試験管内筋繊維形成のための筋芽細胞又は筋芽細胞様細胞培養法 技術分野 Myoblast or myoblast-like cell culture method for in vitro muscle fiber formation
本願発明は、 動物細胞の分化、 培養、 特に筋細胞の分化及ぴ培養の技術分野に 属する。 背景技術 明 The present invention belongs to the technical field of animal cell differentiation and culture, particularly muscle cell differentiation and culture. Background art
筋芽細胞 (接着細胞) を栄養度の高い増殖培地で培養して細胞密度を高くし、 その後、 栄養の少ない分化培地に代えること食により、 細胞の増殖が停止し筋分化 が開始すると報告されている。 分化培地に移した直後は一部の細胞に細胞死 (ァ ポトーシス) が起き が、 大多数の生き残った細胞が筋管、 さらには筋繊維を形 成することが知られている (非特許文献 1 , 2 )。 It has been reported that culturing myoblasts (adherent cells) in a nutrient-rich growth medium to increase cell density, and then replacing the cells with a nutrient-free differentiation medium halts cell growth and initiates muscle differentiation. ing. It is known that cell death (apoptosis) occurs in some cells immediately after the cells are transferred to the differentiation medium, but the majority of surviving cells form myotubes and also myofibers (Non-patent literature). 1, 2).
骨格筋の筋芽細胞の増殖と分化は排他的で、 増殖中は分化せず、 一度分化した 細胞は再び増殖する事はないと言われている。 骨格筋形成は培地から血清を除去 して筋芽細胞を培養することで誘発され、 不可逆的に細胞分裂を停止した多核の 筋管細胞を形成する。 筋肉に特異的な遺伝子産物の協調的誘導は、 これらの形態 学的な変化と同時に起こる。 筋肉に特異的な転写制御因子 (MyoD、 ミオジェニン (myogenin)、 Myf- 5 MRF4) の MyoDファミリーメンバーがこれらのプロセスを制 御している。 It is said that the proliferation and differentiation of skeletal muscle myoblasts are exclusive, do not differentiate during proliferation, and once differentiated cells do not proliferate again. Skeletal myogenesis is induced by removing the serum from the culture and culturing myoblasts to form multinucleated myotubes that have irreversibly stopped cell division. The coordinated induction of muscle-specific gene products coincides with these morphological changes. MyoD family members of muscle-specific transcription factors (MyoD, myogenin, Myf-5 MRF4) control these processes.
一方、種々の非筋肉細胞で MyoDフアミリーメンパーを異所的に発現させると筋 形成を誘導することができる。 MyoDの試験管内での強制発現は分化とは独立して 細胞周期進行を阻害することができる。 On the other hand, ectopic expression of MyoD family members in various non-muscle cells can induce myogenesis. Forced expression of MyoD in vitro can inhibit cell cycle progression independent of differentiation.
細胞増殖と分化の間の拮抗の基礎は不明瞭なままだったが最近、 筋形成の間に 細胞周期抑制因子 P21が誘導されると報告され、 細胞周期停止が筋分化とリンク している仕組みの一端が解明された。 筋分化と細胞周期の制御に関して、 増殖し ている筋芽細胞がミオサイ ト(myocyte)へ移行するステップの時間的な前後関係 が明らかになつている。 筋芽細胞が分化経路へ進む際にはまずミオジェニンの合
成が誘導され、ミオジヱニン発現の後、 p21の誘導とそれによる細胞周期の停止、 次に筋収縮にかかわるタンパク質が発現され、 続いてミオサイトが細胞融合を起 こして多核の筋管細胞(myotube)を形成するに至る過程が非常に秩序ある順序で 進行する (非特許文献 3 )。 The basis of the antagonism between cell proliferation and differentiation remains unclear, but recently it has been reported that the cell cycle inhibitor P21 is induced during myogenesis, and how cell cycle arrest is linked to muscle differentiation One part of was clarified. With respect to muscle differentiation and control of the cell cycle, the temporal context of the step in which proliferating myoblasts transition to myocytes has become clear. When myoblasts proceed through the differentiation pathway, they first combine myogenin. After induction of myodidinin, induction of p21 and consequent arrest of the cell cycle, and then expression of proteins involved in muscle contraction, followed by fusion of myocytes to multinucleated myotube cells (myotube) ) Is formed in a very orderly sequence (Non-Patent Document 3).
非特許文献 1 Exp. Cell Res. Vol. 24, 508-512. (1961) . Non-Patent Document 1 Exp.Cell Res.Vol. 24, 508-512. (1961).
非特許文献 2 Cell Vol. 15, 855-864. (1978) . Non-Patent Document 2 Cell Vol. 15, 855-864. (1978).
非特許文献 3 J. Cell Biol. Vol. 132, 657-666. (1996) 発明の開示 Non-Patent Document 3 J. Cell Biol. Vol. 132, 657-666. (1996) Disclosure of the Invention
従来法により筋収縮が可能な筋繊維を形成させるためには、 生体の筋組織を材 料とし、 組織をばらばらにし、 筋芽細胞 (初代培養細胞) を取り出して用いる事 が多い。しかしながら、良質の初代培養細胞を安定に採取する事は容易ではなく、 分化効率が必ずしも十分ではない場合がある。 更に、 材料取得のたびに個体から 筋組織を取り出すことが必要であった。 ' In order to form muscle fibers capable of muscle contraction by the conventional method, the muscle tissue of a living body is often used as a material, the tissue is separated, and myoblasts (primary cultured cells) are often taken out and used. However, it is not easy to stably collect high quality primary cultured cells, and the differentiation efficiency may not always be sufficient. In addition, it was necessary to remove muscle tissue from the individual each time the material was obtained. '
他方、 株化した筋芽細胞は大量に入手可能であるが、 株化した筋芽細胞を従来 法で分化させると、 筋繊維の形成能が初代培養細胞に劣るという欠点がある。 株 化筋芽細胞から筋管を形成させることは比較的容易だが筋繊維まで分化する効率 は低く、 筋収縮を示す細胞の形成は稀である。 また、 形成される繊維は生体内の 筋繊維、あるいは初代培養細胞によって in vitroで作られる筋繊維に比べてはる かに小さい。 On the other hand, the established myoblasts are available in large quantities, but when the established myoblasts are differentiated by the conventional method, there is a disadvantage that the ability to form muscle fibers is inferior to that of primary cultured cells. It is relatively easy to form myotubes from established myoblasts, but the efficiency of differentiation into muscle fibers is low, and cells showing muscle contraction are rare. Also, the fibers formed are much smaller than muscle fibers in vivo, or muscle fibers produced in vitro by primary cultured cells.
そこで、 本願発明は、 筋芽細胞を分化させ、 収縮可能な筋繊維を効率的に調製 することを課題としている。 Therefore, an object of the present invention is to differentiate myoblasts and efficiently prepare contractile muscle fibers.
本願発明者は、 分化誘導の前に小胞体 (E R ) ス トレスに曝すことにより、 筋 芽細胞の分化初期のアポトーシスを昂進させ、 その後の分化過程を促進する事に 成功した。 筋芽細胞は細胞融合を起こして多核の筋管を形成し、 さらに効率良く 筋繊維にまで分化して筋収縮現象を起こすことを見出した。 The inventor of the present invention succeeded in promoting myoblast apoptosis at the early stage of differentiation by exposing to endoplasmic reticulum (ER) stress before inducing differentiation, and promoting the subsequent differentiation process. Myoblasts have been found to undergo cell fusion to form multinucleated myotubes, and to efficiently differentiate into muscle fibers to cause muscle contraction.
本明細書は本願の優先権の基礎である日本国特許出願 2004-154813号の明細書 および/または図面に記載される内容を包含する。
図面の簡単な説明 This description includes part or all of the contents as disclosed in the description and / or drawings of Japanese Patent Application No. 2004-154813, which is a priority document of the present application. Brief Description of Drawings
図 1'は、 小胞体特異的小胞体ストレス誘導剤による C2C12細胞のアポトーシス の昂進(分化誘導 1日目)。 Proliferatingは増殖細胞; UTは前処理なし後の分 化; TUNはッニカマイシン前処理後の分化、 TGはタプシガルジン前処理後の分化 をそれぞれ意味する。 Figure 1 'shows that ER-specific ER stress inducer enhances apoptosis of C2C12 cells (day 1 of differentiation induction). Proliferating means proliferating cells; UT means differentiation after no pretreatment; TUN means differentiation after tunicamycin pretreatment; TG means differentiation after thapsigargin pretreatment.
図 2は、 C2C12細胞の分化培養中のカスパーゼ 1 2の活性化。 GMは増殖培 地、 D1は分化一日目の試料、 D2は分化 2日目の試料、 Lは生細胞、 Dは死細胞、 U Tは未処理、 TUN/DMはツユ力マイシンによる前処理、 TG/DMはタプシガルジン による前処理、 T Gはタプシガルジン前処理を意味する。 矢印はプロカスパーゼ 1 2を、 矢頭はカスパーゼ 1 2の活性型を示す。 FIG. 2 shows activation of caspase 12 during differentiation culture of C2C12 cells. GM is a growth medium, D1 is a sample on day 1 of differentiation, D2 is a sample on day 2 of differentiation, L is live cell, D is dead cell, UT is untreated, TUN / DM is pre-treated with tanyumycin, TG / DM means pretreatment with thapsigargin, and TG means thapsigargin pretreatment. The arrow indicates procaspase 12 and the arrowhead indicates the active form of caspase 12.
図 3は、 小胞体特異的小胞体ストレス誘導剤による前処理の有無での筋繊維の サイズ比較。 U Tは未処理、 T U Nはッニカマイシン前処理、 T Gはタプシガ ルジン前処理を意味する。 スケールバーは 2 0 0 μ ηιである。 前処理細胞の分化 培養では多くの筋繊維が自発的に収縮した。 Figure 3 shows a comparison of muscle fiber size with and without pretreatment with an ER-specific ER stress inducer. UT means untreated, TUN means tunicamycin pretreatment, and TG means thapsigargin pretreatment. The scale bar is 200 μηι. Many muscle fibers contracted spontaneously in the differentiation culture of pretreated cells.
図 4は、 小胞体特異的小胞体ストレス誘導剤前処理後のアポトーシス及ぴ生存 のォートクリン因子による制御。 馴化培地中での IGF- IIは抗 IGF- II抗体を用 いたィムノブロッテイングにより検出された。 U Tは未処理、 T U Nはッニカマ イシン前処理、 T Gはタプシガルジン前処理、 DMは未使用の分化誘導培地、 1 一 8は分化誘導培地に代えて第 1日目から 8日目をそれぞれ意味する。 Figure 4 shows the control of apoptosis and survival by photocrine factor after pretreatment with an ER-specific ER stress inducer. IGF-II in the conditioned medium was detected by immunoblotting using an anti-IGF-II antibody. UT means untreated, TUN means tunica mycin pretreatment, TG means thapsigargin pretreatment, DM means an unused differentiation-inducing medium, and 18 means days 1 to 8 in place of the differentiation-inducing medium.
