[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006046300A1 - 半導体装置及び半導体装置の制御方法 - Google Patents

半導体装置及び半導体装置の制御方法 Download PDF

Info

Publication number
WO2006046300A1
WO2006046300A1 PCT/JP2004/016118 JP2004016118W WO2006046300A1 WO 2006046300 A1 WO2006046300 A1 WO 2006046300A1 JP 2004016118 W JP2004016118 W JP 2004016118W WO 2006046300 A1 WO2006046300 A1 WO 2006046300A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
semiconductor device
write voltage
voltage supply
write
Prior art date
Application number
PCT/JP2004/016118
Other languages
English (en)
French (fr)
Inventor
Tsutomu Nakai
Kazuhide Kurosaki
Original Assignee
Spansion Llc
Spansion Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spansion Llc, Spansion Japan Limited filed Critical Spansion Llc
Priority to PCT/JP2004/016118 priority Critical patent/WO2006046300A1/ja
Priority to JP2006542177A priority patent/JP4804359B2/ja
Priority to US11/261,743 priority patent/US7286407B2/en
Publication of WO2006046300A1 publication Critical patent/WO2006046300A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits

Definitions

  • the present invention relates to a semiconductor device and a control method thereof, and more particularly to a semiconductor device capable of controlling a drain voltage during programming and a control method thereof.
  • FIG. 1 is a diagram showing a circuit configuration at the time of writing in a conventional nonvolatile semiconductor memory device.
  • the nonvolatile semiconductor memory device 1 includes memory cells 21 and 22 and a write high voltage supply circuit 3.
  • the memory cells 21 and 22 are flash memories having a floating gate or nitride film as a charge storage layer, and writing is performed by applying a high voltage to the drain terminal of the cell and injecting hot carriers into the charge storage stack.
  • the write high voltage VPROG in the non-volatile semiconductor memory device 1 is a voltage in which the high voltage generated by the high voltage generation circuit (not shown) is regulated to a constant voltage, and is supplied via the write high voltage supply circuit 3.
  • DATABn connected to the bit line.
  • the drain voltage of the programmed cell is decoded and supplied to the common data bus line DATAn.
  • n is an index indicating the data bus width, and takes a value from 0 to 15, for example.
  • the drain voltage in the immediate vicinity of a memory cell differs depending on the state of the target memory cell at the time of programming. That is, when programming an erased memory cell, the gate of the memory cell is selected and the drain and source of the memory cell are conductive, so that the program power supply voltage is regulated to a constant voltage on the common data bus. However, it will drop in the immediate vicinity of the memory cell. On the other hand, when the memory cell to be programmed is programmed, the threshold value of the cell increases, so even if the gate is selected, the conduction between the drain and source is weakened, so the potential of the common data bus is applied without dropping. It will be done.
  • Patent Document 1 compares a program current with a reference current, and terminates the program when the program verify is passed.
  • the device described in Patent Document 2 has a current supplied to the drain of the memory element at a predetermined value or less. It is controlled by a constant current element that limits the above current.
  • Patent Document 1 US Pat. No. 5,422,842
  • Patent Document 2 JP 2001-15716
  • the drain power supply voltage for programming must be set to a high voltage. become.
  • the target cell stops flowing current, so that the drain voltage becomes high and the non-selected memory cell 22 sharing the drain becomes drain disturb. It becomes easy to receive. That is, as shown in FIG. 2, when the signal PGMn goes HIGH during programming, the cell is in an erased state and the output of the write high voltage supply circuit 3 is dropped by a resistor, which is less than the potential of the common data bus line DATABn. A low voltage is applied to the Ml bit line (MIBL: Metal 1 bit line). As the memory cell 21 is written, current stops flowing, so the voltage of the Ml bit line M1BL reaches the level of the common data bus line DATABn. When the voltage of the Ml bit line M1BL is high, the non-selected memory cell 22 sharing the drain is likely to be subjected to drain disturb.
  • MIBL Metal 1 bit line
  • the device described in Patent Document 2 controls the current supplied to the drain of the memory element by a constant current element that limits a current exceeding a predetermined value.
  • the present invention has been made in view of the above problems, and a semiconductor device capable of reducing drain disturbance exerted on a memory cell sharing a drain immediately before or after writing of a program-target memory cell is completed.
  • Another object of the present invention is to provide a method for controlling a semiconductor device.
  • the present invention provides a write voltage supply circuit that supplies a write voltage to the drain of a memory cell, and a current that flows through a data bus line connected to the memory cell.
  • a pull-down circuit for lowering the output potential of the write voltage supply circuit It is a conductor device. According to the present invention, when the current flowing through the drain node during programming becomes smaller than a certain level, the drain voltage is controlled to be lower than the level at the time of normal programming, so that Share the drain! This prevents the unselected memory cells from receiving the drain disturbance.
  • the semiconductor device further includes a write voltage limiting circuit that limits a strength of supplying the write voltage of the write voltage supply circuit. According to the present invention, by limiting the strength of supplying the write voltage of the write voltage supply circuit, it is possible to suppress an increase in the drain voltage just before the end of writing.
  • the present invention provides a write voltage supply circuit that supplies a write voltage to the drain of a memory cell, and a write of the write voltage supply circuit according to a current flowing in a data bus line connected to the memory cell.
  • a semiconductor device including a write voltage limiting circuit that limits a strength for supplying a voltage. According to the present invention, by limiting the strength (capability) of supplying the write voltage of the write voltage supply circuit when the current flowing through the drain node in the program becomes smaller than a certain level, Control the voltage below the normal programming level. As a result, the drain voltage at the end of programming and at the end of programming can be suppressed, and it is possible to prevent the unselected memory cells sharing the drain from being subjected to drain disturbance.
  • the semiconductor device further includes a resistance element inserted between an output of the write voltage supply circuit and the data bus line, and a potential difference between both ends of the resistance element is lower than a reference voltage. And a comparison circuit for judging the above.
  • the resistance element is provided between the output of the write voltage supply circuit, which is the program drain power supply, and the data bus line (global bit line).
  • a comparison circuit is provided to determine that the potential difference across the resistor element has fallen below a certain voltage. As a result, it is possible to detect that the program is about to end by detecting the current flowing through the drain node by utilizing the characteristic that the memory cell is written and the current decreases.
  • the write voltage supply circuit includes a transistor that outputs the write voltage.
  • the potential difference between the resistance element inserted between the output of the write voltage supply circuit and the data bus line and the both ends of the resistance element is lower than a reference voltage.
  • the pull-down circuit is controlled by an output signal (DON) of the comparison circuit.
  • DON output signal
  • a resistance element inserted between the output of the write voltage supply circuit and the data bus line and a potential difference between both ends of the resistance element are less than a reference voltage.
  • the write voltage control circuit is controlled by an output signal (DON) of the comparison circuit. According to the present invention, it is possible to suppress an increase in drain voltage just before the end of writing.
  • the gate (PG) of the transistor of the write voltage supply circuit is controlled by an output signal (DON) of the comparison circuit.
  • the resistance element is composed of a transistor.
  • the resistance element is composed of a polysilicon resistor.
  • the pull-down circuit is a transistor connected between the output of the write voltage supply circuit and the ground. According to the present invention, the program power supply voltage can be stabilized regardless of the write state of each bit by adjusting the transistor size to such an extent that the cell current flows at the start of writing.
  • the semiconductor device of the present invention includes a plurality of the write voltage supply circuits so as to supply the write voltages to the drains of the corresponding memory cells, and the resistance element and the comparison circuit include the write voltage supply It is provided for each circuit. According to the present invention, by adopting the circuit configuration of the present invention for each write voltage supply circuit, it is possible to determine immediately before the end of writing for each write bit.
  • the memory cell is a nonvolatile memory cell having a charge storage layer.
  • the step of comparing the potential difference between the output of the write voltage supply circuit and the data bus line connected to the memory cell with a reference voltage, and when the potential difference is smaller than the reference voltage, the write voltage supply circuit A method of controlling a semiconductor device including a step of lowering an output potential.
  • the drain voltage is controlled to be lower than the level during normal programming. By doing so, it is possible to suppress the drain voltage at the end of the program and just before the end, and it is possible to prevent the unselected memory cells sharing the drain from receiving the drain disturbance.
  • the present invention includes a step of comparing a potential difference between an output of a write voltage supply circuit and a data bus line connected to a memory cell with a reference voltage, and when the potential difference is smaller than the reference voltage. And a step of limiting the strength of supplying the write voltage of the write voltage supply circuit.
  • the drain voltage is limited by limiting the strength (capability) of supplying the write voltage of the write voltage supply circuit when the current flowing to the drain node in the program becomes smaller than a certain level. Is controlled below the normal programming level. As a result, the drain voltage at the end of programming and just before the termination can be suppressed, and it is possible to prevent the unselected memory cells from receiving the drain disturb by sharing the drain.
  • FIG. 1 is a diagram showing a circuit configuration at the time of writing in a conventional nonvolatile semiconductor memory device.
  • FIG. 2 is a diagram illustrating a drain voltage of a conventional nonvolatile semiconductor memory device.
  • FIG. 3 is a diagram showing a circuit at the time of writing in the nonvolatile semiconductor memory device according to the first embodiment.
  • FIG. 4 is a diagram showing a circuit configuration at the time of writing in the nonvolatile semiconductor memory device according to the first embodiment.
  • FIG. 5 is a diagram showing a circuit at the time of writing in the nonvolatile semiconductor memory device according to the second embodiment.
  • FIG. 6 is a diagram showing a circuit configuration at the time of writing in the nonvolatile semiconductor memory device according to the second embodiment.
  • FIG. 7 is a timing chart of the internal clock of the write high voltage control circuit.
  • FIG. 8 is a diagram showing a circuit at the time of writing in the nonvolatile semiconductor memory device according to the third embodiment.
  • FIG. 9 is a diagram showing a circuit configuration at the time of writing in the nonvolatile semiconductor memory device according to the third embodiment.
  • FIG. 10 is a diagram illustrating the drain voltage of the nonvolatile semiconductor memory device according to the third embodiment.
  • FIG. 11 is a diagram showing a circuit configuration at the time of writing in the nonvolatile semiconductor memory device according to the fourth embodiment.
  • FIG. 3 is a diagram showing a circuit configuration at the time of writing in the nonvolatile semiconductor memory device according to the first embodiment.
  • the nonvolatile semiconductor memory device 10 includes a memory cell 2, a write high voltage supply circuit 3, a resistance element 4, a comparison circuit 5, and a pull-down circuit 6.
  • the memory cell 2 is a nonvolatile memory cell having a charge storage layer.
  • the write high voltage supply circuit 3 supplies a write voltage to the drain of the memory cell 2.
  • the resistance element 4 is inserted between the output DATABSn of the write high voltage supply circuit 3 and the common data bus line DATABn, and detects a current flowing due to a potential difference.
  • the comparison circuit 5 compares the potential difference between both ends of the resistance element 4 with a reference voltage and determines that the potential difference between both ends of the resistance element 4 has fallen below a certain voltage, the comparison circuit 5 sets the signal DON to HIGH. As a result, it is possible to detect that the program is about to end by detecting the current flowing through the drain node by utilizing the characteristic that the memory cell 2 is written and the current decreases.
  • the pull-down circuit 6 is a circuit that pulls the potential of the output D ATABSn of the write high voltage supply circuit 3 to the ground side just before the end of the program.
  • FIG. 4 is a diagram showing a circuit configuration at the time of writing in the nonvolatile semiconductor memory device according to the first embodiment.
  • 10 is a nonvolatile semiconductor memory device
  • 21 and 22 are memory cells
  • 3 is a write high voltage supply circuit
  • 4 is a resistance element
  • 5 is a comparison circuit
  • 6 is a pull-down circuit.
  • the gates are controlled by voltages applied to the word lines WL1 and WL2.
  • the memory cell 21 is a memory cell to be written, and the memory cell It is assumed that the cell 22 is a non-selected memory cell.
  • Pass transistors 71 and 72 are for selecting a bit line.
  • the write high voltage supply circuit 3 includes NMOS transistors 31 to 34, PMOS transistors 35 to 37, and an inverter 38.
  • the resistance element 4 is realized by connecting the gate and drain of a PMOS transistor between the output DATABSn of the write high voltage supply circuit 3 and the common data bus line DA TABn.
  • the resistance element 4 is realized by a diode-connected PMOS transistor.
  • the comparison circuit 5 includes NMOS transistors 51 to 53, PMOS transistors 54 and 55, an inverter 56, and resistors 57 and 58.
  • the voltages at terminals A and B above and below the resistance element 4 are supplied to the comparison circuit 5.
  • the input of the comparison circuit 5 and the PMOS transistor of the resistance element 4 have a power mirror configuration, and the transistor size of the input transistor 54 of the comparison circuit 5 may be smaller.
  • a reference potential is generated by resistance division between the power supply voltage VCC and the ground.
  • the PMOS transistor 55 has a source connected to the power supply voltage VCC and a gate controlled by the node VR to pass a certain current.
  • the signal DON becomes HIGH.
  • the output signal DON of the comparison circuit 5 is HIGH when (DATABS – DATABn) ⁇ (VCC – VR).
  • the signal PGMR is a signal for discharging and is normally LOW.
  • the write high voltage VPROG is supplied as it is from the PMOS transistor 37 to the output DATABSn of the write high voltage supply circuit 3.
  • the NMOS transistor 31 and the PMOS transistors 35 and 36 constitute a level shift circuit.
  • the pull-down circuit 6 is composed of an NMOS transistor.
  • the pull-down circuit 6 is controlled by the output signal DON of the comparison circuit 5 and pulls the potential of the output DAT ABSn of the write high voltage supply circuit 3 to the ground side.
  • the drain current is reduced to (DATABSn-DATABn) and (VCC-VR). Therefore, since the output signal DON becomes HIGH, the NMOS transistor configuring the pull-down circuit 6 is turned on, and the drain voltage is prevented from becoming high. As a result, it is possible to prevent the unselected memory cells 21 from being subjected to drain disturb. Note that since the NMOS transistor is on, current consumption is not small.
  • the drain voltage is controlled to be lower than the level at the time of normal programming.
  • the drain voltage just before the termination can be suppressed, and the unselected memory cells sharing the drain can be prevented from receiving the drain disturbance.
  • FIG. 5 is a diagram showing a circuit at the time of writing in the nonvolatile semiconductor memory device according to the second embodiment.
  • nonvolatile semiconductor memory device 100 includes memory cell 2, write high voltage supply circuit 3, resistance element 4, comparison circuit 5, and write high voltage limiting circuit 8. The same parts as described above will be described with the same reference numerals.
  • the write high voltage supply circuit 3 supplies a write voltage to the drain of the memory cell 2.
  • the resistance element 4 is inserted between the output DATABSn of the write high voltage supply circuit 3 and the common data bus line DATABn, and detects a current flowing due to a potential difference.
  • the comparison circuit 5 compares the potential difference between both ends of the resistance element 4 with a reference voltage and determines that the potential difference between both ends of the resistance element 4 is below a certain voltage, the comparison circuit 5 sets the signal DON to HIGH. As a result, it is possible to detect that the program is about to end by detecting the current flowing through the drain node by utilizing the characteristic that the memory cell 2 is written and the current decreases.
  • the write high voltage limiting circuit 8 is a circuit that controls the strength of supplying the high voltage VPROG for programming just before the end of the program. By controlling the drain voltage lower than the normal programming level when the current flowing to the drain node during programming drops below a certain level, it is possible to suppress the drain voltage at the end of programming and just before termination. In addition, by sharing the drain, it is possible to prevent the unselected memory cells from receiving the drain disturbance.
  • FIG. 6 is a diagram showing a circuit configuration at the time of writing in the nonvolatile memory device according to the second embodiment. is there.
  • 100 is a non-volatile semiconductor memory device
  • 21 and 22 are memory cells
  • 3 is a write high voltage supply circuit
  • 4 is a resistance element
  • 5 is a comparison circuit
  • 8 is a write high voltage limiting circuit.
  • the same parts as those described above will be described with the same reference numerals.
  • the memory cell 21 is a memory cell to be programmed
  • the memory cell 22 is an unselected memory cell.
  • the write high voltage supply circuit 3 includes NMOS transistors 31 to 34, PMOS transistors 35 to 37, and an inverter 38.
  • the comparison circuit 5 includes NMOS transistors 51 to 53, PMOS transistors 54 and 55, an inverter 56, and resistors 57 and 58.
  • the write high voltage limiting circuit 8 includes NMOS transistors 81 to 83, a NAND circuit 84, and inverters 85 to 87.
  • the write high voltage limiting circuit 8 is a signal PGMD delayed from the signal PGMn that becomes HIGH when the target memory cell 21 is a memory cell to be programmed by the inverters 85 to 87, and its inverted signal PGMDB. Are generated as internal control signals.
  • FIG. 7 is a timing chart of the write high voltage control circuit 8 internal clock.
  • the reason why the signal PGMD delays the rising edge from the signal PGMn is that a delay is required until the write high voltage limit circuit 8 decodes the write Z non-write.
  • the gate (PG) of the PMOS transistor 37 of the write high voltage supply circuit 3 that controls the write target memory cell is normally LOW, and the write high voltage VPROG is applied to the output DATABSn of the write high voltage supply circuit 3. Strongly supplied.
  • the NAND circuit 84 cuts off the NMOS transistor 33 when the signal DON and the signal PGMD are both HIGH.
  • NMOS transistors 81 and 82 are connected in series between the node PG and the power supply voltage VCC.
  • the NMOS transistor 81 has a low threshold value VT, and performs a source follower operation when the signal D ON is HIGH. For example, when the signal DON is the power supply voltage V CC, the voltage (VCC ⁇ VT) dropped by the threshold value VT of the NMOS transistor 81 is supplied to the node PG.
  • the PMOS transistor 37 of the write high voltage supply circuit 3 can be reduced in supply capability of the write high voltage by raising the gate PG of the PMOS transistor of the write high voltage supply circuit 3 to the maximum VCC. it can. Therefore, it is possible to prevent the drain voltage just before the end of writing from increasing.
  • the NMOS transistor 83 by adding the NMOS transistor 83 to the level shifter, by supplying the LOW signal PGMDB to the gate of the NMOS transistor 83 while the signal PGMn is HIGH, the rise of the potential of the node PG causes the nMOS transistor 31 to be supplied. Even when is turned on, the PMOS transistor 36 can be kept off. As a result, the node PG is pulled up to the write high voltage VPROG, thereby preventing the PMOS transistor 37 from being turned off and completing the write.
  • the drain voltage immediately before the end of writing becomes high can be suppressed.
  • FIG. 8 is a diagram showing a circuit at the time of writing in the nonvolatile memory device according to the third embodiment.
  • the nonvolatile semiconductor memory device 200 includes a memory cell 2, a write high voltage supply circuit 3, a resistance element 4, a comparison circuit 5, a pull-down circuit 6, and a write high voltage limit circuit 8.
  • the write high voltage supply circuit 3 supplies a write voltage to the drain of the memory cell 2.
  • the resistance element 4 is inserted between the output DATABSn of the write high voltage supply circuit 3 and the common data bus line DATABn, and detects a current flowing due to a potential difference.
  • the comparison circuit 5 compares the potential difference between both ends of the resistance element 4 with a reference voltage and determines that the potential difference between both ends of the resistance element 4 has fallen below a certain voltage, the comparison circuit 5 sets the signal DON to HIGH. As a result, the current flowing through the drain node is detected by utilizing the characteristic that the current decreases when the memory cell 2 is written. It is possible to detect that the program is about to end.
  • the pull-down circuit 6 is a circuit that pulls the potential of the output DATA BSn of the write high voltage supply circuit to the ground side just before the end of the program.
  • the write high voltage limiting circuit 8 is a circuit that controls the strength of supplying the write high voltage VPROG just before the end of the program. When the current flowing to the drain node in the program falls below a certain level, the drain voltage is controlled to be lower than the level during normal programming.
  • FIG. 9 is a diagram showing a circuit configuration at the time of writing in the nonvolatile memory device according to the third embodiment.
  • reference numeral 200 is a nonvolatile semiconductor memory device
  • 21 and 22 are memory cells
  • 3 is a write high voltage supply circuit
  • 4 is a resistance element
  • 5 is a comparison circuit
  • 6 is a pull-down circuit
  • 8 is a write high voltage.
  • Each limiting circuit is shown. The same parts as above will be described with the same reference numerals.
  • the memory cell 21 is a memory cell to be programmed
  • the memory cell 22 is a non-selected memory cell.
  • the memory cells 21 and 22 have their gates controlled by the voltage applied to the word line WL.
  • Pass transistors 71 and 72 are for selecting a bit line.
  • the write high voltage supply circuit 3 includes NMOS transistors 31 to 34, PMOS transistors 35 to 37, and an inverter 38.
  • the resistive element 4 is realized by connecting the gate and drain of a PMOS transistor between the output DATABSn of the write high voltage supply circuit 3 and the common data bus line DATABn.
  • the resistive element 4 is realized by a diode-connected PMOS transistor!
  • the comparison circuit 5 includes NMOS transistors 51 to 53, PMOS transistors 54 and 55, an inverter 56, and resistors 57 and 58.
  • the pull-down circuit 6 is composed of an NMOS transistor.
  • the high voltage high voltage limiting circuit 8 includes NMOS transistors 81 to 83, a NAND circuit 84, and inverters 85 to 87.
  • FIG. 10 shows signal waveforms according to the third embodiment.
  • signal PGMn goes HIGH during programming.
  • the potential of the output DATABSn and the common data bus line DATABn of the write high voltage supply circuit 3 has a level difference corresponding to the resistance element. Since memory cell 21 is in the erased state and there is a voltage drop, a slightly lower voltage is applied to Ml bit line M1BL. Is done. As the memory cell 21 is written, the memory cell 21 stops flowing current, the drain voltage rises and it is detected that the current has decreased, and the signal DON becomes HIGH immediately after the end of programming.
  • the node PG is raised by the write high voltage limiting circuit 8, and the voltage of the output DATABSn of the write high voltage supply circuit 3 is lowered, so the drain voltage DATABn is also lowered. As a result, the drain disturbance applied to the memory cells 22 sharing the drain can be reduced.
  • the output DAT ABSn of the write high voltage supply circuit 3 is pulled to the ground by the pull-down circuit 6, and the output DATABSn of the write high voltage supply circuit 3 is pulled by the write high voltage limit circuit 8.
  • the ability of the PMOS transistor 37 to pull the potential upward is weakened. As a result, the drain voltage at the end of programming and just before the termination can be more effectively suppressed, and it is possible to further prevent the unselected memory cells 22 from receiving the drain disturbance by sharing the drain.
  • FIG. 11 is a diagram showing a circuit configuration at the time of writing in the nonvolatile memory device according to the fourth embodiment.
  • reference numeral 300 is a nonvolatile semiconductor memory device
  • 21 and 22 are memory cells
  • 3 is a write high voltage supply circuit
  • 14 is a resistance element
  • 5 is a comparison circuit
  • 6 is a pull-down circuit
  • 8 is a write high voltage.
  • Each limiting circuit is shown. The same parts as those in the above embodiment are described with the same reference numerals.
  • the write high voltage supply circuit 3 includes NMOS transistors 31 to 34, PMOS transistors 35 to 37, and an inverter 38.
  • the resistance element 14 is a polysilicon resistor connected between the output DAT ABS of the write high voltage supply circuit 3 and the common data bus line DATABn.
  • the comparison circuit 5 includes NMOS transistors 51 to 53, PMOS transistors 54 and 55, an inverter 56, and resistors 57 and 58.
  • the pull-down circuit 6 is composed of an NMOS transistor.
  • the high voltage high voltage limiting circuit 8 includes NMOS transistors 81 to 83, a NAND circuit 84, and inverters 85 to 87. Since the operation is the same as described above, the description is omitted. In this way, the resistance element 14 can also be realized by a polysilicon resistor.
  • the drain voltage is controlled to be lower than the level during normal programming. This allows draining at the end of the program and just before the end. The voltage can be reduced, and the drain can be shared to prevent the unselected memory cells from receiving the drain disturb.
  • the drain voltage is controlled by a pull-down circuit 6 that connects a dummy current source to the drain, and a write high voltage limiting circuit 8 that throttles the gate of the drain power supply driver PMOS transistor 37 with the output signal DON of the comparison circuit 5. To do.
  • each write high voltage supply circuit it is possible to determine immediately before the end of writing for each write bit.
  • the program power supply voltage can be stabilized regardless of the write state of each bit by adjusting the transistor size so that the cell current flows at the start of writing.
  • the nonvolatile semiconductor memory device is, for example, a flash memory.
  • This nonvolatile semiconductor memory device may be incorporated in a part of the semiconductor device.
  • the nonvolatile semiconductor memory device can be applied to a virtual ground type flash memory such as a NOR type and AND type flash memory and a mirror bit (MirrorBit (registered trademark)).
  • the write voltage supply circuit corresponds to the write high voltage supply circuit
  • the write voltage limit circuit corresponds to the write high voltage limit circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Read Only Memory (AREA)

Abstract

 半導体装置は、メモリセルのドレインに書込み電圧を供給する書込電圧供給回路と、前記メモリセルに接続されたデータバス線に流れる電流に応じて、前記書込電圧供給回路の出力の電位を下げるプルダウン回路と、前記書込電圧供給回路の書込み電圧を供給する強さを制限する書込電圧制限回路とを含む。この半導体装置によれば、プログラム中のドレインノードに流れる電流がある一定のレベルより小さくなったときにドレイン電圧を通常のプログラム時のレベルより低く制御することにより、プログラム終了時および終了間際のドレイン電圧を抑えることができ、ドレインを共有している非選択のセルがドレインディスターブを受けるのを防ぐことができる。

Description

明 細 書
半導体装置及び半導体装置の制御方法
技術分野
[0001] 本発明は、半導体装置及びその制御方法に関し、より詳細には、プログラム時のド レイン電圧を制御できる半導体装置及びその制御方法に関する。
背景技術
[0002] 図 1は、従来の不揮発性半導体記憶装置の書込み時の回路構成を示す図である。
不揮発性半導体記憶装置 1は、メモリセル 21、 22及び書込高電圧供給回路 3を含 む。メモリセル 21、 22は、電荷蓄積層としてフローティングゲートまたは窒化膜を備え たフラッシュメモリであり、書き込みは、セルのドレイン端子に高電圧を印加し電荷蓄 積層にホットキャリアが注入されて行われる。不揮発性半導体記憶装置 1における書 込み高電圧 VPROGは、図示しな ヽ高電圧生成回路が生成する高電圧が一定の電 圧にレギュレーションされた電圧であり、書込高電圧供給回路 3を介して、ビット線に 接続されて ヽる共通データバス線 DATABnに供給される。プログラム対象セルのド レイン電圧は、共通データバス線 DATAn力 デコードされ、供給される。ここで nは、 データバス幅を示す指標であり、例えば 0から 15の値をとる。
[0003] 一般に、プログラム時の対象メモリセルの状態によってメモリセル直近のドレイン電 圧は異なるのが現状である。すなわち、消去状態のメモリセルをプログラムするとき、 メモリセルのゲートが選択されて、メモリセルのドレインとソースは導通状態のために、 プログラム電源電圧は共通データバス上で一定の電圧にレギュレーションされていて も、メモリセルの直近ではドロップしてしまう。一方、プログラム対象メモリセルがプログ ラムされてくると、セルの閾値が高くなるために、ゲートが選択されていてもドレインと ソースの導通が弱くなるため共通データバスの電位がドロップすることなく印加される ことになる。
[0004] 特許文献 1記載の装置はプログラム電流と基準電流を比較して、プログラムベリファ ィをパスした場合、プログラムを終了させるというものである。
[0005] 特許文献 2記載の装置は、メモリー素子のドレインに供給する電流を、所定の値以 上の電流を制限する定電流素子によって制御するというものである。
[0006] 特許文献 1:米国特許第 5422842号明細書
特許文献 2 :特開 2001-15716号公報
発明の開示
発明が解決しょうとする課題
[0007] 不揮発性半導体記憶装置における大容量化や書き換え高速動作の要求から、微 細化によりメモリセルのドレイン抵抗 Rが顕著になると、プログラムのためのドレイン電 源電圧を高電圧に設定することになる。
[0008] し力しながら、セルのプログラム終了時もしくは終了間際になると対象セルが電流を 流さなくなるために、ドレイン電圧が高くなつて、ドレインを共有している非選択のメモ リセル 22がドレインディスターブを受けやすくなることになる。つまり、図 2に示すよう に、プログラム時、信号 PGMnが HIGHになると、セルは消去状態のため書込高電 圧供給回路 3の出力が抵抗でドロップし、共通データバス線 DATABnの電位より少 し低い電圧が Mlビット線(MIBL : Metal 1 bit line)に印加される。メモリセル 21が書 き込まれていくと電流が流れなくなるので、 Mlビット線 M1BLの電圧が共通データ バス線 DATABnのレベルに到達する。 Mlビット線 M1BLの電圧が高いと、ドレイン を共有している非選択のメモリセル 22がドレインディスターブを受けやすくなる。
[0009] また、特許文献 1記載の装置によっては上記問題は解決されな!ヽ。また、特許文献 2記載の装置は、メモリー素子のドレインに供給する電流を、所定の値以上の電流を 制限する定電流素子によって制御するというものである。
[0010] そこで、本発明は上記問題点に鑑みてなされたもので、プログラム対象メモリセルの 書込み終了間際或いは終了時にドレインを共有するメモリセルに力かるドレインディ スターブを軽減することができる半導体装置及び半導体装置の制御方法を提供する ことを目的とする。
課題を解決するための手段
[0011] 上記課題を解決するために、本発明は、メモリセルのドレインに書込み電圧を供給 する書込電圧供給回路と、前記メモリセルに接続されたデータバス線に流れる電流 に応じて、前記書込電圧供給回路の出力の電位を下げるプルダウン回路とを含む半 導体装置である。本発明によれば、プログラム中のドレインノードに流れる電流がある 一定のレベルより小さくなつたときにドレイン電圧を通常のプログラム時のレベルより 低く制御することにより、プログラム終了時および終了間際のドレイン電圧を抑えるこ とができ、ドレインを共有して!/、る非選択のメモリセルがドレインディスターブを受ける のを防ぐことができる。
[0012] 本発明は、前記半導体装置は更に、前記書込電圧供給回路の書込み電圧を供給 する強さを制限する書込電圧制限回路を含む。本発明によれば、書込電圧供給回 路の書込み電圧を供給する強さを制限することで、書込み終了間際のドレイン電圧 が高くなつてしまうのを抑えることができる。
[0013] 本発明は、メモリセルのドレインに書込み電圧を供給する書込電圧供給回路と、前 記メモリセルに接続されたデータバス線に流れる電流に応じて、前記書込電圧供給 回路の書込み電圧を供給する強さを制限する書込電圧制限回路とを含む半導体装 置である。本発明によれば、プログラム中のドレインノードに流れる電流がある一定の レベルより小さくなつたときに、書込電圧供給回路の書込み電圧を供給する強さ(能 力)を制限することにより、ドレイン電圧を通常のプログラム時のレベルより低く制御す る。これにより、プログラム終了時および終了間際のドレイン電圧を抑えることができ、 ドレインを共有している非選択のメモリセルがドレインディスターブを受けるのを防ぐこ とがでさる。
[0014] 本発明は、前記半導体装置は更に、前記書込電圧供給回路の出力と前記データ バス線の間に挿入された抵抗素子と、前記抵抗素子の両端の電位差が基準電圧を 下回ったことを判定する比較回路とを含む。本発明によれば、プログラム用ドレイン電 源である書込電圧供給回路の出力とデータバス線 (グローバルビット線)との間に抵 抗素子を設ける。抵抗素子の両端の電位差が一定電圧を下回ったことを判定する比 較回路を設ける。これにより、メモリセルが書き込まれて電流が減ってくる特性を利用 し、ドレインノードに流れる電流を検出することでプログラムが終了間際にあることを検 知することができる。
[0015] 前記書込電圧供給回路は、前記書込み電圧を出力するトランジスタを含んで構成 される。 [0016] 本発明の半導体装置は更に、前記書込電圧供給回路の出力と前記データバス線 の間に挿入された抵抗素子と、前記抵抗素子の両端の電位差が基準電圧を下回つ たことを判定する比較回路とを含み、前記プルダウン回路は、前記比較回路の出力 信号 (DON)によって制御される。本発明によれば、対象のメモリセルがプログラム終 了間際になり、ドレイン電流が減ると、書込電圧供給回路の出力の電位をグランド側 に引っ張ることで、ドレイン電圧が高くなつてしまうのを抑えることができる。
[0017] 本発明の半導体装置は更に、前記書込電圧供給回路の出力と前記データバス線 の間に挿入された抵抗素子と、前記抵抗素子の両端の電位差が基準電圧を下回つ たことを判定する比較回路とを含み、前記書込電圧制御回路は、前記比較回路の出 力信号 (DON)によって制御される。本発明によれば、書込み終了間際のドレイン電 圧が高くなつてしまうのを抑えることができる。
[0018] 前記書込電圧供給回路の前記トランジスタのゲート (PG)は、前記比較回路の出力 信号 (DON)によって制御される。前記抵抗素子は、トランジスタで構成される。前記 抵抗素子は、ポリシリコン抵抗で構成される。
[0019] 前記プルダウン回路は、前記書込電圧供給回路の出力とグランド間に接続されたト ランジスタである。本発明によれば、トランジスタサイズを書込み開始時のセル電流を 流す程度に調整することで各ビットの書込み状態に依らずプログラム電源電圧が安 定するよう〖こすることがでさる。
[0020] 本発明の半導体装置は、対応するメモリセルのドレインにそれぞれ書込み電圧を供 給するよう複数の前記書込電圧供給回路を含み、前記抵抗素子及び前記比較回路 は、前記書込電圧供給回路毎に設けられている。本発明によれば、書込電圧供給回 路毎に本発明の回路構成をとることで、書込みビット毎の書込み終了間際の判定が できる。また前記メモリセルは電荷蓄積層を備えた不揮発性メモリセルである。
[0021] 書込電圧供給回路の出力とメモリセルに接続されたデータバス線の電位差を基準 電圧と比較するステップと、前記電位差が前記基準電圧よりも小さい場合に、前記書 込電圧供給回路の出力の電位を引き下げるステップとを含む半導体装置の制御方 法である。本発明によれば、プログラム中のドレインノードに流れる電流がある一定の レベルより小さくなつたときにドレイン電圧を通常のプログラム時のレベルより低く制御 することで、プログラム終了時および終了間際のドレイン電圧を抑えることができ、ドレ インを共有している非選択のメモリセルがドレインディスターブを受けるのを防ぐことが できる。
[0022] 本発明は、書込電圧供給回路の出力とメモリセルに接続されたデータバス線の電 位差を基準電圧と比較するステップと、前記電位差が前記基準電圧よりも小さ!ヽ場合 に、前記書込電圧供給回路の書込み電圧を供給する強さを制限するステップとを含 む半導体装置の制御方法である。本発明によれば、プログラム中のドレインノードに 流れる電流がある一定のレベルより小さくなつたときに、書込電圧供給回路の書込み 電圧を供給する強さ(能力)を制限することにより、ドレイン電圧を通常のプログラム時 のレベルより低く制御する。これにより、プログラム終了時および終了間際のドレイン 電圧を抑えることができ、ドレインを共有して 、る非選択のメモリセルがドレインデイス ターブを受けるのを防ぐことができる。
発明の効果
[0023] 本発明によれば、プログラム対象メモリセルの書込み終了間際或いは終了時にドレ インを共有するセルに力かるドレインディスターブを軽減することができる半導体装置 及び半導体装置の制御方法を提供できる。 図面の簡単な説明
[0024] [図 1]従来の不揮発性半導体記憶装置の書込み時の回路構成を示す図である。
[図 2]従来の不揮発性半導体記憶装置のドレイン電圧を説明する図である。
[図 3]第 1実施形態による不揮発性半導体記憶装置の書込み時の回路を示す図であ る。
[図 4]第 1実施形態による不揮発性半導体記憶装置の書込み時の回路構成を示す 図である。
[図 5]第 2実施形態による不揮発性半導体記憶装置の書込み時の回路を示す図であ る。
[図 6]第 2実施形態による不揮発半導体記憶装置の書込み時の回路構成を示す図 である。
[図 7]書込高電圧制御回路内部クロックのタイミングチャートである。 [図 8]第 3実施形態による不揮発性半導体記憶装置の書込み時の回路を示す図であ る。
[図 9]第 3実施形態による不揮発性半導体記憶装置の書込み時の回路構成を示す 図である。
[図 10]第 3実施形態による不揮発性半導体記憶装置のドレイン電圧を説明する図で ある。
[図 11]第 4実施形態による不揮発性半導体記憶装置の書込み時の回路構成を示す 図である。
発明を実施するための最良の形態
[0025] 以下、本発明を実施するための最良の形態について説明する。
[0026] [第 1実施形態]図 3は第 1実施形態による不揮発性半導体記憶装置の書込み時の 回路構成を示す図である。図 3に示すように、不揮発性半導体記憶装置 10は、メモリ セル 2、書込高電圧供給回路 3、抵抗素子 4、比較回路 5及びプルダウン回路 6を含 む。メモリセル 2は電荷蓄積層を備えた不揮発性メモリセルである。書込高電圧供給 回路 3は、メモリセル 2のドレインに書込み電圧を供給するものである。抵抗素子 4は 、書込高電圧供給回路 3の出力 DATABSnと共通データバス線 DATABnの間に 挿入され、電位差によって流れて 、る電流を検知するものである。
[0027] 比較回路 5は、抵抗素子 4の両端の電位差をある基準電圧と比較し、抵抗素子 4の 両端の電位差が一定電圧を下回ったことを判定すると、信号 DONを HIGHにする。 これにより、メモリセル 2が書き込まれて電流が減ってくる特性を利用し、ドレインノー ドに流れる電流を検出することでプログラムが終了間際にあることを検知することがで きる。プルダウン回路 6は、プログラムの終了間際に書込高電圧供給回路 3の出力 D ATABSnの電位をグランド側に引っ張る回路である。
[0028] 図 4は第 1実施形態による不揮発性半導体記憶装置の書込み時の回路構成を示 す図である。図 4において、 10は不揮発性半導体記憶装置、 21、 22はメモリセル、 3 は書込高電圧供給回路、 4は抵抗素子、 5は比較回路及び 6はプルダウン回路をそ れぞれ示す。メモリセル 21及び 22はゲートがワード線 WL1及び WL2に印加された 電圧により制御される。ここで、メモリセル 21は書込み対象のメモリセルであり、メモリ セル 22は非選択のメモリセルであるとする。パストランジスタ 71及び 72はビット線を 選択するためのものである。書込高電圧供給回路 3は、 NMOSトランジスタ 31乃至 3 4、 PMOSトランジスタ 35乃至 37、インバータ 38を含む。
[0029] 抵抗素子 4は、書込高電圧供給回路 3の出力 DATABSnと共通データバス線 DA TABnの間に PMOSトランジスタのゲートとドレインを接続して実現したものである。 ここでは抵抗素子 4をダイオード接続の PMOSトランジスタで実現している。
[0030] 比較回路 5は、 NMOSトランジスタ 51乃至 53、 PMOSトランジスタ 54および 55、ィ ンバータ 56、抵抗 57および 58を含む。抵抗素子 4の上下にある端子 A、 Bの電圧が 比較回路 5に供給される。比較回路 5の入力と抵抗素子 4の PMOSトランジスタは力 レントミラーの構成をとつており、トランジスタサイズは比較回路 5の入力トランジスタ 5 4の方を小さくしてもよい。比較回路 5は、共通データ線 DATABnに接続されるセル に対してプログラムされるときに信号 PGMnが HIGHになると、インバータ 56の先の ノード N1がグランド電位となる。
[0031] ノード VRでは、電源電圧 VCCとグランド間の抵抗分割により基準電位が生成され る。 PMOSトランジスタ 55は、ソースが電源電圧 VCCに接続され、ゲートがノード VR により制御されて、ある一定電流を流す。抵抗素子 4の両端の電圧差が電源電圧 VC Cと基準電位 VRとの差よりも小さくなると、信号 DONが HIGHになる。つまり、比較 回路 5の出力信号 DONは(DATABS— DATABn) < (VCC— VR)のとき HIGHと なる。
[0032] 次に、書込高電圧供給回路 3について説明する。信号 PGMRはデイスチャージ用 の信号で通常は LOWとなる信号である。プログラム時、信号 PGMnが HIGHになる と、書込み高電圧 VPROGはそのまま PMOSトランジスタ 37から書込高電圧供給回 路 3の出力 DATABSnに供給される。 NMOSトランジスタ 31、 PMOSトランジスタ 3 5及び 36はレベルシフト回路を構成する。
[0033] プルダウン回路 6は、 NMOSトランジスタで構成されている。プルダウン回路 6は、 比較回路 5の出力信号 DONによって制御され、書込高電圧供給回路 3の出力 DAT ABSnの電位をグランド側に引つ張る。これにより対象のメモリセル 21がプログラム終 了間際になると、ドレイン電流が減り、(DATABSn— DATABn)く(VCC— VR)とな るため、出力信号 DONが HIGHとなるので、プルダウン回路 6を構成する NMOSト ランジスタがオン状態になり、ドレイン電圧が高くなつてしまうのを抑えることになる。こ れにより非選択のメモリセル 21がドレインディスターブを受けるのを防ぐことができる。 なお、 NMOSトランジスタがオン状態であるため、消費電流は少なくない。
[0034] 本実施形態によれば、プログラム中のドレインノードに流れる電流がある一定のレべ ルより小さくなつたときにドレイン電圧を通常のプログラム時のレベルより低く制御する ことで、プログラム終了時および終了間際のドレイン電圧を抑えることができ、ドレイン を共有している非選択のメモリセルがドレインディスターブを受けるのを防ぐことがで きる。
[0035] [第 2実施形態]次に第 2実施形態について説明する。図 5は第 2実施形態による不 揮発性半導体記憶装置の書込み時の回路を示す図である。図 5に示すように、不揮 発性半導体記憶装置 100は、メモリセル 2、書込高電圧供給回路 3、抵抗素子 4、比 較回路 5および書込高電圧制限回路 8を含む。上記と同一箇所については同一符 号を付して説明する。書込高電圧供給回路 3は、メモリセル 2のドレインに書込み電 圧を供給するものである。抵抗素子 4は、書込高電圧供給回路 3の出力 DATABSn と共通データバス線 DATABnの間に挿入され、電位差によって流れている電流を 検知するものである。比較回路 5は、抵抗素子 4の両端の電位差をある基準電圧と比 較し、抵抗素子 4の両端の電位差が一定電圧を下回ったことを判定すると、信号 DO Nを HIGHにする。これにより、メモリセル 2が書き込まれて電流が減ってくる特性を利 用し、ドレインノードに流れる電流を検出することでプログラムが終了間際にあることを 検知することができる。
[0036] 書込高電圧制限回路 8は、プログラム終了間際にプログラムのための高電圧 VPR OGを供給する強さを制御する回路である。プログラム中のドレインノードに流れる電 流がある一定のレベルより小さくなつたときにドレイン電圧を通常のプログラム時のレ ベルより低く制御することにより、プログラム終了時および終了間際のドレイン電圧を 抑えることができ、ドレインを共有して 、る非選択のメモリセルがドレインディスターブ を受けるのを防ぐことができる。
[0037] 図 6は第 2実施形態による不揮発性記憶装置の書込み時の回路構成を示す図で ある。図 6において、 100は不揮発性半導体記憶装置、 21、 22はメモリセル、 3は書 込高電圧供給回路、 4は抵抗素子、 5は比較回路および 8は書込高電圧制限回路を それぞれ示す。上記と同一箇所については同一符号を付して説明する。なお、メモリ セル 21はプログラム対象のメモリセルであり、メモリセル 22は非選択のメモリセルであ るとする。書込高電圧供給回路 3は、 NMOSトランジスタ 31乃至 34、 PMOSトランジ スタ 35乃至 37、インバータ 38を含む。
[0038] 比較回路 5は、 NMOSトランジスタ 51乃至 53、 PMOSトランジスタ 54および 55、ィ ンバータ 56、抵抗 57および 58を含む。書込高電圧制限回路 8は、 NMOSトランジス タ 81乃至 83、 NAND回路 84、インバータ 85乃至 87を含む。
[0039] 書込高電圧制限回路 8は、インバータ 85乃至 87により対象メモリセル 21がプロダラ ムすべきメモリセルであるときに HIGHになる信号 PGMnから立ち上がりを遅延させ た信号 PGMD及びその反転信号 PGMDBを内部制御信号として生成する。
[0040] 図 7は書込高電圧制御回路 8内部クロックのタイミングチャートである。信号 PGMD が信号 PGMnから立ち上がりを遅らせている理由は書込高電圧制限回路 8が書込 み Z非書込みをデコードするまでの遅延が必要だからである。書込み対象メモリセル をコントロールして 、る書込高電圧供給回路 3の PMOSトランジスタ 37のゲート(PG )は通常 LOWとなっており、書込み高電圧 VPROGが書込高電圧供給回路 3の出力 DATABSnに強く供給される。 NAND回路 84は、信号 DON及び信号 PGMDが共 に HIGHのとき、 NMOSトランジスタ 33をカットオフするものである。
[0041] ノード PGと電源電圧 VCCとの間には、 NMOSトランジスタ 81及び 82が直列に接 続されている。 NMOSトランジスタ 81は、しきい値 VTが低いものであるとし、信号 D ONが HIGHのとき、ソースフォロア動作をする。例えば、信号 DONが電源電圧 VC Cの場合、 NMOSトランジスタ 81のしきい値 VTだけ落ちた電圧(VCC— VT)がノー ド PGに供給される。
[0042] プログラムするときには、信号 PGMnが HIGHになると、信号 PGMDも HIGHにな る。ノード PGは、電源電圧 VCCから NMOSトランジスタ 81を介して接続される。書 込み対象メモリセルが書込み終了間際になると比較回路 5の出力信号 DONが HIG Hとなる。 NMOSトランジスタ 81のしきい値 VTが例えば 0だとすると、信号 DONの電 圧がノード PGにそのまま供給される。したがって、 PMOSトランジスタ 37のゲートの 電位が、 0ボルトから少し上昇することによって、書込高電圧供給回路 3の書込み電 圧を供給する能力を弱めることになる。よって、プログラム中は、書込高電圧供給回 路 3の出力 DATABSnの電位は、書き込み高電圧 VPROGより少し下がった電位と なる。
[0043] これにより、書込高電圧供給回路 3の PMOSトランジスタのゲート PGを最大 VCCま で引き上げることで書込高電圧供給回路 3の PMOSトランジスタ 37の書込高電圧の 供給能力を落すことができる。よって、書込み終了間際のドレイン電圧が高くなつてし まうのを抑えることができる。
[0044] また、レベルシフタに NMOSトランジスタ 83を追加することで、信号 PGMnが HIG Hの期間、 NMOSトランジスタ 83のゲートに LOWの信号 PGMDBを供給することで 、ノード PGの電位の上昇により nMOSトランジスタ 31がオンした場合でも、 PMOSト ランジスタ 36をオフ状態にしておくことができる。これにより、ノード PGが書込み高電 圧 VPROGまで引き上げられることにより、 PMOSトランジスタ 37がオフして、書込み が終了してしまうのを防止することができる。
[0045] 本実施形態によれば、書込高電圧供給回路のプログラムのための高電圧を供給す る強さ (能力)を制限することで、書込み終了間際のドレイン電圧が高くなつてしまうの を抑えることができる。
[0046] [第 3実施形態]次に、第 3実施形態について説明する。図 8は第 3実施形態による 不揮発性記憶装置の書込み時の回路を示す図である。図 8に示すように、不揮発性 半導体記憶装置 200は、メモリセル 2、書込高電圧供給回路 3、抵抗素子 4、比較回 路 5、プルダウン回路 6及び書込高電圧制限回路 8を含む。書込高電圧供給回路 3 は、メモリセル 2のドレインに書込み電圧を供給するものである。抵抗素子 4は、書込 高電圧供給回路 3の出力 DATABSnと共通データバス線 DATABnの間に挿入さ れ、電位差によって流れている電流を検知するものである。比較回路 5は、抵抗素子 4の両端の電位差をある基準電圧と比較し、抵抗素子 4の両端の電位差が一定電圧 を下回ったことを判定すると、信号 DONを HIGHにする。これにより、メモリセル 2が 書き込まれて電流が減ってくる特性を利用し、ドレインノードに流れる電流を検出する ことでプログラムが終了間際にあることを検知することができる。
[0047] プルダウン回路 6は、プログラムの終了間際に書込高電圧供給回路の出力 DATA BSnの電位をグランド側に引っ張る回路である。書込高電圧制限回路 8は、プロダラ ム終了間際に書込み高電圧 VPROGを供給する強さを制御する回路である。プログ ラム中のドレインノードに流れる電流がある一定のレベルより小さくなつたときにドレイ ン電圧を通常のプログラム時のレベルより低く制御する。
[0048] 図 9は第 3実施形態による不揮発性記憶装置の書込み時の回路構成を示す図で ある。図 9において、符号 200は不揮発性半導体記憶装置、 21、 22はメモリセル、 3 は書込高電圧供給回路、 4は抵抗素子、 5は比較回路、 6はプルダウン回路及び 8は 書込高電圧制限回路をそれぞれ示す。上記と同一箇所については同一符号を付し て説明する。なお、メモリセル 21はプログラム対象のメモリセルであり、メモリセル 22 は非選択のメモリセルであるとする。
[0049] メモリセル 21及び 22はゲートがワード線 WLに印加された電圧により制御される。
パストランジスタ 71及び 72はビット線を選択するためのものである。書込高電圧供給 回路 3は、 NMOSトランジスタ 31乃至 34、 PMOSトランジスタ 35乃至 37、インバータ 38を含む。抵抗素子 4は、書込高電圧供給回路 3の出力 DATABSnと共通データ バス線 DATABnの間に PMOSトランジスタのゲートとドレインを接続して実現したも のである。ここでは抵抗素子 4をダイオード接続の PMOSトランジスタで実現して!/、る
[0050] 比較回路 5は、 NMOSトランジスタ 51乃至 53、 PMOSトランジスタ 54および 55、ィ ンバータ 56、抵抗 57および 58を含む。プルダウン回路 6は、 NMOSトランジスタで 構成されている。高込高電圧制限回路 8は、 NMOSトランジスタ 81乃至 83、 NAND 回路 84、インバータ 85乃至 87を含む。プルダウン回路 6及び書込高電圧制限回路 8を設けることで効果的に書込み終了間際のドレイン電圧を低く抑えることができる。
[0051] 図 10は第 3実施形態による信号波形を示す。図 10に示すように、プログラム時、信 号 PGMnが HIGHになる。書込高電圧供給回路 3の出力の電位 DATABSnと共通 データバス線 DATABnの電位は、抵抗素子分だけレベル差がある。メモリセル 21が 消去状態にあり、電圧降下があるため、 Mlビット線 M1BLには少し低い電圧が印加 される。メモリセル 21が書き込まれていくと、メモリセル 21が電流を流さなくなり、ドレ イン電圧が上昇して、電流が減ってきたことが検出され、プログラム終了間際になると 、信号 DONが HIGHになる。プルダウン回路 6がオンすると同時に、書込高電圧制 限回路 8によりノード PGが高くなり、書込高電圧供給回路 3の出力 DATABSnの電 圧が下がってくるので、ドレイン電圧 DATABnも下がってくる。これにより、ドレインを 共有しているメモリセル 22にかかるドレインディスターブを軽減することができる。
[0052] 本実施形態によれば、プルダウン回路 6により書込高電圧供給回路 3の出力 DAT ABSnをグランドに引っ張り、書込高電圧制限回路 8により、書込高電圧供給回路 3 の出力 DATABSnの電位を上に引っ張る PMOSトランジスタ 37の能力を弱める。こ れにより、プログラム終了時および終了間際のドレイン電圧をより効果的に抑えること ができ、ドレインを共有して 、る非選択のメモリセル 22がドレインディスターブを受け るのをより防ぐことができる。
[0053] [第 4実施形態]次に、第 4実施形態について説明する。図 11は第 4実施形態によ る不揮発性記憶装置の書込み時の回路構成を示す図である。図 11において、符号 300は不揮発性半導体記憶装置、 21、 22はメモリセル、 3は書込高電圧供給回路、 14は抵抗素子、 5は比較回路、 6はプルダウン回路及び 8は書込高電圧制限回路を それぞれ示す。上記実施形態と同一箇所については同一符号を付して説明する。
[0054] 書込高電圧供給回路 3は、 NMOSトランジスタ 31乃至 34、 PMOSトランジスタ 35 乃至 37、インバータ 38を含む。抵抗素子 14は、書込高電圧供給回路 3の出力 DAT ABSと共通データバス線 DATABnの間に接続されたポリシリコン抵抗である。比較 回路 5は、 NMOSトランジスタ 51乃至 53、 PMOSトランジスタ 54および 55、インバー タ 56、抵抗 57および 58を含む。プルダウン回路 6は、 NMOSトランジスタで構成さ れている。高込高電圧制限回路 8は、 NMOSトランジスタ 81乃至 83、 NAND回路 8 4、インバータ 85乃至 87を含む。動作については上記と同様であるため説明を省略 する。このようにして、抵抗素子 14はポリシリコン抵抗で実現することもできる。
[0055] 以上、各実施形態によれば、プログラム中のドレインノードに流れるプログラム電流 I databがある一定のレベルより小さくなつたときにドレイン電圧を通常のプログラム時 のレベルより低く制御する。これにより、プログラム終了時および終了間際のドレイン 電圧を抑えることができ、ドレインを共有して 、る非選択のメモリセルがドレインデイス ターブを受けるのを防ぐことができる。
[0056] ドレイン電圧の制御は、ダミーの電流源をドレインに接続するプルダウン回路 6、お よびドレイン電源のドライバ PMOSトランジスタ 37のゲートを比較回路 5の出力信号 DONで絞る書込高電圧制限回路 8で行う。
[0057] また書込高電圧供給回路毎に本発明の回路構成をとることで、書込みビット毎の書 込み終了間際の判定ができる。プルダウン回路を使用する場合トランジスタサイズを 書込み開始時のセル電流を流す程度に調整することで各ビットの書込み状態に依ら ずプログラム電源電圧が安定するようにすることも可能である。
[0058] なお、上記不揮発性半導体記憶装置は例えばフラッシュメモリ等である。この不揮 発性半導体記憶装置は、半導体装置の一部に組み込まれたものであってもよい。ま た、上記不揮発性半導体記憶装置は、例えば NOR型、 AND型のフラッシュメモリ、 ミラービット(MirrorBit (登録商標) )などの仮想接地型フラッシュメモリに適用できる 。書込電圧供給回路は書込高電圧供給回路に、書込電圧制限回路は書込高電圧 制限回路に対応する。
[0059] 以上本発明の好ましい実施例について詳述した力 本発明は係る特定の実施例に 限定されるものではなぐ請求の範囲に記載された本発明の要旨の範囲内において 、種々の変形、変更が可能である。

Claims

請求の範囲
[1] メモリセルのドレインに書込み電圧を供給する書込電圧供給回路と、
前記メモリセルに接続されたデータバス線に流れる電流に応じて、前記書込電圧 供給回路の出力の電位を下げるプルダウン回路とを含む半導体装置。
[2] 前記半導体装置は更に、前記書込電圧供給回路の書込み電圧を供給する強さを制 限する書込電圧制限回路を含む請求項 1記載の半導体装置。
[3] メモリセルのドレインに書込み電圧を供給する書込電圧供給回路と、
前記メモリセルに接続されたデータバス線に流れる電流に応じて、前記書込電圧 供給回路の書込み電圧を供給する強さを制限する書込電圧制限回路とを含む半導 体装置。
[4] 前記半導体装置は更に、前記書込電圧供給回路の出力と前記データバス線の間に 挿入された抵抗素子と、
前記抵抗素子の両端の電位差が基準電圧を下回ったことを判定する比較回路とを 含む請求項 1から請求項 3のいずれか一項に記載の半導体装置。
[5] 前記書込電圧供給回路は、前記書込み電圧を出力するトランジスタを含む請求項 1 力 請求項 4のいずれか一項に記載の記載の半導体装置。
[6] 前記半導体装置は更に、前記書込電圧供給回路の出力と前記データバス線の間に 挿入された抵抗素子と、
前記抵抗素子の両端の電位差が基準電圧を下回ったことを判定する比較回路とを 含み、
前記プルダウン回路は、前記比較回路の出力信号によって制御される請求項 1ま たは請求項 2記載の半導体装置。
[7] 前記半導体装置は更に、前記書込電圧供給回路の出力と前記データバス線の間に 挿入された抵抗素子と、
前記抵抗素子の両端の電位差が基準電圧を下回ったことを判定する比較回路とを 含み、
前記書込電圧制限回路は、前記比較回路の出力信号によって制御される請求項 2 または請求項 3記載の半導体装置。
[8] 前記書込電圧供給回路の前記トランジスタのゲートは、前記比較回路の出力信号に よって制御される請求項 5記載の半導体装置。
[9] 前記抵抗素子は、トランジスタで構成される請求項 4記載の半導体装置。
[10] 前記抵抗素子は、ポリシリコン抵抗である請求項 4記載の半導体装置。
[11] 前記プルダウン回路は、前記書込電圧供給回路の出力とグランド間に接続されたトラ ンジスタである請求項 1または請求項 2記載の半導体装置。
[12] 前記半導体装置は、対応するメモリセルのドレインにそれぞれ書込み電圧を供給す るよう複数の前記書込電圧供給回路を含み、
前記抵抗素子及び前記比較回路は、前記書込電圧供給回路毎に設けられている 請求項 4記載の半導体装置。
[13] 前記メモリセルは電荷蓄積層を備えた不揮発性メモリセルである請求項 1から請求項
12のいずれか一項に記載の半導体装置。
[14] 書込電圧供給回路の出力とメモリセルに接続されたデータバス線の電位差を基準電 圧と比較するステップと、
前記電位差が前記基準電圧よりも小さい場合に、前記書込電圧供給回路の出力 の電位を引き下げるステップとを含む半導体装置の制御方法。
[15] 書込電圧供給回路の出力とメモリセルに接続されたデータバス線の電位差を基準電 圧と比較するステップと、
前記電位差が前記基準電圧よりも小さ!ヽ場合に、前記書込電圧供給回路の書込 み電圧を供給する強さを制限するステップとを含む半導体装置の制御方法。
PCT/JP2004/016118 2004-10-29 2004-10-29 半導体装置及び半導体装置の制御方法 WO2006046300A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2004/016118 WO2006046300A1 (ja) 2004-10-29 2004-10-29 半導体装置及び半導体装置の制御方法
JP2006542177A JP4804359B2 (ja) 2004-10-29 2004-10-29 半導体装置及び半導体装置の制御方法
US11/261,743 US7286407B2 (en) 2004-10-29 2005-10-28 Semiconductor device and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016118 WO2006046300A1 (ja) 2004-10-29 2004-10-29 半導体装置及び半導体装置の制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/261,743 Continuation US7286407B2 (en) 2004-10-29 2005-10-28 Semiconductor device and method for controlling the same

Publications (1)

Publication Number Publication Date
WO2006046300A1 true WO2006046300A1 (ja) 2006-05-04

Family

ID=36227552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016118 WO2006046300A1 (ja) 2004-10-29 2004-10-29 半導体装置及び半導体装置の制御方法

Country Status (3)

Country Link
US (1) US7286407B2 (ja)
JP (1) JP4804359B2 (ja)
WO (1) WO2006046300A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7529135B2 (en) * 2006-12-28 2009-05-05 Sandisk Corporation Apparatus for controlling bitline bias voltage
US20080158972A1 (en) * 2006-12-28 2008-07-03 Sandisk Corporation Method of controlling bitline bias voltage
FR2949163B1 (fr) * 2009-08-12 2011-12-09 St Microelectronics Rousset Surveillance de l'activite d'un circuit electronique
US8238158B2 (en) * 2010-08-04 2012-08-07 Texas Instruments Incorporated Programming of memory cells in a nonvolatile memory using an active transition control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0991980A (ja) * 1995-09-18 1997-04-04 Lg Semicon Co Ltd 不揮発性メモリをプログラムする方法
JPH09293387A (ja) * 1996-02-29 1997-11-11 Sanyo Electric Co Ltd 半導体メモリ
JPH11126487A (ja) * 1997-10-20 1999-05-11 Nec Corp 不揮発性半導体メモリ
JP2003199329A (ja) * 2001-12-28 2003-07-11 Iwate Toshiba Electronics Co Ltd 半導体集積回路
JP2003223793A (ja) * 2002-01-25 2003-08-08 Nec Microsystems Ltd 不揮発性半導体メモリ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422842A (en) 1993-07-08 1995-06-06 Sundisk Corporation Method and circuit for simultaneously programming and verifying the programming of selected EEPROM cells
TW378321B (en) 1996-02-29 2000-01-01 Sanyo Electric Co Semiconductor memory device
US5721704A (en) * 1996-08-23 1998-02-24 Motorola, Inc. Control gate driver circuit for a non-volatile memory and memory using same
JP2000030476A (ja) * 1998-07-14 2000-01-28 Mitsubishi Electric Corp 不揮発性半導体記憶装置および閾値電圧書込み方法
KR100282522B1 (ko) * 1998-09-17 2001-02-15 김영환 비휘발성메모리의 문턱전압을 프로그램하는 장치 및 방법
JP2001015716A (ja) 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd 半導体記憶装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0991980A (ja) * 1995-09-18 1997-04-04 Lg Semicon Co Ltd 不揮発性メモリをプログラムする方法
JPH09293387A (ja) * 1996-02-29 1997-11-11 Sanyo Electric Co Ltd 半導体メモリ
JPH11126487A (ja) * 1997-10-20 1999-05-11 Nec Corp 不揮発性半導体メモリ
JP2003199329A (ja) * 2001-12-28 2003-07-11 Iwate Toshiba Electronics Co Ltd 半導体集積回路
JP2003223793A (ja) * 2002-01-25 2003-08-08 Nec Microsystems Ltd 不揮発性半導体メモリ

Also Published As

Publication number Publication date
JP4804359B2 (ja) 2011-11-02
US20060092706A1 (en) 2006-05-04
US7286407B2 (en) 2007-10-23
JPWO2006046300A1 (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
JP3783885B2 (ja) 不揮発性半導体メモリ装置
US7920435B2 (en) Semiconductor memory device
JP4726807B2 (ja) 非揮発性メモリの雑/ファインプログラミングのための可変電流シンキング
KR100895331B1 (ko) 비 휘발성 메모리의 비정밀/정밀 프로그래밍을 위한 전하패킷 계량
US7257028B2 (en) Temperature compensated bit-line precharge
KR100829790B1 (ko) 플래시 메모리 장치 및 플래시 메모리 장치의 데이터 독출방법
KR100218244B1 (ko) 불휘발성 반도체 메모리의 데이터 독출회로
US6865112B2 (en) Non-volatile semiconductor memory device in which one page is set for a plurality of memory cell arrays
US20020114188A1 (en) Bit line setup and discharge circuit for programming non-volatile memory
JPH07192478A (ja) メモリアレイ内のメモリセルによって記憶される複数個の可能な状態における1つの状態を定めるための基準、メモリ、アレイセルのしきい値電圧を読出すのに用いられる複数個の基準セルをプログラムするための装置、n個の基準セルをプログラムする方法、およびアレイセルを読出す方法
US10418112B2 (en) Semiconductor memory device
US20130315003A1 (en) Memory device and method for verifying the same
US6400638B1 (en) Wordline driver for flash memory read mode
JP2003123493A (ja) ソース電位を制御してプログラム動作を最適化した不揮発性メモリ
JP3615009B2 (ja) 半導体記憶装置
JP3709606B2 (ja) 不揮発性半導体記憶装置及びベリファイ方法
US7995389B2 (en) Multi-level nonvolatile semiconductor memory
US6999345B1 (en) Method of sense and program verify without a reference cell for non-volatile semiconductor memory
US5812451A (en) Nonvolatile semiconductor storage apparatus and method of writing data to the same
JP2003223791A (ja) 不揮発性半導体メモリ装置
US20090284308A1 (en) Voltage generation circuit and flash memory device including the same
US7173860B2 (en) Source controlled operation of non-volatile memories
JP4804359B2 (ja) 半導体装置及び半導体装置の制御方法
CN114783488B (zh) 页缓冲器、编程方法、存储器装置及系统
JPH10326495A (ja) 不揮発性半導体記憶装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11261743

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

WWP Wipo information: published in national office

Ref document number: 11261743

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006542177

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04793226

Country of ref document: EP

Kind code of ref document: A1