[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005106410A1 - 点光源とそれを備えた光学的装置 - Google Patents

点光源とそれを備えた光学的装置 Download PDF

Info

Publication number
WO2005106410A1
WO2005106410A1 PCT/JP2005/008153 JP2005008153W WO2005106410A1 WO 2005106410 A1 WO2005106410 A1 WO 2005106410A1 JP 2005008153 W JP2005008153 W JP 2005008153W WO 2005106410 A1 WO2005106410 A1 WO 2005106410A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
point
housing
optical
Prior art date
Application number
PCT/JP2005/008153
Other languages
English (en)
French (fr)
Inventor
Harumi Uenoyama
Naokichi Katade
Yasuo Sakaue
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Publication of WO2005106410A1 publication Critical patent/WO2005106410A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry

Definitions

  • the present invention relates to a point light source used for various optical devices, and an optical device such as an optical measuring device and a lighting device using the same.
  • FIG. 8 shows an example of a light source used in an optical measurement device.
  • a light emitting element such as an LED (light emitting diode) or an LD (laser diode) is used in addition to a light source using a filament as a light emitting body.
  • (A) shows a light source using a filament as a luminous body.
  • a reflecting mirror 52 is disposed behind the filament 50, and the light emitted from the filament 50 forwards. The light collected by the reflector 52 is extracted forward.
  • (B) is provided with a light emitting element 54 such as an LED or an LD and a reflecting mirror 56.
  • a light emitting element 54 such as an LED or an LD
  • a reflecting mirror 56 In this case also, in order to increase the amount of light, the light emitted forward from the light emitting element 54 and the reflecting mirror 56 are used. The light collected at 56 is extracted forward.
  • (C) shows an example of a multicolor light source.
  • Three types of LDs and LEDs having different emission wavelengths are arranged as the light emitting elements 58a to 58c, and the light from the light emitting elements 58a to 58c is arranged on the same optical axis in order to arrange the light from the light emitting elements 58a to 58c on the same optical axis.
  • Half mirrors 60a and 60b are provided.
  • the light-emitting element 58b is arranged so that the light emitted from the light-emitting element 58a is reflected by the half mirror 60a and is located on the optical axis of the light, and the light-emitting element 58c is reflected on the half-mirror 60b to be on the same optical axis. It is arranged so that it may come.
  • a measuring device for performing measurement at a plurality of wavelengths there is a device in which a plurality of LDs having different oscillation wavelengths are respectively arranged toward a sample (see Patent Document 1). However, since the optical axis of each LD force is coincident, the different locations of the sample are measured at the same time.
  • the target object is illuminated by moving a reflecting mirror that places light from a plurality of light sources having different oscillation wavelengths on one optical axis.
  • a device in which the wavelength of light is selected see Patent Document 2;).
  • FIG. 9 shows an example of another conventional measuring device for performing measurement at a plurality of wavelengths.
  • (A) is an example of an absorptiometer, in which light from a light source 62 that generates light of multiple wavelengths is split by a diffraction grating 64 and is incident on the sample 20 as incident light of a predetermined wavelength.
  • the light transmitted through the sample 20 is detected by the photodetector 22, and its output is taken into the measuring electrical system 24a to determine the absorbance.
  • the incident wavelength is switched by the rotation of the diffraction grating 64.
  • (B) uses a filter rotor 66 provided with a plurality of filters having different transmission wavelengths as spectral means.
  • Light from a light source 62 that generates light of multiple wavelengths is converted into light of a predetermined wavelength by a selected filter in a filter rotor 66 and enters the sample 20.
  • (C) uses the multicolor light source shown in Fig. 8 (C).
  • the light emitting elements 58a to 58c are switched and turned on, the wavelength of light transmitted through the sample is switched.
  • (D) similarly uses a multicolor light source.
  • light from the light emitting elements 58a to 58e having different emission wavelengths are respectively incident on the optical fibers 70a to 70e by the lenses 68a to 68e and guided to the sample 20.
  • the optical fibers 70a to 70e are combined into one at the light emission side, and enter the same position on the sample 20.
  • the absorbance in multiple colors is measured by switching the lighting of the light emitting elements 58a to 58e.
  • FIG. 10 shows a conventional spectral colorimeter.
  • the light from the light source 62 enters the integrating sphere 74 together with the light reflected by the reflecting mirror 72.
  • the integrating sphere 74 is provided with a sample 76 and a light outlet 78, and the reflected light from the sample 76 enters the diffraction grating 80 from the light outlet 78, is separated, and is incident on the photodiode array 82.
  • the photodiode array 82 detects multiple wavelengths simultaneously, and the measurement electrical system 84 measures the spectral reflectance.
  • FIG. 11 shows a multicolor lighting device.
  • a multicolor light source shown in FIG. 8 (C) is used, and the light from the object 42 is imaged by the CCD camera 44 when the light emitting elements 58a to 58c are sequentially turned on, and the inspection of the object 42 is performed. And identification is performed.
  • FIG. 12 shows a traffic light.
  • One light source 90 is provided for each of the red, yellow, and blue signal display sections 43R, 43Y, and 43B, and the traffic of people and vehicles is controlled by turning on each light source 90 sequentially.
  • Patent Document 1 JP-A-9-105717
  • Patent Document 2 JP-A-9-173323
  • a point light source is preferable.
  • a point light source if the light from the light source is focused on an object using an optical element such as a lens, a minute area on the object can be illuminated with a large amount of light, and high-sensitivity measurement can be performed. Can do it.
  • a light source that collects light with a reflector as shown in Figs. 8 (A) and 8 (B) is not a power point light source that is convenient for increasing the amount of light. If a pinhole filter is provided on the light emission side for a point light source, the light intensity will decrease.
  • a first object of the present invention is to provide a point light source capable of obtaining a large amount of light.
  • a spectral unit is required, or a half mirror is required.
  • An optical system such as an optical fiber is required, and the light source becomes large.
  • a second object of the present invention is to provide a compact multicolor light source.
  • a third object of the present invention is to provide an optical device which is compact and can perform measurement and illumination with a large amount of light.
  • a fourth object of the present invention is to provide an optical device capable of performing measurement and illumination at a plurality of wavelengths and suitable for miniaturization.
  • a point light source for achieving the first object has a housing having a hollow interior, and an inner wall surface of the hollow having a concave curved surface having a high reflectivity; It is formed as one or more holes communicating from the cavity to the outside, and the size of the holes is small enough to be regarded as a point.
  • the expression "light exit small enough to be regarded as a point” means that the point light source of the present invention has a light exit point as a light emitting point, and thus has a size that can be regarded as a point light source. It describes the size of a light exit. Therefore, the size can be changed according to the size of the point light source and the light output intensity required by the use such as a measuring device and a lighting device.
  • the size of the hole at the light outlet is 0.01 to 2 mm, preferably 0.1 to 1 mm in diameter. It can also be determined according to the size of the internal cavity.
  • the size of the hole at the light exit is 1Z8 or less, preferably 6% or less, of the maximum diameter of the internal cavity.
  • the size of the light exit hole is not limited to a uniform one and can be increased beyond the above range as the size allowed by the application increases.
  • the luminous body a filament, an LED or an LD is suitable.