図 5は、 分化誘導培地に 1 ^ g /m 1 の IGF - IIを添加することによる分化初期 のアポトーシスの抑制 (分化 1日目)。 U Tは未処理、 T U Nはッ-カマイシン 前処理をそれぞれ意味する。 スケールバーは 2 0 0 μ πιである。 Fig. 5 shows suppression of apoptosis at the early stage of differentiation by adding 1 ^ g / m1 of IGF-II to the differentiation induction medium (day 1 of differentiation). UT means untreated, TUN means okkamycin pretreatment. The scale bar is 200 μπι.
図 6は、 分化誘導培地中に分泌されたプロカテブシン Βのィムノプロッティン グによる検出。 カテブシンのダリコシル型及び非ダリコシル形はそれぞれ矢印 及ぴ矢頭で示されている。 U Tは未処理、 T U Nはツユ力マイシン前処理、 T Gはタプシガルジン前処理、 1 _ 3は分化誘導培地に代えて第 1日目から 3日目、 D Mは未使用分化誘導培地をそれぞれ意味する。 Fig. 6 shows the detection of procatebcin Β secreted into the differentiation-inducing medium by immunoblotting. The daricosyl and non-daricosyl forms of cathepsin are indicated by arrows and arrowheads, respectively. UT is untreated, TUN is pretreatment with tsuyuikimycin, TG is thapsigargin pretreatment, 1-3 is day 1 to day 3 instead of the differentiation induction medium, and DM is an unused differentiation induction medium.
図 7は、 小胞体特異的小胞体ストレス誘導剤による前処理された C2C12細胞を 用いて調製された馴化培地 (Conditioned Medium) によるアポトーシスの促進及
ぴ大型筋繊維の効率的形成。 増殖中の C2C12細胞を馴化培地に移して 2 4時間 培養し、 その後分化誘導培地で 1 2日間培養した。 TUNCM はツユ力マイシン前処 理をした細胞を用いて調製した馴化培地、 TGCMはタプシガルジン前処理をした細 胞を用いて調製した馴化培地、 CCM はコントロール細胞 (前処理無し) の分化培 養から調製される馴化培地を意味する。 スケールパーは 2 0 0 μ ιηである。 Figure 7 shows the promotion of apoptosis by conditioned medium prepared from C2C12 cells pretreated with an ER-specific ER stress inducer. 効率 Efficient formation of large muscle fibers. Proliferating C2C12 cells were transferred to a conditioned medium and cultured for 24 hours, and then cultured for 12 days in a differentiation-inducing medium. TUNCM is a conditioned medium prepared using cells pretreated with tanyumycin, TGCM is a conditioned medium prepared using cells pretreated with thapsigargin, and CCM is a culture of differentiation of control cells (no pretreatment). Means the conditioned medium prepared. The scale par is 200 μιη.
図 8は、 分化過程にある C2C12細胞のアポトーシスに対する抵抗性。 増殖中 の C2C12細胞 (GM)、 ツユ力マイシンで前処理した分化中の C2C12細胞 (TUN;)、 タ プシガルジンで前処理した分化中の C2C12細胞 (TG) 及び前処理していない分化 中の C2C12細胞(DM)に 2 g Zm 1ツユ力マイシン、 Ι μ Μタプシガルジン、 1 0 0 g /m 1エトポシド、 0 . 2 μ Μスタゥロスポリンのいずれかのアポトー シス誘導剤を作用させた。 分化中の細胞はいずれも分化開始から 3日目のもので ある。 スケールバーは 2 0 0 ^ mである。 . ' 図 9は、分化過程にある C2C12細胞中の B c 1— x Lのレベル。 Lは生細胞、 Dは死細胞、 GMは増殖細胞、 U Tは未処理、 T U Nはツユ力マイシン前処理、 TGはタプシガルジン前処理をそれぞれ意味する。分化開始 1日目から 7日目まで の細胞を解析した。 Figure 8 shows the resistance of a differentiating C2C12 cell to apoptosis. Proliferating C2C12 cells (GM), differentiated C2C12 cells (TUN;) pretreated with Tuyumycin, differentiated C2C12 cells (TG) pretreated with thapsigargin, and untreated C2C12 cells Cells (DM) were treated with any of the apoptosis-inducing agents of 2 g Zm 1 tsuyuikimycin, ΙμΜ thapsigargin, 100 g / m 1 etoposide, and 0.2 μΜ staurosporine. All the differentiating cells are 3 days after the start of differentiation. The scale bar is 200 ^ m. 'Figure 9 shows Bcl-xl levels in C2C12 cells undergoing differentiation. L means live cells, D means dead cells, GM means proliferating cells, UT means untreated, TUN means tsuyuikimycin pretreatment, and TG means thapsigargin pretreatment. Cells from day 1 to day 7 of differentiation initiation were analyzed.
図 1 0は、 分化培地におけるミオジヱニンの誘導。 分化開始後、 1日目から 1 0日目の C2C12細胞内におけるミオジェニンをィムノプロッティングで検出し た。 UT, 前処理なし; TUN, ッ-カマイシン前処理; TG, タプシガルジン前処理。 発明を実施するための最良の形態 FIG. 10 shows the induction of myodidinin in the differentiation medium. Myogenin in C2C12 cells from day 1 to day 10 after the start of differentiation was detected by immunoplotting. UT, no pretreatment; TUN, tukamycin pretreatment; TG, thapsigargin pretreatment. BEST MODE FOR CARRYING OUT THE INVENTION
本願発明は、 筋芽細胞又は筋芽細胞様細胞を筋繊維に分化させる方法を提供す る。 The present invention provides a method for differentiating myoblasts or myoblast-like cells into muscle fibers.
本願発明者は、 筋芽細胞又は筋芽細胞様細胞を、 分化誘導培地で培養前又は培 養開始直後に、 小胞体 (E R ) ス トレスに曝すことにより、 筋芽細胞又は筋芽細 胞様細胞が細胞融合を起こし多核体の筋繊維を形成し筋収縮現象を起こすことを 見出して本願発明を完成させたものである。 本願発明者は試験管内の筋芽細胞培 養系及びマウス胎児の筋組織における筋分化過程において ER ストレスの発生を 検出し、 そのストレスによって分化の初期にはアポトーシスが誘起される事を見
い出した。 培養系の筋分化においては従来、 培地の血清濃度を下げることによつ て分化を誘導していたが、その操作に加えて ERストレスを細胞に与える事で筋繊 維形成を上昇させる可能性に着目し、 本願発明を完成させるに至った。 The inventor of the present application discloses that myoblasts or myoblast-like cells are exposed to endoplasmic reticulum (ER) stress before or immediately after culturing in a differentiation-inducing medium. The inventors have found that cells undergo cell fusion to form multinucleated muscle fibers and cause muscle contraction, thereby completing the present invention. The present inventors have detected the occurrence of ER stress during the myogenic differentiation process in the myoblast culture system in vitro and in the muscle tissue of the mouse embryo, and have shown that the stress induces apoptosis in the early stage of differentiation. I came out. Conventionally, in muscle differentiation of culture systems, differentiation was induced by lowering the serum concentration of the culture medium.In addition to this procedure, the possibility of increasing ER stress by applying ER stress to cells may be increased. And completed the invention of the present application.
本願発明には、 筋芽細胞を分化誘導培地で分化処理をする前又は培養開始直後 に、 筋芽細胞を小胞体ス トレスに曝す前処理をした後、 分化誘導培地で培養する ことにより筋繊維に分化させる方法及び得られた筋繊維を包含する。 The invention of the present application includes a pretreatment for exposing the myoblasts to endoplasmic reticulum stress before the differentiation treatment of the myoblasts in the differentiation induction medium or immediately after the start of the culture, and then culturing the cells in the differentiation induction medium. And the resulting muscle fibers.
小胞体 (E R ) では、 リボソームで合成ざれた蛋白質が、 例えば、 糖鎖修飾、 ジスルフィ ド結合形成などを経て、正しく折り畳まれた立体構造をと.り、その後、 ゴルジ体へと移送される。 しかしながら、 タンパク質の突然変異や修飾異常によ つて正しい折り込みがなされない蛋白質は、 小胞体内に蓄積し、 この蓄積が過度 な場合は、 小胞体にス トレスを起こし、 力スパーゼ 1 2が関与するアポトーシス (細胞死) が引き起こされると言われている。 In the endoplasmic reticulum (ER), the protein synthesized by the ribosome takes a correctly folded conformation through, for example, sugar chain modification and disulfide bond formation, and is then transferred to the Golgi apparatus. However, proteins that do not fold correctly due to protein mutations or abnormal modifications accumulate in the endoplasmic reticulum.If the accumulation is excessive, the endoplasmic reticulum is stressed, and force spase 12 is involved. It is said that apoptosis (cell death) is caused.
従来法による株化筋芽細胞からの分化においては、 ミオサイ トまでは分化して も、 ミオサイトからの細胞融合による筋管細胞の形成及びそれに続く筋繊維の形 成が十分ではないために、 筋収縮を起こすことができなかった。 In the differentiation from established myoblasts according to the conventional method, even if the myosite is differentiated, the formation of myotube cells by cell fusion from myocytes and the subsequent formation of muscle fibers are not sufficient. Muscle contraction failed to occur.
本発明者は、 細胞死を起こすような小胞体ストレスを一過的に分化誘導前又は 分化誘導培養開始直後の筋芽細胞に与えることにより、 分化過程初期のアポトー シスを昂進させてス トレスに弱い細胞を人工的に除去し、 より強い優れた細胞を 選抜することで、 筋芽細胞の分化を非常に効率的に行えることをはじめて見出し たものである。 小胞体ストレスを一過的に分化誘導前又は分化誘導開始時の筋芽 細胞に与えることが筋芽細胞から分化して生じるミオサイ トが細胞融合を起こし 筋管細胞、 さらには筋繊維を形成する段階に非常に大きな影響を与えていると考 えられる。 The present inventors transiently apply endoplasmic reticulum stress that causes cell death to myoblasts before differentiation induction or immediately after the start of differentiation induction culture, thereby enhancing apoptosis in the early stage of the differentiation process and increasing stress. This is the first finding that myoblasts can be differentiated very efficiently by artificially removing weak cells and selecting stronger and better cells. Transient application of endoplasmic reticulum stress to myoblasts before or at the start of differentiation induces myoblasts that differentiate from myoblasts to cause cell fusion to form myotube cells and muscle fibers This seems to have had a very significant effect on the stage.
