[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005112171A1 - Fuel storage/supply system for fuel cell - Google Patents

Fuel storage/supply system for fuel cell Download PDF

Info

Publication number
WO2005112171A1
WO2005112171A1 PCT/JP2005/008599 JP2005008599W WO2005112171A1 WO 2005112171 A1 WO2005112171 A1 WO 2005112171A1 JP 2005008599 W JP2005008599 W JP 2005008599W WO 2005112171 A1 WO2005112171 A1 WO 2005112171A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel storage
compound
supply device
host
Prior art date
Application number
PCT/JP2005/008599
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Yagi
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004145201A external-priority patent/JP2005327624A/en
Priority claimed from JP2004145204A external-priority patent/JP2005327626A/en
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Publication of WO2005112171A1 publication Critical patent/WO2005112171A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel storage / supply device that stores fuel as a molecular compound and releases the stored fuel as fuel for a fuel cell.
  • the present invention relates to a fuel cell power generation system.
  • a solid polymer electrolyte fuel cell has a solid electrolyte membrane such as a perfluorosulfonic acid membrane.
  • a fuel electrode and an oxidizer electrode are joined to both surfaces of this film.
  • Hydrogen and methanol are supplied to the anode, and oxygen is supplied to the power source, and power is generated by an electrochemical reaction.
  • the electrochemical reaction that occurs at the anode is expressed by the following equation [1].
  • the anode and the force sword are composed of a mixture of carbon fine particles carrying a catalytic substance and a solid polymer electrolyte.
  • methanol supplied to the anode passes through pores in the electrode and reaches a catalyst, where the methanol is decomposed by the catalyst and the reaction formula [1]
  • the reaction produces electrons and hydrogen ions.
  • the hydrogen ions reach the power source through the electrolyte in the anode and the solid electrolyte membrane between the two electrodes, and react with oxygen supplied to the power source and electrons flowing from an external circuit, as shown in the above reaction equation [2]. Water is formed.
  • the electrons emitted from methanol are led to the external circuit through the catalyst carrier in the anode, and flow into the force sword from the external circuit.
  • JP 2001-93541 A describes that a liquid fuel is vaporized using a vaporizer or a heater and supplied to an anode.
  • An object of the present invention is to provide an apparatus in which fuel of a fuel cell is stored as a molecular compound, and the fuel is released from the molecular compound.
  • the fuel storage / supply device of the first aspect has a fuel tank for incorporating a fuel molecular compound, and heating means for heating the fuel molecular compound in the fuel tank.
  • the first aspect of the fuel storage 'supply device stores the fuel as a molecular compound, so that the fuel can be easily stored and transported.
  • the fuel molecular compound can be easily obtained only by contacting or recrystallizing the fuel with a compound that forms a molecular compound with the fuel (hereinafter sometimes referred to as “component compound”). Heating the fuel molecule releases the fuel.
  • the fuel cell power generation system includes a fuel storage tank containing an organic fuel molecular compound, a concentration adjusting means for adjusting the concentration of the fuel introduced from the fuel storage tank, and a concentration adjustment from the concentration adjustment tank. And a fuel cell into which used fuel is introduced.
  • the fuel concentration is adjusted and then supplied to the fuel cell, so that the output of the fuel cell is stabilized.
  • the fuel concentration is adjusted and then supplied to the fuel cell, so that the output of the fuel cell is stabilized.
  • it does not damage the electrodes of the fuel cell or corrode metal materials.
  • FIG. 1 is a system diagram of a fuel storage / supply device according to a first embodiment.
  • FIG. 2 is a system diagram of a fuel storage / supply device according to a second embodiment.
  • FIG. 3 is a system diagram of a fuel storage / supply device according to a third embodiment.
  • FIG. 4 is a system diagram of a fuel storage / supply device according to a fourth embodiment.
  • FIG. 5 is a system diagram of a fuel storage and supply device according to a fifth embodiment.
  • FIG. 6 is a system diagram of a fuel storage / supply device according to a sixth embodiment.
  • FIG. 7 is a system diagram of a fuel cell system according to an embodiment.
  • FIG. 8 is a system diagram of a fuel cell system according to another embodiment.
  • the fuel storage and supply device outside the first space may include a stirring means for stirring the fuel molecular compound in the storage tank!
  • a stirring means for stirring the fuel molecular compound in the storage tank!
  • the fuel storage and supply device may further include a cooling means for cooling the fuel molecular compound in the storage tank. After the fuel is released from the fuel molecular compound by heating by the heating means, the fuel is cooled by the cooling means, so that the release of the fuel by the fuel molecular compound can be stopped immediately.
  • a fuel inclusion compound in which the fuel is included by a contact reaction or recrystallization between the host conjugate and the fuel is preferable.
  • the fuel storage and supply device of the present invention has the following effects.
  • the compound such as the host compound after the release of the fuel can be re-used by reacting with the fuel to obtain the fuel molecular compound again.
  • the device of the present invention can be used for various types of fuel cells such as a solid polymer type, a direct methanol type, and other types of organic fuels, particularly a mobile phone and a mopile type. It is extremely useful as a fuel storage and supply device for portable small fuel cells for computers and fuel cells for vehicles.
  • FIGS. 1 to 6 are system diagrams each showing an embodiment of the fuel storage / supply device of the first aspect.
  • the fuel storage tank 1 contains a fuel molecular compound 2.
  • the fuel storage tank 1 has a fuel inlet and a fuel outlet, and is connected to a fuel introduction line la and a discharge line lb, respectively.
  • the fuel storage tank 1 is provided with a heater 3 for heating the fuel molecular compound 2.
  • the fuel By heating the fuel molecule compound 2 in the fuel storage tank 1 with the heater 3, the fuel is released from the fuel molecule compound 2 and taken out from the discharge line lb. After the release of the fuel, the fuel is introduced from the introduction line la and brought into contact with the hostile conjugate remaining in the fuel storage tank 1 to form a fuel molecular compound again.
  • the formation of the fuel molecular compound and the release of the fuel from the fuel molecular compound can be repeatedly performed.
  • the introduction line la and the drain line lb may be combined into one, and fuel introduction and discharge may be performed in one line.
  • the fuel storage tank 1 is composed of a container capable of storing a fuel molecular compound. Since the container is heated when the fuel is released from the fuel molecular compound, the container is preferably made of a material that can withstand heating up to 100 ° C, preferably up to 200 ° C. In order to improve the thermal efficiency, the container may be provided with a heat insulating material or the like. Containers that store fuel under normal pressure conditions are lighter than pressure-resistant containers.
  • the heater 3 may be an electric heater such as an electric heater or a Peltier element, in addition to a hot water heater or an oil heater through which a heating medium such as hot water or oil flows.
  • the heat generated from the fuel cell may be absorbed by a heat medium such as water and circulated through the heater 3. Thereby, energy can be used efficiently.
  • the fuel storage and supply device shown in Fig. 2 is provided with control valves V and V on a fuel introduction line la and a discharge line lb, respectively, and controls the opening and closing or opening of the valves V and V to introduce or discharge fuel.
  • the flow rate can be controlled.
  • Other configurations of the apparatus in FIG. 2 are the same as those in FIG.
  • the control valves V 1 and V 2 may be pressure-resistant valves.
  • the fuel storage / supply device shown in FIG. 3 has a cooler 4 for cooling the fuel molecular compound 2 in the fuel storage tank 1. After heating the fuel molecular compound 2, it is cooled by the cooler 4 to release the fuel. Exit can be stopped immediately.
  • Other configurations in FIG. 3 are the same as those in FIG.
  • the cooler 4 may be a coiled pipe for heat exchange through which a cooling medium such as cooling water flows, but is not limited thereto.
  • the fuel storage / supply device shown in FIG. 4 has a stirrer 5 for stirring the fuel molecule compound 2 in the fuel storage tank 1 and a fuel circulation line 6 provided with a pump P.
  • a stirrer 5 for stirring the fuel molecule compound 2 in the fuel storage tank 1
  • a fuel circulation line 6 provided with a pump P.
  • Other configurations of the apparatus in FIG. 4 are the same as those in FIG.
  • the stirrer may be a stirrer provided with stirring blades!
  • Fuel is introduced into the fuel storage tank 1 from the introduction line, and the fuel discharged from the discharge line lb is circulated to the introduction port side by the circulation line 6 by the pump P, thereby recovering the fuel.
  • the efficiency and the formation efficiency of fuel molecular compounds are improved.
  • a plurality of fuel storage tanks each containing a fuel molecular compound 2 and including a heater 3, and further a cooler 4 and a Z or a stirrer 5 (three fuel storage tanks in FIG. 5) 1A, IB, 1C) They may be connected and connected in series.
  • V, V, V, V a fuel molecular compound 2 and including a heater 3, and further a cooler 4 and a Z or a stirrer 5 (three fuel storage tanks in FIG. 5) 1A, IB, 1C) They may be connected and connected in series.
  • a bed is an on-off valve.
  • a plurality of fuel storage tanks 1A, IB, 1C may be arranged in parallel as shown in FIG.
  • multiple fuel storage tanks are arranged in parallel and connected by multi-way valves V and V such as four-way valves.
  • the fuel storage 'supply device shown in Figs. 1 to 6 is an example of an embodiment of the fuel storage' supply device of the present invention, and does not limit the present invention at all.
  • a stirrer and Z or a circulation line may be further provided in the fuel storage and supply device of FIG.
  • the fuel storage / supply device further includes a shelf for holding the fuel molecular compound or the compound in the fuel storage tank in order to more efficiently release and store the fuel. May be established. A vibration mechanism or the like for dispersing and supplying the fuel into the fuel storage tank may be provided. Next, the fuel molecular compound used in the present invention will be described.
  • the fuel molecular compound is composed of two or more kinds of compounds that can exist stably alone, and these compounds are other than covalent bonds represented by hydrogen bond, van der Waals force, and the like. They are linked by relatively weak interactions.
  • the molecular compound may be a hydrate, a solvate, an addition compound, an inclusion compound, or the like.
  • the fuel molecular compound is preferably a compound that can be formed by a contact reaction between a fuel and a component compound such as a host compound that forms the fuel molecular compound.
  • Fuel molecular compounds are relatively lightweight, can store fuel at near normal temperature and pressure, and release fuel by simple heating
  • the fuel molecular compound is preferably a fuel inclusion compound in which the fuel is included by host molecules.
  • the host conjugate may be a monomolecular host compound, a multi-molecular host compound, a polymer host compound, an inorganic compound or an inorganic compound or an organic / inorganic composite conjugate. Any of a system host compound and an organic / inorganic composite host compound may be used.
  • the monomolecular host compound includes cyclodextrins, crown ethers, cryptands, cyclophanes, azacyclophanes, calixarenes, cyclotriveratrylenes, sphereland, cyclic oligopeptides, and the like.
  • cyclodextrins crown ethers, cryptands, cyclophanes, azacyclophanes, calixarenes, cyclotriveratrylenes, sphereland, cyclic oligopeptides, and the like.
  • the multimolecular hosty conjugates include ureas, thioureas, deoxycholates, perhydrotriphenylenes, tri-o-thymotides, bianthrils, spirobifluorenes, cyclophosphazenes, monoalcohols , Diols, acetylene alcohols, hydroxy benzophenones, phenols, bisphenols, trisphenols, tetrakisphenols, polyphenols, naphthols, bisnaphthols, diphenylmethanols, carboxylic amides, Thioamides, bixanthenes, carboxylic acids, imidazoles, hydroquinones and the like may be used.
