[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005111433A1 - Method for fault localisation and diagnosis in a fluidic installation - Google Patents

Method for fault localisation and diagnosis in a fluidic installation Download PDF

Info

Publication number
WO2005111433A1
WO2005111433A1 PCT/EP2004/004050 EP2004004050W WO2005111433A1 WO 2005111433 A1 WO2005111433 A1 WO 2005111433A1 EP 2004004050 W EP2004004050 W EP 2004004050W WO 2005111433 A1 WO2005111433 A1 WO 2005111433A1
Authority
WO
WIPO (PCT)
Prior art keywords
consumption
subsystems
time
fluid
diagnosis
Prior art date
Application number
PCT/EP2004/004050
Other languages
German (de)
French (fr)
Inventor
Jan Bredau
Jens Engelhardt
Original Assignee
Festo Ag & Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo Ag & Co filed Critical Festo Ag & Co
Priority to DK04727868.4T priority Critical patent/DK1747380T3/en
Priority to AT04727868T priority patent/ATE515638T1/en
Priority to EP04727868A priority patent/EP1747380B1/en
Priority to PCT/EP2004/004050 priority patent/WO2005111433A1/en
Priority to CN200480043369.5A priority patent/CN1973136B/en
Publication of WO2005111433A1 publication Critical patent/WO2005111433A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring

Definitions

  • the invention relates to a method for error limitation and diagnosis in a fluidic system, in particular in a pneumatic system, wherein the fluid consumption of at least one area of the system is recorded and, depending on the operating cycle, is compared with a corresponding stored reference consumption.
  • Such a method is known from DE 19628221 C2, which, however, serves to determine the operating positions of working devices of a pneumatic system, sensors, in particular position sensors, being dispensed with. Especially in the case of larger systems in which processes overlap, the position of one or in a specific work facility cannot be determined with certainty. If a malfunction or a leak occurs in one of the work facilities, it is no longer possible to make any clear statements and statements, and certainly not a particular work facility or component of the system that is no longer working properly can be determined.
  • the advantages of the method according to the invention for error limitation and diagnosis are, in particular, that only an additional volume flow sensor system is required in terms of hardware in the supply line of the system in order to measure the fluid consumption.
  • the position, limit switch and actuator control signals which are present anyway, are used in order to assign events determined during the fluid consumption measurement to specific systems or subsystems and thereby to be able to detect an error. Malfunctions in the respective system and / or subsystem as well as leaks can be identified and assigned to the respective system or subsystem. An error can thus be limited to a specific system within the plant or even to a specific subsystem. This is done very quickly while the system control sequence program is running.
  • the recorded fluid consumption and the stored reference consumption are expediently present as curve profiles, which are generated in particular by summing or integrating flow values.
  • a particularly good error detection is achieved by forming difference values or difference curve profiles between fluid consumption and reference consumption, since these deviations can be identified particularly easily.
  • a time comparison is advantageously carried out with the sequence program of the system control. This makes it easy to use the sequence program to determine which system or subsystem was or is currently active. Alternatively or additionally, it can also be checked which control signals for systems or subsystems and / or sensor feedback occurred immediately before this point in time and to which systems or subsystems they were assigned. This also allows the faulty system or subsystem to be determined exactly.
  • the travel and / or positioning times of the systems and / or subsystems can also be checked using stored reference values before or during the fluid consumption diagnosis. If there are any deviations from the stored travel and / or positioning times, the faulty system can be inferred and - if this is done before the consumption diagnosis - the fluid consumption diagnosis itself can also be omitted if the faulty system or subsystem could already be determined by the preliminary process.
  • these parameters or at least one of these parameters are expediently recorded and can be used for the parameter-dependent correction of the fluid consumption.
  • 1 is a pneumatic system, in the feed of which a flow meter is connected,
  • FIG. 3 shows a more extensive pneumatic system which is divided into three sections and with a flow meter being assigned to each section,
  • FIG. 1 A pneumatic system is shown schematically in FIG. 1, which could in principle also be another fluid system, such as a hydraulic system.
  • the pneumatic system consists of five subsystems 10-14, each of which can be actuators such as valves, cylinders, linear drives and the like, as well as combinations thereof. These subsystems 10-14 are fed by a pressure source 15, a flow meter 17 for measuring the flow rate in a common feed line 16. ses or the volume flow is arranged. The air consumption is obtained by summing or integrating the measured values for the flow or volume flow or mass flow.
  • the subsystems 11, 12 on the one hand and the subsystems 13, 14 on the other hand each form a system with a common supply line.
