-mentioned lead molding.
(例えば、固形分 100重量部に対して水を 60〜 120重量部程度)を付与した場合に は、これを被塗布対象に塗布し、焼成することで被塗布対象表面に本発明の多孔質 焼成体被膜を形成することができ、これによれば、多種多様の被塗布対象に安価に 本発明の多孔質焼成体が有する特性を付与することが可能となる。この時に用いる スラリーは、流動性および分散性に非常に優れているため、配合する溶媒の量を適 宜調製することで、その粘度を被塗布対象や作業性に応じて自由に調製することが できる。このスラリーを塗布する方法としては、例えば、ディビング法やスプレー法、口 一ラーや刷毛による塗布、コーティング用装置を用いるなど、公知の塗布手段を適用 することができる。また、被塗布対象が軽石、パーライト、本発明の焼成体などの多孔 質体である場合には特に高い付着性が得られる。さらに、上記スラリーに 800°C程度 の耐熱性を有する無機材料で構成される多孔体を含浸し、この表面および内部に本 発明のゼォライト含有組成物を付着させることで、流体の圧力損失が少なぐ空気浄 化用途や水質浄ィ匕用途として好適なフィルター材を得ることが可能である。 (For example, in the case where about 60 to 120 parts by weight of water is applied to 100 parts by weight of solid content), it is applied to the object to be coated and fired to form the porous material of the present invention on the surface to be coated. A fired body film can be formed, which makes it possible to provide the properties of the porous fired body of the present invention at low cost to a wide variety of objects to be coated. Since the slurry used at this time is extremely excellent in fluidity and dispersibility, the viscosity can be freely prepared according to the application target and workability by properly adjusting the amount of the solvent to be blended. it can. As a method of applying this slurry, for example, the diving method, the spray method, the mouth A known means of application can be applied, such as application using a single brush or a brush, or using a coating apparatus. Furthermore, particularly high adhesion can be obtained when the object to be coated is a porous material such as pumice, perlite, and the fired body of the present invention. Furthermore, by impregnating the above-mentioned slurry with a porous body composed of an inorganic material having a heat resistance of about 800 ° C., and adhering the zeolite-containing composition of the present invention to this surface and inside, the pressure loss of fluid is small. It is possible to obtain a filter material suitable for air purification and water purification applications.
[0061] 焼成する温度は、組成物中のゼォライトを非晶質化させることなくその多孔質性を 十分に維持することができる温度であればよぐ特に限定されないが、 800°C以下で あることが好ましい。さらに、焼成体の強度をも向上させるためには、 500〜800°Cの 範囲とすることが好ましぐ使用するゼオライトの種類によっては、 500〜700°Cの範 囲とすることが好ましい。例えば、シリカライトなどの高シリカ型ゼオライトを用いる場合 には、 500〜800°Cの範囲とすることが好ましぐ A型や X型などの低シリカ型ゼオラ イトを用いる場合には、 500〜700°Cの範囲とすることが好ましい。また、昇温速度や ピーク温度 (焼成温度)保持時間などの焼成パターンは、使用する必須成分の種類、 配合、目的とする焼成体の特性等により最適な数値が異なるため適宜決定すること が好ましい。 [0061] The temperature for firing is not particularly limited as long as it is a temperature at which the porosity can be sufficiently maintained without amorphizing the zeolite in the composition, but it is 800 ° C or less Is preferred. Furthermore, in order to improve the strength of the fired body, the range of 500 to 800 ° C. is preferable. Depending on the type of zeolite used, the range of 500 to 700 ° C. is preferable. For example, in the case of using a high silica type zeolite such as silicalite, the range of 500 to 800 ° C. is preferable. In the case of using a low silica type zeolite such as A type or X type, 500 to 500 It is preferable to set it as the range of 700 degreeC. In addition, it is preferable to appropriately determine the firing pattern such as the temperature rise rate and the peak temperature (firing temperature) holding time, because the optimum value varies depending on the type of essential components used, the composition, the characteristics of the intended fired body, etc. .
[0062] 上記のようにして得られる本発明の多孔質焼成体は、その気孔率が 30%以上であ ることが好ましぐ 35%以上であることがより好ましい。また、その曲げ強度は IMPa 以上であることが好ましぐ 2MPa以上であることがより好ましぐ 3MPa以上であるこ とが特に好ましい。さらに、本発明の多孔質焼成体に含まれるゼォライト成分の比表 面積は、本発明のゼォライト含有組成物に含まれるゼォライト成分の比表面積の 0. 8倍以上であることが好ましぐ 0. 9倍以上であることがより好ましい。なお、本発明に お 、て、「ゼオライト含有組成物に含まれるゼォライト成分の比表面積」または「多孔 質焼成体に含まれるゼォライト成分の比表面積」とは、これらに含まれるゼォライト自 身(単体)の比表面積ではなぐ組成物またはその焼成体の比表面積のうち、ゼオラ イトが寄与する分 (ゼオライト相当分)の比表面積を指すものであり、その値は、ゼオラ イト単体の比表面積、その含有率、焼成条件、バインダー種とその含有率などに依 存して変化する。より具体的に、多孔質焼成体に含まれるゼォライト成分の比表面積 は、使用するバインダー成分の比表面積が組成物全体の比表面積と比較して無視 できるほど小さ!/、場合 (例えば、バインダー成分の比表面積が組成物全体の比表面 積の 3%以下程度)には、近似的に多孔質焼成体そのものの比表面積と同一とみな すことができる。一方、セピオライト等の比表面積が比較的大きな可塑性粘土をバイ ンダ一成分として用いた場合には、例えば、多孔質焼成体と同条件下で別途、バイ ンダ一成分のみを焼成し、その比表面積を測定しておき、その測定結果と多孔質焼 成体の比表面積力 多孔質焼成体に含まれるゼォライト成分の比表面積を近似的 に算出することが可能である。また、ゼォライト含有組成物に含まれるゼォライト成分 の比表面積は下記式 The porous fired body of the present invention obtained as described above preferably has a porosity of 30% or more, preferably 35% or more. In addition, its bending strength is preferably 2 MPa or more, which is preferably 1 MPa or more, and particularly preferably 3 MPa or more. Furthermore, the specific surface area of the zeolite component contained in the porous fired body of the present invention is preferably at least 0.8 times the specific surface area of the zeolite component contained in the zeolite-containing composition of the present invention. It is more preferable that it is 9 times or more. In the present invention, the “specific surface area of the zeolite component contained in the zeolite-containing composition” or the “specific surface area of the zeolite component contained in the porous fired body” means the zeolite itself contained therein In the specific surface area of the composition or its calcined product, the specific surface area of the portion contributed by zeolite (equivalent to zeolite) refers to the specific surface area of the zeolite alone, It changes depending on the content, baking conditions, binder species and their content. More specifically, the specific surface area of the zeolite component contained in the porous sintered body If the specific surface area of the binder component used is negligibly small compared to the specific surface area of the whole composition! (For example, the specific surface area of the binder component is about 3% or less of the specific surface area of the whole composition) Can be regarded as approximately the same as the specific surface area of the porous sintered body itself. On the other hand, when a plastic clay having a relatively large specific surface area such as sepiolite is used as the binder component, for example, only the binder component is separately fired under the same conditions as the porous sintered body, and the specific surface area is The specific surface area of the porous sintered body and the specific surface area of the porous sintered body can be approximately calculated. In addition, the specific surface area of the zeolite component contained in the zeolite-containing composition is expressed by the following formula
(ゼオライト単体の比表面積) X (ゼオライトの含有率)  (Specific surface area of single zeolite) X (content of zeolite)
により算出することができる。本発明の多孔質焼成体は、無機バインダー組成物を使 用し、さらにゼォライトが非晶質ィ匕することのない温度で焼成するため、含有ゼォライ トの特性を十分に発揮させることができ、その多孔質性を高 、レベルで維持すること ができる。本発明の焼成体の比表面積値としては合成ゼォライトを用いた場合で 200 m2Zg以上であることが好まし ヽ。ここで記載した好まし 、特性数値範囲に含まれる 焼成体は、比較的大きな強度が要求される土木,建築分野における吸着剤、断熱材 、吸湿 ·調湿材などとして特に好適に用いることができる。 It can be calculated by Since the porous fired body of the present invention uses an inorganic binder composition and is further fired at a temperature at which the zeolite does not become amorphous, the characteristics of the contained zeolite can be sufficiently exhibited. Its porosity can be maintained at a high level. The specific surface value of the sintered body of the present invention is preferably 200 m 2 Zg or more when synthetic zeolite is used. The sintered body described in the preferred and characteristic value range described above can be particularly suitably used as an adsorbent, a heat insulating material, a hygroscopic material, a humidity control material, etc. in civil engineering and construction fields where relatively high strength is required. .
[0063] 本発明の多孔質焼成体は、スプレードライ等の方法や焼成後に粉砕することで微 粉末焼成体とすることができ、この微粉末をアルコールや水等の溶媒やバインダーと 共に分散させることでコーティング材とすることができる。このコーティング材は、既に 焼成したものを分散させたものであるため、前述の焼成前混合物スラリーによる被膜 成形と違い、塗布後に焼成を行う必要がなぐ被膜物の乾燥のみで足りるため、耐熱 温度の低い被塗布対象に対しても本発明の多孔質焼成体被膜を形成することがで きる。一方、被膜の強度に関しては、塗布後に焼成を行う前述の焼成前混合物スラリ 一により形成された焼成体被膜の方が優れている。  The porous fired body of the present invention can be made into a fine powder fired body by a method such as spray drying or by crushing after firing, and this fine powder is dispersed together with a solvent such as alcohol or water or a binder. Can be used as a coating material. Since this coating material is obtained by dispersing the already fired one, it differs from the above-mentioned film formation by the mixture slurry before firing, and it is sufficient to heat the coated material which does not need to be fired after application. The porous fired body film of the present invention can be formed even on a low application target. On the other hand, with regard to the strength of the film, the above-mentioned fired body film formed by the mixture slurry before baking which is fired after application is superior.
[0064] 本発明の多孔質焼成体には、その表面上に例えば光触媒粒子などの機能性物質 が担持されているカゝ、または組成として機能性物質がさらに含まれていてもよい。もち ろん機能性物質が表面に担持され、なおかつ組成に含まれていても良い。機能性物 質を組み合わせることにより、優れた可塑性と多孔質性と強度に加え、所望の機能が 付与された多孔質焼成体を得ることが可能となる。前記機能性物質としては、光触媒 の他、排ガス浄化に用いられる触媒物質である白金、ノラジウム、ロジウムなどが挙 げられる。 The porous fired body of the present invention may further contain a functional material such as photocatalyst particles supported on the surface thereof, or a functional material as a composition. Of course, the functional substance may be supported on the surface and may be included in the composition. Functional thing By combining the qualities, it is possible to obtain a porous sintered body having a desired function in addition to excellent plasticity, porosity and strength. Examples of the functional substance include, in addition to photocatalysts, platinum, noridium, rhodium and the like which are catalyst substances used for exhaust gas purification.
[0065] 機能性物質として光触媒機能が付与されると、多孔質焼成体が吸着した物質を光 触媒機能により分解し、焼成体の吸着能を再生することが可能となるため、本発明の 多孔質焼成体を防汚や抗菌などの用途に使用することが可能となり、さらには、 VO Cや悪臭物質の吸着効果を長期間保持することが可能となる。  When a photocatalytic function is given as a functional substance, the substance adsorbed by the porous sintered body is decomposed by the photocatalytic function, and the adsorptive capacity of the sintered body can be regenerated, so that the porous material of the present invention The quality fired body can be used for applications such as anti-soiling and anti-bacterial, and furthermore, it is possible to maintain the adsorption effect of VOC and odorous substances for a long time.
[0066] 上記光触媒粒子は、特に限定されな!ヽが、例えば、酸化チタン、酸化亜鉛、酸化ス ズ、酸ィ匕タングステン等の金属酸ィ匕物半導体を挙げることができ、これらは一種また は二種以上を同時に用いることができる。中でも、酸ィ匕チタンを用いることが好ましい 。また、酸ィ匕チタンの一次粒径が 0. 001-0.: mのものは、優れた光触媒活性を 示すため好ましい。光触媒粒子を本発明の多孔質焼成体の表面上に担持させる方 法としては、例えば、光触媒粒子またはその前駆体ィ匕合物(例えば、チタンアルコキ シドゃ四塩ィ匕チタンなど)を含む溶液をスプレー法ゃデイツビング法などにより本発明 のゼオライト含有組成物または多孔質焼成体の表面に塗布、乾燥する、または乾燥 後に焼成するなど、公知の方法により行えばよい。多孔質焼成体の表面上に担持さ せる光触媒粒子の量は、光触媒粒子担持後の焼成体が、その多孔質性を損なうこと なぐ光触媒活性を示す範囲であれば、特に限定されない。また、組成として光触媒 粒子を配合する場合、その配合量は多孔質焼成体の各種特性を低下させることなく 、光触媒活性を示す範囲であれば、特に限定されない。  The photocatalytic particles are not particularly limited! Examples thereof include metal oxide semiconductors such as titanium oxide, zinc oxide, zinc oxide, tungsten oxide and the like, Two or more can be used simultaneously. Among them, it is preferable to use titanium oxide. In addition, those having a primary particle size of 0.01 to 0.1.m of titanium oxide are preferable because they exhibit excellent photocatalytic activity. As a method for supporting the photocatalyst particles on the surface of the porous fired body of the present invention, for example, a solution containing the photocatalyst particles or a precursor thereof (for example, titanium alkoxide, tetrabasic titanium, etc.) is used. It may be applied by a known method such as coating on the surface of the zeolite-containing composition of the present invention or the porous fired body of the present invention by spray method, deviting method or the like, drying, or drying after drying. The amount of photocatalyst particles supported on the surface of the porous sintered body is not particularly limited as long as the sintered body after supporting the photocatalyst particles exhibits photocatalytic activity which does not impair the porosity. Moreover, when mix | blending photocatalyst particle | grains as a composition, the compounding quantity will not be specifically limited if it is a range which shows a photocatalytic activity, without reducing the various characteristics of a porous sintered body.
[0067] また、本発明に用いるゼォライト〖こは銅イオン、銀イオン、亜鉛イオンなどの金属ィ オンが 1種または 2種以上担持されて 、てもよ 、。金属イオンが担持されて 、るゼオラ イトを用いることで、本発明の多孔質焼成体に優れた抗菌性を付与することが可能と なる。  In the zeolite according to the present invention, metal ions such as copper ions, silver ions and zinc ions may be supported by one or more kinds. By using zeolite to which metal ions are supported, it is possible to impart excellent antibacterial properties to the porous fired body of the present invention.
[0068] また、本発明の多孔質焼成体は、上記光触媒特性や抗菌特性以外にも、ゼォライ トが通常有する吸着特性、イオン交換特性、触媒特性などを活力ゝした種々の用途に 禾 IJ用することができる。吸着特性を活力した用途としては、例えば、脱臭材、 VOC物 質やダイォキシンなどの有毒物質の吸着剤、吸湿材、調湿材、保水材、生鮮食品の 鮮度保持材、廃油処理材、微生物担体、水処理用ろ材、肥料や飼料の添加材、空 気浄ィ匕フィルターなどが挙げられ、イオン交換特性を活力した用途としては、例えば 、アンモニア、重金属、放射性核種陽イオンなどの除去を目的とする水質浄化材、土 壌改良材、硬水の軟水化材、などが挙げられ、触媒特性を活かした用途としては、例 えば、石油精製、内燃機関の排ガス浄化、有機塩素系化合物の分解除去、廃プラス チックの油化などが挙げられる。 In addition to the photocatalytic properties and antibacterial properties described above, the porous fired body of the present invention is used in various applications in which the adsorption properties, ion exchange properties, catalytic properties, etc. that the zeolite normally has are activated. can do. For example, deodorizers, VOCs, etc., are used as vital applications of adsorption characteristics. Adsorbents for toxic substances such as quality and dioxins, hygroscopic materials, moisture control materials, water holding materials, freshness holding materials for fresh foods, waste oil treatment materials, microbial carriers, filter media for water treatment, additives for fertilizers and feeds, air purification For example, water purification materials for removing ammonia, heavy metals, radionuclide cations, etc., soil conditioners, water softeners for hard water, and the like. Examples of applications that make use of the catalytic properties include petroleum refining, purification of exhaust gases from internal combustion engines, decomposition and removal of organic chlorine compounds, and conversion of waste plastics into oils.
[0069] また、本発明の多孔質焼成体は、多孔質性、強度、可塑性、吸水性等に優れて 、 るので、これら特性を活力した用途、例えば、調湿、脱臭、 VOC除去等の室内環境 改善機能を有する建材、保水機能および水分の徐放出機能を有する建材、屋上や 砂漠などの緑ィ匕に好適な、保水性および保肥性を有する緑ィ匕用材料、抗菌機能を 有する建材や配管材、水質浄化機能を有する建材など、土木建築分野における材 料として好適であり、さらには、航空'宇宙分野や原子力分野などの比較的過酷な状 況下において使用する分野への応用にも好適である。  Further, the porous fired body of the present invention is excellent in porosity, strength, plasticity, water absorption and the like, and therefore, the application in which these characteristics are vitalized, for example, humidity control, deodorization, VOC removal, etc. Indoor environment Improving materials, building materials with water holding function and gradual release function of moisture, water retaining materials with high water retention and fertility, suitable for greening of roofs and deserts, having antibacterial function It is suitable as a material in the civil engineering and construction field, such as building materials, piping materials, and construction materials with water purification functions. Furthermore, it is applied to fields used under relatively severe conditions such as the aerospace field and the nuclear field. Is also suitable.
[0070] 本発明の建材は、本発明のゼォライト含有組成物を成形し、焼成することで製造す ることができるが、その強度を高めるために、本発明のゼォライト含有組成物を押し出 し成形、プレス成形、または铸込み成形により成形加工し、これを 500〜800°Cで焼 成して製造することが好ましい。このようにして得た建材は、曲げ強度が 3MPa以上 であり、かつ気孔率が 30%以上であることが好ましい。  The building material of the present invention can be produced by molding and firing the zeolite-containing composition of the present invention, but in order to enhance its strength, the zeolite-containing composition of the present invention is extruded. It is preferable to manufacture by processing by molding, press molding, or core molding, and baking this at 500 to 800 ° C. The building material thus obtained preferably has a bending strength of 3 MPa or more and a porosity of 30% or more.
[0071] また、例えば、特に保水機能および水分の徐放出機能に優れる本発明の建材を、 建築物の外壁、舗装用ブロック、屋根材などとして利用することで、近年、人工排熱 の増加や自然空間の喪失が著し 、大都市にお!、て問題となって!/、るヒートアイランド 現象の抑制に寄与することが可能となる。 日本建築学会「建築工事標準仕様書」 QA SS)における「JASS 7 M101 インターロッキングブロックの品質規格」では、透水 性インターロッキングブロックの曲げ強さを 30kgf /cm3以上と定めている。したがつ て、このような保水性建材は、その曲げ強度が 3MPa以上であり、かつ体積標準吸水 率が 35%以上であることが好ましい。本発明の多孔質焼成体は、ゼォライトが損傷 することなく内部に保持されているため、高い吸水率を示し、なおかつ吸収された水 がゼオライトの細孔に強く吸着されるため、優れた保水性を示す。 Further, for example, by using the building material of the present invention, which is particularly excellent in water retention function and water gradual release function, as an outer wall of a building, a paving block, a roofing material, etc., artificial waste heat has increased recently. The loss of natural space can significantly contribute to the suppression of the heat island phenomenon, which becomes a problem in large cities. The “JASS 7 M101 Interlocking Block Quality Standard” in the “Architectural Construction Standard Specification” of the Architectural Institute of Japan has set the flexural strength of the permeable interlocking block at 30 kgf / cm 3 or more. Therefore, such a water-retaining construction material preferably has a flexural strength of 3 MPa or more and a volume standard water absorption of 35% or more. The porous sintered body of the present invention exhibits high water absorption and absorbs water, since the zeolite is retained inside without damage. Since it is strongly adsorbed to the zeolite pores, it exhibits excellent water retention.
[0072] このように本発明のゼォライト含有組成物ならびにこれを焼成してなる多孔質焼成 体は、多種多様な分野'用途に対して、その適用方法を柔軟に変更して使用すること が可能である。  Thus, the zeolite-containing composition of the present invention and the porous fired body obtained by firing the same can be used by flexibly changing the application method for a wide variety of fields and applications. It is.
[0073] 以下、本発明を実施例により具体的に説明するが、本発明は、この実施例に限定さ れるものではない。  Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
実施例  Example
[0074] (焼成体の製造と評価) [0074] (Production and evaluation of fired body)
ゼォライト、可塑性粘土、およびアルカリ(土類)金属化合物を下記表 1のとおり配合 し、固形分 100重量部に対し 100〜 150重量部の水をカ卩え、ポットミルで 2〜4時間 混練して泥しょうを作成し、これを石膏板上で塑性状態になるまで脱水後 (概ねの含 水率は 30〜35%)、石膏型(断面幅 10mm、厚み 10mm、長さ 70mm)に充填し、 約 10分間の脱水後脱型し、室内で 1日乾燥した。ついで、所定の焼成条件で焼成を 行い、実施例 1〜21の焼成体を製造した。  Zeolite, plastic clay, and alkali (earth) metal compounds are blended as shown in Table 1 below, 100 to 150 parts by weight of water is added to 100 parts by weight of solid content, and the mixture is kneaded for 2 to 4 hours with a pot mill. After making a mud, it is dewatered until it becomes plastic on a gypsum board (general water content is 30 to 35%), and filled in a plaster mold (cross section 10 mm, thickness 10 mm, length 70 mm), After dehydration for about 10 minutes, it was demolded and dried in a room for 1 day. Next, firing was performed under predetermined firing conditions to produce fired bodies of Examples 1 to 21.
[表 1] [table 1]
焼成条件 可塑性粘土 ゼォライ ト アルカリ (土類) 金属化合物 実施例 蛙目粘土 H I S I V- 300 O582 マグネサイト^3 Firing conditions Plasticity clay Zeolite Alkali (earth) metal compound Example Lice clay HISI V-300 O 582 Magnesite ^ 3
1 28 t % 70 t % 2 w t %  1 28 t% 70 t% 2 w t%
実施例 蛙目粘土 H I S I V-3000 マグネサイト 炭酸カルシウムExample Leiome clay H I S I V-3000 magnesite calcium carbonate
2 20 w t % 70 w t % 3 w t % 7 w t % 実施例 蛙目粘土 H I S I V-3000 マグネサイト ドロマイ 2 20 wt% 70 wt% 3 wt% 7 wt% Example square clay H I S I V-3000 magnesite dolomai
3 20 w t % 70 w t % 2 w t % 8 w t % 実施例 蛙目粘土 H I S I V-3000 水酸 ί匕マグネシウム 炭酸リチウム 4 26 w t % 70 w t % 1 w t % 3 w t % 実施例 蛙目粘土 H I S I V-3000 マグネサイト 炭酸カルシウム 5 23 w t % 70 w t % 5 t % 2 w t % 実施例 蛙目粘土 H I S I V- 3000 マグネサイト 炭酸リチウム 6 6 5 0で 1 5 w t % 70 w t % 10 w t % 5 w t % 3 20 wt% 70 wt% 2 wt% 8 wt% Example lepidopteran clay HISI V-3000 Magnesium hydroxide lithium carbonate 4 26 wt% 70 wt% 1 wt% 3 wt% Example leopard clay HISI V- 3000 magnesite calcium carbonate 5 23 wt% 70 wt% 5t% 2 wt% Example lepidopteran clay HISI V-3000 magnesite lithium carbonate 650 wt% 5 wt% 70 wt% 10 wt% 5 wt%
5時間 炭酸 炭酸 実施例 蛙目粘土 H I S I V-3000 マグネサイト 5 hours Carbonation Carbonation Example Leiome clay H I S I V-3000 Magnesite
カルシウム チウ 7 1 5 w t % 70 w t % 5 w t %  Calcium chiu 7 1 5 w t% 70 w t% 5 w t%
5 w t % 5 w t % 蛙目粘土 水酸化 実施例 H I S I V- 3000 マグネサイト 水酸化カリゥム  5 w t% 5 w t% Minoh clay clay hydroxylation example H I S I V- 3000 magnesite hydroxide potassium
24. 8 ナトリウム  24. 8 Sodium
8 70 w t % 5 w t % 0. 1 w t % w t % 0. 1 w t %  8 70 w t% 5 w t% 0. 1 w t% w t% 0. 1 w t%
実施例 蛙目粘土 H I S I V- 3000 醉酸ナトリウム Example Leiome clay H I S I V- 3000 Sodium borate
9 25 w t % 70 w t % 5 w t %  9 25 w t% 70 w t% 5 w t%
実施例 蛙目粘土 H I S I V- 3000 硝酸カリウム マグネサイ ト 1 0 23 t % 70 w t % 5 w t % 2 w t % 実施例 蛙目粘土 H I S I V-3000 塩基性炭酸マグネシウム 1 1 28 w t % 70 w t % 2 w t % Example lepidopteran clay HISI V-3000 potassium nitrate magnesite 10 23 t% 70 wt% 5 wt% 2 wt% Example lepidopteran clay HISI V-3000 basic magnesium carbonate 1 1 28 wt% 70 wt% 2 wt%
実施例 蛙目粘土 デナィ マグネサイト Example 蛙 粘土 粘土 マ グ ネ magnesite
1 2 1 5 w t % 80 w t % 5 w t %  1 2 1 5 w t% 80 w t% 5 w t%
実施例 蛙目粘土 モノレデナイト マグネサイト 炭酸リチウム 1 3 600¾ 10 w t % 80 w t % 2 t % 8 w t % 実施例 5時間 蛙目轱土 レデナイト マグネサイト ドロマイト 1 4 1 0 t % 80 w t % 3 w t % 7 w t % 実施例 蛙目粘土 クリノプチ口ライト 6 マグネサイト Example Lectite clay monoredenite magnesite lithium carbonate 1 3 600 3⁄4 10 wt% 80 wt% 2 t% 8 wt% Example 5 h gridded soil redenite magnesite dolomite 1 4 0 t% 80 wt% 3 wt% 7 wt% Example Lepidoptera clay clinopetite mouth light 6 magnesite
1 5 9 w t % 90 w t % 1 w t %  1 5 9 w t% 90 w t% 1 w t%
実施例 60 OX: 蛙目粘土 合成 X型ゼォライト 7 マグネサイト Example 60 OX: Lepidoptera clay synthesis X type Zeolite 7 magnesite
1 6 1時間 49 w t % 50 w t % 1 w t % 実施例 蛙目粘土 合成 X型ゼォライト マグネサイト1 6 1 hour 49 wt% 50 wt% 1 wt% Example Bindoku clay clay synthesis type X zeolite Magnesite
1 7 2 9 7 0 1、 1 7 2 9 7 0 1,
実施例 蛙目粘土 合成 X型ゼォライト 炭酸リチウム  Example Leiome clay synthesis X-type zeolite lithium carbonate
1 8 2 7 w 7 0 w t % 3 ^ t %  1 8 2 7 w 7 0 w t% 3 ^ t%
実施例 蛙目粘土 合成 X型ゼォライト 水酸化カルシウム  Example Leiothyite clay synthesis type X zeolite calcium hydroxide
1 9 2 7 w 7 0 w t % 3 -v  1 9 2 7 w 7 0 w t% 3 -v
実施例 蛙目粘土 合成 X型ゼォライト 水酸化リチウム  Example Bindoku clay clay synthesis type X zeolite light lithium hydroxide
2 0 2 7 w 7 0 w t % 3、 v t %  2 0 2 7 w 7 0 w t% 3, v t%
実施例 蛙目粘土 合成 X型ゼォライト マグネサイト 炭酸リチウム Example Bindoku clay Synthesis X-type Zeolite Wright Magnesite Lithium carbonate
2 1 2 5 w t % 7 0 w t % 2 t % 3 w2 1 2 5 w t% 7 0 w t% 2 t% 3 w
※ 1 丸小セラミックス製、 特級水ひ蛙目粘土、 平均粒径 5 m以下、 ※ 1 Made of small ceramic, special grade water-hikedame clay, average particle size less than 5 m,
※ ユニオン昭和 (株) 製商品名、 ハイシリカ型ゼオライト、 比表面積 A O
Figure imgf000019_0001
※ Union Showa Co., Ltd. product name, High silica type zeolite, Specific surface area AO
Figure imgf000019_0001
※3 神島化学製、 一つ星、 平均粒径 5 . 5 μ πι  ※ 3 Kamijima Chemical, one star, average particle size 5.5 μπ 5
※4 村樫工業製、 商品名 Μ— W 1 0、 平均粒径 3 . 3  ※ 4 Murakami Kogyo Co., Ltd., trade name: W 10, average particle size 3.3
※ 新東北化学製、 モルデナィト粉末、 平均粒径 4 5 πι  ※ Shin Tohoku Chemical made, mordenaite powder, average particle size 4 5 π 5
※ 6 三井金属資源開発製、 商品名ィヮミライト、 粒径 2 0 0メッシュ以下  ※ 6 Mitsui Metal Resources Development Co., Ltd., product name I Milite, Particle size 200 mesh or less
※ 7 ユニオン昭和 (株) 製、 商品名 1 3 X p o w d e r、 粒径 1 0 m以下、 比表面積 ※ 7 Union Showa Co., Ltd. product name 1 3 X pow d er, particle size 10 m or less, specific surface area
Figure imgf000019_0002
Figure imgf000019_0002
[0075] 上記実施例 1〜21の各焼成体について、曲げ強度、気孔率、可塑性、嵩比重、お よび比表面積を下記に示す方法により測定した。結果を表 2に示す。 The flexural strength, the porosity, the plasticity, the bulk specific gravity, and the specific surface area of each of the fired bodies of the above Examples 1 to 21 were measured by the methods described below. The results are shown in Table 2.
[0076] '曲げ強度:オリエンテック製 UCT— 5Tを用い、スパン 30mmに配置された 2支点上 に焼成体サンプルを置き、支点間の中央の 1点にクロスヘッド速度 0. 5mmZminの 荷重を加えて 3点曲げを行 、、焼成体サンプルが破壊されるまでの最大荷重を測定 し、次式を用いて求めた。  [0076] 'Bending strength: using a ORIENTICK UCT-5T, place the fired body sample on two fulcrums arranged at a span of 30 mm, apply a load of cross head speed of 0.5 mm Zmin to one central point between the fulcrums Three-point bending was performed, and the maximum load until the sintered body sample was broken was measured, and was calculated using the following equation.
曲げ強度 = 3WLZ2bd2 Bending strength = 3WLZ2bd 2
(式中、 W:最大荷重 (N)、 L:下部支点間距離 (mm)、 b:試験片の幅 (m m)、 d:試験片の厚さ(mm)を示す)  (Wherein W: maximum load (N), L: distance between lower fulcrums (mm), b: width of test piece (m m), d: thickness of test piece (mm))
[0077] ·気孔率:焼成体サンプルを 110°Cで乾燥し、恒量になったときの重量を W1とし、焼 成体サンプルを水中に入れ 3時間以上煮沸し、完全に気孔中の空気を放出させ、水 中で冷却し、焼成体サンプルを水中につるしたときの重量を W2とし、さらに焼成体サ ンプルを水中力も取り出し、湿布で手早く表面だけを拭って水滴を取った後の重量を W3とし、 Wl、 W2、および W3と次式を用いて気孔率を求めた。  · Porosity: The fired body sample is dried at 110 ° C., the weight at constant weight is W1, and the baked body sample is put in water and boiled for 3 hours or more to completely release the air in the pores. The weight of the fired body sample is suspended in water W2 and the weight of the fired body sample is also taken out under water, and the surface is only wiped with a wet cloth and the weight after removing water drops is W3. The porosity was determined using Wl, W2, and W3 and the following equation.
気孔率 = { (W3 -Wl) / (W3-W2) } X 100 [0078] ·吸水率:上記気孔率の測定方法にお!、て測定した W1および W3と次式を用いて算 出した。 Porosity = {(W3-Wl) / (W3-W2)} X 100 Water absorption rate: Calculated using the above-described method of measuring the porosity, W1 and W3 measured, and the following equation.
吸水率 = { (W3 -Wl) /Wl } X 100  Water absorption rate = {(W3-Wl) / Wl} X 100
[0079] ·可塑性:焼成前の塑性状態における混合物の可塑性について、山中式土壌硬度 計を用いてそれぞれ 3回測定し、その平均値を算出した。土壌硬度計の指示値が 14 を超えると一般的な押し出し成形法による成形が困難になるため、硬度計の指示値 力 S 14以下のものを〇(可塑性良好)、 14を超えるものを Xとして評価した。  Plasticity: The plasticity of the mixture in the plastic state before firing was measured three times each using a Yamanaka type soil hardness tester, and the average value was calculated. If the indicated value of the soil hardness tester exceeds 14, molding by a general extrusion molding method becomes difficult, so the hardness tester indicated value Force S 14 or less is 〇 (good plasticity), and those exceeding 14 are X evaluated.
[0080] ·嵩比重:上記気孔率の測定方法にお!、て測定した Wl、 W2、および W3と次式を用 いて算出した。  · Bulk specific gravity: Calculated using the following equation with the measurement methods of porosity, Wl, W2, and W3 measured in the above.
嵩比重 = {W1Z (W3— W2) }  Bulk specific gravity = {W1Z (W3-W2)}
[0081] ·比表面積:比表面積測定装置 (ユアサイォニタス製、オートソープ 1)を用い、気体 吸着 BET法による定溶法で平衡相対圧 (PZP )  · Specific surface area: Equilibrium relative pressure (PZP) measured by gas adsorption BET method using a specific surface area measurement device (Auto Soap 1 manufactured by Yua Sionitas)
0が 0. 05-0. 35の測定範囲で 5点 測定した (JIS Z 8830)。  Five points were measured in the measurement range of 0. 05-0. 35 (JIS Z 8830).
[表 2] [Table 2]
Figure imgf000021_0001
表 2から、実施例 1〜21の焼成体は、多孔性に優れ、ゼォライト含有量が 70重量% 以上であるにもかかわらず、その可塑性および強度が優れていることが分かる。特に 、実施例 2の焼成体は、ゼォライト配合率が高い割に、優れた可塑性と強度を有して いることが分かる。また、本実施例において、合成ゼォライトを用いた各焼成体に含ま れるゼオライト成分の比表面積は、ここで使用したバインダー成分の比表面積が無視 できるほど小さいため近似的に焼成体の比表面積と同一とみなすことができ、それら の値は、それぞれの焼成前のゼォライト含有組成物に含まれるゼォライト成分の比表 面積の 0. 9倍以上であることがわかる。この結果は、組成物中のゼォライトが焼成に より非晶質化されることなぐ焼成体の優れた多孔質性に大きく寄与していることを示 すものである。なお、例えば、実施例 1〜11における「焼成前のゼォライト含有組成 物に含まれるゼォライト成分の比表面積」は、(ゼオライト単体の比表面積 = 400m2 /g) X (ゼオライトの含有率 = 70wt%) = 280m2Zgとなる。
Figure imgf000021_0001
From Table 2, it can be seen that the fired bodies of Examples 1 to 21 are excellent in porosity and excellent in plasticity and strength despite the fact that the zeolite content is 70% by weight or more. In particular, it can be seen that the sintered body of Example 2 has excellent plasticity and strength in spite of the high proportion of the zeolite. Further, in this example, the specific surface area of the zeolite component contained in each of the sintered products using synthetic zeolite is approximately the same as the specific surface area of the sintered product since the specific surface area of the binder component used here is so small that it can be ignored. It can be seen that these values are at least 0.9 times the relative surface area of the zeolite components contained in the respective zeolite-containing compositions before firing. This result indicates that the zeolite in the composition greatly contributes to the excellent porosity of the fired body which is not amorphized by firing. For example, “the specific surface area of the zeolite component contained in the zeolite-containing composition before firing” in Examples 1 to 11 is (specific surface area of zeolite alone = 400 m 2 / g) X (zeolite content = 70 wt%) = a 280 meters 2 Zg.