  • a plurality of types of light-emitting bodies having different emission wavelengths using LEDs or LDs!
  • the point light source according to the present invention for achieving the second object has a light emitting wavelength of an LED or LD as an illuminant so that light of a specific wavelength can be selectively output.
  • a plurality of different types are arranged.
  • the luminous body is provided integrally with an optical filter corresponding to each emission wavelength.
  • the luminescence of each luminous energy may be emitted through the respective filters.
  • the light scatterer may be arranged on the inner surface of the housing, in the cavity, or both.
  • the light scatterer for example, a sphere or powder of glass or metal can be used.
  • an optical element or a light scatterer may be provided outside the housing to adjust the trajectory of the emitted light beam with the vicinity of the light exit as a focal point or an object point.
  • One aspect of the optical device of the present invention for achieving the third object is a light source, and light transmitted by the measurement target when the light of the light source power is irradiated on the measurement target. , Reflected and scattered light, and light that detects at least one of fluorescence from the measurement object
  • An optical measuring device comprising a detector and a point light source according to the present invention as a light source.
  • Another aspect of the optical device of the present invention for achieving the third object is a lighting device for illuminating an object with light having a light source, which is provided with the point light source of the present invention as a light source. is there.
  • An optical device for achieving the fourth object is the above-mentioned optical measuring device or lighting device, wherein the light source is provided with a plurality of types of light emitters having different emission wavelengths.
  • a light source is a multicolor light source by selectively causing light emitters having different emission wavelengths to emit light at different times.
  • the light generated by the luminous power is reflected on the inner wall surface of the cavity, and then the light output is also emitted.
  • the inner wall surface has a high reflectance, light attenuation is suppressed, and light from the light emitting element can be effectively extracted.
  • the luminous body is arranged in a direction that does not directly oppose the light exit, the light directly traveling from the luminous body toward the light exit is reflected at least once by the inner wall surface of the concave curved surface. Since the light is diverged or diffused, emitted light having a spatial distribution diverging from one point can be obtained from the light outlet. Also, in the case of an LD with a luminous body having coherence, it is also suitable as a measurement light source in which the coherence is reduced or eliminated by being reflected and diverged or diffused on the inner wall surface of the concave curved surface, and the coherence becomes an obstacle. It becomes.
  • An optical filter corresponding to each emission wavelength is provided integrally with the luminous body, and light emission from each luminous body is emitted through the respective filter. Therefore, even when the light emission wavelength changes due to a temperature change using a light emitting element such as an LED or an LD, it is possible to keep the wavelength of the extracted light constant, including the light exit force.
  • the amount of light emitted from the point light source can be increased.
  • the divergence or diffusion of light in the internal cavity is promoted, the spatial distribution of light emitted from the light exit is further improved, and coherence is improved. It is more effective in eliminating.
  • an optical element for adjusting the trajectory of the emitted light beam with the vicinity of the light exit as a focal point or an object point is arranged outside the housing, the light having this point light source power is extracted as parallel light, or this light is emitted onto the measurement object.
  • An image of a point light source can be formed, and light can be scattered in a desired direction.
  • the measuring device is provided with the point light source of the present invention as a light source, measurement can be performed with a large amount of light with a small measuring device, and the S / N (signal-to-noise) ratio can be improved. Measurement can be performed, and if the point light source of the present invention is provided as a light source of the illumination device, bright illumination can be performed with a small illumination device.
  • multi-wavelength measurement can be performed with a small measuring device.
  • Multi-wavelength illumination can be performed with a small illumination device.
  • FIG. 1 schematically shows a point light source according to one embodiment.
  • (A) is a side sectional view
  • (B) is a front sectional view.
  • the housing 2 has a hollow inside, and the inner wall surface of the hollow 4 is a concave curved surface having high reflectance.
  • the shape of the cavity 4 is not particularly limited, but may be a concave curved surface such as a sphere or an oval sphere to which light can be reflected and diverged. In this embodiment, an almost spherical one is exemplified.
  • the housing 2 is formed with one or a plurality of light outlets 6 communicating from the internal cavity 4 to the outside. Although the number of light outlets 6 is one in the embodiment, a plurality of light outlets 6 may be provided according to the purpose.
  • the size of the hole of the light outlet 6 is small enough to be regarded as a point light source, and is preferably set to a size in the range of 0.01 to 2 mm in diameter.
  • a plurality of luminous bodies 8 arranged in a direction not directly facing the light outlet 6 are arranged.
  • the luminous body 8 may be a filament other than the LED and the LD. When a plurality of types having different emission wavelengths are used, an LED or an LD can be used as the illuminant.
  • the luminous bodies 8 are evenly arranged on the circumference along the inner wall surface in a plane perpendicular to the axis passing through the hole of the light outlet 6.
  • FIG. 2 shows the housing 2 in further detail.
  • (A) is a portion 2a provided with the light outlet 6, and
  • (B) is a portion 2b opposed thereto.
  • the housing 2 includes two housing portions 2a and 2b forming a cavity 4, and both the housing portions 2a and 2b are each formed with a hemispherical concave portion.
  • a light outlet 6 is opened at the center of the bottom of the concave portion of the housing part 2a, and a groove 10 for arranging the light emitter along a circumference parallel to the edge of the opening is formed near the opening. Puru.
  • the surface of the concave portion of the housing portion 2a is treated so as to have a high reflectance!
  • a housing having a spherical cavity 4 therein is formed.
  • the cavity 4 formed inside the housing by joining the two housing portions 2a and 2b is, for example, a sphere having a diameter of 16 mm.
  • Both housing portions 2a and 2b can be manufactured by cutting a metal block, or by forming a metal mold product and applying a metal film plating to increase the reflectivity on the concave wall surface.
  • a groove 10 for arranging the luminous body in the internal cavity is formed in the housing portion 2a in the vicinity of the opening of the recess by a plane V perpendicular to an axis 6a passing from the light outlet 6 to the center of the opening of the recess. It is formed along the circumference where the inner wall faces intersect. Light emitting bodies such as LEDs and LDs are evenly arranged along the groove 10 so as to face in a direction opposite to the light outlet 6.
  • the groove 10 can be formed by, for example, counterboring with a depth of about lmm. Screw holes 12 and through holes 14 for joining and fixing are formed in the housing portions 2a and 2b, respectively.
  • LEDs or LDs of three primary colors of red (R), green (G), and blue (B) can be arranged evenly.
  • Light emission operation of luminous body 8 for each type At different timings.
  • the light from the luminous body 8 is reflected on the inner wall surface of the cavity 4 and diverges or diffuses, and preferably exits from the light outlet 6 after being reflected in multiples.
  • Light exit 6 force
  • the emitted light is divergent light.
  • an optical element such as a ball lens for making parallel light can be arranged near the light outlet 6. If the focal point of the optical element is arranged near the light exit 6, the outgoing light beam extracted through the optical element can be converted into a parallel light beam.
