結晶の特性評価用試料の作製方法及び特性評価方法 Method for preparing crystal characteristic evaluation sample and characteristic evaluation method
技術分野 Technical field
本発明は、 有機結晶、 特に高分子結晶の特性を評価するときに用いる 試料の作製方法、 及び、 この方明法により作製された試料を用いた結晶の 特性評価方法に関するものである。 書 The present invention relates to a method for preparing a sample used for evaluating characteristics of an organic crystal, particularly a polymer crystal, and a method for evaluating characteristics of a crystal using a sample prepared by this method. book
背景技術 Background art
近年、 無機材料の特性を上回る高機能、 高性能を有する有機材料の研 究が注目され、 次世代有機デバイスの開発が行われている。 そのために は、 新しい有機材料の開発が必要不可欠であり、 応用化学などの分野で は、 新規合成した材料の結晶化を行い、 X線結晶構造解析により分子立 体構造を決定してその機能を推測する。 また、 結晶をデバイス化する際 には、 結晶品質をはじめとする様々な物理特性、 結晶表面の状態などを 正確に評価する必要がある。 一方、 プロテオームと呼ばれるポス トゲノ ム研究が盛んになつており、 特に注目されるのが、 タンパク質の 3次元 構造を解き明かそう とする研究であり、構造ゲノム科学と呼ばれている。 タンパク質の構造や機能解析は、 生命科学における重要な研究分野であ り、 病気の治療や創薬に直結し、 生命現象の解明につながる成果が期待 されるが、 その構造解析のためにはタンパク質の結晶が必要となる。 こ のように、 種々の有機材料の特性を評価するために、 その材料の結晶が 幅広く使用される。 In recent years, attention has been paid to research on organic materials having higher functions and higher performances than the properties of inorganic materials, and next-generation organic devices are being developed. To this end, the development of new organic materials is indispensable.In the fields of applied chemistry, the newly synthesized materials are crystallized, and the molecular structure is determined by X-ray crystal structure analysis to determine their functions. Infer. In addition, when converting a crystal into a device, it is necessary to accurately evaluate various physical characteristics such as crystal quality and the state of the crystal surface. On the other hand, research on the postgenome called the proteome is gaining momentum. Of particular interest is research that seeks to elucidate the three-dimensional structure of proteins, which is called structural genomics. Analysis of protein structure and function is an important research field in the life sciences, and is expected to lead directly to the treatment of diseases and drug discovery, and to the elucidation of life phenomena. Is required. Thus, crystals of various organic materials are widely used to evaluate the properties of those materials.
多くの有機材料は、 良質な単結晶を得るための結晶化条件および育成 条件が確立していないため、 結晶の析出制御や、 その後の成長制御が非
常に困難である。 そのため、 理想的な単結晶のみを成長させることが難 しく、多結晶化したり、欠陥を伴った結晶が得られたりする場合があり、 そのままでは結晶の特性評価に使用できないようなものも含まれている。 また、 無機結晶や有機低分子結晶の育成と同様に、 分子構造と育成条件 を反映した形状の結晶が育成されるため、 結晶形状が測定に不適な場合 もある。 For many organic materials, crystallization conditions and growth conditions for obtaining high-quality single crystals have not been established. Always difficult. For this reason, it is difficult to grow only an ideal single crystal, and in some cases, it may be polycrystalline or a crystal with defects may be obtained. ing. In addition, similar to the growth of inorganic crystals and organic low-molecular crystals, crystals having a shape that reflects the molecular structure and growth conditions are grown, and thus the crystal shape may be unsuitable for measurement.
例えば、結晶の特性評価の一つである X線結晶構造解析を行う際には、 通常、 育成容器中の結晶を取り出し、 結晶ホルダーにより保持して、 X 線回折装置のステージ上に配置し、 X線の照射を行う。 その際、 有機結 晶は操作や結晶品質の維持が難しいため、 結晶ホルダー中に保持された 結晶は測定に,適した理想的な単結晶ではない場合や、 結晶ホルダーごと 結晶を凍結させて低温状態で測定する場合がある。 具体的には、 結晶ホ ルダ一中に複数の単結晶が含まれている場合や、 結晶ホルダー中の結晶 が欠陥を含む場合、 液化窒素などを噴きつけながら測定する場合などで ある。 このような環境下で測定を行うと、 測定対象物以外の物質の中を X線が透過することになり、 X線の一部がこれらの物質により吸収され 減衰するうえ、 測定対象物以外から反射が測定データに含まれるという 問題点がある。 For example, when performing X-ray crystal structure analysis, which is one of the evaluations of crystal properties, usually, a crystal in a growth vessel is taken out, held by a crystal holder, and placed on a stage of an X-ray diffraction apparatus. X-ray irradiation is performed. At that time, it is difficult to operate and maintain the crystal quality of the organic crystal.Therefore, the crystal held in the crystal holder is not an ideal single crystal suitable for measurement. It may be measured in the state. Specifically, there are cases where a plurality of single crystals are included in a crystal holder, when a crystal in a crystal holder has a defect, and when measurement is performed while spraying liquefied nitrogen or the like. If measurement is performed in such an environment, X-rays will penetrate through substances other than the object to be measured. The problem is that reflections are included in the measurement data.