1 . [筋芽細胞又は筋芽細胞様細胞] 1. [Myoblasts or myoblast-like cells]
本願発明で用いる筋芽細胞又は筋芽細胞様細胞としては、 種々の動物、 例えば 鳥類又は哺乳動物由来の初代培養筋芽細胞及び樹立化された筋芽細胞を用いるこ とができる。 例えば、 ニヮトリ、 ヒ ト、 サル、 ラット、 マウス、 ブタ、 又はゥシ 等に由来する初代培養筋芽細胞及び樹立化された筋芽細胞または筋芽細胞様細胞 を用いることができる。 樹立された株化筋芽細胞または株化筋芽細胞様細胞とし
ては、 正常筋肉組織から樹立されたものもあれば、 横紋筋肉腫などの腫瘍細胞か ら樹立されたものも用いることができ、 具体的には、 マウスから樹立化されたAs the myoblasts or myoblast-like cells used in the present invention, primary cultured myoblasts and established myoblasts derived from various animals such as birds or mammals can be used. For example, primary cultured myoblasts and established myoblasts or myoblast-like cells derived from chickens, humans, monkeys, rats, mice, pigs, or mice can be used. As established myoblasts or established myoblast-like cells In some cases, those established from normal muscle tissue and those established from tumor cells such as rhabdomyosarcoma can be used, specifically, those established from mice.
C2C12、 マウス F— 6、 マウス C2BP5, ラッ ト F— 1 2、 ラッ ト L6、 ヒ 卜 RD (株 化筋芽細胞様細胞の例。 例えば、 ATCCのカタログ記載の細胞 CCL- 136) 等が挙げ られ、 これらは理化学研究所バイオリソースセンター、 米国 American Type Culture Collection (ATCC)等より入手できる。 C2C12, mouse F-6, mouse C2BP5, rat F-12, rat L6, human RD (examples of established myoblast-like cells, such as the cell CCL-136 described in the ATCC catalog). These can be obtained from RIKEN BioResource Center, American Type Culture Collection (ATCC), etc.
又、 任意には、 筋芽細胞を実験動物又は患者より摘出し培養した細胞を用いる こともできる。 例えば、 生検で摘出した筋肉をトリプシン一 E D T A処理し、 初 代培養物を作成し、 1 0 % F B S、 2 n M L -グルタミン、 及び抗生物質を添加 した DMEM (ダルべッコ変法のイーグル培地)増殖培地で培養し、抗ミオシン重鎖モ ノクローナル抗体と抗 5 . 1 . H 1 1抗体両者を用い、 フローサイ トメ トリ一で 筋芽細胞を分離することができる (Ann. Transplant (1999); 4: 103-108) 0 又、 例 えば、 The Journal of Cell Biology (1994); 125: 1275-1287 に記載の方法、 又 は Circulation (2000); 102 (19 Suppl. 3): III210- 215.に記載の方法などを利用 することもできる。 Optionally, cells obtained by culturing myoblasts from an experimental animal or a patient can also be used. For example, a muscle isolated from a biopsy is treated with trypsin-EDTA to prepare a primary culture, and DMEM (Dalbecco's modified Eagle's Eagle) supplemented with 10% FBS, 2n ML-glutamine, and antibiotics Medium) Myoblasts can be isolated by flow cytometry using both anti-myosin heavy chain monoclonal antibody and anti-5.1.H11 antibody cultured in growth medium (Ann. Transplant (1999) 4: 103-108) 0 Also, for example, the method described in The Journal of Cell Biology (1994); 125: 1275-1287, or Circulation (2000); 102 (19 Suppl. 3): III210-215. The method described in. Can also be used.
2 . [小胞体ストレス] 2 [ER stress]
小胞体ストレスを与える手段としては、 公知の種々の手段、 例えば、 熱ショッ ク、 または、 例えば、 小胞体ス トレス誘導剤に筋芽細胞又は筋芽細胞様細胞を曝 すことにより可能である。 好適には、 小胞体特異的にス トレスを与える手段、 具 体的には、 小胞体特異的小胞体ス トレス誘導剤を用いることができる。 更に、 筋 芽細胞又は筋芽細胞様細胞を小胞体特異的小胞体スト レス誘導剤が添加された増 殖培地又は分化培地で短時間培養した後、 小胞体特異的小胞体ストレス誘導剤を 含まない分化誘導培地中に置き、その分化誘導培地から分離した上清(馴化培地) を用いて、 小胞体特異的小胞体ストレス誘導剤で前処理した場合と同等のアポト 一シス促進効果、 筋繊維形成促進効果を得る事ができる。 Means for applying ER stress can be achieved by various known means, for example, heat shock, or by exposing myoblasts or myoblast-like cells to, for example, an ER stress inducer. Preferably, means for imparting stress specifically to the endoplasmic reticulum, specifically, an endoplasmic reticulum-specific endoplasmic reticulum stress inducer can be used. Further, after culturing myoblasts or myoblast-like cells for a short time in a growth medium or a differentiation medium to which an endoplasmic reticulum-specific endoplasmic reticulum stress inducer has been added, an endoplasmic reticulum-specific endoplasmic reticulum stress inducer is included. Apoptosis promoting effect equivalent to that of pretreatment with an endoplasmic reticulum-specific endoplasmic reticulum stress inducer using the supernatant (conditioned medium) separated from the differentiation induction medium, A formation promoting effect can be obtained.
3 . [小胞体特異的小胞体ス トレス誘導剤] 3. [ER-specific ER stress inducer]
本願発明で用いる小胞体ストレス誘導剤としては、 種々の小胞体にストレスを 与える薬剤が含まれる。 好適には、 小胞体に特異的にス トレスを与える小胞体特 異的小胞体ス トレス誘導剤を用いることができる。 例えば、 小胞体に特異的に発
現している酵素の阻害剤、 小胞体に特異的な機構の阻害剤も含まれる。 例えば、 小胞体における N-グリコシル化を阻害する薬剤、 具体的には、 ッニカマイシン若 しくはコリネトキシン、 グリコシダーゼの阻害剤、 具体的にはカスタノスペルミ ン、マンノシダーゼの阻害剤、具体的にはキフネンシン( funensine)若しくはデ ォキシマンノジリマイシン, 小胞体特異的 Ca++A T P a s eの阻害剤、 具体的に は、 タプシガルジン (thapsigargin)、 又はリアノジン受容体の阻害剤、 具体的に はダント口レンを挙げることができる。 以下小胞体特異的小胞体ストレス誘導剤 について説明するが、 他の小胞体ス トレス誘導剤についても、 筋芽細胞又は筋芽 細胞様細胞の分化を促進できる限り、 同様にして用いることができる。 Examples of the endoplasmic reticulum stress inducer used in the present invention include various agents that give stress to the endoplasmic reticulum. Preferably, an endoplasmic reticulum-specific endoplasmic reticulum stress inducer that specifically gives stress to the endoplasmic reticulum can be used. For example, specific to the ER Includes inhibitors of the enzymes present, as well as inhibitors of ER-specific mechanisms. For example, an agent that inhibits N-glycosylation in the endoplasmic reticulum, specifically, an inhibitor of tunicamycin or corynetoxin, a glycosidase, specifically, an inhibitor of castanospermine or mannosidase, specifically, a funensine ) Or deoxymannojirimycin, an endoplasmic reticulum-specific inhibitor of Ca ++ ATPase, specifically thapsigargin, or an inhibitor of ryanodine receptor, specifically Can be. Hereinafter, an endoplasmic reticulum-specific endoplasmic reticulum stress inducer will be described. Other endoplasmic reticulum stress inducers can be used in the same manner as long as the differentiation of myoblasts or myoblast-like cells can be promoted.
小胞体特異的小胞体ストレス誘導剤を用いて、 筋芽細胞又は筋芽細胞様細胞を 小胞体特異的小胞体ストレスに曝す手段としては、 上記小胞体特異的小胞体スト レス誘導剤を培地に加える、 又は小胞体特異的小胞体ストレス誘導剤を加えた培 地で前処理した後の筋芽細胞.又は筋芽細胞様細胞を分化培地中で培養して得られ る培養上清を馴化培地として用いることができる。 小 体特異的小胞体ストレス 誘導剤を培地に加える場合の濃度は、 例えば、 2 4時間後に約半数の筋芽細胞又 は筋芽細胞様細胞がアポトーシスを起こして死滅する程度の濃度を基準として濃 度設定することができる。 例えば、 ツユ力マイシンの場合は最終濃度が 0 . 0 1 〜1、 0 0 0 g /m 1、 好適には、 0 . 5〜 1 0 g /ml、 タプシガノレジンの場 合は最終濃度が 0 . 0 1〜1、 0 0 0 /z M、 好適には、 0 . 5〜1 0 μ Μとなる ように添加することができる。 As a means for exposing myoblasts or myoblast-like cells to ER-specific ER stress using an ER-specific ER stress inducer, the above ER-specific ER stress inducer is used in a medium. Myoblasts after addition, or pretreatment with a medium containing an endoplasmic reticulum-specific ER stress inducer, or a culture supernatant obtained by culturing myoblast-like cells in a differentiation medium Can be used as The concentration when the vesicle-specific ER stress inducer is added to the medium is, for example, based on the concentration at which about half of myoblasts or myoblast-like cells undergo apoptosis and die after 24 hours. Concentration can be set. For example, the final concentration is 0.01 to 1 and 0.000 g / m1, preferably 0.5 to 10 g / ml in the case of tsuyumycin, and the final concentration is 0.1 and 10 in the case of thapsigarnoresin. It can be added so as to be 0.1 to 1, 000 / zM, preferably 0.5 to 10 μΜ.
筋芽細胞又は筋芽細胞様細胞を小胞体特異的小胞体ストレスに曝す時間として は、 筋芽細胞又は筋芽細胞様細胞に小胞体にストレスが生じて種々の細胞防衛反 応 (小胞体ス トレス応答) は起こるが、 しかしアポトーシスを開始するには至ら ない程度で十分である。 例えば、 上記薬剤を増殖培地に添加した場合は、 上記濃 度で 0 . 5〜4 8時間程度、 好適には、 1〜6時間程度筋芽細胞又は筋芽細胞様 細胞を小胞体特異的小胞体ストレス誘導剤添加培地で培養することにより達成す ることができる。 Exposure of myoblasts or myoblast-like cells to endoplasmic reticulum-specific endoplasmic reticulum stress includes various cell defense reactions due to the occurrence of stress in the endoplasmic reticulum in myoblasts or myoblast-like cells. Tress response), but not enough to initiate apoptosis. For example, when the above agent is added to the growth medium, the myoblasts or myoblast-like cells are reduced to the ER-specific cells at the above concentration for about 0.5 to 48 hours, preferably for about 1 to 6 hours. It can be achieved by culturing in a medium containing an endoplasmic reticulum stress inducer.
小胞体特異的小胞体ストレス誘導剤を増殖培地に添加して用いた場合は、 小胞 体ス トレスに曝した後、 培地を除き、 小胞体特異的小胞体ス トレス誘導剤を含ま
ない分化誘導培地を添加する。 小胞体特異的小胞体ストレス前処理は増殖培地を 用いなくともよく、 筋芽細胞又は筋芽細胞様細胞を通常の増殖培地から分化培地 に移す際に、 分化培地に小胞体特異的小胞体ス トレス誘導剤を添加して、 0 . 1 〜2 4時間、 好適には、 0 . 5〜 3時間程度培養する事も可能である。 分化誘導 培地としては、 従来から知られる標準的な筋芽細胞又は筋芽細胞様細胞用分化誘 導培地を用いることができる。 哺乳動物の筋芽細胞又は筋芽細胞様細胞の分化で あれば、 例えば、 DMEMに 2 %ゥマ血清(インビト口ジ-ン)を添加した培地を用.い ることができる。この時、例えば 1 Il g/ ΧΆ 1のインスリン (シグマアルドリツチ) をさらに添加してもよい。 When an ER-specific ER stress inducer is added to the growth medium and used, the medium is removed after exposure to ER stress, and the ER-specific ER stress inducer is included. Add no differentiation induction medium. The endoplasmic reticulum-specific endoplasmic reticulum stress pretreatment does not require the use of a growth medium. When the myoblasts or myoblast-like cells are transferred from the normal growth medium to the differentiation medium, the endoplasmic reticulum-specific endoplasmic reticulum It is also possible to add a tress inducer and culture for 0.1 to 24 hours, preferably for about 0.5 to 3 hours. As a differentiation induction medium, a conventionally known standard differentiation induction medium for myoblasts or myoblast-like cells can be used. For the differentiation of mammalian myoblasts or myoblast-like cells, for example, a medium obtained by adding 2% poma serum (Invitrogen Gene) to DMEM can be used. At this time, for example, 1 lg / ΧΆ1 insulin (Sigma-Aldrich) may be further added.
4 . [分化誘導] 4. [Induction of differentiation]
小胞体特異的小胞体ストレスに曝した後、 筋芽細胞又は筋芽細胞様細胞は分化 誘導培地で 4又は 5日間以上、 好適には、 1週間以上培養を続けることで筋管か ら筋繊維に分化させることができる。 任意には、 分化誘導培地での培養を.更に 3 週間以上続けることができる。分化誘導培地としては、例えば、例えば、 DMEM (50 単位/ ml のペニシリン (インビトロジェン) 及ぴ 50 g/ml のス トレプトマイシン (インビトロジェン) を添加したもの) にゥマ血清 (インビトロジヱン) を 0〜 5%または牛血清 (インビトロジェン) (または牛胎児血清 (インビトロジェン)) を 0〜2%添加した培地など、 増殖因子の濃度が標準的な増殖培地より低いものを 用いることができる。 この時、 例えば 0. 1〜10με/πι1 のインスリン (インビトロ ジェン) または 0. 055〜5. 5 g/mlのトランスフェリン (インビトロジェン) を加 えてもよい。 After exposure to endoplasmic reticulum-specific endoplasmic reticulum stress, myoblasts or myoblast-like cells are cultured in a differentiation-inducing medium for at least 4 or 5 days, preferably for at least 1 week, to reduce myotubes to myofibers. Can be differentiated. Optionally, culturing in a differentiation-inducing medium can be continued for an additional 3 weeks or more. Examples of the differentiation-inducing medium include, for example, DMEM (supplemented with 50 units / ml of penicillin (Invitrogen) and 50 g / ml of streptomycin (Invitrogen)), and serum of serum (Invitrogen) in the range of 0 to 50%. A medium having a growth factor concentration lower than that of a standard growth medium, such as a medium supplemented with 0% to 2% of 5% or bovine serum (Invitrogen) (or fetal bovine serum (Invitrogen)) can be used. At this time, for example 0. 1~10μ ε / πι1 insulin (in vitro Zhen) or 0. 055~5. 5 g / ml of transferrin (Invitrogen) may be e pressurized.
5 . [馴化培地 (条件培地:調整培地) ] 5. [Conditioned medium (conditioned medium: conditioned medium)]
上記小胞体特異的小胞体ストレス誘導剤が添加された培地で短時間前処理した 筋芽細胞又は筋芽細胞様細胞を、 小胞体特異的小胞体ストレス誘導剤を含まない 分化培地で培養した培地又は培養物から分離した上清を馴化培地として用いて小 胞体特異的に小胞体ストレスを筋芽細胞又は筋芽細胞様細胞に与えることができ る。 A medium in which myoblasts or myoblast-like cells, which have been pretreated for a short time with a medium to which the ER-specific ER stress inducer has been added, are cultured in a differentiation medium containing no ER-specific ER stress inducer Alternatively, endoplasmic reticulum stress can be specifically applied to myoblasts or myoblast-like cells using the supernatant separated from the culture as a conditioned medium.
又は、 筋芽細胞又は筋芽細胞様細胞を分化培地に移した後に同培地中で小胞体 特異的小胞体ストレスを短時間与え、 小胞体特異的小胞体ストレス誘導剤を含む
分化培地、 及びその後の培養に用いる小胞体特異的小胞体ストレス誘導剤を含ま ない分化培地によって生成される馴化培地を用いてもよい。 Alternatively, after transferring myoblasts or myoblast-like cells to a differentiation medium, an endoplasmic reticulum-specific endoplasmic reticulum stress is applied in the same medium for a short time, and an endoplasmic reticulum-specific endoplasmic reticulum stress inducer is contained. A conditioned medium generated by a differentiation medium and a differentiation medium that does not contain an endoplasmic reticulum-specific endoplasmic reticulum stress inducer used for subsequent culture may be used.
より具体的には、 例えば、 増殖培地中で増殖中の細胞に小胞体特異的小胞体ス トレス誘導剤を加えた増殖培地中で筋芽細胞又は筋芽細胞様細胞を 1〜 6時間前 処理し、 その後、 分化誘導培地 (誘導剤を含まない) に代えて 6〜4 8時間、 好 適には 1 2時間〜 3 6時間、 更に好適には 2 4時間培養を継続させて分化させた 分化誘導培地の培地又はその上清を、 馴化培地として用いることができる。 好適 には、 使用した培地を回収し、 低速で遠心して (2, 000 rpm, 20 分間) 大きな不 純物等を除いて調製することができる。 More specifically, for example, pretreatment of myoblasts or myoblast-like cells in a growth medium obtained by adding an endoplasmic reticulum-specific ER stress inducer to cells growing in a growth medium for 1 to 6 hours After that, the cells were differentiated by continuing the culture for 6 to 48 hours, preferably 12 to 36 hours, more preferably 24 hours, instead of the differentiation inducing medium (containing no inducer). The medium of the differentiation-inducing medium or a supernatant thereof can be used as a conditioned medium. Preferably, the used medium can be recovered and centrifuged at low speed (2,000 rpm, 20 minutes) to remove large impurities and the like.
馴化培地を用いた筋芽細胞又は筋芽細胞様細胞の前処理は、 例えば、 0 . 5〜 4 8時間、, 好適には、 1 2〜 3 6時間処理することができる。 馴化培地での前処 理後、 通常の分化培地に代えて培養を続けることで、 筋繊維への分化を誘導する ことができる。 The pretreatment of the myoblasts or myoblast-like cells using the conditioned medium can be performed, for example, for 0.5 to 48 hours, preferably for 12 to 36 hours. After the pretreatment with the conditioned medium, the differentiation into muscle fibers can be induced by continuing the culture in place of the normal differentiation medium.
なお、 筋芽細胞又は筋芽細胞様細胞を小胞体特異的ストレス誘導剤による前処 理後、 最初に分化誘導培地に交換し 2 4時間培養して得られた馴化培地を用いて 小胞体特異的ストレスを与えることが好適であるが、 前処理後分化誘導培地に 2 回目の交換後の分化誘導培地での培養により得られた馴化培地、 それ以降の培地 交換により得られた馴化培地を上記と同様に利用することも可能である。 After pretreatment of myoblasts or myoblast-like cells with an endoplasmic reticulum-specific stress inducer, first replace the medium with a differentiation-inducing medium and culture for 24 hours. It is preferable to apply a mechanical stress, but the conditioned medium obtained by culturing the differentiation-inducing medium after the pretreatment after the second exchange into the differentiation-inducing medium, and the conditioned medium obtained by subsequent It can also be used in the same way as.
6 . [培養キット] 6. [Culture kit]
本願発明には、 次の筋繊維培養キットを包含している。 The present invention includes the following muscle fiber culture kit.
( 1 ) 筋芽細胞又は筋芽細胞様細胞分化キット (1) Myoblast or myoblast-like cell differentiation kit
(ィ) 株化した筋芽細胞若しくは筋芽細胞様細胞又は筋芽細胞の初代培養、 (口) 小胞体特異的小胞体ス トレス誘導剤、 及び (ハ) 分化誘導培地からなる、 筋芽細 胞又は筋芽細胞様細胞から筋繊維を分化できるキット。 (B) a primary culture of established myoblasts or myoblast-like cells or myoblasts, (b) a myoblast comprising an endoplasmic reticulum-specific endoplasmic reticulum stress inducer, and (c) a differentiation-inducing medium. A kit capable of differentiating muscle fibers from vesicles or myoblast-like cells.
なお、 筋芽細胞又は筋芽細胞様細胞、 小胞体特異的小胞体ストレス誘導剤及び 分化誘導培地は、 上述した筋芽細胞又は筋芽細胞様細胞、 誘導剤及ぴ培地を用い る。 As the myoblast or myoblast-like cell, the endoplasmic reticulum-specific endoplasmic reticulum stress inducer and the differentiation induction medium, the above-described myoblast or myoblast-like cell, the inducer and the culture medium are used.
具体的には、 株化した筋芽細胞又は筋芽細胞様細胞としては、 マウス C2C12、 マウス F— 6、 マウス C2BP5、 ラット F— 1 2、 ラット L 6、 ラット H 9 C 2、
等、又はヒ ト横紋筋肉腫由来細胞 RD等が挙げられ、小胞体特異的小胞体ストレス 誘導剤としては、 例えば、 ッニカマイシン又はタプシガルジンが挙げられる。 Specifically, as the established myoblasts or myoblast-like cells, mouse C2C12, mouse F-6, mouse C2BP5, rat F-12, rat L6, rat H9C2, Or a human rhabdomyosarcoma-derived cell RD. Examples of the ER-specific ER stress inducer include tunicamycin or thapsigargin.
( 2 ) 筋繊維培養キット (2) Muscle fiber culture kit
(ィ) 筋芽細胞又は筋芽細胞様細胞を小胞体ストレスに曝すことにより分化して 発生した筋繊維細胞、 及び (口) 分化誘導培地からなるキット。 (B) a kit comprising myofibroblasts or myofibroblast-like cells, myofiber cells generated by exposure to endoplasmic reticulum stress, and (mouth) a differentiation-inducing medium.
7 . [スクリーニング方法] 7. [Screening method]
本願発明のキットは、 筋繊維に作用する薬剤のスクリーユング及ぴ筋繊維を利 用した遺伝子発現に用いることができる。 The kit of the present invention can be used for screening of a drug acting on muscle fibers and for gene expression using muscle fibers.
本願発明のキット及びスクリーニング方法は、 1 ) 筋再生モデルとして、 運動 負荷や加齢による筋壌死、 筋破壊に対する予防、 治療法開発に利用することがで きる。 又さらに、 2 ) 筋組織が体内での主要な糖消費組織であることから、 形成 された筋繊維を糖尿病の病態研究や予防薬、 治療薬のスクリーニング、 試験に用 いることができる。 The kit and the screening method of the present invention can be used 1) as a muscle regeneration model for prevention and treatment development of muscle death and muscle destruction due to exercise load and aging. 2) Since muscle tissue is the main sugar-consuming tissue in the body, the formed muscle fiber can be used for pathological studies of diabetes, screening and testing of preventive and therapeutic drugs.
( 1 ) 運動負荷や加齢による筋壌死、 筋破壌の予防、 治療剤候補のスクリーニン グ。 (1) Prevention of muscle death and muscle rupture due to exercise load and aging, and screening for potential therapeutic agents.
( 1 - 1 ) 試験する化合物又は試薬を筋芽細胞又は筋芽細胞様細胞に投与し、 本 発明の方法で筋繊維を形成させ、 (ィ)筋繊維形成のスピードを速める化合物又は 試薬、 若しくは (口) '形成効率をさらに上げる化合物又は試薬、 又は (ハ) 本発 明の方法によって形成された筋繊維に対し試験する化合物又は試薬を筋芽細胞又 は筋芽細胞様細胞に投与し、筋繊維を長もち(長生き)させる化合物又は試薬を、 筋壊死又は筋破壌に対する予防又は治療のための薬剤候補としてスクリーニング をすることができる。 探索された予防又は治療薬候補薬剤は、 実際に運動負荷や 筋被壌に対して予防、 治療効果があるかどうかは実験動物ゃヒ トの治験によって 確かめることができる。 本発明のスクリーニング方法によれば、 筋繊維に直接影 響を及ぼす薬剤候補に絞って探索が可能である。 (1-1) a compound or reagent to be tested is administered to myoblasts or myoblast-like cells to form muscle fibers by the method of the present invention, and (a) a compound or reagent that increases the speed of muscle fiber formation, or (Mouth) 'A compound or reagent that further increases the formation efficiency, or (C) A compound or reagent to be tested on muscle fibers formed by the method of the present invention is administered to myoblasts or myoblast-like cells, Compounds or reagents that make muscle fibers longer (live longer) can be screened as drug candidates for prevention or treatment against muscle necrosis or muscle dystrophy. Whether the searched prophylactic or therapeutic drug candidate actually has a preventive or therapeutic effect on exercise load or muscle canopy can be confirmed by clinical trials on experimental animals and humans. According to the screening method of the present invention, it is possible to narrow down the search to drug candidates that directly affect muscle fibers.
( 1 - 2 ) 本願発明の方法で形成された筋繊維にたとえば乳酸を注入すること で運動負荷の一側面を再現する事ができる。 そこで、 本願発明の筋繊維に乳酸を 注入した後、 筋繊維に対し筋壊死又は筋破壌の予防又は治療剤候補のスクリー二 ング対象となる試薬又は化合物を投与し、筋繊維に対し筋壌死を防止する薬剤を、
筋壌死又は筋破壊の予防又は治療剤候補として選択することができる。 (1-2) One aspect of exercise load can be reproduced by injecting, for example, lactic acid into muscle fibers formed by the method of the present invention. Therefore, after injecting lactic acid into the muscle fiber of the present invention, a reagent or a compound which is a candidate for screening for a candidate for the prevention or treatment of muscle necrosis or muscle rupture is administered to the muscle fiber, and the muscle fiber is administered to the muscle fiber. Drugs to prevent death, It can be selected as a prophylactic or therapeutic candidate for muscle death or muscle destruction.
( 2 ) 筋組織は生体内で最も糖の取り込み量が多く、 糖の利用、 貯蔵の場として 重要で、 血中の糠濃度を左右している。 そこで、 形成された筋繊維は、 筋細胞に よる糖の取り込みと代謝をコントロールする仕組みを研究する材料として、 さら に糖取り込み、 代謝を人為的にコントロールできる薬剤のスクリーユングの試験 系として用いることができる。 (2) Muscle tissue takes up the largest amount of sugar in the body, is important as a place for utilizing and storing sugar, and affects the concentration of bran in the blood. Therefore, the formed muscle fiber should be used as a material for studying the mechanism of controlling sugar uptake and metabolism by muscle cells, and also as a test system for screening of drugs that can artificially control sugar uptake and metabolism. Can be.
具体的には、 本発明の方法で形成された筋繊維に対してスクリーユング対象と なる試薬又は化合物を投与し、 筋繊維における糖の取り込み又は糖の代謝を測定 し、 筋細胞への糖取り込み、 代謝を阻害又は活性化する薬剤候補を選抜すること ができる。 Specifically, a reagent or a compound to be screened is administered to the muscle fiber formed by the method of the present invention, and sugar uptake or sugar metabolism in the muscle fiber is measured, and sugar uptake into muscle cells is measured. In addition, drug candidates that inhibit or activate metabolism can be selected.
8 . [形質転換筋繊維] 8. [Transformed muscle fiber]
外来遺伝子を導入した筋芽細胞又は筋芽細胞様細胞から試験管内で分化誘導し 筋繊維を形成させることができる。 形質転換筋繊維は、 生体内に移植して筋組織 に同化させる事により、 安定な遺伝子発現、 遺伝子治療のベクターとして利用す る事ができる。 Differentiation can be induced in vitro from myoblasts or myoblast-like cells into which a foreign gene has been introduced to form myofibers. Transformed muscle fiber can be used as a vector for stable gene expression and gene therapy by transplanting it into a living body and assimilating it into muscle tissue.
より具体的には、 目的とする遺伝子をコードした cDNA又は該 cDNAで組み換え た組み換え発現ベクターを筋芽培養細胞に導入し、 本発明の方法で筋繊維を形成 させ、 これを生体内に移植して筋組織に同化させる事によって任意の遺伝子発現 を継続的に筋組織で行わせる事が、 形質転換筋芽細胞と同様に可能である (Vandenburgh, H. et al., 1996, Tissue-engineered s eletal muscle organoids for reversible gene therapy. Hum. Gen. Ther. 7, 2195 - 2200)。 従来のように 形質転換した筋芽細胞を用いて移植すると、 腫瘍を形成する危険性が高まるが、 本発明のように、 既に分化させた形質転換筋繊維を用いることにより、 このよう な危険性を避けることができる。 More specifically, a cDNA encoding a target gene or a recombinant expression vector recombined with the cDNA is introduced into myoblast culture cells, muscle fibers are formed by the method of the present invention, and this is transplanted into a living body. As with transformed myoblasts, continuous gene expression can be achieved in muscle tissue by assimilation into muscle tissue (Vandenburgh, H. et al., 1996, Tissue-engineered s). eletal muscle organoids for reversible gene therapy. Hum. Gen. Ther. 7, 2195-2200). Transplantation using conventionally transformed myoblasts increases the risk of forming a tumor. However, as in the present invention, the use of already differentiated transformed myofibers leads to such a risk. Can be avoided.
筋芽細胞又は筋芽細胞様細胞に導入する遺伝子の種類としては筋組織において 機能するタンパク質をコードするものでもよいし、 他の組織で機能するタンパク 質をコードする遺伝子でもよい。例えば、筋組織では血管系が発達しているので、 分泌性のタンパク質を発現させると、 血流によって全身性の効果が得ることがで きる。
以下の実施例で用いる試薬 '抗体について:ッニカマイシン、タプシガルジン、 スタウロスポリンとェトポシドは、 Calbiochemから購入した。組換え型の IGF- II は、 GroPepから入手した。 抗カスパーゼ- 12は (Nakagawa, et al. (2000) Nature 403, 98-103) による。 抗 IGF- IIは R&D Systemsから、 抗カテブシン Bは Upstate Biotechnology力、ら、 抗 Bcl~xL fま Transduction Laboratories力、ら人手した。 The type of gene to be introduced into myoblasts or myoblast-like cells may be a gene encoding a protein that functions in muscle tissue, or a gene encoding a protein that functions in other tissues. For example, since the vascular system is developed in muscle tissue, expressing a secretory protein can have a systemic effect by blood flow. Reagents used in the following examples. For antibodies: tunicamycin, thapsigargin, staurosporine and etoposide were purchased from Calbiochem. Recombinant IGF-II was obtained from GroPep. Anti-caspase-12 is from (Nakagawa, et al. (2000) Nature 403, 98-103). Anti-IGF-II was obtained from R & D Systems, Anti-Cathebucin B was obtained from Upstate Biotechnology, etc., Anti-Bcl ~ xLf and Transduction Laboratories, etc.
[実施例 1 ] 小胞体ストレス誘導剤による C2C12の前処理の影響 [Example 1] Effect of pretreatment of C2C12 with ER stress inducer
C2C12 細胞 (RIKEN Cel l Bank) はゼラチン ' コートのプレートに播いた。 10% (v/v)ゥシ胎児血清(シグマアルドリッチ)、 50単位/ mlのぺニシリン及ぴ 50μ§/ηι1 のストレプトマイシン (インビトロジェン) を添加した DMEM (ィンビトロゲン) を用い、 5%の C02存在下、 37°Cで培養を行った。 C2C12細胞がほぼコンフレントま で増殖した時点で、 培地をフレッシュな DMEMに交換した。 .そして、培地に小胞体. 特異的小胞体ス トレス誘導剤であるツユ力マイシン (Calbiochemより購入) 又は タプシガルジン(Calbiochemより購入)をそれぞれ最終濃度がツユ力マイシン( 2 μ g / m 1 ) 又はタプシガルジン ( 1 μ Μ) となるように加えた。 なおコント口 ールの培地には、いずれの小胞体特異的小胞体ストレス誘導剤も添加しなかった。 小胞体特異的小胞体ス トレス誘導剤添加培地で、 1時間培養後、 培地を、 分化誘 導培地に交換した。 分化誘導培地は 2%のゥマ血清 (インビトロゲン)及び l g/ml のインスリン (シグマアルドリツチ) が添加された DMEM (50単位/ mlのぺニシリ ン及び 5(^g/ml のス トレプトマイシン (インビトロジェン) を含む) からなる。 分化誘導培地は、 24時間の間隔で新しい培地と交換した。 C2C12 cells (RIKEN Cell Bank) were seeded on gelatin-coated plates. 10% (v / v) © Shi calf serum (Sigma-Aldrich), using DMEM supplemented with 50 units / ml penicillin及Pi 50μ§ / ηι1 streptomycin (Invitrogen) (Inbitorogen), 5% C0 2 present The culture was performed at 37 ° C below. When the C2C12 cells had grown to near confluence, the medium was replaced with fresh DMEM. Then, add the specific endoplasmic reticulum stress inducer, tsuyuikimycin (purchased from Calbiochem) or thapsigargin (purchased from Calbiochem), to the final concentration of tsuyuikimycin (2 μg / m1) or Added to make thapsigargin (1 μΜ). Note that no ER-specific ER stress inducer was added to the control medium. After culturing for 1 hour in a medium containing an endoplasmic reticulum-specific endoplasmic reticulum stress inducer, the medium was replaced with a differentiation induction medium. The differentiation-inducing medium was DMEM (50 units / ml of penicillin and 5 (^ g / ml of streptogen) supplemented with 2% sera (Invitrogen) and lg / ml insulin (Sigma Aldrich). (Invitrogen) The differentiation-inducing medium was replaced with a fresh medium at intervals of 24 hours.
なお、 以下の実施例 2— 3でも上記と同じ前処理をしている。 Note that the same pre-processing as described above is also performed in Examples 2-3 below.
( 1 ) ッニカマイシン又はタプシガルジン前処理後、 培地を分化誘導培地に代 えて 1 日後、 2日後、 3日後のアポトーシス率は次の通りである。
表 1 (1) After pretreatment with tunicamycin or thapsigargin, the apoptosis rates after 1 day, 2 days and 3 days after replacing the medium with the differentiation inducing medium are as follows. table 1
C 2 C 1 2細胞を小胞体特異的ストレス誘導剤で前処理することによるアポトーシスの
図 1に見られるように、 アポトーシスを起こした細胞は細胞体積が大幅に減少 し、 丸く小さい細胞になり、 培養プレートへの接着が悪くなる。 丸く接着性の低 い細胞は増殖培地中でも少数見られるがこれらは分裂期にある細胞であり、 アポ トーシス細胞ではない。 上記に示されるように、 ツユ力マイシン又はタプシガル ジン前処理後、 分化誘導培地に代えて第 1日目と第 2日目にそれぞれ、 培養プレ ート中の C2C12細胞の約 40パーセントと 20パーセントがアポトーシスを起こし た。 このアポトーシス誘導の割合は、 分化培地中のコントロール細胞に見られる アポトーシス (1日目、 15%、 2日目、 10%未満) より 2- 3倍髙い。 Pretreatment of C2C12 cells with endoplasmic reticulum-specific stress inducing apoptosis As seen in Figure 1, apoptotic cells have a significantly reduced cell volume, become round and small cells, and have poor adhesion to culture plates. A small number of round, poorly adherent cells are found in the growth medium, but these are cells in the mitotic phase, not apoptotic cells. As shown above, after pretreatment with tsuyumycin or thapsigargin, about 40% and 20% of the C2C12 cells in the culture plate were replaced with the differentiation induction medium on days 1 and 2, respectively. Became apoptotic. This rate of apoptosis induction is 2-3 times higher than that of control cells in the differentiation medium (day 1, 15%, day 2, less than 10%).
( 2 ) また、分化誘導培地で、約 2週間培養したところ、筋繊維の長さ及び幅、 並びに収縮している筋繊維数 (3 . ' 5 c mディッシュあたり) は以下の通りであ る。
表 2 小胞体特異的ストレス誘導剤による前処理の有無による比較 (2) When cultured in a differentiation-inducing medium for about 2 weeks, the length and width of muscle fibers and the number of contracting muscle fibers (per 3. 5 cm dish) are as follows. Table 2 Comparison with and without pretreatment with ER-specific stress inducer
更にその写真を図 3に示す。 Fig. 3 shows the photograph.
前処理された筋管のサイズは約 2週間増加した。 その間細胞融合が起こつてお り、 最終的に長さ 1- 3mmと幅 0. 2 - 0. 5mm程度までになる。 これは生体内の筋繊維 と同程度の大きさであり、一方、 コントロール細胞に比べて 10倍以上の大きさで ある。これら前処理を行った筋管細胞は分化誘導培地に代えて第 7日目に(約 1 - 2 サイクル/秒) で自発的に収縮し始めた。 このことから、 これらの細胞が筋原繊維 を含み、 機能的な筋繊維 (myofiber) であったことが分かる。 3. 5cm のディッシ ュで 50以上の筋繊維が再現性よく形成された、そして、それらのほとんどは分化 培地中で 2 5日間、 収縮を続けた。 一方、 コント口ール細胞はディッシュ 1枚当 たり 2、 3の筋繊維を形成し、分化誘導培地に代えて第 9日目頃収縮を始めた。 し かし、 それは分化誘導培地に代えて第 1 5日目には収縮を停止した。
( 3 ) インスリン様成長因子 II (IGF-II) の発現 The size of the pretreated myotubes increased for about 2 weeks. In the meantime, cell fusion is taking place, eventually reaching a length of about 1-3 mm and a width of about 0.2-0.5 mm. It is about the same size as in vivo muscle fibers, but more than 10 times larger than control cells. These pretreated myotubes began to contract spontaneously on day 7 (approximately 1-2 cycles / sec) in place of the differentiation induction medium. This indicates that these cells contained myofibrils and were functional myofibers. 3. In a 5 cm dish, over 50 muscle fibers were reproducibly formed, and most of them continued to contract in differentiation medium for 25 days. On the other hand, control cells formed a few muscle fibers per dish and started to contract around day 9 in place of the differentiation-inducing medium. However, it stopped contraction on day 15 instead of the differentiation induction medium. (3) Expression of insulin-like growth factor II (IGF-II)
C2C12筋芽細胞を分化誘導培地へ移し替えた後、 1時間以内にィンスリン様成長 因子 II (IGF-II) の誘導が検出されている。 インスリン様成長因子 II (IGF-II) は、 IGF- 1 レセプターに結合するオートクライン生存因子として作用し、 増殖か ら分化への移行期間に、 Akt に依存する抗アポトーシスの経路を間接的に活性化 させている (Stewart及び Rotwein J. Biol. Chem. Vol. 271, pp. 11330 - 11338 ; Lawlor及ぴ、 Rotwein J. Cell Biol. Vol. 151, pp. 1131 - 1141)。 Induction of insulin-like growth factor II (IGF-II) was detected within one hour after transfer of C2C12 myoblasts to the differentiation induction medium. Insulin-like growth factor II (IGF-II) acts as an autocrine survival factor that binds to the IGF-1 receptor and indirectly activates Akt-dependent anti-apoptotic pathways during the transition from growth to differentiation (Stewart and Rotwein J. Biol. Chem. Vol. 271, pp. 11330-11338; Lawlor and Rotwein J. Cell Biol. Vol. 151, pp. 1131-1141).
細胞から培地中に分泌される IGF- IIの量的変動について調べるため、細胞を分 化誘導培地へ移してから毎日、 コント口ールの分化培養から調製される馴化培地 (conditioned medium, 以下 CCMと略す。) 及ぴッニ力マイシン前処理をした後、 分化誘導培地に移した培養物からの上清である馴化培地(以下 TUNCMと略す。)又 はタプシガルジン前処理をした後、 分化誘導培地に移した培養物からの上清であ る馴化培地 (以下 TGCMと略す。) を採取し、一定量ずつ分取して SDS- PAGE:サンプ ルバッファーによって処理した。処理済みの培地を SDS-PAGE及びウェスタンプロ ット法により分析し、培地に含まれる IGF- IIを検出した。常法により作製したゥ エスタンブロットは抗 IGF- II抗体(R & D Systems)、 次に西洋わさぴペルォキシ ダーゼ標識抗 IgG抗体 (ジャクソン ImmunoResearch Laboratories) でィンキュ ペートし、 IGF-II のシグナルを E C Lプラス試薬 (アマシャム-フアルマシア) を使用して検出した。 To examine the quantitative variation of IGF-II secreted from the cells into the medium, cells were transferred to a differentiation induction medium and conditioned medium (hereinafter referred to as CCM) prepared daily from control culture. After pretreatment with O. nikkimycin, the cells were conditioned medium (hereinafter abbreviated as TUNCM), which is the supernatant from the culture transferred to the differentiation induction medium, or thapsigargin pretreatment, followed by differentiation induction. A conditioned medium (hereinafter, abbreviated as TGCM), which was a supernatant from the culture transferred to the medium, was collected, aliquoted in a predetermined amount, and treated with SDS-PAGE: sample buffer. The treated medium was analyzed by SDS-PAGE and Western plot method, and IGF-II contained in the medium was detected. The Eastern blot prepared by a conventional method was incubated with an anti-IGF-II antibody (R & D Systems) and then with a horseradish peroxidase-labeled anti-IgG antibody (Jackson ImmunoResearch Laboratories), and the IGF-II signal was measured. Detection was performed using ECL Plus reagent (Amersham-Pharmacia).
コントロールの分化培養物から調製される馴化培地 (CCM) 中の IGF- IIが分化 誘導培地に代えて第 2 0目でウェスタンブロット法で検出可能なレベルに達した にもかかわらず、 ッニカマイシン前処理をした培養物からの馴化培地 (TUNCM)又 はタプシガルジン前処理をした培養物からの馴化培地(TGCM)の IGF - IIは前処理 後、 分化誘導培地に代えて第 4日目以降に検出された (図 4 )。 この結果は、 ッニ 力マイシン、 又はタプシガルジン前処理の影響で分化初期におけるオートクリン 生存因子が低下し、 アポトーシスが促進された事を示唆している。 これは以下の 観察によって支持されている。図 5に示されるように、組換え型の IGF - IIを培地 に添加して生存因子の濃度を高めることで、 小胞体ストレス誘導前処理の有無に 関わらず、 ほぼ完全に、 分化中の C2C12細胞のアポトーシスを抑制する事ができ
た。 IGF-II in conditioned medium (CCM) prepared from control differentiation cultures reached levels detectable by Western blotting at 20th place in place of differentiation induction medium, but was pretreated with tunicamycin IGF-II in conditioned medium (TUNCM) from conditioned cultures or conditioned medium (TGCM) from cultures pre-treated with thapsigargin was detected from day 4 onward after pretreatment, replacing the differentiation-inducing medium. (Figure 4). This result suggests that the autocrine survival factor in the early stage of differentiation was reduced and the apoptosis was promoted by the effect of the pretreatment with nikkimycin or thapsigargin. This is supported by the following observations. As shown in Figure 5, by adding recombinant IGF-II to the culture medium and increasing the concentration of survival factors, C2C12 undergoing differentiation almost completely, regardless of the presence or absence of ER stress-inducing pretreatment. Can suppress cell apoptosis It was.
IGF-II は生存因子として作用するのみならずオートクリン分化因子としても 作用するので (Floriniその他、 J. Biol. Chem. Vol. 266, pp. 15917- 15923)、 後 で示すように IGF- II の低下は筋肉に特異的なタンパク質の誘導の遅れにもつな がる。 (実施例 2参照。) Since IGF-II acts not only as a survival factor, but also as an autocrine differentiation factor (Florini et al., J. Biol. Chem. Vol. 266, pp. 15917-15923), as shown later, IGF-II Decreased expression leads to a delay in the induction of muscle-specific proteins. (See Example 2.)
( 4 ) 小胞体ストレス前処理による細胞外 IGF- IIのレベル変動の機構:プロ力 テプシン Bの量 (4) Mechanism of fluctuation of extracellular IGF-II level by endoplasmic reticulum stress pretreatment: amount of pro-tepsin B
細胞外の IGF- IIのレベルは、 IGF - II/Man- 6P (マンノース- 6-リン酸) レセプタ 一によつて、 細胞内に取り込まれ分解されることで調節される。 IGF - II/Man - 6P の本来のリガンドは Man- 6-P修飾を受けた、例えばプロカテブシン B (Hanewinkel その他、 J. Biol. Chem. Vol. 262, pp. 12351 - 12355) である。 Man- 6—P修飾タン パク質の量的変動が IGF - IIの分解効率に影響する事が予想された。 ' The level of extracellular IGF-II is regulated by being taken up and degraded by the IGF-II / Man-6P (mannose-6-phosphate) receptor. The original ligand of IGF-II / Man-6P is Man-6-P modified, for example, procatebcin B (Hanewinkel et al., J. Biol. Chem. Vol. 262, pp. 12351-12355). It was expected that the quantitative variation of Man-6-P modified protein would affect the efficiency of degradation of IGF-II. '
細胞を分化誘導培地へ移してから毎日、 コントロールの培養物から調製される . 馴化培地 (CCM) 及ぴツエ力マイシン前処理をした後、分化誘導培地に移された培 養物からの上清である馴化培地(TUNCM) 又はタプシガルジン前処理をした後、分 化誘導培地に移された培養物からの上清である馴化培地 (TGCM) を採取し、 プロ カテブシン B の量的変動について検討した。 各々一定量の馴化培地を SDS- PAGE とウェスタンプロット法により解析した。 ウェスタンプロットは抗カテブシン B 抗体(Upstate Biotechnology)、次に西洋わさぴペルォキシダーゼ標識抗 IgG抗体 (ジャクソン ImmunoResearch Laboratories) でィンキュベー卜した。 プロカテ プシンのシグナルは、 E C Lプラス試薬 (アマシャム-フアルマシア) を使用して 検出した。 Prepared daily from control cultures after transferring cells to differentiation induction medium. Supernatant from cultures transferred to differentiation induction medium after conditioned medium (CCM) and tweakmycin pretreatment After conditioned medium (TUNCM) or thapsigargin pretreatment, the conditioned medium (TGCM), which is the supernatant from the culture transferred to the differentiation induction medium, was collected and examined for quantitative changes in procatebcin B. . A fixed amount of each conditioned medium was analyzed by SDS-PAGE and Western blotting. Western plots were incubated with an anti-Catebsin B antibody (Upstate Biotechnology) followed by a horseradish peroxidase-labeled anti-IgG antibody (Jackson ImmunoResearch Laboratories). Procathepsin signal was detected using ECL Plus reagent (Amersham-Pharmacia).
結果、 コントロールの馴化培地(CCM) 中では第 1日目から第 3日目まで一定の レベルで Man - 6P修飾プロカテブシン Bが検出されたにもかかわらず、前処理され た培養では Man- 6P修飾型が分化誘導培地に代えて第 1日目において非常に減少 していることがわかった (図 6 )。 TGCMの場合はプロカテブシン Bがほとんど検 出されず、 TUNCMでは Man- 6- P修飾されていない非ダリコシル化型プロ力テプシ ン Bだけが検出された。 As a result, Man-6P-modified procatebcin B was detected at a constant level in control conditioned medium (CCM) from day 1 to day 3, but Man-6P-modified in the pretreated culture. It was found that the type was greatly reduced on day 1 in place of the differentiation induction medium (FIG. 6). In the case of TGCM, almost no procatebcin B was detected, and in TUNCM, only non-dalicosylated propothepsin B which was not modified with Man-6-P was detected.
この結果はプロカテブシン Bをはじめとする細胞外の Man- 6P修飾タンパク質が
小胞体ストレス前処理の影響で減少している事を示唆し、 Man-6 - P タンパク質の 代わりに IGF- IIが IGF- Π/Man- 6Pレセプターにより結合しゃすくなり、分解され やすくなっている事が考えられる。 This result indicates that extracellular Man-6P-modified proteins such as procatebcin B This suggests that it is reduced by the influence of ER stress pretreatment, and instead of Man-6-P protein, IGF-II binds to the IGF-Π / Man-6P receptor and becomes easier to degrade. Things are possible.
( 5 ) 馴化培地 (conditioned medium) の利用 (5) Use of conditioned medium
アポトーシス及ぴ筋繊維形成促進効果は小胞体特異的小胞体ストレス誘導剤を 細胞に対して直接用いなくても得る事が可能である。 C2C12 筋芽細胞を小胞体特 異的小胞体ス トレス誘導剤で 1時間、 前処理した後、 分化誘導培地に移して培養 を続けた。 分化誘導培地は 2 4時間ごとに回収して新しい分化誘導培地と交換し た。 回収した培地は 2 0分間、 2 0 0 O rpm で遠心し、 細胞魄ゃ死細胞、 及ぴ沈 殿物を除き、 上清を得てこれを馴化培地とした (上に記載の TUNCM及び TGCM)。 これとは別に用意した C2C12細胞をサブコンフルェントまで増殖させ、 TUNCMま たは TGCMで 2 4時間前処理した。その後、:フレツシュな分化誘導培地に移して培 養を続けた。 このように小胞体特異的小胞体ストレス誘導剤で前処理した細胞を 用いて調製した馴化培地による前処理を加える事により、'増殖培地から直接、 分 化培地に移す通常の分化誘導法に比べて、 アポトーシス及び筋繊維形成の促進が 見られた。 その程度は小胞体特異的小胞体ストレス誘導剤で前処理した細胞の場 合と同様のレベルに達した (図 7 )。 TUNCMや TGCMの代わりに CCMで前処理した 場合にはこのような促進効果は見られなかった。 The effects of promoting apoptosis and muscle fiber formation can be obtained without using an endoplasmic reticulum-specific ER stress inducer directly on cells. After pretreatment of C2C12 myoblasts with an endoplasmic reticulum-specific endoplasmic reticulum stress inducer for 1 hour, the cells were transferred to a differentiation-inducing medium and cultured. The differentiation induction medium was collected every 24 hours and replaced with a new differentiation induction medium. The recovered medium was centrifuged at 200 rpm for 20 minutes to remove cell dead cells and precipitates, and the supernatant was obtained and used as a conditioned medium (TUNCM and TGCM described above). ). Separately prepared C2C12 cells were grown to subconfluent and pretreated with TUNCM or TGCM for 24 hours. Thereafter, the cells were transferred to a fresh differentiation induction medium and cultivation was continued. By adding pretreatment with a conditioned medium prepared using cells pretreated with an endoplasmic reticulum-specific ER stress inducer in this way, compared to the normal differentiation induction method in which cells are directly transferred from the growth medium to the differentiation medium Thus, apoptosis and promotion of muscle fiber formation were observed. The level reached a level similar to that of cells pretreated with an ER-specific ER stress inducer (Fig. 7). Such a promoting effect was not observed when pretreatment was performed with CCM instead of TUNCM or TGCM.
[実施例 2 ] 小胞体特異的小胞体ストレス誘導剤によるカスパーゼ- 1 2活性化 の確認及ぴミオジヱニンの発現確認 [Example 2] Confirmation of caspase-12 activation by ER-specific ER stress inducer and expression of myodidinin
( 1 ) ウェスタンブロット分析 (1) Western blot analysis
実施例 1と同様に小胞体特異的小胞体ストレス誘導剤で前処理後、 分化誘導培 地に代えて第 1 日目又は第 2日目に、 生きている又はアポトーシスを起こした C2C12細胞をそれぞれ回収し、 SDS- PAGEサンプル ·バッファに溶解して細胞抽出 液を作った。 抽出液中のタンパク質は、 SDS- PAGE (14%のァクリルアミ ド) で分離 し、 ィモビロン- P膜 (ミリポア、 ベッドフォード、 MA) に転写した。 After pretreatment with an endoplasmic reticulum-specific endoplasmic reticulum stress inducer in the same manner as in Example 1, living or apoptotic C2C12 cells were replaced on day 1 or day 2 in place of the differentiation induction medium, respectively. The cells were collected and dissolved in SDS-PAGE sample buffer to make a cell extract. Proteins in the extract were separated by SDS-PAGE (14% acrylamide) and transferred to Immobilon-P membrane (Millipore, Bedford, MA).
ブロッキングの後、上記の膜を抗カスパーゼ- 12抗体(Nakagawa, et al. (2000) After blocking, the above membrane was coated with an anti-caspase-12 antibody (Nakagawa, et al. (2000)
Nature 403, 98 - 103) で、 次に西洋わさびペルォキシダーゼ標識抗 IgG抗体 (ジ ャクソン ImmunoResearch Laboratories) でインやュべートした。 カスノヽ1 ~ - - 1
2のシグナルは、 E C Lプラス試薬 (アマシャム-フアルマシア) を使用して検出 した。 (Nature 403, 98-103), followed by horseradish peroxidase-labeled anti-IgG antibody (Jackson ImmunoResearch Laboratories). Kasuno ヽ1 ~--1 The signal of 2 was detected using ECL Plus reagent (Amersham-Pharmacia).
図 2に示されるように、 小胞体ストレス特異的アポトーシスを誘導するプロテ ァーゼであるカスパース 1 2がアポトーシス細胞中で活性化しており、 小胞体ス トレスが生じた事を示している。 As shown in FIG. 2, caspase-12, a protease that induces endoplasmic reticulum stress-specific apoptosis, is activated in apoptotic cells, indicating that endoplasmic reticulum stress has occurred.
( 2 ) ミオジヱニンの発現 (2) Expression of myodidinin
ミオジェニンは、 筋肉特異的蛋白質である。 Myogenin is a muscle-specific protein.
実施例 1と同様に小胞体特異的小胞体ストレス誘導剤で前処理後、 分化誘導培 地に代えて第 1 日目から 1 日ごとに第 1 0日目まで培養した C2C12細胞を調製し、 上記 (1 ) にあるようにしてウェスタンプロットを作製した (図 1 0 )。 After pretreatment with an endoplasmic reticulum-specific endoplasmic reticulum stress inducer in the same manner as in Example 1, C2C12 cells cultured from day 1 to day 10 every day instead of the differentiation induction medium were prepared, A Western plot was prepared as described in (1) above (FIG. 10).
ブロッキングの後、 上記の膜を抗ミオジェニン抗体 (Santa Cruz) で、 次に西 洋:わさぴペルォキシダーゼ標識抗 IgG 抗体 (ジャク ソン ImmunoResearch Laboratories) でインキュベートした。 ミオジェニンのシグナルは、 E C Lプラ ス試薬 (アマシャム-フアルマシア) を使用して検出した。' After blocking, the membranes were incubated with an anti-myogenin antibody (Santa Cruz) and then with a Western: Wasabi peroxidase-labeled anti-IgG antibody (Jackson ImmunoResearch Laboratories). Myogenin signal was detected using ECL Plus reagent (Amersham-Pharmacia). '
コントロール細胞では、 第 2日目からミオジヱニンの発現が確認されたが、 小 胞体特異的小胞体ストレス誘導剤で前処理された細胞では第 4日目ではじめてミ オジェニンの発現が確認された。 小胞体ストレス前処理によって分化誘導因子、 IGF-IIの量が減少しており、 分化過程の進行が遅くなる事と矛盾しない。 In control cells, expression of myogendin was confirmed from day 2, whereas in cells pretreated with an endoplasmic reticulum-specific ER stress inducer, expression of myogenin was confirmed only on day 4. Pretreatment of endoplasmic reticulum stress reduces the amount of differentiation-inducing factor, IGF-II, which is consistent with the slowing of the differentiation process.
[実施例 3 ] 分化した C2C12細胞の抵抗性 [Example 3] Resistance of differentiated C2C12 cells
C2C12 細胞をツユ力マイシンまたはタプシガルジンで前処理後、 分化を開始さ せ、 第 3日目にその抵抗性を調べ、 増殖中の C2C12細胞と比べた (図 8 )。 After pretreatment of C2C12 cells with tsuyumycin or thapsigargin, differentiation was initiated, and on day 3 their resistance was examined and compared to proliferating C2C12 cells (Figure 8).
( 1 ) 増殖中の C2C12細胞、 ッニカマイシンで前処理した分化中の C2C12細胞及 ぴ、 タプシガルジンで前処理した分化中の C2C12細胞、 前処理していない分化中 の C2C12細胞に 2 g /m 1ツユ力マイシン、 1 Mタプシガルジン、 1 0 0 g Zm lエトポシド、 0 . 2 μ Μスタウロスポリンのいずれかのアポトーシス誘 導剤を作用させた。 分化中の細胞はいずれも分化開始から 3日目のものである。 スタウロスポリンの場合は薬剤添加の 3時間後、 他のアポトーシス誘導剤の場合 は 2 4時間後に細胞を顕微鏡で観察した。 (1) 2 g / m1 tube for proliferating C2C12 cells, differentiated C2C12 cells pretreated with tunicamycin, differentiated C2C12 cells pretreated with thapsigargin, and differentiated C2C12 cells not pretreated One of the apoptosis-inducing agents, forcemycin, 1 M thapsigargin, 100 g Zml etoposide, and 0.2 μΜ staurosporine was allowed to act. Differentiating cells are all three days after the start of differentiation. Cells were observed microscopically 3 hours after drug addition for staurosporine and 24 hours after other apoptosis inducers.
これらのアポトーシス誘導剤は増殖中の C2C12細胞に対しては効果が高く、 約
半数の細胞にアポトーシスを誘導する。 一方、 前処理された分化誘導培地中の細 胞は小胞体ス トレス誘導剤 (ツイ二力マイシン、 タプシガルジン) 並びにエトポ シド及ぴスタウロスポリンに対してほぼ完全に耐性を示した。 この結果は、 小胞 体ストレスを経験し、 アポトーシスを起こさずに生き伸びた細胞はアポトーシス 刺激に対してより耐性になったことを示している。 These apoptosis inducers are highly effective on growing C2C12 cells, Induces apoptosis in half of the cells. On the other hand, cells in the pre-treated differentiation induction medium were almost completely resistant to ER stress inducers (twinikimycin, thapsigargin), etoposide and staurosporine. This result indicates that cells that have undergone endoplasmic reticulum stress and have survived apoptosis have become more resistant to apoptotic stimuli.
分化誘導培地中でのコントロール細胞 (前処理無し) は増殖中の細胞よりわず かに高い抵抗性を示した。 これらの結果は、 細胞が受けたス トレス及ぴアポトー シスの程度と細胞の薬剤抵抗性との間に正の相関がある (前処理した分化してい る細胞〉 >前処理なしの分化している細胞〉増殖中の細胞の順に強い)ことを示し ている。 Control cells (without pretreatment) in differentiation-inducing medium showed slightly higher resistance than proliferating cells. These results indicate that there is a positive correlation between the degree of stress and apoptosis received by cells and the drug resistance of the cells (pretreated differentiated cells)> differentiated cells without pretreatment. Cells in the order of growing cells).
( 2 ) Bcl-xLの発現レベル (2) Bcl-xL expression level
増殖中の C2C12細胞、' ツユ力マイシン前処理した分化中の C2C12細胞、 タプシ ガルジン前処理した,分化中の C2C12細胞及び前処理していない分化中の C2C12細 胞中の Bcl-xLの量をウェスタンプロット法によって調べた (図 9 )。 細胞抽出液 The amounts of Bcl-xL in proliferating C2C12 cells, differentiated C2C12 cells pre-treated with Tuyumycin, differentiated C2C12 cells pre-treated with thapsigargin, and untreated differentiated C2C12 cells were determined. This was examined by Western blotting (Figure 9). Cell extract
(実施例 2、 (1) ) を電気泳動し、 ィモビロン- P膜(ミ リポア、べッ ドフォード、 MA) に転写して作製したウェスタンブロットをブロッキングの後、抗 Bel- xL抗体(Example 2, (1)) was electrophoresed and transferred to Immobilon-P membrane (Millipore, Bedford, MA).
(transduction Laboratories) で、 次に西洋わさびペルォキシダーゼ標識抗 IgG 体 (Jackson ImmunoRe search Laboratories) で ンキュベートした。 シクナノレ は、 E C Lプラス試薬 (アマシャム -ブアルマシア) を使用して検出した。 (transduction Laboratories) and then with horseradish peroxidase-labeled anti-IgG (Jackson ImmunoResearch Laboratories). Cygnale was detected using ECL Plus reagent (Amersham-Bualmacia).
(結果) (Result)
Bcl-xL は強力な抗アポトーシス活性を持つアポトーシス抑制タンパク質であ る。 生細胞 (増殖中、.分化培地中) における Bel- xLの量は 3者の間で大きな違い は見られない。 し力 し、アポトーシスを起こした細胞中の Bel - xLのレベルは生細 胞中に比べて顕著に低かった。 従ってアポトーシス細胞の示す低い抵抗性は、 少 なくとも部分的には Bcl-xL のレベルが低い事で説明される。 Bcl-xL is an anti-apoptotic protein with potent anti-apoptotic activity. The amount of Bel-xL in living cells (in growth, in differentiation medium) does not differ significantly between the three. However, Bel-xL levels in apoptotic cells were significantly lower than in viable cells. Thus, the low resistance exhibited by apoptotic cells is at least partially explained by low levels of Bcl-xL.
C2C12 細胞の培養物から複数の単一クローンを分離し、 増殖培地で細胞数を増 やしてから分化培地に移してアポトーシスについて検討した。 その結果、 たとえ 単一クローンから出発しても細胞集団はアポトーシス細胞と生き残って分化する 細胞に分かれた。 これは、 当初脆弱性と Bel- xL発現において均一であった C2C12
培養物が死滅する細胞と生存する細胞に分けられたことを示している。 そのよう な選別を行う正確な機構は現在不明だが、 ここにおけるアポトーシスはス トレス に弱い細胞の除去に貢献し、 大きな筋繊維を形成でき、 筋収縮のス トレスに耐え る細胞を選別する働きがあるのかもしれない。 Multiple single clones were isolated from cultures of C2C12 cells, expanded in growth medium and transferred to differentiation medium for apoptosis. As a result, the cell population was divided into apoptotic cells and cells that survived and differentiated, even from a single clone. This was initially uniform in vulnerability and Bel-xL expression C2C12 This shows that the culture was divided into dead cells and surviving cells. The exact mechanism of such sorting is currently unknown, but apoptosis here contributes to the removal of cells that are weakly stressed, plays a role in selecting cells that can form large muscle fibers and withstand the stress of muscle contraction. There may be.
以上の選別は小胞体ストレスに特異的な現象である可能性が高く、 例えば他の アポトーシス誘導刺激 (例えばエトポシド) を筋芽細胞に与えたところ、 分化過 程におけるアポトーシスは昂進するものの効率的な筋繊維形成は見られなかつた。 産業上の利用可能性 The above selection is likely to be a phenomenon specific to endoplasmic reticulum stress. For example, when another apoptosis-inducing stimulus (eg, etoposide) is given to myoblasts, apoptosis during the differentiation process is enhanced but efficient. Muscle fiber formation was not seen. Industrial applicability
本願発明の方法により、 ( 1 )従来法より筋繊維の形成効率を飛躍的に高めるこ とができ、 同数の細胞を出発材料とした場合、 約 1 0倍以上形成率を上げること ができる。 (2 ) 更に、 形成される筋繊維の大きさも、 従来法に比べ、 平均して、 長さ及び幅が 1 0倍の筋繊維を形成できる。 (3 ) 又、筋繊維の寿命も、 従来法の ものは、 約 2週間であつたが、 本発明により調製した筋繊維は、 3週間以上も生 き延びるものである。 According to the method of the present invention, (1) the efficiency of muscle fiber formation can be dramatically increased as compared with the conventional method, and the formation rate can be increased by about 10 times or more when the same number of cells is used as a starting material. (2) Further, the size of the formed muscle fiber can be formed, on average, as long as 10 times the length and width as compared with the conventional method. (3) In addition, the life of the muscle fiber is about 2 weeks in the conventional method, but the muscle fiber prepared according to the present invention can survive for 3 weeks or more.
本願発明の筋繊維は、 筋の再生技術の開発、 筋肉に影響を与える試薬のスクリ 一二ング、 筋繊維を利用した遺伝子治療に有効である。 The muscle fiber of the present invention is effective for the development of muscle regeneration technology, screening of reagents affecting muscle, and gene therapy using muscle fiber.
本明細書で引用した全ての刊行物、 特許おょぴ特許出願をそのまま参考として 本明細書にとり入れるものとする。
All publications, patents, and patent applications cited in this specification are incorporated herein by reference in their entirety.