  • the object point of the optical element arranged near the light exit 6 is arranged so as to be near the light exit 6, the image of the light exit 6 can be formed on the object.
  • FIG. 3 shows an example in which this point light source is used in an absorptiometer.
  • Light from the light source 1 is incident on the measurement cell 20 as parallel light via an appropriate optical element such as a ball lens.
  • Light transmitted through the sample in the measurement cell 20 is detected by the photodetector 22 and detected as an absorbance by the electric measurement system 24a.
  • the light source 1 is provided with a plurality of LEDs or LDs having different light emission wavelengths.
  • the light sources having different light emission wavelengths are driven at different timings, whereby the wavelength of light incident on the measurement cell 20 is switched.
  • the absorbance at each wavelength is measured. This enables measurement at multiple wavelengths without using a spectroscope, and enables measurement of multiple items.
  • FIG. 4 shows a reflection photometer or a colorimeter as an example of another measuring device.
  • the light source 1 is placed in the entrance hole of the integrating sphere 26, and the sample 28 is placed at a position facing the entrance hole.
  • a light detector 30 is arranged on a part of the integrating sphere 26 to receive the reflected light from the sample 28.
  • the detection signal of the photodetector 30 is taken into the measurement electrical system 24b, and the reflectance is obtained.
  • the light source 1 can switch and generate light of multiple wavelengths. Light from light source 1 is reflected by sample 28, and after multiple reflections in integrating sphere 26, multiple The reflectance at the wavelength is measured.
  • the spectral type measures the spectral reflectance of a sample and obtains tristimulus values by numerically applying the spectral characteristics of the light source and the observer given as data to the measured spectral reflectance. Also in this example, even if a spectroscope is not used, the light source 1 generates multi-wavelength light at different timings, so that a spectral colorimeter can be realized.
  • FIG. 5A shows an example of application to a fluorometer and a Raman scattered light meter.
  • Light from the light source 1 which is arranged at the light entrance of the integrating sphere 26 and can generate multi-wavelength light at different timings is incident on a sample 28 placed in the opening of the integrating sphere 26.
  • Optical power reflected in the integrating sphere 26 and incident on the photodetector system 34 Fluorescent or Raman scattered light is detected.
  • the detection output of the photodetector system 34 is taken into the measurement electrical system 24c, and the intensity of the fluorescent or Raman scattered light is measured.
  • the incident light contains excitation light including fluorescence and Raman scattering light.
  • a Noria filter 36 and a bandpass filter 38 are arranged on the incident side of the photodetector 40.
  • the Noria filter 36 blocks excitation light and transmits light having a wavelength of fluorescence or Raman scattering light.
  • the band-pass filter 38 has a transmission band for transmitting light having a wavelength of fluorescence or Raman scattered light set according to the substance to be measured. The light from which the excitation light has been removed enters the light detector 40.
  • the light source 1 by switching the emission wavelength of the light source 1, light of multiple wavelengths enters the sample 28 at different timings, and fluorescence or Raman scattered light generated from the sample 28 is detected. Also in this case, the light source 1 can generate light of multiple wavelengths at different timings without using a spectroscope, so that measurement of multiple items can be performed.
  • FIG. 6 shows a multicolor illumination device as another example of the applied optical device.
  • FIG. 7 shows a traffic light as another example of the applied optical device. It comprises one signal display section 43 and one light source 1. A light source 1 that can sequentially generate red, yellow, and blue light is used. Light from the light source 1 diverges and irradiates the signal display unit 43, where it is scattered. The light source 1 may have one or more light outlets. In the signal display unit 43, it is preferable to dispose a light scatterer in the signal display unit 43 so that a lateral force that is not only at the front of the signal display unit 43 on the optical axis of the light source 1 can be easily seen.
  • a device that generates a mixed light of a plurality of wavelengths or a device that generates a light of a single wavelength may be used as the light source 1. In that case, even a small optical device can emit strong light.
  • the housing parts 2a and 2b of the housing 2 are manufactured by cutting a metal block, and the internal cavity 4 when the housing parts 2a and 2b are combined to form the housing 2 has a spherical reflector 16 mm in diameter. It has become.
  • the light exit 6 is a cylindrical hole having a diameter of 0.7 mm and a depth of 4 mm.
  • the luminous body 8 three LEDs of three primary colors of red (R), green (G), and blue (B) were equally arranged by three.
  • a CCD camera 100 was used as a measuring element, and a light receiving surface was arranged at a position 70 mm in front of the light outlet 6 of the light source with the light receiving surface facing the light outlet 6.
  • 104 is a lead wire of the CCD camera 100.
  • the light output distribution in the X direction was measured on the light receiving surface of the CCD camera 100.
  • the LED was illuminated by applying a current of 20 mA per LED and emitted for each color.
  • the results are shown in FIGS. 14A to 14C for each of the three colors.
  • the center of the light exit 6 is the optical axis of the output light, and the point 102 where the optical axis intersects the light receiving surface of the CCD camera 10 is defined as the origin in the X direction, and the distance from the origin is viewed from the light exit 6 through the CCD camera 100.
  • the light source has a symmetrical distribution around the optical axis and the structural force of the light source.
  • the direction also has the same relative light output distribution as shown in FIG.
  • the directional characteristics of the light output shown in FIG. 14 vary depending on the shape and size of the internal cavity 4 and the size and depth of the diameter of the light outlet 6.
  • the light source of the present invention can be used as a light source for various optical measuring devices and lighting devices for medical use, chemical analysis, environmental measurement, and the like.
  • FIG. 1 schematically shows a point light source according to one embodiment, where (A) is a side sectional view and (B) is a front sectional view.
  • FIG. 2 is a diagram showing the housing in detail, where (A) is a portion provided with a light outlet, and (B) is a portion facing the light outlet. It is sectional drawing.
  • FIG. 3 is a schematic configuration diagram showing an absorptiometer as one example of an optical device.
  • FIG. 4 is a schematic configuration diagram showing a reflection photometer or a colorimeter as another embodiment of the optical device.
  • FIG. 5A is a schematic configuration diagram showing a fluorimeter or a Raman scattered light meter as still another embodiment of the optical device
  • FIG. 5B is an example of a photodetector system in the embodiment.
  • FIG. 6 is a schematic configuration diagram showing a multicolor illumination device as still another embodiment of the optical device.
  • FIG. 7 is a diagram showing a traffic signal as still another embodiment of the optical device, where (A) is a plan view and (B) is a schematic sectional view.
  • 8 (A) to 8 (C) are each a schematic configuration diagram showing a conventional light source.
  • FIG. 9 (A) to (D) are each a schematic configuration diagram showing a conventional optical measuring device.
  • FIG. 10 is a schematic configuration diagram showing a conventional colorimeter.
  • FIG. 11 is a schematic configuration diagram showing a conventional multicolor illumination device.
  • FIG. 12 is a diagram showing a conventional traffic signal, where (A) is a plan view and (B) is a schematic cross-sectional view of one signal light.
  • FIG. 13 is a plan view showing a measuring device for measuring the directional characteristics of the light source according to the embodiment.
  • FIG. 14 is a diagram showing the results of the directional characteristics of the light source according to one embodiment. Explanation of reference numerals

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

  【課題】  小型の多色光源を提供する。   【解決手段】  筐体2は内部が空洞で、その空洞4の内壁面が高反射率をもつ凹状曲面となっている。筐体2には内部空洞4から外部に通じる1又は複数個の光出口6が形成されている。光出口6の穴の大きさは点光源とみなしうる程度の微小な大きさである。空洞4内には光出口6に直接対向しない方向に向けて配置された複数個の発光体8が配置されている。発光体8は光出口6の穴を通る軸に垂直な平面内で、内壁面に沿った円周上に均等に並べられている。

Description

明 細 書
点光源とそれを備えた光学的装置
技術分野
[0001] 本発明は各種光学装置に使用される点光源と、それを用いた光学的測定装置や 照明装置などの光学的装置に関するものである。
背景技術
[0002] 光学的測定装置に使用される光源の例を図 8に示す。光源としては、フィラメントを 発光体とする光源のほか、 LED (発光ダイオード)や LD (レーザダイオード)などの発 光素子が使用されている。
[0003] (A)はフィラメントを発光体とする光源を示したものであり、光量を増大するために、 フィラメント 50の後方に反射鏡 52が配置され、フィラメント 50から前方に放出された 光と反射鏡 52で集められた光がともに前方に取り出される。
[0004] (B)は LEDや LDなどの発光素子 54と反射鏡 56を備えたものであり、この場合も光 量を増大するために、発光素子 54から前方に放出された光と反射鏡 56で集められ た光がともに前方に取り出される。
[0005] (C)は多色光源の例を示したものである。発光素子 58a〜58cとして発光波長の異 なる 3種類の LDや LEDが配置され、それらの発光素子 58a〜58cからの光を同一 光軸上に配置するために、発光素子 58aの光軸上にハーフミラー 60a, 60b力設けら れて 、る。発光素子 58bはその発光がハーフミラー 60aで反射されて発光素子 58a 力もの光の光軸上にくるように配置され、発光素子 58cはその発光がハーフミラー 60 bで反射されて同じ光軸上にくるように配置されて 、る。
[0006] 複数波長での測定を行なう測定装置としては、発振波長の異なる複数の LDをそれ ぞれ試料に向けて配置したものがある(特許文献 1参照。;)。しかし、それぞれの LD 力 の光軸は一致して ヽな 、ので、互 ヽに試料の異なる場所を測定することになる。
[0007] そこで、試料の同一場所での多色測定を行なうために、発振波長の異なる複数の 光源からの光を 1つの光軸上におく反射鏡を移動させることにより、対象物に照射す る光の波長を選択するようにしたものが提案されている(特許文献 2参照。;)。 [0008] 図 9は複数波長での測定を行なうための他の従来の測定装置の例を表わしたもの である。
(A)は吸光光度計の例であり、多波長の光を発生する光源 62からの光が回折格子 64により分光され、所定の波長の入射光として試料 20に入射される。試料 20を透過 した光は光検出器 22で検知され、その出力が測定電気系 24aに取り込まれて吸光 度が求められる。回折格子 64の回転により入射する波長が切り換えられる。
[0009] (B)は分光手段として透過波長の異なる複数のフィルタを備えたフィルタロータ 66 を用いたものである。多波長の光を発生する光源 62からの光がフィルタロータ 66中 の選択されたフィルタにより所定の波長の光とされて試料 20に入射する。
[0010] (C)は図 8 (C)に示した多色光源を用いたものである。発光素子 58a〜58cが切り 換えて点灯させられることによって試料を透過する光の波長が切り換えられる。
(D)も同様に多色光源を用いたものである。この場合、発光波長の異なる発光素子 58a〜58eからの光がそれぞれレンズ 68a〜68eによってそれぞれの光ファイバ 70a 〜70eに入射されて試料 20に導かれる。光ファイバ 70a〜70eは光出射側で 1つに まとめられ、試料 20の同一位置に入射する。この場合も発光素子 58a〜58eの点灯 を切り換えることにより多色での吸光度が測定される。
[0011] 図 10は従来の分光型色彩計を表わしたものである。光源 62からの光が反射鏡 72 で反射された光とともに積分球 74に入射する。積分球 74には試料 76と光取出口 78 が設けられており、試料 76による反射光が光取出口 78から回折格子 80に入射し、 分光されてフォトダイオードアレイ 82に入射する。フォトダイオードアレイ 82では多波 長が同時に検出され、測定電気系 84で分光反射率が測定される。
[0012] 図 11は多色照明装置を示したものである。光源としては図 8(C)に示された多色光 源が使用され、発光素子 58a〜58cが順次点灯されることによって対象物 42からの 光が CCDカメラ 44で撮像され、対象物 42の検査や識別が行なわれる。
[0013] 図 12は信号機を示したものである。赤、黄、青それぞれの信号表示部 43R, 43Y, 43Bに 1個ずつの光源 90が設けられており、それぞれの光源 90が順次点灯されるこ とにより人や車両の通行が制御される。
特許文献 1 :特開平 9— 105717号公報 特許文献 2:特開平 9— 173323号公報
発明の開示
発明が解決しょうとする課題
[0014] 光学的測定装置の光源としては点光源が好ましい。点光源であれば、その光源か らの光をレンズなどの光学素子で対象物上に結像させれば、対象物上の微小領域を 大きな光量で照射することができ、高感度な測定を行なうことができる。
[0015] 図 8 (A) , (B)に示されるような反射鏡で光を集める光源は光量を増大するには好 都合である力 点光源ではない。点光源にしょうとして光の出射側にピンホールフィ ルタをおけば、光量が減少してしまう。
[0016] 本発明の第 1の目的は、大きな光量を得ることのできる点光源を提供することである また、多色光源を得ようとすれば、分光手段が必要になったり、ハーフミラーゃ光フ アイバなどの光学系が必要になったりして光源が大型になる。
[0017] 本発明の第 2の目的は、小型の多色光源を提供することである。
本発明の第 3の目的は、小型で大きな光量で測定や照明をすることのできる光学 的装置を提供することである。
[0018] また、複数波長での測定や照明が可能な光学的装置では、複数波長の光を同一 光軸上に配置するためには、図 9に示されているように、多波長光を発生する光源か らの光を回折格子やフィルタなどの分光素子で単色化するか、異なる波長光を発生 する発光素子からの光をノ、一フミラーや光ファイバにより単一光軸上に集める力、又 は特許文献 2に記載の発明のように移動ミラーを備えることが必要になる。しかし、そ のような光学配置は大きなスペースを必要とするために光学的装置が大型化する。 本発明の第 4の目的は、複数波長での測定や照明が可能で小型化に適した光学 的装置を提供することである。
課題を解決するための手段
[0019] 第 1の目的を達成するための本発明の点光源は、内部が空洞で、その空洞の内壁 面が高反射率をもつ凹状曲面となっている筐体と、前記筐体に内部空洞から外部に 通じる 1又は複数個の穴として形成され、その穴の大きさが点とみなしうる程度に微小 な光出口と、前記筐体の内部空洞内で前記光出口に直接対向しない方向に向けて 配置された 1個以上の発光体とを備えている。
[0020] 「点とみなしうる程度に微小な光出口」との表現は、本発明の点光源はその光出口 が発光点となることから、その大きさが点光源とみなしうる程度になるような光出口の 大きさを述べたものである。したがって、その大きさは測定装置や照明装置といった 用途により求められる点光源の大きさや光出力強度に合わせて変更することができる 。一例を挙げると、その光出口の穴の大きさは、直径が 0. 01〜2mm、好ましくは 0. l〜lmmである。また、内部空洞の大きさによって定めることもでき、例えば、その光 出口の穴の大きさは、内部空洞の最大径の 1Z8以下、好ましくは 6%以下である。し 力しながら、光出口の穴の大きさは画一的に規定されるものではなぐ用途によって 許容される大きさが大きくなればそれに応じて上記の範囲を越えて大きくすることもで きる。
[0021] 前記発光体としては、フィラメント、 LED又は LDが適する。所定の波長光の混合光 を出力させる場合には発光体としては LED又は LDで発光波長の異なる複数種のも のが配置されて 、ることが好まし!/、。
[0022] 第 2の目的を達成するための本発明の点光源は、特定の波長の光を選択的に出 力させることができるようにするために、発光体としては LED又は LDで発光波長の 異なる複数種のものが配置されて 、る。
[0023] 発光体にはそれぞれの発光波長に応じた光学フィルタが一体的に設けられており
、各発光体力 の発光はそれぞれのフィルタを経て放出されるようにしてもょ 、。 筐体の内部表面上もしくは空洞内、又はその両方に光散乱体が配置されて ヽても よい。光散乱体としては、例えばガラスや金属などの球体や粉体などを用いることが できる。
また、用途によっては、筐体の外部には光出口付近を焦点又は物点として出射光 線の軌跡を調整する光学素子や光散乱体が設けられて!/ヽてもよ!/ヽ。
[0024] 第 3の目的を達成するための本発明の光学的装置の一局面は、光源と、その光源 力 の光が測定対象物に照射されたときの測定対象物による前記光の透過光、反射 光及び散乱光、並びに測定対象物からの蛍光のうちの少なくとも 1っを検知する光 検知器とを備えた光学的測定装置であって、光源として本発明の点光源を備えたも のである。
第 3の目的を達成するための本発明の光学的装置の他の局面は、光源力もの光に より対象物を照明する照明装置であって、光源として本発明の点光源を備えたもので ある。
[0025] 第 4の目的を達成するための本発明の光学的装置は、上記の光学的測定装置や 照明装置において、光源は発光体として発光波長の異なる複数種のものを備えたも のであり、発光体を発光させる電源装置は発光波長の異なる発光体を異なる時間に 選択的に発光させることにより光源が多色光源となっているものである。
発明の効果
[0026] 本発明の点光源では、発光体力 発生した光は空洞内壁面で反射した後に光出 ロカも放出されるので、その光出口が光発生点となる点光源となる。
し力も、内壁面が高反射率をもっているので、光の減衰が抑えられ、発光素子から の光を有効に取り出すことができる。
[0027] さらに、発光体は光出口に直接対向しない方向に向けて配置されているので、発 光体から直接に光出口に向かう光はなぐ少なくとも一度は凹状曲面の内壁面で反 射されて発散又は拡散するので、光出口からは一点から発散する空間分布をもった 出射光をえることができる。また、発光体がコヒーレンスをもつ LDの場合にも、凹状曲 面の内壁面で反射されて発散又は拡散することによりコヒーレンスが減少もしくは消 滅し、コヒーレンスが障害となる測定の光源としても適したものとなる。
[0028] 発光体として発光波長の異なる複数種のものが配置されている場合には、波長ごと に時間を異ならせて発光させれば分光手段を設けなくても複数波長の光を異なるタ イミングで取り出すことができるようになる。また、それらの発光体を同時に発光させれ ば、複数波長光を含む光を取り出すことができ、例えば R (赤), G (緑), B (青)の 3原 色の光を発光する発光体を設けることにより白色光を取り出すことができるようになる
[0029] 発光体にそれぞれの発光波長に応じた光学フィルタが一体的に設けられており、 各発光体からの発光はそれぞれのフィルタを経て放出されるようにすれば、発光体と して LEDや LDなどの発光素子を用いて温度変化により発光波長が変化する場合に も、光出口力も取り出す光の波長を一定に保つことができるようになる。
また、発光体として発光波長が同一のものを複数個配置している場合には、前記点 光源から出射する光量を増大させることができるようになる。
[0030] 内部空洞内に光散乱体が充填されている場合には、内部空洞内での光の発散又 は拡散が促進され、光出口から出射する光の空間分布がより改良され、コヒーレンス をなくす上でもより効果的である。
[0031] 筐体の外部で光出口付近を焦点又は物点として出射光線の軌跡を調整する光学 素子を配置すれば、この点光源力 の光を平行光として取り出したり、測定対象物上 にこの点光源の像を形成したり、所望の方向へ光を散乱させたりすることができる。
[0032] 本発明の光学的装置で、測定装置に光源として本発明の点光源を備えれば小型 の測定装置で大きな光量で測定を行なうことができ、 S/N (信号対ノイズ)比のよ!、 測定を行なうことができ、照明装置の光源として本発明の点光源を備えれば小型の 照明装置で明るい照明を行なうことができる。