発明の開示 Disclosure of the invention
本発明はこのような問題点を解決するためになされたもので、 有機結 晶の特性評価に使用する試料において、 測定精度低下の要因となる特性 評価を行う結晶以外の物質を除去したり、 測定に影響を与えないように する特性評価用試料の作製方法、 及びこの試料を用いた結晶の特性評価 方法を提供することを目的とする。
前記目的を達成するための第 1の発明は、 有機結晶の特性評価に用い る試料の作製方法であって、前記有機結晶を保持手段により保持した後、 評価対象となる有機結晶の近傍に存在する評価対象以外の物質の少なく とも一部を、 紫外光を照射することにより、 除去、 改質、 又は微細化す ることを特徴とするものである。 The present invention has been made in order to solve such a problem, and in a sample used for evaluating the characteristics of an organic crystal, a substance other than the crystal whose characteristics are to be evaluated, which causes a decrease in measurement accuracy, is removed. An object of the present invention is to provide a method for preparing a characteristic evaluation sample so as not to affect the measurement, and a method for evaluating a crystal characteristic using the sample. A first invention for achieving the above object is a method for producing a sample used for evaluating characteristics of an organic crystal, wherein the sample is held near an organic crystal to be evaluated after the organic crystal is held by holding means. It is characterized by removing, modifying, or miniaturizing at least a part of the substances that are not evaluated by irradiating it with ultraviolet light.
本発明においては、 結晶および保持手段を含む前記試料のうち、 評価 対象の近傍に存在する前記特性評価における精度低下の要因となる'評価 対象以外の物質を、 紫外光を照射することにより、 除去、 改質、 又は微 細化するようにしている。 本明細書及び特許請求の範囲において、 「改 質」 とは、 例えば結晶を非晶質にすること等により、 特性評価に与える 影響を少なくすることを言う。 また 「評価対象以外の物質」 とは、 評価 対象となる有機結晶の近傍に存在する評価対象以外の有機結晶、 保持手 段、 付着物などを含む物質全般のことをいう。 ただし、 周囲に存在する 気体はこれに属さない。 また、 「微細化」 とは、 結晶を微細化して特性評 価に与える影響を少なくすることを言う。 なお、 ここで、 「特性評価」 と は、 いわゆる周知の物理的、 化学的、 機械的な特性評価全般を含む概念 である。 前述のように、 有機結晶を成長させる際には、 理想的な単結晶 を成長させるのが難しいため、 結晶ホルダー中に複数の単結晶が'含まれ ている場合や、 結晶ホルダー中の結晶が欠陥を含む場合などがある。 ま たタンパク質などの水や有機塩などの結晶育成溶液を含んだ状態で凍結 させて結晶を保持する場合、 結晶の周りにある凍結した溶液は測定には 不要な存在である。 本発明によれば、 このようにして、 前記結晶および 保持手段を含む試料のうち、 評価対象以外の物質が結晶の特性評価結果 に与える影響を低減しているので、 精度の良い特性評価が可能である。 また、 結晶表面を露出させることにより、 表面もしくは表面層を正確に 評価することができる。
本発明において紫外光を使用しているのは、 光子エネルギーの大きい 紫外光を使用することにより、 化学結合を容易に切断することができる ので、 除去、 改質を容易に行うことができるからである。 又、 粉碎は、 光の照射によりアブレーシヨンが起こり、 その衝撃で光を照射した部分 の周りの物質が機械的に壊れることにより発生するが、 この場合にも、 光子エネルギーの大きい紫外光を使用することが好ましいからである。 前記目的を達成するための第 2の発明は、 前記第 1の発明であって、 前記有機結晶の特性評価が、 放射線の回折現象を利用した有機結晶の特 性評価であり、 前記紫外光を照射する領域の少なく とも一部が、 前記放 射線が前記試料を通過する部分であることを特徴とするものである。 本発明においては、 特性評価に用いる放射線が通過する部分に存在す る前記評価対象以外の物質が測定結果に与える影響を低減しているので、 照射する放射線の吸収が抑制され、 また、 散乱によるノイズが低減し、 精度の良い特性評価が可能である。 なお、 本明細書及び特許請求の範囲 でいう放射線には、 X線、 電子線、 中性子線などが含まれる。 放射線の 回折現象を利用した特性評価としては、 結晶構造解析や、 X線トボグラ フィ一などが挙げられる。 In the present invention, of the sample including the crystal and the holding means, a substance other than the object to be evaluated which is present in the vicinity of the object to be evaluated and which is a factor of deteriorating the accuracy in the property evaluation is removed by irradiating ultraviolet light. , Reforming, or miniaturization. In the present specification and claims, the term "modified" means that the influence on the property evaluation is reduced by, for example, making the crystal amorphous. The term “substances not to be evaluated” refers to all substances including non-evaluable organic crystals, holding means, and deposits near the organic crystal to be evaluated. However, the surrounding gas does not belong to this category. The term “miniaturization” refers to miniaturization of the crystal to reduce its influence on the property evaluation. Here, “characteristic evaluation” is a concept including so-called well-known physical, chemical, and mechanical characteristic evaluation in general. As described above, when growing an organic crystal, it is difficult to grow an ideal single crystal.Therefore, when a single crystal is included in the crystal holder, or when the crystal in the crystal holder is In some cases, it contains defects. When the crystals are kept frozen by containing a crystal growth solution such as water such as proteins or organic salts, the frozen solution around the crystals is unnecessary for measurement. According to the present invention, the influence of substances other than the evaluation target on the crystal characteristic evaluation result among the samples including the crystal and