  • An electronic control device 18 is used to specify the sequence process of the system and is electrically connected to the subsystems 10-14. Preserve subsystems 10-14
  • sensor signals are, for example, position signals, limit switch signals, pressure signals and the like.
  • the flow meter 17 is connected to an electronic diagnostic device 19, to which the signals of a temperature sensor 20 and a pressure sensor 21 for measuring the temperature and the pressure in the feed line 16 are additionally fed. Furthermore, the diagnostic device 19 has access to the flow chart of the electronic control device 18. The diagnostic results are fed to a display 22, whereby these diagnostic results can of course also be saved, printed out or transmitted to a central office via lines or wirelessly.
  • the diagnostic device 19 can of course also be integrated in the electronic control device 18, which can contain, for example, a microcontroller for executing the drain program and possibly for diagnosis.
  • this reference curve can be formed, for example, by adding or integrating reference flow values during the sequence program. For example, it can be saved in a learning mode.
  • a difference curve profile ⁇ L is formed as the difference between the air consumption curve L formed from the measured values and the reference curve L ref .
  • the difference curve profile ⁇ L and the air consumption curve L and the reference air consumption curve L ref can then be shown on the display 22, as will be explained in more detail in connection with FIGS. 4 to 6.
  • FIG. 3 shows an expanded version of the exemplary embodiment according to FIG. 1.
  • the pressure source 15 supplies further subsystems 25-32 here.
  • the additional subsystems 25-32 are divided into two groups, each of which is supplied with compressed air via its own flow meter 33, 34.
  • the three partial areas of the system can thus be diagnosed independently of one another by means of the three flow meters 17, 33, 34.
  • the electronic control device 18, the diagnostic device 19 and corresponding temperature sensors and pressure sensors are not shown for the sake of simplicity, but are of course also provided in accordance with FIG. 1.
  • a common control device and a common diagnostic device 19 can be provided as two separate units or as a single integrated unit. The procedure for fault isolation and diagnosis will now be explained below using the pneumatic system described.
  • FIG. 5 shows the case that during the entire sequence program, that is to say during the entire cycle of the system, the difference ⁇ L down to a small range between t2 and t3 increases continuously, so that at the end of the cycle the total air consumption L is significantly greater than the reference air consumption L ref .
  • the curve shows the case of a leak in an actuator of a subsystem. This is partly pressurized during the cycle and partly pressureless. In the depressurized state, there is consequently an air consumption difference of 0 or an air consumption difference that no longer increases during this time interval. A comparison with the sequence program now determines which actuator was depressurized during this time interval and pressurized during the rest of the time. The leakage can thus be limited to this actuator.
  • an air consumption difference to the reference air consumption curve L ref occurs in a time interval from time t4 and again in a time interval from time t5. Again, it must be determined by comparison with the sequence program which actuator or which subsystem were active in these two time intervals from time t4 and t5. As a result, these are recognized as faulty, which can also be the same actuator or the same subsystem that comes into action twice during the sequence program.
  • a new reference value for air consumption is formed, which results from the old reference value (0) and the new offset in air consumption.
  • the measured air consumption is checked for deviations using the new reference value. This means that if the same subsystem or another subsystem fails again, the error can be determined again.
  • the barriers for a permissible change in air consumption can be fixed or can be kept variable in accordance with the current air consumption values. On the one hand, it is possible to cycle in the area of a small air consumption begin to choose very narrow bounds to get a very high sensitivity, and on the other hand, in the area of high air consumption at the end of the cycle, choose rough bounds to be robust against fluctuation and measurement errors.
  • the flow measurement values or air consumption values are subjected to a temperature correction and a pressure correction, the corresponding measurement variables being made available by the temperature sensor 20 and the pressure sensor 21.
  • a temperature compensation or only a pressure compensation can be provided, or any compensation is dispensed with, in particular even if the pressure and temperature influences to be expected are not very great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The invention relates to a method for fault localisation and diagnosis in a fluidic installation. According to said method, the fluid consumption in at least one region of the installation is recorded, and compared with a corresponding stored reference consumption according to the operating cycle. Respectively at the time of a variation in consumption or at the end of a continuous variation in consumption, the system and/or subsystem (10-14) of the installation, in which a process influencing the fluid consumption has taken place at this point, is determined, and said system and/or subsystem (10-14) can thus be identified as faulty.

Description

FESTO AG & Co, 73734 Esslingen Verfahren zur Fehlereingrenzung und Diagnose an einer fluidischen Anlage FESTO AG & Co, 73734 Esslingen Process for fault isolation and diagnosis in a fluidic system
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zur Fehlereingrenzung und Diagnose an einer fluidischen Anlage, insbesondere an einer pneumatischen Anlage, wobei der Fluidverbrauch wenigstens eines Bereichs der Anlage erfasst und betriebszyklusabhängig mit einem entsprechenden gespeicherten Referenzverbrauch ver- glichen wird.The invention relates to a method for error limitation and diagnosis in a fluidic system, in particular in a pneumatic system, wherein the fluid consumption of at least one area of the system is recorded and, depending on the operating cycle, is compared with a corresponding stored reference consumption.
Aus der DE 19628221 C2 ist ein derartiges Verfahren bekannt, das allerdings zur Bestimmung von Betriebspositionen von Arbeitseinrichtungen einer pneumatischen Anlage dient, wobei auf Sensoren, insbesondere Positionssensoren, verzichtet wird. Vor allem bei größeren Anlagen, bei denen sich Vorgänge überschneiden, kann nicht mit Sicherheit auf die Position einer oder in einer bestimmten Arbeitseinrichtung geschlossen werden. Tritt bei einer der Arbeitseinrichtungen eine Fehl- funktion oder ein Leck auf, so sind keinerlei eindeutige Aussagen und Feststellungen mehr möglich, und schon gar nicht kann eine bestimmte Arbeitseinrichtung oder Komponente der Anlage ermittelt werden, die nicht mehr ordnungsgemäß arbeitet.Such a method is known from DE 19628221 C2, which, however, serves to determine the operating positions of working devices of a pneumatic system, sensors, in particular position sensors, being dispensed with. Especially in the case of larger systems in which processes overlap, the position of one or in a specific work facility cannot be determined with certainty. If a malfunction or a leak occurs in one of the work facilities, it is no longer possible to make any clear statements and statements, and certainly not a particular work facility or component of the system that is no longer working properly can be determined.
Eine Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren der eingangs genannten Gattung zur Fehlereingrenzung und Diagnose zu schaffen, durch das mit einfachen Mitteln dasjenige System und/oder Subsystem der Anlage erkannt werden kann, bei dem ein Fehler auftritt, also beispielsweise eine Fehlfunktion oder ein Leck.It is an object of the present invention to provide a method of the type mentioned at the beginning for error limitation and diagnosis, by means of which the system and / or subsystem of the system is identified with simple means in which an error occurs, for example a malfunction or a leak.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst .This object is achieved according to the invention by a method with the features of claim 1.
Die Vorteile des erfindungsgemäßen Verfahrens zur Fehlereingrenzung und Diagnose bestehen insbesondere darin, dass hardwaremäßig lediglich eine zusätzliche Volumenstromsensorik in der Versorgungsleitung der Anlage erforderlich ist, um den Fluidverbrauch zu messen. Im Übrigen werden die ohnehin vorhandenen Positions-, Endschalter- und Aktorsteuersignale verwendet, um bei der Fluidverbrauchsmessung festgestellte Ereignisse bestimmten Systemen bzw. Subsystemen zuordnen und dadurch einen Fehler erkennen zu können. Dabei können sowohl Fehlfunktionen im jeweiligen System und/oder Subsystem als auch Lecks erkannt und dem jeweiligen System bzw. Subsystem zugeordnet werden. Ein Fehler kann dadurch auf ein bestimmtes System innerhalb der Anlage oder sogar auf ein bestimmtes Subsystem eingegrenzt werden. Dies erfolgt sehr schnell noch während des Ablaufprogramms der Anlagensteuerung.The advantages of the method according to the invention for error limitation and diagnosis are, in particular, that only an additional volume flow sensor system is required in terms of hardware in the supply line of the system in order to measure the fluid consumption. In addition, the position, limit switch and actuator control signals, which are present anyway, are used in order to assign events determined during the fluid consumption measurement to specific systems or subsystems and thereby to be able to detect an error. Malfunctions in the respective system and / or subsystem as well as leaks can be identified and assigned to the respective system or subsystem. An error can thus be limited to a specific system within the plant or even to a specific subsystem. This is done very quickly while the system control sequence program is running.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im An- spruch 1 angegebenen Verfahrens möglich.Advantageous further developments and improvements of the method specified in claim 1 are possible through the measures listed in the subclaims.
Der erfasste Fluidverbrauch und der gespeicherte Referenzverbrauch liegen zweckmäßigerweise als Kurvenverläufe vor, die insbesondere durch Summierung oder Integration von Durch- flusswerten erzeugt werden. Eine besonders gute Fehlererkennung wird dadurch erreicht, dass Differenzwerte oder Differenz-Kurvenverläufe zwischen Fluidverbrauch und Referenzverbrauch gebildet werden, da aus diesen Abweichungen besonders leicht erkannt werden können. Zur Feststellung des oder der fehlerbehafteten Systeme und/oder Subsysteme zum Zeitpunkt der Verbrauchs-Abweichung oder Beendigung einer ständigen Verbrauchs-Abweichung wird in vorteilhafter Weise ein zeitlicher Vergleich mit dem Ablaufprogramm der Anlagensteuerung durchgeführt. Dadurch kann über das Ablaufprogramm leicht festgestellt werden, welches System oder Subsystem zum festgestellten Zeitpunkt aktiv war oder ist. Alternativ oder zusätzlich kann auch überprüft werden, welche Steuersignale für Systeme oder Subsysteme und/oder Sensorrückmeldungen unmittelbar vor diesem Zeitpunkt aufgetreten sind und welchen Systemen bzw. Subsystemen sie zugeordnet waren. Auch hierdurch kann das fehlerhafte System bzw. Subsystem exakt bestimmt werden.The recorded fluid consumption and the stored reference consumption are expediently present as curve profiles, which are generated in particular by summing or integrating flow values. A particularly good error detection is achieved by forming difference values or difference curve profiles between fluid consumption and reference consumption, since these deviations can be identified particularly easily. To determine the faulty systems and / or subsystems at the time of the consumption deviation or the end of a constant consumption deviation, a time comparison is advantageously carried out with the sequence program of the system control. This makes it easy to use the sequence program to determine which system or subsystem was or is currently active. Alternatively or additionally, it can also be checked which control signals for systems or subsystems and / or sensor feedback occurred immediately before this point in time and to which systems or subsystems they were assigned. This also allows the faulty system or subsystem to be determined exactly.
In vorteilhafter Weise können auch zusätzlich vor oder während der Fluidverbrauchs-Diagnose die Verfahr- und/oder Positionierzeiten der Systeme und/oder Subsysteme anhand von gespeicherten Referenzwerten überprüft werden. Werden Abwei- chungen von den gespeicherten Verfahr- und/oder Positionierzeiten festgestellt, so kann dadurch auf das fehlerhafte System geschlossen werden und - falls dies vor der Verbrauchs- Diagnose erfolgt - kann die Fluidverbrauchs-Diagnose selbst auch entfallen, wenn das fehlerhafte System oder Subsystem bereits schon durch das Vorverfahren ermittelt werden konnte.Advantageously, the travel and / or positioning times of the systems and / or subsystems can also be checked using stored reference values before or during the fluid consumption diagnosis. If there are any deviations from the stored travel and / or positioning times, the faulty system can be inferred and - if this is done before the consumption diagnosis - the fluid consumption diagnosis itself can also be omitted if the faulty system or subsystem could already be determined by the preliminary process.
Insbesondere bei großen fluidischen Anlagen kann es sich auch als vorteilhaft erweisen, wenn der Fluidverbrauch zu mehreren Bereichen der fluidischen Anlage mittels mehrerer Durchfluss- Messeinrichtungen erfasst und diagnostiziert wird. Dies erhöht die Diagnosesicherheit und auch die Eindeutigkeit der Fehlererkennung, insbesondere wenn sich mehrere Systeme zu gleicher Zeit bewegen. Beispielsweise können auch sicher- heitsrelevantere Bereiche der Anlage auf diese Weise zusätzlich bzw. gesondert überwacht werden.In the case of large fluidic systems in particular, it can also prove to be advantageous if the fluid consumption in several areas of the fluidic system is recorded and diagnosed by means of several flow measuring devices. This increases the diagnostic certainty and also the uniqueness of the error detection, especially if several systems are moving at the same time. For example, safety-relevant areas of the system can be monitored additionally or separately in this way.
Da der Duchfluss bzw. Volumenstrom und damit auch der Fluidverbrauch nicht zuletzt vom Druck und der Temperatur abhängt, werden diese Parameter oder wenigstens einer dieser Parameter zweckmäßigerweise erfasst und können zur parameterabhängigen Korrektur des Fluidverbrauchs dienen.Since the flow or volume flow and thus also the fluid consumption depends not least on the pressure and the temperature, these parameters or at least one of these parameters are expediently recorded and can be used for the parameter-dependent correction of the fluid consumption.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:Embodiments of the invention are shown in the drawing and explained in more detail in the following description. Show it:
Fig. 1 eine pneumatische Anlage, in deren Zuführung ein Durchflussmesser geschaltet ist,1 is a pneumatic system, in the feed of which a flow meter is connected,
Fig. 2 einen Teilbereich der Diagnosestufe zur Differenzbildung,2 shows a portion of the diagnostic level for difference formation,
Fig. 3 eine umfangreichere pneumatische Anlage, die in drei Teilbereiche aufgeteilt ist und wobei jedem Teilbereich ein Durchflussmesser zugeordnet ist,3 shows a more extensive pneumatic system which is divided into three sections and with a flow meter being assigned to each section,
Fig. 4 bis 6 Luftverbrauchsdiagramme zur Erläuterung verschiedener Diagnoseergebnisse.4 to 6 air consumption diagrams for explaining various diagnostic results.
In Fig. 1 ist eine pneumatische Anlage schematisch dargestellt, wobei es sich prinzipiell auch um eine andere fluidi- sche Anlage, wie eine hydraulische Anlage, handeln könnte.A pneumatic system is shown schematically in FIG. 1, which could in principle also be another fluid system, such as a hydraulic system.
Die pneumatische Anlage besteht aus fünf Subsystemen 10-14, bei denen es sich jeweils um Aktoren, wie Ventile, Zylinder, Linearantriebe und dergleichen, handeln kann sowie um Kombinationen derselben. Diese Subsysteme 10-14 werden von einer Druckquelle 15 gespeist, wobei in einer gemeinsamen Zuführleitung 16 ein Durchflussmesser 17 zur Messung des Durchflus- ses bzw. des Volumenstromes angeordnet ist. Durch Summierung bzw. Integration der Messwerte für den Durchfluss bzw. Volumenstrom oder Massenstrom erhält man den Luftverbrauch. Die Subsysteme 11, 12 einerseits und die Subsysteme 13, 14 ande- rerseits bilden wiederum jeweils ein System mit einer gemeinsamen Zuleitung.The pneumatic system consists of five subsystems 10-14, each of which can be actuators such as valves, cylinders, linear drives and the like, as well as combinations thereof. These subsystems 10-14 are fed by a pressure source 15, a flow meter 17 for measuring the flow rate in a common feed line 16. ses or the volume flow is arranged. The air consumption is obtained by summing or integrating the measured values for the flow or volume flow or mass flow. The subsystems 11, 12 on the one hand and the subsystems 13, 14 on the other hand each form a system with a common supply line.
Eine elektronische Steuerungsvorrichtung 18 dient zur Vorgabe des Ablaufprozesses der Anlage und ist elektrisch mit den Subsystemen 10-14 verbunden. Die Subsysteme 10-14 erhaltenAn electronic control device 18 is used to specify the sequence process of the system and is electrically connected to the subsystems 10-14. Preserve subsystems 10-14
Steuersignale von der elektronischen Steuervorrichtung 18 und senden Sensorsignale wieder an diese zurück. Solche Sensorsignale sind beispielsweise Positionssignale, Endschaltersignale, Drucksignale und dergleichen.Control signals from the electronic control device 18 and send sensor signals back to it. Such sensor signals are, for example, position signals, limit switch signals, pressure signals and the like.
Der Durchflussmesser 17 ist mit einer elektronischen Diagnoseeinrichtung 19 verbunden, der zusätzlich die Signale eines Temperatursensors 20 und eines Drucksensors 21 zur Messung der Temperatur und des Drucks in der Zuführleitung 16 zuge- führt sind. Weiterhin hat die Diagnoseeinrichtung 19 Zugriff auf das Ablauf rogramm der elektronischen Steuervorrichtung 18. Die Diagnoseergebnisse werden einem Display 22 zugeführt, wobei diese Diagnoseergebnisse selbstverständlich auch gespeichert, ausgedruckt oder einer Zentrale über Leitungen oder drahtlos übermittelt werden können.The flow meter 17 is connected to an electronic diagnostic device 19, to which the signals of a temperature sensor 20 and a pressure sensor 21 for measuring the temperature and the pressure in the feed line 16 are additionally fed. Furthermore, the diagnostic device 19 has access to the flow chart of the electronic control device 18. The diagnostic results are fed to a display 22, whereby these diagnostic results can of course also be saved, printed out or transmitted to a central office via lines or wirelessly.