[0033] 本発明の光学的装置で、測定装置の光源として多波長光源を備えれば小型の測 定装置で多波長測定を行なうことができ、照明装置の光源として多波長光源を備え れば小型の照明装置で多波長照明を行なうことができる。
発明を実施するための最良の形態
[0034] 図 1は一実施例の点光源を概略的に表わしたものである。(A)は側面断面図、(B) は正面断面図である。
筐体 2は内部が空洞で、その空洞 4の内壁面が高反射率をもつ凹状曲面となって いる。空洞 4の形状は特に限定されるものではないが、球状、楕円球状など、光が反 射して発散しうる凹状曲面であればよい。この実施例ではほぼ球状のものを例示する
[0035] 筐体 2には内部空洞 4から外部に通じる 1又は複数個の光出口 6が形成されている 。光出口 6の数は、実施例では 1個であるが、目的に応じて複数個設けてもよい。光 出口 6の穴の大きさは点光源とみなしうる程度の微小な大きさであり、直径が 0. 01〜 2mmの範囲の大きさに設定するのが好ましい。 [0036] 空洞 4内には光出口 6に直接対向しない方向に向けて配置された複数個の発光体 8が配置されている。発光体 8は LEDや LDの他、フィラメントであってもよい。発光波 長の異なる複数種のものを使用する場合には、発光体としては LED又は LDを用い ることができる。発光体 8は光出口 6の穴を通る軸に垂直な平面内で、内壁面に沿つ た円周上に均等に並べられている。
[0037] 筐体 2をさらに詳細に図 2に示す。(A)は光出口 6が設けられている部分 2a、(B)は それに対向する部分 2bである。筐体 2は空洞 4を形成する 2つの筐体部分 2a, 2bか らなり、両筐体部分 2a, 2bにはそれぞれ半球状の凹部が形成されている。筐体部分 2aの凹部の底部中央には光出口 6が開けられており、開口部の近くには開口の縁に 平行な円周に沿って発光体を配置するための溝 10が形成されて ヽる。筐体部分 2a の凹部の表面は高反射率となるように処理が施されて!/、る。
[0038] 両筐体部分 2a, 2bを凹部が内側になるように向かい合わせて接合することにより、 内部に球状の空洞 4をもつ筐体が形成される。両筐体部分 2a, 2bが接合されて筐体 内部に形成される空洞 4は、例えば直径が 16mmの球体である。
両筐体部分 2a, 2bは金属ブロックを切削加工して製作することもできるし、榭脂成 型品を形成し、その凹部壁面に反射率を高める金属膜メツキを施すことによって製作 することちでさる。
[0039] 内部空洞に発光体を配置するための溝 10は、筐体部分 2aで凹部開口の近傍にお V、て、光出口 6から凹部開口の中心を通る軸線 6aに垂直な平面と凹部内壁面が交 差する円周部分に沿って形成されている。この溝 10に沿って LEDや LDなどの発光 体を光出口 6とは反対方向を向くように均等に配置する。溝 10は、例えば金属加工 により筐体を形成する場合には、例えば深さが lmm程度のざぐり加工により形成す ることができる。筐体部分 2aと 2bには接合して固定するためのネジ穴 12と貫通穴 14 がそれぞれ開けられている。
発光体として複数種類のものを配置する場合、例えば赤 (R)、緑 (G)、青 (B)の 3 原色の LED又は LDを均等に配置することができる。
[0040] 次に、この実施例の動作について説明すると、例えば 3種類の発光体 R, G, Bをそ れぞれ複数個ずつ配置したものとする。発光体 8の発光動作をそれぞれの種類ごと に異なるタイミングで発光させる。発光体 8からの光は空洞 4の内壁面で反射されて 発散又は拡散し、好ましくは多重に反射された後、光出口 6から出射する。光出口 6 力 出射する光は発散光となっている。各発光波長の発光体を異なるタイミングで発 光させることにより、光出口 6からは異なる波長光が異なるタイミングで出射される多 色光源となる。
[0041] 光出口 6からの光は発散光となるので、例えば平行光とするためのボールレンズな どの光学素子を光出口 6の付近に配置することができる。その光学素子の焦点が光 出口 6の付近にくるように配置すれば、光学素子を経て取り出される出射光線を平行 光束とすることができる。
また、光出口 6の付近に配置する光学素子の物点が光出口 6の付近のくるように配 置すれば、光出口 6の像を対象物上に結像させることができる。
また、光出口 6付近の外部に、散乱体を配置すれば光軸力も離れた方向から発散 光を見ることができる。
[0042] 次に、この点光源を用いた光学的測定装置の幾つかについて例示する。
図 3は吸光光度計にこの点光源を用いた例を示したものである。光源 1からの光は ボールレンズなどの適当な光学素子を介して平行光として測定セル 20に入射される 。測定セル 20内の試料を透過した光は光検知器 22で検出され、電気測定系 24aで 吸光度として検出される。
[0043] 光源 1は発光波長の異なる複数の LED又は LDが設けられたものであり、発光波長 の異なるものが異なるタイミングで駆動されることにより、測定セル 20に入射する光の 波長が切り換えられて各波長での吸光度が測定される。これにより、分光器を用いな くても多波長での測定が可能となり、多項目の測定を行なうことができる。
[0044] 図 4は他の測定装置の例としての反射光度計や色彩計を表わしたものである。積分 球 26の入射穴に光源 1が配置され、入射穴に対向する位置に試料 28が設置される 。試料 28からの反射光を受光するために、積分球 26の一部に光検知器 30が配置さ れている。光検知器 30の検出信号は測定電気系 24bに取り込まれて反射率が求め られる。光源 1はこの場合も多波長の光を切り換えて発生できるものである。光源 1か らの光は試料 28で反射し、積分球 26内での多重反射の後、光検知器 30により複数 波長での反射率が測定される。
[0045] 色彩計は人間の目が感じる三刺激値を客観的に測定するものであり、三刺激値型 と分光型があるが、この例は分光型に相当する。分光型は試料の分光反射率を測定 し、データとして与えられている光源や観察者の分光特性を、分光反射率測定値に 数値的に適用することにより三刺激値を得るものである。この例の場合も、分光器を 使用しなくても、光源 1が多波長の光を異なるタイミングで発生することにより分光型 色彩計を実現することができる。