  • the high molecular weight hosty conjugate is a polyethylene glycol arm having a core of celluloses, starches, chitins, chitosans, polyvinyl alcohols, and 1,1,2,2-tetrakisphenol.
  • Polymers such as polyethylene glycol arm-type polymers having a , a , a , a , and a tetrakisphenylenyl xylene as a core.
  • Inorganic hostoy dating products include titanium oxide, graphite, alumina, transition metal dicargogenite, lanthanum fluoride, clay minerals (such as montmorillonite), silver salts, silicates, phosphates, zeolites, and silica. And porous glass.
  • the organic'inorganic composite host compound may be a calixarene tungsten oxide cluster or the like.
  • the molecular compound is an organic phosphorus compound, an organic silicon compound, an organic aluminum compound, an organic titanium compound, an organic boron compound, an organic zinc compound, an organic indium compound, an organic gallium compound, an organic tellurium compound, an organic tin compound. It may be a dagger, an organic zirconium compound, an organic magnesium compound, or the like.
  • the molecular compound may be a metal salt of an organic carboxylic acid—an organometallic complex.
  • the hostile conjugate a multi-molecular hostile conjugate whose inclusion ability is hardly influenced by the size of the molecule of the guest conjugate is suitable.
  • multimolecular hostile conjugate examples include urea, 1,1,6,6-tetraphenylhexa-2,4diyne-1,6 diol, 1,1-bis (2, 4 dimethylphenyl) — 2-propyne 1ol, 1,1,4,4-tetraphenyl-2-butyne 1,4-diol, 1,1,6,6-tetrakis (2,4 dimethinolepheninole) 2,4 1,6-diol, 9,10 diphenyl 9,10 dihydroanthracene 9,10 diol, 9,10 bis (4-methylphenyl) -1,9,10 dihydroanthracene 1,10 diol, 1, 1,2,2-tetraphenylethane 1,2 diol, 4-methoxyphenol, 2,4 dihydroxybenzophenone, 4,4'dihydroxybenzophenone, 2,2'dihydroxybenzophenone, 2, 2 ', 4,4'-tetrahydroxybenzophenone
  • the host compound among the above-mentioned compounds, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 1,1
  • a phenolic host compound such as 2,2,2-tetrakis (4-hydroxyphenyl) ethylene is advantageous in terms of economy and inclusion ability.
  • One of these hostile conjugates may be used alone, or two or more may be used in combination.
  • the host compound may be in the form of solid, powder, granule, or lump, and may be crystalline, amorphous (amorphous), or misaligned.
  • the host compound is a powdery solid, its particle size is preferably about lmm or less.
  • the hostile conjugate may be supported on a porous substance.
  • the porous material include silica, zeolites, activated carbons, as well as intercalation compounds such as clay minerals and montmorillonite, but are not limited thereto.
  • the host compound is dissolved in the solvent, the solution is impregnated in the porous material, and the solvent is dried and dried under reduced pressure, whereby the host compound is supported on the porous material.
  • Amount of organic compound supported on porous material Is preferably about 10 to 80% by weight based on the porous material.
  • 1,1 bis (4-hydroxyphenyl) cyclohexane incorporates various guest molecules to form a crystalline inclusion conjugate. It is also known that an inclusion compound is formed by a direct contact reaction with a guest compound (which may be in any state of solid, liquid and gas).
  • Examples of the fuel include, but are not limited to, alcohols, ethers, hydrocarbons, and acetal.
  • the fuel those which are generally liquid at normal temperature and normal pressure are preferable.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, and ethylene glycol, dimethyl ether, and methyl ethyl Ethers such as ether and getyl ether
  • hydrocarbons such as propane and butane
  • acetals such as dimethoxymethane and trimethoxymethane.
  • FIG. 7 and 8 are system diagrams each showing an embodiment of the fuel cell power generation system of the present invention.
  • the fuel cell power generation system of FIG. 7 includes a fuel storage tank 1, a water tank 12, a concentration adjustment tank 13 into which fuel and water are introduced from the fuel storage tank 1 and the water tank 12, and a concentration adjustment tank 13 from the concentration adjustment tank 13. And a fuel cell 14 to which supplied fuel is supplied.
  • the fuel storage tank 1 stores a solid clathrate formed by clathrating the fuel with the host.
  • This clathrate conjugate has the property of releasing fuel when heated.
  • a heater 3 is provided to heat the clathrate conjugate.
  • the heater 3 is an electric heating element such as an electric heater or a Peltier element.
  • the fuel from which the physical properties of the inclusion are also released is sent to the concentration adjusting tank 13 via the flow control valve 16 and the pipe 17.
  • This fuel storage tank 1 may be of a replaceable cartridge type.
  • the water in the water tank 12 is sent to the concentration adjusting tank 13 via the flow control valve 18 and the pipe 19 by a pump, gravity or the like.
  • concentration adjusting tank 13 a turbulence member such as a mesh and a mixing means such as a stirrer are provided.
  • the concentration adjusting tank 13 is provided with a concentration sensor 20 such as a methanol sensor for measuring the concentration of a mixture of water and fuel.
  • the detection signal of the density sensor 20 is input to the controller 21.
  • the controller 21 controls the energization of the heating element 3 and controls the opening of the flow control valves 16 and 18.
  • the concentration adjusting tank 13 may be directly connected to the fuel cell 14 via a pipe 22.
  • a flow control valve is provided in the pipe 22.
  • the power of heating the clathrate conjugate by the heating element 3 may be used to heat the clathrate conjugate using the exhaust heat of the fuel cell 14 as shown in FIG. #2.
  • a heat transfer tube 32 is installed in the fuel storage tank 1 together with the heating element 3, and hot waste water (for example, condensed water) generated in the fuel cell 14 is connected to the heat transfer tube via pipes 23 and 24. It is configured to allow water to flow through tube 32.
  • the pipe 23 is provided with a flow control valve 25. The opening of the flow control valve 25 is also controlled by the controller 21.
  • the hot waste water discharged by the heat transfer tube 32 returns to the fuel cell 14 via the pipe 24.
  • the heat transfer tube 32 and the heating element 3 are provided side by side, but only the heat transfer tube 32 may be provided. However, in order to heat the clathrate when the fuel cell 14 is started or when the amount of heat radiated from the heat transfer tube 32 is insufficient, it is preferable to additionally provide the heating element 3.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a fuel storage/supply system which is excellent in storage/transport/discharge efficiency of a fuel. A fuel molecular compound (2) in a fuel storage tank (1) is heated by a heating unit (3) so that a fuel is discharged from the fuel molecular compound (2), and the thus-discharged fuel is taken out from a discharge line (1b). After being taken out, the fuel is introduced into the fuel storage tank (1) through a introduction line (1a) so that the fuel is brought into contact with the host compound remaining in the fuel storage tank (1), thereby forming a fuel molecular compound again. Consequently, there are repeated formation of the fuel molecular compound and discharge of the fuel from the fuel molecular compound.

Description

明 細 書  Specification
燃料電池のための燃料貯蔵 ·供給装置  Fuel storage and supply equipment for fuel cells
発明の分野  Field of the invention
[0001] 本発明は、燃料を分子化合物として貯蔵し、貯蔵した燃料を燃料電池の燃料として 放出する燃料貯蔵'供給装置に関する。本発明は燃料電池発電システムに関する。 発明の背景  The present invention relates to a fuel storage / supply device that stores fuel as a molecular compound and releases the stored fuel as fuel for a fuel cell. The present invention relates to a fuel cell power generation system. Background of the Invention
[0002] 固体高分子電解質型燃料電池は、パーフルォロスルホン酸膜等の固体電解質膜 を有する。この膜の両面に燃料極及び酸化剤極が接合されている。アノードに水素 やメタノール、力ソードに酸素が供給され、電気化学反応により発電が行われる。メタ ノールが供給された場合、アノードで生じる電気化学反応は、次の [1]式で表される  [0002] A solid polymer electrolyte fuel cell has a solid electrolyte membrane such as a perfluorosulfonic acid membrane. A fuel electrode and an oxidizer electrode are joined to both surfaces of this film. Hydrogen and methanol are supplied to the anode, and oxygen is supplied to the power source, and power is generated by an electrochemical reaction. When methanol is supplied, the electrochemical reaction that occurs at the anode is expressed by the following equation [1].
CH OH + H 0→6H+ + CO + 6e" ' · · [1] CH OH + H 0 → 6H + + CO + 6e "'· · [1]
3 2 2  3 2 2
力ソードの反応は次の [2]式で表される。  The reaction of the force sword is expressed by the following equation [2].
3/20 + 6H+ + 6e"→3H O - - - [2] 3/20 + 6H + + 6e "→ 3H O---[2]
2 2  twenty two
この反応を起こすために、アノード及び力ソードは、触媒物質が担持された炭素微 粒子と固体高分子電解質との混合体より構成されている。  In order to cause this reaction, the anode and the force sword are composed of a mixture of carbon fine particles carrying a catalytic substance and a solid polymer electrolyte.
[0003] 固体高分子電解質型燃料電池にぉ 、て、アノードに供給されたメタノールは、電極 中の細孔を通過して触媒に達し、触媒によりメタノールが分解されて、上記反応式 [1 ]の反応で電子と水素イオンが生成する。水素イオンはアノード中の電解質及び両電 極間の固体電解質膜を通って力ソードに達し、力ソードに供給された酸素及び外部 回路より流れ込む電子と反応し、上記反応式 [2]のように水が生じる。メタノールより 放出された電子はアノード中の触媒担体を通って外部回路へ導き出され、外部回路 より力ソードに流れ込む。  [0003] In a solid polymer electrolyte fuel cell, methanol supplied to the anode passes through pores in the electrode and reaches a catalyst, where the methanol is decomposed by the catalyst and the reaction formula [1] The reaction produces electrons and hydrogen ions. The hydrogen ions reach the power source through the electrolyte in the anode and the solid electrolyte membrane between the two electrodes, and react with oxygen supplied to the power source and electrons flowing from an external circuit, as shown in the above reaction equation [2]. Water is formed. The electrons emitted from methanol are led to the external circuit through the catalyst carrier in the anode, and flow into the force sword from the external circuit.
[0004] アノードで発生した水素イオンは、電解質膜中を水分子とともに力ソードに向かって 移動する。この時、メタノールもアノード力も力ソードへと移動する。この現象はメタノ ールクロスオーバーとよばれ、メタノールを燃料とした場合に起きる出力電圧低下の 原因となる。メタノールクロスオーバーは、燃料中のメタノール濃度が高くなるほど顕 著になるので、ダイレクトメタノール型燃料電池にぉ ヽて高濃度のメタノール燃料を使 うことは困難であった。 [0004] Hydrogen ions generated at the anode move toward the force sword along with water molecules in the electrolyte membrane. At this time, both the methanol and the anode force move to the force sword. This phenomenon is called methanol crossover and causes the output voltage drop when using methanol as fuel. Methanol crossover is more pronounced as the methanol concentration in the fuel increases. Therefore, it was difficult to use a high-concentration methanol fuel for a direct methanol fuel cell.
[0005] メタノールクロスオーバーを解決するため、アノードと力ソードとの間の電解質膜や その構造を改良することが特開平 11— 26005号公報、特開 2002— 83612号公報 に記載されて ヽる。液体燃料をー且気化器や加熱器を用いて気化してアノードに供 給することが特開 2001— 93541号公報に記載されている。  [0005] Japanese Patent Application Laid-Open Nos. 11-26005 and 2002-83612 describe that an electrolyte membrane between an anode and a force sword and its structure are improved to solve the methanol crossover. . JP 2001-93541 A describes that a liquid fuel is vaporized using a vaporizer or a heater and supplied to an anode.
発明の概要  Summary of the Invention
[0006] 本発明は、燃料電池の燃料が分子化合物として貯蔵され、そしてこの分子化合物 から燃料が放出される装置を提供することを目的とする。  [0006] An object of the present invention is to provide an apparatus in which fuel of a fuel cell is stored as a molecular compound, and the fuel is released from the molecular compound.
[0007] 第 1アスペクトの燃料貯蔵'供給装置は、燃料分子化合物を内蔵するための燃料貯 槽と、該燃料貯槽内の燃料分子化合物を加熱する加熱手段とを有する。  [0007] The fuel storage / supply device of the first aspect has a fuel tank for incorporating a fuel molecular compound, and heating means for heating the fuel molecular compound in the fuel tank.
[0008] 第 1アスペクトの燃料貯蔵'供給装置は、燃料を分子化合物として貯蔵するため、 燃料が容易に貯蔵され、そして運搬され得る。燃料分子化合物は、燃料と分子化合 物を形成する化合物 (以下「成分化合物」と称す場合がある。 )に燃料を接触または 再結晶させるのみで容易に得ることができる。燃料分子化合物を加熱すると、燃料が 放出される。  [0008] The first aspect of the fuel storage 'supply device stores the fuel as a molecular compound, so that the fuel can be easily stored and transported. The fuel molecular compound can be easily obtained only by contacting or recrystallizing the fuel with a compound that forms a molecular compound with the fuel (hereinafter sometimes referred to as “component compound”). Heating the fuel molecule releases the fuel.
[0009] 第 2アスペクトの燃料電池発電システムは、有機系燃料分子化合物を内蔵した燃料 貯槽と、該燃料貯槽から導入される燃料を濃度調整する濃度調整手段と、該濃度調 整槽から濃度調整済みの燃料が導入される燃料電池とを有する。  [0009] The fuel cell power generation system according to the second aspect includes a fuel storage tank containing an organic fuel molecular compound, a concentration adjusting means for adjusting the concentration of the fuel introduced from the fuel storage tank, and a concentration adjustment from the concentration adjustment tank. And a fuel cell into which used fuel is introduced.
[0010] 第 2アスペクトの燃料電池発電システムでは、燃料の濃度を調整してから燃料電池 に供給するので、燃料電池の出力が安定する。また、燃料カ^タノールであっても、 燃料電池の電極に障害を与えたり、金属材料を腐食させたりすることがない。  [0010] In the fuel cell power generation system according to the second aspect, the fuel concentration is adjusted and then supplied to the fuel cell, so that the output of the fuel cell is stabilized. In addition, even with fuel ethanol, it does not damage the electrodes of the fuel cell or corrode metal materials.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]第 1の実施の形態に係る燃料貯蔵'供給装置の系統図である。 FIG. 1 is a system diagram of a fuel storage / supply device according to a first embodiment.
[図 2]第 2の実施の形態に係る燃料貯蔵 ·供給装置の系統図である。  FIG. 2 is a system diagram of a fuel storage / supply device according to a second embodiment.
[図 3]第 3の実施の形態に係る燃料貯蔵 ·供給装置の系統図である。  FIG. 3 is a system diagram of a fuel storage / supply device according to a third embodiment.
[図 4]第 4の実施の形態に係る燃料貯蔵'供給装置の系統図である。  FIG. 4 is a system diagram of a fuel storage / supply device according to a fourth embodiment.
[図 5]第 5の実施の形態に係る燃料貯蔵 ·供給装置の系統図である。 [図 6]第 6の実施の形態に係る燃料貯蔵 ·供給装置の系統図である。 FIG. 5 is a system diagram of a fuel storage and supply device according to a fifth embodiment. FIG. 6 is a system diagram of a fuel storage / supply device according to a sixth embodiment.
[図 7]実施の形態に係る燃料電池システムの系統図である。  FIG. 7 is a system diagram of a fuel cell system according to an embodiment.
[図 8]別の実施の形態に係る燃料電池システムの系統図である。  FIG. 8 is a system diagram of a fuel cell system according to another embodiment.
発明の好ましレ、形態の詳細な説明  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0012] 第 1ァスぺ外の燃料貯蔵'供給装置は、貯槽内の燃料分子化合物を撹拌する撹 拌手段を備えてもよ!ヽ。撹拌手段で燃料分子化合物を撹拌しながら加熱手段で加熱 することにより、燃料をより効率的に放出させることができる。燃料を放出した成分ィ匕 合物を撹拌しながら燃料を接触させることにより、燃料分子化合物が効率よく生成す る。 [0012] The fuel storage and supply device outside the first space may include a stirring means for stirring the fuel molecular compound in the storage tank! By heating the fuel molecular compound with the heating means while stirring the fuel molecular compound with the stirring means, the fuel can be released more efficiently. By bringing the fuel into contact with the agitated conjugate after releasing the fuel, a fuel molecular compound is efficiently produced.
[0013] 第 1アスペクトの燃料貯蔵'供給装置は、更に、貯槽内の燃料分子化合物を冷却す る冷却手段を有しても良い。加熱手段により加熱して燃料分子化合物から燃料を放 出させた後、この冷却手段で冷却して燃料分子化合物力 の燃料の放出を直ちに停 止させることができる。  [0013] The fuel storage and supply device according to the first aspect may further include a cooling means for cooling the fuel molecular compound in the storage tank. After the fuel is released from the fuel molecular compound by heating by the heating means, the fuel is cooled by the cooling means, so that the release of the fuel by the fuel molecular compound can be stopped immediately.
[0014] 燃料分子化合物としては、ホストイ匕合物と燃料との接触反応または再結晶により燃 料を包接した燃料包接化合物が好適である。  As the fuel molecular compound, a fuel inclusion compound in which the fuel is included by a contact reaction or recrystallization between the host conjugate and the fuel is preferable.
[0015] 本発明の燃料貯蔵'供給装置は、次の効果を有する。 [0015] The fuel storage and supply device of the present invention has the following effects.
(0 燃料を比較的簡単に軽量に、常温、常圧に近い条件で貯蔵することができる; (0 The fuel can be stored relatively easily and lightly at normal temperature and pressure.
GO 燃料分子化合物として貯蔵した燃料を、比較的低い温度の加熱により放出さ せて、供給することができる; GO Fuels stored as molecular compounds can be released and supplied by heating at relatively low temperatures;
(iii) 燃料は危険物や劇物に指定されているものが多いが、燃料分子化合物にする ことでこれらを回避した、安全性の高い燃料貯蔵'供給装置を提供することができる; (iii) Many fuels are specified as dangerous goods or deleterious substances, but by using fuel molecular compounds, these can be avoided and a highly safe fuel storage and supply system can be provided;
(iv) 燃料を放出した後のホスト化合物等の化合物 (前記「成分化合物」 )は、燃料と 反応させることにより再度燃料分子化合物を得ることができ、再利用可能である。 本発明の装置は、安全性や軽量化が重視される燃料電池、具体的には固体高分 子型、ダイレクトメタノール型などの有機燃料使用型など各種の燃料電池、とりわけ携 帯電話ゃモパイル型コンピューター用の携帯用小型燃料電池や自動車搭載用の燃 料電池の燃料貯蔵 ·供給装置として極めて有用である。 (iv) The compound such as the host compound after the release of the fuel (the above-mentioned “component compound”) can be re-used by reacting with the fuel to obtain the fuel molecular compound again. The device of the present invention can be used for various types of fuel cells such as a solid polymer type, a direct methanol type, and other types of organic fuels, particularly a mobile phone and a mopile type. It is extremely useful as a fuel storage and supply device for portable small fuel cells for computers and fuel cells for vehicles.
[0016] 以下に図面を参照して第 1アスペクトの燃料貯蔵'供給装置の実施の形態を詳細 に説明する。図 1〜6はそれぞれ第 1アスペクトの燃料貯蔵'供給装置の実施の形態 を示す系統図である。 [0016] Hereinafter, an embodiment of a fuel storage 'supply device of the first aspect will be described in detail with reference to the drawings. Will be described. 1 to 6 are system diagrams each showing an embodiment of the fuel storage / supply device of the first aspect.
[0017] 図 1の燃料貯蔵'供給装置において、燃料貯槽 1は、燃料分子化合物 2を内蔵する 。燃料貯槽 1は、燃料の導入口と排出口を有し、各々、燃料の導入ライン la及び排 出ライン lbが接続されている。燃料貯槽 1は、燃料分子化合物 2を加熱するための加 熱器 3が設けられている。  In the fuel storage / supply device of FIG. 1, the fuel storage tank 1 contains a fuel molecular compound 2. The fuel storage tank 1 has a fuel inlet and a fuel outlet, and is connected to a fuel introduction line la and a discharge line lb, respectively. The fuel storage tank 1 is provided with a heater 3 for heating the fuel molecular compound 2.
[0018] 燃料貯槽 1内の燃料分子化合物 2を加熱器 3で加熱することにより、燃料分子化合 物 2から燃料が放出され、排出ライン lbカゝら取り出される。燃料の放出後は、導入ライ ン laから燃料を導入して燃料貯槽 1内に残留するホストイ匕合物と接触させて再び燃 料分子化合物を形成する。燃料分子化合物の形成と、燃料分子化合物からの燃料 の放出を繰り返し行うことができる。導入ライン laと排水ライン lbとを 1つにし、 1つの ラインで燃料の導入と排出を行なっても良い。  [0018] By heating the fuel molecule compound 2 in the fuel storage tank 1 with the heater 3, the fuel is released from the fuel molecule compound 2 and taken out from the discharge line lb. After the release of the fuel, the fuel is introduced from the introduction line la and brought into contact with the hostile conjugate remaining in the fuel storage tank 1 to form a fuel molecular compound again. The formation of the fuel molecular compound and the release of the fuel from the fuel molecular compound can be repeatedly performed. The introduction line la and the drain line lb may be combined into one, and fuel introduction and discharge may be performed in one line.
[0019] 燃料貯槽 1は、燃料分子化合物を収納することができる容器よりなる。容器は、燃料 分子化合物から燃料を放出させるときに加熱されるため、 100°C、好ましくは 200°C までの加熱に耐えられる材料よりなることが好ましい。熱効率を良くするために、容器 に断熱材等が設けられてもよ ヽ。燃料を常圧条件で貯蔵する容器は耐圧性容器に 比べ軽量である。  [0019] The fuel storage tank 1 is composed of a container capable of storing a fuel molecular compound. Since the container is heated when the fuel is released from the fuel molecular compound, the container is preferably made of a material that can withstand heating up to 100 ° C, preferably up to 200 ° C. In order to improve the thermal efficiency, the container may be provided with a heat insulating material or the like. Containers that store fuel under normal pressure conditions are lighter than pressure-resistant containers.
[0020] 加熱器 3は、温水、オイル等の加熱媒体が流通される温水ヒータ、オイルヒータ等の 他、電熱ヒータ、ペルチェ素子などの電熱素子であってもよい。  [0020] The heater 3 may be an electric heater such as an electric heater or a Peltier element, in addition to a hot water heater or an oil heater through which a heating medium such as hot water or oil flows.
[0021] 燃料電池より発生する熱を水などの熱媒体に吸収させて、加熱器 3に循環させても よい。これにより、エネルギーを効率良く利用することができる。  The heat generated from the fuel cell may be absorbed by a heat medium such as water and circulated through the heater 3. Thereby, energy can be used efficiently.
