[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005122278A1 - 有機半導体薄膜、有機半導体デバイス、有機薄膜トランジスタ及び有機エレクトロルミネッセンス素子 - Google Patents

有機半導体薄膜、有機半導体デバイス、有機薄膜トランジスタ及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2005122278A1
WO2005122278A1 PCT/JP2005/010324 JP2005010324W WO2005122278A1 WO 2005122278 A1 WO2005122278 A1 WO 2005122278A1 JP 2005010324 W JP2005010324 W JP 2005010324W WO 2005122278 A1 WO2005122278 A1 WO 2005122278A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
thin film
organic
group
semiconductor thin
Prior art date
Application number
PCT/JP2005/010324
Other languages
English (en)
French (fr)
Inventor
Tatsuo Tanaka
Katsura Hirai
Chiyoko Takemura
Rie Katakura
Hiroshi Kita
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to EP05750987A priority Critical patent/EP1758172A1/en
Priority to US11/628,695 priority patent/US20080048181A1/en
Priority to JP2006514489A priority patent/JPWO2005122278A1/ja
Publication of WO2005122278A1 publication Critical patent/WO2005122278A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/18Radicals substituted by singly bound hetero atoms other than halogen by sulfur atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom

Definitions

  • Organic semiconductor thin film organic semiconductor device, organic thin film transistor, and organic electroluminescent device
  • the present invention relates to an organic semiconductor thin film, an organic semiconductor device, an organic thin film transistor, and an organic electroluminescent device.
  • a display medium is formed by using an element utilizing liquid crystal, an organic electroluminescent element (hereinafter, also referred to as an organic EL element), electrophoresis, or the like.
  • an organic electroluminescent element hereinafter, also referred to as an organic EL element
  • electrophoresis or the like.
  • display media in order to ensure uniformity of screen luminance and screen rewriting speed, a technique using an active driving element (TFT element) as an image driving element has become mainstream.
  • TFT element active driving element
  • these TFT elements are formed on a glass substrate, and a liquid crystal, an organic EL element, and the like are sealed.
  • TFT element semiconductors such as a-Si (amorphous silicon) and p-Si (polysilicon) can be mainly used for the TFT element, and these S ⁇ conductors (and metal films as necessary) can be used.
  • the TFT device is manufactured by multi-layering and sequentially forming source, drain and gate electrodes on the substrate. The manufacture of such TFT devices typically requires sputtering and other vacuum-based manufacturing processes.
  • each layer must be formed by repeating the manufacturing process of the vacuum system including the vacuum chamber many times, and the equipment cost and the running cost are extremely enormous. Had become something.
  • a TFT device it is usually necessary to repeat processes such as vacuum deposition, doping, photolithography, and development many times to form each layer.
  • An element is formed on a substrate through dozens of steps.
  • semiconductor part that is the key to switching operation multiple types of semiconductor layers such as P-type and n-type are stacked.
  • it is not easy to change the equipment such as a need for a large design change of a manufacturing apparatus such as a vacuum chamber in response to a need for a large display screen.
  • organic semiconductor materials as organic compounds having a high charge transport property has been energetically advanced.
  • the organic semiconductor material can be subjected to a solution treatment by appropriately improving its molecular structure, and the obtained organic semiconductor solution is converted into an ink by a printing method including an ink-jet method, or by an application method. Layers can be formed.
  • TFT elements can be formed on a transparent resin substrate. If a TFT element can be formed on a transparent resin substrate and the display element can be driven by the TFT element, the display will be lighter and more flexible than the conventional one, and will not break when dropped. It can be made into a display that is hard to crack.
  • a thiophene polymer represented by P3HT is soluble in an organic solvent and can be used for production by a low-temperature process as described above.
  • an organic semiconductor layer is formed using a material having a molecular weight distribution such as a polymer, many amorphous portions with disordered arrangement are formed in the layer. In such an amorphous part, the overlapping of the ⁇ -conjugated planes of the thiophene ring is small and the carrier movement is rate-limiting, so satisfactory TFT performance has not been obtained.
  • polyascene conjugates such as pentacene have high crystallinity due to strong intermolecular cohesion, thereby exhibiting high carrier mobility and excellent semiconductor device characteristics. It has been reported that Further, by using a vapor deposition film pentacene arranged with high regularity, have been reported to express high carrier mobility (e.g., Non-Patent Document 4 reference.) 0
  • the organic semiconductor thin film in order to obtain an organic semiconductor thin film exhibiting excellent TFT performance, the organic semiconductor thin film must have a crystalline structure in which molecules are arranged with high and regularity. Is considered important. However, there is a problem that many of these polyasenyl conjugates cannot be produced by coating because they are insoluble or hardly soluble in organic solvents.
  • Patent Document 1 JP-A-5-55568
  • Patent Document 2 JP-A-8-264805
  • Non-Patent Document 1 “Science”, Vol. 289, 599 pages (2000)
  • Non-patent Document 2 “Naturer” (Nature), vol. 403, p. 521 (2000)
  • Non-Patent Document 3 "Advanced Material", 2002, Issue 2, p. 99
  • Non-Patent Document 4 Appl.Phys. Lett., 1998, 72, 1854
  • Non-Patent Document 5 Proc. ICSM- 2004
  • Non-Patent Document 6 “Chemical Material”, 1998, Issue 10, p. 633
  • An object of the present invention is to solve the above-mentioned problems of the prior art, to form an organic semiconductor thin film by coating, and to obtain a high carrier mobility by using the obtained organic semiconductor thin film.
  • An object of the present invention is to provide an organic semiconductor device, an organic thin film transistor, and an organic EL element including the device or the transistor.
  • An organic semiconductor thin film characterized in that the half-width of the diffraction peak having the maximum intensity in the vector is 0.4 ° or less.
  • the organic semiconductor compound is mixed with an organic solvent, and is manufactured through a step of forming a film using a solution or a dispersion liquid at room temperature, and the X-ray diffraction vector of the film
  • Item 3 The organic semiconductor thin film according to Item 1 or 2, wherein the organic solvent contains a non-halogen solvent.
  • Item 3 The organic semiconductor thin film according to any one of Items 1 to 3, wherein the organic semiconductor compound has a weight average molecular weight Mw of 10,000 or less.
  • Item 6 The organic semiconductor thin film according to any one of Items 1 to 5, wherein the content of the organic semiconductor conjugate is 95% or more.
  • organic semiconductor thin film according to any one of Items 1 to 6, wherein the organic semiconductor compound is a ⁇ -conjugated compound containing two or more aromatic rings.
  • Item 8 The organic semiconductor thin film according to Item 7, wherein the organic semiconductor conjugate has, as a partial structure, two or more types of aromatic hydrocarbon rings or two or more types of aromatic heterocycles.
  • Item 8 The organic semiconductor thin film according to Item 7, wherein the organic semiconductor conjugate has three or more types of aromatic hydrocarbon rings or three or more types of aromatic heterocycles as a partial structure.
  • the organic semiconductor compound includes a thiophene oligomer having a thiophene ring having a substituent and a partial structure in which at least two or more unsubstituted thione ring repeating units are continuous.
  • Item 12 The organic semiconductor thin film according to Item 11, wherein the thiophene oligomer contains 3 to 20 thiophene rings.
  • Item 12 The organic semiconductor thin film according to Item 11, wherein the thiophene ring contained in the thiophene oligomer has a ring force of up to 10.
  • Item 13 The organic semiconductor thin film according to any one of Items 11 to 13, wherein the thiophene oligomer has a partial structure represented by the following general formula (1).
  • R represents a substituent
  • Item 15 The organic semiconductor thin film according to any one of Items 11 to 14, wherein a terminal group of the thiophene oligomer does not have a chenyl group. [0034] (Term 16)
  • Item 16 The organic semiconductor thin film according to any one of Items 11 to 15, wherein the structure of the thiophene oligomer does not have a head-to-head structure.
  • Item 18 An organic semiconductor device comprising the organic semiconductor thin film according to any one of items 1 to 16.
  • Item 18 An organic thin film transistor, wherein the organic semiconductor thin film according to any one of items 1 to 16 is used for an organic semiconductor layer.
  • Item 18 An organic electroluminescent device comprising the organic semiconductor device according to Item 17 or the organic thin film transistor according to Item 18.
  • the organic semiconductor thin film of the present invention has provided an organic TFT and a field-effect transistor having high carrier mobility, and a switching element having the organic TFT and the field-effect transistor.
  • FIG. 1 is a diagram showing a configuration example of an organic TFT according to the present invention.
  • FIG. 2 is an example of a schematic equivalent circuit diagram of the organic TFT of the present invention.
  • FIG. 3 is an example of an X-ray diffraction spectrum of the organic semiconductor thin film of the present invention.
  • FIG. 4 is an example of an X-ray diffraction spectrum of the organic semiconductor thin film of the present invention.
  • FIG. 5 is an example of an X-ray diffraction spectrum of the organic semiconductor thin film of the present invention.
  • FIG. 6 is an example of an X-ray diffraction spectrum of a comparative organic semiconductor thin film.
  • FIG. 7 is a schematic view showing an example of an organic EL device having a sealing structure.
  • FIG. 8 is a schematic view showing an example of a substrate having a TFT used for an organic EL element.
  • organic semiconductor thin film of the present invention by using the structure defined in any one of claims 1 to 16, an organic semiconductor thin film useful for thin film transistor use can be obtained.
  • organic TFT organic thin film transistor
  • the present inventors have found that a material such as a single crystal in which molecules are regularly arranged and which has high crystallinity has an X-ray It is known that a diffraction peak having a very small half width is obtained in the diffraction spectrum. Therefore, the material that forms a film that exhibits a diffraction peak with a smaller half-value width is an organic semiconductor thin film that exhibits excellent TFT performance, using the half-width of the diffraction peak as an index of the regularity of the molecular arrangement in the film. was found to form.
  • the thiophene oligomer like the thiophene oligomer according to the present invention, it has a solubility site (thione ring site having a substituent) and a ⁇ stack formation site (continuous site of unsubstituted thiophene ring).
  • a solubility site thione ring site having a substituent
  • a ⁇ stack formation site continuous site of unsubstituted thiophene ring.
  • an oligomer whose molecular weight is adjusted to a specific range (this is synonymous with adjusting the number of repeating units to a specific range) is molecularly designed and the oligomer is used. It became possible to form a coating film having an ideal molecular arrangement as seen in known pentacene and the like, and as a result, TFT performance was greatly improved.
  • the organic semiconductor thin film of the present invention is an organic semiconductor conjugate (for an organic semiconductor conjugate, , which will be described later) and an organic solvent shown below, and prepared at room temperature using a solution or dispersion to form a film.
  • the solution or dispersion at room temperature means that the solution or dispersion is formed when the organic semiconductor conjugate and the organic solvent are mixed under the conditions of 10 ° C to 80 ° C.
  • the term “dispersion liquid” refers to a state in which the organic semiconductor compound is dispersed in the form of particles, but also includes a state in which the organic semiconductor compound is partially dissolved in the dispersion liquid. Further, as one embodiment of the dispersion, for example, it dissolves under a temperature condition of 80 ° C. to form a solution, but when the temperature returns to room temperature (usually a temperature around 25 ° C.), particles of the organic semiconductor compound are dispersed. , Aggregates, precipitates and the like are dispersed in an organic solvent.
  • the organic solvent according to the invention is not particularly limited, and may be a single solvent or a mixed solvent.
  • a non-halogen solvent is used.
  • the non-halogen solvent used in the present invention include aliphatic solvents such as hexane and octane, alicyclic solvents such as cyclohexane, aromatic solvents such as benzene, toluene and xylene, tetrahydrofuran, dioxane, and the like.
  • Ether-based solvents such as ethylene glycolone retinole ethere, Aniso monole, benzinooletinoleateneole, ethylenolefeinoleateneole, diphenineoleateneole, methylinolate Ethyl acetate, Ethyl acetate, Solvents such as ethyl solvent, alcohols such as methanol, ethanol, isopropanol, etc., Ketones such as acetone, methyl ethyl ketone, cyclohexanone, 2-hexanone, 2-heptanone, 3-heptanone Solvents, other dimethylformamide, dimethyl sulfoxide, di Ethylformamide, 1,3-dioxolan and the like.
  • the organic solvent used in combination is not particularly limited, but is preferably methanol, ethanol, isopropanol, acetone, methylethylketone, methylisobutylketone, pyrrolidone, N-methylpyrrolidone.
  • an alkyl ester of oxyisobutyrate or the like may be used as the ester solvent.
  • the oxyisobutyrate ester include methyl ⁇ -methoxyisobutyrate, ethyl a-methoxyisobutyrate, methyl a-ethoxyisobutyrate, and methyl a-ethoxyisobutyrate.
  • A-alkoxyisobutyric acid alkyl esters such as ethyl; j8-alkoxyisobutyric acid alkyl esters such as ⁇ -methoxyisobutyric acid, ⁇ -methoxyisobutyric acid, j8-ethoxyisobutyric acid, j8-ethoxyisobutyric acid; and methyl ⁇ -hydroxyisobutyrate; such as ⁇ - hydroxy I Seo acid Echiru alpha - it includes hydroxyisobutyric esters, Tokunihi methoxyisobutyrate methyl butyrate, beta-methoxyisobutyrate methyl butyrate, beta-Etokishiiso methyl butyrate addition Wahi primary hydroxy methyl isobutyrate It can be used.
  • the organic semiconductor compound according to the present invention is mixed with the above-mentioned organic solvent, and after forming a film using the prepared solution, the X-ray diffraction spectrum of the obtained film shows a half of the diffraction peak of the maximum intensity. It is characterized in that the value range is 0.4 ° or less, preferably 0.3 ° or less, and more preferably 0.2 ° or less.
  • the high crystallinity of a compound can be estimated from the half width power of a diffraction peak in an X-ray diffraction spectrum, and the material power in which molecules are regularly arranged in a wide range has a very small half width. A diffraction peak is obtained.
  • the X-ray diffraction spectrum measurement according to the present invention is performed under the following apparatus and under the following measurement conditions.
  • the substrate (base) used for the X-ray diffraction measurement of the organic thin film of the present invention and the organic thin-film transistor of the present invention may be the same or different, but a smaller value is obtained as the half-width of the maximum intensity obtained from the obtained X-ray diffraction spectrum.
  • the obtained data is used as “half-width of the diffraction peak of the maximum intensity in the X-ray diffraction pattern of the film” according to the present invention.
  • the thickness of the thin film used in the measurement is in the range of 5 nm to 100 nm, and preferably, ⁇ ! ⁇ 50 nm.
  • the background is taken on the low-angle and wide-angle sides of the diffraction peak, and the sum of the intensities of the respective measurement points above the background is obtained, and this is defined as the peak area.
  • the highest intensity of each measurement point is defined as the peak height, and the half width is calculated by the following formula.
  • Half width SF X area Z height
  • SF a constant related to the peak shape, set to 0.85 in the present invention.
  • a film used for X-ray diffraction measurement is formed by coating an organic semiconductor solution in which an organic semiconductor compound is dissolved using an organic solvent or the like on a base such as a substrate, and then heating the solvent by a method such as heating. It can be obtained by vaporizing.
  • Methods for coating the organic semiconductor-containing solution on the base include coating, spraying, and directly contacting the base with the solution.Specifically, casting, spin coating, dip coating, screen printing, ink jet printing, etc. And a known method such as blade coating.
  • Such an operation can be performed in the air or in an atmosphere of an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • the base temperature when evaporating the solvent, the base temperature, atmospheric pressure, temperature, etc. It is also possible to control.
  • the organic semiconductor thin film formed on the base by these methods is further subjected to treatment such as heating and cooling, application of an electric field, a magnetic field, a temperature gradient, and the like, pressurization, friction, and the like, whereby the orientation in the film is improved. It is possible to improve.
  • the thickness of the organic semiconductor thin film to be formed is not limited, but is preferably lOOnm or less.
  • the base used is not limited, and may be anything such as a Si substrate, a glass substrate, or a polymer film.
  • the surface of the base serving as a boundary between the base and the organic semiconductor thin film may be treated by known means such as a thermal oxidation film, or may be surface-modified by treatment using an alkyltrichlorosilane or the like. Well.
  • the molecular weight (weight average molecular weight) of the organic semiconductor compound according to the present invention is preferably 10,000 or less, more preferably 100 to 5,000. Furthermore, the ratio (molecular weight distribution) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) according to the present invention is preferably 2 or less.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the organic semiconductor compound of the present invention are measured by using GPC (gel permeation chromatography) using THF (tetrahydrofuran) as a column solvent. Perform the measurement.
  • GPC measurement conditions are as follows: the column is stabilized at 40 ° C., THF is flowed at a flow rate of 1 ml per minute, and about 100 1 of a sample having a concentration of 1 mg Zml is injected for measurement.
  • the column it is preferable to use a commercially available polystyrene die column in combination.
  • a refractive index detector (RI detector) or a UV detector is preferably used.
  • the molecular weight distribution of the sample is calculated using a calibration curve created using monodispersed polystyrene standard particles. It is preferable to use about 10 points as polystyrene for preparing a calibration curve.
  • the molecular weight was measured under the following measurement conditions.
  • HLC-8020 manufactured by Tosoh Corporation
  • the content of the organic semiconductor conjugate in the organic semiconductor film is preferably 95% by mass or more, more preferably 98% by mass or more. Also, do not affect the characteristics of the organic thin film transistor of the present invention!
  • specific compounds of the organic semiconductor compound according to the present invention may be the same compound or a mixture of a plurality of compounds having different structures, which will be described later.
  • the content of the organic semiconductor compound was determined by using HPLC (high performance liquid chromatography).
  • the following shows the measuring device and the measuring conditions.
  • HPLC apparatus GULLIVER manufactured by JASCO Corporation
  • a ⁇ -conjugated compound can be preferably used, and further, a compound having the following characteristics is preferably used.
  • the organic semiconductor compound is a ⁇ -conjugated compound containing two or more aromatic rings.
  • the aromatic ring means any one of an aromatic hydrocarbon ring, an aromatic heterocycle, and an aromatic condensed ring.
  • the aromatic rings contained therein may be the same or different.
  • the ⁇ -conjugated compound has two or more aromatic hydrocarbon rings or two or more aromatic heterocycles as a partial structure.
  • the ⁇ -conjugated compound has at least three types of aromatic hydrocarbon rings or at least three types of aromatic heterocycles as a partial structure.
  • the ⁇ -conjugated compound according to (a), (b) or (c) is an unsubstituted aromatic hydrocarbon ring having no condensed ring or an unsubstituted aromatic It has a heterocycle as a partial structure.
  • the ⁇ -conjugated compound according to the present invention is required as the above-mentioned organic semiconductor conjugate under the following conditions (soluble at room temperature in an organic solvent, the half-width of the maximum intensity of the X-ray diffraction spectrum of the formed film is 0%). (4 ° or less), a conventionally known semiconductor material may be used.
  • acenes such as pentacene-tetracene, phthalocyanines including lead phthalocyanine, low molecular weight compounds such as perylene and its tetracarboxylic acid derivative, thiophene hexamers called hexenyl or sexityofen, and fluorene oligomers
  • Aromatic oligomers furthermore, conjugated polymers such as polythiophene, polychelenvinylene, poly ⁇ -phen-lenbilene, and the like can be given.
  • the ⁇ according to the present invention is preferred.
  • the conjugated compound is preferably a ⁇ -conjugated compound containing two or more aromatic rings. Further, the conjugated compound which satisfies the requirement described in (b) or (c) above, It is preferable to use a minor compound.
  • the ⁇ -conjugated compound according to the present invention preferably has two or more aromatic hydrocarbon rings or two or more aromatic heterocycles as a partial structure.
  • the aromatic hydrocarbon ring includes a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a thalicene ring, a naphthacene ring, a triphenylene ring, —Tenorefe-nore ring, m-tenorefe-nore ring, p-tenorefe-nore ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphene ring, picene ring, Examples include a pyrene ring, a pyranthrene ring, and an anthranthrene ring. Further, it has
  • Examples of the aromatic heterocyclic ring include a furan ring, a thiophene ring, an oxazole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a benzimidazole ring, an oxadiazole ring, a triazole ring, an imidazole ring, Pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, carbolin ring, diaza lvazole ring (carboline ring Represents a ring in which one of the carbon atoms of the hydrocarbon ring constituting the ring is further substituted with a nitrogen
  • the organic semiconductor compound according to the present invention was prepared by a normal pressure process such as coating and printing.
  • a thin film can be formed on a variety of substrates (which may be a substrate constituting an organic thin film transistor or another substrate), that is, a thin film transistor which is not a conventionally known organic semiconductor can be manufactured.
  • the thiophene oligomer according to the present invention will be described.
  • the thiophene oligomer according to the present invention has a partial structure in which at least two or more thiophene ring repeating units having a substituent and at least two or more unsubstituted thiophene ring repeating units are continuous. And the number of thiophene rings contained in the thiophene oligomer is 3 to 40. Is preferably in the range of 3 to 20. More preferably, it is in the range of 4 to 10. More preferably, the thiophene oligomer has a partial structure represented by the general formula (1).
  • the thiophene oligomer represented by the general formula (1) according to the present invention will be described.
  • examples of the substituent represented by R include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, Hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, buryl group, aryl group, etc.) ), An alkyl group (eg, ethynyl group, propargyl group, etc.), an aryl group (eg, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, An alkyl group (
  • a preferred substituent is an alkyl group, and more preferably a substituent having 2 to 2 carbon atoms.
  • the terminal group of the thiophene oligomer according to the present invention will be described.
  • the terminal group of the thiophene oligomer according to the present invention preferably does not have a chain group, and a preferable group as the terminal group is an aryl group (for example, a phenyl group, p -Chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulyl group, acenaphthenyl group, fluoryl group, phenanthryl group, indul group, pyrenyl group, biphenyl group, etc.)
  • An alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.
  • the thiophene oligomer according to the present invention preferably has a Head-to-Tail structure or a Head-to-Tail structure in the structure, in addition to the fact that the structure preferably does not have a Head-to-Head structure.
  • head-to-head structure head-to-tail structure, and tail-to-tail structure according to the present invention are described in, for example, "Pi-Organic Organic Solids” (published by Gakkai Shuppan Center in 1998. This can be referred to on pages 27-32, Adv. Mater. 1998, 10, No. 2, pages 93-116, etc.
  • specific structural features are shown below.
  • the present invention is not limited to these examples showing specific examples of the thiophene oligomer according to the present invention.
  • Organic thin film transistor also referred to as organic TFT
  • organic thin film transistor organic TFT
  • the organic semiconductor thin film according to the present invention when used in an organic thin film transistor (organic TFT), can provide an organic TFT that can drive well.
  • An organic TFT organic thin film transistor
  • An organic TFT has a top electrode having a source electrode and a drain electrode connected by an organic semiconductor channel as a semiconductor layer on a support, and having a gate electrode thereon via a gate insulating layer.
  • a bottom-gate type which has a gate electrode on the support, and has a source electrode and a drain electrode connected by an organic semiconductor channel via a gate insulating layer.
  • the thiophene oligomer can be installed on the substrate by vacuum deposition.
  • the thiophene oligomer is prepared by dissolving in an appropriate solvent and adding an additive as needed. It is preferable that the solution obtained is set on a substrate by cast coating, spin coating, printing, an inkjet method, an abrasion method, or the like.
  • the solvent for dissolving the organic semiconductor compound according to the present invention is not particularly limited as long as the solvent can dissolve the organic semiconductor compound to prepare a solution having an appropriate concentration.
  • chain ether solvents such as getyl ether and diisopropyl ether, cyclic ether solvents such as tetrahydrofuran and dioxane, acetone and methylethyl Ketone solvents such as ketones, halogenated alkyl solvents such as chloroform and 1,2-dichloroethane, aromatic solvents such as toluene, o-dichlorobenzene, nitrobenzene, m-talesol, N-methylpyrrolidone; 2 Sulfur carbon and the like.
  • the material forming the source electrode, the drain electrode, and the gate electrode is not particularly limited as long as it is a conductive material, and platinum, gold, silver, nickel, chromium, copper, iron, tin, Antimony tin, tantalum, indium, palladium, tellurium, rhenium, iridium, anolemmium, ruthenium, germanium, molybdenum, tungsten, tin oxide 'antimony, indium' tin (ITO), fluorine-doped zinc oxide, zinc , Carbon, graphite, glassy carbon, silver paste and carbon paste, lithium, beryllium, sodium, magnesium, potassium, calcium, scandium, titanium, manganese, zirconium, gallium, niobium, sodium, sodium-potassium alloy, magnesium, Lithium, Anoremi-Pam, Ma Nesium Z-copper mixture, magnesium Z-silver mixture, magnesium Z-aluminum mixture, magnesium Z-indium
  • a known conductive polymer whose conductivity has been improved by doping or the like, for example, a conductive polyaline, a conductive polypyrrole, a conductive polythiophene, a complex of polyethylenedioxythiophene and polystyrene sulfonic acid, etc., is preferably used.
  • a conductive polyaline a conductive polypyrrole, a conductive polythiophene, a complex of polyethylenedioxythiophene and polystyrene sulfonic acid, etc.
  • a method of forming an electrode a method of forming an electrode using a known photolithographic method or a lift-off method on a conductive thin film formed by using the above materials as a raw material by vapor deposition, sputtering, or the like; There is a method of etching using a resist by thermal transfer, ink jet, or the like on the metal foil.
  • a conductive polymer solution or dispersion, or a conductive fine particle dispersion may be directly patterned by ink jetting, or may be formed from a coating film by lithography or laser ablation.
  • a method of patterning an ink containing a conductive polymer or conductive fine particles, a conductive paste, or the like by a printing method such as letterpress, intaglio, lithographic, or screen printing can also be used.
  • Inorganic oxides include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, and titanate.
  • Examples thereof include lead lanthanum, strontium titanate, barium titanate, barium magnesium fluoride, bismuth titanate, strontium bismuth titanate, strontium bismuth tantanoleate, bismuth niobate tantalate and yttrium trioxide.
  • preferred are Sidani silicon, Sidani aluminum, Tidani tantalum and Tidani titanium.
  • Inorganic nitrides such as silicon nitride and aluminum nitride can also be suitably used.
  • Examples of the method of forming the film include vacuum deposition, molecular beam epitaxy, ion cluster beam, low energy ion beam, ion plating, CVD, sputtering, and atmospheric pressure plasma. Dry process, application method such as spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method, bar coating method, die coating method, etc. And a wet process according to the material.
  • the wet process includes a method of applying and drying a liquid in which fine particles of an inorganic oxide are dispersed in an optional organic solvent or water using a dispersing aid such as a surfactant as necessary.
  • a so-called sol-gel method of applying and drying a solution of an alkoxide body is used.
  • the atmospheric pressure plasma method and the sol-gel method are preferred.
  • a method for forming an insulating film by plasma film formation under atmospheric pressure is a process in which discharge is performed under atmospheric pressure or a pressure close to atmospheric pressure, a reactive gas is plasma-excited, and a thin film is formed on a substrate.
  • the method is described in JP-A-11-61406, JP-A-11133205, JP-A-2000-121804, JP-A-2000-147209, JP-A-2000-185362, etc. , Atmospheric pressure plasma method).
  • a highly functional thin film can be formed with high productivity.
  • Examples of the organic compound film include polyimide, polyamide, polyester, polyatarylate, a photo-curable resin of a photo-radical polymerization system, a photo-thion polymerization system, or a copolymer containing an acrylonitrile component; Phenol, polyvinyl alcohol, novolak resin, cyanoethyl pullulan, and the like can also be used.
  • Organic compound film formation method Is preferably the wet process.
  • the inorganic oxide film and the organic oxide film can be laminated and used together. The thickness of these insulating films is generally 50 ⁇ ! 33 m, preferably 100 nm to 1 ⁇ m.
  • the support is made of glass or a flexible resin sheet.
  • a plastic film can be used as the sheet.
  • the plastic film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylenesulfide, polyarylate, polyimide, and polycarbonate.
  • PC polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PC polyetherimide
  • polyetherketone polyetherketone
  • polyphenylenesulfide polyarylate
  • polyimide polyarylate
  • PC polycarbonate
  • PC cellulose triacetate
  • CAP cellulose acetate propionate
  • organic thin film transistor using an organic thin film formed using the organic semiconductor conjugate according to the present invention will be described.
  • FIG. 1 is a diagram showing a configuration example of an organic TFT according to the present invention.
  • FIG. 3A shows that a source electrode 2 and a drain electrode 3 are formed on a support 6 by a metal foil or the like, and an organic semiconductor layer 1 made of an organic thin film transistor material of the present invention is formed between both electrodes.
  • An insulating layer 5 is formed thereon, and a gate electrode 4 is further formed thereon to form a field effect transistor.
  • FIG. 2B shows the organic semiconductor layer 1 formed between the electrodes in FIG. 2A and formed so as to cover the entire surface of the electrodes and the support using a coating method or the like.
  • (C) shows a structure in which the organic semiconductor layer 1 is first formed on the support 6 by a coating method or the like, and then the source electrode 2, the drain electrode 3, the insulating layer 5, and the gate electrode 4 are formed.
  • FIG. 11 (d) shows that after forming a gate electrode 4 on a support 6 with a metal foil or the like, an insulating layer 5 is formed, and a source electrode 2 and a drain electrode 3 are formed on the insulating layer 5 with a metal foil or the like.
  • the organic semiconductor layer 1 formed of the organic thin film transistor material of the present invention is formed between the electrodes.
  • FIG. 2 is a diagram showing an example of a schematic equivalent circuit diagram of an organic TFT sheet.
  • the organic TFT sheet 10 has a large number of organic TFTs 11 arranged in a matrix. 7 is each TF Reference numeral 8 denotes a gate bus line of Ti1, and 8 denotes a source bus line of each TFT 11.
  • An output element 12 is connected to a source electrode of each TFT 11, and the output element 12 is, for example, a liquid crystal or an electrophoretic element, and constitutes a pixel in a display device.
  • the pixel electrode may be used as an input electrode of an optical sensor.
  • the output element is shown by an equivalent circuit including a liquid crystal force resistance and a capacitor force. 13 is a storage capacitor, 14 is a vertical drive circuit, and 15 is a horizontal drive circuit.
  • the organic EL device of the present invention includes, for example, a device in which an organic EL layer (also referred to as an organic compound layer) is sandwiched between an anode and a cathode. It can be manufactured using the material of the organic EL layer. For example, reference can be made to Nature, 395, pp. 151-154.
  • the organic EL device of the present invention is made to emit light (for example, applied to a display device, a lighting device, and the like), from the viewpoint of obtaining effects such as high emission luminance and long light emission life, It is preferable to include the organic semiconductor device of the present invention or the organic thin film transistor of the present invention.
  • the coating was applied to the surface of the thermal oxidation film (silicon oxide film) using an applicator under a nitrogen gas atmosphere of 1.013 ⁇ 10 2 kPa, and dried at room temperature. At this time, the thickness of the semiconductor layer was 20 nm.
  • the organic thin-film transistor 1 satisfactorily operated as a p-channel enhancement-type TFT.
  • the saturation region force of the IV characteristic was also determined to be the carrier mobility. As a result, it was 0.10 cm 2 ZV's.
  • the thickness of the semiconductor layer was 20 nm.
  • Heat treatment was performed for 2 and 30 minutes. At this time, the thickness of the semiconductor layer was 20 nm.
  • a 200-nm-thick thermal oxide film was formed on a Si wafer with a specific resistance of 0.02 ⁇ 'cm as a gate electrode to form a gate electrode.
  • the solution was applied to the surface of the thermal oxidation film (oxygen silicon film) using an applicator under a nitrogen gas atmosphere of 1.013 ⁇ 10 2 kPa, and dried at room temperature. I let it.
  • the thickness of the semiconductor layer was 20 nm.
  • the thickness of the semiconductor layer was 20 nm.
  • the obtained thin film was evaluated by X-ray diffraction. As a result, the half value width of the 18.2A diffraction peak showing the maximum intensity was 0.4 °.
  • the surface of the gate insulating film subjected to the surface treatment was applied in an atmosphere of two gases using an applicator, and dried at room temperature. At this time, the thickness of the semiconductor layer was 20 nm.
  • the organic TFT element of the present invention exhibits excellent transistor characteristics immediately after fabrication and excellent transistor characteristics of high carrier mobility as compared with the comparative organic TFT element. You can see that.
  • a top emission type organic EL device having a sealing structure as shown in FIG. 7 was prepared with reference to the method described in Nature, Vol. 395, pp. 151-154.
  • 101 is a substrate
  • 102a is an anode
  • 102b is an organic EL layer (specifically, an electron transport layer, a light emitting layer, a hole transport layer, etc. are included)
  • 102c is a cathode
  • 102a is a cathode.
  • the light emitting element 102 is formed by the organic EL layer 102b and the cathode 102c.
  • 103 denotes a sealing film.
  • the organic EL device of the present invention may be either a bottom emission type or a top emission type.
  • the organic EL device of the present invention and the organic thin film transistor of the present invention (here, the organic thin film of the present invention A transistor is used as a switching transistor, a driving transistor, or the like) to produce an active matrix light-emitting element.
  • the organic thin film of the present invention A transistor is used as a switching transistor, a driving transistor, or the like to produce an active matrix light-emitting element.
  • a mode in which a substrate on which a thin film transistor 602 is formed is used.
  • a known method of manufacturing a TFT can be referred to.
  • the TFT may be a conventionally known top gate type TFT or a bottom gate type TFT.
  • the organic EL device produced as described above exhibited good light emission characteristics in various light emission modes such as monochromatic, full color, and white.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)

Abstract

 有機半導体化合物を含む有機半導体薄膜において、  該有機半導体化合物と有機溶媒とを混合し、調製された、室温で溶液または分散液を用いて膜形成する工程を経て製造されたものであり、且つ、該膜のX線回折スペクトルにおける、最大強度の回折ピークの半値幅が0.4°以下であることを特徴とする有機半導体薄膜。

Description

明 細 書
有機半導体薄膜、有機半導体デバイス、有機薄膜トランジスタ及び有機 エレクト口ルミネッセンス素子
技術分野
[0001] 本発明は、有機半導体薄膜、有機半導体デバイス、有機薄膜トランジスタ及び有機 エレクト口ルミネッセンス素子に関する。 背景技術
[0002] 情報端末の普及に伴い、コンピュータ用のディスプレイとしてフラットパネルディスプ レイに対するニーズが高まっている。また、更に情報化の進展に伴い、従来紙媒体で 提供されていた情報が電子化されて提供される機会が増え、薄くて軽い、手軽に持 ち運びが可能なモパイル用表示媒体として、電子ペーパーあるいはデジタルぺーパ 一へのニーズも高まりつつある。
[0003] 一般に平板型のディスプレイ装置においては液晶、有機エレクト口ルミネッセンス素 子 (以後、有機 EL素子ともいう)、電気泳動などを利用した素子を用いて表示媒体を 形成して!/、る。またこうした表示媒体では画面輝度の均一性や画面書き換え速度な どを確保するために、画像駆動素子としてアクティブ駆動素子 (TFT素子)を用いる 技術が主流になっている。例えば、通常のコンピュータディスプレイではガラス基板 上にこれら TFT素子を形成し、液晶、有機 EL素子等が封止されている。
[0004] ここで TFT素子には主に a— Si (アモルファスシリコン)、 p— Si (ポリシリコン)などの 半導体を用いることができ、これらの S泮導体 (必要に応じて金属膜も)を多層化し、 ソース、ドレイン、ゲート電極を基板上に順次形成していくことで TFT素子が製造され る。こうした TFT素子の製造には通常、スパッタリング、その他の真空系の製造プロセ スが必要とされる。
[0005] し力しながら、このような TFT素子の製造では真空チャンバ一を含む真空系の製造 プロセスを何度も繰り返して各層を形成せざるを得ず、装置コスト、ランニングコストが 非常に膨大なものとなっていた。例えば、 TFT素子では通常、それぞれの層の形成 のために、真空蒸着、ドープ、フォトリソグラフ、現像等の工程を何度も繰り返す必要 があり、何十もの工程を経て素子を基板上に形成している。スイッチング動作の要と なる半導体部分に関しても P型、 n型等、複数種類の半導体層を積層している。こうし た従来の Si半導体による製造方法ではディスプレイ画面の大型化のニーズに対し、 真空チャンバ一等の製造装置の大幅な設計変更が必要とされるなど、設備の変更が 容易ではない。
[0006] また、このような従来からの Si材料を用いた TFT素子の形成には高い温度の工程 が含まれるため、基板材料には工程温度に耐える材料であると ヽぅ制限が加わること になる。このため実際上はガラスを用いざるをえず、先に述べた電子ペーパーあるい はデジタルペーパーと!/、つた薄型ディスプレイを、こうした従来知られた TFT素子を 利用して構成した場合、そのディスプレイは重ぐ柔軟性に欠け、落下の衝撃で割れ る可能性のある製品となってしまう。ガラス基板上に TFT素子を形成することに起因 するこれらの特徴は、情報化の進展に伴う手軽な携行用薄型ディスプレイへの-一 ズを満たすにあたり望ましくな 、ものである。
[0007] 一方、近年にぉ ヽて高 ヽ電荷輸送性を有する有機化合物として、有機半導体材料 の研究が精力的に進められている。有機半導体材料はその分子構造を適切に改良 すること〖こよって、溶液ィ匕することも可能であり、得られる有機半導体溶液はインク化 することによってインクジェット方式を含む印刷法や、塗布により有機半導体の層を形 成できる。
[0008] これらの低温プロセスによる製造は、従来の Si系半導体材料については不可能と 考えられてきたが、有機半導体を用いたデバイスにはその可能性があり、したがって 前述の基板耐熱性に関する制限が緩和され、透明榭脂基板上にも TFT素子を形成 できる可能性がある。透明榭脂基板上に TFT素子を形成し、その TFT素子により表 示材料を駆動させることができれば、ディスプレイを従来のものよりも軽ぐ柔軟性に 富み、落としても割れな ヽ (もしくは非常に割れにく 、)ディスプレイとすることができる であろう。
[0009] こうした TFT素子を実現するための有機半導体材料としてこれまでに検討されてき たのは、ポリフエ-レンビ-レン、ポリピロール、ポリチォフェンなどの共役系高分子化 合物 (例えば、非特許文献 1〜3参照)やそのオリゴマー (例えば、特許文献 2参照)、 アントラセン、テトラセン、ペンタセン等のポリアセンィ匕合物(例えば、特許文献 1参照
)等である。
[0010] P3HTに代表されるチオフエンポリマーは、有機溶媒に可溶であり上記のように低 温プロセスでの製造に用いることができる。しかし、ポリマーのように分子量分布をも つ材料を用いて有機半導体層を形成した場合、層内には配列が乱れたアモルファス な部分が多く形成される。このようなアモルファス部分ではチォフェン環の π共役面 の重なりが小さぐキャリア移動において律速となるため、満足できる TFT性能は得ら れていない。
[0011] 一方ペンタセンに代表されるようなポリアセンィ匕合物は、分子間凝集力が強いため 高い結晶性を有しており、これによつて高いキャリア移動度と優れた半導体デバイス 特性とを発現することが報告されている。また、高い規則性をもってペンタセンが配列 した蒸着膜を用いることにより、高いキャリア移動度を発現することが報告されている( 例えば、非特許文献 4参照。 )0
[0012] このような報告から、優れた TFT性能を発現する有機半導体薄膜を得るためには 有機半導体薄膜中にお 、て分子が高 、規則性を持って配列した結晶状の構造を有 していることが重要であると考えられる。しかし、これらポリアセンィ匕合物の多くは有機 溶媒に対して不溶、もしくは難溶のために塗布によって製造できな 、と 、う問題があ つた o
[0013] また、無置換セクシチォフェンに代表されるような置換基を持たないチォフェンオリ ゴマーも、分子間で πスタックを形成し規則的に配列した構造を形成しやすいが、ぺ ンタセンと同様に不溶性であり蒸着によってし力膜を形成できない問題があった。 ( 特許文献 2参照)
以上のように、有機溶媒に可溶で有りながら、分子が規則的に配列した結晶性の 高 ヽ薄膜を得ることは難し力つた。
[0014] 前記のような問題を解決するために、アルキル鎖を導入し溶解性を付与したペンタ センが提案されている(例えば、非特許文献 5参照。 ) 0しかし、前記アルキル置換べ ンタセンを有機溶媒に溶解するためには高い温度が必要であり、また、溶解性も十 分ではな力つた。さらに、前記アルキル置換ペンタセンを溶解するにはトリクロ口ベン ゼン等の芳香族ハロゲンィ匕炭化水素が用いられて 、るが、これらハロゲン系の溶媒 は環境適性の観点から非ハロゲン溶媒が好まし 、が、溶解性の面力 問題点がある 等、製造上の問題点を抱えていた。
[0015] また、オリゴマー末端にアルキル鎖を導入した a , ω—アルキルチオフェンオリゴマ 一を提案している(例えば、非特許文献 6参照。 ) 0これらのチォフェンオリゴマーはク ロロホルムなどの有機溶媒に溶解することができ、塗布膜を形成することが可能であ る。しかし、これらの材料においても、有機溶媒に溶解するためには加熱などの操作 が必要であり十分な溶解性は得られて 、な 、。
特許文献 1:特開平 5— 55568号公報
特許文献 2:特開平 8 - 264805号公報
非特許文献 1:『サイエンス』 (Science)誌 289卷、 599ページ(2000)
非特許文献 2:『ネイチヤー』 (Nature)誌 403卷、 521ページ(2000)
非特許文献 3 :『アドバンスド 'マテリアル』(Advanced Material)誌、 2002年、第 2 号、 99ページ
非特許文献 4 :Appl. Phys. Lett. , 1998, 72, 1854
非特許文献 5 : Proc. ICSM- 2004
非特許文献 6 :『ケミカル マテリアル』(Chemical Material)誌、 1998年、第 10号 、 633ページ
発明の開示
[0016] 本発明の目的は、上記のような従来技術が有する問題を解決し、塗布によって有 機半導体薄膜が形成可能であり、得られた有機半導体薄膜を用いて、キャリア移動 度が高い、有機半導体デバイス、有機薄膜トランジスタ及び、該デバイスまたは該トラ ンジスタを具備する有機 EL素子を提供することである。
[0017] 本発明の上記目的は、下記の構成 1〜18により達成された。
[0018] (項 1)
有機半導体化合物を含む有機半導体薄膜にぉ ヽて、
該有機半導体化合物と有機溶媒とを混合し、調製された、室温で溶液または分散 液を用いて膜を形成する工程を経て製造されたものであり、且つ、該膜の X線回折ス ベクトルにおける、最大強度の回折ピークの半値幅が 0. 4° 以下であることを特徴と する有機半導体薄膜。
[0019] (項 2)
有機半導体化合物を含む有機半導体薄膜にぉ ヽて、
該有機半導体化合物と有機溶媒とを混合し、調製された、室温で溶液または分散 液を用いて膜を形成する工程を経て製造されたものであり、且つ、該膜の X線回折ス ベクトルにおける、最大強度の回折ピークの半値幅が 0. 2° 以下であることを特徴と する有機半導体薄膜。
[0020] (項 3)
前記有機溶媒が非ハロゲン系溶媒を含有することを特徴とする項 1または 2に記載の 有機半導体薄膜。
[0021] (項 4)
前記有機半導体化合物の重量平均分子量 Mwが 10000以下であることを特徴とす る項 1〜3のいずれ力 1項に記載の有機半導体薄膜。
[0022] (項 5)
前記有機半導体化合物の重量平均分子量 Mwと数平均分子量 Mnとの比率 (Mw ZMn)が 2以下であることを特徴とする項 1〜4のいずれか 1項に記載の有機半導体 薄膜。
[0023] (項 6)
前記有機半導体ィ匕合物の含有量が 95%以上であることを特徴とする項 1〜5のいず れか 1項に記載の有機半導体薄膜。
[0024] (項 7)
前記有機半導体化合物が、芳香族性の環を 2個以上含む π共役系化合物であるこ とを特徴とする項 1〜6のいずれ力 1項に記載の有機半導体薄膜。
[0025] (項 8)
前記有機半導体ィ匕合物が、 2種類以上の芳香族炭化水素環または 2種以上の芳香 族複素環を部分構造として有することを特徴とする項 7に記載の有機半導体薄膜。
[0026] (項 9) 前記有機半導体ィ匕合物が、 3種類以上の芳香族炭化水素環または 3種以上の芳香 族複素環を部分構造として有することを特徴とする項 7に記載の有機半導体薄膜。
[0027] (項 10)
前記有機半導体化合物が、無置換の、縮合環をもたない芳香族炭化水素環または 、無置換の芳香族複素環を部分構造として有することを特徴とする項 7〜9の!ヽずれ 力 1項に記載の有機半導体薄膜。
[0028] (項 11)
前記有機半導体化合物が、置換基を有するチオフ ン環と、無置換のチオフ ン環 繰り返し単位が少なくとも 2つ以上連続している部分構造とを有するチォフェンオリゴ マーを含むことを特徴とする項 1〜10のいずれ力 1項に記載の有機半導体薄膜。
[0029] (項 12)
前記チォフェンオリゴマーに含まれるチォフェン環の環数が 3〜20であることを特徴 とする項 11に記載の有機半導体薄膜。
[0030] (項 13)
前記チォフェンオリゴマーに含まれるチォフェン環の環数力 〜 10であることを特徴 とする項 11に記載の有機半導体薄膜。
[0031] (項 14)
前記チォフェンオリゴマーが下記一般式(1)で表される部分構造を有することを特徴 とする項 11〜13のいずれか 1項に記載の有機半導体薄膜。
[0032] [化 1]
—般式 (1)
Figure imgf000008_0001
〔式中、 Rは置換基を表す。〕
(項 15)
前記チォフェンオリゴマーの末端基が、チェ二ル基を持たな 、ことを特徴とする項 11 〜14のいずれか 1項に記載の有機半導体薄膜。 [0034] (項 16)
前記チォフェンオリゴマーの構造中に、 Head— to— Head構造を持たないことを特 徴とする項 11〜15のいずれか 1項に記載の有機半導体薄膜。
[0035] (項 17)
項 1〜16のいずれか 1項に記載の有機半導体薄膜を具備していることを特徴とする 有機半導体デバイス。
[0036] (項 18)
項 1〜16のいずれか 1項に記載の有機半導体薄膜を有機半導体層に用いることを 特徴とする有機薄膜トランジスタ。
[0037] (項 19)
項 17に記載の有機半導体デバイスまたは項 18に記載の有機薄膜トランジスタを具 備していることを特徴とする有機エレクト口ルミネッセンス素子。
[0038] 本発明の有機半導体薄膜により、キャリア移動度が高い有機 TFT、電界効果トラン ジスタ、更に、該有機 TFTまたは該電界効果トランジスタを有するスイッチング素子を 提供することができた。
図面の簡単な説明
[0039] [図 1]本発明に係る有機 TFTの構成例を示す図である。
[図 2]本発明の有機 TFTの概略等価回路図の 1例である。
[図 3]本発明の有機半導体薄膜の X線回折スペクトルの一例である。
[図 4]本発明の有機半導体薄膜の X線回折スペクトルの一例である。
[図 5]本発明の有機半導体薄膜の X線回折スペクトルの一例である。
[図 6]比較の有機半導体薄膜の X線回折スペクトルの一例である。
[図 7]封止構造を有する有機 EL素子の一例を示す模式図である。
[図 8]有機 EL素子に用いる、 TFTを有する基板の一例を示す模式図である。
発明を実施するための最良の形態
[0040] 本発明の有機半導体薄膜においては、請求項 1〜16のいずれか 1項に規定される 構成を用いることにより、薄膜トランジスタ用途に有用な有機半導体薄膜を得ることが 出来る。また、該有機半導体薄膜を用いて作製した有機薄膜トランジスタ (有機 TFT ともいう)は、キャリア移動度が高ぐ良好な ONZOFF特性を示す等、優れたトランジ スタ特性を示すことがゎカゝつた。また、該有機 TFTは良好なスイッチング特性を示す ことが判った。
[0041] これまで良好な TFT特性が報告されて 、るペンタセン等では、分子間で πスタック を形成しながら、分子が規則正しく配列していることが知られている。しかしながら、 Ρ ΗΤ等のポリチォフェンでは、分子間の規則的な配列は部分的にしか形成されて!ヽ ない。すなわち、従来公知の文献等に記載のポリチォフェン化合物等を使用した場 合には、巨大なポリマー分子であるが故に、 πスタックが部分的にしか形成されず、 πスタックに関われない部分は、配向性の乱れた部分として、数多く存在する為に、 十分なキャリア移動度や ONZOFF特性が得られないのだと推定した。
[0042] 本発明者等は、上記の問題点を種々検討した結果、単結晶など分子が規則的に 配列し、高い結晶性を有した材料においては、 Cu— Κ α特性 X線による X線回折ス ベクトルにおいて、半値幅の非常に小さな回折ピークが得られることが知られている。 そこで、回折ピークの半値幅を膜内における分子配列の規則性の指標とし、より半値 幅の小さな回折ピークを示すような膜を形成する材料が、優れた TFT性能を発現す る有機半導体薄膜を形成することを見出した。
[0043] 特に、本発明に係るチォフェンオリゴマーのように、溶解性部位 (置換基を持つチ オフ ン環部位)と πスタック形成部位 (無置換チオフ ン環の連続した部位)とを備 え、分子量がある特定の範囲(これは、繰り返し単位の数をある特定の範囲になるよう に調整することと同義である)に調整されたオリゴマーを分子設計し、前記オリゴマー を用いることで、従来公知のペンタセン等で見られたような理想的な分子配列を持つ た塗布膜を形成することが可能となり、結果的に、 TFT性能の大幅なる向上に成功 した。
[0044] 以下、本発明に係る各構成要素の詳細について、順次説明する。
[0045] 《有機半導体薄膜》
本発明に係る有機半導体薄膜について説明する。
[0046] 《室温で溶液または分散液》
本発明の有機半導体薄膜は、有機半導体ィ匕合物 (有機半導体ィ匕合物については 、後述する)を下記に示す有機溶媒と混合して調製した、室温で溶液または分散液 を用いて膜形成する工程を経て作製される。ここで、室温で溶液または分散液とは、 有機半導体ィ匕合物と有機溶媒とを 10°C〜80°Cの条件下で混合した時に、溶液また は分散液が形成されることを表し、分散液とは、有機半導体化合物が粒子状に分散 された状態を表すが、分散液中に、有機半導体化合物が部分的溶解している状態も 含む。また、分散液の一態様としては、例えば、 80°Cの温度条件下では溶解し、溶 液を形成するが、室温 (通常 25°C前後の温度を示す)に戻すと有機半導体化合物の 粒子、凝集体、析出物等が有機溶媒中に分散されている状態等を挙げることが出来 る。
[0047] (有機溶媒)
本発明に係る有機溶媒としては、特に制限はなぐ単一溶媒でも混合溶媒でもよい 力 好ましくは、非ハロゲン系溶媒が用いられる。本発明に用いられる非ハロゲン系 溶媒としては、へキサン、オクタンなどの脂肪族系、シクロへキサンなどの脂環式系溶 媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、テトラヒドロフラン、ジォキサン、 エチレングリコーノレジェチノレエーテノレ、ァニソ一ノレ、ベンジノレエチノレエーテノレ、ェチ ノレフエニノレエーテノレ、ジフエニノレエーテノレ、メチノレー tーブチノレエーテノレ等のエーテ ル系溶媒、酢酸メチル、酢酸ェチル、ェチルセ口ソルブ等のエステル系溶媒、メタノ ール、エタノール、イソプロパノール等のアルコール系溶媒、アセトン、メチルェチル ケトン、シクロへキサノン、 2 へキサノン、 2 へプタノン、 3 へプタノン等のケトン系 溶媒、その他ジメチルホルムアミド、ジメチルスルホキシド、ジェチルホルムアミド、 1, 3—ジォキソラン等が挙げられる。
[0048] また、併用される有機溶剤は、特に制限されるものではな ヽが、好ま ヽものとして は、メタノール、エタノール、イソプロパノール、アセトン、メチルェチルケトン、メチルイ ソブチルケトン、ピロリドン、 N—メチルピロリドン、ジメチルホルムアミド、ジメチルァセ トアミド、酢酸メチル、酢酸ェチル、酢酸ブチル、乳酸メチル、乳酸ェチル、乳酸ブチ ル、 13ーメトキシプロピオン酸メチル、 13 エトキシプロピオン酸ェチル、プロピレング リコールモノメチルエーテルアセテート、トルエン、キシレン、へキサン、リモネン、シク 口へキサンなどが挙げられる。これらの有機溶媒は 2種類以上を組合せて用いること ちでさる。
[0049] また、エステル系溶剤としては、ォキシイソ酪酸アルキルエステル等を用いてもよく、 ォキシイソ酪酸エステルとしては、 α—メトキシイソ酪酸メチル、 a—メトキシイソ酪酸 ェチル、 a—エトキシイソ酪酸メチル、 a—エトキシイソ酪酸ェチルなどの a—アルコ キシイソ酪酸アルキルエステル; βーメトキシイソ酪酸メチル、 βーメトキシイソ酪酸ェ チル、 j8—エトキシイソ酪酸メチル、 j8—エトキシイソ酪酸ェチルなどの j8—アルコキ シイソ酪酸アルキルエステル;および α ヒドロキシイソ酪酸メチル、 α—ヒドロキシィ ソ酪酸ェチルなどの α—ヒドロキシイソ酪酸アルキルエステルが挙げられ、特にひ メトキシイソ酪酸メチル、 β—メトキシイソ酪酸メチル、 β—エトキシイソ酪酸メチルまた はひ一ヒドロキシイソ酪酸メチル等を用いることができる。
[0050] 《有機半導体化合物の X線回折スペクトル》
本発明に係る有機半導体化合物は、上記の有機溶媒と混合して、調製した溶液を 用いて膜形成を行った後、得られた膜の X線回折スペクトルにおける、最大強度の回 折ピークの半値幅が 0. 4° 以下であることが特徴であり、好ましくは、 0. 3° 以下で あり、さらに好ましくは 0. 2° 以下である。
[0051] 一般的に、化合物の結晶性の高さは X線回折スペクトルにおける回折ピークの半値 幅力も推測することができ、分子が広範囲で規則的に配列した材料力もは半値幅の 非常に小さな回折ピークが得られる。
[0052] 本発明においては、室温で実質的に有機溶媒に可溶であり、且つ、 X線回折スぺ タトルにおいて半値幅の小さな回折ピークが得られる有機半導体薄膜を用いることに よって、高 ヽキャリア移動度など望ま ヽ半導体デバイス特性を発現する有機 TFT 素子を得ることに成功した。
[0053] 本発明に係る X線回折スペクトル測定は、以下に示す装置及び測定条件において 行われるが、本発明の有機薄膜の X線回折測定時に用いられる基板 (ベース)と、本 発明の有機薄膜トランジスタ (有機 TFT)に用いられる基板 (ベース)とは、同一でもよ ぐ異なっていてもよいが、得られた X線回折スペクトルカゝら得られる最大強度の半値 幅としては、より小さな値が得られたデータを、本発明に係る、『膜の X線回折スぺタト ルにおける、最大強度の回折ピークの半値幅』として用いる。 [0054] ここで、 X線回折スペクトルは X線回折装置 RINT— TTR2 (理学電気製)を用い、 下記に測定条件の一例を示す。また、試料により、一部、測定条件の変更をしても最 大強度を与える回折ピーク、並びに、半値幅は同一の値が得られることを確認してい る。測定時に用いる薄膜の膜厚は 5nm〜100nmの範囲であり、好ましくは ΙΟηπ!〜 50nmである。
[0055] (測定条件)
X線管球 Cu (Cu— Κ α特性 X線を使用)
電圧 50. 0KV
電流 300. OmA
スター卜角度 2 Θ = 2. OOdeg.
ストップ角度 2 Θ =45. OOdeg.
ステップ角度 0. 020deg. /step
測定時間 0. 40秒 Zstep
(半値幅の算出方法)
回折ピークの低角、広角側にバックグラウンドをとり、そのバックグラウンドより上の各 測定点の強度の合計を求め、これをピーク面積とする。各測定点の中でもっとも強度 の高いものをピーク高さとし、下記の式より半値幅を算出する。
[0056] 半値幅 = SF X面積 Z高さ
SF:ピーク形状に関係する定数で、本発明においては 0. 85に設定。
[0057] 上記作業は、 JADE6 (Materials Data. Inc,社製)を用いて行った。
[0058] また、 X線回折測定に用いられる膜は、有機半導体化合物を有機溶媒等を用いて 溶解させた有機半導体溶液を基板などのベース上に被覆した上、加熱などの方法 により前記溶媒を気化させることにより得ることができる。有機半導体含有溶液をべ一 ス上に被覆する方法としては、塗布、噴霧、溶液に直接ベースを接触させる方法など があり、具体的にはキャスト、スピンコート、ディップコート、スクリーン印 インクジェ ット印刷、ブレード塗布等、公知の方法が挙げられる。
[0059] このような操作は大気下、または窒素、アルゴン等の不活性ガス雰囲気下で行うこ とができる。また、溶媒を気化させる際にベースの温度や雰囲気の気圧、温度などを 制御することも可能である。さらに過飽和状態の有機半導体含有溶液にベースを接 触させて、ベース表面に有機半導体薄膜を形成させることも可能である。これらの方 法によってベース上に形成された有機半導体薄膜は、さらに加熱や冷却、電場、磁 場、温度勾配などの印加、加圧、摩擦等の処理を行うことにより、膜内の配向性を向 上させることち可會である。
[0060] 形成される有機半導体薄膜の膜厚に制限はないが、好ましくは lOOnm以下であり
、さらに好ましくは 50nm以下である。
[0061] また、用いられるベースに制限はなぐ Si基板、ガラス基板、ポリマーフィルム等、何 でもよい。また、ベースと有機半導体薄膜の境界となるベース表面は熱酸ィ匕膜など公 知の手段で処理されていてもよぐまたアルキルトリクロロシランなどを用いた処理によ り表面修飾されて 、てもよ 、。
[0062] 《有機半導体化合物の分子量、分子量分布 (Mw/Mn)》
本発明に係る有機半導体化合物の分子量 (重量平均分子量)は、 10000以下であ ることが好ましぐ更に好ましくは、 100〜5000の範囲である。更に、本発明に係る、 重量平均分子量 (Mw)と数平均分子量 (Mn)との比率 (分子量分布)は、 2以下であ ることが好ましい。
[0063] 本発明の有機半導体化合物の重量平均分子量 (Mw)、数平均分子量 (Mn)の測 定は、 THF (テトラヒドロフラン)をカラム溶媒として用いる GPC (ゲルパーミエーシヨン クロマトグラフィー)を用いて分子量測定を行う。
[0064] 具体的には、測定試料を lmgに対して THF (脱気処理を行ったものを用いる)を 1 ml加え、室温下にてマグネチックスターラーを用いて撹拌を行い、充分に溶解させる 。ついで、ポアサイズ 0. 45 πι〜0. 50 /z mのメンブランフィルターで処理した後に 、 GPC装置に注入する。
[0065] GPCの測定条件は、 40°Cにてカラムを安定ィ匕させ、 THFを毎分 lmlの流速で流し 、 lmgZmlの濃度の試料を約 100 1注入して測定する。カラムとしては、市販のポリ スチレンジエルカラムを組み合わせて使用することが好ましい。例えば、昭和電工社 製の Shodex GPC KF— 801、 802、 803、 804、 805、 806、 807の組合せや、 東ソ一社製の TSKgelG1000H、 G2000H, G3000H, G4000H, G5000H, G6 000H、 G7000H、 TSK guard
columnの組合せなどをあげることができる。
[0066] 検出器としては、屈折率検出器 (RI検出器)、あるいは UV検出器が好ましく用いら れる。試料の分子量測定では、試料の有する分子量分布を単分散のポリスチレン標 準粒子を用いて作成した検量線を用いて算出する。検量線作成用のポリスチレンと しては 10点程度用いることが好ま 、。
[0067] 本発明では、下記の測定条件にて分子量測定を行った。
[0068] (測定条件)
装置: HLC - 8020 (東ソ一社製)
カラム: GMHXLx2, G2000HXLxl
検出器: RI及び Zまたは UV
溶出液流速: 1. OmlZ分
試料濃度 : 0. 01g/20ml
試料量: 100 1
検量線:標準ポリスチレンにて作製
《有機半導体化合物の含有量》
また、有機半導体膜中の有機半導体ィ匕合物の含有量は 95質量%以上であること が好ましぐ更に好ましくは、 98質量%以上である。また、本発明の有機薄膜トランジ スタ特性に影響を与えな!/ヽ場合には、本発明に係る有機半導体化合物の具体的な 化合物は、後述するが、同一化合物でもよぐ複数の構造の異なる化合物の混合物 でもよい。
[0069] ここで、有機半導体化合物の含有量は、 HPLC (高速液体クロマトグラフ)を用いて
、分析した。以下に、測定装置、測定条件を示す。
[0070] HPLC装置:日本分光株式会社製 GULLIVER
カラム:ヮコ一パック Wakosil -II 5SIL- 100 (和光純薬工業株式会社製) 溶離液:トルエン (特級) Zシクロへキサン (特級)混合溶液
カラム温度: 40°C 検出器: UVZ VIS ( 31 Onm)
インジェクション量: 400 μ L
《有機半導体化合物として好ま ゝ化合物》
本発明に係る有機半導体化合物としては、 π共役系化合物を好適に用いることが でき、さらに下記に示す特徴を有する化合物が好ましく用いられる。
[0071] (a)前記有機半導体化合物が、芳香族性の環を 2個以上含む π共役系化合物で ある。
[0072] ここで、芳香族性の環とは、芳香族炭化水素環、芳香族複素環、芳香族縮合環の いずれかを表す。また、含まれる芳香族性の環は同じでも異なっていてもよい。
[0073] (b)前記 π共役系化合物が、 2種類以上の芳香族炭化水素環または 2種以上の芳 香族複素環を部分構造として有する。
[0074] (c)前記 π共役系化合物が、 3種類以上の芳香族炭化水素環または 3種以上の芳 香族複素環を部分構造として有する。
[0075] (d)前記 (a)、 (b)または (c)に記載の π共役系化合物が、無置換の、縮合環をもた な ヽ芳香族炭化水素環または、無置換の芳香族複素環を部分構造として有する。
[0076] ( π共役系化合物)
本発明に係る π共役系化合物としては、上記の有機半導体ィ匕合物として求められ て 、る条件 (室温で有機溶媒に可溶、形成膜の X線回折スペクトルの最大強度の半 値幅が 0. 4° 以下)を満たせば、従来公知の半導体材料を用いてもよい。
[0077] 例えば、ペンタセンゃテトラセンといったァセン類、鉛フタロシアニンを含むフタロシ ァニン類、ペリレンやそのテトラカルボン酸誘導体といった低分子化合物や、ひーチ ェニールもしくはセクシチォフェンと呼ばれるチォフェン 6量体、フルオレンオリゴマー などの芳香族オリゴマー、更には、ポリチォフェン、ポリチェ-レンビ-レン、ポリ ρ —フエ-レンビ-レンといった共役高分子等が挙げられる。
[0078] 本発明に記載の効果 (塗布により有機半導体薄膜が得られ、且つ、該有機半導体 薄膜を用いてキャリア移動度が高い有機 TFTを得る)を好ましく得る観点からは、本 発明に係る π共役系の化合物としては、芳香族性の環を 2個以上含む π共役系化 合物であることが好ましぐ更に、上記の (b)または(c)に記載の要件を満たす、 π共 役系化合物を用いることが好ま 、。
[0079] 本発明に係る π共役系化合物としては、 2種類以上の芳香族炭化水素環または 2 種以上の芳香族複素環を部分構造として有することがこのましい。
[0080] ここで、芳香族炭化水素環としては、ベンゼン環、ビフエ-ル環、ナフタレン環、ァズ レン環、アントラセン環、フエナントレン環、ピレン環、タリセン環、ナフタセン環、トリフ ェニレン環、 ο—テノレフエ-ノレ環、 m—テノレフエ-ノレ環、 p—テノレフエ-ノレ環、ァセナ フテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン 環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレ ン環等が挙げられる。更に、後述するチォフェンオリゴマーが有する置換基を有して ちょい。
[0081] また、芳香族複素環としては、フラン環、チォフェン環、ォキサゾール環、ピリジン環 、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、ォキサ ジァゾール環、トリァゾール環、イミダゾール環、ピラゾール環、チアゾール環、インド ール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾォキサゾール環、キノキ サリン環、キナゾリン環、フタラジン環、力ルバゾール環、カルボリン環、ジァザ力ルバ ゾール環 (カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子 で置換されている環を示す)等が挙げられる。更に、前記芳香族複素環は、後述する チォフェンオリゴマーが有する置換基を有してもよ 、。
[0082] 従来公知の π共役系化合物の多くが、有機半導体薄膜の形成にあたり真空蒸着 プロセスを用いる必要があつたが、本発明に係る有機半導体化合物は、塗布や印刷 などの常圧プロセスにより、種々の基板上 (有機薄膜トランジスタを構成する基板でも よいし、その他の基板でもよい)に薄膜を設置できるという、従来公知の有機半導体 ではない製膜による薄膜トランジスタ作製を行うことを可能にした。
[0083] また、従来公知のポリマーや一部のオリゴマーはその分子構造中に、溶剤溶解性 を向上させるための置換基を導入しており、その溶液を用いて薄膜形成を行うことを 可能にして 、るが、分子間の規則的な配列が部分的にしか形成されて 、な 、ために 、電荷移動度や耐久性について必ずしも充分とはいえな力つた力 特に、本発明に 係るチォフェンオリゴマーは、溶解性部位 (置換基を持つチォフェン環部位)と πスタ ック形成部位 (無置換チオフ ン環の連続した部位)とを備え、分子量を特定の範囲( これは、繰り返し単位の数をある特定の範囲になるように調整することと同義である) に調整されたオリゴマーとすることにより、従来公知のペンタセン等で見られたような 理想的な分子配列を持った塗布膜を形成し、大幅に有機 TFT性能の向上に成功し た。
[0084] 以下、本発明に係る有機半導体ィ匕合物として最も好ましく用いられる化合物につい て説明する。
[0085] 《チォフェンオリゴマー》
本発明に係るチォフェンオリゴマーにつ 、て説明する。
[0086] 本発明に係るチォフェンオリゴマーは、置換基を有するチォフェン環繰り返し単位 と、無置換のチォフェン環繰り返し単位が少なくとも 2つ以上連続している部分構造 を有する、各々少なくとも 2つ以上連続している部分構造を有するチォフェンオリゴマ 一を含み、且つ、該チォフェンオリゴマーに含まれるチォフェン環の環数が 3〜40で あることが特徴であるが好ましぐさらに前記チォフェン環の環数としては、 3〜20の 範囲が好ましい。より好ましくは 4〜10の範囲である。更に好ましくは、チォフェンオリ ゴマーが前記一般式(1)で表される部分構造を有することである。
[0087] 《一般式(1)で表されるチォフェンオリゴマー》
本発明に係る一般式(1)で表されるチォフェンオリゴマーにつ 、て説明する。
[0088] 一般式(1)にお 、て、 Rで表される置換基としては、例えば、アルキル基 (例えば、 メチル基、ェチル基、プロピル基、イソプロピル基、 tert—ブチル基、ペンチル基、へ キシル基、ォクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基 等)、シクロアルキル基 (例えば、シクロペンチル基、シクロへキシル基等)、ァルケ- ル基 (例えば、ビュル基、ァリル基等)、アルキ-ル基 (例えば、ェチニル基、プロパル ギル基等)、ァリール基(例えば、フエ-ル基、 p—クロ口フエ-ル基、メシチル基、トリ ル基、キシリル基、ナフチル基、アントリル基、ァズレニル基、ァセナフテュル基、フル ォレニル基、フエナントリル基、インデュル基、ピレニル基、ビフエ-リル基等)、芳香 族複素環基 (例えば、フリル基、チェニル基、ピリジル基、ピリダジル基、ピリミジル基 、ビラジル基、トリアジル基、イミダゾリル基、ピラゾリル基、チアゾリル基、ベンゾイミダ ゾリル基、ベンゾォキサゾリル基、キナゾリル基、フタラジル基等)、複素環基 (例えば 、ピロリジル基、イミダゾリジル基、モルホリル基、ォキサゾリジル基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基、プロピルォキシ基、ペンチルォキシ基、へキシルォ キシ基、ォクチルォキシ基、ドデシルォキシ基等)、シクロアルコキシ基 (例えば、シク 口ペンチルォキシ基、シクロへキシルォキシ基等)、ァリールォキシ基 (例えば、フエノ キシ基、ナフチルォキシ基等)、アルキルチオ基 (例えば、メチルチオ基、ェチルチオ 基、プロピルチオ基、ペンチルチオ基、へキシルチオ基、ォクチルチオ基、ドデシル チォ基等)、シクロアルキルチオ基 (例えば、シクロペンチルチオ基、シクロへキシル チォ基等)、ァリールチオ基 (例えば、フエ二ルチオ基、ナフチルチオ基等)、アルコ キシカルボ-ル基(例えば、メチルォキシカルボ-ル基、ェチルォキシカルボ-ル基 、ブチルォキシカルボニル基、ォクチルォキシカルボニル基、ドデシルォキシカルボ -ル基等)、ァリールォキシカルボ-ル基(例えば、フエ-ルォキシカルボ-ル基、ナ フチルォキシカルボ-ル基等)、スルファモイル基(例えば、アミノスルホ -ル基、メチ ルアミノスルホ -ル基、ジメチルアミノスルホ -ル基、ブチルアミノスルホ -ル基、へキ シルアミノスルホ -ル基、シクロへキシルアミノスルホ -ル基、ォクチルアミノスルホ- ル基、ドデシルアミノスルホ-ル基、フエ-ルアミノスルホ -ル基、ナフチルアミノスル ホ-ル基、 2—ピリジルアミノスルホ -ル基等)、ァシル基 (例えば、ァセチル基、ェチ ルカルボニル基、プロピルカルボ-ル基、ペンチルカルボ-ル基、シクロへキシルカ ルボニル基、ォクチルカルポ-ル基、 2—ェチルへキシルカルボ-ル基、ドデシルカ ルボニル基、フヱ-ルカルボ-ル基、ナフチルカルボ-ル基、ピリジルカルボ-ル基 等)、ァシルォキシ基 (例えば、ァセチルォキシ基、ェチルカルボ-ルォキシ基、ブチ ルカルボ-ルォキシ基、ォクチルカルボ-ルォキシ基、ドデシルカルボ-ルォキシ基 、フエ-ルカルポニルォキシ基等)、アミド基 (例えば、メチルカルボニルァミノ基、ェ チルカルボ-ルァミノ基、ジメチルカルボ-ルァミノ基、プロピルカルボ-ルァミノ基、 ペンチルカルボ-ルァミノ基、シクロへキシルカルボ-ルァミノ基、 2—ェチルへキシ ルカルボ-ルァミノ基、ォクチルカルボ-ルァミノ基、ドデシルカルボ-ルァミノ基、フ ェ-ルカルボ-ルァミノ基、ナフチルカルボ-ルァミノ基等)、力ルバモイル基(例えば 、ァミノカルボ-ル基、メチルァミノカルボ-ル基、ジメチルァミノカルボ-ル基、プロ ピルアミノカルボ-ル基、ペンチルァミノカルボ-ル基、シクロへキシルァミノカルボ- ル基、ォクチルァミノカルボ-ル基、 2—ェチルへキシルァミノカルボ-ル基、ドデシ ルァミノカルボ-ル基、フエ-ルァミノカルボ-ル基、ナフチルァミノカルボ-ル基、 2 ピリジルァミノカルボ-ル基等)、ウレイド基 (例えば、メチルウレイド基、ェチルウレ イド基、ペンチルゥレイド基、シクロへキシルウレイド基、ォクチルゥレイド基、ドデシル ウレイド基、フエ-ルゥレイド基、ナフチルウレイド基、 2—ピリジルアミノウレイド基等) 、スルフィエル基(例えば、メチルスルフィ-ル基、ェチルスルフィ-ル基、ブチルスル フィエル基、シクロへキシルスルフィ-ル基、 2—ェチルへキシルスルフィエル基、ド デシルスルフィ-ル基、フエ-ルスルフィ-ル基、ナフチルスルフィ-ル基、 2—ピリジ ルスルフィ -ル基等)、アルキルスルホ -ル基(例えば、メチルスルホ -ル基、ェチル スルホ-ル基、ブチルスルホ -ル基、シクロへキシルスルホ -ル基、 2—ェチルへキ シルスルホ-ル基、ドデシルスルホ -ル基等)、ァリールスルホ -ル基(例えば、フエ ニルスルホ-ル基、ナフチルスルホ-ル基、 2—ピリジルスルホ -ル基等)、アミノ基( 例えば、アミノ基、ェチルァミノ基、ジメチルァミノ基、ブチルァミノ基、シクロペンチル アミノ基、 2—ェチルへキシルァミノ基、ドデシルァミノ基、ァ-リノ基、ナフチルァミノ 基、 2—ピリジルァミノ基等)、ハロゲン原子 (例えば、フッ素原子、塩素原子、臭素原 子等)、フッ化炭化水素基 (例えば、フルォロメチル基、トリフルォロメチル基、ペンタ フルォロェチル基、ペンタフルオロフヱニル基等)、シァノ基、シリル基 (例えば、トリメ チルシリル基、トリイソプロビルシリル基、トリフ -ルシリル基、フ -ルジェチルシリ ル基等)等が挙げられる。
[0089] これらの置換基は上記の置換基によって更に置換されて 、ても、複数が互いに結 合して環を形成して 、てもよ 、。
[0090] 中でも好ましい置換基は、アルキル基であり、更に好ましくは、炭素原子数が 2〜2
0のアルキル基であり、特に好ましくは、炭素原子数 6〜 12のアルキル基である。
[0091] 《チォフェンオリゴマーの末端基》
本発明に係るチォフェンオリゴマーの末端基にっ 、て説明する。
[0092] 本発明に係るチォフェンオリゴマーの末端基は、チェ-ル基を持たな 、ことが好ま しぐまた、前記末端基として好ましい基としては、ァリール基 (例えば、フエニル基、 p ークロロフヱ-ル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、ァ ズレ-ル基、ァセナフテニル基、フルォレ -ル基、フエナントリル基、インデュル基、ピ レニル基、ビフヱ-リル基等)、アルキル基(例えば、メチル基、ェチル基、プロピル基 、イソプロピル基、 tert—ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル 基、トリデシル基、テトラデシル基、ペンタデシル基等)、ハロゲン原子 (例えば、フッ 素原子、塩素原子、臭素原子等)等が挙げられる。
[0093] 《チォフェンオリゴマーの繰り返し単位の立体構造的特性》
本発明に係るチォフェンオリゴマーは、構造中に、 Head— to— Head構造を持た ないことが好ましぐそれに加えて、更に好ましくは、前記構造中に、 Head-to-Ta il構造、または、 Tail— to— Tail構造を有することである。
[0094] 本発明に係る Head— to— Head構造、 Head— to— Tail構造、 Tail— to— Tail構 造については、例えば、『π電子系有機固体』(1998年、学会出版センター発行、 日 本ィ匕学界編) 27〜32頁、 Adv. Mater. 1998, 10, No. 2, 93〜116頁等により参 照出来るが、ここで、具体的に各々の構造的特徴を下記に示す。
[0095] [化 2]
Head— to— Head構造
Figure imgf000021_0001
[0096] [化 3]
Head— to— Tail構造
Figure imgf000021_0002
[0097] [化 4] Tail— to - Tail構造
Figure imgf000022_0001
[0098] 以下、本発明に係るチオフ ンオリゴマーの具体例を示す力 本発明はこれらに限 定されない。
[0099] [化 5]
[9^ ] [ΟΟΐΟ]
Figure imgf000023_0001
l7ZC0l0/S00Zdf/X3d
Figure imgf000024_0001
12n25 C12hl25
Figure imgf000024_0002
Figure imgf000025_0001
剛 [SOTO]
Figure imgf000025_0002
12n25 C12H2$
C10H21
Figure imgf000026_0001
く 23〉
Figure imgf000027_0001
[0105] 《有機薄膜トランジスタ (有機 TFTとも 、う)》
本発明の有機薄膜トランジスタ (有機 TFT)につ 、て説明する。
[0106] 本発明に係る有機半導体薄膜は、有機薄膜トランジスタ (有機 TFT)に用いられる ことにより、良好に駆動する有機 TFTを提供することができる。有機 TFT (有機薄膜ト ランジスタ)は、支持体上に、半導体層として有機半導体チャネルで連結されたソー ス電極とドレイン電極を有し、その上にゲート絶縁層を介してゲート電極を有するトツ プゲート型と、支持体上にまずゲート電極を有し、ゲート絶縁層を介して有機半導体 チャネルで連結されたソース電極とドレイン電極を有するボトムゲート型に大別される
[0107] 本発明に係るチォフェンオリゴマーを有機 TFTの半導体層に設置するには、真空 蒸着により基板上に設置することもできるが、適切な溶剤に溶解し必要に応じ添加剤 をカロえて調製した溶液をキャストコート、スピンコート、印刷、インクジェット法、アブレ ーシヨン法等によって基板上に設置するのが好ま 、。
[0108] この場合、本発明に係る有機半導体化合物を溶解する溶剤は、該有機半導体ィ匕 合物を溶解して適切な濃度の溶液が調製できるものであれば格別の制限はないが、 具体的にはジェチルエーテルゃジイソプロピルエーテル等の鎖状エーテル系溶媒、 テトラヒドロフランやジォキサンなどの環状エーテル系溶媒、アセトンやメチルェチル ケトン等のケトン系溶媒、クロ口ホルムや 1, 2—ジクロロェタン等のハロゲン化アルキ ル系溶媒、トルエン、 o—ジクロ口ベンゼン、ニトロベンゼン、 m—タレゾール等の芳香 族系溶媒、 N—メチルピロリドン、 2硫ィ匕炭素等を挙げることができる。
[0109] 本発明にお 、て、ソース電極、ドレイン電極及びゲート電極を形成する材料は導電 性材料であれば特に限定されず、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アン チモン鈴、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、ァノレミ-ゥ ム、ルテニウム、ゲルマニウム、モリブデン、タングステン、酸化スズ 'アンチモン、酸化 インジウム'スズ (ITO)、フッ素ドープ酸ィ匕亜鉛、亜鉛、炭素、グラフアイト、グラッシ一 カーボン、銀ペーストおよびカーボンペースト、リチウム、ベリリウム、ナトリウム、マグネ シゥム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム 、ニオブ、ナトリウム、ナトリウム一カリウム合金、マグネシウム、リチウム、ァノレミ-ゥム、 マグネシウム Z銅混合物、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混 合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム混合物、リ チウム Zアルミニウム混合物等が用いられるが、特に、白金、金、銀、銅、アルミ-ゥ ム、インジウム、 ιτοおよび炭素が好ましい。あるいはドーピング等で導電率を向上さ せた公知の導電性ポリマー、例えば、導電性ポリア-リン、導電性ポリピロール、導電 性ポリチォフェン、ポリエチレンジォキシチォフェンとポリスチレンスルホン酸の錯体な ども好適に用いられる。中でも半導体層との接触面にぉ 、て電気抵抗が少な 、もの が好ましい。
[0110] 電極の形成方法としては、上記を原料として蒸着やスパッタリング等の方法を用い て形成した導電性薄膜を、公知のフォトリソグラフ法やリフトオフ法を用いて電極形成 する方法、アルミニウムや銅などの金属箔上に熱転写、インクジェット等によるレジスト を用いてエッチングする方法がある。また導電性ポリマーの溶液あるいは分散液、導 電性微粒子分散液を直接インクジェットによりパターユングしてもよ ヽし、塗工膜から リソグラフやレーザーアブレーシヨンなどにより形成してもよい。更に導電性ポリマー や導電性微粒子を含むインク、導電性ペーストなどを凸版、凹版、平版、スクリーン印 刷などの印刷法でパターニングする方法も用いることができる。
[0111] ゲート絶縁層としては種々の絶縁膜を用いることができる力 特に比誘電率の高い 無機酸ィ匕物皮膜が好ましい。無機酸ィ匕物としては、酸化ケィ素、酸ィ匕アルミニウム、 酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウ ム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン 、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、チタン酸ビ スマス、チタン酸ストロンチウムビスマス、タンタノレ酸ストロンチウムビスマス、タンタノレ 酸ニオブ酸ビスマス、トリオキサイドイットリウムなどが挙げられる。それらのうち好まし いのは酸ィ匕ケィ素、酸ィ匕アルミニウム、酸ィ匕タンタル、酸ィ匕チタンである。窒化ケィ素 、窒化アルミニウム等の無機窒化物も好適に用いることができる。
[0112] 上記皮膜の形成方法としては、真空蒸着法、分子線ェピタキシャル成長法、イオン クラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、 CVD法 、スパッタリング法、大気圧プラズマ法などのドライプロセスや、スプレーコート法、スピ ンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコ ート法、ダイコート法などの塗布による方法、印刷やインクジェットなどのパターユング による方法などのウエットプロセスが挙げられ、材料に応じて使用できる。
[0113] ウエットプロセスは、無機酸化物の微粒子を、任意の有機溶剤あるいは水に必要に 応じて界面活性剤などの分散補助剤を用いて分散した液を塗布、乾燥する方法や、 酸化物前駆体、例えば、アルコキシド体の溶液を塗布、乾燥する、いわゆるゾルゲル 法が用いられる。これらのうち好ましいのは、大気圧プラズマ法とゾルゲル法である。
[0114] 大気圧下でのプラズマ製膜処理による絶縁膜の形成方法は、大気圧または大気圧 近傍の圧力下で放電し、反応性ガスをプラズマ励起し、基材上に薄膜を形成する処 理で、その方法については特開平 11— 61406号公報、同 11 133205号公報、特 開 2000— 121804号公報、同 2000— 147209号公報、同 2000— 185362号公報 等に記載されている(以下、大気圧プラズマ法とも称する)。これによつて高機能性の 薄膜を、生産性高く形成することができる。
[0115] また有機化合物皮膜としては、ポリイミド、ポリアミド、ポリエステル、ポリアタリレート、 光ラジカル重合系、光力チオン重合系の光硬化性榭脂、あるいはアクリロニトリル成 分を含有する共重合体、ポリビュルフエノール、ポリビュルアルコール、ノボラック榭 脂、およびシァノエチルプルラン等を用いることもできる。有機化合物皮膜の形成法 としては、前記ウエットプロセスが好ましい。無機酸化物皮膜と有機酸化物皮膜は積 層して併用することができる。またこれら絶縁膜の膜厚としては、一般に 50ηπ!〜 3 m、好ましくは 100nm〜l μ mである。
[0116] また、支持体はガラスやフレキシブルな榭脂製シートで構成され、例えば、プラスチ ックフィルムをシートとして用いることができる。前記プラスチックフィルムとしては、例 えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエー テルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフエ-レ ンスルフイド、ポリアリレート、ポリイミド、ボリカーボネート(PC)、セルローストリァセテ ート (TAC)、セルロースアセテートプロピオネート(CAP)等力 なるフィルム等が挙 げられる。このように、プラスチックフィルムを用いることで、ガラス基板を用いる場合に 比べて軽量ィ匕を図ることができ、可搬性を高めることができるとともに、衝撃に対する 耐性を向上できる。
[0117] 以下に、本発明に係る有機半導体ィ匕合物を用いて形成された有機薄膜を用いた 有機薄膜トランジスタ (有機 TFT)について説明する。
[0118] 図 1は、本発明に係る有機 TFTの構成例を示す図である。同図(a)は、支持体 6上 に金属箔等によりソース電極 2、ドレイン電極 3を形成し、両電極間に本発明の有機 薄膜トランジスタ材料カゝらなる有機半導体層 1を形成し、その上に絶縁層 5を形成し、 更にその上にゲート電極 4を形成して電界効果トランジスタを形成したものである。同 図(b)は、有機半導体層 1を、(a)では電極間に形成したものを、コート法等を用いて 電極及び支持体表面全体を覆うように形成したものを表す。(c)は、支持体 6上に先 ずコート法等を用いて、有機半導体層 1を形成し、その後ソース電極 2、ドレイン電極 3、絶縁層 5、ゲート電極 4を形成したものを表す。
[0119] 同図(d)は、支持体 6上にゲート電極 4を金属箔等で形成した後、絶縁層 5を形成 し、その上に金属箔等で、ソース電極 2及びドレイン電極 3を形成し、該電極間に本 発明の有機薄膜トランジスタ材料により形成された有機半導体層 1を形成する。その 他同図(e)、(f)に示すような構成を取ることもできる。
[0120] 図 2は、有機 TFTシートの概略等価回路図の 1例を示す図である。
[0121] 有機 TFTシート 10はマトリクス配置された多数の有機 TFT11を有する。 7は各 TF Ti lのゲートバスラインであり、 8は各 TFT11のソースバスラインである。各 TFT11 のソース電極には、出力素子 12が接続され、この出力素子 12は例えば液晶、電気 泳動素子等であり、表示装置における画素を構成する。画素電極は光センサの入力 電極として用いてもよい。図示の例では、出力素子として液晶力 抵抗とコンデンサ 力もなる等価回路で示されている。 13は蓄積コンデンサ、 14は垂直駆動回路、 15は 水平駆動回路である。
[0122] 《有機 EL素子 (有機エレクト口ルミネッセンス素子)》
本発明の有機 EL素子は、例えば、陽極と陰極との間に有機 EL層 (有機化合物層 ともいう)が挟まれた状態のものが挙げられる力 これらの構成としては、従来公知の 層構成、有機 EL層の材料等を用いて作製することが出来る。例えば、 Nature, 395 卷, 151〜154頁の文献等が参照出来る。
[0123] 本発明の有機 EL素子を発光 (例えば、表示装置、照明装置等に適用)させるにあ たっては、高い発光輝度を得、且つ、発光寿命が長い等の効果を得る観点から、本 発明の有機半導体デバイスまたは、本発明の有機薄膜トランジスタを具備して ヽるこ とが好ましい。
実施例
[0124] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。
[0125] ここで、実施例に用いる有機半導体ィ匕合物の構造式を以下に示す。
[0126] [化 11] 比較化合物 <1>
Figure imgf000031_0001
[0127] 実施例 1
《有機薄膜トランジスタ 1の作製》:本発明
ゲート電極としての比抵抗 0. 02 Ω 'cmの Siウェハーに、厚さ 200nmの熱酸化膜 を形成してゲート絶縁層とした後、ォクタデシルトリクロロシランによる表面処理を行つ た。
[0128] 次に、有機半導体として、化合物〈2〉(含有量 98. 6%、 Mw/Mn= 1)のシクロへ キサン溶液を、窒素ガスでパブリングすることで溶液中の溶存酸素を除去し、 1. 013 X 102kPaの窒素ガス雰囲気下で前記熱酸ィ匕膜 (酸ィ匕珪素被膜)の表面にアプリケ 一ターを用いて塗布し、室温で乾燥させた。このとき半導体層の膜厚は 20nmであつ た。
[0129] 得られた薄膜を X線回折で評価した結果、図 3に示す X線回折スペクトルチャートが 得られた。最大強度を示す 25. 1 Aの回折ピークの半値幅は 0. 22° であった。
[0130] 更に、この膜の表面にマスクを用いて金を蒸着し、ソース電極及びドレイン電極を 形成した。以上によりチャネル長 L = 30 m、チャネル幅 W= lmmの有機薄膜トラ ンジスタ 1 (本発明)を作製した。
[0131] 有機薄膜トランジスタ 1は、 pチャネルェンノヽンスメント型 TFTとして良好に動作した 。得られた有機薄膜トランジスタについて、 I V特性の飽和領域力もキャリア移動度 を求めたところ、 0. 10cm2ZV' sであった。
[0132] 《有機薄膜トランジスタ 2の作製》:本発明
有機薄膜トランジスタ 1の作製において、化合物〈2〉を化合物〈9〉(含有量 99. 9% 、 Mw/Mn= l)に変更し、有機溶媒として THFとシクロへキサンの混合溶媒(2 : 8) を用いて溶解し、窒素ガスでパブリングすることで、溶液中の溶存酸素を除去し、 1. 013 X 102kPaの窒素ガス雰囲気下で前記熱酸ィ匕膜 (酸ィ匕珪素被膜)の表面にアブ リケーターを用いて塗布した。室温で乾燥させた後、 Nガス雰囲気中で 93°C、 30分
2
間の熱処理を施した。このとき半導体層の膜厚は 20nmであった。
[0133] 得られた薄膜を X線回折で評価した結果、図 4に示すチャートが得られた。最大強 度を示す 16. 5Aの回折ピークの半値幅は 0. 12° であった。
[0134] 更に、有機薄膜トランジスタ 1の作製と同様にこの膜の表面にマスクを用いて金を蒸 着し、ソース電極及びドレイン電極を形成した。以上によりチャネル長 L = 30 m、チ ャネル幅 W= lmmの有機薄膜トランジスタを作製した。作製したトランジスタは、 pチ ャネルエンハンスメント型 TFTとして良好に動作し、 I V特性の飽和領域力 キヤリ ァ移動度は 0. 15cm2ZV' sであった。 [0135] 《有機薄膜トランジスタ 3の作製》
有機薄膜トランジスタ 1の作製において、化合物〈2〉を化合物〈23〉(含有量 99. 9 %、 Mw/Mn= l)に変更し、有機溶媒として THFとシクロへキサンの混合溶媒(1 : 9)に溶解し、窒素ガスでパブリングすることで、溶液中の溶存酸素を除去し、 1. 013 X 102kPaの窒素ガス雰囲気下で前記熱酸ィ匕膜 (酸ィ匕珪素被膜)の表面にアプリケ 一ターを用いて塗布した。室温で乾燥させた後、 Nガス雰囲気中で 48°C
2 、 30分間 の熱処理を施した。このとき半導体層の膜厚は 20nmであった。
[0136] 得られた薄膜を X線回折で評価した結果、図 5に示すチャートが得られた。最大強 度を示す 9. 7 Aの回折ピークの半値幅は 0. 11° であった。
[0137] 更に、有機薄膜トランジスタ 1の作製と同様にこの膜の表面にマスクを用いて金を蒸 着し、ソース電極及びドレイン電極を形成した。以上によりチャネル長 L = 30 m、チ ャネル幅 W= lmmの有機薄膜トランジスタを作製した。作製したトランジスタは、 pチ ャネルエンハンスメント型 TFTとして良好に動作し、 I V特性の飽和領域力 キヤリ ァ移動度は、 0. 16cm2/V' sであった。
[0138] 《有機薄膜トランジスタ 4の作製》
ゲート電極としての比抵抗 0. 02 Ω 'cmの Siウェハーに、厚さ 200nmの熱酸化膜 を形成してゲート電極とした。次に、有機半導体として化合物〈31〉(含有量 99. 8% 、 MwZMn= l)を用い、有機溶媒として THFとシクロへキサンの混合溶媒(2 : 8)に 溶解し、窒素ガスでパブリングすることで、溶液中の溶存酸素を除去し、 1. 013 X 10 2kPaの窒素ガス雰囲気下で前記熱酸ィ匕膜 (酸ィ匕珪素被膜)の表面にアプリケーター を用いて塗布し、室温で乾燥させた。このとき半導体層の膜厚は 20nmであった。こ のとき半導体層の膜厚は 20nmであつた。
[0139] 得られた薄膜を X線回折で評価した結果、最大強度を示す 18. 2Aの回折ピーク の半値幅は 0. 4° であった。
[0140] 更に、有機薄膜トランジスタ 1の作製と同様にこの膜の表面にマスクを用いて金を蒸 着し、ソース電極及びドレイン電極を形成した。以上によりチャネル長 L = 30 m、チ ャネル幅 W= lmmの有機薄膜トランジスタを作製した。作製したトランジスタは、 pチ ャネルエンハンスメント型 TFTとして良好に動作し、 I V特性の飽和領域力 キヤリ ァ移動度は、 0. 05cm2/V' sであった。
[0141] 《比較の有機薄膜トランジスタ 5の作製》
有機薄膜トランジスタ 1の作製において、化合物〈2〉を、従来公知の比較化合物 1 ( J. Am. Chem. Soc. 2004, 126, 3378— 3379に記載されたチオフエンポリマー: Mwl8000、 Mnl0400、 Mw/Mn= l. 7)に変更し、有機溶媒として、クロロホノレ ム溶液を調製し、窒素ガスでパブリングすることで、溶液中の溶存酸素を除去し、 N
2 ガス雰囲気中で前記表面処理を行ったゲート絶縁膜の表面にアプリケータを用いて 塗布し、室温で乾燥させた。このとき半導体層の膜厚は 20nmであった。
[0142] 得られた薄膜を X線回折で評価した結果、図 6に示すチャートが得られた。最大強 度を示す 19. 6Aの回折ピークの半値幅は 0. 69° であった。
[0143] 更に有機薄膜トランジスタ 1の作製と同様にこの膜の表面にマスクを用いて金を蒸 着し、ソース電極およびドレイン電極を形成し、チャネル長1^ = 30 111、チャネル幅 W= 1mmの有機薄膜トランジスタを作製した。このトランジスタは pチャネルェンハン スメント型 FETとして動作し、 I V特性の飽和領域力 キャリア移動度は 0. 02cm2 ZV' sであった。
[0144] 以上の結果から、比較の有機 TFT素子と比べて、本発明の有機 TFT素子は、作 製直後において優れたトランジスタ特性を示し、且つ、キャリア移動度が大きいという 優れたトランジスタ特性を示すことが判る。
[0145] 実施例 2
《有機 EL素子の作製》
有機 EL素子の作製は、 Nature, 395卷, 151〜154頁に記載の方法を参考にし て、図 7に示したような封止構造を有するトップェミッション型の有機 EL素子を作製し た。尚、図 7において、 101は基板、 102aは陽極、 102bは有機 EL層(具体的には、 電子輸送層、発光層、正孔輸送層等が含まれる)、 102cは陰極を示し、陽極 102a、 有機 EL層 102b、陰極 102cにより、発光素子 102が形成されている。 103は封止膜 を示す。尚、本発明の有機 EL素子は、ボトムェミッション型でもトップェミッション型の どちらでもよい。
[0146] 本発明の有機 EL素子と本発明の有機薄膜トランジスタ (ここで、本発明の有機薄膜 トランジスタは、スイッチングトランジスタや駆動トランジスタ等として用いられる)を組 み合わせて、アクティブマトリクス型の発光素子を作製した力 その場合は、例えば、 図 8に示すように、ガラス基板 601上に TFT602 (有機薄膜トランジスタ 602でもよい) が形成されている基板を用いる態様が一例として挙げられる。ここで、 TFT602の作 製方法は公知の TFTの作製方法が参照できる。勿論、 TFTとしては、従来公知のト ップゲート型 TFTであってもボトムゲート型 TFTであっても構わない。
上記で作製した有機 EL素子は、単色、フルカラー、白色等の種々の発光形態にお いて、良好な発光特性を示した。