the holding means is reduced, so that accurate characteristic evaluation can be performed. It is. Also, by exposing the crystal surface, the surface or surface layer can be accurately evaluated. In the present invention, ultraviolet light is used because, by using ultraviolet light having a large photon energy, a chemical bond can be easily broken, so that removal and modification can be easily performed. is there. In addition, shattering occurs when light irradiation causes abrasion, and the material around the light-irradiated part is mechanically broken by the impact. In this case, too, ultraviolet light having a large photon energy is used. Is preferable. A second invention for achieving the object is the first invention, wherein the characteristic evaluation of the organic crystal is a characteristic evaluation of the organic crystal using a diffraction phenomenon of radiation, and the ultraviolet light is At least a part of an irradiation area is a part where the radiation passes through the sample. In the present invention, since the influence of substances other than the above-described substances present in the portion through which the radiation used for the characteristic evaluation passes on the measurement results is reduced, the absorption of the irradiated radiation is suppressed, and Noise is reduced and accurate characteristic evaluation is possible. The radiation referred to in the present specification and claims includes X-rays, electron beams, neutron beams, and the like. Characteristic evaluations using radiation diffraction phenomena include crystal structure analysis and X-ray topography.
前記目的を達成するための第 3の発明は、 前記第 2の発明であって、 前記有機結晶の特性評価が、 結晶構造解析であることを特徴とするもの である。 A third invention for achieving the above object is the second invention, wherein the characteristic evaluation of the organic crystal is a crystal structure analysis.
結晶構造解析においては、 放射光が通過する部分に存在する評価対象 の有機結晶以外の物質は、 基本的に全て測定精度低下の要因となるもの であり、 本発明を適用することにより、 高い精度で構造解析を実施する ことができる。 また、 試料中に複数の有機結晶が含まれていると構造解 析を行うことができない場合があるが、 評価対象とする結晶以外の不要 な結晶に対して紫外光を照射することにより、 不要な結晶からの影響を
排除して、 所望の構造解析を行うことができる。 In the crystal structure analysis, substances other than the organic crystal to be evaluated, which are present in the portion through which the synchrotron light passes, basically cause a decrease in measurement accuracy. Structural analysis can be performed at. In addition, structural analysis may not be possible if the sample contains multiple organic crystals, but unnecessary by irradiating unnecessary crystals other than the crystal to be evaluated with ultraviolet light. The influence of a simple crystal It is possible to perform a desired structural analysis by excluding it.
前記目的を達成するための第 4の発明は、 前記第 1の発明であって、 前記有機結晶に接触あるいは近接させるプローブを用いた有機結晶の表 面あるいは内部状態の特性評価であり、 前記紫外光を照射することによ り、 前記有機結晶の表面を露出させることを特徴とするものである。 有機結晶の特性評価において、 プローブを評価対象に接触あるいは近 接させて特性評価を行う場合は、 評価対象となる有機結晶が露出してい ないと正確な特性評価を実施できない場合がある。 本発明においては、 評価対象となる有機結晶の近傍に存在する評価対象以外の物質を、 紫外 光を照射することにより除去しているので、 所望の評価を行うことがで きる。 このような、 プローブを用いた特性評価の例としては、 走査型ト ンネル顕微鏡や原子間力顕微鏡をはじめとする走査型プローブ顕微鏡な どが挙げられる。 紫外光を用いる理由は、 前記第 1の発明の説明におい て説明した理由と同じである。 A fourth invention for achieving the above object is the first invention, which is a characteristic evaluation of a surface or an internal state of the organic crystal using a probe that comes into contact with or comes close to the organic crystal, By irradiating light, the surface of the organic crystal is exposed. In the evaluation of characteristics of organic crystals, when a probe is brought into contact with or in close proximity to an object to be evaluated, accurate characteristic evaluation may not be performed unless the organic crystal to be evaluated is exposed. In the present invention, a substance other than the evaluation target existing in the vicinity of the evaluation target organic crystal is removed by irradiating ultraviolet light, so that a desired evaluation can be performed. Examples of such characteristics evaluation using a probe include a scanning probe microscope such as a scanning tunneling microscope and an atomic force microscope. The reason for using ultraviolet light is the same as the reason described in the description of the first invention.