[0022] 図 2に示す燃料貯蔵'供給装置は、燃料の導入ライン la及び排出ライン lbに各々 制御弁 V , Vを設け、弁 V , Vの開閉ないし開度制御により、燃料の導入又は排出  [0022] The fuel storage and supply device shown in Fig. 2 is provided with control valves V and V on a fuel introduction line la and a discharge line lb, respectively, and controls the opening and closing or opening of the valves V and V to introduce or discharge fuel.
a b a b  a b a b
ないしはその流量を制御可能としている。図 2の装置のその他の構成は図 1と同じで ある。  Alternatively, the flow rate can be controlled. Other configurations of the apparatus in FIG. 2 are the same as those in FIG.
[0023] 制御弁 V , Vは耐圧'性の弁であってもよい。  The control valves V 1 and V 2 may be pressure-resistant valves.
a b  a b
[0024] 図 3に示す燃料貯蔵'供給装置は、燃料貯槽 1内の燃料分子化合物 2を冷却する 冷却器 4を有する。燃料分子化合物 2を加熱後、冷却器 4により冷却して、燃料の放 出を直ちに停止することができる。図 3のその他の構成は図 2と同じである。 The fuel storage / supply device shown in FIG. 3 has a cooler 4 for cooling the fuel molecular compound 2 in the fuel storage tank 1. After heating the fuel molecular compound 2, it is cooled by the cooler 4 to release the fuel. Exit can be stopped immediately. Other configurations in FIG. 3 are the same as those in FIG.
[0025] この冷却器 4は、冷却水等の冷却媒体が流通する熱交換用のコイル状配管であつ てもよいが、これに限定されるものではない。 [0025] The cooler 4 may be a coiled pipe for heat exchange through which a cooling medium such as cooling water flows, but is not limited thereto.
[0026] 図 4に示す燃料貯蔵'供給装置は、燃料貯槽 1内の燃料分子化合物 2を撹拌する 撹拌器 5と、ポンプ Pを備える燃料の循環ライン 6を有する。図 4の装置のその他の構 成は図 3と同一である。 The fuel storage / supply device shown in FIG. 4 has a stirrer 5 for stirring the fuel molecule compound 2 in the fuel storage tank 1 and a fuel circulation line 6 provided with a pump P. Other configurations of the apparatus in FIG. 4 are the same as those in FIG.
[0027] 燃料分子化合物 2、及び燃料を放出した後のホスト化合物が、粉体である場合、燃 料分子化合物を撹拌器 5により撹拌すると燃料の放出効率が向上し、燃料とホスト化 合物との接触効率も向上する。  [0027] When the fuel molecular compound 2 and the host compound after releasing the fuel are powder, stirring the fuel molecular compound by the stirrer 5 improves the fuel release efficiency, and increases the fuel and host compound. The contact efficiency with the contact is also improved.
[0028] この攪拌器としては、攪拌羽根を備えた攪拌器であってもよ!、。  [0028] The stirrer may be a stirrer provided with stirring blades!
[0029] 導入ラインから燃料貯槽 1内に燃料を導入し、排出ライン lbカゝら排出される燃料を ポンプ Pにより循環ライン 6で導入口側へ循環してもよぐこれにより、燃料の回収効 率、燃料分子化合物の形成効率が向上する。  [0029] Fuel is introduced into the fuel storage tank 1 from the introduction line, and the fuel discharged from the discharge line lb is circulated to the introduction port side by the circulation line 6 by the pump P, thereby recovering the fuel. The efficiency and the formation efficiency of fuel molecular compounds are improved.
[0030] 燃料分子化合物 2を内蔵し、加熱器 3、更には冷却器 4及び Z又は撹拌器 5を備え る燃料貯槽は、図 5に示す如ぐ複数個(図 5では 3個の燃料貯槽 1A, IB, 1C)直列 に接続して配置されてもよい。図 5において、 V , V , V , V  [0030] As shown in FIG. 5, a plurality of fuel storage tanks each containing a fuel molecular compound 2 and including a heater 3, and further a cooler 4 and a Z or a stirrer 5 (three fuel storage tanks in FIG. 5) 1A, IB, 1C) They may be connected and connected in series. In FIG. 5, V, V, V, V
a b e dは開閉弁である。図 6に 示す如ぐ複数個の燃料貯槽 1A, IB, 1Cが並列に配置されても良い。図 6に示す 如ぐ複数の燃料貯槽を並列に配置してこれらを四方弁などの多方弁 V , Vで連結  a bed is an on-off valve. A plurality of fuel storage tanks 1A, IB, 1C may be arranged in parallel as shown in FIG. As shown in Fig. 6, multiple fuel storage tanks are arranged in parallel and connected by multi-way valves V and V such as four-way valves.
A B  A B
した装置は、燃料を放出させる燃料貯槽と、燃料を貯蔵させる燃料貯槽とを切り換え ることにより、装置に連続的に燃料を供給すること、そして装置から連続的に燃料を 取り出すことが可能である。  By switching between the fuel storage tank that discharges fuel and the fuel storage tank that stores fuel, it is possible to continuously supply fuel to the equipment and to continuously remove fuel from the equipment. .
[0031] 図 1〜6に示す燃料貯蔵'供給装置は本発明の燃料貯蔵'供給装置の実施の形態 の一例を示すものであって、何ら本発明を制限するものではない。例えば、図 2の燃 料貯蔵 ·供給装置に更に撹拌器及び Z又は循環ラインを設けても良い。  [0031] The fuel storage 'supply device shown in Figs. 1 to 6 is an example of an embodiment of the fuel storage' supply device of the present invention, and does not limit the present invention at all. For example, a stirrer and Z or a circulation line may be further provided in the fuel storage and supply device of FIG.
[0032] 燃料貯蔵'供給装置には、更に、燃料の放出及び燃料の貯蔵をより効率的に行う ために、燃料分子化合物又は成分ィ匕合物を燃料貯槽内に保持するための棚部が設 けられてもよい。燃料を燃料貯槽内に分散供給するための振動機構等が設けられて も良い。 [0033] 次に、本発明で用いる燃料分子化合物について説明する。 [0032] The fuel storage / supply device further includes a shelf for holding the fuel molecular compound or the compound in the fuel storage tank in order to more efficiently release and store the fuel. May be established. A vibration mechanism or the like for dispersing and supplying the fuel into the fuel storage tank may be provided. Next, the fuel molecular compound used in the present invention will be described.
[0034] この燃料分子化合物は、単独で安定に存在することのできる化合物の 2種類以上 の化合物よりなり、これらの化合物は、水素結合やファンデルワールス力などに代表 される、共有結合以外の比較的弱い相互作用によって結合している。分子化合物は 、水化物、溶媒化物、付加化合物、包接ィ匕合物などであってもよい。燃料分子化合 物は、燃料分子化合物を形成するホスト化合物等の成分化合物と燃料との接触反応 により形成することができるものが好適である。燃料分子化合物は、比較的軽量で常 温常圧に近 、状態で燃料を貯蔵することができ、かつ簡単な加熱で燃料を放出する [0034] The fuel molecular compound is composed of two or more kinds of compounds that can exist stably alone, and these compounds are other than covalent bonds represented by hydrogen bond, van der Waals force, and the like. They are linked by relatively weak interactions. The molecular compound may be a hydrate, a solvate, an addition compound, an inclusion compound, or the like. The fuel molecular compound is preferably a compound that can be formed by a contact reaction between a fuel and a component compound such as a host compound that forms the fuel molecular compound. Fuel molecular compounds are relatively lightweight, can store fuel at near normal temperature and pressure, and release fuel by simple heating
[0035] 燃料分子化合物は、好ましくは、燃料をホスト分子で包接した燃料包接ィ匕合物であ る。 [0035] The fuel molecular compound is preferably a fuel inclusion compound in which the fuel is included by host molecules.
[0036] ホストイ匕合物は、有機化合物または無機化合物または有機 ·無機複合ィ匕合物など であってもよぐ単分子系ホスト化合物、多分子系ホスト化合物、高分子系ホスト化合 物、無機系ホスト化合物、有機 ·無機複合ホストイ匕合物等のいずれでもよい。  [0036] The host conjugate may be a monomolecular host compound, a multi-molecular host compound, a polymer host compound, an inorganic compound or an inorganic compound or an organic / inorganic composite conjugate. Any of a system host compound and an organic / inorganic composite host compound may be used.
[0037] 単分子系ホスト化合物は、シクロデキストリン類、クラウンエーテル類、クリプタンド類 、シクロフアン類、ァザシクロフアン類、カリックスアレン類、シクロトリベラトリレン類、ス フエランド類、環状オリゴペプチド類などであってもよ 、。  [0037] The monomolecular host compound includes cyclodextrins, crown ethers, cryptands, cyclophanes, azacyclophanes, calixarenes, cyclotriveratrylenes, sphereland, cyclic oligopeptides, and the like. Well.
[0038] 多分子系ホストイ匕合物は、尿素類、チォ尿素類、デォキシコール酸類、ペルヒドロト リフエ-レン類、トリ一 o—チモチド類、ビアンスリル類、スピロビフルオレン類、シクロフ ォスファゼン類、モノアルコール類、ジオール類、アセチレンアルコール類、ヒドロキシ ベンゾフエノン類、フエノール類、ビスフエノール類、トリスフエノール類、テトラキスフエ ノール類、ポリフエノール類、ナフトール類、ビスナフトール類、ジフエ-ルメタノール 類、カルボン酸アミド類、チォアミド類、ビキサンテン類、カルボン酸類、イミダゾール 類、ヒドロキノン類などであってもよい。  [0038] The multimolecular hosty conjugates include ureas, thioureas, deoxycholates, perhydrotriphenylenes, tri-o-thymotides, bianthrils, spirobifluorenes, cyclophosphazenes, monoalcohols , Diols, acetylene alcohols, hydroxy benzophenones, phenols, bisphenols, trisphenols, tetrakisphenols, polyphenols, naphthols, bisnaphthols, diphenylmethanols, carboxylic amides, Thioamides, bixanthenes, carboxylic acids, imidazoles, hydroquinones and the like may be used.
[0039] 高分子系ホストイ匕合物は、セルロース類、デンプン類、キチン類、キトサン類、ポリビ -ルアルコール類、 1, 1, 2, 2—テトラキスフエ-ルェタンをコアとするポリエチレング リコールアーム型ポリマー類、 a , a , a ひ,一テトラキスフエ二ルキシレンをコアと するポリエチレングリコールアーム型ポリマー類などであってもよい。 [0040] 無機系ホストイ匕合物は、酸化チタン、グラフアイト、アルミナ、遷移金属ジカルゴゲナ イト、フッ化ランタン、粘土鉱物 (モンモリロナイトなど)、銀塩、ケィ酸塩、リン酸塩、ゼ オライト、シリカ、多孔質ガラスなどであってもよい。 [0039] The high molecular weight hosty conjugate is a polyethylene glycol arm having a core of celluloses, starches, chitins, chitosans, polyvinyl alcohols, and 1,1,2,2-tetrakisphenol. Polymers such as polyethylene glycol arm-type polymers having a , a , a , a , and a tetrakisphenylenyl xylene as a core. [0040] Inorganic hostoy dating products include titanium oxide, graphite, alumina, transition metal dicargogenite, lanthanum fluoride, clay minerals (such as montmorillonite), silver salts, silicates, phosphates, zeolites, and silica. And porous glass.
[0041] 有機'無機複合ホスト化合物は、カリックスアレン タングステン酸化物クラスターな どであってもよい。  [0041] The organic'inorganic composite host compound may be a calixarene tungsten oxide cluster or the like.