Claims

請求の範囲
[1] 有機半導体化合物を含む有機半導体薄膜にぉ ヽて、
該有機半導体化合物と有機溶媒とを混合し、調製された、室温で溶液または分散 液を用いて膜を形成する工程を経て製造されたものであり、且つ、該膜の X線回折ス ベクトルにおける、最大強度の回折ピークの半値幅が 0. 4° 以下であることを特徴と する有機半導体薄膜。
[2] 有機半導体化合物を含む有機半導体薄膜にお!ヽて、
該有機半導体化合物と有機溶媒とを混合し、調製された、室温で溶液または分散 液を用いて膜を形成する工程を経て製造されたものであり、且つ、該膜の X線回折ス ベクトルにおける、最大強度の回折ピークの半値幅が 0. 2° 以下であることを特徴と する有機半導体薄膜。
[3] 前記有機溶媒が非ハロゲン系溶媒を含有することを特徴とする請求の範囲第 1項ま たは第 2項に記載の有機半導体薄膜。
[4] 前記有機半導体化合物の重量平均分子量 Mwが 10000以下であることを特徴とす る請求の範囲第 1項力 第 3項のいずれ力 1項に記載の有機半導体薄膜。
[5] 前記有機半導体化合物の重量平均分子量 Mwと数平均分子量 Mnとの比率 (Mw
ZMn)が 2以下であることを特徴とする請求の範囲第 1項力 第 4項のいずれか 1項 に記載の有機半導体薄膜。
[6] 前記有機半導体ィ匕合物の含有量が 95%以上であることを特徴とする請求の範囲第
1項力 第 5項のいずれか 1項に記載の有機半導体薄膜。
[7] 前記有機半導体化合物が、芳香族性の環を 2個以上含む π共役系化合物であるこ とを特徴とする請求の範囲第 1項力 第 6項のいずれ力 1項に記載の有機半導体薄 膜。
[8] 前記有機半導体化合物が、 2種類以上の芳香族炭化水素環または 2種以上の芳香 族複素環を部分構造として有することを特徴とする請求の範囲第 7項に記載の有機 半導体薄膜。
[9] 前記有機半導体化合物が、 3種類以上の芳香族炭化水素環または 3種以上の芳香 族複素環を部分構造として有することを特徴とする請求項 7に記載の有機半導体薄 膜。
[10] 前記有機半導体化合物が、無置換の、縮合環をもたな!ヽ芳香族炭化水素環または 、無置換の芳香族複素環を部分構造として有することを特徴とする請求の範囲第 7 項力 第 9項のいずれか 1項に記載の有機半導体薄膜。
[11] 前記有機半導体化合物が、置換基を有するチォフェン環と、無置換のチォフェン環 繰り返し単位が少なくとも 2つ以上連続している部分構造とを有するチォフェンオリゴ マーを含むことを特徴とする請求の範囲第 1項力も第 10項のいずれ力 1項に記載の 有機半導体薄膜。
[12] 前記チォフェンオリゴマーに含まれるチォフェン環の環数が 3〜20であることを特徴 とする請求の範囲第 11項に記載の有機半導体薄膜。
[13] 前記チォフェンオリゴマーに含まれるチォフェン環の環数力 〜 10であることを特徴 とする請求の範囲第 11項に記載の有機半導体薄膜。
[14] 前記チォフェンオリゴマーが下記一般式(1)で表される部分構造を有することを特徴 とする請求の範囲第 11項力 第 13項のいずれか 1項に記載の有機半導体薄膜。
[化 1] 一般式 (1)
Figure imgf000037_0001
〔式中、 Rは置換基を表す。〕
[15] 前記チォフェンオリゴマーの末端基が、チェ二ル基を持たないことを特徴とする請求 の範囲第 11項力 第 14項のいずれか 1項に記載の有機半導体薄膜。
[16] 前記チォフェンオリゴマーの構造中に、 Head— to— Head構造を持たないことを特 徴とする請求の範囲第 11項力 第 15項のいずれか 1項に記載の有機半導体薄膜。
[17] 請求の範囲第 1項力 第 16項のいずれか 1項に記載の有機半導体薄膜を具備して
V、ることを特徴とする有機半導体デバイス。
[18] 請求の範囲第 1項力 第 16項のいずれか 1項に記載の有機半導体薄膜を有機半導 体層に用いることを特徴とする有機薄膜トランジスタ。 請求の範囲第 17項に記載の有機半導体デバイスまたは請求の範囲第 18項に記載 の有機薄膜トランジスタを具備していることを特徴とする有機エレクト口ルミネッセンス 素子。
PCT/JP2005/010324 2004-06-10 2005-06-06 有機半導体薄膜、有機半導体デバイス、有機薄膜トランジスタ及び有機エレクトロルミネッセンス素子 WO2005122278A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05750987A EP1758172A1 (en) 2004-06-10 2005-06-06 Organic semiconductor thin film, organic semiconductor device, organic thin film transistor, and organic electro-luminescence element
US11/628,695 US20080048181A1 (en) 2004-06-10 2005-06-06 Organic Semiconductor Thin Film, Organic Semiconductor Device, Organic Thin Film Transistor and Organic Electronic Luminescence Element
JP2006514489A JPWO2005122278A1 (ja) 2004-06-10 2005-06-06 有機半導体薄膜、有機半導体デバイス、有機薄膜トランジスタ及び有機エレクトロルミネッセンス素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004172317 2004-06-10
JP2004-172317 2004-06-10
JP2005-107214 2005-04-04
JP2005107214 2005-04-04

Publications (1)

Publication Number Publication Date
WO2005122278A1 true WO2005122278A1 (ja) 2005-12-22

Family

ID=35503386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010324 WO2005122278A1 (ja) 2004-06-10 2005-06-06 有機半導体薄膜、有機半導体デバイス、有機薄膜トランジスタ及び有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (1) US20080048181A1 (ja)
EP (1) EP1758172A1 (ja)
JP (1) JPWO2005122278A1 (ja)
WO (1) WO2005122278A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093663A1 (ja) * 2007-01-31 2008-08-07 Konica Minolta Holdings, Inc. 有機薄膜トランジスタ、その製造方法及び有機半導体デバイス
JP2008287928A (ja) * 2007-05-15 2008-11-27 Mitsubishi Chemicals Corp RuTe2を含む燃料電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極材料及び燃料電池
US20080315186A1 (en) * 2006-03-10 2008-12-25 Sony Corporation Organic Semiconductor Device and Organic Semiconductor Thin Film
WO2009069687A1 (ja) * 2007-11-30 2009-06-04 Osaka University 共役系化合物、含窒素縮合環化合物、含窒素縮合環重合体、有機薄膜及び有機薄膜素子
EP2113944A1 (en) * 2007-02-23 2009-11-04 Konica Minolta Holdings, Inc. Organic thin film transistor and method for manufacturing organic thin film transistor
US9812657B2 (en) 2014-01-07 2017-11-07 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255097A (ja) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd 含フッ素多環芳香族化合物、含フッ素重合体、有機薄膜及び有機薄膜素子
KR20090059754A (ko) * 2007-12-07 2009-06-11 삼성전자주식회사 표시 기판 및 표시 기판의 제조 방법
JP5446982B2 (ja) * 2009-05-01 2014-03-19 株式会社リコー 画像表示パネル及び画像表示装置
US8164089B2 (en) * 2009-10-08 2012-04-24 Xerox Corporation Electronic device
TWI394305B (zh) * 2009-10-08 2013-04-21 Nat Univ Tsing Hua 有機薄膜電晶體之製備方法以及有機薄膜電晶體之閘極介電層表面處理方法
BR112012021905A2 (pt) * 2010-03-03 2015-09-29 Teva Pharma tratamento de nefrite lúpica usando laquinimod
JP6550830B2 (ja) * 2015-03-25 2019-07-31 セイコーエプソン株式会社 機能層形成用組成物、機能層形成用組成物の製造方法、有機el素子の製造方法、有機el装置、電子機器
WO2018051860A1 (ja) * 2016-09-16 2018-03-22 東レ株式会社 電界効果トランジスタの製造方法および無線通信装置の製造方法
US10957807B2 (en) * 2017-04-19 2021-03-23 The Board Of Trustees Of The University Of Alabama PLZT thin film capacitors apparatus with enhanced photocurrent and power conversion efficiency and method thereof
JP7039414B2 (ja) * 2018-07-26 2022-03-22 株式会社東芝 放射線検出素子の作製方法および放射線検出素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100782A (ja) * 2000-07-12 2002-04-05 Internatl Business Mach Corp <Ibm> 可溶性セクシチオフェン誘導体およびそれを用いた薄膜電界効果トランジスタ
JP2003261655A (ja) * 2002-01-11 2003-09-19 Xerox Corp ポリチオフェン類及びそれを用いたデバイス
JP2003268083A (ja) * 2002-01-11 2003-09-25 Xerox Corp ポリチオフェン類

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331356B1 (en) * 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
JP3006718B2 (ja) * 1990-09-25 2000-02-07 科学技術振興事業団 オリゴチオフェンを用いた電子素子
US5549997A (en) * 1994-02-28 1996-08-27 Konica Corporation Electrophotographic photoreceptor
WO2004023560A1 (ja) * 2002-09-05 2004-03-18 Konica Minolta Holdings Inc. 有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100782A (ja) * 2000-07-12 2002-04-05 Internatl Business Mach Corp <Ibm> 可溶性セクシチオフェン誘導体およびそれを用いた薄膜電界効果トランジスタ
JP2003261655A (ja) * 2002-01-11 2003-09-19 Xerox Corp ポリチオフェン類及びそれを用いたデバイス
JP2003268083A (ja) * 2002-01-11 2003-09-25 Xerox Corp ポリチオフェン類

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080315186A1 (en) * 2006-03-10 2008-12-25 Sony Corporation Organic Semiconductor Device and Organic Semiconductor Thin Film
WO2008093663A1 (ja) * 2007-01-31 2008-08-07 Konica Minolta Holdings, Inc. 有機薄膜トランジスタ、その製造方法及び有機半導体デバイス
JPWO2008093663A1 (ja) * 2007-01-31 2010-05-20 コニカミノルタホールディングス株式会社 有機薄膜トランジスタ、その製造方法及び有機半導体デバイス
EP2113944A1 (en) * 2007-02-23 2009-11-04 Konica Minolta Holdings, Inc. Organic thin film transistor and method for manufacturing organic thin film transistor
EP2113944A4 (en) * 2007-02-23 2012-08-22 Konica Minolta Holdings Inc ORGANIC THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING ORGANIC THIN FILM TRANSISTOR
JP2008287928A (ja) * 2007-05-15 2008-11-27 Mitsubishi Chemicals Corp RuTe2を含む燃料電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極材料及び燃料電池
WO2009069687A1 (ja) * 2007-11-30 2009-06-04 Osaka University 共役系化合物、含窒素縮合環化合物、含窒素縮合環重合体、有機薄膜及び有機薄膜素子
US8378338B2 (en) 2007-11-30 2013-02-19 Sumitomo Chemical Company, Limited Conjugated compound, nitrogenated condensed-ring compound, nitrogenated condensed-ring polymer, organic thin film, and organic thin film element
US9812657B2 (en) 2014-01-07 2017-11-07 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same

Also Published As

Publication number Publication date
EP1758172A1 (en) 2007-02-28
US20080048181A1 (en) 2008-02-28
JPWO2005122278A1 (ja) 2008-04-10

Similar Documents

Publication Publication Date Title
JP2008010541A (ja) 有機半導体材料、有機半導体膜、有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法
WO2005122278A1 (ja) 有機半導体薄膜、有機半導体デバイス、有機薄膜トランジスタ及び有機エレクトロルミネッセンス素子
JP2007088222A (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
WO2006059486A1 (ja) 有機薄膜トランジスタ材料、有機薄膜トランジスタ、電界効果トランジスタ、スイッチング素子、有機半導体材料及び有機半導体膜
WO2007125950A1 (ja) 有機半導体薄膜および有機半導体デバイス
WO2006137512A1 (ja) 有機半導体膜の形成方法、有機半導体膜、及び有機薄膜トランジスタ
WO2007088768A1 (ja) 有機薄膜トランジスタ、有機半導体材料、有機半導体膜、及び有機半導体デバイス
WO2005122277A1 (ja) 有機薄膜トランジスタ
WO2007123030A1 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
WO2007135911A1 (ja) 有機薄膜トランジスタの形成方法、及び有機薄膜トランジスタ
WO2007105473A1 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
WO2005070994A1 (ja) 有機半導体材料、有機トランジスタ、電界効果トランジスタ、スイッチング素子及びチアゾール化合物
WO2006054686A1 (ja) 有機薄膜トランジスタの製造方法及び有機薄膜トランジスタ
JP2006028055A (ja) 有機半導体材料、有機トランジスタ、電界効果トランジスタ及びスイッチング素子
WO2006098121A1 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス、有機薄膜トランジスタ及び有機薄膜トランジスタの形成方法
JP2006339577A (ja) 有機半導体薄膜及び有機薄膜トランジスタ
JP2013201363A (ja) 有機薄膜トランジスタ、有機薄膜トランジスタアレイおよび表示装置
JP2007088224A (ja) 有機半導体材料、該有機半導体材料を用いた有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
JP2006060116A (ja) 有機薄膜トランジスタ材料、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子
JP2007088115A (ja) 有機半導体材料,有機半導体膜,有機半導体デバイス及び有機薄膜トランジスタ
JP2004214482A (ja) 有機半導体材料および有機薄膜トランジスタ
WO2006038459A1 (ja) 有機薄膜トランジスタ材料、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子
JP2013055094A (ja) π電子共役系化合物前駆体を用いた電子デバイス用インク組成物ならびにその用途
WO2007069416A1 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
JP2007243000A (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514489

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005750987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11628695

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005750987

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11628695

Country of ref document: US