前記目的を達成するための第 5の発明は、 前記第 1の発明であって、 前記有機結晶の特性評価が、 電磁波の吸収、 干渉、 あるいは散乱を利用 した有機結晶の特性評価であり、 前記紫外光を照射する領域の少なく と も一部が、 前記電磁波が前記試料を通過する部分であることを特徴とす るものである。 A fifth invention for achieving the above object is the first invention, wherein the characteristic evaluation of the organic crystal is a characteristic evaluation of the organic crystal using electromagnetic wave absorption, interference, or scattering. At least a part of a region to be irradiated with ultraviolet light is a portion where the electromagnetic wave passes through the sample.
本発明においては、 特性評価に使用する電磁波が通過する部分に存在 する評価対象以外の物質を、紫外光を照射することにより、除去、改質、 又は微細化しているので、 これらの物質が測定結果に与える影響を少な くすることができ、 結晶の特性を精度よく評価することが可能である。 このような、 電磁波を用いた特性評価の例としては、 吸収スペク トル測 定ゃフォ トルミネッセンス測定などが挙げられる。 紫外光を用いる理由 は、 前記第 1の発明の説明において説明した理由と同じである。
前記目的を達成するための第 6 の発明は、 前記第 1 の発明から第 5の 発明のいずれかであって、 前記紫外光が、 紫外レーザ光であることを特 徴とするものである。 In the present invention, substances other than the evaluation target existing in the portion through which the electromagnetic waves used for characteristic evaluation pass are removed, modified, or miniaturized by irradiating with ultraviolet light, so that these substances are measured. The influence on the result can be reduced, and the characteristics of the crystal can be evaluated with high accuracy. Examples of such characteristics evaluation using electromagnetic waves include absorption spectrum measurement and photoluminescence measurement. The reason for using ultraviolet light is the same as the reason described in the description of the first invention. A sixth invention for achieving the above object is any one of the first invention to the fifth invention, wherein the ultraviolet light is an ultraviolet laser light.
紫外レーザ光を使用することにより、高い照射照度を得ることができ、 除去、 改質、 又は微細化を容易に行うことができる。 又、 照射位置を高 精度で制御することができるので、 目的の場所のみに作用を与えること ができる。 , By using an ultraviolet laser beam, high irradiation illuminance can be obtained, and removal, modification, or miniaturization can be easily performed. In addition, since the irradiation position can be controlled with high accuracy, it is possible to give an effect only to a target place. ,
前記目的を達成するための第 7の発明は、 前記第 6の発明であって、 前記紫外レーザ光が、パルス幅が 100ns以下の短パルス紫外レーザ光で あることを特徴とするものである。 A seventh invention for achieving the above object is the sixth invention, wherein the ultraviolet laser light is a short pulse ultraviolet laser light having a pulse width of 100 ns or less.
物質の除去を行う場合には、 前述のように紫外光を用いて化学結合を 切断することにより除去を行う力 S、その場合に、併せて熱が発生すると、 評価対象とする有機結晶を損傷させる恐れがある。 パルス幅が 100ns以 下の短パルス紫外レーザ光を用いれば、熱の発生を抑制することができ、 周辺部位へ大きな損傷を与えることなく物質の除去を行うことができる。 又、 物質の粉碎を行う場合には、 アブレーシヨンによって発生した衝 撃により、 照射部分の周りの物質を機械的に壌わして粉砕を行う。 よつ て、 局所的に大きな衝撃を与えることができる光を用いることが望まし く、 パルス幅が短く、 かつ、 エネルギー密度の高い紫外光を使用するこ とが好ましい。 When removing a substance, as described above, the force S that removes by breaking the chemical bond using ultraviolet light, and in that case, when heat is generated, the organic crystal to be evaluated is damaged. May cause If a short pulse ultraviolet laser beam with a pulse width of 100 ns or less is used, heat generation can be suppressed, and substances can be removed without causing significant damage to surrounding parts. When the material is ground, the material around the irradiated part is mechanically pulverized by the impact generated by the abrasion. Therefore, it is desirable to use light that can locally give a large impact, and it is preferable to use ultraviolet light having a short pulse width and a high energy density.
前記目的を達成するための第 8 の発明は、 前記第 1 の発明から第 7の 発明のいずれかであって、 前記有機結晶が、 樹脂、 タンパク質、 糖類、 脂質、 有機超分子錯体および核酸のうち、 少なく とも一つの結晶である ことを特徴とするものである。 An eighth invention for achieving the above object is any one of the first invention to the seventh invention, wherein the organic crystal comprises a resin, a protein, a saccharide, a lipid, an organic supramolecular complex and a nucleic acid. Among them, it is characterized by being at least one crystal.
前記第 1の発明から第 7の発明は、 高品質な単結晶の成長が特に困難 で、 かつ結晶が破損しゃすい高分子結晶の物理特性を評価する場合に特
に適した方法である。 The first to seventh inventions are particularly suitable for evaluating the physical properties of polymer crystals in which it is particularly difficult to grow a high-quality single crystal and the crystal is broken. This is a suitable method.
前記目的を達成するための第 9の発明は、 前記第 1の発明から第 8の 発明のうちいずれかの結晶の特性評価用試料の作製方法によって製造さ れた特性評価用試料を用いて、 結晶の特性評価を行うことを特徴とする 結晶の特性評価方法である。 A ninth invention for achieving the above object is characterized in that, using the characteristic evaluation sample manufactured by the method for producing a crystal characteristic evaluation sample according to any one of the first to eighth inventions, This is a method for evaluating the characteristics of a crystal, which comprises evaluating the characteristics of the crystal.
本発明においては、 評価対象物以外の物質による影響を抑制して有機 結晶の特性評価を行うことができ、 その結果、 より正確な評価結果を得 ることができる。 図面の簡単な説明 In the present invention, the characteristics of the organic crystal can be evaluated while suppressing the influence of substances other than the evaluation object, and as a result, more accurate evaluation results can be obtained. Brief Description of Drawings
図 1は、 本発明の第 1の実施の形態の例を模式的に示す図である。 図 2は、 本発明の第 2の実施の形態の例を模式的に示す図である。 図 3は、 本発明の第 1の実施例の結果と写真を示す図である。 FIG. 1 is a diagram schematically showing an example of the first embodiment of the present invention. FIG. 2 is a diagram schematically showing an example of the second embodiment of the present invention. FIG. 3 is a diagram showing a result and a photograph of the first example of the present invention.
図 4は、 本発明の第 2の実施例の結果と写真を示す図である。 発明を実施するための最良の形態 FIG. 4 is a diagram showing a result and a photograph of the second example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態の例を、 図を用いて説明する。 図 1は、 本 発明の第 1の実施の形態の例を模式的に示す図である。 ( a )に示すよう に、 特性評価を行う際に、 有機結晶 1は、 その育成に使用した培養液 3 と共に、 ループ状のホルダー 2により掬い取られ、 培養液 3の表面張力 によりホルダー 2内に保持される。 この状態で、 有機結晶 1 と培養液を 凍結し、 有機結晶の前後にあるホルダー 2と培養液 3を、 紫外光を照射 することによつて除去する ( b )。 図においては、 有機結晶 1の上方にあ るホルダー 2と培養液 3も除去しているが、 この部分は必ずしも除去す る必要はない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing an example of the first embodiment of the present invention. As shown in (a), when performing the characteristic evaluation, the organic crystal 1 is scooped up by the loop-shaped holder 2 together with the culture solution 3 used for its growth, and the organic crystal 1 is held in the holder 2 by the surface tension of the culture solution 3. Is held. In this state, the organic crystal 1 and the culture solution are frozen, and the holder 2 and the culture solution 3 before and after the organic crystal are removed by irradiating ultraviolet light (b). In the figure, the holder 2 and the culture solution 3 above the organic crystal 1 are also removed, but this part does not necessarily need to be removed.
このようにすることにより、 有機結晶の前後にあるホルダー 2と培養
液 3による影響を受けることが無くなるので、 特性評価における悪影響 が低減する。 By doing this, the holder 2 before and after the organic crystal can be Since the influence of the liquid 3 is eliminated, adverse effects in the characteristic evaluation are reduced.
切断、除去の方法は、切断する線に沿って、紫外光を照射して走査し、 アブレーションにより切断すること、 あるいは除去したい部分すべてに 紫外光を照射してアブレーシヨンにより除去すること、 などによって行 う。 その際、 紫外光としては紫外レーザ光を用いることが好ましく、 か つ、 パルス幅が 100ns以下の短パルス紫外レーザ光を用いることが好ま しいことは前述のとおりである。 なお、 本発明の実施の形態、 及び実施 例においては、 培養液 3とホルダー 2が請求の範囲及び発明の開示の欄 における 「保持手段」 に対応する。 The method of cutting and removing is performed by irradiating with ultraviolet light and scanning along the line to be cut and cutting by ablation, or irradiating all the parts to be removed with ultraviolet light and removing by abrasion. U. At that time, as described above, it is preferable to use an ultraviolet laser beam as the ultraviolet light, and it is preferable to use a short pulse ultraviolet laser beam having a pulse width of 100 ns or less. In the embodiments and examples of the present invention, the culture solution 3 and the holder 2 correspond to the “holding means” in the claims and the disclosure of the invention.
図 2は、 本発明の第 2の実施の形態の例を模式的に示す図である。 ( a ) に示すように、 有機結晶 1は、 その育成に使用した培養液 3と共 に、 ループ状のホルダー 2により掬い取られ、 培養液 3の表面張力によ りホルダー 2内に保持される。 そのとき、 測定対象以外の有機結晶 4が 同時に掬い取られ、 評価領域に入っている。 このような状態で特性評価 を行っても、 得られる結果は有機結晶 1 と有機結晶 4からの情報が重積 したものとなるため、 正確な評価ができない場合がある。 これは、 有機 結晶 4が測定対象である有機結晶 1 と同じ有機結晶であっても、 異なる 有機結晶、 さらには異物であっても同じである。 FIG. 2 is a diagram schematically showing an example of the second embodiment of the present invention. As shown in (a), the organic crystal 1 is scooped by the loop-shaped holder 2 together with the culture solution 3 used for growing it, and is held in the holder 2 by the surface tension of the culture solution 3. You. At that time, the organic crystal 4 other than the object to be measured is simultaneously scooped and is in the evaluation area. Even if the characteristic evaluation is performed in such a state, the obtained result may be obtained by accumulating information from the organic crystal 1 and the organic crystal 4, so that accurate evaluation may not be performed. This is the same regardless of whether the organic crystal 4 is the same organic crystal as the organic crystal 1 to be measured, a different organic crystal, or a foreign substance.
この状態で、 有機結晶 1 、 4と培養液を凍結し、 測定対象以外の有機 ' 結晶 4を、 紫外光を照射することによって除去する (b )。 この場合は、 縦の切断線に沿って紫外光を照射し、 有機結晶 1の後側にあるホルダー 2、 培養液 3も、 有機結晶 4と共に除去している。 一方、 有機結晶 1の 前側にあるホルダー 2、 培養液 3は除去しないで残している。 その意味 では、 第 1の実施の形態の方が、 より正確な評価結果が得られるが、 ホ ルダー 2、 培養液 3の、 測定への影響が少ない場合には、 これでも十分
である。 In this state, the organic crystals 1 and 4 and the culture solution are frozen, and the organic crystals 4 other than the measurement target are removed by irradiating ultraviolet light (b). In this case, ultraviolet light is irradiated along the vertical cutting line, and the holder 2 and the culture solution 3 on the rear side of the organic crystal 1 are removed together with the organic crystal 4. On the other hand, the holder 2 and the culture solution 3 in front of the organic crystal 1 are left without being removed. In that sense, the first embodiment can provide more accurate evaluation results, but if the effects of the holder 2 and the culture solution 3 on the measurement are small, this is sufficient. It is.
なお、 第 2の実施の形態においては、 ホルダー 2と培養液 3を切断す ることにより、 測定対象以外の有機結晶 4を除去しているが、 有機結晶 4に紫外光を照射することにより、 有機結晶 4を改質したり、 微細化し たり して、 特性評価に影響を与えないようにしてもよい。 In the second embodiment, the organic crystal 4 other than the object to be measured is removed by cutting the holder 2 and the culture solution 3, but by irradiating the organic crystal 4 with ultraviolet light, The organic crystal 4 may be modified or miniaturized so as not to affect the characteristic evaluation.
特に有機結晶 1が生体高分子結晶である場合、 培養液 3としてよく用 いられる物質として、 グリセロール、 エチレングリコール、 ポリエチレ ングリコーノレ、 メチノレぺンタンジォ一ノレ、 パラフィンオイノレ、 パラ トン オイルなどを含んだ液が挙げられるが、 いずれも適切な紫外光を照射す ることにより、 これら培養液を除去することが可能である。 培養液 3は 上記物質に限定されることなく、 照射する紫外光が吸収される物質であ れば、 本明細書に記載の技術を適応可能である。 In particular, when the organic crystal 1 is a biopolymer crystal, a liquid containing glycerol, ethylene glycol, polyethylene glycolone, methylinopentane, paraffin oil, paraton oil, etc. These culture solutions can be removed by irradiating appropriate ultraviolet light. The culture solution 3 is not limited to the above substances, and the technique described in the present specification is applicable as long as it is a substance that absorbs ultraviolet light to be irradiated.
(実施例 1 ) (Example 1)
本発明における特性評価用試料の作製方法を適用して、 有機結晶の一 つであるタンパク質結晶の X線結晶構造解析を行った。 育成したタンパ ク質結晶 (卵白リゾチーム結晶) を、 パラ トンオイルからなる培養液と 共にホルダーで掬い取り、 一 1 5 0 °C以下に凍結させた状態で、 卵白リ ゾチーム結晶の周囲に沿って紫外レーザ照射による除去を行って、 X線 照射領域の物質を除去し、 除去前後における X線回折結果を比較した。 除去のための照射装置の光源として、 波長 1547mnのファイバー光源 の第八高調波発生による短パルス紫外レーザを使用した。 出力光の波長 は 193nm、パルス幅は Insであり、メ力二カルシャッターを通過した後、 2 枚の光学ガルバノ ミラーで紫外光を反射させ、 合成石英レンズで試料 に集光照射した。 照射面における光密度は 50mJ/cm2、 スポッ ト径は 20 μ ιη とし、 ガルバノミラーを回転させることにより、 レーザ照射位置を
変化させた。 The X-ray crystal structure analysis of a protein crystal, which is one of the organic crystals, was performed by applying the method for preparing a sample for property evaluation in the present invention. The grown protein crystals (egg white lysozyme crystals) are scooped together with a culture solution consisting of paraton oil in a holder, frozen at 150 ° C or less, and placed around the egg white lysozyme crystals. The material in the X-ray irradiation area was removed by UV laser irradiation, and the X-ray diffraction results before and after the removal were compared. As the light source of the irradiation device for removal, a short-pulse ultraviolet laser generated by the eighth harmonic of a fiber light source with a wavelength of 1547 mn was used. The output light had a wavelength of 193 nm and a pulse width of Ins. After passing through the mechanical shutter, ultraviolet light was reflected by two optical galvanometer mirrors, and the sample was focused and irradiated by a synthetic quartz lens. The light density on the irradiation surface was 50 mJ / cm 2 , the spot diameter was 20 μιη, and the laser irradiation position was adjusted by rotating the galvanomirror. Changed.
X線結晶構造解析の結果を、 結晶の写真と共に図 3に示す。 図 3にお いて、 写真で 「before」 と書かれているものは、 卵白リゾチーム結晶を ホルダーで掬い取って凍結させた状態を示す。 「After(l)」 と書かれたも のは、 紫外レーザ光照射により、 卵白リゾチーム結晶の周りを除去中の 様子を示すものである。 「Aftei'(2)」 と書かれたものは、 卵白リゾチーム 結晶の周りの培養液をほぼ除去した上で結晶を球形状に加工したもの、 「After(3)」 と書かれたものは、 さらに結晶に対して追加工を行って、 残存する結晶部位を少なく したものである。 The results of the X-ray crystal structure analysis are shown in Fig. 3 along with the photographs of the crystals. In FIG. 3 , what is described as "before" in the photograph indicates a state in which egg white lysozyme crystals are scooped and frozen by a holder. “After (l)” shows the state of removal around the egg white lysozyme crystal by ultraviolet laser irradiation. The one with “Aftei '(2)” is the one in which the culture solution around the egg white lysozyme crystal is almost removed and the crystal is processed into a spherical shape, and the one with “After (3)” is In addition, additional processing was performed on the crystal to reduce the remaining crystal parts.
これら、 「before」 の状態、 「After(2)」 の状態、 「After(3)」 の状態で、 それぞれ X線回折を行った結果を、 図 3中に示す。 図 3中で、 写真の右 側に書かれているのが、 X線回折に使用した X線発生器、検出器、温度、 検出器までの距離、 開き角、 照射時間である。 Fig. 3 shows the results of X-ray diffraction performed in these "before", "After (2)", and "After (3)" states. In Fig. 3, the X-ray generator, detector, temperature, distance to the detector, aperture angle, and irradiation time are shown on the right side of the photograph.
写真の下側に書かれているのが、 X線回折の結果であり、 「before」 の 状態、 「After(2)」の状態、 「After(3)」 における Space Group (空間群)、 Cell dimensions (格子常类女)、 Resolution limit (分解能)、 Total of observations (測定された全ての反射の数)、 No. of unique observation (独立な反射の数)、 Completeness (データの完全性)、 Rmerge (デー タ精度)、 Estimated mosaicity (結晶のモザイク性) 及ぴ I σ (回折 の強度) を示している。 X-ray diffraction results are shown at the bottom of the photo. The “before” state, the “After (2)” state, the “Space Group” in “After (3)”, Cell dimensions (lattice woman), Resolution limit (resolution), Total of observations (number of all reflections measured), No. of unique observation (number of independent reflections), Completeness (data integrity), Rmerge (Data accuracy), Estimated mosaicity (crystal mosaicity) and Iσ (diffraction intensity).