[0046] 図 5 (A)は蛍光光度計やラマン散乱光測定計への応用例である。積分球 26の光 入口に配置されて、多波長光を異なるタイミングで発生できる光源 1からの光が積分 球 26の開口に設置された試料 28に入射する。積分球 26内で反射されて光検知器 系 34に入射する光力 蛍光又はラマン散乱光が検出される。光検知器系 34の検出 出力が測定電気系 24cに取り込まれて蛍光又はラマン散乱光の強度が測定される。
[0047] 光検知器系 34の一例を同図(B)に示す。入射する光は励起光に蛍光やラマン散 乱光を含んだものである。光検知器 40の入射側にはノリアフィルタ 36とバンドパスフ ィルタ 38が配置されている。ノリアフィルタ 36は励起光を阻止し、蛍光又はラマン散 乱光の波長の光を透過させるものである。バンドパスフィルタ 38は測定対象物質によ つて設定された蛍光又はラマン散乱光の波長の光を透過させる透過帯域をもつもの である。光検知器 40には励起光が除去された光が入射する。
[0048] この測定装置では光源 1の発光波長を切り換えることにより多波長の光が異なるタ イミングで試料 28に入射し、その試料 28から発生する蛍光又はラマン散乱光が検出 される。この場合も光源 1は分光器を使用しなくても多波長の光を異なるタイミングで 発生することができるので、多項目の測定を行なうことができる。
[0049] 図 6はさらに他の応用光学装置の例として、多色照明装置を表わしたものである。
対象物 42に光源 1からの光が照射され、 CCDカメラ 44により対象物 42からの光が検 出される。光源 1の発光波長を切り換えることにより対象物 42の多色検査や多色識 別が可能になる。光源 1の光出力側にボールレンズなどの光学素子を配置すること により対象物に照射される光を発散光にしたり平行光にしたりするなど、指向性を変 更することができる。 [0050] 図 7はさらに他の応用光学装置の例として、信号機を表わしたものである。 1個の信 号表示部 43と 1個の光源 1とからなっている。光源 1は赤、黄及び青の光を順次発生 することができるものを使用する。光源 1からの光が発散して信号表示部 43に照射さ れ、散乱される。光源 1の光出口は 1個であっても複数個であってもよい。信号表示 部 43では光源 1の光軸上にある信号表示部 43の正面だけでなぐ横力もも見やすく なるよう信号表示部 43には光散乱体を配置することが好ましい。
[0051] 光学的測定装置や照明装置において、光源 1として複数波長光の混合光を発生す るものを使用したり、単波長の光を発生するものを使用したりすることもできる。その場 合には、小型の光学装置であっても強い光を照射することができるようになる。
[0052] ここで、図 1に示した実施例の光源の指向特性を測定した結果を示す。
筐体 2の筐体部分 2a, 2bは金属ブロックを切削加工して製作したものであり、筐体 部分 2a, 2bを組み合わせて筐体 2としたときの内部空洞 4は直径 16mmの球面反射 鏡となっている。光出口 6は直径が 0. 7mm、深さが 4mmの円筒状の穴である。発光 体 8として赤 (R)、緑 (G)、青 (B)の 3原色の LEDを 3個ずつ均等に配置した。
[0053] 測定のために、図 13に示されるように、 CCDカメラ 100を測定素子としてこの光源 の光出口 6の前方 70mmの位置に受光面を光出口 6に向けて配置した。 104は CC Dカメラ 100のリード線である。
[0054] CCDカメラ 100の受光面上で X方向の光出力分布を測定した。 LEDの発光は LE D1個あたり 20mAを通電することにより行ない、各色ごとに発光させた。その結果を 3色の色彩ごとに図 14 (A)〜(C)として示す。光出口 6の中心が出力光の光軸であり 、その光軸が CCDカメラ 10の受光面と交わる点 102を X方向の原点とし、その原点 からの距離を光出口 6から CCDカメラ 100を見たときの角度 (放射角)として表わした
[0055] この結果によれば、各色彩について、相対光出力が 50%の光が ± 20° の範囲内 に集まる指向特性を示しており、点光源として用いることができるものであることがわ かる。
この結果は X方向についての光強度分布を示したものである力 光源の構造力 光 軸のまわりに対称的な分布をもっており、したがって CCDカメラ 10の受光面上のどの 方向も図 14に示されたのと同じ相対光出力分布をもつものとなる。
図 14に一例を示した光出力の指向特性は内部空洞 4の形状及び大きさ、並びに 光出口 6の直径の大きさ及び深さにより変化するものである。
産業上の利用可能性
[0056] 本発明の光源は、医療用、化学分析用、環境測定用など、種々の光学的測定装置 や照明装置の光源として利用することができる。
図面の簡単な説明
[0057] [図 1]一実施例の点光源を概略的に表わしたものであり、(A)は側面断面図、(B)は 正面断面図である。
[図 2]筐体を詳細に示す図であり、 (A)は光出口が設けられている部分、(B)はそれ に対向する部分であり、いずれも左図は平面図、右図は断面図である。
[図 3]光学的装置の一実施例としての吸光光度計を示す概略構成図である。
圆 4]光学的装置の他の実施例としての反射光度計又は色彩計を示す概略構成図 である。
[図 5] (A)は光学的装置のさらに他の実施例としての蛍光光度計又はラマン散乱光 測定計を示す概略構成図であり、 (B)は同実施例における光検知器系の一例を示 す概略構成図である。
[図 6]光学的装置のさらに他の実施例としての多色照明装置を示す概略構成図であ る。
[図 7]光学的装置のさらに他の実施例としての信号機を示す図であり、 (A)は平面図 、 (B)は概略断面図である。
[図 8] (A)〜 (C)はそれぞれ従来の光源を示す概略構成図である。
[図 9] (A)〜 (D)はそれぞれ従来の光学的測定装置を示す概略構成図である。
[図 10]従来の色彩計を示す概略構成図である。
[図 11]従来の多色照明装置を示す概略構成図である。
[図 12]従来の信号機を示す図であり、(A)は平面図、(B)は 1つの信号灯の概略断 面図である。
[図 13]—実施例の光源の指向特性を測定するための測定装置を示す平面図である [図 14]一実施例の光源の指向特性の結果を示す図である。 符号の説明
1 光源
2 筐体
4 空洞
6 光出口
8 発光体
10 発光体を配置するための溝
20 測定セル
22 光検知器
24a, 24b, 24c 電気測定系
26 積分球
28 試料
30 光検知器
34 光検知器系
43 信号表示部
44 CCDカメラ