[0083] また、実施例 13および 15の焼成体はそれぞれ、吸水率が 47. 1%および 32. 8% であり、体積標準吸水率が 49. 5%および 43. 0%であった。つまり、実施例における 焼成体は、体積の 40%以上も水を吸収することができ、優れた吸水性を有するもの であることが分かる。なお、体積標準吸水率は、吸水率と成形体の体積および嵩比 重の値を用いて算出した。  In addition, the fired bodies of Examples 13 and 15 had water absorptions of 47. 1% and 32.8%, and volume standard water absorptions of 49.5% and 43.0%, respectively. That is, it can be seen that the fired body in the example can absorb water by 40% or more of the volume and has excellent water absorbability. The volume standard water absorption rate was calculated using the water absorption rate and the values of the volume and bulk ratio of the molded product.
[0084] (焼成体の脱臭評価)  (Deodorization evaluation of fired body)
下記表 3に示す配合の焼成体原料を水と混練し、これを押出し成形機により φ 3m mペレットに成形し、電気炉で昇温速度 100°CZh、 600°Cで 1時間焼成することで、 脱臭剤サンプルを製造した (実施例 22および 23)。また、市販の活性炭(日本ェンバ イロケミカルズ製、破砕炭白鷺 G2c)を対照サンプルとして用いた (比較例 1)。得られ た各サンプルをそれぞれステンレスメッシュ(18 X 25cm)間に 150cc〜160cc挟み 込み、脱臭フィルターを作製した。なお、可塑性粘土として使用した蛙目粘土は実施 例 1で使用したものと同じ特級水ひ蛙目粘土である。  The kneaded material of the composition shown in the following Table 3 is kneaded with water, formed into φ 3 mm pellets by an extrusion molding machine, and fired at 600 ° C. for 1 hour in an electric furnace at a temperature rising rate of 100 ° C. Zh. Deodorant samples were produced (Examples 22 and 23). In addition, commercially available activated carbon (Nitsubishi Chemical Co., Ltd., crushed carbon white glaze G2c) was used as a control sample (Comparative Example 1). Each of the obtained samples was sandwiched between 150 cc and 160 cc between stainless steel meshes (18 × 25 cm) to prepare a deodorizing filter. In addition, the lepidopteran clay used as the plastic clay is the same special grade hydridite clay as that used in Example 1.
[表 3]  [Table 3]
Figure imgf000022_0001
Figure imgf000022_0001
[0085] 上記のように作成した各脱臭フィルターを用いて、以下のような手順により脱臭評価 を行った。 Deodorization evaluation was performed according to the following procedure using each deodorizing filter prepared as described above.
[0086] 1)脱臭フィルターを図 1に示す脱臭評価装置における脱臭装置内に 2枚設置した後 、タバコ(マイルドセブン)を 1本燃焼させ、 5分後にアクリルボックス内のアンモニア、 ァセトアルデヒド、酢酸の初期濃度を測定した。なお、図 1において、アクリルボックス 容量は 250L (56 X 56 X 80cm)であり、脱臭装置には φ 12mmの接続管を介して 1 5LZminの循環能力を有する循環ポンプ 3台が接続されている。  1) After installing two pieces of deodorizing filter in the deodorizing evaluation device shown in FIG. 1, one cigarette (mild seven) is burned, and after 5 minutes, ammonia, acetylaldehyde, acetic acid in the acrylic box The initial concentration of was measured. In FIG. 1, the capacity of the acrylic box is 250 L (56 × 56 × 80 cm), and three circulation pumps having a circulation capacity of 15 LZ min are connected to the deodorizing device via a connecting pipe of φ 12 mm.
2)ついで、脱臭装置に接続された循環ポンプを作動させてから 15分後、 30分後、 4 5分後におけるアンモニア、ァセトアルデヒド、酢酸の各残存濃度を測定した。各ガス 濃度の測定は、それぞれ、ガステック製 NO. 3L、 NO. 92L、 NO. 81Lの検知管を 接続管に挿入して行った。 2) Then, after operating the circulating pump connected to the deodorizing device, 15 minutes, 30 minutes, 4 The remaining concentrations of ammonia, acetaldehyde and acetic acid after 5 minutes were measured. Each gas concentration was measured by inserting Gastec NO. 3L, NO. 92L, and NO. 81L detection tubes into the connecting tubes.
3) 45分後の濃度測定が終了した後、 2本目のタバコを燃焼させ、上記 1)および 2)と 同様の操作を繰り返した。  3) After 45 minutes of concentration measurement, the second cigarette was burned and the same operations as in 1) and 2) above were repeated.
[0087] 各ガス成分の脱臭評価の結果を図 2〜4に示す。実施例 22の焼成体は、全てのガ ス成分に対して 1本目、 2本目に関わらず極めて高い吸着特性を示していることがわ かる。また、実施例 23の焼成体は、クリノプチ口ライトが親水性ゼォライトであることも あり、 VOCガスであるァセトアルデヒドの吸着性が低かったものの、アンモニアおよび 酢酸に対する吸着性は優れていた。一方、比較例 1の活性炭は、ァセトアルデヒドに 対する吸着性は高いが、アンモニアおよび酢酸に対する吸着性が低かった。  The results of the deodorizing evaluation of each gas component are shown in FIGS. It can be seen that the fired body of Example 22 exhibits extremely high adsorption characteristics for all gas components regardless of whether they are the first or second pipe. Further, the calcined product of Example 23 may have hydrophilic zeolite as the clinopty mouth light, and although the adsorptivity of acetaldehyde which is a VOC gas is low, the adsorptivity to ammonia and acetic acid is excellent. On the other hand, the activated carbon of Comparative Example 1 had high adsorptivity to acetaldehyde but low adsorptivity to ammonia and acetic acid.
[0088] (アルカリ(土類)金属化合物の添カ卩による可塑性改善評価)  (Evaluation of improvement of plasticity by addition of alkali (earth) metal compound)
下記表 4に示す配合の混合物スラリーについて前述と同様の可塑性評価を行った 。なお、可塑性粘土として使用した蛙目粘土は実施例 1で使用したものと同じ特級水 ひ蛙目粘土である。  The same plasticity evaluation as described above was performed on the mixture slurry of the composition shown in Table 4 below. In addition, the lepidopteran clay used as the plastic clay is the same special grade hydrolyzate clay as that used in Example 1.
[表 4]  [Table 4]
Figure imgf000023_0001
表 4からは、アルカリ(土類)金属化合物の添加が焼成前の原料混合物の可塑性を 大きく改善することがわかる。一方で、アルカリ(土類)金属化合物として、炭酸カルシ ゥムゃドロマイトを単独で用いた場合には、良好な可塑性を有する組成物を得難 ヽ iS マグネサイトなどと併用することでその可塑性を改善することが出来る。ただし、ゼ オライトとして可塑性が比較的良好な天然ゼォライトや石炭灰カゝら合成したゼォライト などを用いる場合には、炭酸カルシウムやドロマイトを単独で用いても良好な可塑性 を有する組成物を得ることができる場合もある。
Figure imgf000023_0001
Table 4 shows that the addition of the alkali (earth) metal compound greatly improves the plasticity of the raw material mixture before firing. On the other hand, when calcium carbonate or dolomite alone is used as the alkali (earth) metal compound, it is difficult to obtain a composition having good plasticity. Its plasticity can be improved by using it in combination with iS magnesite and the like. However, when using natural zeolite with relatively good plasticity or zeolite synthesized with coal ash or the like as zeolite, a composition having good plasticity can be obtained even if calcium carbonate or dolomite is used alone. There is also a possibility.
[0090] (可塑性粘土の粒径と焼成体の特性に関する評価) (Evaluation of particle diameter of plastic clay and characteristics of fired body)
可塑性粘土として、平均粒径 D 2. 4 μ mの特級水ひ蛙目粘土を 20wt%使用した  As plasticity clay, 20 wt% of special grade Hijime clay having an average particle diameter D of 2.4 μm was used.
50  50
上記実施例 2の焼成体サンプル (ゼオライトは HISIV— 3000)と、平均粒径 D 7. 1  The fired body sample of the above-mentioned Example 2 (the zeolite is HISIV-3000), and the average particle diameter D 7.1.
50 50
IX mの蛙目粘土を使用した以外は実施例 2と同様に作成した焼成体サンプル (実施 例 25)について、それぞれの可塑性、曲げ強度、気孔率を測定した。結果を表 5に示 す。 The plasticity, flexural strength, and porosity of each of the fired body samples (Example 25) prepared in the same manner as Example 2 except that IX m of clay was used. The results are shown in Table 5.
[0091] また、平均粒径 D 2. 4 μ mの特級水ひ蛙目粘土を 15wt%使用した上記実施例 1  In addition, in the above Example 1 using 15 wt% of special grade Hijime clay having an average particle diameter D of 2.4 μm.
50  50
2の焼成体サンプル (ゼオライトはモルデナイト)と、平均粒径 D 7. 1 μ mの蛙目粘  Sample No. 2 (Zeolite is mordenite) and a grain size of average particle diameter D 7.1 μm
50  50
土を使用した以外は実施例 12と同様に作成した焼成体サンプル (実施例 26)につ いて、可塑性、曲げ強度、気孔率を測定した。結果を表 5に示す。  With respect to the fired body sample (Example 26) prepared in the same manner as Example 12 except that soil was used, the plasticity, the bending strength and the porosity were measured. The results are shown in Table 5.
[表 5]  [Table 5]
Figure imgf000024_0001
表 5からは、ゼォライトとしてモルデナイトを用いた実施例 12と実施例 26の焼成体 サンプル間においては、その強度に顕著な差が認められな力つたが、ゼォライトとし て HISIV— 3000を用いた実施例 2と実施例 25の焼成体サンプルを比較すると、平 均粒径 D 2. 4 μ mの特級水ひ蛙目粘土を用いた実施例 2の焼成体の方が、明らか
Figure imgf000024_0001
From Table 5, the sintered body of Example 12 and Example 26 using mordenite as the zeolite showed no remarkable difference in the strength, but the experiment using HISIV-3000 as the zeolite was carried out. Comparing the fired body samples of Example 2 and Example 25, The fired body of Example 2 using the special grade hydrologically ordered clay having a grain size D of 2.4 μm is clearer
50 50
に強度が大きいことがわかる。図 5には、参考までに、本実施例において用いた 2種 類の蛙目粘土と各種ゼォライトの粒径加積分布曲線を示す。なお、粒度分析は島津 製作所製レーザ回折式粒度分布測定装置 SALD— 2000Jを用いて行った。  Show that the strength is large. FIG. 5 shows, for reference, the particle size cumulative distribution curves of the two types of Lemidoclay and various zeolites used in this example. The particle size analysis was performed using a laser diffraction type particle size distribution analyzer SALD-2000J manufactured by Shimadzu Corporation.
[0093] (プレス成形焼成体の作製および光触媒コーティング) (Production of press-formed sintered body and photocatalytic coating)
クリノプチ口ライト 75wt%、特級水ひ蛙目粘土 20wt%、マグネサイト 5wt%を工業 用トロミル (容量 It)で 4時間混練し、フィルタープレス脱水した。得られたプレスケー キの含水率は 25wt%であった。次に、このプレスケーキを室温で 5日間乾燥後、 2m m編み目のふるいを通過させ、含水率 13wt%、粒径 2mmアンダーの顆粒状粘土を 得た。さらに、この顆粒状粘土を 100mm X I OOmm X 40mmの铸鉄製型に充填し、 油圧ジャッキで 50cm2Zgの圧力をカ卩え、プレス成形を行い、プレス成形体を得た。 プレス成形の平均厚さは 10. 2mmであった。ついで、このプレス成形体を室温で 3 日間乾燥させた後、昇温速度 100°CZ時、ピーク温度 600°Cで 5時間焼成し、焼成 体を製造した。得られた焼成体は、曲げ強度 3. 5MPa、気孔率 41. 9%、吸水率 30 . 4% (体積標準吸水率 41. 6%)、嵩比重 1. 37gZcm3であり、良好な特性を有して いた。 75 wt% of Clinopetite mouth light, 20 wt% of special grade hydrolyzaceous clay, and 5 wt% of magnesite were kneaded for 4 hours with an industrial toro mill (volume It) for filter press dewatering. The moisture content of the obtained press cake was 25 wt%. Next, the press cake was dried at room temperature for 5 days and passed through a 2 mm mesh sieve to obtain granular clay having a moisture content of 13 wt% and a particle size of 2 mm under. Furthermore, this granular clay was filled into a 100 mm XI OO mm x 40 mm cast iron mold, a pressure of 50 cm 2 Zg was applied by a hydraulic jack, and press molding was performed to obtain a press-molded product. The average thickness of press molding was 10.2 mm. Then, the pressed compact was dried at room temperature for 3 days, and fired at a temperature rising rate of 100 ° C. for 5 hours at a peak temperature of 600 ° C. to produce a fired body. The obtained sintered body has a bending strength of 3.5 MPa, a porosity of 41.9%, a water absorption of 30.4% (volume standard water absorption of 41.6%), and a bulk specific gravity of 1.37 g Zcm 3 and thus has good properties. I had it.
[0094] さらに、上記焼成体表面上に酸ィ匕チタンコーティング剤 (ティカ株式会社製、 TKC — 304を 50倍に希釈した溶液)を、温風低圧塗装機 (チロンジャパン株式会社製 A BAC SG2500)を用いて、 0. 41gZm2吹き付けた。吹き付けたコーティング剤は 常温で、良好な固着状態を示した。 Further, a hot air low pressure coater (A BAC SG2500, manufactured by Chiron Japan Co., Ltd.) is coated on the surface of the above-mentioned sintered body with an acid titanium coating agent (a solution obtained by diluting TKC-304 50 times by Tica Co., Ltd.). ) was used to spray 0. 41gZm 2. The sprayed coating exhibited good adhesion at normal temperature.
[0095] また、 3日間乾燥した上記プレス成形体表面に、含水率を 40%および 50%に調整 した実施例 1の組成物スラリーを、温風低圧塗装機を使用して約 50 mの厚さとなる ように吹き付け、被膜形成した。ついで、この被膜付き成形体を 1日室温乾燥した後、 650°Cで 5時間焼成を行 、、疎水性ゼォライト組成物被膜が表面に良好に固着した 焼成体を得ることができた。この方法によれば、極めて安価に疎水性ゼォライトの VO C吸着効果などの性能を発揮する建材を製造することができる。また、この被膜付き 焼成体に対して上記と同様にして酸化チタンコーティングを行い、これに光触媒特性 を付与することもできた。 (押し出し成形法による焼成体の作成) In addition, the composition slurry of Example 1 in which the moisture content was adjusted to 40% and 50% was applied to the surface of the above press-molded product dried for 3 days, to a thickness of about 50 m using a warm air low pressure coater. Sprayed to form a film. Then, the coated molded body was dried at room temperature for 1 day, and baked at 650 ° C. for 5 hours to obtain a baked body in which the hydrophobic zeolite composition film was well fixed to the surface. According to this method, it is possible to produce a building material which exhibits the performance such as the adsorption effect of the hydrophobic zeolite on VOC very inexpensively. Further, it was possible to apply a titanium oxide coating to this baked body with a film in the same manner as described above and to impart a photocatalytic property thereto. (Preparation of sintered body by extrusion molding method)
下記表 6に示す組成物に所定の水量を添加して、宫崎鉄工 (株)製、ミキサー MH S— 100にてプレミックスを行い、さらにこれを宫崎鉄工 (株)製、混練真空押出成形 機 FM— P30を用いて、高さ 10mm、幅 10mm、長さ 70〜: LOOmmの形状に成形し た後、この成形体を室温で 3日乾燥させ、表 6記載の条件で焼成を行うことで実施例 27、 28の焼成体を得た。得られた焼成体について、曲げ強度、気孔率、嵩比重、吸 水率、体積標準吸水率を求めた。結果を表 7に示す。なお、ここで用いた蛙目粘土 は、丸小セラミックス製、粒径 100 μ m以下のものであり、その他は前述と同じもので ある。  A predetermined amount of water is added to the composition shown in Table 6 below, and premixed with Ashizaki Iron Works Co., Ltd. product, mixer MH S-100, and further, this is subjected to kneading vacuum extrusion with Amagasaki Iron Works Ltd. product. After molding into a shape with a height of 10 mm, a width of 10 mm, and a length of 70 to LOO mm using a molding machine FM-P30, this molded body is dried at room temperature for 3 days and fired under the conditions described in Table 6. Thus, the fired bodies of Examples 27 and 28 were obtained. The flexural strength, the porosity, the bulk specific gravity, the water absorption rate, and the volume standard water absorption were determined for the obtained sintered body. The results are shown in Table 7. The clay of clay used here is made of round ceramics and has a particle diameter of 100 μm or less, and the others are the same as described above.
[表 6] [Table 6]
Figure imgf000026_0001
Figure imgf000026_0001
[表 7] 曲げ強度 気孔率 吸水率 体積標準吸水率 [Table 7] Bending strength, porosity, water absorption, volume standard water absorption
嵩比重  Bulk specific gravity
(MP a ) (%) (%) (%)  (MP a) (%) (%) (%)
実施例 27 14. 7 37. 0 1. 45 25. 4 36. 8  Example 27 14. 7 37. 0 1. 45 25. 4 36. 8
実施例 28 14. 5 38. 2 1. 46 26. 1 38. 2  Example 28 14. 5 38. 2 1. 46 26. 1 38. 2

Claims

請求の範囲 The scope of the claims
[1] ゼォライト 50〜90重量0 /0と、 [1] Zeoraito 50 to 90 weight 0/0,
可塑性粘土 5〜49. 9重量%と、  5 to 49.9% by weight of plastic clay,
アルカリ(土類)金属化合物 0. 1〜30重量%と、  Alkaline (earth) metal compound 0.1 to 30% by weight,
を含むゼォライト含有組成物。  A zeolite-containing composition comprising:
[2] 前記アルカリ(土類)金属化合物が、 800°C以下で熱分解するものであることを特徴 とする請求項 1記載のゼォライト含有組成物。 [2] The zeolite-containing composition according to claim 1, wherein the alkali (earth) metal compound is thermally decomposed at 800 ° C. or less.
[3] 前記可塑性粘土が木節粘土、蛙目粘土、カオリン、頁岩粘土、陶石からなる群から 選択される 1種または 2種以上であることを特徴とする請求項 1または 2記載のゼオラ イト含有組成物。 [3] The zeola according to claim 1 or 2, characterized in that the plastic clay is one or more selected from the group consisting of Kibushi clay, Lemoku clay, kaolin, shale clay and pottery stone. It containing composition.
[4] 前記可塑性粘土は、その平均粒径 D が前記ゼォライトの平均粒径 D 以下であり  [4] The plastic clay has an average particle size D of not more than the average particle size D of the zeolite and
50 50 50 50
、かつ前記ゼォライトの有効径 D 以下の粒径割合が 15重量%以上であることを特 And the particle diameter ratio of the effective diameter D or less of the zeolite is 15% by weight or more.
10  Ten
徴とする請求項 1〜3のいずれ力 1項に記載のゼォライト含有組成物。  The zeolite-containing composition according to any one of claims 1 to 3, which is a feature of the invention.
[5] 前記アルカリ(土類)金属化合物が、アルカリ(土類)金属炭酸塩、アルカリ(土類) 金属水酸化物、アルカリ(土類)金属硝酸塩、およびアルカリ(土類)金属酢酸塩から なる群力 選択される 1種または 2種以上であることを特徴とする請求項 1〜4のいず れカ 1項に記載のゼォライト含有組成物。 [5] The alkali (earth) metal compound is selected from an alkali (earth) metal carbonate, an alkali (earth) metal hydroxide, an alkali (earth) metal nitrate, and an alkali (earth) metal acetate. The zeolite-containing composition according to any one of claims 1 to 4, wherein the selected group is one or more selected.
[6] 前記アルカリ(土類)金属炭酸塩が、炭酸リチウム、炭酸マグネシウム、炭酸カルシ ゥム、塩基性炭酸マグネシウム、マグネサイト、石灰石、およびドロマイトからなる群か ら選択される 1種または 2種以上の混合物もしくは混合摩砕物であることを特徴とする 請求項 5に記載のゼォライト含有組成物。 [6] One or two selected from the group consisting of lithium carbonate, magnesium carbonate, calcium carbonate, basic magnesium carbonate, magnesite, limestone, and dolomite as the alkali (earth metal) metal carbonate. The zeolite-containing composition according to claim 5, which is a mixture or a mixture of the above.
[7] 前記炭酸カルシウム、前記石灰石、および前記ドロマイトは、その他のアルカリ(土 類)金属化合物との混合物もしくは混合摩砕物として用いられることを特徴とする請 求項 6に記載のゼォライト含有組成物。 [7] The zeolite-containing composition according to claim 6, characterized in that the calcium carbonate, the limestone, and the dolomite are used as a mixture or a mixture with other alkali (earth) metal compounds. .
[8] 前記アルカリ(土類)金属水酸化物が、水酸化リチウム、水酸化ナトリウム、水酸化力 リウム、水酸ィ匕カルシウム、水酸化マグネシウム、およびブルーサイトからなる群から 選択される 1種または 2種以上の混合物もしくは混合摩砕物であることを特徴とする 請求項 5に記載のゼォライト含有組成物。 [8] One kind selected from the group consisting of lithium hydroxide, sodium hydroxide, lithium hydroxide, calcium hydroxide, magnesium hydroxide, and brucite, as the alkali (earth) metal hydroxide. The zeolite-containing composition according to claim 5, which is a mixture or a mixture of two or more thereof.
[9] 前記アルカリ(土類)金属硝酸塩が、硝酸カリウム、および硝酸ナトリウム力もなる群 カゝら選択される 1種または 2種以上の混合物もしくは混合摩砕物であることを特徴とす る請求項 5に記載のゼォライト含有組成物。 [9] The alkali (earth) metal nitrate is preferably a mixture or mixture of one or more selected from potassium nitrate and a group selected from sodium nitrate and sodium nitrate. The zeolite-containing composition according to claim 1.
[10] 前記ゼォライトに銅イオン、銀イオン、亜鉛イオンカゝらなる群カゝら選択される 1種また は 2種以上の金属イオンが担持されて 、ることを特徴とする請求項 1〜9の 、ずれか 1 項に記載のゼォライト含有組成物。 [10] The zeolite according to the present invention is characterized in that one or more metal ions selected from the group consisting of copper ions, silver ions and zinc ions are supported on the zeolite. The zeolite-containing composition according to any one of the preceding claims.
[11] 塑性状態における山中式土壌硬度計測定値が 14以下であることを特徴とする請求 項 1〜: LOのいずれか 1項に記載のゼォライト含有組成物。 [11] The zeolite-containing composition according to any one of the items 1 to 4: LO, wherein the measured value of the Yamanaka-type soil hardness meter in the plastic state is 14 or less.
[12] 請求項 1〜: L 1のいずれ力 1項に記載のゼォライト含有組成物を 500〜800°Cで焼 成してなることを特徴とする多孔質焼成体。 [12] A porous fired body obtained by firing the zeolite-containing composition according to any one of the items 1 to 4 at a temperature of 500 to 800 ° C.
[13] 気孔率が 30%以上であり、かつ曲げ強度が IMPa以上であることを特徴とする請 求項 12に記載の多孔質焼成体。 [13] The porous sintered body according to claim 12, characterized in that the porosity is 30% or more and the bending strength is I MPa or more.
[14] 焼成体に含まれるゼォライト成分の比表面積が、前記ゼォライト含有組成物に含ま れるゼオライト成分の比表面積の 0. 8倍以上であることを特徴とする請求項 12また は 13に記載の多孔質焼成体。 [14] The specific surface area of the zeolite component contained in the fired body is at least 0.8 times the specific surface area of the zeolite component contained in the zeolite-containing composition, according to claim 12 or 13. Porous fired body.
[15] 表面上に光触媒粒子が担持されているか、または組成として光触媒粒子が含まれ ていることを特徴とする請求項 12〜 14のいずれか 1項に記載の多孔質焼成体。 [15] The porous sintered body according to any one of claims 12 to 14, wherein photocatalyst particles are supported on the surface, or photocatalyst particles are contained as a composition.
[16] ゼォライトと、可塑性粘土と、アルカリ(土類)金属化合物と、を含むゼォライト含有 組成物であって、 [16] A zeolite-containing composition comprising zeolite, plastic clay and an alkaline (earth) metal compound,
塑性状態における山中式土壌硬度計測定値が 14以下であり、  The Yamanaka type soil hardness meter measured value in the plastic state is 14 or less,
焼成後の気孔率が 30%以上、曲げ強度が IMPa以上、前記ゼォライト成分の比表 面積が焼成前の前記ゼォライト成分の比表面積の 0. 8倍以上であることを特徴とす るゼオライト含有組成物。  Zeolite-containing composition characterized in that the porosity after firing is 30% or more, the bending strength is IMPa or more, and the specific surface area of the zeolite component is at least 0.8 times the specific surface area of the zeolite component before firing. object.
[17] 前記ゼォライトの含有率が 50〜90重量%であることを特徴とする請求項 16に記載 のゼオライト含有組成物。 [17] The zeolite-containing composition according to claim 16, wherein the zeolite content is 50 to 90% by weight.
[18] 前記可塑性粘土は、その平均粒径 D が前記ゼォライトの平均粒径 D 以下であり [18] The plastic clay has an average particle size D of not more than the average particle size D of the zeolite and
50 50 50 50
、かつ前記ゼォライトの有効径 D 以下の粒径割合が 15重量%以上であることを特 And the particle diameter ratio of the effective diameter D or less of the zeolite is 15% by weight or more.
10  Ten
徴とする請求項 16または 17に記載のゼォライト含有組成物。 The zeolite-containing composition according to claim 16 or 17, which is a feature.
[19] 請求項 16〜18のいずれ力 1項に記載のゼォライト含有組成物を 500〜800°Cで 焼成してなることを特徴とする多孔質焼成体。 [19] A porous fired body obtained by firing the zeolite-containing composition according to any one of claims 16 to 18 at 500 to 800 ° C.
[20] 表面上に光触媒粒子が担持されて ヽるか、または組成として光触媒粒子が含まれ ていることを特徴とする請求項 19に記載の多孔質焼成体。 [20] The porous sintered body according to claim 19, characterized in that photocatalyst particles are supported on the surface, or photocatalyst particles are contained as a composition.
[21] 請求項 12〜15のいずれか 1項に記載の多孔質焼成体または請求項 19または 20 に記載の多孔質焼成体により被膜されていることを特徴とする被膜物。 [21] A coated article characterized by being coated with the porous fired body according to any one of claims 12 to 15 or the porous fired body according to claim 19 or 20.
[22] 請求項 1〜: L 1のいずれか 1項に記載のゼォライト含有組成物、または請求項 16〜[22] Claim 1 to 1: The zeolite-containing composition according to any one of L 1 or the claim 16
18のいずれか 1項に記載のゼォライト含有組成物を、押し出し成形、プレス成形、ま たは铸込み成形により成形加工し、これを 500〜800°Cで焼成してなることを特徴と する建材。 A building material characterized in that the zeolite-containing composition according to any one of items 18 is formed and processed by extrusion molding, press molding, or insert molding, and is fired at 500 to 800 ° C. .
[23] 気孔率が 30%以上でかつ曲げ強度が 3MPa以上であることを特徴とする請求項 2 2に記載の建材。  [23] The building material according to claim 22, wherein the porosity is 30% or more and the bending strength is 3 MPa or more.
[24] 体積標準吸水率が 35%以上でかつ曲げ強度が 3MPa以上であることを特徴とする 請求項 22または 23に記載の建材。  [24] The building material according to claim 22 or 23, wherein a volume standard water absorption rate is 35% or more and a bending strength is 3 MPa or more.
[25] ゼォライトを 50%以上含有するゼオライト含有組成物を成形し、 500〜800°Cで焼 成してなり、曲げ強度が 3MPa以上で、かつ気孔率が 30%以上もしくは体積標準吸 水率が 35%以上であることを特徴とする建材。 [25] A zeolite-containing composition containing 50% or more of zeolite is molded and baked at 500 to 800 ° C., and has a flexural strength of 3 MPa or more, a porosity of 30% or more, or a volume standard water absorption rate Is 35% or more.
[26] 表面上に光触媒粒子が担持されて ヽるか、または組成として光触媒粒子が含まれ て 、ることを特徴とする請求項 22〜25の 、ずれか 1項に記載の建材。 [26] The building material according to any one of claims 22 to 25, wherein photocatalyst particles are carried on the surface and contained or photocatalyst particles are contained as a composition.
[27] 多孔体を焼成してなる多孔質焼成体に配合されるバインダーであって、 [27] A binder to be blended into a porous fired body obtained by firing a porous body,
平均粒径 D が前記多孔体の平均粒径 D 以下であり、かつ前記多孔体の有効径  The average particle diameter D is equal to or less than the average particle diameter D of the porous body, and the effective diameter of the porous body
50 50  50 50
D 以下の粒径割合が 15重量%以上である可塑性粘土と、  Plastic clay having a particle size ratio of not more than 15% by weight or less;
10  Ten
アルカリ(土類)金属化合物と、  An alkaline (earth) metal compound,
を含むことを特徴とするノインダー。  Noinda characterized by including.
PCT/JP2005/021286 2004-11-19 2005-11-18 Zeolitic composition and, utilizing the same, porous firing product and building material WO2006054718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006545179A JPWO2006054718A1 (en) 2004-11-19 2005-11-18 Zeolite-containing composition, and porous fired body and building material using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004335504 2004-11-19
JP2004-335504 2004-11-19

Publications (1)

Publication Number Publication Date
WO2006054718A1 true WO2006054718A1 (en) 2006-05-26

Family

ID=36407254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021286 WO2006054718A1 (en) 2004-11-19 2005-11-18 Zeolitic composition and, utilizing the same, porous firing product and building material

Country Status (2)

Country Link
JP (1) JPWO2006054718A1 (en)
WO (1) WO2006054718A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153126A1 (en) * 2007-06-14 2008-12-18 Kyodo Printing Co., Ltd. Process for production of adsorbent-containing formed bodies and adsorbent-containing formed bodies
JP2008307474A (en) * 2007-06-14 2008-12-25 Kyodo Printing Co Ltd Method for manufacturing adsorbent-containing molding and adsorbent-containing molding
JP2010168239A (en) * 2009-01-21 2010-08-05 Takenori Shoda Zeolite molding, vegetation base material and water treating agent
JP2011207749A (en) * 2010-03-12 2011-10-20 Ngk Insulators Ltd Zeolite structure and method for producing the same
KR101221657B1 (en) * 2009-03-30 2013-01-14 한국건설기술연구원 Complex functional material coated the zeolite and the photocatalyst and manufacturing method the same
CN103923345A (en) * 2014-04-01 2014-07-16 桐乡市隆诚矿石材料有限公司 Environment-friendly multifunctional deodorant and preparation method thereof
JP5851578B1 (en) * 2014-08-27 2016-02-03 シャープ株式会社 Photocatalyst composition and method for producing the same
JP2018203591A (en) * 2017-06-08 2018-12-27 日本ゼオライト株式会社 Ceramic sintered compact, and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112121A (en) * 1993-06-25 1995-05-02 Tosoh Corp Method for removing nox
JP3066427B2 (en) * 1990-04-16 2000-07-17 東ソー株式会社 High-strength A-type zeolite compact and method for producing the same
JP2003002636A (en) * 2001-06-19 2003-01-08 Tosoh Corp Binder-less zeolite bead molding, manufacturing method for the same, and adsorbing and removing method using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137497B2 (en) * 1993-04-28 2001-02-19 三菱重工業株式会社 Adsorbent and adsorption removal method for hydrocarbon
JP3732279B2 (en) * 1996-08-06 2006-01-05 三菱マテリアル株式会社 NOx purification block for paving
FR2744718B1 (en) * 1996-02-09 1998-04-03 Inst Francais Du Petrole PROCESS FOR DISMUTATION AND / OR TRANSALKYLATION OF ALKYLAROMATIC HYDROCARBONS IN THE PRESENCE OF TWO ZEOLITHIC CATALYSTS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066427B2 (en) * 1990-04-16 2000-07-17 東ソー株式会社 High-strength A-type zeolite compact and method for producing the same
JPH07112121A (en) * 1993-06-25 1995-05-02 Tosoh Corp Method for removing nox
JP2003002636A (en) * 2001-06-19 2003-01-08 Tosoh Corp Binder-less zeolite bead molding, manufacturing method for the same, and adsorbing and removing method using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153126A1 (en) * 2007-06-14 2008-12-18 Kyodo Printing Co., Ltd. Process for production of adsorbent-containing formed bodies and adsorbent-containing formed bodies
JP2008307474A (en) * 2007-06-14 2008-12-25 Kyodo Printing Co Ltd Method for manufacturing adsorbent-containing molding and adsorbent-containing molding
JP2010168239A (en) * 2009-01-21 2010-08-05 Takenori Shoda Zeolite molding, vegetation base material and water treating agent
KR101221657B1 (en) * 2009-03-30 2013-01-14 한국건설기술연구원 Complex functional material coated the zeolite and the photocatalyst and manufacturing method the same
JP2011207749A (en) * 2010-03-12 2011-10-20 Ngk Insulators Ltd Zeolite structure and method for producing the same
CN103923345A (en) * 2014-04-01 2014-07-16 桐乡市隆诚矿石材料有限公司 Environment-friendly multifunctional deodorant and preparation method thereof
JP5851578B1 (en) * 2014-08-27 2016-02-03 シャープ株式会社 Photocatalyst composition and method for producing the same
WO2016031319A1 (en) * 2014-08-27 2016-03-03 シャープ株式会社 Photocatalyst composition and method for producing same
CN106794456A (en) * 2014-08-27 2017-05-31 夏普株式会社 Photocatalyst Composite and its manufacture method
CN106794456B (en) * 2014-08-27 2020-03-06 夏普株式会社 Photocatalyst composition and method for producing same
JP2018203591A (en) * 2017-06-08 2018-12-27 日本ゼオライト株式会社 Ceramic sintered compact, and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2006054718A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
KR101546240B1 (en) Antimicrobial porous ceramic tile and method of manufacturing the same
JPWO2007069351A1 (en) Adsorbent-containing room temperature solidifying composition, adsorbent-containing molded product, adsorbent-containing building material and pavement injection material
CN104402519A (en) Microcrystal and bamboo charcoal composite pottery material and preparation method thereof
JP2005015276A (en) Ceramic fired body and antibacterial ceramic and microorganism immobilization support using the same
CN109776055B (en) Multifunctional environment-friendly zeolite diatom ooze interior wall coating
KR20190080189A (en) Ecofriendly natural paint using halloysite nano tube and the preparing process the same
WO2006054718A1 (en) Zeolitic composition and, utilizing the same, porous firing product and building material
CN105985071B (en) A kind of environment-friendlymineral mineral wool board and preparation method thereof
JP2011230979A (en) Porous body and method of producing the same
JP2010168239A (en) Zeolite molding, vegetation base material and water treating agent
KR20170013603A (en) A composite for forming the eco-board and the method therefor
KR101168010B1 (en) The multi-functional eco-friendly interior panel for living space, based on aqueous silicate binder with variety of mineral fine powders that possess high anti-microbacteral with execllent mildew-resistant effect and should be able to produce hign ecological functionality, the composition and eco-friendly interior panel and making method thereof
EP0912240A1 (en) Zeolite containing cation exchangers, methods for preparation, and use
JP2964393B2 (en) Humidity control ceramic building materials
JP4332605B2 (en) Humidity conditioning material and method for producing the same
KR101611434B1 (en) A Environmental-friendly Plastering Additives Containing Vegetable Additives and Environmental-friendly Plastering Cement Using the Same and Mortar Containing the Same
KR101227802B1 (en) Porous ceramic media for microbes by sawdust and method of manufacturing the same
JP2007063084A (en) Diatom earth solidified body and solidifying method
KR100567422B1 (en) A manufacturing method of a porous aggregate to purify a water
US20220370979A1 (en) Porous aluminosilicate compositions for contaminant metal removal in water treatment
JP2007063083A (en) Zeolite solidified body and solidifying method
JP2013001589A (en) Building material for interior and method of manufacturing the same
KR20110100491A (en) Porous ceramic media for microbes by sawdust and method of manufacturing the same
KR101228222B1 (en) Ceramic material having humidity controlling performance and preparing method thereof
KR102087571B1 (en) High strength high surface area industrial honeycomb deodorization filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006545179

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806830

Country of ref document: EP

Kind code of ref document: A1