レーザ加工により格子常数が変化していないと言うことは、 加工によ り測定対象物の結晶構造が変化していないことを意味し、 望ましい結果 である。 又、 分解能は小さいほど良いが、 加工によりこの値がほとんど 変化していないと言うことは、 加工により測定対象物の結晶構造が変化 していないことを意味し、 望ましい結果である。 同様に、 測定された全 ての反射の数、 独立な反射の数、 データの完全性が、 加工によりほとん
ど変化していないと言うことは、 加工により測定対象物の結晶構造が変 ィ匕していないことを意味し、 望ましい結果である。 The fact that the lattice constant is not changed by the laser processing means that the crystal structure of the object to be measured is not changed by the processing, which is a desirable result. The smaller the resolution is, the better, but the fact that this value hardly changes by processing means that the crystal structure of the object to be measured does not change by processing, which is a desirable result. Similarly, the number of all reflections measured, the number of independent reflections, and the integrity of the data can be reduced by processing. No change means that the crystal structure of the object to be measured has not been changed by the processing, which is a desirable result.
これに対し、 データ精度、 結晶のモザイク性の値は、 「before」 の状態 よりも、 「After(2)」 の状態、 「After(3)」 の方が小さくなつている。 これ らの値は、 小さいほど、 解析結果の信頼性が高いことを意味するもので あり、 加工により測定対象物の周りの物質を除去した結果、 信頼性の高 いデータが得られたことを表している。 On the other hand, the data accuracy and the mosaic value of the crystal are smaller in the “After (2)” state and “After (3)” than in the “before” state. These values mean that the smaller the value, the higher the reliability of the analysis result.It is clear that the removal of substances around the measurement object by processing resulted in highly reliable data. Represents.
また、 レーザ加工により回折の強度が小さくなつているが、 これは解 析対象となる結晶の大きさが加工により小さくなつているためであり、 妥当な結果である。 In addition, the intensity of diffraction is reduced by laser processing, but this is because the size of the crystal to be analyzed is reduced by processing, which is a reasonable result.
(実施例 2 ) (Example 2)
本発明における特性評価用試料の作製方法を適用して、 タンパク質結 晶の X線結晶構造解析を行った。 測定対象物である卵白リゾチーム結晶 をホルダーで掬い取った状態で、 2つの卵白リゾチーム結晶が密着して X線の透過領域に存在する状態となったときに、 紫外光照射により、 測 定対象としない卵白リゾチーム結晶を除去して測定を行った。 この結果 を、 結晶の写真と共に図 4に示す。 The X-ray crystal structure analysis of protein crystals was performed by applying the method for preparing a sample for property evaluation in the present invention. When the egg white lysozyme crystal, which is the object to be measured, is scooped by a holder and two egg white lysozyme crystals are brought into close contact with each other and are in the X-ray transmission region, the measurement object is irradiated with ultraviolet light. The measurement was carried out by removing the lysozyme crystals which were not used. The result is shown in Fig. 4 together with a photograph of the crystal.
図 4における上段中央の写真は、 ホルダーで掬い取られた結晶の状態 を示し、 上段左側には、 その様子を模式的に図示している。 実施例 1 と 同様の紫外光照射装置を用いて、 ホルダーごと縦に切断を行い、 測定対 象としない卵白リゾチーム結晶を除去した。 上段右側の写真が除去後の 状態を示すものであり、 下段の左側の写真が、 除去前の結晶の状態、 下 段の右側の写真が除去後の結晶の状態を示すものである。 下段の写真を 見ると分かるように、 加工の際に、 測定対象とされる卵白リゾチーム結 晶の一部も一緒に除去されている。 The photograph in the upper center of FIG. 4 shows the state of the crystals scooped by the holder, and the upper left side schematically shows the state. Using the same ultraviolet light irradiation device as in Example 1, the entire holder was cut vertically to remove egg white lysozyme crystals not to be measured. The upper right photograph shows the state after removal, the lower left photograph shows the crystal state before removal, and the lower right photograph shows the crystal state after removal. As can be seen from the lower photo, some of the egg white lysozyme crystals to be measured were also removed during processing.
使用した X線発生器等のデータを、 写真の右側に示し、 写真の下側に
は X線回折のデータを示す。 Twin と記されているのが加工前で有機結 晶が 2つ存在する状態でのデータ、 Detwin と記されているのが、 加工 により測定対象物でない有機結晶を取り除いた場合のデータである。 The data of the used X-ray generator etc. are shown on the right side of the photo, Indicates X-ray diffraction data. Twin is the data when two organic crystals exist before processing, and Detwin is the data when the organic crystal that is not the object to be measured is removed by processing.
Twin の場合は、 二つの結晶からの回折が重積したパターンとなって 構造解析が行えなかったのに対し、 Detwin の場合には、 一つの単結晶 からの X線回折パターンが得られるため、 データの解析が問題なく実施 できている。
In the case of Twin, diffraction analysis from two crystals resulted in a pattern that was accumulated, and structural analysis could not be performed.In contrast, in the case of Detwin, an X-ray diffraction pattern from one single crystal was obtained. Data analysis was carried out without any problems.