Claims

請求の範囲
[1] 内部が空洞で、その空洞の内壁面が高反射率をもつ凹状曲面となっている筐体と、 前記筐体に内部空洞力 外部に通じる 1又は複数個の穴として形成され、その穴 の大きさが点とみなしうる程度に微小な光出口と、
前記筐体の内部空洞内で前記光出口に直接対向しない方向に向けて配置された
1個以上の発光体と、を備えたことを特徴とする点光源。
[2] 前記発光体は LED又は LDであり、発光波長の異なる複数種のものが配置されてい る請求項 1に記載の点光源。
[3] 前記発光体にはそれぞれの発光波長に応じた光学フィルタが一体的に設けられて おり、各発光体力 の発光はそれぞれのフィルタを経て放出される請求項 2に記載の 点光源。
[4] 前記筐体の内部表面上もしくは空洞内、又はその両方には光散乱体が配置されて
V、る請求項 1から 3の 、ずれかに記載の点光源。
[5] 前記筐体の外部には前記光出口付近を焦点又は物点として出射光線の軌跡を調整 する光学素子が設けられて 、る請求項 1から 4の 、ずれかに記載の点光源。
[6] 光源と、その光源力 の光が測定対象物に照射されたときの測定対象物による前記 光の透過光、反射光及び散乱光、並びに測定対象物からの蛍光のうちの少なくとも 1 っを検知する光検知器とを備えた光学的測定装置において、
前記光源として請求項 1から 5のいずれかに記載の点光源を備えたことを特徴とす る光学的測定装置。
[7] 光源は発光体として発光波長の異なる複数種のものを備えたものであり、発光体を 発光させる電源装置は発光波長の異なる発光体を異なる時間に選択的に発光させ ることにより光源が多色光源となっている請求項 6に記載の光学的測定装置。
[8] 光源からの光により対象物を照明する照明装置において、
前記光源として請求項 1から 5のいずれかに記載の点光源を備えたことを特徴とす る照明装置。
[9] 光源は発光体として発光波長の異なる複数種のものを備えたものであり、発光体を 発光させる電源装置は発光波長の異なる発光体を異なる時間に選択的に発光させ ることにより光源が多色光源となっている請求項 8に記載の照明装置。
PCT/JP2005/008153 2004-04-30 2005-04-28 点光源とそれを備えた光学的装置 WO2005106410A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-135269 2004-04-30
JP2004135269 2004-04-30

Publications (1)

Publication Number Publication Date
WO2005106410A1 true WO2005106410A1 (ja) 2005-11-10

Family

ID=35241775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008153 WO2005106410A1 (ja) 2004-04-30 2005-04-28 点光源とそれを備えた光学的装置

Country Status (1)

Country Link
WO (1) WO2005106410A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002375A (ja) * 2009-06-19 2011-01-06 Kubota Corp 粉粒体の内部品質計測装置
CN102313596A (zh) * 2010-06-24 2012-01-11 株式会社三丰 用于高强度点光源的荧光轮构造
CN112304910A (zh) * 2020-10-09 2021-02-02 桂林理工大学 一种荧光免疫层析试纸条检测装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207857A (ja) * 1993-01-12 1994-07-26 Minolta Camera Co Ltd 色彩計測装置
JPH1096692A (ja) * 1996-08-01 1998-04-14 Satake Eng Co Ltd 葉の成分測定装置
JP2001249207A (ja) * 2000-03-06 2001-09-14 Minolta Co Ltd 光混合装置,照明装置及び反射特性測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207857A (ja) * 1993-01-12 1994-07-26 Minolta Camera Co Ltd 色彩計測装置
JPH1096692A (ja) * 1996-08-01 1998-04-14 Satake Eng Co Ltd 葉の成分測定装置
JP2001249207A (ja) * 2000-03-06 2001-09-14 Minolta Co Ltd 光混合装置,照明装置及び反射特性測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002375A (ja) * 2009-06-19 2011-01-06 Kubota Corp 粉粒体の内部品質計測装置
CN102313596A (zh) * 2010-06-24 2012-01-11 株式会社三丰 用于高强度点光源的荧光轮构造
CN112304910A (zh) * 2020-10-09 2021-02-02 桂林理工大学 一种荧光免疫层析试纸条检测装置及方法

Similar Documents

Publication Publication Date Title
EP2092385B1 (en) Microscope illumination source comprising light emitting diodes for stained biological samples
US11060917B2 (en) Confocal displacement measurement device and a confocal thickness measurement device
US7474399B2 (en) Dual illumination system for an imaging apparatus and method
ES2359968T3 (es) Unidad de detección espectrofotométrica y nefelométrica.
US6146410A (en) Apparatus for the photodynamic treatment of living beings or organs thereof
US5598843A (en) Colorimetric measurement head and method for determining the internal color of a non-opaque material
RU2009114719A (ru) Устройство и способ проверки образца волос
US7474398B2 (en) Illumination system for an imaging apparatus with low profile output device
US20150304027A1 (en) Emission device for emitting a light beam of controlled spectrum
CN105044036B (zh) 检测表面性质的设备和方法
WO2007004059A2 (en) Spectrophotometer with light emitting diode illuminator
US8130377B2 (en) Spectrophotometer system with modular 45/0 head
CA2323434A1 (en) Spectroreflectometric measurement of oxygenation in a patient's eye
WO2005106410A1 (ja) 点光源とそれを備えた光学的装置
JPH02114151A (ja) 屈折率に依存するアパーチャ分布を有する屈折計
WO2014081298A2 (en) Broad spectrum led and laser based light engine
JP4222679B2 (ja) 分光測色計
JPH11218447A (ja) 測色装置
EP2021774B1 (en) A system comprising a dual illumination system and an imaging apparatus and method using said system
JP2006162601A (ja) 表面特性を特定する装置
US20060152731A1 (en) Spectrometer
JPH10137194A (ja) 表面色測定具、光沢測定装置および分光測色装置
JP2000171299A (ja) 光学分析用光源装置
CN217332170U (zh) 一种半积分球测样系统
US20050094416A1 (en) Light source structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP