[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006054581A1 - Swing control device and construction machinery - Google Patents

Swing control device and construction machinery Download PDF

Info

Publication number
WO2006054581A1
WO2006054581A1 PCT/JP2005/021012 JP2005021012W WO2006054581A1 WO 2006054581 A1 WO2006054581 A1 WO 2006054581A1 JP 2005021012 W JP2005021012 W JP 2005021012W WO 2006054581 A1 WO2006054581 A1 WO 2006054581A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
turning
value
control device
lever
Prior art date
Application number
PCT/JP2005/021012
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Morinaga
Tadashi Kawaguchi
Hiroaki Inoue
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to CN2005800391521A priority Critical patent/CN101057044B/en
Priority to JP2006545090A priority patent/JP4359621B2/en
Priority to EP05806994.9A priority patent/EP1813728A4/en
Priority to US11/791,190 priority patent/US8000862B2/en
Publication of WO2006054581A1 publication Critical patent/WO2006054581A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/128Braking systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps

Definitions

  • the present invention relates to a turning control device and a construction machine for a turning body that is turned by an electric motor.
  • the swinging motion of the swinging body is performed by an electric motor. Therefore, even if the swinging body is swung simultaneously with the lifting operation of the hydraulically driven boom or arm, the swinging body can be operated evenly. Unaffected by climbing motion. For this reason, as compared with the case where the revolving body is also driven hydraulically, the loss in the control knob or the like can be reduced and the energy efficiency is good.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-11897
  • the speed command value corresponding to the lever signal from the swing lever is compared with the actual speed, and the torque output corresponding to the torque command value obtained by the deviation force is obtained. Acceleration / deceleration is often performed.
  • An object of the present invention is to provide a turning control device and a construction machine that can reduce an impact at the time of acceleration / deceleration of a turning body even when the turning lever is operated quickly.
  • the turning control device of the present invention is a turning control device for controlling a turning body that is turned by an electric motor, and the rising and falling of the torque output of the electric motor based on a lever signal of the turning lever. Is provided with a predetermined gradient.
  • acceleration means when the swing lever is tilted to the neutral position force to a predetermined angle
  • deceleration stop means when the swing lever operated at the predetermined tilt angle is returned to the neutral position.
  • intermediate deceleration this means when the swiveling lever is operated at a predetermined tilt angle and returned to an arbitrary position before the neutral position.
  • a different gradient may be applied as necessary even during intermediate acceleration in which the turning lever operated at a predetermined tilt angle is further tilted.
  • the turning body has a maximum acceleration of a different magnitude for each acceleration, deceleration stop, and intermediate deceleration.
  • the setting of the maximum acceleration (including the acceleration at the time of acceleration and the negative acceleration at the time of deceleration) is set for each acceleration, deceleration stop, and intermediate deceleration. For example, if the maximum acceleration during deceleration stop is set larger, the output maximum torque will also increase, improving the response during stoppage, and setting the maximum acceleration during intermediate deceleration smaller. If you do, it will slow down smoothly.
  • the rising gradient of the torque output at the time of acceleration is:
  • the rise time until the torque output reaches the maximum value from zero is given to be 0.15 seconds or more
  • the gradient of the torque output falling at the time of deceleration stop is the maximum value of the zero force
  • the slope of the fall of the torque output during intermediate deceleration is such that the fall time until the zero force reaches the maximum value is reached. It is desirable that the time should be 0.15 seconds or longer.
  • the fall of the torque output at the time of deceleration stop and at the time of intermediate deceleration is when braking (brake) torque is applied.
  • the impact generated at the time of acceleration is reliably suppressed.
  • 0.1 With a rise time shorter than 15 seconds, the shock that occurs during acceleration may not be reliably suppressed.
  • the impact generated when the deceleration stop operation is performed is surely suppressed.
  • the unique impact that occurs during intermediate deceleration is reliably suppressed.
  • a construction machine includes a revolving structure that revolves with an electric motor, and the above-described revolving control device according to the present invention for controlling the revolving structure.
  • FIG. 1 is a plan view showing a construction machine according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an overall configuration of the construction machine according to the first embodiment.
  • FIG. 3 is a diagram for explaining a conventional turning control method.
  • FIG. 4 is a diagram for explaining a turning control method of the first embodiment.
  • FIG. 5 is a diagram for explaining a turning control device mounted on the construction machine of the first embodiment.
  • FIG. 6 is a diagram for more specifically explaining the turning control method of the first embodiment.
  • FIG. 7 is a diagram for specifically explaining another turning control method of the first embodiment.
  • FIG. 8 is a diagram showing the relationship between delay time and jerk value.
  • FIG. 9 is a diagram for explaining how to calculate a speed command value in the first embodiment.
  • FIG. 10 is a flowchart for explaining how to calculate the speed command value.
  • FIG. 11 is a diagram for explaining a turning control device according to a second embodiment of the present invention.
  • FIG. 12 is a view for explaining the turning control method of the second embodiment.
  • FIG. 1 is a plan view showing an electric swing excavator (construction machine) 1 according to the present embodiment
  • FIG. 2 is a diagram showing an overall configuration of the electric swing shovel 1.
  • an electric swing excavator 1 includes a swing body 4 installed on a track frame constituting a lower traveling body 2 via a swing circle 3, and the swing body 4 meshes with the swing cycle 3.
  • the electric motor 5 is turned and driven.
  • the electric power source of the electric motor 5 is a generator 15 (see FIG. 2) mounted on the rotating body 4, and this generator is driven by the engine 14 (see FIG. 2).
  • the swing body 4 is provided with a boom 6, an arm 7, and a packet 8 that are operated by hydraulic cylinders 6A, 7A, and 8A. It is made.
  • the hydraulic pressure source of each hydraulic cylinder 6A, 7A, 8A is a hydraulic pump 12 driven by an engine 14.
  • the electric swivel excavator 1 is a hybrid construction machine including the hydraulically driven work machine 9 and the electrically driven swivel 4.
  • the electric swing excavator 1 includes a swing lever 10, a controller 11, and a hydraulic control valve 13 in addition to the above-described configuration.
  • a lever signal corresponding to the tilt angle is output to the controller 11 from the swivel lever 10 (usually also serving as a work implement lever for arm 7 operation). Controller 11 is the lever signal
  • the drive of the work machine 9 is controlled by giving a command to the hydraulic pump 12 and the hydraulic control valve 13 that drives the hydraulic cylinders 6A, 7A, and 8A according to the values.
  • the controller 11 gives a command for adjusting the engine speed to the engine 14 and a command for adjusting the power generation amount to the generator 15 as necessary.
  • the controller 11 controls the turning operation of the swing body 4 by controlling the torque output of the electric motor 5.
  • the controller 11 includes a turning control device 50.
  • the turning control device 50 responds to the lever signal value and the actual speed Vact (see FIG. 5) of the electric motor 5 detected by a rotation speed sensor (not shown).
  • a torque command value Ttar for the electric motor 5 is generated.
  • the torque command value Ttar is output to an inverter (not shown), and the inverter converts the torque command value Ttar into a current value and a voltage value, and controls the electric motor 5 to be driven at a target speed.
  • Fig. 3 shows the turning state of the turning body in this case.
  • a predetermined turning acceleration G1 is generated at the same time as the speed command value is generated.
  • the turning body 4 turns with this turning acceleration G1.
  • the speed command value is slightly dull due to the gain characteristics immediately before reaching the speed value VI corresponding to the lever signal, and thereafter becomes substantially constant at the speed value VI. For this reason, the turning acceleration falls to zero, and the turning acceleration becomes “0” when the speed command value becomes constant.
  • the speed command value decreases linearly and at the same time a predetermined turning acceleration in the deceleration direction is applied.
  • the speed G2 is generated suddenly, and, conversely, the swivel body 4 is braked at this predetermined turning acceleration G2.
  • the speed command value is slightly dull due to the gain characteristic immediately before reaching “0” according to the lever signal, and then becomes “0”. For this reason, it rises with a slow turning acceleration, and eventually reaches “0”.
  • the turning control device 50 of the present embodiment in order to reduce the peak g [ ⁇ j of the jerk value, by defining the torque output gradient, A gradient is intentionally added to the falling edge to suppress the impact at the start of acceleration and deceleration.
  • the target turning acceleration for rotating the turning body 4 with such turning acceleration is calculated, and the speed command value according to the target acceleration is generated, so that the torque command value Ttar can be used.
  • the gradient of torque output Specifies the gradient of torque output.
  • PID Proportional Integral Differential
  • the turning control device 50 includes speed command value generation means 51 and torque command value generation means 52.
  • the speed command value generating means 51 Based on the lever signal value and the previous speed command value Vo (tl) fed back, the speed command value generating means 51 turns the swinging body 4 at the target turning acceleration on the electric motor 5. A speed command value Vo (t) is generated.
  • the speed command value generation unit 51 includes a lever command speed value generation unit 511, a region determination unit 512, a target acceleration calculation unit 513, a target acceleration storage unit 514, a speed command value generation unit 515, and a speed command value.
  • Storage unit 516 It has.
  • the lever command speed value generation unit 511 generates a lever command speed value Vi (t) by converting the lever signal value into a speed, and outputs it to the region determination unit 512.
  • the lever command speed value Vi (t) is the base value of the speed command value Vo (t) .
  • the lever command speed value Vi (t) is filtered and the amount of change is limited. This value becomes the speed command value Vo (t).
  • the lever signal value and the lever command speed value Vi (t) are in a proportional relationship.
  • the area determination unit 512 determines the relationship between the previous speed command value Vo (tl) and the lever command speed value Vi (t), the previous target turning acceleration G (tl), and a predetermined maximum turning acceleration Gajnax, Gbjnax. Based on the relationship between and, it is determined whether the turning state of the revolving structure 4 corresponds to the area during acceleration, deceleration stop, or intermediate deceleration.
  • acceleration refers to the time when the turning lever 10 is tilted to a predetermined angle.
  • the deceleration stop is when the swiveling lever 10 operated at a predetermined tilt angle is returned to the neutral position
  • the intermediate deceleration is when the swing lever is operated at a predetermined tilt angle. This is when the lever 10 is returned to an arbitrary position before the neutral position.
  • a target acceleration calculation unit 513 calculates a value of the target turning acceleration G (t) according to the determination result of the region determination unit 512. As shown in FIG. 6, the target acceleration calculation unit 513 has a rise time Tal of 0.15 seconds or more until the torque output reaches the maximum torque output Tarnax from “0” during acceleration. Thus, the target turning acceleration G (t) is calculated. This gives a gradient to the rise of the torque output (a l). 0.1 Rise times shorter than 15 seconds may not be able to reliably suppress the impact that occurs during acceleration.
  • the target acceleration calculation unit 513 causes the fall time Tbl until the torque output reaches the maximum torque output Tbjnax, which is the maximum value, from "0" is 0.1 seconds or more.
  • the target turning acceleration G (t) is calculated. This gives a gradient to the falling edge of the torque output ( ⁇ 2). 0. If it is shorter than 1 second, it will be uncomfortable for the operator with a large impact.
  • the target acceleration calculation unit 513 has a falling time Tel of 0 until the torque output reaches the maximum torque output ⁇ max where the zero force is also the maximum value.
  • the target turning acceleration G (t) is calculated to be 15 seconds or longer. As a result, torque A slope is given to the falling edge of the output (a 3). 0. If it is shorter than 15 seconds, there is a possibility that the specific impact that occurs during intermediate deceleration cannot be sufficiently suppressed.
  • FIG. 8 shows the relationship between the delay time such as the rise time Tal and the fall time Tbl, Tel and the jerk value. It can be seen that when the delay time is less than 0.1 second, the jerk value increases rapidly and the impact increases. Therefore, it is desirable to give a slope of 0.1 seconds or more even during deceleration stop with the shortest fall time Tbl. In addition, when accelerating the rotating body 4 in a stopped state, a larger impact is predicted, so it is desirable to have a rise time Tal of 0.15 seconds or more. Furthermore, since the smooth deceleration is required at the time of intermediate deceleration with a small amount of operation of the turning lever 10 compared to when the deceleration is stopped, it is desirable to have a falling time Tel of 0.15 seconds or more.
  • the maximum turning accelerations Gajnax, Gbjnax (FIG. 6), Gcjnax having different magnitudes at the time of acceleration, deceleration stop, and intermediate deceleration are shown.
  • Fig. 7 is set.
  • the maximum turning acceleration Gbjnax at the time of deceleration stop shown in Fig. 6 is set to the largest value as an absolute value, and this is output at the time of deceleration stop.
  • the maximum torque output Tbjnax can be increased and the responsiveness when stopping can be improved.
  • the maximum turning acceleration Gcjnax during intermediate deceleration shown in FIG. 7 is set to a value different from the maximum turning acceleration Gbjnax during deceleration stop in FIG. 6, and is set to the smallest absolute value. Therefore, the maximum torque output Tcjnax output during intermediate deceleration can be made smaller and the vehicle can be smoothly decelerated.
  • the target acceleration storage unit 514 stores the target turning acceleration G (t) calculated by the target acceleration calculation unit 513.
  • the value stored here is used by the area determination unit 512 and the target acceleration calculation unit 513 as the previous target turning acceleration G (t-1) in the next calculation.
  • the speed command value generation unit 515 is configured so that the amount of change from the previous speed command value Vo (tl) fed back becomes the value of the target turning acceleration G (t) calculated by the target acceleration calculation unit 513.
  • the speed command value Vo (t) is generated.
  • the speed command value generation unit 515 calculates the value obtained by multiplying the target turning acceleration G (t) by the calculation step size into the previous speed command value Vo (tl).
  • the speed command value Vo (t) is generated by calculation.
  • the speed command value storage unit 516 stores the speed command value Vo (t) generated by the speed command value generation means 51.
  • the value stored here is used by the area determination unit 512 and the speed command value generation unit 515 as the previous speed command value Vo (t-l) in the next calculation.
  • the torque command value generating means 52 responds to the deviation between the current speed command value Vo (t) generated by the speed command value generating unit 515 of the speed command value generating means 51 and the actual speed Vact fed back. To generate a torque command value Ttar. Therefore, when the actual speed Vact does not increase with respect to the speed command value Vo (t), control is performed so that the torque output is increased to approach the target speed. Such control is speed control by general P (Proportional) control.
  • FIGS. 10 and 10 the control action by the turning control device 50, particularly how the speed command value generating means 51 calculates and outputs the speed command value Vo (t) based on the input lever signal is shown in FIGS. 10 and the following formula.
  • the acceleration and deceleration stop will be described as a representative.
  • the speed command value is basically calculated in the same way as when decelerating and stopping. Since it can be easily understood by explaining when decelerating and stopping, explanation here is omitted.
  • “Ga” and “Gb” are the maximum turning accelerations Gajnax and Gb_max in FIGS.
  • the turning control device 50 reads the current lever signal value.
  • the lever command speed value generation unit 511 of the speed command value generation means 51 converts the lever signal value into a speed to generate a lever command speed value Vi (t) (ST1).
  • the region determination unit 512 When the region determination unit 512 takes in the lever command speed value Vi (t), the region determination unit 512 performs region determination based on a plurality of determination conditions. That is, the area determination unit 512 first determines whether or not the current lever command speed value V i (t) is greater than the previous speed command value Vo (t ⁇ l) (ST2). Thereby, it is determined whether the rotating body 4 is turning in the acceleration region or the deceleration region.
  • the area determination unit 512 continues to the current lever command speed value Vi (t ) To the previous speed command Whether the value obtained by subtracting the value Vo (t-1) is larger than the predetermined value Va2 (ST3), whether the previous target turning acceleration G (tl) is smaller than the maximum turning acceleration Ga (ST4) Determine.
  • the target acceleration calculation unit 513 calculates the target turning acceleration G (t) from Expressions (1) to (3) for each determination region (ST5 to ST7). At this time, each value of Jal and Ja2 corresponding to the jerk value is obtained by equation (4).
  • the area determination unit 512 continues. Whether the value obtained by subtracting the current lever command speed value Vi (t) from the value Vo (tl) is larger than the predetermined value Vb (ST8), and the target turning acceleration G (tl) in the previous stage is Judge whether or not it is larger than the maximum turning acceleration Gb (ST9).
  • the value obtained by subtracting the current lever command speed value Vi (t) from the previous speed command value Vo (tl) is When the predetermined value Vb beam is large and the previous target turning acceleration G (t-1) is larger than the maximum turning acceleration Gb on the deceleration side (if the maximum turning acceleration Gb has been reached, in this case) , It is determined that the region is lb.
  • the area is determined to be lib. If the difference between the speed command value Vo (t-l) and the lever command speed value Vi (t) is less than or equal to the predetermined value Vbl, the area is judged as Illb.
  • the target acceleration calculation unit 513 calculates the target turning acceleration G (t) from Expressions (5) to (7) for each determination region (ST10 to ST12). At this time, each value of Jbl and Jb2 corresponding to the jerk value is obtained by Equation (4).
  • the target acceleration storage unit 514 stores the target turning acceleration G (t) calculated by the target acceleration calculation unit 513 in this way (ST13).
  • the speed command value generation unit 515 calculates the speed command value Vo (t) based on the target turning acceleration G (t) and the previous speed command value Vo (tl) according to Equation (8) ( ST14). Calculated speed The degree command value Vo (t) is replaced with the previous speed command value Vo (tl) and used in ST2 (ST15). The speed command value Vo (t) is continuously used by the torque command value generation means 52 to generate the torque command value Ttar.
  • Vo (t) Vo (t-l) + G (t)-step (8)
  • the maximum torque outputs Tarnax and Tbjnax when the inertia I is constantly detected and the inertia I increases, the maximum torque outputs Tarnax and Tbjnax also increase, and when the inertia I decreases, the maximum torque The outputs Tarnax and Tbjnax are also controlled to be small so that the actual maximum turning acceleration is substantially constant.
  • the inertia I for example, the position information of the angle sensor force working machine 9 provided in the boom 6 and the arm 7 is acquired, and the swing body 4 is obtained based on the position information. Inertia I can be obtained, and the turning acceleration and torque output force inertia I during acceleration / deceleration can also be obtained (see the above relational expression).
  • the gradient at the time of acceleration is applied so that the rise time Tal is 0.15 seconds or more, the impact generated during the acceleration can be reliably suppressed, and the fall time Tbl is 0.1.
  • the gradient for deceleration stop so that it becomes more than 2 seconds, it is possible to reliably suppress the impact that occurs when performing deceleration stop operation, and during intermediate deceleration so that the fall time Tel is 0.15 seconds or more
  • the fall time Tel is 0.15 seconds or more
  • the values of the maximum torque outputs Ta_max and Tb_max are variable according to the inertia I, if the inertia I of the swing body 4 increases, the maximum torque outputs Tarnax and Tbjnax increase accordingly, and conversely If the inertia I is small, the maximum torque output Tarnax, Tbjnax is also reduced so that the maximum torque output Tarnax, Tbjnax can be driven by the maximum torque output Tarnax, Tbjnax, and the acceleration is almost constant. Comfort can be improved.
  • FIG. 11 shows a view for explaining a turning control device 50 according to the second embodiment of the present invention.
  • the target turning acceleration considering the rise time Tal and the fall time Tbl, Tel is calculated based on the input lever signal, the target turning acceleration force speed command value is calculated, and the target is thus obtained.
  • a torque output with a gradient and acceleration were obtained.
  • the speed command value obtained from the lever signal (equivalent to the speed command shown in FIG. 3 and corresponding to the actual speed without torque limitation in FIG. 12) is used as it is.
  • the force that is obtained by multiplying the speed command value calculated as before and the speed gain, and a value corresponding to the torque command value is generated, and the torque limit having a predetermined fluctuation range to this value, A torque limit that regulates the maximum value is set, and the target gradient is given by controlling the torque output within this range.
  • Such torque limit setting is performed by the torque limit setting means 53 in the rotation control device 50.
  • the torque limit setting means 53 is set to have the same rise time Tal (0.15 seconds or more) as in the first embodiment, particularly in the Tal region during acceleration.
  • the torque limit Th on the high output side and the torque limit T1 on the low output side are set in the previous stage to force the input value Tin, which is the torque command value generated once, to be output within this range.
  • Tout When the corrected torque command value Tout exceeds the torque limit Tma X set separately on the rear stage side, the motor command 5 (inverter) is used as the torque command value Ttar with the torque limit Tmax as the maximum value. ) Side.
  • the torque command value output to the electric motor 5 side is fed back to the front stage side, and ATa is added to the torque command value Tout to shift the torque limit Th, T1 on the front stage side with a predetermined gradient. Further, ⁇ Tb is subtracted from the torque command value Tout. Further, the torque limit Tmax on the rear stage side is variable according to the inertia I of the revolving structure 4 as in the first embodiment.
  • the present invention can be applied to any construction machine in which a revolving structure is swiveled by an electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Jib Cranes (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

In a swing control device mounted on a motorized swing shovel (construction machinery), when a quick operation by a swing lever causes the abrupt rise or fall of a lever signal, a gradient corresponding to rise time Ta1 or fall time Tb1 is imparted to torque output produced accordingly or to acceleration rise or fall to make the signal somewhat gentle. Therefore, impact-causing acceleration/deceleration of a swing body can be controlled. Specifically, such a gradient at accelerating is imparted that sets rise time Ta1 to at least 0.15 sec and such a gradient at decelerating/stopping is imparted that sets fall time Tb1 to at least 0.1 sec.

Description

明 細 書  Specification
旋回制御装置および建設機械  Swivel control device and construction machine
技術分野  Technical field
[0001] 本発明は、電動モータによって旋回する旋回体の旋回制御装置および建設機械 に関する。  TECHNICAL FIELD [0001] The present invention relates to a turning control device and a construction machine for a turning body that is turned by an electric motor.
背景技術  Background art
[0002] 近年、旋回体を電動モータで駆動し、他の作業機や走行体を油圧ァクチユエータ で駆動するハイブリットタイプの電動旋回ショベルが開発されている(例えば、特許文 献 1参照)。  [0002] In recent years, a hybrid type electric swivel excavator has been developed in which a revolving body is driven by an electric motor and other work machines and traveling bodies are driven by a hydraulic actuator (see, for example, Patent Document 1).
このような電動旋回ショベルでは、旋回体の旋回動作が電動モータで行われるため 、油圧駆動されるブームやアームの上昇動作と同時に旋回体を旋回させても、旋回 体の動作がブームやアームの上昇動作に影響されることがない。このため、旋回体を も油圧駆動する場合に比し、制御ノ レブ等でのロスを少なくでき、エネルギ効率が良 好である。  In such an electric swivel excavator, the swinging motion of the swinging body is performed by an electric motor. Therefore, even if the swinging body is swung simultaneously with the lifting operation of the hydraulically driven boom or arm, the swinging body can be operated evenly. Unaffected by climbing motion. For this reason, as compared with the case where the revolving body is also driven hydraulically, the loss in the control knob or the like can be reduced and the energy efficiency is good.
[0003] 特許文献 1 :特開 2001— 11897号公報  [0003] Patent Document 1: Japanese Patent Laid-Open No. 2001-11897
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、電動旋回ショベルにお!/、ては、旋回レバーからのレバー信号に応じた速 度指令値と実速度とを比較し、その偏差力 求まるトルク指令値に応じたトルク出力 で加減速を行うことが多い。 [0004] By the way, for electric swing excavators, the speed command value corresponding to the lever signal from the swing lever is compared with the actual speed, and the torque output corresponding to the torque command value obtained by the deviation force is obtained. Acceleration / deceleration is often performed.
従って、旋回レバーの機敏な操作等により、レバー信号の立ち上りや立ち下がりが 急な場合には、速度指令値が略リニアに瞬時に変化して実速度との偏差が大きくな るため、大きなトルクが急に出力されることになる。このため、トルクの出力が急なこと で、加減速も急に行われてしまい、オペレータは強い衝撃を受けやすいという問題が 生じる。  Therefore, when the rise or fall of the lever signal is abrupt due to agile operation of the swivel lever, etc., the speed command value will change almost linearly and the deviation from the actual speed will increase, resulting in a large torque. Will be output suddenly. For this reason, since the torque output is steep, acceleration / deceleration is also performed suddenly, resulting in a problem that the operator is easily subjected to a strong impact.
[0005] 本発明の目的は、旋回レバーを機敏に操作した場合でも、旋回体の加減速時の衝 撃を軽減できる旋回制御装置および建設機械を提供することにある。 課題を解決するための手段 [0005] An object of the present invention is to provide a turning control device and a construction machine that can reduce an impact at the time of acceleration / deceleration of a turning body even when the turning lever is operated quickly. Means for solving the problem
[0006] 本発明の旋回制御装置は、電動モータで旋回する旋回体を制御するための旋回 制御装置であって、旋回レバーのレバー信号に基づいて、前記電動モータのトルク 出力の立ち上りおよび立ち下がりに、所定の勾配を付与することを特徴とする。  [0006] The turning control device of the present invention is a turning control device for controlling a turning body that is turned by an electric motor, and the rising and falling of the torque output of the electric motor based on a lever signal of the turning lever. Is provided with a predetermined gradient.
[0007] このような本発明によれば、旋回レバーの機敏な操作により、レバー信号の立ち上 りや立ち下がりが急になっても、これに基づいて出力されるトルク出力の立ち上りや 立ち下がりに勾配を付与して幾分なだらかにするため、衝撃を伴うような加減速が抑 制される。  [0007] According to the present invention as described above, even if the rise or fall of the lever signal becomes abrupt due to agile operation of the turning lever, the torque output that is output based on this rises or falls. Acceleration / deceleration that accompanies an impact is suppressed in order to make the gradient somewhat gentle.
[0008] 本発明の旋回制御装置において、前記旋回体の加速時、減速停止時、および中 間減速時毎に、異なる大きさの勾配を付与することが望ましい。  [0008] In the turning control device of the present invention, it is desirable to provide gradients having different magnitudes at each time of acceleration, deceleration stop, and intermediate deceleration of the revolving structure.
ここで、加速時とは、旋回レバーをニュートラル位置力 所定の角度まで傾倒させる 時のことであり、減速停止時とは、所定の傾倒角度で操作されている旋回レバーを- ユートラル位置に戻す時のことであり、中間減速時とは、所定の傾倒角度で操作され て 、る旋回レバーを-ユートラル位置手前の任意の位置まで戻す時のことを 、う。 なお、この他、所定の傾倒角度で操作されている旋回レバーをさらに傾倒させる中 間加速時においても、必要に応じて異なる勾配を付与してもよい。  Here, acceleration means when the swing lever is tilted to the neutral position force to a predetermined angle, and deceleration stop means when the swing lever operated at the predetermined tilt angle is returned to the neutral position. During intermediate deceleration, this means when the swiveling lever is operated at a predetermined tilt angle and returned to an arbitrary position before the neutral position. In addition to this, a different gradient may be applied as necessary even during intermediate acceleration in which the turning lever operated at a predetermined tilt angle is further tilted.
[0009] このような本発明によれば、加速時、減速停止時、および中間減速時といったように 、個々の操作に応じて異なる勾配を付与するので、各操作で衝撃の大きさが異なつ たり、各操作で特有の不都合が生じたりする場合でも、それらが確実に解消されるよ うになる。  [0009] According to the present invention as described above, since different gradients are applied according to individual operations, such as during acceleration, deceleration stop, and intermediate deceleration, the magnitude of impact varies with each operation. Even if there is a peculiar inconvenience in each operation, it will be surely resolved.
[0010] 本発明の旋回制御装置において、前記旋回体の加速時、減速停止時、および中 間減速時毎に、異なる大きさの最大加速度を持つことが望ましい。  [0010] In the turning control device of the present invention, it is desirable that the turning body has a maximum acceleration of a different magnitude for each acceleration, deceleration stop, and intermediate deceleration.
[0011] このような本発明によれば、最大加速度 (増速する場合の加速度と減速する場合の 負の加速度とを含む)の設定自体を加速時、減速停止時、および中間減速時毎の異 ならせるので、例えば、減速停止時の最大加速度をより大きく設定すれば、出力され る最大トルクも大きくなつて停止時の応答性が向上し、中間減速時の最大加速度をよ り小さく設定すれば、滑らかに減速するようになる。  [0011] According to the present invention as described above, the setting of the maximum acceleration (including the acceleration at the time of acceleration and the negative acceleration at the time of deceleration) is set for each acceleration, deceleration stop, and intermediate deceleration. For example, if the maximum acceleration during deceleration stop is set larger, the output maximum torque will also increase, improving the response during stoppage, and setting the maximum acceleration during intermediate deceleration smaller. If you do, it will slow down smoothly.
[0012] 本発明の旋回制御装置において、前記加速時のトルク出力の立ち上りの勾配は、 当該トルク出力がゼロから最大値に達するまでの立上時間が 0. 15秒以上となるよう に付与され、前記減速停止時のトルク出力の立ち下がりの勾配は、当該トルク出力が ゼロ力 最大値に達するまでの立下時間が 0. 1秒以上となるように付与され、前記中 間減速時のトルク出力の立ち下がりの勾配は、当該トルク出力がゼロ力も最大値に達 するまでの立下時間が 0. 15秒以上となるように付与されることが望ましい。 [0012] In the turning control device of the present invention, the rising gradient of the torque output at the time of acceleration is: The rise time until the torque output reaches the maximum value from zero is given to be 0.15 seconds or more, and the gradient of the torque output falling at the time of deceleration stop is the maximum value of the zero force The slope of the fall of the torque output during intermediate deceleration is such that the fall time until the zero force reaches the maximum value is reached. It is desirable that the time should be 0.15 seconds or longer.
ここで、減速停止時および中間減速時のトルク出力の立ち下がりとは、制動(ブレー キ)トルクが加わる場合のことである。  Here, the fall of the torque output at the time of deceleration stop and at the time of intermediate deceleration is when braking (brake) torque is applied.
[0013] このような本発明によれば、立上時間が 0. 15秒以上となるように加速時の勾配を 付与するので、加速時に生じる衝撃が確実に抑制される。 0. 15秒よりも短い立上時 間では、加速時に生じる衝撃が確実に抑えられない場合が生じる。また、立下時間 が 0. 1秒以上となるように減速停止時の勾配を付与することにより、減速停止操作を 行った際に生じる衝撃が確実に抑制される。さらに、立下時間が 0. 15秒以上となる ように中間減速時の勾配を付与することで、中間減速時に生じる特有の衝撃も確実 に抑制される。 [0013] According to the present invention as described above, since the gradient at the time of acceleration is applied so that the rise time is 0.15 seconds or more, the impact generated at the time of acceleration is reliably suppressed. 0.1. With a rise time shorter than 15 seconds, the shock that occurs during acceleration may not be reliably suppressed. In addition, by providing a gradient at the time of deceleration stop so that the fall time is 0.1 second or more, the impact generated when the deceleration stop operation is performed is surely suppressed. In addition, by adding a gradient during intermediate deceleration so that the fall time is 0.15 seconds or more, the unique impact that occurs during intermediate deceleration is reliably suppressed.
[0014] 本発明の建設機械は、電動モータで旋回する旋回体と、この旋回体を制御するた めの前述した本発明の旋回制御装置とを備えていることを特徴とする。  [0014] A construction machine according to the present invention includes a revolving structure that revolves with an electric motor, and the above-described revolving control device according to the present invention for controlling the revolving structure.
[0015] このような本発明によれば、前述したように、旋回レバーを機敏に操作した場合でも 、旋回体の加減速時の衝撃を軽減できる。  [0015] According to the present invention, as described above, even when the turning lever is operated quickly, the impact at the time of acceleration / deceleration of the turning body can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の第 1実施形態に係る建設機械を示す平面図。  FIG. 1 is a plan view showing a construction machine according to a first embodiment of the present invention.
[図 2]前記第 1実施形態の建設機械の全体構成を示す図。  FIG. 2 is a diagram showing an overall configuration of the construction machine according to the first embodiment.
[図 3]従来の旋回制御方法を説明するための図。  FIG. 3 is a diagram for explaining a conventional turning control method.
[図 4]前記第 1実施形態の旋回制御方法を説明するための図。  FIG. 4 is a diagram for explaining a turning control method of the first embodiment.
[図 5]前記第 1実施形態の建設機械に搭載された旋回制御装置を説明するための図  FIG. 5 is a diagram for explaining a turning control device mounted on the construction machine of the first embodiment.
[図 6]前記第 1実施形態の旋回制御方法をより具体的に説明するための図。 FIG. 6 is a diagram for more specifically explaining the turning control method of the first embodiment.
[図 7]前記第 1実施形態の別の旋回制御方法を具体的に説明するための図。  FIG. 7 is a diagram for specifically explaining another turning control method of the first embodiment.
[図 8]遅れ時間とジャーク値との関係を示す図。 [図 9]前記第 1実施形態での速度指令値の算出の仕方を説明するための図。 FIG. 8 is a diagram showing the relationship between delay time and jerk value. FIG. 9 is a diagram for explaining how to calculate a speed command value in the first embodiment.
[図 10]前記速度指令値の算出の仕方を説明するためのフローチャート。  FIG. 10 is a flowchart for explaining how to calculate the speed command value.
[図 11]本発明の第 2実施形態に係る旋回制御装置を説明するための図。  FIG. 11 is a diagram for explaining a turning control device according to a second embodiment of the present invention.
[図 12]前記第 2実施形態の旋回制御方法を説明するための図。  FIG. 12 is a view for explaining the turning control method of the second embodiment.
符号の説明  Explanation of symbols
[0017] 1…電動旋回ショベル (建設機械)、 4…旋回体、 5…電動モータ、 10· ··旋回レバー 、 50…旋回制御装置、 Tal…立上時間、 Tbl, Tel…立下時間、最大旋回加速度… Lja_max, Go— max, O max。  [0017] 1 ... Electric slewing excavator (construction machine), 4 ... slewing body, 5 ... electric motor, 10 ... slewing lever, 50 ... slewing control device, Tal ... rise time, Tbl, Tel ... fall time, Maximum turning acceleration ... Lja_max, Go— max, O max.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 〔第 1実施形態〕 [First Embodiment]
〔1— 1〕全体構成  [1-1] Overall configuration
以下、本発明の第 1実施形態を図面に基づいて説明する。  Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
図 1は、本実施形態に係る電動旋回ショベル (建設機械) 1を示す平面図、図 2は、 電動旋回ショベル 1の全体構成を示す図である。  FIG. 1 is a plan view showing an electric swing excavator (construction machine) 1 according to the present embodiment, and FIG. 2 is a diagram showing an overall configuration of the electric swing shovel 1.
[0019] 図 1において、電動旋回ショベル 1は、下部走行体 2を構成するトラックフレーム上 にスイングサークル 3を介して設置された旋回体 4を備え、この旋回体 4がスイングサ 一クル 3と嚙合する電動モータ 5によって旋回駆動される。電動モータ 5の電力源は、 旋回体 4に搭載の発電機 15 (図 2参照)であり、この発電機がエンジン 14 (図 2参照) によって駆動される。 In FIG. 1, an electric swing excavator 1 includes a swing body 4 installed on a track frame constituting a lower traveling body 2 via a swing circle 3, and the swing body 4 meshes with the swing cycle 3. The electric motor 5 is turned and driven. The electric power source of the electric motor 5 is a generator 15 (see FIG. 2) mounted on the rotating body 4, and this generator is driven by the engine 14 (see FIG. 2).
[0020] 旋回体 4には、図 2にも示すように、油圧シリンダ 6A, 7A, 8Aによって動作される ブーム 6、アーム 7、およびパケット 8が設けられており、これらによって作業機 9が構 成されている。各油圧シリンダ 6A, 7A, 8Aの油圧源は、エンジン 14で駆動される油 圧ポンプ 12である。従って、電動旋回ショベル 1は、油圧駆動の作業機 9と電気駆動 の旋回体 4とを備えたハイブリット建設機械である。  [0020] As shown in Fig. 2, the swing body 4 is provided with a boom 6, an arm 7, and a packet 8 that are operated by hydraulic cylinders 6A, 7A, and 8A. It is made. The hydraulic pressure source of each hydraulic cylinder 6A, 7A, 8A is a hydraulic pump 12 driven by an engine 14. Accordingly, the electric swivel excavator 1 is a hybrid construction machine including the hydraulically driven work machine 9 and the electrically driven swivel 4.
[0021] また、図 2において、電動旋回ショベル 1は、前述した構成の他、旋回レバー 10、コ ントローラ 11、および油圧制御バルブ 13を備えて 、る。  In addition, in FIG. 2, the electric swing excavator 1 includes a swing lever 10, a controller 11, and a hydraulic control valve 13 in addition to the above-described configuration.
旋回レバー 10 (通常はアーム 7操作用の作業機レバーを兼用)からは、傾倒角度に 応じたレバー信号がコントローラ 11に出力される。コントローラ 11は、レバー信号の 値に応じて、油圧ポンプ 12と前記各油圧シリンダ 6A, 7A, 8Aを駆動する油圧制御 バルブ 13とに指令を行うことで、作業機 9の駆動を制御する。また、コントローラ 11は 、必要に応じて、エンジン回転数を調節ための指令をエンジン 14に、発電量を調節 するための指令を発電機 15に対し行う。 A lever signal corresponding to the tilt angle is output to the controller 11 from the swivel lever 10 (usually also serving as a work implement lever for arm 7 operation). Controller 11 is the lever signal The drive of the work machine 9 is controlled by giving a command to the hydraulic pump 12 and the hydraulic control valve 13 that drives the hydraulic cylinders 6A, 7A, and 8A according to the values. In addition, the controller 11 gives a command for adjusting the engine speed to the engine 14 and a command for adjusting the power generation amount to the generator 15 as necessary.
[0022] さらに、コントローラ 11は、電動モータ 5のトルク出力を制御することで、旋回体 4の 旋回動作を制御する。コントローラ 11は、このために旋回制御装置 50を備えており、 旋回制御装置 50は、レバー信号値と図示しない回転速度センサで検出された電動 モータ 5の実速度 Vact (図 5参照)とに応じて、電動モータ 5に対するトルク指令値 Tta rを生成する。トルク指令値 Ttarは図示しないインバータに出力され、インバータは、 このトルク指令値 Ttarを電流値および電圧値に変換し、電動モータ 5を目標速度で 駆動するように制御する。  Furthermore, the controller 11 controls the turning operation of the swing body 4 by controlling the torque output of the electric motor 5. For this purpose, the controller 11 includes a turning control device 50. The turning control device 50 responds to the lever signal value and the actual speed Vact (see FIG. 5) of the electric motor 5 detected by a rotation speed sensor (not shown). Thus, a torque command value Ttar for the electric motor 5 is generated. The torque command value Ttar is output to an inverter (not shown), and the inverter converts the torque command value Ttar into a current value and a voltage value, and controls the electric motor 5 to be driven at a target speed.
[0023] 〔1 2〕旋回制御装置 50による制御構造  [0023] [1 2] Control structure by turning control device 50
次に、旋回制御装置 50による制御構造について、その制御方法を示しながら説明 する。  Next, the control structure of the turning control device 50 will be described while showing its control method.
従来においては、例えば、旋回レバー 10を-ユートラル位置力も所定角度まで一 気に倒し込んだ場合のように、矩形波状に略直角に立ち上がったレバー信号が入力 されると、速度指令値としては「0 (ゼロ)」からリニアに大きくなるように生成されて!、た 。この場合の旋回体の旋回状態を図 3に示す。  Conventionally, for example, when a lever signal that rises at a substantially right angle in the form of a rectangular wave is input, as in the case where the swivel lever 10 is tilted down to a predetermined angle, the position command value is `` It was generated to increase linearly from “0”! Fig. 3 shows the turning state of the turning body in this case.
[0024] 図 3において、立ち上がりの急なレバー信号が入力され (tl)、速度指令値がリニア に大きくなると、速度指令値が生成されるのと同時に所定の旋回加速度 G1がー気に 生じ、この旋回加速度 G1で旋回体 4が旋回する。そして、速度指令値は、レバー信 号に応じた速度値 VIに達する直前においてゲイン特性によって僅かに鈍り、その後 に速度値 VIの値で略一定となる。このため、旋回加速度も鈍りながら立ち下がり、速 度指令値が一定となることで旋回加速度は「0」となる。  [0024] In Fig. 3, when a lever signal with a sudden rise is input (tl) and the speed command value increases linearly, a predetermined turning acceleration G1 is generated at the same time as the speed command value is generated. The turning body 4 turns with this turning acceleration G1. The speed command value is slightly dull due to the gain characteristics immediately before reaching the speed value VI corresponding to the lever signal, and thereafter becomes substantially constant at the speed value VI. For this reason, the turning acceleration falls to zero, and the turning acceleration becomes “0” when the speed command value becomes constant.
[0025] この後、一定の速度指令値により定速で旋回している状態から、旋回レバー 10を- ユートラル位置まで一気に戻した場合には、レバー信号の立ち下がりも急となり(t2)、 速度指令値はリニアに小さくなるように生成される。  [0025] After that, when the turning lever 10 is returned to the neutral position from a state where it is turning at a constant speed with a constant speed command value, the lever signal also falls steeply (t2) The command value is generated so as to decrease linearly.
[0026] この場合には、速度指令値がリニアに小さくなると同時に減速方向の所定の旋回加 速度 G2がー気に生じ、先ほどとは逆に、この所定の旋回加速度 G2で旋回体 4にブレ ーキがかかる。そして、速度指令値は、レバー信号に応じて「0」に至る直前において ゲイン特性によって僅かに鈍り、その後「0」となる。このため、旋回加速度も鈍りなが ら立ち上がり、やがて「0」となる。 [0026] In this case, the speed command value decreases linearly and at the same time a predetermined turning acceleration in the deceleration direction is applied. The speed G2 is generated suddenly, and, conversely, the swivel body 4 is braked at this predetermined turning acceleration G2. The speed command value is slightly dull due to the gain characteristic immediately before reaching “0” according to the lever signal, and then becomes “0”. For this reason, it rises with a slow turning acceleration, and eventually reaches “0”.
[0027] ところで、このような従来の制御では、旋回レバー 10の急な操作で加速および減速 を行うと、旋回加速度が一気に生じるため、旋回加速度を微分して求められるジャー ク値のピーク g[l〜J4、その中でも特に旋回加速度の立ち上がりのピーク 1と旋回 加速度の立ち下がりのピーク 3とが大きくなる(tl, t2) Gこれは、旋回体 4の加速開 始時および減速開始時に大きな衝撃が生じることを意味し、好ましくない。つまり、他 の区間に示されるジャーク値のように、そのピークが小さいと衝撃も小さく抑えることが 可能である。 [0027] By the way, in such conventional control, when acceleration and deceleration are performed by sudden operation of the turning lever 10, turning acceleration is generated at a stretch. Therefore, the peak g [ l ~ J4, especially the peak 1 of the turning acceleration rise and the peak 3 of the turning acceleration fall (tl, t2) G This is a big shock at the start of acceleration and deceleration of the turning body 4 Is not preferable. In other words, if the peak is small like the jerk value shown in other sections, the impact can be reduced.
[0028] そこで、本実施形態の旋回制御装置 50では、図 4に示すように、ジャーク値のピー ク g[ 〜j を小さくするため、トルク出力の勾配を規定することで旋回加速度の 立ち上がりおよび立ち下がりに意図的に勾配を付与し、加速開始時および減速開始 時の衝撃を抑制している。具体的には、このような旋回加速度で旋回体 4を回転させ るための目標旋回加速度を演算し、この目標加速度に従う速度指令値を生成するこ とで、トルク指令値 Ttarの指令を介してトルク出力の勾配を規定している。これにより 、比例演算部分および微分演算部分により特に旋回加速度の立ち上がりおよび立ち 下がり時にトルク指令値が大きくなりがちな PID (Proportional Integral Differential:比 例積分微分)制御を実施する場合に比べ、より加速開始時および減速開始時の衝撃 を抑制することができる。  Therefore, in the turning control device 50 of the present embodiment, as shown in FIG. 4, in order to reduce the peak g [~ j of the jerk value, by defining the torque output gradient, A gradient is intentionally added to the falling edge to suppress the impact at the start of acceleration and deceleration. Specifically, the target turning acceleration for rotating the turning body 4 with such turning acceleration is calculated, and the speed command value according to the target acceleration is generated, so that the torque command value Ttar can be used. Specifies the gradient of torque output. As a result, acceleration is started more than when PID (Proportional Integral Differential) control, in which the torque command value tends to be large, especially when the turning acceleration rises and falls, due to the proportional calculation part and the differential calculation part. The impact at the time of starting and deceleration can be suppressed.
[0029] 旋回制御装置 50は、図 5に示すように、速度指令値生成手段 51およびトルク指令 値生成手段 52を備えて 、る。  As shown in FIG. 5, the turning control device 50 includes speed command value generation means 51 and torque command value generation means 52.
速度指令値生成手段 51は、目標とする旋回加速度で旋回体 4を旋回させるよう、レ バー信号値とフィードバックされた前回の速度指令値 Vo(t-l)とに基づいて、電動モ ータ 5に対する速度指令値 Vo(t)を生成する。そして、このために速度指令値生成手 段 51は、レバー指令速度値生成部 511、領域判断部 512、目標加速度演算部 513 、目標加速度記憶部 514、速度指令値生成部 515、および速度指令値記憶部 516 を備えている。 Based on the lever signal value and the previous speed command value Vo (tl) fed back, the speed command value generating means 51 turns the swinging body 4 at the target turning acceleration on the electric motor 5. A speed command value Vo (t) is generated. For this purpose, the speed command value generation unit 51 includes a lever command speed value generation unit 511, a region determination unit 512, a target acceleration calculation unit 513, a target acceleration storage unit 514, a speed command value generation unit 515, and a speed command value. Storage unit 516 It has.
[0030] レバー指令速度値生成部 511は、レバー信号値を速度に変換してレバー指令速 度値 Vi(t)を生成し、領域判断部 512に出力する。レバー指令速度値 Vi(t)は、速度指 令値 Vo(t)のベースとなる値であり、基本的に、このレバー指令速度値 Vi(t)にフィルタ 処理を行ったり変化量を制限したりした値が速度指令値 Vo(t)となる。なお、本実施形 態にお 、ては、レバー信号値とレバー指令速度値 Vi(t)とは比例関係にある。  The lever command speed value generation unit 511 generates a lever command speed value Vi (t) by converting the lever signal value into a speed, and outputs it to the region determination unit 512. The lever command speed value Vi (t) is the base value of the speed command value Vo (t) .Basically, the lever command speed value Vi (t) is filtered and the amount of change is limited. This value becomes the speed command value Vo (t). In this embodiment, the lever signal value and the lever command speed value Vi (t) are in a proportional relationship.
[0031] 領域判断部 512は、前回の速度指令値 Vo(t-l)とレバー指令速度値 Vi(t)との関係 、および前回の目標旋回加速度 G(t-l)と所定の最大旋回加速度 Gajnax, Gbjnaxと の関係に基づいて、旋回体 4の旋回状態が、加速時、減速停止時、中間減速時のど の領域に該当するかを判断する。ここで、加速時とは、旋回レバー 10を-ユートラル 位置力 所定の角度まで傾倒させる時をいう。また、減速停止時とは、所定の傾倒角 度で操作されている旋回レバー 10を-ユートラル位置に戻す時のことであり、中間減 速時とは、所定の傾倒角度で操作されている旋回レバー 10をニュートラル位置手前 の任意の位置まで戻す時のことを 、う。  [0031] The area determination unit 512 determines the relationship between the previous speed command value Vo (tl) and the lever command speed value Vi (t), the previous target turning acceleration G (tl), and a predetermined maximum turning acceleration Gajnax, Gbjnax. Based on the relationship between and, it is determined whether the turning state of the revolving structure 4 corresponds to the area during acceleration, deceleration stop, or intermediate deceleration. Here, “acceleration” refers to the time when the turning lever 10 is tilted to a predetermined angle. The deceleration stop is when the swiveling lever 10 operated at a predetermined tilt angle is returned to the neutral position, and the intermediate deceleration is when the swing lever is operated at a predetermined tilt angle. This is when the lever 10 is returned to an arbitrary position before the neutral position.
[0032] 目標加速度演算部 513は、領域判断部 512の判断結果に応じ目標旋回加速度 G( t)の値を演算する。目標加速度演算部 513は、図 6に示すように、加速時においては 、トルク出力が「0」から最大値である最大トルク出力 Tajnaxに達するまでの立上時間 Talが 0. 15秒以上となるように目標旋回加速度 G(t)を演算している。これにより、トル ク出力の立ち上りに勾配が付与されている(a l)。 0. 15秒よりも短い立上時間では 、加速時に生じる衝撃が確実に抑えられな 、可能性がある。  A target acceleration calculation unit 513 calculates a value of the target turning acceleration G (t) according to the determination result of the region determination unit 512. As shown in FIG. 6, the target acceleration calculation unit 513 has a rise time Tal of 0.15 seconds or more until the torque output reaches the maximum torque output Tajnax from “0” during acceleration. Thus, the target turning acceleration G (t) is calculated. This gives a gradient to the rise of the torque output (a l). 0.1 Rise times shorter than 15 seconds may not be able to reliably suppress the impact that occurs during acceleration.
[0033] また、減速停止時においては、目標加速度演算部 513は、トルク出力が「0」から最 大値である最大トルク出力 Tbjnaxに達するまでの立下時間 Tblが 0. 1秒以上となる ように目標旋回加速度 G(t)を演算している。これにより、トルク出力の立ち下がりに勾 配が付与されている( α 2)。 0. 1秒よりも短いと、衝撃が大きぐオペレータに不快感 を与える。  [0033] In addition, at the time of deceleration stop, the target acceleration calculation unit 513 causes the fall time Tbl until the torque output reaches the maximum torque output Tbjnax, which is the maximum value, from "0" is 0.1 seconds or more. Thus, the target turning acceleration G (t) is calculated. This gives a gradient to the falling edge of the torque output (α 2). 0. If it is shorter than 1 second, it will be uncomfortable for the operator with a large impact.
[0034] さらに、図 7に示すように、中間減速時においては、目標加速度演算部 513は、トル ク出力がゼロ力も最大値である最大トルク出力 Τ maxに達するまでの立下時間 Tel が 0. 15秒以上となるように目標旋回加速度 G(t)を演算している。これにより、トルク 出力の立ち下がりに勾配が付与されている(a 3)。 0. 15秒よりも短いと、中間減速 時に生じる特有の衝撃を十分に抑制できない可能性がある。 Furthermore, as shown in FIG. 7, at the time of intermediate deceleration, the target acceleration calculation unit 513 has a falling time Tel of 0 until the torque output reaches the maximum torque output Τmax where the zero force is also the maximum value. The target turning acceleration G (t) is calculated to be 15 seconds or longer. As a result, torque A slope is given to the falling edge of the output (a 3). 0. If it is shorter than 15 seconds, there is a possibility that the specific impact that occurs during intermediate deceleration cannot be sufficiently suppressed.
[0035] 図 8には、立上時間 Talや立下時間 Tbl, Telといった遅れ時間とジャーク値との関 係が示されている。遅れ時間が 0. 1秒よりも小さいと、ジャーク値が急激に大きくなり 、衝撃が大きくなることがわかる。従って、最も短い立下時間 Tblを有する減速停止 時においても、 0. 1秒以上の勾配を付与することが望ましい。また、停止した状態の 旋回体 4を加速させる加速時では、より大きな衝撃が予測されるため、 0. 15秒以上 の立上時間 Talを有することが望ましい。さらに、旋回レバー 10の操作量が少ない中 間減速時では、減速停止時に比べ、滑らかな減速が要求されるため、 0. 15秒以上 の立下時間 Telを有することが望ましい。  [0035] FIG. 8 shows the relationship between the delay time such as the rise time Tal and the fall time Tbl, Tel and the jerk value. It can be seen that when the delay time is less than 0.1 second, the jerk value increases rapidly and the impact increases. Therefore, it is desirable to give a slope of 0.1 seconds or more even during deceleration stop with the shortest fall time Tbl. In addition, when accelerating the rotating body 4 in a stopped state, a larger impact is predicted, so it is desirable to have a rise time Tal of 0.15 seconds or more. Furthermore, since the smooth deceleration is required at the time of intermediate deceleration with a small amount of operation of the turning lever 10 compared to when the deceleration is stopped, it is desirable to have a falling time Tel of 0.15 seconds or more.
[0036] また、本実施形態では、図 6、図 7に示すように、加速時、減速停止時、および中間 減速時毎に、異なる大きさの最大旋回加速度 Gajnax, Gbjnax (図 6) , Gcjnax (図 7 )が設定されている。つまり、これらの最大旋回加速度 Gajnax, Gbjnax, Gcjnaxの中 では、図 6に示す減速停止時の最大旋回加速度 Gbjnaxが絶対値として最も大きく設 定されており、これによつて減速停止時に出力される最大トルク出力 Tbjnaxをより大 きくでき、停止時の応答性を向上させることができる。  In the present embodiment, as shown in FIGS. 6 and 7, the maximum turning accelerations Gajnax, Gbjnax (FIG. 6), Gcjnax having different magnitudes at the time of acceleration, deceleration stop, and intermediate deceleration are shown. (Fig. 7) is set. In other words, among these maximum turning accelerations Gajnax, Gbjnax, Gcjnax, the maximum turning acceleration Gbjnax at the time of deceleration stop shown in Fig. 6 is set to the largest value as an absolute value, and this is output at the time of deceleration stop. The maximum torque output Tbjnax can be increased and the responsiveness when stopping can be improved.
一方、図 7に示す中間減速時の最大旋回加速度 Gcjnaxは、図 6での減速停止時 の最大旋回加速度 Gbjnaxとは異なる値に設定されており、絶対値として最も小さく 設定されている。従って、中間減速時に出力される最大トルク出力 Tcjnaxをより小さ くでき、滑らかに減速させることが可能である。  On the other hand, the maximum turning acceleration Gcjnax during intermediate deceleration shown in FIG. 7 is set to a value different from the maximum turning acceleration Gbjnax during deceleration stop in FIG. 6, and is set to the smallest absolute value. Therefore, the maximum torque output Tcjnax output during intermediate deceleration can be made smaller and the vehicle can be smoothly decelerated.
[0037] 図 5に戻り、目標加速度記憶部 514は、目標加速度演算部 513で演算された目標 旋回加速度 G(t)を記憶する。ここで記憶された値は、次回の演算時において、前回 の目標旋回加速度 G(t-1)として領域判断部 512および目標加速度演算部 513で用 いられる。  Returning to FIG. 5, the target acceleration storage unit 514 stores the target turning acceleration G (t) calculated by the target acceleration calculation unit 513. The value stored here is used by the area determination unit 512 and the target acceleration calculation unit 513 as the previous target turning acceleration G (t-1) in the next calculation.
[0038] 速度指令値生成部 515は、フィードバックされた前回の速度指令値 Vo(t-l)からの 変化量が目標加速度演算部 513で演算された目標旋回加速度 G(t)の値となるように 、速度指令値 Vo(t)を生成する。つまり、速度指令値生成部 515は、目標旋回加速度 G(t)と計算刻み幅の時間とを乗算して得られた値を前回の速度指令値 Vo(t-l)にカロ 算して、速度指令値 Vo(t)を生成する。 [0038] The speed command value generation unit 515 is configured so that the amount of change from the previous speed command value Vo (tl) fed back becomes the value of the target turning acceleration G (t) calculated by the target acceleration calculation unit 513. The speed command value Vo (t) is generated. In other words, the speed command value generation unit 515 calculates the value obtained by multiplying the target turning acceleration G (t) by the calculation step size into the previous speed command value Vo (tl). The speed command value Vo (t) is generated by calculation.
[0039] 速度指令値記憶部 516は、速度指令値生成手段 51で生成された速度指令値 Vo(t )を記憶する。ここで記憶された値は、次回の演算時において、前回の速度指令値 V o(t-l)として領域判断部 512および速度指令値生成部 515で用いられる。  [0039] The speed command value storage unit 516 stores the speed command value Vo (t) generated by the speed command value generation means 51. The value stored here is used by the area determination unit 512 and the speed command value generation unit 515 as the previous speed command value Vo (t-l) in the next calculation.
[0040] トルク指令値生成手段 52は、速度指令値生成手段 51の速度指令値生成部 515で 生成された現在の速度指令値 Vo(t)とフィードバックされた実速度 Vactとの偏差に応 じてトルク指令値 Ttarを生成する。従って、速度指令値 Vo(t)に対し実速度 Vactが上 がらない場合には、トルク出力を大きくして目標速度に近づけるように制御する。なお 、このような制御は、一般的な P (Proportional :比例)制御による速度制御である。  [0040] The torque command value generating means 52 responds to the deviation between the current speed command value Vo (t) generated by the speed command value generating unit 515 of the speed command value generating means 51 and the actual speed Vact fed back. To generate a torque command value Ttar. Therefore, when the actual speed Vact does not increase with respect to the speed command value Vo (t), control is performed so that the torque output is increased to approach the target speed. Such control is speed control by general P (Proportional) control.
[0041] [1 - 3]旋回制御装置 50による制御作用  [0041] [1-3] Control action by turning control device 50
次に、旋回制御装置 50による制御作用、特に速度指令値生成手段 51が、入力さ れたレバー信号に基づき速度指令値 Vo(t)を如何にして演算し出力するかについて 、図 9、図 10、および以下の数式に基づいて説明する。なお、図 9、図 10においては 、加速時と減速停止時について代表して説明する。中間減速に関しては、基本的に 減速停止時と同様にして速度指令値が演算されるのであり、減速停止時を説明する ことで容易に理解できるため、ここでの説明を省略する。また、図 9および以下に説明 する数式において、「Ga」、「Gb」とは、図 6、図 7での最大旋回加速度 Gajnax, Gb_m axのことである。  Next, the control action by the turning control device 50, particularly how the speed command value generating means 51 calculates and outputs the speed command value Vo (t) based on the input lever signal is shown in FIGS. 10 and the following formula. In FIGS. 9 and 10, the acceleration and deceleration stop will be described as a representative. For intermediate deceleration, the speed command value is basically calculated in the same way as when decelerating and stopping. Since it can be easily understood by explaining when decelerating and stopping, explanation here is omitted. In FIG. 9 and the mathematical formulas described below, “Ga” and “Gb” are the maximum turning accelerations Gajnax and Gb_max in FIGS.
[0042] 図 9において、旋回体 4を旋回させるためにオペレタータが旋回レバー 10を倒しこ むと、図 10に示すように、先ず、旋回制御装置 50が現在のレバー信号値を読み込 んだ後、速度指令値生成手段 51のレバー指令速度値生成部 511は、レバー信号値 を速度に変換してレバー指令速度値 Vi(t)を生成する(ST1)。  In FIG. 9, when the operator depresses the turning lever 10 to turn the turning body 4, first, as shown in FIG. 10, the turning control device 50 reads the current lever signal value. The lever command speed value generation unit 511 of the speed command value generation means 51 converts the lever signal value into a speed to generate a lever command speed value Vi (t) (ST1).
領域判断部 512は、レバー指令速度値 Vi(t)を取り込むと、複数の判定条件に基づ いて領域判断を行う。つまり、領域判断部 512は、先ず、現在のレバー指令速度値 V i(t)が前回の速度指令値 Vo(t-l)より大きいか否かを判定する(ST2)。これにより、旋 回体 4が加速領域と減速領域のどちらで旋回しているのかが判定される。  When the region determination unit 512 takes in the lever command speed value Vi (t), the region determination unit 512 performs region determination based on a plurality of determination conditions. That is, the area determination unit 512 first determines whether or not the current lever command speed value V i (t) is greater than the previous speed command value Vo (t−l) (ST2). Thereby, it is determined whether the rotating body 4 is turning in the acceleration region or the deceleration region.
[0043] 現在のレバー指令速度値 Vi(t)が前回の速度指令値 Vo(t-l)より大き 、と判定される と、領域判断部 512は、続けて、現在のレバー指令速度値 Vi(t)から前回の速度指令 値 Vo(t- 1)を減じた値が所定値 Va2より大き ヽか否か (ST3)、前回の目標旋回加速 度 G(t-l)が最大旋回加速度 Gaよりも小さ 、か否か(ST4)を判定する。 [0043] When it is determined that the current lever command speed value Vi (t) is larger than the previous speed command value Vo (tl), the area determination unit 512 continues to the current lever command speed value Vi (t ) To the previous speed command Whether the value obtained by subtracting the value Vo (t-1) is larger than the predetermined value Va2 (ST3), whether the previous target turning acceleration G (tl) is smaller than the maximum turning acceleration Ga (ST4) Determine.
[0044] すなわち、図 10において、加速領域にあっては、現在のレバー指令速度値 Vi(t)か ら前回の速度指令値、すなわち一つ前段階の計算刻み幅 (st印)での速度指令値 V o(t-l)を引き算した値が、所定値 Va2よりも大きぐかつ前回の目標旋回加速度 G(t-1 )が最大旋回加速度 Gaよりも小さい場合には、領域 laであると判断する。レバー指令 速度値 Vi(t)と速度指令値 Vo(t-l)との差が所定値 Va2よりも大きぐ目標旋回加速度 G(t-l)が最大旋回加速度 Ga以上であれば、領域 Ilaと判断する。レバー指令速度値 Vi(t)と速度指令値 Vo(t-l)との差が所定値 Va2以下であれば、領域 Iliaと判断する。  That is, in FIG. 10, in the acceleration region, from the current lever command speed value Vi (t) to the previous speed command value, that is, the speed at the previous calculation step size (st mark). When the value obtained by subtracting the command value V o (tl) is larger than the predetermined value Va2 and the previous target turning acceleration G (t-1) is smaller than the maximum turning acceleration Ga, it is determined that the region is la. To do. If the target turning acceleration G (t-l) where the difference between the lever command speed value Vi (t) and the speed command value Vo (t-l) is greater than the predetermined value Va2 is equal to or greater than the maximum turning acceleration Ga, it is determined as the region Ila. If the difference between the lever command speed value Vi (t) and the speed command value Vo (t-l) is less than or equal to the predetermined value Va2, it is determined that the region is Ilia.
[0045] 次いで、図 9に戻り、目標加速度演算部 513は、判定領域ごとに式(1)〜式(3)か ら目標旋回加速度 G(t)を算出する(ST5〜ST7)。この際、ジャーク値に相当する Jal 、Ja2の各値は、式 (4)により求められる。  Next, returning to FIG. 9, the target acceleration calculation unit 513 calculates the target turning acceleration G (t) from Expressions (1) to (3) for each determination region (ST5 to ST7). At this time, each value of Jal and Ja2 corresponding to the jerk value is obtained by equation (4).
[0046] [数 1]  [0046] [Equation 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0047] [数 2] [0047] [Equation 2]
Figure imgf000012_0002
[0048] 一方、現在のレバー指令速度値 Vi(t)が前回の速度指令値 Vo(t- 1)以下であると判 定されると、領域判断部 512は、続けて、前回の速度指令値 Vo(t-l)から現在のレバ 一指令速度値 Vi(t)を減じた値が所定値 Vbはり大きいか否か (ST8)、前段階での目 標旋回加速度 G(t-l)が減速側の最大旋回加速度 Gbよりも大き 、か否か(ST9)を判 定する。
Figure imgf000012_0002
[0048] On the other hand, if it is determined that the current lever command speed value Vi (t) is equal to or less than the previous speed command value Vo (t-1), the area determination unit 512 continues. Whether the value obtained by subtracting the current lever command speed value Vi (t) from the value Vo (tl) is larger than the predetermined value Vb (ST8), and the target turning acceleration G (tl) in the previous stage is Judge whether or not it is larger than the maximum turning acceleration Gb (ST9).
[0049] つまり、図 10において、減速停止時や中間減速時といった減速領域にあっては、 前回の速度指令値 Vo(t-l)から現在のレバー指令速度値 Vi(t)を引き算した値が、所 定値 Vbはりも大きぐかつ前回の目標旋回加速度 G(t-1)が減速側の最大旋回加速 度 Gbよりも大き 、場合には(最大旋回加速度 Gbに達して 、な 、場合には)、領域 lb であると判断する。速度指令値 Vo(t-l)とレバー指令速度値 Vi(t)との差が所定値 Vbl よりも大きく、目標旋回加速度 G(t-1)が減速側の最大旋回加速度 Gb以下であれば( 最大旋回加速度 Gbに達していれば)、領域 libと判断する。速度指令値 Vo(t-l)とレ バー指令速度値 Vi(t)との差が所定値 Vbl以下であれば、領域 Illbと判断する。  In other words, in FIG. 10, in the deceleration region such as during deceleration stop or during intermediate deceleration, the value obtained by subtracting the current lever command speed value Vi (t) from the previous speed command value Vo (tl) is When the predetermined value Vb beam is large and the previous target turning acceleration G (t-1) is larger than the maximum turning acceleration Gb on the deceleration side (if the maximum turning acceleration Gb has been reached, in this case) , It is determined that the region is lb. If the difference between the speed command value Vo (tl) and the lever command speed value Vi (t) is greater than the predetermined value Vbl and the target turning acceleration G (t-1) is less than the maximum turning acceleration Gb on the deceleration side (maximum If the turning acceleration Gb has been reached), the area is determined to be lib. If the difference between the speed command value Vo (t-l) and the lever command speed value Vi (t) is less than or equal to the predetermined value Vbl, the area is judged as Illb.
[0050] 次いで、図 9に戻り、目標加速度演算部 513は、判定領域ごとに式(5)〜式(7)か ら目標旋回加速度 G(t)を演算する(ST10〜ST12)。この際、ジャーク値に相当する Jbl、Jb2の各値は、式 (4)により求められる。  Next, returning to FIG. 9, the target acceleration calculation unit 513 calculates the target turning acceleration G (t) from Expressions (5) to (7) for each determination region (ST10 to ST12). At this time, each value of Jbl and Jb2 corresponding to the jerk value is obtained by Equation (4).
[0051] [数 3]  [0051] [Equation 3]
Figure imgf000013_0001
そして、目標加速度記憶部 514は、このようにして目標加速度演算部 513で演算さ れた目標旋回加速度 G(t)を記憶する(ST13)。
Figure imgf000013_0001
Then, the target acceleration storage unit 514 stores the target turning acceleration G (t) calculated by the target acceleration calculation unit 513 in this way (ST13).
この後、速度指令値生成部 515は、式 (8)により、目標旋回加速度 G(t)と前回の速 度指令値 Vo(t-l)とに基づいて速度指令値 Vo(t)を算出する (ST14)。算出された速 度指令値 Vo(t)は、前回の速度指令値 Vo(t-l)に置き換えられ、 ST2で用いられるこ とになる(ST15)。また、速度指令値 Vo(t)は、引き続きトルク指令値生成手段 52で、 トルク指令値 Ttarの生成に用いられる。 Thereafter, the speed command value generation unit 515 calculates the speed command value Vo (t) based on the target turning acceleration G (t) and the previous speed command value Vo (tl) according to Equation (8) ( ST14). Calculated speed The degree command value Vo (t) is replaced with the previous speed command value Vo (tl) and used in ST2 (ST15). The speed command value Vo (t) is continuously used by the torque command value generation means 52 to generate the torque command value Ttar.
[0053] [数 4] [0053] [Equation 4]
Vo (t) = Vo (t-l) + G(t) - step (8) Vo (t) = Vo (t-l) + G (t)-step (8)
[0054] 以上のように、式 (8)で求められる速度指令値 Vo(t)にて電動モータ 5を制御するこ とにより、トルク出力や加速度には狙いとする立上時間 Tal, Tb2および立下時間 Ta2 , Tblが付与されることになり、衝撃が抑制される。 [0054] As described above, by controlling the electric motor 5 with the speed command value Vo (t) obtained by the equation (8), the target rise times Tal, Tb2 and Fall times Ta2 and Tbl are added, and the impact is suppressed.
[0055] なお、最大旋回加速度 Ga, Gbは、通常のオペレータの体感度合いを考慮して予 め定められている力 このような最大旋回加速度 Ga, Gbは、旋回体 4の慣性を I、電 動モータ 5の最大トルク出力を Tajnax, Tbjnaxとすると、 Ga=Ta_max/l, Gb=Tb_ maxZlの関係にあり、ブーム 6やアーム 7の伸縮で慣性 Iが変化すると、実際の最大 旋回加速度も変化する可能性がある。  [0055] It should be noted that the maximum turning accelerations Ga and Gb are forces determined in consideration of the body sensitivity of a normal operator. Such maximum turning accelerations Ga and Gb indicate the inertia of the turning body 4 as I and electric power. If Tajnax and Tbjnax are the maximum torque output of the dynamic motor 5, the relationship is Ga = Ta_max / l, Gb = Tb_maxZl.If the inertia I changes due to the expansion and contraction of the boom 6 and arm 7, the actual maximum turning acceleration also changes. there's a possibility that.
[0056] そこで、本実施形態では、慣性 Iを常時検出し、慣性 Iが大きくなつた場合には、最 大トルク出力 Tajnax, Tbjnaxも大きくなり、慣性 Iが小さくなつた場合には、最大トルク 出力 Tajnax, Tbjnaxも小さくなるように制御しており、実際の最大旋回加速度が略 一定になるようにしている。  Therefore, in the present embodiment, when the inertia I is constantly detected and the inertia I increases, the maximum torque outputs Tajnax and Tbjnax also increase, and when the inertia I decreases, the maximum torque The outputs Tajnax and Tbjnax are also controlled to be small so that the actual maximum turning acceleration is substantially constant.
[0057] ここで、慣性 Iの求め方としては、例えば、ブーム 6やアーム 7に設けられた角度セン サ力 作業機 9の位置情報を取得し、この位置情報に基づ 、て旋回体 4の慣性 Iを求 めることが可能であるし、加減速中の旋回加速度およびトルク出力力 慣性 Iを求める こともできる (前述の関係式を参照)。  Here, as a method of obtaining the inertia I, for example, the position information of the angle sensor force working machine 9 provided in the boom 6 and the arm 7 is acquired, and the swing body 4 is obtained based on the position information. Inertia I can be obtained, and the turning acceleration and torque output force inertia I during acceleration / deceleration can also be obtained (see the above relational expression).
[0058] 〔1 4〕本実施形態による効果  [14] Effects of this embodiment
このような本実施形態によれば、以下の効果がある。  According to this embodiment, there are the following effects.
すなわち、旋回レバー 10の機敏な操作により、レバー信号の立ち上りや立ち下がり が急になっても、これに基づいて出力されるトルク出力や加速度の立ち上りや立ち下 がりに、立上時間 Talおよび立下時間 Tbl, Tel分の勾配を付与して幾分なだらかに するため、衝撃を伴うような旋回体 4の加減速を抑制できる。 In other words, even if the lever signal suddenly rises or falls due to agile operation of the swivel lever 10, the rise time Tal and the rise will be affected by the torque output and acceleration rising or falling based on this. Gently add a gradient of Tbl and Tel for the lower time. Therefore, the acceleration / deceleration of the revolving structure 4 with an impact can be suppressed.
[0059] また、加速時、減速停止時、および中間減速時といったように、個々の操作に応じ て異なる勾配を付与するので、各操作で衝撃の大きさが異なったり、各操作で特有 の不都合が生じたりする場合でも、それらを確実に解消できる。  [0059] Also, since different gradients are applied according to individual operations, such as during acceleration, deceleration stop, and intermediate deceleration, the magnitude of impact varies with each operation, and each operation has its own inconvenience. Even if this occurs, they can be resolved reliably.
[0060] 具体的には、立上時間 Talが 0. 15秒以上となるように加速時の勾配を付与するの で、加速時に生じる衝撃を確実に抑制でき、立下時間 Tblが 0. 1秒以上となるように 減速停止時の勾配を付与することにより、減速停止操作を行った際に生じる衝撃を 確実に抑制でき、立下時間 Telが 0. 15秒以上となるように中間減速時の勾配を付 与することで、中間減速時に生じる特有の衝撃も確実に抑制できる。  [0060] Specifically, since the gradient at the time of acceleration is applied so that the rise time Tal is 0.15 seconds or more, the impact generated during the acceleration can be reliably suppressed, and the fall time Tbl is 0.1. By adding a gradient for deceleration stop so that it becomes more than 2 seconds, it is possible to reliably suppress the impact that occurs when performing deceleration stop operation, and during intermediate deceleration so that the fall time Tel is 0.15 seconds or more By giving this gradient, it is possible to reliably suppress the unique impact that occurs during intermediate deceleration.
[0061] さらに、最大トルク出力 Ta_max, Tb_maxの値が慣性 Iに応じて可変であるから、旋回 体 4の慣性 Iが大きくなれば、それに応じて最大トルク出力 Tajnax, Tbjnaxも大きくし 、反対に、慣性 Iが小さければ、最大トルク出力 Tajnax, Tbjnaxも小さくすることにより 、旋回体 4の慣性 Iに応じた最大トルク出力 Tajnax, Tbjnaxで旋回体 4を駆動でき、 加速度が略一定となって乗り心地を良好にできる。  [0061] Furthermore, since the values of the maximum torque outputs Ta_max and Tb_max are variable according to the inertia I, if the inertia I of the swing body 4 increases, the maximum torque outputs Tajnax and Tbjnax increase accordingly, and conversely If the inertia I is small, the maximum torque output Tajnax, Tbjnax is also reduced so that the maximum torque output Tajnax, Tbjnax can be driven by the maximum torque output Tajnax, Tbjnax, and the acceleration is almost constant. Comfort can be improved.
[0062] 〔第 2実施形態〕  [Second Embodiment]
図 11には、本発明の第 2実施形態に係る旋回制御装置 50を説明するための図が 示されている。  FIG. 11 shows a view for explaining a turning control device 50 according to the second embodiment of the present invention.
前記第 1実施形態では、入力したレバー信号に基づいて立上時間 Talおよび立下 時間 Tbl, Telを考慮した目標旋回加速度を演算し、この目標旋回加速度力 速度 指令値を算出し、よって狙った勾配を有するトルク出力や加速度が得られるようにし た。  In the first embodiment, the target turning acceleration considering the rise time Tal and the fall time Tbl, Tel is calculated based on the input lever signal, the target turning acceleration force speed command value is calculated, and the target is thus obtained. A torque output with a gradient and acceleration were obtained.
これに対し本実施形態では、レバー信号から得られる速度指令値(図 3に示した速 度指令と同等で、図 12中のトルク制限なしの実速度に相当)をそのまま使用する。す なわち、従来通りに算出された速度指令値に速度ゲインを掛け算してトルク指令値に 相当する値がー且生成されるのである力 この値に所定の変動幅を有するトルク制 限と、最大値を規制したトルク制限とを設定し、この範囲内でトルク出力を制御するこ とで狙った勾配を付与するようにしている。そして、このようなトルク制限の設定は、旋 回制御装置 50内のトルク制限設定手段 53によって行われる。 [0063] 図 11、図 12において、トルク制限設定手段 53は、加速時の特に Talの領域にあつ ては、第 1実施形態と同様の立上時間 Tal (0. 15秒以上)となるように高出力側のト ルク制限 Thと低出力側のトルク制限 T1とを前段側で設定し、一旦生成されたトルク指 令値である入力値 Tinをこの範囲内で出力されるように強制的に補正する (Tout)。こ の補正されたトルク指令値 Toutは、後段側において、別途設定されたトルク制限 Tma Xを越えた場合、このトルク制限 Tmaxを最大値とするトルク指令値 Ttarとして、電動モ ータ 5 (インバータ)側に出力される。また、電動モータ 5側に出力されたトルク指令値 は前段側にフィードバックされ、前段側でのトルク制限 Th, T1を所定の勾配で推移さ せるために、当該トルク指令値 Toutに ATaを加算し、また、トルク指令値 Toutから Δ Tbを減算する。さらに、後段側におけるトルク制限 Tmaxは、第 1実施形態と同様に、 旋回体 4の慣性 Iに応じて可変とされている。 In contrast, in this embodiment, the speed command value obtained from the lever signal (equivalent to the speed command shown in FIG. 3 and corresponding to the actual speed without torque limitation in FIG. 12) is used as it is. In other words, the force that is obtained by multiplying the speed command value calculated as before and the speed gain, and a value corresponding to the torque command value is generated, and the torque limit having a predetermined fluctuation range to this value, A torque limit that regulates the maximum value is set, and the target gradient is given by controlling the torque output within this range. Such torque limit setting is performed by the torque limit setting means 53 in the rotation control device 50. In FIG. 11 and FIG. 12, the torque limit setting means 53 is set to have the same rise time Tal (0.15 seconds or more) as in the first embodiment, particularly in the Tal region during acceleration. The torque limit Th on the high output side and the torque limit T1 on the low output side are set in the previous stage to force the input value Tin, which is the torque command value generated once, to be output within this range. (Tout) When the corrected torque command value Tout exceeds the torque limit Tma X set separately on the rear stage side, the motor command 5 (inverter) is used as the torque command value Ttar with the torque limit Tmax as the maximum value. ) Side. In addition, the torque command value output to the electric motor 5 side is fed back to the front stage side, and ATa is added to the torque command value Tout to shift the torque limit Th, T1 on the front stage side with a predetermined gradient. Further, ΔTb is subtracted from the torque command value Tout. Further, the torque limit Tmax on the rear stage side is variable according to the inertia I of the revolving structure 4 as in the first embodiment.
[0064] 以上の制御は、説明を省略するが、 Ta2、 Tbl、 Tb2の領域でも同じである。  [0064] Although the description of the above control is omitted, it is the same for the Ta2, Tbl, and Tb2 regions.
そして、以上の本実施形態でも、トルク出力に狙った勾配を付与することができ、旋 回レバー 10の機敏な操作に対しても衝撃を確実に抑制できるという効果がある。  Also in the present embodiment as described above, it is possible to impart a targeted gradient to the torque output, and there is an effect that the impact can be surely suppressed even with agile operation of the turning lever 10.
[0065] なお、本発明は、前記各実施形態に限定されるものではなぐ本発明の目的を達 成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。  It should be noted that the present invention is not limited to the above-described embodiments, and includes other configurations that can achieve the object of the present invention. The following modifications and the like are also included in the present invention.
すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ、説明され ているが、本発明の技術的思想および目的の範囲力 逸脱することなぐ以上述べ た実施形態に対し、当業者が様々な変形を加えることができるものである。  That is, the present invention is mainly illustrated and described mainly with respect to specific embodiments, but those skilled in the art will be able to understand the embodiments described above without departing from the scope of the technical idea and purpose of the present invention. Can be modified in various ways.
産業上の利用可能性  Industrial applicability
[0066] 本発明は、旋回体が電動モータで旋回駆動されるあらゆる建設機械に適用可能で ある。 [0066] The present invention can be applied to any construction machine in which a revolving structure is swiveled by an electric motor.

Claims

請求の範囲 The scope of the claims
[1] 電動モータで旋回する旋回体を制御するための旋回制御装置であって、  [1] A turning control device for controlling a turning body that is turned by an electric motor,
旋回レバーのレバー信号に基づいて、前記電動モータのトルク出力の立ち上りお よび立ち下がりに、所定の勾配を付与する  Based on the lever signal of the turning lever, a predetermined gradient is given to the rising and falling of the torque output of the electric motor.
ことを特徴とする旋回制御装置。  A turning control device characterized by that.
[2] 請求項 1に記載の旋回制御装置において、  [2] In the turning control device according to claim 1,
前記旋回体の加速時、減速停止時、および中間減速時毎に、異なる大きさの勾配 を付与する  A gradient with a different magnitude is given each time the revolving body is accelerated, decelerated to a stop, and intermediate decelerated.
ことを特徴とする旋回制御装置。  A turning control device characterized by that.
[3] 請求項 1または請求項 2に記載の旋回制御装置において、 [3] In the turning control device according to claim 1 or claim 2,
前記旋回体の加速時、減速停止時、および中間減速時毎に、異なる大きさの最大 加速度を持つ  The maximum acceleration of different magnitude is obtained at the time of acceleration, deceleration stop and intermediate deceleration of the revolving structure.
ことを特徴とする旋回制御装置。  A turning control device characterized by that.
[4] 請求項 2または請求項 3に記載の旋回制御装置にお 、て、 [4] In the turning control device according to claim 2 or claim 3,
前記加速時のトルク出力の立ち上りの勾配は、当該トルク出力がゼロから最大値に 達するまでの立上時間が 0. 15秒以上となるように付与され、  The gradient of the rise of the torque output during acceleration is given so that the rise time until the torque output reaches the maximum value from zero is 0.15 seconds or more,
前記減速停止時のトルク出力の立ち下がりの勾配は、当該トルク出力がゼロ力 最 大値に達するまでの立下時間が 0. 1秒以上となるように付与され、  The gradient of the fall of the torque output at the time of deceleration stop is given so that the fall time until the torque output reaches the zero force maximum value is 0.1 second or more,
前記中間減速時のトルク出力の立ち下がりの勾配は、当該トルク出力がゼロカも最 大値に達するまでの立下時間が 0. 15秒以上となるように付与される  The gradient of the fall of the torque output during the intermediate deceleration is given so that the fall time until the torque output reaches the maximum value of zero is 0.15 seconds or more.
ことを特徴とする旋回制御装置。  A turning control device characterized by that.
[5] 建設機械において、 [5] In construction machinery,
電動モータで旋回する旋回体と、  A revolving structure that revolves with an electric motor;
この旋回体を制御するための請求項 1な 、し請求項 4の 、ずれかに記載の旋回制 御装置とを備えている  A turning control device according to any one of claims 1 and 4 for controlling the turning body is provided.
ことを特徴とする建設機械。  Construction machinery characterized by that.
PCT/JP2005/021012 2004-11-17 2005-11-16 Swing control device and construction machinery WO2006054581A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800391521A CN101057044B (en) 2004-11-17 2005-11-16 Swing control device and construction machinery
JP2006545090A JP4359621B2 (en) 2004-11-17 2005-11-16 Swivel control device and construction machine
EP05806994.9A EP1813728A4 (en) 2004-11-17 2005-11-16 Swing control device and construction machinery
US11/791,190 US8000862B2 (en) 2004-11-17 2005-11-16 Swing control device and construction machinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-333677 2004-11-17
JP2004333677 2004-11-17

Publications (1)

Publication Number Publication Date
WO2006054581A1 true WO2006054581A1 (en) 2006-05-26

Family

ID=36407122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021012 WO2006054581A1 (en) 2004-11-17 2005-11-16 Swing control device and construction machinery

Country Status (5)

Country Link
US (1) US8000862B2 (en)
EP (1) EP1813728A4 (en)
JP (1) JP4359621B2 (en)
CN (1) CN101057044B (en)
WO (1) WO2006054581A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080082240A1 (en) * 2006-09-29 2008-04-03 Kobelco Construction Machinery Co., Ltd. Rotation control device for working machine
JP2008231902A (en) * 2007-02-21 2008-10-02 Kobelco Contstruction Machinery Ltd Revolving controller and working machine equipped with it
JP2009068245A (en) * 2007-09-13 2009-04-02 Meidensha Corp Arm drive control unit of construction machinery
JP2009127193A (en) * 2007-11-19 2009-06-11 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Swing drive control unit and construction machinery including the same
JP2009261231A (en) * 2008-03-24 2009-11-05 Hy:Kk Controller for motor
JP2011094451A (en) * 2009-11-02 2011-05-12 Sumitomo (Shi) Construction Machinery Co Ltd Slewing control device for construction machine
JP2011163106A (en) * 2010-02-12 2011-08-25 Hy:Kk Control device of motor
US8190334B2 (en) 2007-02-21 2012-05-29 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
JP2014505807A (en) * 2010-12-15 2014-03-06 ボルボ コンストラクション イクイップメント アーベー Turning control system for hybrid construction machines
JP2014058834A (en) * 2012-09-19 2014-04-03 Kobelco Contstruction Machinery Ltd Revolution control device for work machine
KR101834589B1 (en) * 2010-10-14 2018-03-05 히다찌 겐끼 가부시키가이샤 Construction machine having rotary element
WO2018105180A1 (en) * 2016-12-08 2018-06-14 コベルコ建機株式会社 Turn control device
WO2020100562A1 (en) * 2018-11-16 2020-05-22 コベルコ建機株式会社 Work machine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405458B2 (en) * 2008-05-27 2014-02-05 住友建機株式会社 Swivel drive control device and construction machine including the same
JP5226121B2 (en) * 2009-03-06 2013-07-03 株式会社小松製作所 Construction machine, construction machine control method, and program for causing computer to execute the method
KR101582689B1 (en) * 2009-06-02 2016-01-05 두산인프라코어 주식회사 Swing control apparatus and swing control method for construction machinery
JP5298069B2 (en) * 2010-05-20 2013-09-25 株式会社小松製作所 Electric actuator control device
KR101769484B1 (en) * 2010-07-13 2017-08-18 볼보 컨스트럭션 이큅먼트 에이비 Swing control apparatus and method of construction machinery
JP5395818B2 (en) * 2011-01-21 2014-01-22 日立建機株式会社 Swing control device for work machine
EP2690224B1 (en) * 2011-03-23 2021-10-20 Volvo Construction Equipment AB Anti-rebounding control apparatus and method in an electrical swing system of a hybrid excavator
JP5193333B2 (en) * 2011-05-18 2013-05-08 株式会社小松製作所 Electric motor control device and control method thereof
JP5595335B2 (en) 2011-06-10 2014-09-24 日立建機株式会社 Construction machinery
WO2013060010A1 (en) * 2011-10-27 2013-05-02 中联重科股份有限公司 Electric drive rotation control system, engineering machinery and rotary emergency braking control method
CN102491178B (en) * 2011-12-15 2014-07-09 中联重科股份有限公司 Method and system for controlling rotation of crane
CN104011300B (en) 2011-12-28 2017-05-17 住友建机株式会社 Rotation control device and method
EP3272693B1 (en) * 2015-03-19 2020-03-04 Tadano Ltd. Slewing apparatus
WO2016088904A1 (en) * 2016-01-20 2016-06-09 株式会社小松製作所 Construction machine, hybrid hydraulic shovel, and method for controlling output torque of motor generator
JP7070292B2 (en) * 2018-09-27 2022-05-18 コベルコ建機株式会社 Work machine
CN109968997B (en) * 2019-03-19 2021-06-11 中国第一汽车股份有限公司 Torque control method for electric automobile in process of driving torque passing 0
CN113307164B (en) * 2021-06-01 2022-06-03 中联重科股份有限公司 Steady speed regulation control method and device, rotation system, crane and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010783A (en) * 1999-06-29 2001-01-16 Kobe Steel Ltd Slewing control device for slewing type work machine
JP2004169466A (en) * 2002-11-21 2004-06-17 Komatsu Ltd Equipment arrangement structure of construction machinery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100196669B1 (en) * 1994-04-28 1999-06-15 세구치 류이치 Area limiting excavation control system for construction machine
JP3562730B2 (en) * 1994-10-05 2004-09-08 株式会社小松製作所 Hydraulic excavator work equipment vibration device
EP0990739A4 (en) * 1998-03-18 2002-11-05 Hitachi Construction Machinery Automatically operated shovel and stone crushing system comprising the same
JP3877909B2 (en) 1999-06-30 2007-02-07 株式会社神戸製鋼所 Swivel drive device for construction machinery
US20020104431A1 (en) * 1999-09-09 2002-08-08 Sohel Anwar Method and apparatus for controlling the actuation of a hydraulic cylinder
JP2002179387A (en) * 2000-10-03 2002-06-26 Komatsu Ltd Device and its method for controlling speed of work vehicle
CN100374665C (en) * 2002-05-09 2008-03-12 神钢建设机械株式会社 Rotation control device of working machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010783A (en) * 1999-06-29 2001-01-16 Kobe Steel Ltd Slewing control device for slewing type work machine
JP2004169466A (en) * 2002-11-21 2004-06-17 Komatsu Ltd Equipment arrangement structure of construction machinery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1813728A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798872B2 (en) 2006-09-29 2014-08-05 Kobelco Construction Machinery Co., Ltd. Rotation control device for working machine
JP2008088659A (en) * 2006-09-29 2008-04-17 Kobelco Contstruction Machinery Ltd Swing control unit of working machine
US20080082240A1 (en) * 2006-09-29 2008-04-03 Kobelco Construction Machinery Co., Ltd. Rotation control device for working machine
JP2008231902A (en) * 2007-02-21 2008-10-02 Kobelco Contstruction Machinery Ltd Revolving controller and working machine equipped with it
US8190334B2 (en) 2007-02-21 2012-05-29 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
CN101250888B (en) * 2007-02-21 2012-08-15 神钢建设机械株式会社 Rotation control device and working machine therewith
JP2009068245A (en) * 2007-09-13 2009-04-02 Meidensha Corp Arm drive control unit of construction machinery
JP2009127193A (en) * 2007-11-19 2009-06-11 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Swing drive control unit and construction machinery including the same
JP2009261231A (en) * 2008-03-24 2009-11-05 Hy:Kk Controller for motor
JP2011094451A (en) * 2009-11-02 2011-05-12 Sumitomo (Shi) Construction Machinery Co Ltd Slewing control device for construction machine
JP2011163106A (en) * 2010-02-12 2011-08-25 Hy:Kk Control device of motor
KR101834589B1 (en) * 2010-10-14 2018-03-05 히다찌 겐끼 가부시키가이샤 Construction machine having rotary element
JP2014505807A (en) * 2010-12-15 2014-03-06 ボルボ コンストラクション イクイップメント アーベー Turning control system for hybrid construction machines
JP2014058834A (en) * 2012-09-19 2014-04-03 Kobelco Contstruction Machinery Ltd Revolution control device for work machine
WO2018105180A1 (en) * 2016-12-08 2018-06-14 コベルコ建機株式会社 Turn control device
JP2018096034A (en) * 2016-12-08 2018-06-21 コベルコ建機株式会社 Turn control device
US11613872B2 (en) 2016-12-08 2023-03-28 Kobelco Construction Machinery Co., Ltd. Slewing control device for construction machine
WO2020100562A1 (en) * 2018-11-16 2020-05-22 コベルコ建機株式会社 Work machine
JP2020084435A (en) * 2018-11-16 2020-06-04 コベルコ建機株式会社 Working machine
JP7232622B2 (en) 2018-11-16 2023-03-03 コベルコ建機株式会社 working machine

Also Published As

Publication number Publication date
US20070277986A1 (en) 2007-12-06
US8000862B2 (en) 2011-08-16
CN101057044A (en) 2007-10-17
EP1813728A1 (en) 2007-08-01
JPWO2006054581A1 (en) 2008-05-29
JP4359621B2 (en) 2009-11-04
CN101057044B (en) 2012-08-29
EP1813728A4 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2006054581A1 (en) Swing control device and construction machinery
JP4167289B2 (en) Swivel control device and construction machine
JP4946733B2 (en) Swivel control device and work machine equipped with the same
US8190334B2 (en) Rotation control device and working machine therewith
JP6555592B2 (en) Work vehicle
US8473165B2 (en) Turning drive control apparatus and construction machine including the same
JP5420324B2 (en) Swivel drive control device and construction machine including the same
JP5031718B2 (en) Swivel drive control device and construction machine including the same
CN105940162A (en) Shovel
JPWO2006033401A1 (en) Gear drive control device, gear drive control method, turning control device, and construction machine
JP5844377B2 (en) Construction machine and control method for turning electric motor
JP6529721B2 (en) Construction machinery
WO2016088904A1 (en) Construction machine, hybrid hydraulic shovel, and method for controlling output torque of motor generator
JP4515369B2 (en) Drive control device for construction machinery
JP6279958B2 (en) Excavator
JP4611370B2 (en) Swivel drive control device and construction machine including the same
JP6935122B2 (en) Work machine
JP2010150898A (en) Swivelling drive controller and construction machine including the same
JP6957085B2 (en) Work machine
JP5139257B2 (en) Swivel drive control device and construction machine including the same
JP6708969B2 (en) Turning control device
JP6526410B2 (en) Shovel
JP2009263887A (en) Electrohydraulic drive device of construction machine
JP2011163106A5 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580039152.1

Country of ref document: CN

Ref document number: 2006545090

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11791190

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005806994

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005806994

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11791190

Country of ref document: US