[0042] 分子化合物は、有機リン化合物、有機ケィ素化合物、有機アルミニウム化合物、有 機チタンィ匕合物、有機ホウ素化合物、有機亜鉛化合物、有機インジウム化合物、有 機ガリウム化合物、有機テルル化合物、有機スズィ匕合物、有機ジルコニウム化合物、 有機マグネシウム化合物などであってもよい。分子化合物は、有機カルボン酸の金 属塩ゃ有機金属錯体であってもよ ヽ。  [0042] The molecular compound is an organic phosphorus compound, an organic silicon compound, an organic aluminum compound, an organic titanium compound, an organic boron compound, an organic zinc compound, an organic indium compound, an organic gallium compound, an organic tellurium compound, an organic tin compound. It may be a dagger, an organic zirconium compound, an organic magnesium compound, or the like. The molecular compound may be a metal salt of an organic carboxylic acid—an organometallic complex.
[0043] ホストイ匕合物としては、包接能力がゲストィ匕合物の分子の大きさに左右されにくい多 分子系ホストイ匕合物が好適である。  As the hostile conjugate, a multi-molecular hostile conjugate whose inclusion ability is hardly influenced by the size of the molecule of the guest conjugate is suitable.
[0044] 多分子系ホストイ匕合物としては、具体的には、尿素、 1, 1, 6, 6—テトラフエニルへ キサ— 2, 4 ジイン— 1, 6 ジオール、 1, 1—ビス(2, 4 ジメチルフエ-ル)— 2— プロピン 1 オール、 1, 1, 4, 4ーテトラフエ二ルー 2 ブチン 1, 4ージオール、 1, 1, 6, 6—テトラキス(2, 4 ジメチノレフエ二ノレ) 2, 4 へキサジイン一 1, 6 ジ オール、 9, 10 ジフエ二ルー 9, 10 ジヒドロアントラセン 9, 10 ジオール、 9, 1 0 ビス(4—メチルフエ-ル)一 9, 10 ジヒドロアントラセン一 9, 10 ジオール、 1, 1, 2, 2—テトラフエニルェタン 1, 2 ジオール、 4ーメトキシフエノール、 2, 4 ジ ヒドロキシベンゾフエノン、 4, 4'ージヒドロキシベンゾフエノン、 2, 2'ージヒドロキシべ ンゾフエノン、 2, 2' , 4, 4'—テトラヒドロキシベンゾフエノン、 1, 1—ビス(4 ヒドロキ シフエ-ル)シクロへキサン、 4, 4,一スルホ-ルビスフエノール、 2, 2,一メチレンビス (4—メチノレ一 6— t—ブチノレフエノーノレ)、 4, 4,一ェチリデンビスフエノーノレ、 4, 4, —チォビス(3—メチル—6— t—ブチルフエノール)、 1, 1, 3 トリス(2—メチル—4 —ヒドロキシ一 5— t—ブチルフエニル)ブタン、 1, 1, 2, 2—テトラキス(4 ヒドロキシ フエ-ル)ェタン、 1, 1, 2, 2—テトラキス(4 ヒドロキシフエ-ル)エチレン、 1, 1, 2, 2—テトラキス(3—メチル 4 ヒドロキシフエ-ル)ェタン、 1, 1, 2, 2—テトラキス(3 —フルォロ一 4—ヒドロキシフエ-ル)ェタン、 a , a , α ' , α,一テトラキス(4—ヒドロ キシフエ-ル)一 p キシレン、テトラキス(p—メトキシフエ-ル)エチレン、 3, 6, 3 ' , 6 ,一テトラメトキシー 9, 9 ' ビー 9H—キサンテン、 3, 6, 3 ' , 6 '—テトラァセトキシー 9, 9,一ビー 9H—キサンテン、 3, 6, 3 ' , 6,ーテトラヒドロキシー 9, 9,一ビー 9H— キサンテン、没食子酸、没食子酸メチル、カテキン、ビス β ナフトール、 α , α , α ' , α,一テトラフエ-ル一 1 , 1 '—ビフエ-ル一 2, 2,一ジメタノール、ジフェン酸ビ スジシクロへキシルアミド、フマル酸ビスジシクロへキシルアミド、コール酸、デォキシ コール酸、 1, 1, 2, 2—テトラフエ-ルェタン、テトラキス(ρ ョードフエ-ル)ェチレ ン、 9, 9,一ビアンスリル、 1, 1, 2, 2—テトラキス(4—カルボキシフエニル)ェタン、 1 , 1, 2, 2—テトラキス(3 カルボキシフエ-ル)ェタン、アセチレンジカルボン酸、 2, 4, 5 トリフエ-ルイミダゾール、 1, 2, 4, 5—テトラフエ-ルイミダゾール、 2 フエ- ルフエナント口 [9, 10 d]イミダゾール、 2— (ο シァノフエ-ル)フエナント口 [9, 10 —d]イミダゾール、 2— (m—シァノフエ-ル)フエナント口 [9, 10— d]イミダゾール、 2 — (p シァノフエ-ル)フエナント口 [9, 10 d]イミダゾール、ヒドロキノン、 2— t—ブ チルヒドロキノン、 2, 5 ジ一 t—ブチルヒドロキノン、 2, 5 ビス(2, 4 ジメチルフエ -ル)ヒドロキノン、などが挙げられる。 [0044] Specific examples of the multimolecular hostile conjugate include urea, 1,1,6,6-tetraphenylhexa-2,4diyne-1,6 diol, 1,1-bis (2, 4 dimethylphenyl) — 2-propyne 1ol, 1,1,4,4-tetraphenyl-2-butyne 1,4-diol, 1,1,6,6-tetrakis (2,4 dimethinolepheninole) 2,4 1,6-diol, 9,10 diphenyl 9,10 dihydroanthracene 9,10 diol, 9,10 bis (4-methylphenyl) -1,9,10 dihydroanthracene 1,10 diol, 1, 1,2,2-tetraphenylethane 1,2 diol, 4-methoxyphenol, 2,4 dihydroxybenzophenone, 4,4'dihydroxybenzophenone, 2,2'dihydroxybenzophenone, 2, 2 ', 4,4'-tetrahydroxybenzophenone, 1,1-bis (4hydroxyphenyl Cyclohexane, 4,4,1-sulfol-bisphenol, 2,2,1-methylenebis (4-methynole-1-6-t-butynolephenole), 4,4,1-ethylidenebisphenol, 4 , 4, -Thiobis (3-methyl-6-t-butylphenol), 1,1,3 Tris (2-methyl-4-hydroxy-1-5-t-butylphenyl) butane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethylene, 1,1,2,2-tetrakis (3-methyl-4-hydroxyphenyl) ethane, 1, 1, 2, 2-tetrakis (3-fluoro-1-hydroxyphenyl) ethane, a, a, α ', α, 1-tetrakis (4-hydro Xylene, p-xylene, tetrakis (p-methoxyphenyl) ethylene, 3,6,3 ', 6, tetramethoxy-9,9'B 9H-xanthene, 3,6,3', 6'- Tetraacetoxy 9,9,1B 9H-xanthene, 3,6,3 ', 6-tetrahydroxy 9,9,1B 9H—Xanthene, gallic acid, methyl gallate, catechin, bis β-naphthol, α , α, α ', α, 1-tetraphenyl-1,1,1'-biphenyl-1,2,1-dimethanol, bisdicyclohexylamide diphenate, bisdicyclohexylamide fumarate, cholic acid, dexcholate, 1,1,2,2-Tetraphenyl-ethane, tetrakis (rhodophenyl) ethylene, 9,9,1-Bianthril, 1,1,2,2-tetrakis (4-carboxyphenyl) ethane, 1,1 , 2, 2-tetrakis (3 carboxyphenyl) ethane, ace Tylenedicarboxylic acid, 2,4,5 Trifuy-imidazole, 1,2,4,5-Tetraphenyl-imidazole, 2-phenylenantole [9, 10 d] Imidazole, 2- (ο cyanophyl) phenanthantine [9,10—d] imidazole, 2— (m—cyanophen) phenanthrole [9,10—d] imidazole, 2— (pcyanophene) phenanthrole [9,10 d] imidazole, hydroquinone, 2 — T-butylhydroquinone, 2,5 di-t-butylhydroquinone, 2,5 bis (2,4 dimethylphenyl) hydroquinone, and the like.
[0045] ホスト化合物としては、上記したものの中でも 1, 1—ビス(4—ヒドロキシフエ-ル)シ クロへキサン、 1, 1, 2, 2—テトラキス(4 ヒドロキシフエニル)ェタン、 1, 1, 2, 2- テトラキス(4ーヒドロキシフエ-ル)エチレンのようなフエノール系ホスト化合物が経済 性、包接能力の面で有利である。  [0045] As the host compound, among the above-mentioned compounds, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 1,1 A phenolic host compound such as 2,2,2-tetrakis (4-hydroxyphenyl) ethylene is advantageous in terms of economy and inclusion ability.
[0046] これらのホストイ匕合物は 1種を単独で用いても良ぐ 2種以上を併用しても良い。  [0046] One of these hostile conjugates may be used alone, or two or more may be used in combination.
[0047] 上記ホスト化合物は、固体状、粉末状、粒状、又は塊状であって良ぐ結晶状、非 晶状 (アモルファス状)の 、ずれでもよ 、。ホスト化合物が粉末状の固体である場合、 その粒径は、約 lmm以下が好ましい。  [0047] The host compound may be in the form of solid, powder, granule, or lump, and may be crystalline, amorphous (amorphous), or misaligned. When the host compound is a powdery solid, its particle size is preferably about lmm or less.
[0048] ホストイ匕合物は、多孔質物質に担持されてもよい。多孔質物質としては、シリカ類、 ゼォライト類、活性炭類の他に、粘土鉱物類、モンモリロナイト類などの層間化合物 などが挙げられるが、これらに限定されるものではない。ホスト化合物を溶媒に溶解さ せ、その溶液を多孔質物質中に含浸させ、溶媒を乾燥、減圧乾燥することにより、ホ スト化合物が多孔質物質に担持される。多孔質物質に対する有機化合物の担持量 は、好ましくは、多孔質物質に対して約 10〜80重量%である。 [0048] The hostile conjugate may be supported on a porous substance. Examples of the porous material include silica, zeolites, activated carbons, as well as intercalation compounds such as clay minerals and montmorillonite, but are not limited thereto. The host compound is dissolved in the solvent, the solution is impregnated in the porous material, and the solvent is dried and dried under reduced pressure, whereby the host compound is supported on the porous material. Amount of organic compound supported on porous material Is preferably about 10 to 80% by weight based on the porous material.
[0049] 1, 1 ビス(4ーヒドロキシフエ-ル)シクロへキサンは、種々のゲスト分子を取り込み 、結晶性の包接ィ匕合物を形成することが知られている。ゲスト化合物(固体,液体,気 体のいずれの状態であっても良い。 )と直接接触反応させることにより包接化合物が 形成されることも知られて 、る。 [0049] It is known that 1,1 bis (4-hydroxyphenyl) cyclohexane incorporates various guest molecules to form a crystalline inclusion conjugate. It is also known that an inclusion compound is formed by a direct contact reaction with a guest compound (which may be in any state of solid, liquid and gas).