Die Diagnoseeinrichtung 19 kann selbstverständlich auch in der elektronischen Steuerungsvorrichtung 18 integriert sein, die beispielsweise einen MikroController zur Durchführung des AbiaufProgramms und gegebenenfalls zur Diagnose enthalten kann.The diagnostic device 19 can of course also be integrated in the electronic control device 18, which can contain, for example, a microcontroller for executing the drain program and possibly for diagnosis.
Gemäß Fig. 2 enthält die dort nur teilweise dargestellte Diagnoseeinrichtung 19 einen AblaufSpeicher 23, in dem der pneu- matische Luftverbrauch während der Durchführung des Ablauf- Programms der pneumatischen Anlage in Form einer Referenz- luftverbrauchskurve gespeichert ist . Diese Referenzkurve kann, wie bereits dargelgt, beispielsweise durch Addition oder Integration von Referenzdurchflusswerten während des Ablaufprogramms gebildet sein. Sie kann beispielsweise in einem Lernmodus gespeichert werden. In einer nachgeschalteten Subtrahierstufe 24, der auch die Sensorsignale des Durchflussmessers 17 zugeführt werden, wird ein Differenz-Kurvenverlauf ΔL als Differenz der aus den Messwerten gebildeten Luftverbrauchskurve L und der Referenzskurve Lref gebildet. Auf dem Display 22 kann dann der Differenz-Kurvenverlauf ΔL sowie die Luftverbrauchskurve L und die Referenzluftverbrauchskurve Lref wiedergegeben werden, wie dies in Verbindung mit den Fig. 4 bis 6 noch näher erläutert wird.According to FIG. 2, the diagnostic device 19 shown only partially there contains an execution memory 23 in which the pneumatic air consumption during the execution of the sequence program of the pneumatic system is stored in the form of a reference air consumption curve. As already explained, this reference curve can be formed, for example, by adding or integrating reference flow values during the sequence program. For example, it can be saved in a learning mode. In a downstream subtraction stage 24, to which the sensor signals of the flow meter 17 are also fed, a difference curve profile ΔL is formed as the difference between the air consumption curve L formed from the measured values and the reference curve L ref . The difference curve profile ΔL and the air consumption curve L and the reference air consumption curve L ref can then be shown on the display 22, as will be explained in more detail in connection with FIGS. 4 to 6.
Fig. 3 stellt eine erweiterte Version des Ausführungsbeispiels gemäß Fig. 1 dar. Neben den Subsystemen 10-14 versorgt die Druckquelle 15 hier weitere Subsysteme 25-32. Die zusätz- liehen Subsysteme 25-32 sind in zwei Gruppen eingeteilt, die jeweils über einen eigenen Durchflussmesser 33, 34 mit Druckluft versorgt werden. Mittels der drei Durchflussmesser 17, 33, 34 können somit die drei Teilbereiche der Anlage unabhängig voneinander diagnostiziert werden. Die elektronische Steuerungsvorrichtung 18, die Diagnoseeinrichtung 19 und entsprechende Temperatursensoren und Drucksensoren sind zur Vereinfachung nicht dargestellt, sind jedoch selbstverständlich ebenfalls entsprechend Fig. 1 vorgesehen. Dabei kann eine gemeinsame Steuerungsvorrichtung und eine gemeinsame Diagnose- einrichtung 19 als zwei separate Einheiten oder als einzige integrierte Einheit vorgesehen sein. Das Verfahren zur Fehlereingrenzung und Diagnose wird nun im Folgenden anhand der beschriebenen pneumatischen Anlage erläutert .FIG. 3 shows an expanded version of the exemplary embodiment according to FIG. 1. In addition to the subsystems 10-14, the pressure source 15 supplies further subsystems 25-32 here. The additional subsystems 25-32 are divided into two groups, each of which is supplied with compressed air via its own flow meter 33, 34. The three partial areas of the system can thus be diagnosed independently of one another by means of the three flow meters 17, 33, 34. The electronic control device 18, the diagnostic device 19 and corresponding temperature sensors and pressure sensors are not shown for the sake of simplicity, but are of course also provided in accordance with FIG. 1. A common control device and a common diagnostic device 19 can be provided as two separate units or as a single integrated unit. The procedure for fault isolation and diagnosis will now be explained below using the pneumatic system described.
In Fig. 4 ist der Fall dargestellt, dass bis zum Zeitpunkt tl die Referenzluftverbrauchskurve Lref mit der gemessenen Luft- verbrauchskurve L übereinstimmt, das heißt, die Differenz bzw. der Differenz-Kurvenverlauf bleibt auf dem Nullwert. Zum Zeitpunkt tl tritt ein Fehler auf, zum Beispiel durch die verzögerte Bewegung des Aktuators in einem der Subsysteme 10- 14, was beispielsweise durch ein kurzzeitiges Klemmen einer Achse hervorgerufen sein könnte. Hierdurch verschiebt und verlängert sich der gesamte Zyklus um die Zeit ?t der verzögerten Bewegung, wobei der Luftverbrauch am Ende des Zyklus mit dem der Referenzluftverbrauchskurve Lref übereinstimmt. Dies deutet darauf hin, dass im Übrigen keine Leckage aufgetreten ist. Aus dem Differenz-Kurvenverlauf kann exakt der Zeitpunkt tl detektiert werden, ab dem die Abweichung aufgetreten ist. Der Diagnoseeinrichtung 19 ist gemäß Fig. 1 sei- tens der elektronischen Steuerungsvorrichtung 18 das Ablaufprogramm zugeführt . Aus diesem kann entnommen werden, welcher Aktor oder welches Subsystem zum Zeitpunkt tl aktiv war. Der Fehler kann somit auf diesen Aktor bzw. dieses Subsysteme eingegrenzt werden. Die Zuordnung der jeweils aktiven Subsy- steme gemäß dem Ablaufprogramm zur Luftverbrauchskurve bzw. zur Referenzluftverbrauchskurve kann grafisch auf dem Display 22 erfolgen oder durch ein Vergleichsprogramm in der Diagnoseeinrichtung 19 ermittelt werden. Das zum Zeitpunkt der Abweichung aktive Subsystem kann dann ebenfalls grafisch ange- zeigt werden.4 shows the case that the reference air consumption curve L ref coincides with the measured air consumption curve L by the time t1, that is to say the difference or the difference curve profile remains at the zero value. An error occurs at time t1, for example due to the delayed movement of the actuator in one of the subsystems 10-14, which could be caused, for example, by briefly jamming an axis. This shifts and extends the entire cycle by the time? T of the delayed movement, the air consumption at the end of the cycle matching that of the reference air consumption curve L ref . This indicates that no leakage has occurred. Exactly the time t1 from which the deviation has occurred can be detected from the difference curve profile. According to FIG. 1, the sequence program is supplied to the diagnostic device 19 by the electronic control device 18. From this it can be seen which actuator or which subsystem was active at time t1. The error can thus be limited to this actuator or this subsystem. The assignment of the respectively active subsystems according to the sequence program to the air consumption curve or to the reference air consumption curve can take place graphically on the display 22 or can be determined by a comparison program in the diagnosis device 19. The subsystem active at the time of the deviation can then also be displayed graphically.
In Fig. 5 ist der Fall dargestellt, dass während des gesamten AblaufProgramms, also während des gesamten Zyklus der Anlage, die Differenz ΔL bis auf einen kleinen Bereich zwischen t2 und t3 ständig zunimmt, sodass am Ende des Zyklus der Gesamt- luftverbrauch L deutlich größer als der Referenzluftverbrauch Lref ist. Der Kurvenverlauf stellt den Fall einer Leckage an einem Aktuator eines Subsystems dar. Dieser ist während des Zyklus teils mit Druck beaufschlagt und teils drucklos. Im drucklosen Zustand ergibt sich konsequenterweise eine Luft- verbrauchsdifferenz von 0 bzw. eine während dieses Zeitintervalls nicht mehr ansteigende Luftverbrauchsdifferenz. Durch Vergleich mit dem Ablaufprogramm wird nun festgestellt, wel- eher Aktuator während dieses Zeitintervalls drucklos und während der übrigen Zeit druckbeaufschlagt war. Die Leckage kann somit auf diesen Aktuator eingegrenzt werden.FIG. 5 shows the case that during the entire sequence program, that is to say during the entire cycle of the system, the difference ΔL down to a small range between t2 and t3 increases continuously, so that at the end of the cycle the total air consumption L is significantly greater than the reference air consumption L ref . The curve shows the case of a leak in an actuator of a subsystem. This is partly pressurized during the cycle and partly pressureless. In the depressurized state, there is consequently an air consumption difference of 0 or an air consumption difference that no longer increases during this time interval. A comparison with the sequence program now determines which actuator was depressurized during this time interval and pressurized during the rest of the time. The leakage can thus be limited to this actuator.
Bei dem in Fig. 6 dargestellten Diagramm tritt in einem Zei- tintervall ab dem Zeitpunkt t4 eine Luftverbrauchsdifferenz zur Referenzluftverbrauchskurve Lref auf und nochmals in einem Zeitintervall ab dem Zeitpunkt t5. Auch hier muss wiederum durch Vergleich mit dem Ablaufprogramm festgestellt werden, welcher Aktor oder welches Subsystem in diesen beiden Zeitin- tervallen ab dem Zeitpunkt t4 und t5 aktiv waren. Diese werden dadurch als fehlerhaft erkannt, wobei es sich auch um denselben Aktor bzw. dasselbe Subsystem handeln kann, die während des AblaufProgramms zweimal in Aktion treten. Nach der ersten Abweichung ab dem Zeitpunkt t4 wird ein neuer Re- ferenzwert für den Luftverbrauch gebildet, der sich aus dem alten Referenzwert (0) und dem neuen Offset im Luftverbrauch ergibt . Im folgenden Zyklus wird der gemessene Luftverbrauch mit dem neuen Referenzwert auf Abweichungen geprüft. Somit ist bei einem erneuten Fehler des gleichen Subsystems oder eines anderen Subsystems der Fehler wieder bestimmbar. Die Schranken für eine zulässige Luftverbrauchsänderung können fest gewählt oder entsprechend den aktuellen Werten des Luft- verbrauchs variabel gehalten werden. So ist es einerseits möglich, im Bereich eines kleinen Luftverbrauchs zum Zyklus- beginn sehr enge Schranken zu wählen, um eine sehr hohe Empfindlichkeit zu bekommen, und andererseits im Bereich eines hohen LuftVerbrauchs am Ende des Zyklus grobe Schranken zu wählen, um robust gegen Fluktuation und Messfehler zu sein.In the diagram shown in FIG. 6, an air consumption difference to the reference air consumption curve L ref occurs in a time interval from time t4 and again in a time interval from time t5. Again, it must be determined by comparison with the sequence program which actuator or which subsystem were active in these two time intervals from time t4 and t5. As a result, these are recognized as faulty, which can also be the same actuator or the same subsystem that comes into action twice during the sequence program. After the first deviation from time t4, a new reference value for air consumption is formed, which results from the old reference value (0) and the new offset in air consumption. In the following cycle, the measured air consumption is checked for deviations using the new reference value. This means that if the same subsystem or another subsystem fails again, the error can be determined again. The barriers for a permissible change in air consumption can be fixed or can be kept variable in accordance with the current air consumption values. On the one hand, it is possible to cycle in the area of a small air consumption begin to choose very narrow bounds to get a very high sensitivity, and on the other hand, in the area of high air consumption at the end of the cycle, choose rough bounds to be robust against fluctuation and measurement errors.
Um Abweichungen von der Referenzluftverbrauchskurve Lref aufgrund von Temperatureinflüssen und Druckeinflüssen zu vermeiden, werden die Durchflussmesswerte bzw. Luftverbrauchswerte einer Temperaturkorrektur und einer Druckkorrektur unterwor- fen, wobei die entsprechenden Messgrößen vom Temperatursensor 20 und dem Drucksensor 21 zur Verfügung gestellt werden. In einer einfacheren Ausführung kann auch nur eine Temperaturkompensation oder nur eine Druckkompensation vorgesehen sein, oder es wird auf jegliche Kompensation verzichtet, insbeson- dere auch dann, wenn die zu erwartenden Druck- und Temperatureinflüsse nicht sehr groß sind.In order to avoid deviations from the reference air consumption curve L ref due to temperature influences and pressure influences, the flow measurement values or air consumption values are subjected to a temperature correction and a pressure correction, the corresponding measurement variables being made available by the temperature sensor 20 and the pressure sensor 21. In a simpler embodiment, only a temperature compensation or only a pressure compensation can be provided, or any compensation is dispensed with, in particular even if the pressure and temperature influences to be expected are not very great.
Da zum erfindungsgemäßen Verfahren in Bezug auf die Hardware lediglich ein zusätzlicher Durchflussmesser erforderlich ist, können auch bereits installierte Anlagen in einfacher Weise nachgerüstet werden. Das erfindungsgemäße Diagnoseverfahren kann dann durch eine Software-Ergänzung realisiert werden. Since only an additional flow meter is required for the method according to the invention with regard to the hardware, already installed systems can also be retrofitted in a simple manner. The diagnostic method according to the invention can then be implemented by adding software.

Claims

Ansprüche Expectations
1. Verfahren zur Fehlereingrenzung und Diagnose an einer fluidischen Anlage, wobei der Fluidverbrauch (L) wenigstens eines Bereichs der Anlage erfasst und betriebszyklusabhängig mit einem entsprechenden gespeicherten Referenzverbrauch (Lref) verglichen wird, wobei jeweils zum Zeitpunkt einer Verbrauchs-Abweichung (ΔL) oder bei ständiger Verbrauchs- Abweichung zum Zeitpunkt einer Beendigung der Verbrauchs- Abweichung festgestellt wird, bei welchem System und/oder Subsystem (10-14, 25-32) der Anlage zu diesem Zeitpunkt ein den Fluidverbrauch beeinflussender Vorgang stattgefunden hat, und wobei dieses System und/oder Subsystem (10-14, 25-32) da- durch als fehlerbehaftet erkannt wird.1. A method for error limitation and diagnosis in a fluidic system, wherein the fluid consumption (L) of at least one area of the system is recorded and compared with the operating cycle depending on a corresponding stored reference consumption (L ref ), at the time of a consumption deviation (ΔL) or in the event of a constant consumption deviation at the time of a termination of the consumption deviation, it is determined in which system and / or subsystem (10-14, 25-32) of the system a process affecting fluid consumption has taken place at that time, and wherein this system and / or subsystem (10-14, 25-32), which means that it is recognized as faulty.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der erfasste Fluidverbrauch (L) und der gespeicherte Referenzverbrauch (Lref) als Kurvenverläufe vorliegen, die insbe- sondere durch Summierung oder Integration von Durchflusswerten erzeugt werden.2. The method according to claim 1, characterized in that the detected fluid consumption (L) and the stored reference consumption (L ref ) are present as curves which are generated in particular by summing or integrating flow values.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die Differenzwerte (ΔL) oder Differenz- Kurvenverläufe zwischen Fluidverbrauch (L) und Referenzverbrauch (Lref) gebildet werden.3. The method according to claim 1 or 2, characterized in that the difference values (ΔL) or difference curves between fluid consumption (L) and reference consumption (L ref ) are formed.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Feststellung des oder der feh- lerbehafteten Systeme und/oder Subsysteme (10-14, 25-32) zum4. The method according to any one of the preceding claims, characterized in that for the detection of the defective systems and / or subsystems (10-14, 25-32) for
Zeitpunkt der Verbrauchs-Abweichung (ΔL) oder Beendigung einer ständigen Verbrauchs-Abweichung ein zeitlicher Vergleich mit dem Ablaufprogramm der AnlageSteuerung (18) durchgeführt wird. When the consumption deviation (ΔL) or the end of a constant consumption deviation, a time comparison is carried out with the sequence program of the system control (18).
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Feststellung des oder der fehlerbehafteten Systeme und/oder Subsysteme zum Zeitpunkt der Verbrauchs-Abweichung oder Beendigung einer ständigen Verbrauchs-Abweichung überprüft wird, welche Steuersignale für Systeme oder Subsysteme und/oder Sensorrückmeldungen unmittelbar vor diesem Zeitpunkt aufgetreten sind, und welchen Systemen und/oder Subsystemen sie zugeordnet waren.5. The method according to any one of the preceding claims, characterized in that the control signals for systems or subsystems and / or sensor feedback is checked to determine the faulty systems and / or subsystems at the time of the consumption deviation or the end of a constant consumption deviation occurred immediately before this point in time and to which systems and / or subsystems they were assigned.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich vor oder während der Verbrauchs-Diagnose die Verfahr- und/oder Positionierzeiten der Systeme und/oder Subsysteme anhand von gespeicherten Re- ferenzwerten überprüft werden.6. The method according to any one of the preceding claims, characterized in that the travel and / or positioning times of the systems and / or subsystems are additionally checked before or during the consumption diagnosis on the basis of stored reference values.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass bei Auftreten von Fehlern bei den Verfahr- und/oder Positionierzeiten die Verbrauchs-Diagnose entfällt.7. The method according to claim 6, characterized in that the consumption diagnosis is omitted if errors occur in the travel and / or positioning times.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Fluidverbrauch mehrerer Bereiche der fluidischen Anlage mittels mehrerer Durchflussmes- seinrichtungen (17, 33, 34) erfasst und diagnostiziert wird.8. The method according to any one of the preceding claims, characterized in that the fluid consumption of several areas of the fluidic system by means of several flow measuring devices (17, 33, 34) is detected and diagnosed.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich noch die Temperatur und/oder der Druck des Fluids erfasst wird.9. The method according to any one of the preceding claims, characterized in that the temperature and / or the pressure of the fluid is additionally detected.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der gemessene Fluidverbrauch (L) in Abhängigkeit der Temperatur und/oder des Drucks korrigiert wird. 10. The method according to claim 9, characterized in that the measured fluid consumption (L) is corrected as a function of the temperature and / or the pressure.
PCT/EP2004/004050 2004-04-16 2004-04-16 Method for fault localisation and diagnosis in a fluidic installation WO2005111433A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK04727868.4T DK1747380T3 (en) 2004-04-16 2004-04-16 Method for delineating errors and diagnosis in a fluid system
AT04727868T ATE515638T1 (en) 2004-04-16 2004-04-16 METHOD FOR TROUBLESHOOTING AND DIAGNOSIS IN A FLUIDIC SYSTEM
EP04727868A EP1747380B1 (en) 2004-04-16 2004-04-16 Method for fault localisation and diagnosis in a fluidic installation
PCT/EP2004/004050 WO2005111433A1 (en) 2004-04-16 2004-04-16 Method for fault localisation and diagnosis in a fluidic installation
CN200480043369.5A CN1973136B (en) 2004-04-16 2004-04-16 Method for fault localisation and diagnosis in a fluidic installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2004/004050 WO2005111433A1 (en) 2004-04-16 2004-04-16 Method for fault localisation and diagnosis in a fluidic installation

Publications (1)

Publication Number Publication Date
WO2005111433A1 true WO2005111433A1 (en) 2005-11-24

Family

ID=34957275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/004050 WO2005111433A1 (en) 2004-04-16 2004-04-16 Method for fault localisation and diagnosis in a fluidic installation

Country Status (5)

Country Link
EP (1) EP1747380B1 (en)
CN (1) CN1973136B (en)
AT (1) ATE515638T1 (en)
DK (1) DK1747380T3 (en)
WO (1) WO2005111433A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098588A1 (en) 2007-02-14 2008-08-21 Festo Ag & Co. Kg Method for fault localization and diagnosis in a fluidic installation
WO2008098589A1 (en) * 2007-02-14 2008-08-21 Festo Ag & Co. Kg Method for fault localization and diagnosis in a fluidic installation
WO2013135382A1 (en) * 2012-03-15 2013-09-19 Festo Ag & Co. Kg Fluid system and method for operating a fluid system
IT201800007875A1 (en) * 2018-08-06 2020-02-06 Gd Spa A diagnostic method and an operating unit of a production line for smoking articles
US10634243B2 (en) 2016-05-09 2020-04-28 J. Schmalz Gmbh Method for monitoring functional states a pressure driven actuator and pressure-actuatable actuator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533881B (en) * 2014-12-04 2016-09-21 上海中联重科桩工机械有限公司 System and method for judging walking deviation reason of engineering machinery
CN107420381B (en) * 2017-03-17 2018-11-23 北京交通大学 A kind of caliberating device of servo valve temperature screen system
CN109325692B (en) * 2018-09-27 2021-01-22 清华大学合肥公共安全研究院 Real-time data analysis method and device for water pipe network
FR3107955A1 (en) * 2020-03-05 2021-09-10 Sagemcom Energy & Telecom Sas Detection of an abnormal metrological drift of a fluid meter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628221A1 (en) * 1996-07-15 1998-04-23 Festo Ag & Co Method and device for determining operating positions of a work device
US5893047A (en) * 1994-01-12 1999-04-06 Drallium Industries, Ltd Monitoring apparatus and method
DE10052664A1 (en) * 2000-10-24 2002-05-08 Festo Ag & Co Industrial process, monitoring device e.g. designed as, or equipped with, micro-computer, has signaling device for indicating out-of-tolerance deviations
US20030125841A1 (en) * 2001-12-20 2003-07-03 Festo Ag & Co. Diagnostic device for a fluidic device and a fluidic device equipped therewith

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136499A (en) * 1986-07-07 1992-08-04 Rydborn S A O Monitoring for distinguishing normal from abnormal deviations in a knitting machine
US5067099A (en) * 1988-11-03 1991-11-19 Allied-Signal Inc. Methods and apparatus for monitoring system performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5893047A (en) * 1994-01-12 1999-04-06 Drallium Industries, Ltd Monitoring apparatus and method
DE19628221A1 (en) * 1996-07-15 1998-04-23 Festo Ag & Co Method and device for determining operating positions of a work device
DE10052664A1 (en) * 2000-10-24 2002-05-08 Festo Ag & Co Industrial process, monitoring device e.g. designed as, or equipped with, micro-computer, has signaling device for indicating out-of-tolerance deviations
US20030125841A1 (en) * 2001-12-20 2003-07-03 Festo Ag & Co. Diagnostic device for a fluidic device and a fluidic device equipped therewith

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098588A1 (en) 2007-02-14 2008-08-21 Festo Ag & Co. Kg Method for fault localization and diagnosis in a fluidic installation
WO2008098589A1 (en) * 2007-02-14 2008-08-21 Festo Ag & Co. Kg Method for fault localization and diagnosis in a fluidic installation
US7941290B2 (en) 2007-02-14 2011-05-10 Festo Ag & Co. Kg Method for error containment and diagnosis in a fluid power system
TWI424953B (en) * 2007-02-14 2014-02-01 Festo Ag & Co Method for fault localization and diagnosis in fluidic installation
WO2013135382A1 (en) * 2012-03-15 2013-09-19 Festo Ag & Co. Kg Fluid system and method for operating a fluid system
US10303145B2 (en) 2012-03-15 2019-05-28 Festo Ag & Co. Kg Fluid system and method for operating a fluid system
US10634243B2 (en) 2016-05-09 2020-04-28 J. Schmalz Gmbh Method for monitoring functional states a pressure driven actuator and pressure-actuatable actuator
EP3243608B1 (en) * 2016-05-09 2022-04-06 J. Schmalz GmbH Method for monitoring the functioning states of a pressure driven actuator and pressure driven actuator
IT201800007875A1 (en) * 2018-08-06 2020-02-06 Gd Spa A diagnostic method and an operating unit of a production line for smoking articles

Also Published As

Publication number Publication date
EP1747380A1 (en) 2007-01-31
CN1973136A (en) 2007-05-30
ATE515638T1 (en) 2011-07-15
CN1973136B (en) 2014-09-24
EP1747380B1 (en) 2011-07-06
DK1747380T3 (en) 2011-09-26

Similar Documents

Publication Publication Date Title
WO2008098588A1 (en) Method for fault localization and diagnosis in a fluidic installation
EP2587329B1 (en) Support for troubleshooting an industrial assembly
DE4218320A1 (en) Method and device for testing a valve driven by a medium
DE19723650B9 (en) Method and device for monitoring an actuator
WO2008009703A1 (en) Device and method for the determination of vertical positions
EP1552128B1 (en) Method, control appliance and computer program for detecting defective pressure sensors in an internal combustion engine
EP2417364B1 (en) Position measuring device for capturing the position of at least one actuator of a fluidic system without a position sensor
EP2047118B1 (en) Method for fault localization and diagnosis in a fluidic installation
EP3631593B1 (en) Monitoring device and method for monitoring a system
EP3546763B1 (en) Detection of maintenance conditions of valves
DE102005016786A1 (en) Method and apparatus for diagnosing a leak in a fluid power system
EP1747380B1 (en) Method for fault localisation and diagnosis in a fluidic installation
DE19628221C2 (en) Method and device for determining operating positions of a work device
EP2483546A1 (en) System and method for measuring injection processes in a combustion engine
DE19927372C2 (en) Method and device for detecting a malfunction of actuators
AT405384B (en) ARRANGEMENT AND METHOD FOR HYDRAULICALLY ACTUATING MOVABLE PARTS
DE102006021306B3 (en) Method for diagnosis and control device for controlling a motor vehicle
DE102014214452B3 (en) Method and device for detecting a faulty rail pressure sensor
DE102008028899A1 (en) Automated manual transmission operating method for internal combustion engine of vehicle, involves determining whether geometry of transmission corresponds with values of geometry stored in controller
EP1313936B1 (en) Method and device for controlling an internal combustion engine
EP3575909B1 (en) Method for monitoring a plurality of mechanical systems
DE102012014493A1 (en) Method and device for redundantly detecting a direction of rotation
EP2203649B1 (en) Method and device for indicating the position of hydraulically activated armatures
DE102014225867A1 (en) Device and method for checking a working clock signal of a position-measuring device
EP2926014B1 (en) Method and device for position display of hydraulically actuated fittings

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480043369.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004727868

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004727868

Country of ref document: EP