明 細 書 Specification
有機性廃水の処理方法及び処理装置 Organic wastewater treatment method and treatment apparatus
技術分野 Technical field
[0001] 本発明は、有機性廃水を無害化する嫌気性処理方法及び装置に関し、更に詳しく は、難分解性成分を含む有機性廃水の生物学的な嫌気性処理方法及び装置に関 する。 [0001] The present invention relates to an anaerobic treatment method and apparatus for detoxifying organic wastewater, and more particularly to a biological anaerobic treatment method and apparatus for organic wastewater containing a hardly decomposable component.
[0002] 有機性廃水の処理は、好気性での活性汚泥法が多く用いられてきた。しかし、近年 、省エネルギーや余剰汚泥生成量削減の観点から嫌気性条件下での微生物分解が 使われるようになつている。本発明は、上向流式反応器に活性炭を有機物吸着材' 微生物担体として充填し、阻害性有機物含有廃水及び希薄有機性廃水を嫌気的に 処理する方法及び装置に関する。 [0002] For the treatment of organic wastewater, an aerobic activated sludge method has been often used. However, in recent years, microbial decomposition under anaerobic conditions has been used from the viewpoint of energy saving and reduction of surplus sludge production. The present invention relates to a method and apparatus for anaerobically treating inhibitory organic-containing wastewater and dilute organic wastewater by charging activated carbon as an organic matter adsorbent microbial carrier in an upward flow reactor.
背景技術 Background art
[0003] 有機性廃水の処理で一般に用いられる好気性での活性汚泥法では、曝気等のた めのエネルギー消費量が多ぐまた余剰汚泥量が多い。このため、余剰汚泥が少なく 、エネルギー的に有利な嫌気性条件下での微生物分解が実用化されるようになって いる。その主流となる反応器は、微生物の自己造粒機能を活用した嫌気性上昇流汚 泥床(Upflow Anaerobic Sludge Blanket ;UASB)式反応器、及びその改良型である 。し力しながら、これらの反応器では、自己造粒微生物(グラニュール)を反応器内に 維持することが必須であり、生物阻害性有機物含有廃水、 lOOmgZL以上の SS含 有廃水、及び、 lOOOmgZL以下の CODなどの希薄有機性廃水などでは、反応器 内での嫌気性微生物の増殖量よりダラ-ユールの解体量が多くなり、反応器内の微 生物量が減少するため、安定した処理が不可能である。 [0003] In the aerobic activated sludge method generally used in the treatment of organic wastewater, the amount of energy consumed for aeration is large and the amount of excess sludge is large. For this reason, microbial degradation under anaerobic conditions with little excess sludge and energy is being put into practical use. The mainstream reactor is an anaerobic upflow sludge blanket (UASB) reactor utilizing the self-granulating function of microorganisms, and an improved version thereof. However, in these reactors, it is essential to maintain self-granulating microorganisms (granules) in the reactor, and wastewater containing bioinhibiting organic substances, wastewater containing SS greater than lOOmgZL, and lOOOmgZL In the case of the following dilute organic wastewater such as COD, the amount of Dara-Yule dismantled is larger than the amount of anaerobic microorganisms grown in the reactor, and the amount of microorganisms in the reactor is reduced. Impossible.
[0004] 嫌気的生物阻害性有機物としてはクロ口ホルム、トリクロロエチレン、 P-トルィル酸 等があり、難分解性成分と易分解性成分を含む廃水としては、精製テレフタル酸製 造廃水が知られており、主成分は、難分解性分の P-トルィル酸とテレフタル酸及び易 分解性の酢酸、安息香酸である〔Sheng- Shung Chengら、 Wat. Sci. Tech. , V ol. 36, 73 - 82(1997)〕。
[0005] 難分解性成分を含む有機性廃水を嫌気性処理する方法には、以下に示すような 問題がある。 [0004] Examples of anaerobic bioinhibitory organic substances include black mouth form, trichlorethylene, and P-toluic acid. As wastewater containing hardly decomposable and easily decomposable components, purified terephthalic acid wastewater is known. The main components are P-toluic acid and terephthalic acid, which are hardly degradable, and acetic acid and benzoic acid that are easily degradable [Sheng-Shung Cheng et al., Wat. Sci. Tech., Vol. 36, 73- 82 (1997)]. [0005] The method for anaerobically treating organic wastewater containing hardly decomposable components has the following problems.
[0006] (1)嫌気微生物にとっての難分解性成分とは、長期の処理 (概ね 3ヶ月以上)を行 つても分解されずに残留が継続する成分のことである。このような難分解性成分は、 それ自体が嫌気微生物にとつて阻害性 (基質とならな 、)となるため、難分解成分が 高い割合を占める廃水処理では、 CODの除去率は低率であった。 [0006] (1) A hardly decomposable component for anaerobic microorganisms is a component that remains without being decomposed even after long-term treatment (approximately 3 months or more). Such persistent components are themselves inhibitory to anaerobic microorganisms (unless they are substrates), so COD removal rates are low in wastewater treatment, where high-degradable components account for a high percentage. there were.
[0007] (2)難分解性成分を UASB法で処理する場合、グラニュール汚泥の緻密さが低下 するため、グラニュール汚泥濃度が低くなり、また、リアクター外部に流出しやすくなる ため、処理の «I続が困難になる。 [0007] (2) When processing difficult-to-decompose components by the UASB method, the granular sludge density decreases, and the granule sludge concentration decreases, and it tends to flow out of the reactor. «I will be difficult to continue.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] 本発明は、上記従来技術に鑑み、難分解性成分を含む有機性廃水を対象として、 長期間安定に高性能で処理できる生物学的な嫌気性処理方法及び装置を提供を することを課題とする。 [0008] The present invention provides a biological anaerobic treatment method and apparatus capable of being stably treated with high performance for a long period of time, targeting organic wastewater containing a hardly decomposable component, in view of the above prior art. Is an issue.
課題を解決するための手段 Means for solving the problem
[0009] 上記課題を解決するために、本発明では、活性炭を充填した固定ろ床又は流動床 の上向流式嫌気反応器を用いて有機性廃水の生物学的な嫌気性処理を行うにあた つて、該反応器の頂部より処理水の一部を抜き出して、該反応器の底部又は原水流 入箇所に循環させ、前記上向流式嫌気反応器の処理状況に応じて、該反応器の頂 部より底部又は原水流入箇所に循環させる循環液量を調整することを特徴とする有 機性廃水の処理方法を提供する。前記処理方法において、上向流式嫌気反応器の 処理状況とは、例えば処理水の阻害性有機物の濃度及び Z又は反応器への流入 c[0009] In order to solve the above problems, in the present invention, biological anaerobic treatment of organic wastewater is performed using an upflow anaerobic reactor of a fixed filter bed or fluidized bed filled with activated carbon. Then, a part of the treated water is extracted from the top of the reactor and circulated to the bottom of the reactor or the raw water inlet, and the reaction is performed according to the treatment status of the upward flow anaerobic reactor. The organic wastewater treatment method is characterized by adjusting the amount of circulating fluid to be circulated from the top of the vessel to the bottom or the raw water inflow point. In the above treatment method, the treatment status of the upflow anaerobic reactor is, for example, the concentration of the inhibitory organic matter in the treated water and Z or the inflow to the reactor c
ODcrに対するバイオガス発生量である。前記上向流式嫌気反応器には、活性炭の 充填と同時又は充填後に種汚泥を添加することができる。また、前記上向流式嫌気 反応器は、生成するメタンガス、処理水及び充填剤を分離する気 '液'固分離部を垂 直方向に多段に設置すると共に、分離されたメタンガス発生量を測定する測定手段 を有することができる。 The amount of biogas generated relative to ODcr. Seed sludge can be added to the upward flow anaerobic reactor at the same time as or after filling with activated carbon. In addition, the upward flow anaerobic reactor has gas-liquid solid-separation units that separate the generated methane gas, treated water, and filler in multiple stages in the vertical direction, and measures the amount of separated methane gas generated. It is possible to have a measuring means.
[0010] また、本発明では、活性炭を充填した固定ろ床又は流動床の上向流式嫌気反応器
と、該反応器の頂部より処理水の一部を該反応器の底部又は原水流入箇所に循環 する循環液ラインを有する有機性廃水の生物学的な嫌気性処理装置であって、原水 及び処理水の COD測定手段及び Z又はバイオガス発生量測定手段と、該 COD測 定手段及び Z又はバイオガス発生量測定手段からのデータで、前記上向流式嫌気 反応器の処理状況を演算し、該演算結果を基に循環液量を調節する手段とを更に 具備することを特徴とする装置も提供される。 [0010] Further, in the present invention, an upflow type anaerobic reactor of a fixed filter bed or a fluidized bed filled with activated carbon. And a biological anaerobic treatment apparatus for organic wastewater having a circulating liquid line for circulating a part of the treated water from the top of the reactor to the bottom of the reactor or a raw water inflow portion. Using the data from the water COD measurement means and Z or biogas generation amount measurement means, and the data from the COD measurement means and Z or biogas generation amount measurement means, the processing status of the upward flow type anaerobic reactor is calculated, There is also provided an apparatus further comprising means for adjusting the amount of circulating fluid based on the calculation result.
[0011] 前記処理装置において、上向流式嫌気反応器は、該反応器の本体壁との角度が 下向きに 35度以下、かつ各占有面積が該反応器の横断面積の 2分の 1以上である 邪魔板を多段に有し、該邪魔板で分離されたメタンガスの量を測定するガス発生量 測定装置を設けることができる。 [0011] In the processing apparatus, the upward flow type anaerobic reactor has an angle with the main body wall of the reactor of 35 degrees or less downward, and each occupied area is more than half of the cross-sectional area of the reactor It is possible to provide a gas generation amount measuring device that has baffle plates in multiple stages and measures the amount of methane gas separated by the baffle plates.
産業上の利用可能性 Industrial applicability
[0012] 本発明は、循環ラインを有する活性炭を投入した嫌気性上向流式反応器を用いる 。充填した活性炭の吸着能により、生物阻害性有機物の濃度を阻害濃度以下に制 御しうると共に、活性炭上にその有機物を分解しうる微生物を付着増殖させ、活性炭 の再生がなされる。また、反応器の頂部より処理液の一部を反応器の底部に循環さ せることにより、流入水中の生物阻害性有機物濃度を希釈できると共に、反応器内の 上昇流の線速度を、投入された活性炭担体が適度に膨潤し、かつ流入水中の SSに よる閉塞を回避できるように制御できる。さらに、分解関与微生物を活性炭上に付着 増殖させるため、微生物の安定した自己造粒が困難な希薄廃水や、高濃度 SSなど の廃水にも安定して適用できる。処理対象廃水に応じて反応器内に GSS (ガス、処 理水、充填材の分離設備)を垂直方向に多段に設置することにより、反応器内下部 での原水と分解関与微生物の接触反応を促進すると共に、分解微生物や活性炭の 処理水への流出を極力少なくでき、菌体濃度の高い反応器となる。 [0012] The present invention uses an anaerobic upflow reactor charged with activated carbon having a circulation line. The concentration of the bioinhibiting organic substance can be controlled below the inhibitory concentration by the adsorption ability of the filled activated carbon, and microorganisms capable of decomposing the organic substance are adhered and grown on the activated carbon to regenerate the activated carbon. In addition, by circulating a part of the treatment liquid from the top of the reactor to the bottom of the reactor, the concentration of bioinhibitory organic substances in the influent can be diluted, and the linear velocity of the upward flow in the reactor can be introduced. The activated carbon carrier can be controlled so that it swells moderately and can be blocked by SS in the influent water. Furthermore, because the microorganisms involved in decomposition adhere to and grow on activated carbon, they can be stably applied to dilute wastewater where stable self-granulation of microorganisms is difficult and wastewater such as high-concentration SS. Depending on the wastewater to be treated, GSS (gas, treated water, filler separation equipment) is installed in multiple stages in the vertical direction in the reactor, so that the contact reaction between the raw water and the microorganisms involved in decomposition occurs in the lower part of the reactor. In addition to facilitating, the outflow of decomposed microorganisms and activated carbon to the treated water is minimized, resulting in a reactor with a high cell concentration.
[0013] 本発明は、生物阻害性有機物含有廃水、 lOOmgZL以上の SS含有廃水、及び、 lOOOmgZL以下の CODなどの希薄有機性廃水を対象として ヽる。これらの廃水を 嫌気的に処理する方法としては、粒状の活性炭を担体とした嫌気性ろ床法が有効で ある。 [0013] The present invention is directed to bioinhibitory organic substance-containing wastewater, SS-containing wastewater of lOOmgZL or higher, and dilute organic wastewater such as COO of lOOOmgZL or lower. As an anaerobic treatment method for these wastewaters, an anaerobic filter bed method using granular activated carbon as a carrier is effective.
[0014] 処理開始当初は、充填した活性炭の吸着能により生物阻害性有機物の濃度は阻
害濃度以下となり、制御可能である。さらに、飽和吸着量に達する前に、種汚泥で供 給された嫌気性菌及び活性炭上で付着増殖した嫌気性菌により、嫌気性条件下で 長期間の処理を行う吸着分解が可能となり、活性炭の生物学的再生も可能となる。 [0014] At the beginning of treatment, the concentration of bioinhibitory organic substances is hindered by the adsorption capacity of the packed activated carbon. It is below the harmful concentration and can be controlled. Furthermore, before reaching the saturated adsorption amount, anaerobic bacteria supplied with seed sludge and anaerobic bacteria adhering to and proliferated on activated charcoal enable adsorptive decomposition that performs long-term treatment under anaerobic conditions. Biological regeneration is also possible.
[0015] 原水の一例として、濃度によって嫌気性処理に対して阻害性を示す物質を含む有 機性廃水がある。 [0015] As an example of raw water, there is organic wastewater containing a substance that exhibits an inhibitory effect on anaerobic treatment depending on its concentration.
図面の簡単な説明 Brief Description of Drawings
[0016] [図 1]本発明の処理フローの概略構成図である。 FIG. 1 is a schematic configuration diagram of a processing flow of the present invention.
[図 2]実施例 1の実験結果を示すグラフである。 FIG. 2 is a graph showing the experimental results of Example 1.
[図 3]実施例 2の実験結果を示すグラフである。 FIG. 3 is a graph showing the experimental results of Example 2.
[0017] 図 1において、各符号は以下の意味を有する。 In FIG. 1, each symbol has the following meaning.
1 :原水送水管、 2 :リアクター、 3 :邪魔板、 4a, 4b :区分スラッジゾーン、 5 : GSS部、 1: Raw water pipe, 2: Reactor, 3: Baffle plate, 4a, 4b: Separate sludge zone, 5: GSS section,
5a, 5b :気相部、 6 :発生ガス回収配管、 7 :水封槽、 8 :ガスメータ、 9 :処理水配管、 15a, 5b: Gas phase section, 6: Generated gas recovery piping, 7: Water seal tank, 8: Gas meter, 9: Treated water piping, 1
0 :消泡剤、 11 :ガスホルダー、 12 :活性炭上端面、 15 :循環液配管、 16 :循環ボン プ。 0: Antifoaming agent, 11: Gas holder, 12: Upper end of activated carbon, 15: Circulating fluid piping, 16: Circulating pump.
[0018] 図 1に本発明における処理フローの概略構成図を例示し、この図に基づいて本発 明を詳細に説明する。 FIG. 1 illustrates a schematic configuration diagram of a processing flow in the present invention, and the present invention will be described in detail based on this diagram.
[0019] 図 1において、原水送液管 1が連通し、上下を閉塞した筒状のリアクター 2は、内部 の左右両側壁のそれぞれに、一方の端部を固定し他方の端部を反対側の側壁方向 に向力つて下降しながら延ばしている邪魔板 3が設置されている。邪魔板 3は、上下 方向に 2箇所左右交互に設けてあって、リアクター側壁との間にそれぞれ鋭角の区 分スラッジゾーン 4a〜4bを形成して 、る。リアクター 2の側壁と邪魔板 3のなす下向き の角度 Θは、 35度以下の鋭角であり、占有面積は、筒状のリアクターの横断面積の 1/2以上であることが好ましい。角度 Θが 35度を越える場合には、スラッジゾーン 4a , 4bの邪魔板 3の上部に汚泥又は活性炭担体が堆積して流動性が不十分となり、デ ッドスペースが形成される。また、邪魔板 3の占有面積力 以下だと、発生ガスの 捕捉が不十分となり、気液固の分離に不具合を生じる。つまり、リアクター 2の中心よ りガスが上方へ抜けてしまい、後記の GSS部 (ガス *液*固分離部) 5にガスを十分に 集積することができなくなる。
[0020] 区分スラッジゾーン 4a、 4bの上部は、 GSS部 5を形成している。反応が開始すると 発生ガスが集まる気相部 5aには、外部と通じる発生ガス回収配管 6の排出口を設け てある。また、 12は、充填した活性炭の上端面を示す。 In FIG. 1, a cylindrical reactor 2 in which the raw water supply pipe 1 communicates and is closed at the top and bottom is fixed to one of the left and right side walls, and the other end is opposite to the other side. There is a baffle plate 3 extending while descending in the direction of the side wall. The baffle plates 3 are provided alternately at two left and right locations in the vertical direction, and form acute slanted segment sludge zones 4a to 4b between the reactor side walls. The downward angle Θ between the side wall of the reactor 2 and the baffle plate 3 is an acute angle of 35 degrees or less, and the occupied area is preferably 1/2 or more of the cross-sectional area of the cylindrical reactor. When the angle Θ exceeds 35 degrees, sludge or activated carbon carrier accumulates on the upper part of the baffle plate 3 in the sludge zones 4a and 4b, resulting in insufficient fluidity, and a dead space is formed. If the area force of the baffle plate 3 is less than or equal to that of the baffle plate 3, trapping of the generated gas becomes insufficient, causing problems in gas-liquid solid separation. In other words, the gas escapes upward from the center of the reactor 2, and the gas cannot be sufficiently accumulated in the GSS part (gas * liquid * solid separation part) 5 described later. [0020] The upper part of the divided sludge zones 4a, 4b forms a GSS section 5. The gas phase part 5a where the generated gas collects when the reaction starts is provided with an outlet of the generated gas recovery pipe 6 that communicates with the outside. Reference numeral 12 denotes the upper end surface of the filled activated carbon.
[0021] なお、気相部 5aから接続されている発生ガス回収配管 6の吐出口は、水を充填し た水封槽 7の水中内で開口している。開口位置は、水圧が異なる適宜な水深位にあ り、水封槽 7には、発生ガス回収配管 6から吐き出されたガス流量を測定するガスメー タ 8を設けてある。ガスメータ 8の先には、ガスホルダー 11が設けられている。また、リ アクター 2上端には、上澄み液を排出する処理水配管 9が開口している。循環液配管 15は、リアクターの上部の処理水流出部あるいは処理水配管 9に接続され、循環ポ ンプ 16を介して、リアクター 2の底部に接続される。 It should be noted that the discharge port of the generated gas recovery pipe 6 connected from the gas phase part 5a opens in the water of the water sealing tank 7 filled with water. The opening position is at an appropriate water depth with different water pressures, and the water seal tank 7 is provided with a gas meter 8 for measuring the flow rate of the gas discharged from the generated gas recovery pipe 6. A gas holder 11 is provided at the tip of the gas meter 8. A treated water pipe 9 for discharging the supernatant liquid is opened at the upper end of the reactor 2. The circulating liquid pipe 15 is connected to the treated water outflow part or the treated water pipe 9 at the top of the reactor, and is connected to the bottom of the reactor 2 through the circulating pump 16.
[0022] リアクター 2の内部には、任意の粒径の活性炭を充填すると共に、種汚泥として嫌 気性菌からなるグラニュール汚泥あるいは消化汚泥を投入して使用する。 [0022] The reactor 2 is filled with activated carbon having an arbitrary particle diameter, and granular sludge or digested sludge made of anaerobic bacteria is used as seed sludge.
[0023] 活性炭は、粒状炭、破砕炭、粉状炭のいずれでも使用できるが、長期にわたって使 用するため、圧壊強度として、少なくとも lkgZcm3の圧力でも形状が維持できる粒状 や破砕状の活性炭が好ましい。使用する活性炭の粒径は、リアクター内の流動条件 と、必要な微生物量で決定される。すなわち、原水の有機物濃度が低濃度の場合 (C ODで 3000mgZL以下)は、リアクター内の流速を早くすることが可能であり、比較 的大き!、粒径の活性炭が選択できるし、高濃度の場合は小さ!、粒径の活性炭が選 択される。本発明において用いる活性炭としては、有効径 0.05mn!〜 3mm、好ましく は 0.2mm〜0.7mmの範囲で、均等係数は 1.2〜2の範囲のものを使用することがで きる。 [0023] The activated carbon can be any of granular coal, pulverized coal, and pulverized coal, but since it is used over a long period of time, granular or crushed activated carbon that can maintain its shape even at a pressure of at least lkgZcm 3 is used as the crushing strength. preferable. The particle size of the activated carbon used is determined by the flow conditions in the reactor and the amount of microorganisms required. In other words, when the organic matter concentration in the raw water is low (COD: 3000 mgZL or less), the flow rate in the reactor can be increased, and a relatively large size, activated carbon with a particle size can be selected. In this case, activated carbon with a small particle size is selected. The activated carbon used in the present invention has an effective diameter of 0.05 mn! It is possible to use a material having a uniformity coefficient in the range of 1.2 to 2 in a range of ˜3 mm, preferably 0.2 mm to 0.7 mm.
[0024] 種汚泥の量は、少ないと活性炭表面上で増殖する嫌気性菌が不足するため処理 が不安定となるし、逆に多すぎると活性炭の量が不足しスタート時点の処理が悪ィ匕す る。そのため、安定した処理状況を維持するには、充填した活性炭容量の 5%〜30 %、好ましくは 10%〜20%の種汚泥をカ卩えることが好ましいことが、実験の結果より 明らかとなった。 [0024] If the amount of seed sludge is small, the treatment becomes unstable due to insufficient anaerobic bacteria growing on the surface of the activated carbon. Conversely, if the amount is too large, the amount of activated carbon is insufficient and the treatment at the start point is poor. Hesitate. Therefore, in order to maintain a stable treatment situation, it is clear from experimental results that it is preferable to cover 5% to 30%, preferably 10% to 20%, of seeded sludge with respect to the charged activated carbon capacity. It was.
[0025] 本発明の対象となる嫌気性処理は、 30°C〜37°Cを至適温度とした中温メタン発酵 処理、 50°C〜55°Cを至適温度とした高温メタン発酵処理など、全ての温度範囲の嫌
気性処理を対象としている。 [0025] Anaerobic treatment subject to the present invention includes medium temperature methane fermentation treatment with an optimum temperature of 30 ° C to 37 ° C, high temperature methane fermentation treatment with an optimum temperature of 50 ° C to 55 ° C, etc. Hate all temperature ranges Intended for temper treatment.
[0026] 嫌気性処理に対して阻害を及ぼす物質を含む有機性廃水等の原水は、送液管 1 力もリアクター 2へ導入する。リアクター 2内部での通水速度は、循環液も含めて 0.1 〜 1 Om/hとするのが好まし!/、。 [0026] Raw water such as organic waste water containing a substance that inhibits anaerobic treatment also introduces a feeding pipe 1 into the reactor 2. The water flow rate inside reactor 2 is preferably 0.1 to 1 Om / h, including the circulating fluid! /.
[0027] リアクター 2内では、嫌気性菌の介在によって生物阻害性有機物が分解し、分解ガ スが発生する。発生したガスは、各区分スラッジゾーン 4a〜4b上端の GSS部 5に別 れて集まり、それぞれに気相部 5aを形成し、発生ガス回収配管 6を通じて水封槽 7に 至る。こうした発生ガスは、ガスメータ 8でその排出量が記録され、ガスホルダー 11に 送られる。発生ガスの一部は、区分スラッジゾーン 4a〜4b内で生物担体に付着し、 その見かけ比重を軽減させると共に、汚泥又は活性炭担体を同伴して GSS部 5の水 面に達する。こうした発生ガスは、気泡を形成して水面気相部 5bに一時的に滞留す る。水面気相部 5bに集合した気泡はやがて破裂し、発生ガスと汚泥又は活性炭担体 とが分離され、汚泥又は活性炭担体はもとの比重を回復して水中に沈降し、発生ガ スは発生ガス回収配管 6から水封槽 7を経由して、系外に排出される。有機物が分解 して清澄になった水は、リアクター上端から、処理水配管 9を経由して系外に排出さ れると共に、循環液は循環液配管 15により循環ポンプ 16を介して、リアクター底部に 供給される。 [0027] In the reactor 2, bioinhibitory organic substances are decomposed by anaerobic bacteria, and decomposition gas is generated. The generated gas gathers separately in the GSS section 5 at the upper end of each of the sludge zones 4a to 4b, forms a gas phase section 5a in each, and reaches the water seal tank 7 through the generated gas recovery pipe 6. The amount of such generated gas is recorded by the gas meter 8 and sent to the gas holder 11. Part of the generated gas adheres to the biological carrier in the divided sludge zones 4a to 4b, reduces its apparent specific gravity, and accompanies sludge or activated carbon carrier to the water surface of the GSS section 5. Such generated gas forms bubbles and temporarily stays in the water surface gas phase portion 5b. The bubbles gathered in the water surface gas phase part 5b eventually burst, and the generated gas and sludge or activated carbon carrier were separated, and the sludge or activated carbon carrier recovered its original specific gravity and settled in water. It is discharged out of the system from the recovery pipe 6 via the water seal tank 7. Water that has been clarified by the decomposition of organic matter is discharged from the top of the reactor via the treated water pipe 9 and the circulating fluid is discharged to the bottom of the reactor via the circulating pump 16 via the circulating pump 16. Supplied.
[0028] 各 GSS部 5の気相部 5aのガス圧は異なるので、その差圧は水封槽 7で調整すると よい。原水送液側に近い順に、水封圧は高く保つ必要がある。ガス回収の圧調整は 、水封槽 7を使う方法以外にも多くの方法がある。例えば、圧力弁等を使用してもよい [0028] Since the gas pressure in the gas phase portion 5a of each GSS portion 5 is different, the differential pressure may be adjusted in the water-sealed tank 7. The water seal pressure needs to be kept higher in the order closer to the raw water feed side. There are many ways to adjust the pressure of gas recovery besides using the water-sealed tank 7. For example, a pressure valve may be used
[0029] 発泡性の原水の場合には、 GSS5内の気相部 5a及び発生ガス回収配管 6が閉塞 し、発生ガスの回収が困難となる。このような場合、リアクター 2の流入水に予め消泡 剤 10を加えることで、 GSS5内での発泡を抑えることができる。 GSS5内に消泡剤を 滴下、噴霧する方法に比べ、本手法は密閉空間での消泡に効果的である。消泡剤 1 0としては、原水性状に応じた消泡効果を有し、発酵液の消泡に適した中温(30〜3 5°C)あるいは高温(50〜55°C)において、消泡効果を失すことのない消泡剤を使用 することができる。消泡剤の種類としては、シリコーン系消泡剤、アルコール系消泡剤
の何れも適用が可能である。 [0029] In the case of foaming raw water, the gas phase part 5a and the generated gas recovery pipe 6 in the GSS 5 are blocked, making it difficult to recover the generated gas. In such a case, foaming in GSS5 can be suppressed by adding antifoaming agent 10 to the inflow water of reactor 2 in advance. Compared to the method of dripping and spraying an antifoam in GSS5, this method is more effective for defoaming in a closed space. Anti-foaming agent 10 has anti-foaming effect according to raw water condition, and defoaming at medium temperature (30 ~ 35 ° C) or high temperature (50 ~ 55 ° C) suitable for defoaming of fermentation broth An antifoaming agent that does not lose its effect can be used. Types of antifoaming agents include silicone-based antifoaming agents and alcohol-based antifoaming agents Any of these can be applied.
[0030] 原水性状等の影響によりスカムを形成しやすい場合には、 GSS5内の気相部 5bの 表面及び内部にスカムが形成され、発生ガスの回収が困難となる。このような場合に は、発生ガス吹き込み配管(図示せず)を発生ガス回収配管 6に接続し、ガスホルダ 一 11内の発生ガスを GSS5内に供給することで、スカムの破壊あるいはスカムの形 成防止を行うことが可能となる。 [0030] When scum is likely to be formed due to the influence of the raw water state or the like, scum is formed on the surface and inside of the gas phase portion 5b in GSS5, making it difficult to recover the generated gas. In such a case, connect the generated gas blow-in pipe (not shown) to the generated gas recovery pipe 6 and supply the generated gas in the gas holder 11 to the GSS5 to destroy the scum or form the scum. Prevention can be performed.
[0031] 本発明の重要事項である循環液量は、次の方法を単独あるいは併用して調整され る。 [0031] The amount of circulating fluid, which is an important matter of the present invention, is adjusted by using the following methods alone or in combination.
[0032] (1)濃度測定による方法 [0032] (1) Method by concentration measurement
(a)対象とする有機性物質の生物阻害の濃度 (C )をあらかじめ、回分実験等で測 (a) Measure the biological inhibition concentration (C) of the target organic substance in advance by a batch experiment, etc.
0 0
定する。 Determine.
[0033] (b)リアクターに流入する阻害性有機物濃度を、原水 (C )及び処理水 (C )を測 [0033] (b) Measure the concentration of the inhibitory organic matter flowing into the reactor with the raw water (C) and treated water (C).
in out 定して、下記(1)式に基づき、リアクター流入部での阻害性有機物濃度 (C)が C以 In out, based on the following formula (1), the concentration of the inhibitory organic substance (C) at the reactor inlet
0 下の範囲となるように、循環水量 Qを設定する。阻害物有機物濃度 (C)は、 Cと同濃 0 Set the circulating water volume Q so that it is in the lower range. Inhibitor organic concentration (C) is the same as C
r 0 度未満が必要であり、実際上は C= lZ2Cにするのが好ましい。 r Less than 0 degrees is necessary, and in practice, C = lZ2C is preferable.
0 0
[0034] C< C = (C X Q + C X Q )Z(Q + Q ) ' H (1)式 [0034] C <C = (C X Q + C X Q) Z (Q + Q) 'H (1)
0 in out r r 0 in out r r
Q :流入水量 (m3Zd)、 循環水量 (m3Zd) Q: Inflow water volume (m 3 Zd), Circulating water volume (m 3 Zd)
C, C , C , C ;阻害物濃度あるいは総括的有機物濃度、単位 (mgZリットル) C, C, C, C: Inhibitor concentration or total organic concentration, unit (mgZ liter)
0 in out 0 in out
(2)ガス発生量による方法 (2) Gas generation method
(a)ガスメータからのガス発生量とガス濃度計のメタン濃度から、リアクターからのメタ ン発生量 (G )を算出し、除去 COD量(Δ COD)を求めたのち、処理水の COD濃 (a) The amount of methane generated from the reactor (G) is calculated from the amount of gas generated from the gas meter and the methane concentration of the gas concentration meter, and the amount of COD removed (Δ COD) is calculated.
out out
度あるいは処理水の残留有機物濃度 (C )を算出する。 Calculate the residual organic matter concentration (C) of the treated water.
out out
(b)除去 COD量は以下の(2)式より求められる。 (b) The amount of COD removed can be obtained from the following equation (2).
(m3/d)÷0. 3〜0. 4 (kgZm3) · · · (2)式(m 3 / d) ÷ 0.3 to 0.4 (kgZm 3 ) Equation (2)
(c) C は(3)式力 算出する。 (c) C is calculated by equation (3).
out out
C =C - ( A COD÷Q X 1000) · · · (3)式 C = C-(A COD ÷ Q X 1000)
out in out in
(3)式力 算出した C を(1)式に導入すると、必要な循環液量が求められる。 (3) Formula force When the calculated C is introduced into Formula (1), the required circulating fluid volume is obtained.
out out
実施例
[0035] 以下、本発明を実施例により具体的に説明する。 Example Hereinafter, the present invention will be specifically described with reference to examples.
[0036] 実施例 1 [0036] Example 1
図 1に示す活性炭を充填した上向流式嫌気性リアクターの 2系列 (A系列、 B系列) を実験に用いた。 Two series (A series and B series) of an upflow anaerobic reactor filled with activated carbon shown in Fig. 1 were used in the experiment.
[0037] A系列と B系列の装置は同一構造であり、傾斜する邪魔板を 2個取り付け、装置側 壁と邪魔板 3との角度を 30度とし、原水に消泡剤を添加した。液層部の容量は 100リ ットルであった。リアクター内の水温は、 35°Cになるように温度制御した。この 2つのリ アクターに、有効径 0.3mm、均等係数 1.5の粒状活性炭を 60リットル、及び、種汚泥 として飲料系廃水を処理して 、る UASBグラニュール (MLSS濃度 5%)を 10リットル 充填した。 [0037] The A-series and B-series apparatuses have the same structure. Two inclined baffle plates were attached, the angle between the apparatus side wall and the baffle plate 3 was 30 degrees, and an antifoaming agent was added to the raw water. The volume of the liquid layer was 100 liters. The temperature of the water in the reactor was controlled to 35 ° C. These two reactors were filled with 60 liters of granular activated carbon with an effective diameter of 0.3 mm and a uniformity coefficient of 1.5, and 10 liters of UASB granules (MLSS concentration 5%) treated with drinking wastewater as seed sludge. .
[0038] 原水には、酢酸ナトリウム(COD換算で 750mgZリットル)とテレフタール酸(CO cr [0038] The raw water contains sodium acetate (750 mgZ liter in terms of COD) and terephthalic acid (CO cr
D換算で 350mgZリットル)を混合し、無機栄養塩類 (窒素、リンなど)を添加したも cr D is converted to 350mgZ liter) and added with inorganic nutrients (nitrogen, phosphorus, etc.) cr
のを用いた。この混合廃水において、難分解性有機物質であるテレフタール酸が阻 害性を示す濃度範囲は、 COD換算で 200mgZリットル以上であることが回分試験 cr Was used. In this mixed wastewater, the concentration range in which terephthalic acid, which is a hardly decomposable organic substance, is inhibitory, is 200 mgZ liters or more in terms of COD.
で明らかとなっている。 It has become clear.
[0039] 両系列とも、原水の COD負荷 (以下、単に COD負荷と記す)を 3kgZm3Z日とし て処理を開始した。図 2に実験経過を示す。 [0039] In both series, the COD load of raw water (hereinafter simply referred to as COD load) was set at 3kgZm 3 Z days. Figure 2 shows the course of the experiment.
[0040] A系列では、処理開始直後から 90日目までは、循環水 15をリアクターに流入させ ず、原水(Q)のみを通水した。この場合の処理状況は、 60日目までは、酢酸はほぼ 完全に分解したのに対し、テレフタール酸は徐々に除去が悪くなり、 90日目にはテレ フタール酸は COD換算で [0040] In the A series, from the start of treatment until the 90th day, the circulating water 15 was not allowed to flow into the reactor, but only the raw water (Q) was passed. In this case, the acetic acid was almost completely decomposed until the 60th day, whereas the removal of terephthalic acid gradually worsened, and on the 90th day, the terephthalic acid was converted to COD.
cr 80mgZリットルとなり、残留濃度が高くなつた。 91日目 以降に、テレフタール酸が阻害性を示す濃度範囲未満 (COD換算で 170mgZリツ cr cr 80mgZ liter, residual concentration increased. After 91 days, less than the concentration range where terephthalic acid is inhibitory (170 mgZ liter cr in terms of COD)
トル)となるように、原水水量の 2倍(2Q)の量の処理水をリアクターの底部に循環した 。その結果、テレフタール酸は除去が改善し、 150日目には COD換算で 10mg/リ cr The amount of treated water twice the amount of raw water (2Q) was circulated to the bottom of the reactor. As a result, the removal of terephthalic acid was improved, and on the 150th day, 10 mg / liter of COD was converted.
ットルとなった。 It became a tuttle.
[0041] B系列では、処理開始直後から原水の 2倍量の処理水をリアクターの底部に循環し た。 30日目には、テレフタール酸は 35mgZリットルとなったものの、テレフタール酸 の阻害濃度以下であったため嫌気性菌の活性度も高ぐ処理水のテレフタール酸は
lOmgZリットル以下を維持できて 、た。 [0041] In the B series, twice the amount of raw water treated water was circulated to the bottom of the reactor immediately after the start of the treatment. On the 30th day, terephthalic acid was 35mgZ liters, but the terephthalic acid of the treated water, which was less than the inhibitory concentration of terephthalic acid, also has high activity of anaerobic bacteria. lOmgZ liters or less could be maintained.
[0042] 以上の結果より、難分解性物質であるテレフタール酸を上向流式嫌気反応器に流 入させる場合、 B系列のように、テレフタール酸が阻害性を示すの濃度範囲以下とな るように処理水の循環処理を行うと、短期間に嫌気的分解が開始される。 [0042] From the above results, when terephthalic acid, which is a hardly decomposable substance, is flowed into an upflow anaerobic reactor, the concentration range of terephthalic acid exhibits an inhibitory value as in the case of B series. When the treated water is circulated as described above, anaerobic decomposition is started in a short time.
[0043] 一方、循環処理をしな力つた期間の A系列は、テレフタール酸の分解はわずかであ り、循環を開始し、循環水でテレフタール酸が阻害性を示す濃度範囲以下にすると、 徐々にテレフタール酸の分解が行われるようになり、本発明の効果が確認された。 [0043] On the other hand, in the A series of the period where the circulatory treatment was strong, the decomposition of terephthalic acid was slight. Thus, terephthalic acid was decomposed, and the effect of the present invention was confirmed.
[0044] 実施例 2 [0044] Example 2
上記実施例 1で用いた B系列を用いて、実施例 1の原水を用いて再度実験を開始 した。実験結果を図 3に示す。 90日目までは、 COD負荷は 3kgZm3Z日、原水量 1 50リットル Z日、循環液量 300リットル Z日であった。メタンガス発生量は、 55リットル /日、処理水の COD濃度は 35mg/リットルであった。 91日目以降、 COD負荷を 6 kg/mV日とし、循環液量 300リットル Z日のままで原水水量だけを 300リットル Z 日に増加させた。 100日目までは、負荷の上昇に伴って、処理水の COD濃度は 35 mgZLとほぼ変わらず、処理水のガス発生量は増加したものの、それ以降、テレフタ ール酸の濃度阻害がみられ、 150日目には、メタンガス発生量は 90リットル Z日に低 下した。このときのメタンガス発生量力も計算して、テレフタール酸の濃度は 200mg Zリットルとなり、テレフタール酸が阻害性を示す濃度範囲を超えていると判断された 。事実、処理水の CODは 205mgZリットルであった。そこで、 151日目に循環液量 を 600リットル/日に調節したところ、ガス発生量の増大と処理水中のテレフタール酸 の濃度低下が確認され、 210日目には、メタンガス発生量は 115リットル Z日、処理 水の COD濃度は 35mgZリットルであった。 The experiment was started again using the raw water of Example 1 using the B series used in Example 1 above. Figure 3 shows the experimental results. By the 90th day, the COD load was 3 kgZm 3 Z days, the raw water volume was 150 liters Z days, and the circulating fluid volume was 300 liters Z days. The amount of methane gas generated was 55 liters / day, and the COD concentration of treated water was 35 mg / liter. From the 91st day, the COD load was set to 6 kg / mV day, and only the raw water volume was increased to 300 liter Z days while the circulating fluid volume was 300 liters Z day. Until the 100th day, the COD concentration of the treated water remained almost the same as 35 mgZL as the load increased, and the gas generation amount of the treated water increased, but thereafter, the concentration of terephthalic acid was inhibited. On the 150th day, methane gas generation decreased to 90 liters per day. The methane gas generation capacity at this time was also calculated, and the concentration of terephthalic acid was 200 mg Z liter, and it was judged that the concentration range of terephthalic acid exceeded the inhibitory concentration range. In fact, the COD of treated water was 205mgZ liter. Therefore, when the circulating fluid volume was adjusted to 600 liters / day on the 151st day, an increase in gas generation volume and a decrease in the concentration of terephthalic acid in the treated water were confirmed. On the 210th day, the methane gas generation volume was 115 liters Z The COD concentration in the treated water was 35 mgZ liters.
[0045] 実施例 3 [0045] Example 3
図 1に示す活性炭を充填した上向流式嫌気性リアクターを実験に用いた。リアクタ 一の内部構造、充填した活性炭及び種汚泥は、実施例 1と同様である。原水には、 化学工場のエチレングリコール廃水を用いた。この原水の COD濃度は、約 10, 00 cr The upflow anaerobic reactor filled with activated carbon shown in Fig. 1 was used in the experiment. The internal structure of the reactor, filled activated carbon and seed sludge are the same as in Example 1. The raw water was ethylene glycol wastewater from a chemical factory. The COD concentration of this raw water is about 1,00 cr
OmgZリツトルであつた。 OmgZ retort.
[0046] 実験は, RUN1と RUN2の 2種類を行なった。 RUN1は,原水だけを通水し、処理
水の循環を行わなかったのに対し、 RUN2では,原水量の 4倍量の処理水をリアクタ 一の底部に循環した。阻害性の回分実験では,エチレングリコール廃水が阻害性を 示す濃度範囲は, COD [0046] Two types of experiments, RUN1 and RUN2, were performed. RUN1 passes and treats only raw water While no water was circulated, RUN2 circulated four times the amount of raw water to the bottom of the reactor. In inhibitory batch experiments, the concentration range where ethylene glycol wastewater is inhibitory is
cr換算で 4000mgZリットル以上という結果が得られている。 The result is 4000mgZL or more in cr conversion.
[0047] RUN1、 RUN2とも COD負荷を 10kgZm3Z日に設定した場合の除去率と、除去 率 80%以上が得られる限界負荷を検討した。 [0047] For both RUN1 and RUN2, we examined the removal rate when the COD load was set to 10 kgZm 3 Z days and the limit load at which a removal rate of 80% or more was obtained.
[0048] RUN1の実験では、 COD負荷が 10kgZm3Z日での除去率は、 65〜70%であつ た。除去率 80%を維持するには、 COD負荷を 7kg/m3/日が妥当という結果となつ た。 [0048] In the RUN1 experiment, the removal rate when the COD load was 10 kgZm 3 Z days was 65 to 70%. To maintain a removal rate of 80%, a COD load of 7 kg / m 3 / day was reasonable.
[0049] これに対し、 RUN2の実験では、 COD負荷が 10kgZm3Z日での除去率は 85〜 90%であった。除去率 80%を維持するには、最大 COD負荷で 20kgZm3Z日が十 分得られる結果となった。
[0049] In contrast, in the RUN2 experiment, the removal rate at a COD load of 10 kgZm 3 Z days was 85-90%. In order to maintain the removal rate of 80%, 20kgZm 3 Z days were obtained with the maximum COD load.