[0050] 燃料としては、例えば、アルコール類、エーテル類、炭化水素類、ァセタール類な どが挙げられる力 これらに限定されるものではない。燃料としては、一般的には常 温常圧で液体であるものが好適であり、具体的にはメタノール、エタノール、 n プロ パノール、イソプロパノール、エチレングリコール等のアルコール類、ジメチルエーテ ル、メチルェチルエーテル、ジェチルエーテル等のエーテル類、プロパン、ブタン等 の炭化水素類、ジメトキシメタン、トリメトキシメタン等のァセタール類などが挙げられ、 これらは 1種を単独で用いても良ぐ 2種以上を混合して用いても良い。 [0050] Examples of the fuel include, but are not limited to, alcohols, ethers, hydrocarbons, and acetal. As the fuel, those which are generally liquid at normal temperature and normal pressure are preferable. Specifically, alcohols such as methanol, ethanol, n-propanol, isopropanol, and ethylene glycol, dimethyl ether, and methyl ethyl Ethers such as ether and getyl ether; hydrocarbons such as propane and butane; and acetals such as dimethoxymethane and trimethoxymethane. These may be used alone or two or more. You may mix and use.
[0051] 実施例 1 Example 1
1, 1 ビス(4ーヒドロキシフエ-ル)シクロへキサン 1モルにメタノール 1モルを包接 させたメタノール包接ィ匕合物 50gを、図 4に示す燃料貯槽に入れ、燃料貯槽内のメタ ノール包接化合物を撹拌下、 60〜: LOO°Cに加熱したところ、メタノールを放出させる ことができた。その後、 20°Cに冷却したところ、メタノール包接ィ匕合物力ものメタノー ルの放出は停止した。  50 g of a methanol clathrate prepared by enclosing 1 mol of methanol in 1 mol of 1,1 bis (4-hydroxyphenyl) cyclohexane is placed in the fuel storage tank shown in FIG. When the contact compound was heated to 60 to LOO ° C with stirring, methanol could be released. Thereafter, when the temperature was cooled to 20 ° C., the release of methanol, which was a physical property of methanol inclusion, was stopped.
[0052] 以下に図面を参照して第 2アスペクトの燃料電池発電システムの実施の形態を詳 細に説明する。図 7, 8はそれぞれ本発明の燃料電池発電システムの実施の形態を 示す系統図である。  Hereinafter, an embodiment of the fuel cell power generation system according to the second aspect will be described in detail with reference to the drawings. 7 and 8 are system diagrams each showing an embodiment of the fuel cell power generation system of the present invention.
[0053] 図 7の燃料電池発電システムは、燃料貯槽 1と、水槽 12と、これら燃料貯槽 1及び 水槽 12から燃料及び水が導入される濃度調整槽 13と、該濃度調整槽 13から濃度 調整された燃料が供給される燃料電池 14とを備えてなる。  The fuel cell power generation system of FIG. 7 includes a fuel storage tank 1, a water tank 12, a concentration adjustment tank 13 into which fuel and water are introduced from the fuel storage tank 1 and the water tank 12, and a concentration adjustment tank 13 from the concentration adjustment tank 13. And a fuel cell 14 to which supplied fuel is supplied.
[0054] 燃料貯槽 1には、燃料をホストで包接してなる固体状の包接化合物が貯留されて ヽ る。この包接ィ匕合物は、加熱されることにより燃料を放出する特性を有する。この実施 の形態では、この包接ィ匕合物を加熱するために加熱器 3が設けられている。加熱器 3 はこの態様では、電気ヒータ、ペルチェ素子等の電気発熱体である。燃料貯槽 1内で 包接ィ匕合物力も放出された燃料は、流量調節弁 16及び配管 17を介して濃度調整 槽 13へ送られる。 [0054] The fuel storage tank 1 stores a solid clathrate formed by clathrating the fuel with the host. This clathrate conjugate has the property of releasing fuel when heated. In the present embodiment, a heater 3 is provided to heat the clathrate conjugate. In this embodiment, the heater 3 is an electric heating element such as an electric heater or a Peltier element. In fuel tank 1 The fuel from which the physical properties of the inclusion are also released is sent to the concentration adjusting tank 13 via the flow control valve 16 and the pipe 17.
[0055] 燃料貯槽 1の構成については、第 1アスペクトにおいて詳述されている。この燃料貯 留槽 1は、交換可能なカートリッジタイプとされてもよい。  [0055] The configuration of the fuel storage tank 1 is described in detail in the first aspect. This fuel storage tank 1 may be of a replaceable cartridge type.
[0056] 水槽 12内の水は、ポンプ、重力等によって流量調節弁 18及び配管 19を介して濃 度調整槽 13へ送られる。  The water in the water tank 12 is sent to the concentration adjusting tank 13 via the flow control valve 18 and the pipe 19 by a pump, gravity or the like.
[0057] 濃度調整槽 13内には、メッシュ等の乱流化部材ゃ撹拌機などの混合手段が設けら れている。また、この濃度調整槽 13には、水と燃料との混合物の濃度を測定するメタ ノールセンサなどの濃度センサ 20が設けられて 、る。この濃度センサ 20の検出信号 が制御器 21に入力されている。この制御器 21は、発熱体 3への通電を制御すると共 に、流量調節弁 16, 18の開度制御を行う。濃度調整槽 13は、配管 22を介して燃料 電池 14に接続されている力 直結されてもよい。配管 22に流量調節弁が設けられて ちょい。  [0057] In the concentration adjusting tank 13, a turbulence member such as a mesh and a mixing means such as a stirrer are provided. The concentration adjusting tank 13 is provided with a concentration sensor 20 such as a methanol sensor for measuring the concentration of a mixture of water and fuel. The detection signal of the density sensor 20 is input to the controller 21. The controller 21 controls the energization of the heating element 3 and controls the opening of the flow control valves 16 and 18. The concentration adjusting tank 13 may be directly connected to the fuel cell 14 via a pipe 22. A flow control valve is provided in the pipe 22.
[0058] このように構成された燃料電池システムにおいては、発熱体 3に通電して包接化合 物を加熱することにより該包接ィ匕合物から燃料が放出される。この燃料と水槽 12から の水とが濃度調整槽 13で所定濃度に混合された後、燃料電池 14に供給されて発電 が行われる。制御器 21は、濃度センサ 20で検出される燃料濃度が所定濃度となるよ うに発熱体 3への通電制御及び流量調節弁 16, 18の開度制御を行う。  [0058] In the fuel cell system configured as described above, by energizing the heating element 3 to heat the clathrate compound, fuel is released from the clathrate compound. After this fuel and water from the water tank 12 are mixed to a predetermined concentration in the concentration adjusting tank 13, they are supplied to the fuel cell 14 to generate power. The controller 21 controls the energization of the heating element 3 and the opening control of the flow control valves 16 and 18 so that the fuel concentration detected by the concentration sensor 20 becomes a predetermined concentration.
[0059] このようにして、所定濃度の燃料が燃料電池 14へ供給するので、燃料電池 14の出 力が安定する。また、燃料力 タノールであっても、燃料電池の電極に障害を与えた り、金属材料を腐食させたりすることがない。  [0059] In this manner, fuel of a predetermined concentration is supplied to the fuel cell 14, so that the output of the fuel cell 14 is stabilized. In addition, even if the fuel is ethanol, it will not damage the electrodes of the fuel cell or corrode metal materials.
[0060] 図 7では発熱体 3によって包接ィ匕合物を加熱している力 図 8のように燃料電池 14 の排熱を利用して包接ィ匕合物を加熱するようにしてもょ ヽ。  In FIG. 7, the power of heating the clathrate conjugate by the heating element 3 may be used to heat the clathrate conjugate using the exhaust heat of the fuel cell 14 as shown in FIG. Yeah.
[0061] 図 8では、燃料貯槽 1に発熱体 3と共に伝熱チューブ 32が設置されており、燃料電 池 14で発生する温排水(例えば凝縮水)が配管 23, 24を介して該伝熱チューブ 32 に通水されるよう構成されている。配管 23には流量調節弁 25が設けられている。この 流量調節弁 25も前記制御器 21によって開度が制御される。伝熱チューブ 32にて放 熱した温排水は配管 24を介して燃料電池 14に戻る。 [0062] 図 8のその他の構成は図 7と同一であり、同一符号は同一部分を示している。 In FIG. 8, a heat transfer tube 32 is installed in the fuel storage tank 1 together with the heating element 3, and hot waste water (for example, condensed water) generated in the fuel cell 14 is connected to the heat transfer tube via pipes 23 and 24. It is configured to allow water to flow through tube 32. The pipe 23 is provided with a flow control valve 25. The opening of the flow control valve 25 is also controlled by the controller 21. The hot waste water discharged by the heat transfer tube 32 returns to the fuel cell 14 via the pipe 24. [0062] Other configurations in Fig. 8 are the same as those in Fig. 7, and the same reference numerals indicate the same parts.
[0063] 図 8では伝熱チューブ 32と発熱体 3とを併設しているが、伝熱チューブ 32のみを設 けてもよい。ただし、燃料電池 14の起動時や、伝熱チューブ 32からの放熱量の不足 時に包接化合物を加熱するために、発熱体 3を併設するのが好ましい。 In FIG. 8, the heat transfer tube 32 and the heating element 3 are provided side by side, but only the heat transfer tube 32 may be provided. However, in order to heat the clathrate when the fuel cell 14 is started or when the amount of heat radiated from the heat transfer tube 32 is insufficient, it is preferable to additionally provide the heating element 3.
[0064] 図 7, 8では、燃料と水とを濃度調整槽 13で混合しているが、この濃度調整槽 13の 代りにラインミキサ等の混合手段を設けてもょ 、。 In FIGS. 7 and 8, fuel and water are mixed in the concentration adjusting tank 13, but a mixing means such as a line mixer may be provided instead of the concentration adjusting tank 13.

Claims

請求の範囲 The scope of the claims
[1] 燃料分子化合物を貯え、この燃料分子化合物を燃料電池に供給する燃料貯蔵供 給装置において、燃料分子化合物を内蔵するための燃料貯槽と、該燃料貯槽から 燃料を放出させるために該燃料貯槽内の燃料分子化合物を加熱する加熱手段とを 有することを特徴とする燃料貯蔵 ·供給装置。  [1] In a fuel storage and supply device that stores a fuel molecular compound and supplies the fuel molecular compound to a fuel cell, a fuel storage tank for incorporating the fuel molecular compound and a fuel storage tank for discharging fuel from the fuel storage tank A fuel storage and supply device, comprising: heating means for heating a fuel molecular compound in a storage tank.
[2] 請求項 1にお ヽて、更に、該燃料貯槽内の燃料分子化合物を撹拌する撹拌手段を 有することを特徴とする燃料貯蔵 ·供給装置。  [2] The fuel storage and supply device according to [1], further comprising stirring means for stirring the fuel molecular compound in the fuel storage tank.
[3] 請求項 1にお 、て、更に、該燃料貯槽内の燃料分子化合物を冷却する冷却手段を 有することを特徴とする燃料貯蔵 ·供給装置。 [3] The fuel storage and supply device according to claim 1, further comprising cooling means for cooling a fuel molecular compound in the fuel storage tank.
[4] 請求項 1において、該燃料分子化合物は、ホストイ匕合物と燃料との接触反応により 燃料を包接した燃料包接化合物であることを特徴とする燃料貯蔵 ·供給装置。 4. The fuel storage and supply device according to claim 1, wherein the fuel molecular compound is a fuel inclusion compound in which the fuel is included by a contact reaction between the host conjugate and the fuel.
[5] 請求項 4において、該ホスト化合物が、有機化合物、無機化合物及び有機 ·無機複 合ィ匕合物よりなる群カゝら選ばれる少なくとも 1種であることを特徴とする燃料貯蔵'供 給装置。 [5] The fuel storage tank according to claim 4, wherein the host compound is at least one selected from the group consisting of an organic compound, an inorganic compound, and an organic-inorganic composite compound. Feeding device.
[6] 請求項 5において、該ホスト化合物が、単分子系ホスト化合物、多分子系ホスト化合 物、高分子系ホスト化合物、無機系ホスト化合物、有機,無機複合ホスト化合物よりな る群カゝら選ばれる少なくとも 1種であることを特徴とする燃料貯蔵'供給装置。  [6] In claim 5, the host compound is a group consisting of a monomolecular host compound, a polymolecular host compound, a polymer host compound, an inorganic host compound, and an organic / inorganic composite host compound. A fuel storage 'supply device, characterized in that it is at least one selected from.
[7] 請求項 6において、単分子系ホスト化合物は、シクロデキストリン類、クラウンエーテ ル類、クリプタンド類、シクロフアン類、ァザシクロフアン類、カリックスアレン類、シクロ トリべラトリレン類、スフエランド類、及び環状オリゴペプチド類の少なくとも 1種であるこ とを特徴とする燃料貯蔵 ·供給装置。  [7] In claim 6, the monomolecular host compound is a cyclodextrin, a crown ether, a cryptand, a cyclophan, an azacyclophane, a calixarene, a cyclotriberatrilen, a sphenand, and a cyclic oligopeptide. A fuel storage and supply device, characterized in that it is at least one member of the class.
[8] 請求項 6において、多分子系ホストイ匕合物は、尿素類、チォ尿素類、デォキシコー ル酸類、ペルヒドロトリフエ-レン類、トリ— o—チモチド類、ビアンスリル類、スピロビフ ルオレン類、シクロフォスファゼン類、モノアルコール類、ジオール類、アセチレンァ ルコール類、ヒドロキシベンゾフエノン類、フエノール類、ビスフエノール類、トリスフエノ ール類、テトラキスフエノール類、ポリフエノール類、ナフトール類、ビスナフトール類、 ジフエ-ルメタノール類、カルボン酸アミド類、チォアミド類、ビキサンテン類、カルボ ン酸類、イミダゾール類、及びヒドロキノン類の少なくとも 1種であることを特徴とする燃 料貯蔵,供給装置。 [8] In claim 6, the multimolecular hosty conjugate comprises ureas, thioureas, deoxycholates, perhydrotriphenylenes, tri-o-thymotides, bianthrils, spirobifluorenes, Cyclophosphazenes, monoalcohols, diols, acetylenic alcohols, hydroxybenzophenones, phenols, bisphenols, trisphenols, tetrakisphenols, polyphenols, naphthols, bisnaphthols A fuel comprising at least one of diphenylmethanols, carboxylic amides, thioamides, bixanthenes, carboxylic acids, imidazoles, and hydroquinones. Storage and supply equipment.
[9] 請求項 6において、高分子系ホストイ匕合物は、セルロース類、デンプン類、キチン類 、キトサン類、ポリビニルアルコール類、 1, 1, 2, 2—テトラキスフエニルェタンをコア とするポリエチレングリコールアーム型ポリマー類、及び α , α , α ' , α,ーテトラキス フエ-ルキシレンをコアとするポリエチレングリコールアーム型ポリマー類の少なくとも 1種であることを特徴とする燃料貯蔵'供給装置。  [9] In claim 6, the high molecular weight host conjugate has a core of celluloses, starches, chitins, chitosans, polyvinyl alcohols, 1,1,2,2-tetrakisphenylethane. A fuel storage / supply device comprising at least one of a polyethylene glycol arm type polymer and a polyethylene glycol arm type polymer having α, α, α ′, α, -tetrakisphenylxylene as a core.
[10] 請求項 6において、無機系ホストイ匕合物は、酸化チタン、グラフアイト、アルミナ、遷 移金属ジカルゴゲナイト、フッ化ランタン、粘土鉱物、銀塩、ケィ酸塩、リン酸塩、ゼォ ライト、シリカ、及び多孔質ガラスの少なくとも 1種であることを特徴とする燃料貯蔵-供 給装置。  [10] In claim 6, the inorganic ghost compound is titanium oxide, graphite, alumina, transition metal dicargogenite, lanthanum fluoride, clay mineral, silver salt, silicate, phosphate, zeolite. A fuel storage-supply device characterized by at least one of silica, silica, and porous glass.
[11] 請求項 6において、有機'無機複合ホストイ匕合物は、カリックスアレン タングステン 酸ィ匕物クラスターであることを特徴とする燃料貯蔵'供給装置。  [11] The fuel storage / supply apparatus according to claim 6, wherein the organic / inorganic composite host conjugate is a calixarene tungsten oxyride cluster.
[12] 請求項 5において、ホストイ匕合物が多分子系ホストイ匕合物であることを特徴とする燃 料貯蔵,供給装置。  [12] The fuel storage and supply device according to claim 5, wherein the host conjugate is a multi-molecular host conjugate.
[13] 請求項 12において、多分子系ホストイ匕合物は、尿素、 1, 1, 6, 6—テトラフェニル へキサ— 2, 4 ジイン— 1, 6 ジオール、 1, 1—ビス(2, 4 ジメチルフエ-ル)— 2 プロピン 1ーォーノレ、 1, 1, 4, 4ーテトラフエニノレー 2 ブチン 1, 4 ジォー ル、 1, 1, 6, 6—テトラキス(2, 4 ジメチルフエ-ル)— 2, 4 へキサジイン— 1, 6 ージオール、 9, 10 ジフエ二ルー 9, 10 ジヒドロアントラセン 9, 10 ジオール、 9, 10 ビス(4—メチルフエ-ル)一 9, 10 ジヒドロアントラセン一 9, 10 ジオール 、 1, 1, 2, 2—テトラフエ-ルェタン— 1, 2 ジオール、 4—メトキシフエノール、 2, 4 ージヒドロキシベンゾフエノン、 4, 4'ージヒドロキシベンゾフエノン、 2, 2,ージヒドロキ シベンゾフエノン、 2, 2' , 4, 4, 一テトラヒドロキシベンゾフエノン、 1, 1—ビス(4 ヒド ロキシフエ-ル)シクロへキサン、 4, 4'—スルホ-ルビスフエノール、 2, 2'—メチレン ビス(4—メチル 6— t—ブチルフエノール)、 4, 4' —ェチリデンビスフエノール、 4, 4,ーチォビス(3—メチルー 6 t—ブチルフエノール)、 1, 1, 3 トリス(2—メチルー 4 ヒドロキシ一 5— t ブチルフエニル)ブタン、 1, 1, 2, 2—テトラキス(4 ヒドロキ シフエ-ル)ェタン、 1, 1 , 2, 2—テトラキス(4 ヒドロキシフエ-ル)エチレン、 1, 1, 2, 2—テトラキス(3—メチル 4 ヒドロキシフエニル)ェタン、 1, 1, 2, 2—テトラキス (3—フルォロ一 4—ヒドロキシフエ-ル)ェタン、 a, a, α ', α,一テトラキス(4—ヒド ロキシフエ二ル)一 ρ キシレン、テトラキス(ρ—メトキシフエニル)エチレン、 3, 6, 3, , 6'—テトラメトキシー 9, 9' ビー 9Η—キサンテン、 3, 6, 3', 6'—テトラァセトキシ 9, 9,一ビー 9Η—キサンテン、 3, 6, 3', 6,ーテトラヒドロキシー 9, 9,一ビー 9Η ーキサンテン、没食子酸、没食子酸メチル、カテキン、ビス β ナフトール、 ex , a , α ', α,一テトラフエ-ル一 1, 1,一ビフエ-ル一 2, 2,一ジメタノール、ジフェン酸 ビスジシクロへキシルアミド、フマル酸ビスジシクロへキシルアミド、コール酸、デォキ シコール酸、 1, 1, 2, 2—テトラフエ-ルェタン、テトラキス(ρ ョードフエ-ル)ェチ レン、 9, 9'—ビアンスリル、 1, 1, 2, 2—テトラキス(4—カルボキシフエニル)ェタン、 1, 1, 2, 2—テトラキス(3 カルボキシフエ-ル)ェタン、アセチレンジカルボン酸、 2 , 4, 5 トリフエ-ルイミダゾール、 1, 2, 4, 5—テトラフエ-ルイミダゾール、 2—フエ -ルフエナント口 [9, 10 d]イミダゾール、 2— (o シァノフエ-ル)フエナント口 [9, 10— d]イミダゾール、 2— (m—シァノフエ-ル)フエナント口 [9, 10— d]イミダゾール 、 2- (p シァノフエ-ル)フエナント口 [9, 10 d]イミダゾール、ヒドロキノン、 2— t— ブチルヒドロキノン、 2, 5 ジ tーブチルヒドロキノン及び 2, 5 ビス(2, 4 ジメチ ルフエニル)ヒドロキノンの少なくとも 1種であることを特徴とする燃料貯蔵'供給装置。 [13] In claim 12, the multimolecular hosty conjugate comprises urea, 1,1,6,6-tetraphenylhexa-2,4diyne-1,6 diol, 1,1-bis (2, 4 dimethylphenyl) —2 propyne 1-ornole, 1,1,4,4-tetrapheninolae 2-butyne 1,4 diol, 1,1,6,6-tetrakis (2,4 dimethylphenyl) —2 , 4 Hexadiyne-1,6-diol, 9,10 diphenyl 9,10 Dihydroanthracene 9,10 diol, 9,10 Bis (4-methylphenyl) -1,9,10 Dihydroanthracene-1,9,10 diol, 1 , 1,2,2-tetraphenyl--1,2-diol, 4-methoxyphenol, 2,4-dihydroxybenzophenone, 4,4'-dihydroxybenzophenone, 2,2, dihydroxybenzophenone, 2,2 ', 4,4,1-tetrahydroxybenzophenone, 1,1-bis (4hydroxyfif -Le) cyclohexane, 4,4'-sulfol-bisphenol, 2,2'-methylenebis (4-methyl 6-t-butylphenol), 4,4'-ethylidenebisphenol, 4,4 , -Thoobis (3-methyl-6t-butylphenol), 1,1,3 Tris (2-methyl-4hydroxy-15-tbutylphenyl) butane, 1,1,2,2-tetrakis (4hydroxyphenyl) ethane , 1,1,2,2-tetrakis (4-hydroxyphenyl) ethylene, 1,1, 2, 2-tetrakis (3-methyl-4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3-fluoro-1-hydroxyphenyl) ethane, a, a, α ', α, one-tetrakis (4-hydroxyphenyl) -p-xylene, tetrakis (ρ-methoxyphenyl) ethylene, 3,6,3,, 6'-tetramethoxy-9,9 'b 9Η-xanthene, 3,6,3' , 6'-tetraacetoxy 9,9,1B 9Η-xanthene, 3,6,3 ', 6-tetrahydroxy-9,9,1B 9-xanthene, gallic acid, methyl gallate, catechin, bis β-naphthol, ex , a, α ', α, 1-tetraphenyl-1,1,1-biphenyl-1,2,2-dimethanol, bisdicyclohexylamide diphenate, bisdicyclohexylamide fumarate, cholic acid, deoxycholic acid, 1 , 1, 2, 2-tetratetra-luetane, tetrakis (ρ Ethylene, 9, 9'-bianthril, 1,1,2,2-tetrakis (4-carboxyphenyl) ethane, 1,1,2,2-tetrakis (3 carboxyphenyl) ethane , Acetylenedicarboxylic acid, 2,4,5 triflu-imidazole, 1,2,4,5-tetraphenyl-imidazole, 2-phenyl-phenanthone [9, 10 d] imidazole, 2- (o cyanophyl) [9,10-d] imidazole, 2- (m-cyanophen) phenant [9,10-d] imidazole, 2- (p-cyanophenyl) phenant [9,10d] imidazole, hydroquinone A fuel storage / supply device comprising at least one of 2, 2-t-butylhydroquinone, 2,5 di-tert-butylhydroquinone and 2,5 bis (2,4 dimethylphenyl) hydroquinone.
[14] 請求項 12において、ホスト化合物は、 1, 1 ビス(4ーヒドロキシフエ-ル)シクロへ キサン、 1, 1, 2, 2—テトラキス(4 ヒドロキシフエ-ル)ェタン、及び 1, 1, 2, 2—テ トラキス (4 -ヒドロキシフエニル)エチレンの少なくとも 1種であることを特徴とする燃料 貯蔵,供給装置。 [14] In claim 12, the host compound is selected from the group consisting of 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, and 1,1,2 A fuel storage and supply device, characterized in that it is at least one of 2,4-tetrakis (4-hydroxyphenyl) ethylene.
[15] 請求項 5において、ホスト化合物は固体状、粉末状、粒状又は塊状であることを特 徴とする燃料貯蔵 ·供給装置。  [15] The fuel storage / supply device according to claim 5, wherein the host compound is in a solid state, a powder state, a granular state or a massive state.
[16] 請求項 5において、ホストイ匕合物は粉末状であることを特徴とする燃料貯蔵 ·供給装 置。 [16] The fuel storage / supply device according to claim 5, wherein the host tie is in a powder form.
[17] 請求項 16において、ホストイ匕合物の粒径が lmm以下であることを特徴とする燃料 貯蔵,供給装置。  [17] The fuel storage and supply device according to claim 16, wherein the particle size of the host tie is 1 mm or less.
[18] 請求項 1において、燃料分子化合物は、アルコール類、エーテル類、炭化水素類、 及びァセタール類の少なくとも 1種であることを特徴とする燃料貯蔵 ·供給装置。 [18] In claim 1, the fuel molecular compound is an alcohol, an ether, a hydrocarbon, And a fuel storage and supply device characterized by being at least one of:
[19] 請求項 18において、燃料分子化合物は、メタノール、エタノール、 n—プロパノール[19] The fuel molecular compound according to claim 18, wherein the fuel molecular compound is methanol, ethanol, n-propanol.
、イソプロノ ノーノレ、エチレングリコーノレ、ジメチノレエーテノレ、メチノレエチノレエーテノレ、 ジェチルエーテル、プロパン、ブタン、ジメトキシメタン、及びトリメトキシメタンの少なく とも 1種であることを特徴とする燃料貯蔵 ·供給装置。 Fuel storage characterized by at least one of isopropyl alcohol, ethylene glycol, ethylene glycolone, dimethinooleate, methinoleetinoleate, getyl ether, propane, butane, dimethoxymethane, and trimethoxymethane. Feeding device.
[20] 請求項 5において、該ホストイ匕合物が多孔質物質に担持されていることを特徴とす る燃料貯蔵'供給装置。 [20] The fuel storage / supply device according to claim 5, wherein the host conjugate is supported on a porous substance.
[21] 請求項 20において、多孔質物質は、シリカ類、ゼォライト類、活性炭類、及び粘土 鉱物類の少なくとも 1種であることを特徴とする燃料貯蔵 ·供給装置。 21. The fuel storage and supply device according to claim 20, wherein the porous substance is at least one of silicas, zeolites, activated carbons, and clay minerals.
[22] 請求項 20において、多孔質物質に対する有機化合物の担持量は多孔質物質に 対して 10〜80重量%程度であることを特徴とする燃料貯蔵'供給装置。 22. The fuel storage and supply device according to claim 20, wherein the amount of the organic compound carried on the porous substance is about 10 to 80% by weight based on the porous substance.
[23] 請求項 1にお ヽて、前記燃料貯槽から放出された燃料を受け入れ、燃料濃度を調 整してから燃料電池に供給する燃料濃度調整手段を備えたことを特徴とする燃料貯 蔵 ·供給装置。 [23] The fuel storage according to claim 1, further comprising a fuel concentration adjusting means for receiving the fuel discharged from the fuel storage tank, adjusting the fuel concentration, and then supplying the fuel to the fuel cell. · Feeding equipment.
[24] 請求項 23にお 、て、燃料はメタノールであり、燃料濃度調整手段はメタノールに水 を添加して濃度調整することを特徴とする燃料貯蔵'供給装置。  24. The fuel storage and supply device according to claim 23, wherein the fuel is methanol, and the fuel concentration adjusting means adjusts the concentration by adding water to the methanol.
[25] 請求項 1の燃料貯蔵 ·供給装置と、この燃料貯蔵 ·供給装置から燃料が供給される 燃料電池とを備えてなる燃料電池発電システム。 [25] A fuel cell power generation system comprising: the fuel storage / supply device according to claim 1; and a fuel cell to which fuel is supplied from the fuel storage / supply device.
[26] 有機系燃料分子化合物を内蔵しうる燃料貯槽と、該燃料貯槽から導入される燃料 を濃度調整する濃度調整手段と、該濃度調整槽から濃度調整済みの燃料が導入さ れる燃料電池とを備えてなる燃料電池発電システム。 [26] A fuel storage tank capable of containing an organic fuel molecular compound, concentration adjusting means for adjusting the concentration of the fuel introduced from the fuel storage tank, and a fuel cell into which the fuel whose concentration has been adjusted is introduced from the concentration adjusting tank. A fuel cell power generation system comprising:
[27] 請求項 26において、該燃料電池が固体高分子電解質型燃料電池又はダイレクトメ タノール型燃料電池であることを特徴とする燃料電池発電システム。  27. The fuel cell power generation system according to claim 26, wherein the fuel cell is a solid polymer electrolyte fuel cell or a direct methanol fuel cell.
[28] 請求項 26において、該燃料貯槽が請求項 1に記載の燃料貯槽であることを特徴と する燃料電池発電システム。 [28] A fuel cell power generation system according to claim 26, wherein the fuel storage tank is the fuel storage tank according to claim 1.
[29] 請求項 28において、前記燃料電池の排熱を該燃料貯槽の前記加熱手段に供給し て燃料分子化合物から燃料を放出させる手段を有することを特徴とする燃料電池発 電システム。 29. The fuel cell power generation system according to claim 28, further comprising means for supplying exhaust heat of the fuel cell to the heating means of the fuel storage tank to release fuel from a fuel molecular compound.
PCT/JP2005/008599 2004-05-14 2005-05-11 Fuel storage/supply system for fuel cell WO2005112171A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-145201 2004-05-14
JP2004-145204 2004-05-14
JP2004145201A JP2005327624A (en) 2004-05-14 2004-05-14 Fuel discharge system for fuel cell
JP2004145204A JP2005327626A (en) 2004-05-14 2004-05-14 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
WO2005112171A1 true WO2005112171A1 (en) 2005-11-24

Family

ID=35394444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008599 WO2005112171A1 (en) 2004-05-14 2005-05-11 Fuel storage/supply system for fuel cell

Country Status (1)

Country Link
WO (1) WO2005112171A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044682A1 (en) * 2006-10-11 2008-04-17 Kurita Water Industries Ltd. Direct methanol-type fuel battery system and portable electronic equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185184A (en) * 1999-12-28 2001-07-06 Toshiba Corp Fuel cell and its fuel tank
JP2002184437A (en) * 2000-12-14 2002-06-28 Sanyo Electric Co Ltd Fuel battery system
JP2003520399A (en) * 2000-01-08 2003-07-02 ダイムラークライスラー アクチエンゲゼルシャフト Liquid fuel cell system
JP2003229155A (en) * 2002-02-04 2003-08-15 Sekisui Chem Co Ltd Fuel cell system
JP2004119276A (en) * 2002-09-27 2004-04-15 Kurita Water Ind Ltd Fuel cell power generation system
JP2004142985A (en) * 2002-10-23 2004-05-20 Kurita Water Ind Ltd Hydrogen discharging device
JP2004259480A (en) * 2003-02-24 2004-09-16 Kurita Water Ind Ltd Fuel cell power generation system
JP2005203335A (en) * 2003-12-18 2005-07-28 Kurita Water Ind Ltd Fuel for fuel cell and its feeding method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185184A (en) * 1999-12-28 2001-07-06 Toshiba Corp Fuel cell and its fuel tank
JP2003520399A (en) * 2000-01-08 2003-07-02 ダイムラークライスラー アクチエンゲゼルシャフト Liquid fuel cell system
JP2002184437A (en) * 2000-12-14 2002-06-28 Sanyo Electric Co Ltd Fuel battery system
JP2003229155A (en) * 2002-02-04 2003-08-15 Sekisui Chem Co Ltd Fuel cell system
JP2004119276A (en) * 2002-09-27 2004-04-15 Kurita Water Ind Ltd Fuel cell power generation system
JP2004142985A (en) * 2002-10-23 2004-05-20 Kurita Water Ind Ltd Hydrogen discharging device
JP2004259480A (en) * 2003-02-24 2004-09-16 Kurita Water Ind Ltd Fuel cell power generation system
JP2005203335A (en) * 2003-12-18 2005-07-28 Kurita Water Ind Ltd Fuel for fuel cell and its feeding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044682A1 (en) * 2006-10-11 2008-04-17 Kurita Water Industries Ltd. Direct methanol-type fuel battery system and portable electronic equipment

Similar Documents

Publication Publication Date Title
JP4617880B2 (en) Hydrogen storage method
CN110800146B (en) Apparatus and method for generating electricity using hydrogen and a hydrogen storage medium
Won et al. Performance of microchannel reactor combined with combustor for methanol steam reforming
CN105814241B (en) Device and method for storing and releasing energy
CA2458589C (en) Powder metal hydride hydrogen generator
Su et al. Reversible hydrogen storage in hydrogel clathrate hydrates
JP2009193973A (en) Solid polymer fuel cell system
Lee et al. Hydrogen supply system employing direct decomposition of solid-state NaBH4
US8016899B2 (en) Composite fuels for hydrogen generation
Bravo Diaz et al. Ammonia Borane Based Nanocomposites as Solid‐State Hydrogen Stores for Portable Power Applications
JP2005203335A (en) Fuel for fuel cell and its feeding method
KR20210098987A (en) Method and apparatus for releasing gas from a liquid medium
WO2009086541A1 (en) Hydrogen production system using dosed chemical hydrbdes
WO2005112171A1 (en) Fuel storage/supply system for fuel cell
WO2005062410A1 (en) Fuel for fuel cell, fuel cell and application thereof
JP2011121826A (en) Manufacturing method for hydrogen and manufacturing device of hydrogen and fuel cell system
JP2005327626A (en) Fuel cell power generation system
US20070111066A1 (en) Aeroplane Steam-Bath Facility
JP4345320B2 (en) Fuel cell power generation system
JP2009062215A (en) Hydrogen generating material, method for manufacturing hydrogen generating material, container for hydrogen generating material, hydrogen fuel vehicle, and portable apparatus
JP2005327624A (en) Fuel discharge system for fuel cell
KR20070077753A (en) Thermal siphon reactor and a hydrogen generator having the same
JP4604476B2 (en) How to store and transport hydrogen
JP2004119276A (en) Fuel cell power generation system
JP4848614B2 (en) Hydrogen storage method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase