電解水製造装置 Electrolyzed water production equipment
技術分野 Technical field
[0001] 本発明は、電気分解により強酸性水または強アルカリ性水を製造する装置に関し、 更に詳細には、内視鏡の洗浄などに好適な強酸性水または強アルカリ性水を低エネ ルギー電解条件で短時間に大量に製造することができる電解水製造装置に関する。 背景技術 The present invention relates to an apparatus for producing strongly acidic water or strongly alkaline water by electrolysis. More specifically, the present invention relates to a method for producing strongly acidic water or strongly alkaline water suitable for washing an endoscope or the like by using low-energy electrolysis conditions. The present invention relates to an electrolyzed water production apparatus which can be mass-produced in a short period of time. Background art
[0002] 近年、飲料水や医療機器の消毒剤として電解水が使われている。電解水は、その 水素イオン濃度 (pH)により、強酸性電解水 (pH2. 3〜2. 7)、強アルカリ性電解水( pHl l〜: L 1. 5)、弱酸性電解水(pH5〜6)、電解次亜水(pH8〜9)、アルカリィォ ン水 (pH8〜: LO)のように分類される。このうち、強酸性電解水は、その殺菌力及び 安全性の観点から、医療機関における院内感染防止用洗浄剤や内視鏡の洗浄消毒 に有望であることが報告されている (非特許文献 1)。強酸性電解水は、特に、医療器 具や人体の皮膚や粘膜にも使用可能であり、また、殺菌対象物も一般細菌のみなら ず HIV、 HBVや芽胞菌までも網羅しているために、ダルタールアルデヒドや消毒用 エタノールに比べて広範な適用性を有する。このような強酸性電解水は、通常、陽極 と陰極が隔膜によって仕切られた電解槽で 0. 1%以下の食塩水を電気分解 (電解) することによって陽極側に生成する。陽極では塩素イオン力も塩素ガスが生じ、それ がさらに水と反応して塩酸と次亜塩素酸を生じ、強酸性電解水となる。 [0002] In recent years, electrolytic water has been used as a disinfectant for drinking water and medical equipment. Depending on the hydrogen ion concentration (pH), the electrolyzed water can be strongly acidic electrolyzed water (pH 2.3 to 2.7), strongly alkaline electrolyzed water (pH11 to L1.5), or weakly acidic electrolyzed water (pH5 to 6). ), Electrolyzed hypochlorite (pH 8-9), and alkaline water (pH 8: LO). Of these, strongly acidic electrolyzed water has been reported to be promising for cleaning in hospitals and for cleaning and disinfecting endoscopes in medical institutions from the viewpoint of its sterilizing power and safety (Non-Patent Document 1). ). Strongly acidic electrolyzed water can be used, in particular, for medical devices and the skin and mucous membranes of the human body, and the target for sterilization covers not only general bacteria but also HIV, HBV and spores. It has broader applicability than daltaraldehyde and disinfecting ethanol. Such strongly acidic electrolyzed water is usually generated on the anode side by electrolyzing (electrolyzing) 0.1% or less of a saline solution in an electrolytic cell in which an anode and a cathode are separated by a diaphragm. At the anode, chlorine gas also generates chlorine ion force, which further reacts with water to produce hydrochloric acid and hypochlorous acid, resulting in strongly acidic electrolyzed water.
[0003] 特許文献 1は、電解槽を内筒と外筒とからなる二重構造とし、内筒の外壁と外筒の 内壁との電極を取り付けた構造の流水式の無隔膜式電解水製造装置を開示してい る。この装置では、平面板の電極が用いられている。特許文献 1には、電解水の生成 能力(特に所定 pHの電解水の生成流量)については何等開示されていない。 [0003] Patent Document 1 discloses a flow-through type non-diaphragm type electrolyzed water production method in which an electrolytic cell has a double structure including an inner cylinder and an outer cylinder, and electrodes are attached to an outer wall of the inner cylinder and an inner wall of the outer cylinder. The device is disclosed. In this device, a flat plate electrode is used. Patent Document 1 does not disclose anything about the ability to generate electrolyzed water (particularly the flow rate of electrolyzed water having a predetermined pH).
[0004] 特許文献 2は、小型化、捨て水の防止等を目的として、電極がそれぞれ設けられた 外側容器と内側容器の二重容器で構成され、内部容器の外側にイオン交換膜を備 えるとともに内側に電解質を備える電解槽を開示している。この電解槽では、内部容 器のメッシュ状の底面上に塩ィ匕ナトリウムのような電解質が収容されて 、るので、従来
のように水道水に電解質を添加した電解水を流す必要がな ヽとされて ヽる。この文献 には、電極として柱状の炭素電極とその周囲に配置された円筒状の電極が開示され ている。この文献には、電解水の生成能力(特に所定 pHの電解水の生成流量)につ[0004] Patent Document 2 has a dual container of an outer container and an inner container provided with electrodes for the purpose of miniaturization, prevention of waste water, and the like, and includes an ion exchange membrane outside the inner container. Also disclosed is an electrolytic cell provided with an electrolyte inside. In this electrolytic cell, an electrolyte such as sodium salt is stored on the mesh-shaped bottom surface of the internal container. It is said that it is not necessary to flow electrolytic water in which electrolyte is added to tap water as in the above. This document discloses a columnar carbon electrode and a cylindrical electrode arranged around the columnar electrode. This document describes the production capacity of electrolyzed water (especially the production flow rate of electrolyzed water at a specified pH).
V、ては何等開示されて 、な 、。 V, what is disclosed, what,.
特許文献 1:特開 2001— 104956号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2001-104956
特許文献 2:特開 2002— 219461号公報 Patent Document 2: Japanese Patent Application Laid-Open No. 2002-219461
非特許文献 1:「強酸性電解水の基礎と有効利用:医療における強酸性電解水」、堀 田国元、第 25回日本医学会総会、 Pl、 1999年 Non-Patent Document 1: “Basic and Effective Utilization of Strongly Acidic Electrolyzed Water: Strongly Acidic Electrolyzed Water in Medicine”, Kunimoto Hotta, 25th Annual Meeting of the Japan Medical Association, Pl, 1999
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 従来の流水式の電解水製造装置では、低電圧 ·低電流の電解条件で所定の pHを 有する電解水を十分な容量で生成することが可能ではな力つた。特に、院内で内視 鏡などの医療器具の洗浄においては短時間で大容量の強電解水が必要とされ、こ のような用途においては従来の流水式の電解水製造装置の性能は十分とは言えな かった。また、従来の流水式の電解水製造装置では、電解水の未分解塩水濃度は 6 00〜1200ppm程度であり、これを 100ppm(0. 01%)以下に抑 ffiljしな!/、と、電解水 による洗浄対象物、例えば、内視鏡のような医療器具が電解水により腐蝕するという 問題がある。さらに、電解に伴い発生する塩素ガスの発生を防止する必要もあった。 さらに、近年、インフルエンザや SARSのような患者の院内感染や家庭内感染が懸 念されており、そのような感染の防止手段として、コンパクトで且つ低廉な電解水製造 装置に対する需要もある。 [0005] In a conventional flowing water type electrolyzed water production apparatus, it has been impossible to generate electrolyzed water having a predetermined pH with a sufficient capacity under electrolysis conditions of low voltage and low current. In particular, large volumes of strongly electrolyzed water are required in a short time when cleaning medical instruments such as endoscopes in hospitals, and in such applications, the performance of conventional flowing electrolyzed water production equipment is not sufficient. I couldn't say. In addition, in the conventional flowing water type electrolyzed water production equipment, the concentration of undecomposed salt water of electrolyzed water is about 600 to 1200 ppm, and this is controlled to 100 ppm (0.01%) or less. There is a problem that an object to be washed with water, for example, a medical device such as an endoscope, is corroded by electrolytic water. Furthermore, it was necessary to prevent the generation of chlorine gas generated during electrolysis. Furthermore, in recent years, there has been a concern about hospital-acquired and domestic infections of patients such as influenza and SARS, and there is a demand for a compact and inexpensive electrolyzed water producing apparatus as a means for preventing such infection.
[0006] そこで、本発明の第 1の目的は、小型で、単純な構造の電解槽を有する電解水製 造装置を提供することにある。本発明の第 2の目的は、低電圧及び低電流の電解に より、強酸性水または強アルカリ性水を大容量で製造することができる電解水製造装 置を提供することにある。本発明の第 3の目的は、未分解塩水濃度が 0. 01%以下で ある電解水を生成することができる電解水製造装置を提供することにある。さらに、本 発明の第 4の目的は、強酸性水または強アルカリ性水を大容量で供給することができ る内視鏡洗浄装置を提供することにある。
課題を解決するための手段 [0006] Therefore, a first object of the present invention is to provide an electrolyzed water production apparatus having a small and simple electrolytic cell. A second object of the present invention is to provide an electrolyzed water producing apparatus capable of producing strongly acidic water or strongly alkaline water in a large capacity by electrolysis at a low voltage and a low current. A third object of the present invention is to provide an electrolyzed water producing apparatus capable of producing electrolyzed water having an undecomposed salt water concentration of 0.01% or less. Furthermore, a fourth object of the present invention is to provide an endoscope cleaning apparatus capable of supplying a large amount of strongly acidic water or strongly alkaline water. Means for solving the problem
[0007] 本発明の第 1の態様に従えば、流水式の電解水製造装置であって、 According to a first aspect of the present invention, there is provided a flow-through type electrolyzed water producing apparatus,
中空で多角柱状の内側電極と、中空で多角柱状であり且つ隔膜が支持されている 隔膜支持体と、中空で多角柱状の外側電極とを三重に重ね合わせて備える電解槽 と; An electrolytic cell provided with a hollow polygonal column-shaped inner electrode, a hollow polygonal column-shaped and a diaphragm-supported diaphragm, and a hollow polygonal column-shaped outer electrode in a triple overlapped state;
外側電極または内側電極と隔膜支持体との間の第 1空間に水を供給する水供給装 置と; A water supply device for supplying water to a first space between the outer or inner electrode and the diaphragm support;
内側電極または外側電極と隔膜支持体との間の第 2空間に電解質水を供給する電 解質水供給装置と;を備え、 An electrolyte water supply device for supplying electrolyte water to the second space between the inner electrode or the outer electrode and the diaphragm support;
外側電極または内側電極の第 1側面に水供給口が形成され、外側電極または内側 電極の第 1側面と対向する隔膜支持体の第 1側面において少なくとも水供給口に対 向する部分が非透水性の整流面である電解水製造装置が提供される。 A water supply port is formed on the first side surface of the outer electrode or the inner electrode, and at least a portion of the first side surface of the diaphragm support facing the first side surface of the outer electrode or the inner electrode, which faces the water supply port, is impermeable. The present invention provides an electrolyzed water producing apparatus which is a rectifying surface of the invention.
[0008] 本発明の電解水製造装置では、いずれも中空で多角柱状 (断面が多角形の筒状) の内側電極、隔膜支持体及び外側電極を三重構造になるように重ね合わせることで 電解槽が構成されている。すなわち、電極対と隔膜支持体を同軸に配置し、それら の形状を四角柱のような多角柱で構成したことにより、電極の各側面が平面電極とし て機能し、電解は対向する平面電極間で行われる。発明者らの実験によると多角柱 状電極は円筒電極に比べて電解が安定して行われることが分った。これは、円筒型 電極の場合は電極間距離を円周方向で高精度に維持することが困難であること、電 極間の水の流れの制御が複雑であることに起因することなどの理由によると考えられ る。本発明で採用した多角柱状電極は、一対の平面電極に比べて水分子や電解質 イオンが電極に接する機会が一層高くなる (電極間に滞在する時間が長くなる)ので 電解効率を向上させることができる。また、多角柱状の電極は、電解室を完全に覆う ことができるために、電解槽の外筒及び Zまたは内筒を不要にし、電解槽の部品点 数を減らし、製造コストの低廉化及び装置の軽量'コンパクト化に貢献する。 [0008] In the electrolyzed water production apparatus of the present invention, the inner electrode, the diaphragm support, and the outer electrode, all of which are hollow and polygonal pillar-shaped (a cylindrical section having a polygonal cross section), are stacked so as to form a triple structure. Is configured. In other words, by arranging the electrode pair and the diaphragm support coaxially and forming them in the shape of a polygonal prism such as a quadrangular prism, each side of the electrode functions as a planar electrode, and electrolysis is performed between the opposed planar electrodes. Done in According to experiments by the inventors, it has been found that electrolysis is performed more stably with the polygonal columnar electrode than with the cylindrical electrode. This is because, for cylindrical electrodes, it is difficult to maintain the distance between the electrodes in the circumferential direction with high accuracy, and the control of water flow between the electrodes is complicated. It is considered that The polygonal column electrode employed in the present invention can improve the electrolysis efficiency because water molecules and electrolyte ions have a higher chance of coming into contact with the electrodes (longer residence time between the electrodes) than a pair of flat electrodes. it can. In addition, since the polygonal column electrode can completely cover the electrolysis chamber, the outer cylinder and the Z or inner cylinder of the electrolyzer are not required, the number of parts of the electrolyzer is reduced, the manufacturing cost is reduced, and the apparatus is reduced. Contributes to the lighter and more compact.
[0009] さらに、本発明では、水供給口と対向する隔膜支持体の第 1側面の部分に整流板( 面)を設けて 、る。この整流板は非透水性であるので水供給口から流入する水を受 け止めるとともに隔膜支持体の第 1側面に沿って均等に分散するように整流する。整
流された水流は、第 1側面に隣接する二つの側面に向かって二分され、それらの側 面に支持された隔膜上でイオン交換する。この整流板の整流作用によって第 1側面 以外の側面上で極めて安定した水流が生じ、電解電圧及び電流が多角柱の側面間 で均一になり且つ安定する。 [0009] Further, in the present invention, a rectifying plate (surface) is provided on a portion of the first side surface of the diaphragm support facing the water supply port. Since the current plate is impermeable to water, it receives water flowing from the water supply port and rectifies the water so as to be evenly distributed along the first side surface of the diaphragm support. Adjustment The flowed water stream is bisected toward two sides adjacent to the first side, and exchanges ions on a membrane supported on those sides. Due to the rectifying action of the rectifying plate, an extremely stable water flow is generated on the side surfaces other than the first side surface, so that the electrolytic voltage and the current become uniform and stable between the side surfaces of the polygonal prism.
[0010] 本発明の電解水製造装置において、隔膜支持体の第 1側面全体を非透水性の整 流板 (面)にすることが有利である。これにより、隔膜支持体の製造が容易となり、また 、整流も一層に有効に行われる。この場合、高い電解効率を維持するために、隔膜 支持体の第 1側面以外の全ての側面に隔膜が支持されることが望ましい。 [0010] In the apparatus for producing electrolyzed water of the present invention, it is advantageous that the entire first side surface of the diaphragm support is formed of a water-impermeable flow regulating plate (surface). This facilitates production of the membrane support, and rectification is performed more effectively. In this case, in order to maintain high electrolysis efficiency, it is desirable that the diaphragm is supported on all side surfaces except the first side surface of the diaphragm support.
[0011] 本発明の電解水製造装置において、前記内側電極の側面に複数の透過孔が形成 され、前記電解質水供給装置が最初に内側電極の内側に電解質水を供給してもよ い。このような流水構造を採用することにより、狭い電極間空間に電解質水を供給す る必要がなぐ装置構成が簡単になると共に電解が一層安定ィ匕するという利点がある [0011] In the apparatus for producing electrolyzed water of the present invention, a plurality of permeation holes may be formed on the side surface of the inner electrode, and the electrolyte water supply apparatus may first supply the electrolyte water to the inside of the inner electrode. By adopting such a flowing water structure, there is an advantage that the apparatus configuration which does not require the supply of the electrolyte water to the narrow interelectrode space is simplified and the electrolysis is further stabilized.
[0012] 本発明にお ヽて、内側電極、隔膜支持体及び外側電極は、三角柱、四角柱、五角 柱、六角柱、七角柱、八角柱などの形状の中空の多角柱で形成し得る力 あまり側 面が多くなると、円柱に近くなるために好ましくない。従って、本願では、「多角柱状」 とは八角以下の多角柱を意味するものとする。特に、内側電極と外側電極が、四角 柱状が好ましい。四角柱は単純な構造であるので製造容易であり、 4つの側面は比 較的大きな平面電極として機能することができるので電解電圧の安定ィ匕に貢献する と考えられる。 [0012] In the present invention, the inner electrode, the diaphragm support, and the outer electrode can be formed by a hollow polygonal prism having a shape such as a triangular prism, a quadrangular prism, a pentagonal prism, a hexagonal prism, a heptagonal prism, and an octagonal prism. It is not preferable to have too many side surfaces because it becomes closer to a cylinder. Therefore, in the present application, “polygonal prism” means a polygonal prism having an octagon or less. In particular, it is preferable that the inner electrode and the outer electrode have a quadrangular prism shape. The quadrangular prism has a simple structure and is easy to manufacture, and the four side surfaces can function as relatively large flat electrodes, which is considered to contribute to the stability of the electrolytic voltage.
[0013] 本発明の第 2の態様に従えば、流水式の電解水製造装置であって、 According to a second aspect of the present invention, there is provided a flow-through type electrolyzed water producing apparatus,
中空で四角柱状の内側電極と、中空で四角柱状であり且つ隔膜が支持されている 隔膜支持体と、中空で四角柱状の外側電極とを三重に重ね合わせて備える第 1電解 槽と; A first electrolytic cell provided with a hollow quadrangular prism-shaped inner electrode, a hollow quadrangular prism-shaped diaphragm-supporting diaphragm, and a hollow quadrangular prism-shaped outer electrode in a triple overlapped state;
第 1電解槽と直列に接続され、中空で四角柱状の内側電極と中空で四角柱状であ り且つ隔膜が支持されている隔膜支持体と中空で四角柱状の外側電極とを三重に 重ね合わせて備える第 2電解槽と; A hollow quadrangular prism-shaped inner electrode, which is connected in series with the first electrolytic cell, and a hollow quadrangular prism-shaped outer electrode, which is hollow and square prism-shaped and supports a diaphragm, and a hollow quadrangular prism-shaped outer electrode are triple-laid. A second electrolytic cell provided;
第 1電解槽の外側電極と隔膜支持体との間の空間に水を供給する水供給装置と;
第 1電解槽及び第 2電解槽の内側電極と隔膜支持体との間の空間に電解質水を 供給する電解質水供給装置と;を備え、 A water supply device for supplying water to a space between the outer electrode of the first electrolytic cell and the membrane support; An electrolyte water supply device for supplying electrolyte water to a space between the inner electrodes of the first and second electrolytic cells and the membrane support.
第 1電解槽及び第 2電解槽において、外側電極の第 1側面に水供給口が形成され 、外側電極の第 1側面と対向する隔膜支持体の第 1側面が非透水性の整流面であり 、隔膜支持体の第 2〜第 4側面にそれぞれ隔膜が設けられて 、る電解水製造装置が 提供される。 In the first electrolytic cell and the second electrolytic cell, a water supply port is formed on the first side surface of the outer electrode, and the first side surface of the diaphragm support facing the first side surface of the outer electrode is a water-impermeable rectifying surface. In addition, a diaphragm is provided on each of the second to fourth side surfaces of the diaphragm support to provide an electrolyzed water producing apparatus.
[0014] 本発明の第 2の態様の電解水製造装置では、第 1の態様で説明した電解槽の二つ が直列に接続された構造を有する。第 1電解槽で生成された電解水、例えば、酸性 電解水は、第 2電解槽の外側電極と隔膜との間の空間に供給され、そこでさらに電解 されるので一層高濃度 (低 pH)の酸性電解水が第 2電解槽で得られる。第 1電解槽 の外側電極と隔膜との間の空間は、第 2電解槽の外側電極と隔膜との間の空間と槽 連結管などにより連結され得る。 [0014] The electrolytic water production apparatus according to the second aspect of the present invention has a structure in which two of the electrolytic cells described in the first aspect are connected in series. The electrolyzed water generated in the first electrolyzer, for example, acidic electrolyzed water, is supplied to the space between the outer electrode of the second electrolyzer and the diaphragm, where it is further electrolyzed, so that it has a higher concentration (lower pH). Acidic electrolyzed water is obtained in the second electrolyzer. The space between the outer electrode of the first electrolytic cell and the diaphragm can be connected to the space between the outer electrode of the second electrolytic cell and the diaphragm by a tank connecting tube or the like.
[0015] 本発明の電解水製造装置は、低エネルギー、即ち、 10V以下及び 30A以下、好ま しくは 7V以下及び 26A以下の電解条件で、 pH2. 3以下、 ORP (酸化還元電位)が 1170mV以上、残留塩素濃度 50mgZリットル以上、未分解食塩濃度 0. 01%以下 の強酸性水を、 3. 0リットル Z分以上の大容量で製造することに成功した。 [0015] The apparatus for producing electrolyzed water of the present invention has low energy, that is, under electrolysis conditions of 10V or less and 30A or less, preferably 7V or less and 26A or less, pH 2.3 or less, and ORP (redox potential) of 1170mV or more. We succeeded in producing highly acidic water with a residual chlorine concentration of 50 mgZ liters or more and undecomposed salt concentration of 0.01% or less in a large volume of 3.0 liters or more.
[0016] 本発明の電解水製造装置は、さらに、電解により製造される強酸性水に水を混合 するプレンダを備え得る。本発明の装置は、 10V以下及び 30A以下、好ましくは 7V 以下及び 26A以下という低電解条件で、 pH2. 3以下の強酸性水を 3. 0リットル Z分 以上の大容量で提供することができる。従って、 pHが 2. 7、 ORP (酸化還元電位) 1 100mV、残留塩素濃度 20mgZリットル程度の強酸性水で足りる用途、例えば、内 視鏡の洗浄には、本発明の装置で生成された強酸性水をプレンダを使って希釈する ことにより、好適な pHの強酸性水を一層大容量 (例えば、 pH2. 6の強酸性水を 5. 2 リットル Z分)で製造することが可能となる。本発明の電解水製造装置は、電解槽から 排出された電解水の一部又は全部を電解槽に戻す循環路を備えることができ、この 場合、循環路にタンクを備え得る。 [0016] The electrolyzed water production apparatus of the present invention may further include a blender for mixing water with strongly acidic water produced by electrolysis. The device of the present invention can provide strongly acidic water having a pH of 2.3 or less in a large capacity of 3.0 liters or more under low electrolysis conditions of 10 V or less and 30 A or less, preferably 7 V or less and 26 A or less. . Therefore, for applications requiring strong acid water with a pH of 2.7, an ORP (redox potential) of 1 100 mV, and a residual chlorine concentration of about 20 mgZ liters, for example, for cleaning endoscopes, the strong acid generated by the apparatus of the present invention is sufficient. By diluting the water with a blender, it becomes possible to produce a strongly acidic water having a suitable pH in a larger volume (for example, 5.2 liters of strongly acidic water having a pH of 2.6). The apparatus for producing electrolyzed water of the present invention can include a circulation path for returning some or all of the electrolyzed water discharged from the electrolysis tank to the electrolysis tank. In this case, the circulation path can include a tank.
[0017] 本発明では、本発明の態様の電解水製造装置を備えた内視鏡洗浄装置が提供さ れる。本発明の電解水製造装置は、低エネルギーの電解で、内視鏡洗浄に好適な p
Hの電解水を大容量で供給することができるので、内視鏡洗浄装置に組み込むこと で、極めて洗浄能力の高い内視鏡洗浄装置を提供することができる。なお、本明細 書において、用語「電解水」とは、酸性電解水またはアルカリ性電解水を示し、電解 水製造装置はその電極の極性を変更することによりいずれの電解水も生成すること ができる。また、用語「強電解水」とは、強酸性電解水または強アルカリ性電解水を示 す。 According to the present invention, there is provided an endoscope cleaning apparatus including the electrolytic water production apparatus according to the embodiment of the present invention. The electrolyzed water production apparatus of the present invention is a low-energy electrolyzer that is suitable for endoscope cleaning. Since H electrolyzed water can be supplied in a large capacity, by incorporating it into an endoscope cleaning device, an endoscope cleaning device with extremely high cleaning ability can be provided. In this specification, the term “electrolyzed water” refers to acidic electrolyzed water or alkaline electrolyzed water, and the electrolyzed water production apparatus can generate any electrolyzed water by changing the polarity of its electrode. The term “strongly electrolyzed water” refers to strongly acidic electrolyzed water or strongly alkaline electrolyzed water.
発明の効果 The invention's effect
[0018] 本発明の電解水製造装置は、電極及び隔膜支持体がいずれも中空で同様の形状 の(相似形の)多角柱状であり、整流板を有するので、電解がいずれの電極面にお いても安定ィ匕し且つ電極面間で均一となり、しかも低電圧 ·低電流で大容量の強電 解水を生成することができる。特に、電解水を電解槽に循環させることにより、強電解 水を一層高い効率で生成することが可能となる。本発明の電解水製造装置の電解槽 は基本的には中空の多角柱状の電極により構成されているので、特に電極を配置す るための外筒及び内筒は不要となり、構造が簡単で製造が容易で低コストであるとい う利点がある。本発明の電解水製造装置を備える内視鏡洗浄装置は、大容量の強 電解水を短時間で供給することができるので、高速洗浄が可能である。 [0018] In the electrolyzed water production apparatus of the present invention, the electrode and the diaphragm support are both hollow, similarly shaped (similar) polygonal columns, and have a rectifying plate. However, it is possible to produce a large volume of strong electrolytic water at a low voltage and a low current with stable stability and uniformity between electrode surfaces. In particular, by circulating the electrolyzed water through the electrolysis tank, it becomes possible to generate strongly electrolyzed water with higher efficiency. Since the electrolytic cell of the electrolyzed water production apparatus of the present invention is basically composed of hollow polygonal column-shaped electrodes, an outer cylinder and an inner cylinder for arranging the electrodes are particularly unnecessary, and the structure is simple and the production is simple. Has the advantage that it is easy and low cost. The endoscope cleaning apparatus provided with the electrolyzed water production apparatus of the present invention can supply a large volume of strongly electrolyzed water in a short time, and thus can perform high-speed cleaning.
図面の簡単な説明 Brief Description of Drawings
[0019] [図 1]本発明の実施形態の電解水製造装置の構造を表す概念図である。 FIG. 1 is a conceptual diagram showing a structure of an electrolyzed water producing apparatus according to an embodiment of the present invention.
[図 2]本発明の実施形態の電解水製造装置の電解槽の構造を示す分解概念図であ る。 FIG. 2 is an exploded conceptual view showing a structure of an electrolytic cell of the apparatus for producing electrolyzed water of the embodiment of the present invention.
[図 3]本発明の実施形態の電解水製造装置の動作を説明する図である。 FIG. 3 is a diagram illustrating the operation of the electrolytic water production apparatus according to the embodiment of the present invention.
[図 4]本発明の電解水製造装置の別の実施形態における電解槽の構造を示す概念 図である。 FIG. 4 is a conceptual diagram showing a structure of an electrolytic cell in another embodiment of the electrolyzed water producing apparatus of the present invention.
[図 5]本発明の内視鏡洗浄装置の一例を示す概念図である。 FIG. 5 is a conceptual diagram showing an example of the endoscope cleaning device of the present invention.
[図 6]本発明の電解水製造装置の別の実施形態である循環式電解水製造装置の動 作を説明する図である。 FIG. 6 is a view for explaining the operation of a circulating electrolyzed water production apparatus which is another embodiment of the electrolyzed water production apparatus of the present invention.
符号の説明 Explanation of symbols
[0020] 2 第 1電解槽
4 第 2電解槽 [0020] 2 First electrolytic cell 4 Second electrolytic cell
6, 7, 8 支持板 6, 7, 8 Support plate
10, 301 電解槽 10, 301 electrolyzer
20, 60 流量弁 20, 60 Flow valve
20a, 20b 定電圧電源 20a, 20b constant voltage power supply
30 塩水供給装置 30 Salt water supply device
34, 310 タンク 34, 310 tanks
36, 320 ポンプ 36, 320 pump
40, 340a, 340b 水供給管 40, 340a, 340b Water supply pipe
50, 330 ブレンダ 50, 330 Brenda
55 OPRセンサ 55 OPR sensor
70 内側電極 70 Inner electrode
80 隔膜支持体 80 Diaphragm support
80a 整流板 80a Rectifier plate
82 上枠 82 Upper Frame
84 下枠 84 Lower frame
86 支持ガイド 86 Support Guide
88 隔膜 88 diaphragm
90 外側電極 90 Outer electrode
100, 110 電解水製造装置 100, 110 Electrolyzed water production equipment
200 内視鏡洗浄装置 200 Endoscope cleaning device
400 循環式電解水製造装置 400 Circulating electrolyzed water production equipment
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の電解水製造装置の実施形態について、図を参照しながら説明する Hereinafter, an embodiment of the electrolyzed water production apparatus of the present invention will be described with reference to the drawings.
[第 1実施形態] [First embodiment]
最初に電解水製造装置の概略構造を説明し、次 、で電解槽の構造を詳述する。 図 1に示したように、電解水製造装置 100は、主に、電解槽 10と、定電圧装置 25a,
25bと、塩水供給装置 30と、水供給管 40と、プレンダ 50と、流量制御弁 (またはマス フローコントローラー) 20、 60とを備える。電解槽 10は、直列に接続された第 1電解 槽 2と第 2電解槽 4を備え、それらは支持板 6, 7, 8で支持されている。第 1電解槽 2と 第 2電解槽 4には、それぞれ、水供給口 2a, 4a及び電解水排出口 2b, 4bが形成さ れている。また、第 1電解槽 2と第 2電解槽 4には、定電圧装置 25a、 25bがそれぞれ 取付けられる。定電圧装置 25a、 25bは、第 1及び第 2電解槽の電極 92に接続され て電極間に制御された一定の電圧を印加する。この例では、第 1電解槽 2及び第 2電 解槽 4において強酸性電解水が生成される場合を例に挙げて説明する。なお、第 1 電解槽 2と第 2電解槽 4は上蓋 3aと下蓋 3bとの間に配置される。 First, the schematic structure of the electrolyzed water producing apparatus will be described, and then, the structure of the electrolytic cell will be described in detail. As shown in FIG. 1, the electrolyzed water producing apparatus 100 mainly includes an electrolytic cell 10 and a constant voltage device 25a, 25b, a salt water supply device 30, a water supply pipe 40, a blender 50, and flow control valves (or mass flow controllers) 20, 60. The electrolytic cell 10 includes a first electrolytic cell 2 and a second electrolytic cell 4 connected in series, which are supported by support plates 6, 7, and 8. The first electrolytic cell 2 and the second electrolytic cell 4 have water supply ports 2a and 4a and electrolytic water discharge ports 2b and 4b, respectively. Further, constant voltage devices 25a and 25b are attached to the first electrolytic cell 2 and the second electrolytic cell 4, respectively. The constant voltage devices 25a and 25b are connected to the electrodes 92 of the first and second electrolytic cells and apply a controlled constant voltage between the electrodes. In this example, a case where strongly acidic electrolyzed water is generated in the first electrolytic cell 2 and the second electrolytic cell 4 will be described as an example. The first electrolytic cell 2 and the second electrolytic cell 4 are disposed between the upper lid 3a and the lower lid 3b.
[0023] 塩水供給装置 30は、電解槽 10に供給するための塩水を生成する塩水タンク 34と 、その底部に設けられ食塩が蓄積された食塩タンク 32と、塩水を循環するための循 環ポンプ 36とを備える。食塩タンク 32に蓄えられた食塩に塩水タンク 34中の塩水が 接することにより、塩水タンク 34中の食塩水が常に飽和濃度に維持されて 、る。 The salt water supply device 30 includes a salt water tank 34 for generating salt water to be supplied to the electrolytic cell 10, a salt tank 32 provided at the bottom of the salt water tank 32, and a circulation pump for circulating salt water. 36. When the salt water in the salt water tank 34 comes into contact with the salt stored in the salt tank 32, the salt solution in the salt water tank 34 is always maintained at the saturated concentration.
[0024] 塩水供給装置 30は、第 1電解槽 2と塩水供給管 38で接続され、第 2電解槽 2と塩 水戻り管 39で接続されている。塩水供給装置 30で生成された塩水は、塩水供給管 3 8を通じて第 1電解槽 2に供給され、第 1電解槽 2内を通過して、次いで支持板 7内に 形成された塩水通路 (不図示)を通って第 2電解槽 4に供給される。第 2電解槽 4から 排出される塩水は、支持板 8に形成された排出ロカゝら排出され、塩水戻り管 39を通 つて塩水供給装置 30に戻る。すなわち、塩水は、塩水供給装置 30と電解槽 10との 間を循環する。 The salt water supply device 30 is connected to the first electrolytic tank 2 by a salt water supply pipe 38, and is connected to the second electrolytic tank 2 by a salt water return pipe 39. The salt water generated by the salt water supply device 30 is supplied to the first electrolytic cell 2 through the salt water supply pipe 38, passes through the first electrolytic cell 2, and then passes through a salt water passage (not shown) formed in the support plate 7. (Shown) to the second electrolytic cell 4. The salt water discharged from the second electrolytic cell 4 is discharged from the discharge rocker formed on the support plate 8 and returns to the salt water supply device 30 through the salt water return pipe 39. That is, the salt water circulates between the salt water supply device 30 and the electrolytic cell 10.
[0025] 第 1電解槽 2の水供給口 2aには水供給管 40が連結されており、水供給管 40は図 示しない水道管に連結されている。すなわち、この例では水道管を水源として、そこ 力 水供給管 40を通して第 1電解槽 2に水が供給される。第 1電解槽 2の電解水排 出口 2bと第 2電解槽 4の水供給口 4aは、槽連結管 12で接続されており、第 1電解槽 2で生成した強酸性水は槽連結管 12を通って第 2電解槽 4に供給される。本発明で 用いる水供給装置は、水道管を水源としても良くあるいは、別途、浄水を貯蔵する水 タンクを水源として用い、ポンプ等で第 1電解槽 2に供給しても良い。 [0025] A water supply pipe 40 is connected to the water supply port 2a of the first electrolytic cell 2, and the water supply pipe 40 is connected to a water pipe (not shown). That is, in this example, water is supplied to the first electrolytic cell 2 through a water supply pipe 40 using a water pipe as a water source. The electrolytic water discharge outlet 2b of the first electrolytic cell 2 and the water supply port 4a of the second electrolytic cell 4 are connected by a tank connecting pipe 12, and the strongly acidic water generated in the first electrolytic cell 2 is supplied to the tank connecting pipe 12. To the second electrolytic cell 4. In the water supply device used in the present invention, a water pipe may be used as a water source, or a water tank for storing purified water may be separately used as a water source and supplied to the first electrolytic cell 2 by a pump or the like.
[0026] 第 2電解槽 4は、電解水排出管 14を通じてプレンダ 50と接続されている。プレンダ
50は、第 2電解槽 4で生成した電解水(強酸性電解水)を適宜希釈する。このため、 第 2電解槽 4で生成した電解水がプレンダ 50の一方の入口 50aに流入し、水供給管 40bからプレンダ 50の他方の入口 50bに希釈用の水が流入する。ブレンダ 50には O RP (酸化還元電位)センサー 55が取り付けられ、 ORPセンサー 55と水供給管 40b に設けられた流量制御弁 20により、ブレンダ 50内で電解水が所定の pHになるように 希釈される。プレンダ 50で希釈された所望 pHの電解水はプレンダ出口 50cから取り 出される。 The second electrolytic cell 4 is connected to a blender 50 through an electrolytic water discharge pipe 14. Blender 50 appropriately dilutes the electrolytic water (strongly acidic electrolytic water) generated in the second electrolytic cell 4. For this reason, the electrolyzed water generated in the second electrolytic cell 4 flows into one inlet 50a of the blender 50, and the water for dilution flows into the other inlet 50b of the blender 50 from the water supply pipe 40b. An ORP (oxidation-reduction potential) sensor 55 is attached to the blender 50, and the ORP sensor 55 and the flow control valve 20 provided in the water supply pipe 40b are used to dilute the electrolytic water to a predetermined pH in the blender 50. Is done. Electrolyzed water of a desired pH diluted with the blender 50 is taken out from the blender outlet 50c.
[0027] 次に、第 1電解槽 2及び第 2電解槽 4の構造を、図 2を参照して説明する。第 2電解 槽 4は第 1電解槽 2とほぼ同じ構造を有するために、図 2では第 1電解槽 2のみを表し 、第 2電解槽 4の図示及びその説明は省略する。第 1電解槽 2は、断面が四角形であ る筒状の内側電極 70、隔膜支持体 80及び外側電極 90を同軸上(図 2の X軸上)に 重ね合わせて備える。内側電極 70の側面 70a〜70dは、厚さ 2mmのチタン平板に 白金が 2 mの厚さでコートされてなる。第 1側面 70aを除く側面 70b、 70c、 70dに は、 φ 8mmの孔が定間隔で分散して形成されている。内側電極 70は図示しないヮ ィャを通じて第 2電解槽 4の内側電極 70及び定電圧装置(25a)に接続される。 Next, the structures of the first electrolytic cell 2 and the second electrolytic cell 4 will be described with reference to FIG. Since the second electrolytic cell 4 has substantially the same structure as the first electrolytic cell 2, only the first electrolytic cell 2 is shown in FIG. 2, and illustration and description of the second electrolytic cell 4 are omitted. The first electrolytic cell 2 includes a cylindrical inner electrode 70, a diaphragm support 80, and an outer electrode 90 each having a rectangular cross section, which are overlapped coaxially (on the X axis in FIG. 2). The side surfaces 70a to 70d of the inner electrode 70 are formed by coating a titanium plate having a thickness of 2 mm with platinum to a thickness of 2 m. Except for the first side surface 70a, the side surfaces 70b, 70c, and 70d are formed with holes of φ8 mm dispersed at regular intervals. The inner electrode 70 is connected to the inner electrode 70 of the second electrolytic cell 4 and the constant voltage device (25a) through a wire (not shown).
[0028] 隔膜支持体 80は、上枠 82、下枠 84、その間に挟まれた格子状のガイド枠 86、及 び隔膜 88から構成されている。上枠 82及び下枠 84は隔膜支持体 80よりも厚い所定 の厚さを有し、その厚さにより内側電極 70と外側電極 90との電極間距離を所定値に 維持する。隔膜支持体 80の 3つの側面 80b、 80c、 80dには、塩化ビュル製のガイド 枠 86が設けられ、ポリフッ化ビ-リデンのような榭脂に酸ィ匕チタンを被覆した隔膜 88 がガイド枠 86によって支持されている。このため、隔膜 88はガイド枠 86の開口部に 露出しており、露出した隔膜部分でイオン交換が行われる。隔膜支持体 80の側面( 第 1面) 80aは、開口部のない塩ィ匕ビニル板で形成されており、この塩化ビニル板は ガイド枠 86と一体的に成形されている。塩化ビニル板は非透水性であるために、隔 膜支持体 80の側面 80aを通じてイオン交換は行われな ヽが、後述する外側電極に 設けられた水供給ロカも供給される水を受け留め、第 2面 80b及び第 4面 80dに向う 水を整流する役割を果す。効率良く整流を行うために、整流板としての側面 80aは、 水供給口からの水流の方向に垂直に設置されている。従って、電解によるイオン交
換は隔膜支持体 80の 3つの側面 80b、 80c、 80dの隔膜 88だけで行われる。 [0028] The diaphragm support 80 includes an upper frame 82, a lower frame 84, a grid-like guide frame 86 sandwiched therebetween, and a diaphragm 88. The upper frame 82 and the lower frame 84 have a predetermined thickness larger than the diaphragm support 80, and maintain the inter-electrode distance between the inner electrode 70 and the outer electrode 90 at a predetermined value by the thickness. Guide frames 86 made of butyl chloride are provided on the three side surfaces 80b, 80c, and 80d of the diaphragm support 80, and a diaphragm 88 in which resin such as polyvinylidene fluoride is coated with titanium oxide is used as a guide frame. Supported by 86. For this reason, the diaphragm 88 is exposed at the opening of the guide frame 86, and ion exchange is performed at the exposed diaphragm portion. The side surface (first surface) 80a of the diaphragm support 80 is formed of a vinyl chloride plate having no opening, and this vinyl chloride plate is formed integrally with the guide frame 86. Since the vinyl chloride plate is impermeable to water, ion exchange is not performed through the side surface 80a of the membrane support 80.However, a water supply rocker provided on the outer electrode, which will be described later, receives the supplied water, It plays a role in rectifying water going to the second side 80b and the fourth side 80d. In order to perform rectification efficiently, the side face 80a as a rectifier plate is installed perpendicular to the direction of water flow from the water supply port. Therefore, ion exchange by electrolysis The exchange takes place only on the diaphragm 88 on the three sides 80b, 80c, 80d of the diaphragm support 80.
[0029] 外側電極 90は、軸方向に垂直に切断した断面が四角形 (正方形)の筒状であり、 内側電極 70及び隔膜支持体 80の外側に配置される。外側電極 90の四つの側面 90 a〜90dは、いずれも厚さ 2mmのチタン平板に 2 m厚の白金膜がコートされてなる 。外側電極 90の第 1側面 90aの下方には水供給口 2aが、第 3側面 90cの上方には 電解水排出口 2bがそれぞれ設けられて 、る。このように水供給口 2aと電解水排出口 2bが四角柱の外側電極 90の中心に対して対称に設けられていることにより、供給さ れた水の電解槽中での滞在期間が長くなり電解効率が向上すると考えられる。外側 電極 90の側面には、電解を均一に実行するために複数の電極端子 92が設けられて いる。電極端子 92間はワイヤーで電気接続されてその端部が定電圧装置(25a)に 接続されている(図 1参照)。 The outer electrode 90 has a quadrangular (square) cross section cut perpendicularly to the axial direction, and is disposed outside the inner electrode 70 and the diaphragm support 80. Each of the four side surfaces 90a to 90d of the outer electrode 90 is formed by coating a 2-mm-thick titanium flat plate with a 2-m-thick platinum film. A water supply port 2a is provided below the first side face 90a of the outer electrode 90, and an electrolytic water discharge port 2b is provided above the third side face 90c. Since the water supply port 2a and the electrolyzed water discharge port 2b are provided symmetrically with respect to the center of the outer electrode 90 in the form of a square pole, the staying time of the supplied water in the electrolyzer becomes longer. It is considered that the electrolysis efficiency is improved. A plurality of electrode terminals 92 are provided on the side surface of the outer electrode 90 in order to perform electrolysis uniformly. The electrode terminals 92 are electrically connected by wires, and their ends are connected to a constant voltage device (25a) (see FIG. 1).
[0030] 第 1電解槽 2を組み立てるには、軸 Xを中心軸として、外側電極 90内に隔膜支持体 80が挿入され、そして隔膜支持体 80内に内側電極 70が挿入されることによって、そ れらが同軸上に三重に重なるように配置される。次いで、支持板 6及び 7が、内側電 極 70、隔膜支持体 80及び外側電極 90の両側の開放端に、それぞれ上蓋及び下蓋 として嵌め合わされる。支持板 6には、ガス抜き用の孔 6aと塩水導入口 66が形成され ており、孔 6aに排気管を接続し得る。塩水導入口 66には塩水供給管(38)が接続さ れる。この塩水供給管は塩水濃度を均一化するために支持板 6を貫通して内側電極 70内にまで延在する方が好ましい。嵌め合わせのために、図 2に示すように、支持板 7の底面には、槽間の塩水通路 7aの外側に内側電極 70及び外側電極 90の内周と 嵌合する枠状突部 7b及び 7cが設けられて 、る。 [0030] To assemble the first electrolytic cell 2, the diaphragm support 80 is inserted into the outer electrode 90 around the axis X, and the inner electrode 70 is inserted into the diaphragm support 80, They are coaxially arranged so as to overlap threefold. Next, the supporting plates 6 and 7 are fitted to the open ends on both sides of the inner electrode 70, the diaphragm support 80 and the outer electrode 90 as an upper lid and a lower lid, respectively. The support plate 6 has a gas vent hole 6a and a salt water inlet 66, and an exhaust pipe can be connected to the hole 6a. A salt water supply pipe (38) is connected to the salt water inlet 66. Preferably, the salt water supply pipe extends through the support plate 6 and into the inner electrode 70 in order to equalize the salt water concentration. For the fitting, as shown in FIG. 2, on the bottom surface of the support plate 7, a frame-shaped projection 7b fitted to the inner periphery of the inner electrode 70 and the inner periphery of the outer electrode 90 outside the salt water passage 7a between the tanks, and 7c is provided.
[0031] 上記のような構造を有する本発明の強電解水の製造装置の動作について図 3を参 照しながら説明する。この例では、強酸性電解質を生成するために、外側電極 90を 陽極(+ )とし、内側電極を陰極(一)とした。塩水供給装置 30からポンプ 36を通じて 送出される飽和塩分濃度の塩水は、塩水供給管 38を通って第 1電解槽 2の内側電 極 70の内部に供給される。前述のように内側電極 70には複数の孔が形成されてい るために、塩水は内側電極 70の側壁を通過して隔膜 88と内側電極 70との間の空間 に流入し、塩水通路 7aを通過して第 2電解槽 4の内側電極 70の内部に流入する。こ
こでも、内側電極 70には複数の孔が形成されているために、塩水は内側電極 70の 側壁を通過して隔膜 88と内側電極 70との間の空間に流入し、第 2電解槽 4を流出し た後、塩水戻り管 39を通って塩水供給装置 30に戻る。こうして、塩水は塩水供給装 置 30と第 1及び第 2電解槽 2, 4とを循環する。 The operation of the apparatus for producing strongly electrolyzed water of the present invention having the above-described structure will be described with reference to FIG. In this example, in order to generate a strongly acidic electrolyte, the outer electrode 90 was an anode (+) and the inner electrode was a cathode (1). The salt water having a saturated salt concentration, which is sent from the salt water supply device 30 through the pump 36, is supplied to the inside of the inner electrode 70 of the first electrolytic cell 2 through the salt water supply pipe 38. As described above, since a plurality of holes are formed in the inner electrode 70, the salt water passes through the side wall of the inner electrode 70, flows into the space between the diaphragm 88 and the inner electrode 70, and flows through the salt water passage 7a. It passes through and flows into the inside electrode 70 of the second electrolytic cell 4. This Again, since the inner electrode 70 has a plurality of holes, the salt water passes through the side wall of the inner electrode 70 and flows into the space between the diaphragm 88 and the inner electrode 70, and the second electrolytic cell 4 After flowing out, the water returns to the salt water supply device 30 through the salt water return pipe 39. Thus, the salt water circulates through the salt water supply device 30 and the first and second electrolytic cells 2 and 4.
[0032] 一方、水道管などの水源力も水供給管 40を通って供給された水流は、管 40a及び 40bに分岐される。管 40a側を流れる水は流量弁 60で流量が所定の流量に制御さ れた後、第 1電解槽 2の外側電極 90と整流板 (第 1面) 80aとの間の空間に流入され る。そして、水流が整流板 80aで整流されて隔膜支持体 80の第 2〜4側面に設けら れている隔膜 88上を流れる。この際、電解により塩水中の塩素イオン (Cl_)は、後述 する反応により隔膜 88と外側電極 90の間の空間で水と反応して次塩素酸 (HCIO) となる。それゆえ、水は、第 1電解槽 2を、次塩素酸 (HCIO)を含む電解水となって流 出する。第 1電解槽 2を流出する電解水は槽連結管 12を通って第 2電解槽 4の外側 電極 90と整流板 80aの間の空間に流入し、そこで整流された後、第 1電解槽 2と同様 に、隔膜 88上を流れ、電解されることによって次塩素酸 (HCIO)の濃度が高くなる。 こうして強酸性ィ匕した電解水は第 2電解槽 4を流出し、電解水排出管 14を通ってブレ ンダ 50に流入する。プレンダ 50には、分岐した水供給管 40bからの水が流入される 。水供給管 40bから供給される水量は流量弁 20で制御される。従って、プレンダ 50 内で、強酸性電解水は水で希釈されて適正な pHに調整されてプレンダ 50から排出 される。 On the other hand, the water flow supplied from the water supply pipe 40 such as a water pipe through the water supply pipe 40 is branched into pipes 40a and 40b. After the flow rate of the water flowing through the pipe 40a is controlled to a predetermined flow rate by the flow valve 60, the water flows into the space between the outer electrode 90 of the first electrolytic cell 2 and the rectifying plate (first surface) 80a. . Then, the water flow is rectified by the rectifying plate 80a and flows on the diaphragm 88 provided on the second to fourth side surfaces of the diaphragm support 80. At this time, the chlorine ions (Cl_) in the salt water by electrolysis react with water in a space between the diaphragm 88 and the outer electrode 90 by a reaction described later to form hypochloric acid (HCIO). Therefore, the water flows out of the first electrolytic cell 2 as electrolyzed water containing hypochloric acid (HCIO). The electrolytic water flowing out of the first electrolytic cell 2 flows through the cell connecting pipe 12 into the space between the outer electrode 90 of the second electrolytic cell 4 and the rectifier plate 80a, where it is rectified, and then the first electrolytic cell 2 Similarly to the above, the concentration of hypochloric acid (HCIO) is increased by flowing over the diaphragm 88 and being electrolyzed. The electrolyzed water thus strongly acidized flows out of the second electrolysis tank 4 and flows into the blender 50 through the electrolyzed water discharge pipe 14. The water from the branched water supply pipe 40b flows into the blender 50. The amount of water supplied from the water supply pipe 40b is controlled by the flow valve 20. Therefore, in the blender 50, the strongly acidic electrolyzed water is diluted with water, adjusted to an appropriate pH, and discharged from the blender 50.
[0033] 上記電解槽における電気化学反応を簡単に説明する。電気分解により外側電極 9 0、すなわち陽極側では、水から酸素と水素イオン (H+)が生成し、内側電極 70と隔 膜 88との間に供給された塩水中の塩素イオン (CDは隔膜 88を通り、隔膜 88と外 側電極 90の間の空間で塩素(C1)を介して塩素ガス(C1 )となり、塩素ガスは水と反 [0033] The electrochemical reaction in the electrolytic cell will be briefly described. Oxygen and hydrogen ions (H +) are generated from water on the outer electrode 90, that is, on the anode side by electrolysis, and chlorine ions in the salt water supplied between the inner electrode 70 and the diaphragm 88 (CD is the diaphragm 88). Through the space, and in the space between the diaphragm 88 and the outer electrode 90, becomes chlorine gas (C1) via chlorine (C1), and the chlorine gas reacts with water.
2 2
応して次塩素酸 (HCIO)及び塩酸 (HC1)となる。それゆえ、水は、第 1電解槽 2の外 側電極 90と隔膜 88との間の空間から、殺菌効果の高い次塩素酸 (HCIO)を含んで 流出する。第 1電解槽 2から流出する電解水は高濃度の水素イオンを含むために、 p Hの低い強酸性水となる。 In response, it becomes hypochloric acid (HCIO) and hydrochloric acid (HC1). Therefore, the water flows out of the space between the outer electrode 90 and the diaphragm 88 of the first electrolytic cell 2 including hypochloric acid (HCIO) having a high sterilizing effect. The electrolyzed water flowing out of the first electrolyzer 2 contains high-concentration hydrogen ions, so that it becomes strongly acidic water with a low pH.
実施例 1
[0034] 図 1〜3に示した電解水製造装置を用いた電解操作の例を示す。外側電極を陽極 (+ )とし、内側電極を陰極(一)とし、定電圧装置を制御して 6V、 16Aの電解条件の 下で電解を行った。第 1電解槽への水供給量は 3. 2リットル Z分であり、この例では プレンダへ水を供給しな力つた。塩水の供給量 (循環量) 300ccZ分とした。電極間 距離は、 2. Ommであった。この電解により、 pH2. 30、 ORP (酸化還元電位) 1180 mV、残留塩素濃度 60mgZリットル (Ppm)の強酸性電解水が 3. 2リットル Z分の流 量で得られた。生成した強酸性電解水の未分解食塩濃度を TOWA DKK-HM2 OT (東亜ディーケーケ一株式会社)で測定したところ、 0. 0096% (96ppm)であるこ とが分った。内側電極及び外側電極の第 2〜第 4側面での電流値をそれぞれ測定し たところ、いずれも 5A±0. 2Aで均一で且つ安定化していることが分った。 Example 1 [0034] An example of an electrolysis operation using the electrolyzed water production apparatus shown in Figs. 1 to 3 will be described. The outer electrode was used as the anode (+), the inner electrode was used as the cathode (1), and the electrolysis was performed under the electrolysis conditions of 6 V and 16 A by controlling the constant voltage device. The amount of water supplied to the first electrolytic cell was 3.2 liters Z minutes. In this example, water was not supplied to the blender. The supply amount of salt water (circulation amount) was set to 300 ccZ. The distance between the electrodes was 2. Omm. By this electrolysis, a strongly acidic electrolyzed water having a pH of 2.30, an ORP (redox potential) of 1180 mV, and a residual chlorine concentration of 60 mgZ liter (Ppm) was obtained at a flow rate of 3.2 liters Z. The concentration of the undecomposed salt of the generated strongly acidic electrolyzed water was measured with TOWA DKK-HM2 OT (Toa DKK-IKK), and was found to be 0.0096% (96 ppm). When the current values at the second to fourth side surfaces of the inner electrode and the outer electrode were measured, it was found that both were uniform and stable at 5A ± 0.2A.
実施例 2 Example 2
[0035] 実施例 1にお!/、て、プレンダへ水を 2. 0リットル Z分で供給した以外は、実施例 1と 同様の条件で電解を行った。この電解により、 pH2. 60、 ORP1130mV、残留塩素 濃度 20〜30mgZリットルの強酸性電解水が 5. 2リットル Z分の流量で得られた。 実施例 3 In Example 1, electrolysis was performed under the same conditions as in Example 1 except that water was supplied to the blender at 2.0 liters Z minutes. By this electrolysis, strongly acidic electrolyzed water with a pH of 2.60, an ORP of 1130 mV, and a residual chlorine concentration of 20 to 30 mgZ liter was obtained at a flow rate of 5.2 liter Z. Example 3
[0036] 実施例 1にお 、て、電極極性を入替えて外側電極を陰極(一)とし、内側電極を陽 極(+ )とした以外は、実施例 1と同様の条件で電解を行った。この電解により、 pH12 . 0、 ORP— 950mVの強アルカリ性電解水が 3. 2リットル Z分の流量で得られた。 実施例 4 [0036] In Example 1, electrolysis was performed under the same conditions as in Example 1 except that the polarity of the electrodes was changed, and the outer electrode was changed to the cathode (1), and the inner electrode was changed to the positive electrode (+). . By this electrolysis, strongly alkaline electrolyzed water having a pH of 12.0 and an ORP of 950 mV was obtained at a flow rate of 3.2 liters Z. Example 4
[0037] 実施例 3において、プレンダへ水を 2. 0リットル Z分で供給した以外は、実施例 3と 同様の条件で電解を行った。この電解により、 pHl l. 3、 ORP— 800mVの強アル カリ性電解水が 5. 2リットル Z分の流量で得られた。 [0037] In Example 3, electrolysis was performed under the same conditions as in Example 3, except that water was supplied to the blender at 2.0 liters Z minutes. By this electrolysis, strongly alkaline electrolyzed water with a pH of l.3 and ORP—800 mV was obtained at a flow rate of 5.2 lZ.
[0038] 上記実施例では、内側電極面に複数の孔を設け、内側電極の内側に塩水を供給 したが、内側電極面に複数の孔を設けることなぐ塩水を内側電極と隔膜支持体 (隔 膜)との間の空間に直接供給してもよい。 In the above embodiment, a plurality of holes were provided on the inner electrode surface, and the salt water was supplied to the inside of the inner electrode. (Membrane).
[0039] [第 2実施形態] [Second Embodiment]
図 4に示すように、いずれも中空の三角柱状の外側電極 190、隔膜支持体 180及 び内側電極 170を三重に重ねた構造の電解槽 110を用いることも可能である。この
場合、外側電極 190の水供給口 2aが設けられている側面 190aと対向する隔膜支持 体 180の側面 180aは非透水性の榭脂板力 形成され整流板として機能し、その他 の側面 180b及び 180cには透水性の隔膜が設けられている。従って、電解は、外側 電極 190の側面 190bと隔膜支持体 180の側面 180bとの間の空間及び外側電極 1 90の側面 190cと隔膜支持体 180の側面 180cとの間の空間で行われる。すなわち、 電解は比較的大面積を有する平面電極間で行われることになるために、電解電圧 · 電流が安定し且つ均一化すると考えられる。電解により得られた強電解水は二つの 外側電極 190の側面 190bと 190cの交線上に設けられた電解水排水口 2bから排出 される。外側電極 190の側面 190b, 190c上には電極 92が設けられている。 As shown in FIG. 4, it is also possible to use an electrolytic cell 110 having a structure in which a hollow triangular prism-shaped outer electrode 190, a diaphragm support 180, and an inner electrode 170 are all stacked in three layers. this In this case, the side surface 180a of the diaphragm support 180 opposite to the side surface 190a of the outer electrode 190 where the water supply port 2a is provided is formed of a water-impermeable resin plate and functions as a rectifying plate, and the other side surfaces 180b and 180c Is provided with a water-permeable diaphragm. Accordingly, electrolysis is performed in the space between the side surface 190b of the outer electrode 190 and the side surface 180b of the diaphragm support 180 and the space between the side surface 190c of the outer electrode 190 and the side surface 180c of the diaphragm support 180. That is, since the electrolysis is performed between the planar electrodes having a relatively large area, the electrolysis voltage and current are considered to be stable and uniform. The strongly electrolyzed water obtained by the electrolysis is discharged from an electrolyzed water outlet 2b provided on the intersection of the side surfaces 190b and 190c of the two outer electrodes 190. An electrode 92 is provided on the side surfaces 190b and 190c of the outer electrode 190.
[0040] 図 4では、中空の三角柱状の外側電極、隔膜支持体及び内側電極を備える電解 槽を示した力 中空の五角柱、六角柱、七角柱、八角柱などの形態の外側電極、隔 膜支持体及び内側電極を備える電解槽でも比較的広 ヽ平面電極が確保でき、流水 型電解槽中の水の滞留期間が長くなるために、平板電極の場合に比べて電解電圧' 電流が安定し且つ均一化され、電解効率が高くなる。 FIG. 4 shows an electrolytic cell including a hollow triangular prism-shaped outer electrode, a diaphragm support, and an inner electrode. The outer electrode in the form of a hollow pentagonal prism, hexagonal prism, heptagonal prism, octagonal prism, etc. A relatively wide flat electrode can be secured even in an electrolytic cell equipped with a membrane support and inner electrodes, and the residence time of water in a flowing water type electrolytic cell is longer, so that the electrolytic voltage and current are more stable than in the case of a flat electrode. And uniformity, and the electrolysis efficiency is increased.
[0041] [第 3実施形態] [Third Embodiment]
図 5に、本発明の電解水製造装置を組み込んだ内視鏡洗浄装置の一例を示す。 内視鏡洗浄装置 200は、貯水量 9. 0リットルの洗浄槽 102と、前記実施例で製造し た説明した電解水製造装置 100と、電解水製造装置 100の動作を制御する制御装 置 106を備える。洗浄槽 102は、電解水製造装置 100から供給された強電解水を循 環する循環ポンプ 104と、洗浄後の電解水を排水する排水管 107を備える。制御装 置 106は、電解水製造装置 100で生成される電解水の濃度を調節すると共に、電解 水製造装置 100の電極に印加する電圧の極性を切り替えて洗浄槽 102に強酸性電 解水と強アルカリ性電解水を供給するタイミングを制御する。内視鏡洗浄装置 200で 内視鏡を洗浄するには、最初に、洗浄槽 102に内視鏡などの洗浄対象物を入れ、次 いで、強アルカリ性電解水を電解水製造装置 100から洗浄槽 102に供給する。供給 した強アルカリ性電解水はポンプ 104で所定時間循環した後、排水管 107で排水す る。次いで、水を洗浄槽 102に供給して洗浄槽 102と洗浄対象物を洗い流した後に 、電解水製造装置 100から強酸性電解水を供給する。このように、強アルカリ性電解
水と強酸性電解水を交互に供給して洗浄対象物を殺菌洗浄することができる。一般 的には、内視鏡の洗浄を実行するために毎分 4. 5リットルの生成量と未分解食塩濃 度 0. 01%以下の電解水の供給が要求されるが、本発明の内視鏡洗浄装置はこの 要求を十分に満たしている。 FIG. 5 shows an example of an endoscope cleaning apparatus incorporating the electrolytic water production apparatus of the present invention. The endoscope cleaning apparatus 200 includes a cleaning tank 102 having a water storage of 9.0 liters, the electrolytic water producing apparatus 100 described in the above embodiment, and a control apparatus 106 for controlling the operation of the electrolytic water producing apparatus 100. Is provided. The cleaning tank 102 includes a circulation pump 104 that circulates the strongly electrolyzed water supplied from the electrolyzed water production device 100, and a drain pipe 107 that drains the electrolyzed water after the cleaning. The control device 106 adjusts the concentration of the electrolyzed water generated in the electrolyzed water production device 100, and switches the polarity of the voltage applied to the electrodes of the electrolyzed water production device 100 to the cleaning tank 102 so that the strong acid Controls the timing of supplying strongly alkaline electrolyzed water. To clean an endoscope with the endoscope cleaning apparatus 200, first, an object to be cleaned such as an endoscope is put into the cleaning tank 102, and then the strongly alkaline electrolyzed water is removed from the electrolyzed water producing apparatus 100 to the cleaning tank. Supply to 102. The supplied strongly alkaline electrolyzed water is circulated for a predetermined time by a pump 104 and then drained by a drain pipe 107. Next, water is supplied to the washing tank 102 to wash away the washing tank 102 and the object to be washed, and then strongly acidic electrolytic water is supplied from the electrolytic water producing apparatus 100. Thus, strong alkaline electrolysis Water and strongly acidic electrolyzed water can be alternately supplied to sterilize and clean the object to be cleaned. Generally, in order to perform cleaning of the endoscope, a production volume of 4.5 liters per minute and a supply of electrolyzed water having an undecomposed salt concentration of 0.01% or less are required. The endoscope cleaning device satisfies this requirement.
[0042] 上記実施形態及び実施例では、電解槽として第 1及び第 2電解槽を直列に接続し て用いた例を示したが、用途に応じて第 1電解槽だけを使用してもよい。この場合で も、電解電圧 8V、電流 26Aで、 pH約 2. 6の強酸性電解水が 4. 5リットル Z分で得ら れる。さらに、第 1及び第 2電解槽を並列に接続して用いても良い。 [0042] In the above embodiments and examples, an example was shown in which the first and second electrolytic cells were connected in series as electrolytic cells, but only the first electrolytic cell may be used depending on the application. . Even in this case, strongly acidic electrolyzed water with a pH of about 2.6 can be obtained in 4.5 liters Z at an electrolysis voltage of 8 V and a current of 26 A. Further, the first and second electrolytic cells may be connected in parallel and used.
[0043] [第 4実施形態] [Fourth Embodiment]
図 6に本発明の電解水製造装置を組み込んだ循環式電解水製造装置の一例を示 す。この例では、電解槽をー槽のみ用いたことと生成した電解水を電解槽にタンクを 経由して循環させていること以外は、第 1実施形態とほぼ同様にして強酸性の電解 水を生成している。循環式電解水製造装置 400は主に、電解槽 301と、塩水供給装 置 30と、タンク 310と、電解水を循環するためのポンプ 320と、ブレンダ 330を備える 。電解槽 301は、第 1実施形態で説明した電解槽 10の第一電解槽 2に相当する。 塩水供給装置 30は、塩水供給管 38及び塩水戻り管 39により電解槽 301と接続され ている。塩水供給装置 30で生成された塩水は、塩水供給管 38を通じて電解槽 301 内の内側電極 70の内部に供給される。前述の実施形態と同様に内側電極 70には 複数の孔が形成されているために、塩水は内側電極 70の側壁を通過して隔膜 88と 内側電極 70との間の空間に流入する。電解槽 301内を通過した塩水は、塩水戻り管 39を通って塩水供給装置 30に戻る。すなわち、塩水は塩水供給装置 30と電解槽 3 01との間を循環する。 FIG. 6 shows an example of a circulating electrolyzed water production apparatus incorporating the electrolyzed water production apparatus of the present invention. In this example, strongly acidic electrolyzed water was used in substantially the same manner as in the first embodiment, except that only the electrolyzer was used and the generated electrolyzed water was circulated through the electrolyzer through the tank. Has been generated. The circulation type electrolyzed water production apparatus 400 mainly includes an electrolysis tank 301, a salt water supply apparatus 30, a tank 310, a pump 320 for circulating the electrolyzed water, and a blender 330. The electrolytic cell 301 corresponds to the first electrolytic cell 2 of the electrolytic cell 10 described in the first embodiment. The salt water supply device 30 is connected to the electrolytic cell 301 by a salt water supply pipe 38 and a salt water return pipe 39. The salt water generated by the salt water supply device 30 is supplied to the inside of the inner electrode 70 in the electrolytic cell 301 through the salt water supply pipe 38. Since a plurality of holes are formed in the inner electrode 70 as in the above-described embodiment, the salt water flows through the side wall of the inner electrode 70 and flows into the space between the diaphragm 88 and the inner electrode 70. The salt water that has passed through the electrolytic cell 301 returns to the salt water supply device 30 through a salt water return pipe 39. That is, the salt water circulates between the salt water supply device 30 and the electrolytic cell 301.
[0044] タンク 310は、電解水供給管 350及び電解水排出管 351により電解槽 301と接続 されている。タンク 310に蓄えられた水又は電解水の一部は、ポンプ 320によって電 解槽 301に送出され、電解槽 301の外側電極 90と整流板 (第 1面) 80aとの間に流入 される。電解槽 301に電解水が循環される場合には、電解水は電解槽 301内でさら に電解されることによって、より強酸性ィ匕した電解水となる。このようにして得られた電 解水は、電解水排出管 351を通ってタンク 310へと戻る。このようにして、電解水はタ
ンク 310と電解槽 301とを循環する。 [0044] The tank 310 is connected to the electrolytic tank 301 by an electrolytic water supply pipe 350 and an electrolytic water discharge pipe 351. A part of the water or the electrolyzed water stored in the tank 310 is sent out to the electrolysis tank 301 by the pump 320 and flows between the outer electrode 90 of the electrolysis tank 301 and the rectifying plate (first surface) 80a. When the electrolyzed water is circulated through the electrolyzer 301, the electrolyzed water is further electrolyzed in the electrolyzer 301, so that the electrolyzed water becomes more strongly acidic. The electrolytic water thus obtained returns to the tank 310 through the electrolytic water discharge pipe 351. In this way, the electrolyzed water is The circulation between the ink 310 and the electrolytic cell 301 is performed.
[0045] タンク 310はタンク排出管 352を通じてブレンダ 330と接続されている。ブレンダ 33 0は、タンク 310に蓄えられた電解水(強酸性電解水)を適宜希釈する。このため、タ ンク 310に蓄えられた電解水がタンク排出管 352を通ってブレンダの一方の入口 33 0aに流入し、希釈用の水が水供給管 340bを通ってブレンダ 330の他方の入口 330 bに流入する。ブレンダ 330には ORP (酸ィ匕還元電位)センサー(不図示)が取り付け られ、 ORPセンサーと水供給管 340bに設けられた流量制御弁 361により、プレンダ 330内で電解水が所定の pHになるように希釈される。プレンダ 330で希釈された所 望 pHの電解水はブレンダ出口 330cを通してブレンダ排出管 353から取り出される。 [0045] The tank 310 is connected to the blender 330 through a tank discharge pipe 352. The blender 330 appropriately dilutes the electrolyzed water (strongly acidic electrolyzed water) stored in the tank 310. Therefore, the electrolyzed water stored in the tank 310 flows into the one inlet 330a of the blender through the tank discharge pipe 352, and the water for dilution passes through the water supply pipe 340b to the other inlet 330 of the blender 330. flows into b. An ORP (oxidation reduction potential) sensor (not shown) is attached to the blender 330, and the electrolyzed water reaches a predetermined pH in the blender 330 by an ORP sensor and a flow control valve 361 provided in a water supply pipe 340b. Diluted. The electrolyzed water having the desired pH diluted by the blender 330 is taken out from the blender discharge pipe 353 through the blender outlet 330c.
[0046] 循環式電解水生成装置 400を使用して強酸性電解水を得るための手順にっ ヽて 、図 6を参照して説明する。まず、水道管などの水源から水供給管 340、 340aを通つ て供給される水をタンク 310内に蓄える。十分な量の水がタンク 310内に蓄えられた 後、流量制御弁 362を調整して水の供給を止める。その後、ポンプ 320を起動してタ ンク 310内の水を電解槽 301へと送出しながら、電解槽 301に電力を供給して、電解 を開始する。電解槽 301で生成される電解水はタンク 310に戻る。このようにして電 解槽 301とタンク 310の間で電解水を循環させることによって、タンク 310内の電解水 の pHを徐々に下げることができる。タンク 310内の電解水の pHが十分に下がったら 、流量制御弁 362を調整してタンク 310内に水を供給することによって、タンク 310か ら溢れ出た電解水をタンク排出管 352を通じてプレンダ 330へと供給する。このとき、 タンク内の強電解水の pHは十分に下がっているため、タンクの容量に比べて少量の 水をカ卩えてもタンク内の電解水の pHはほとんど変化しない。タンク 310力も供給され た電解水は、ブレンダ 330において目的の pHに水で希釈されてブレンダ排出管 35 3から排出される。 A procedure for obtaining strongly acidic electrolyzed water using the circulating electrolyzed water generator 400 will be described with reference to FIG. First, water supplied from a water source such as a water pipe through the water supply pipes 340 and 340a is stored in the tank 310. After a sufficient amount of water has been stored in the tank 310, the flow control valve 362 is adjusted to stop the water supply. After that, while pump 320 is activated and water in tank 310 is sent to electrolysis tank 301, electric power is supplied to electrolysis tank 301 to start electrolysis. The electrolyzed water generated in the electrolysis tank 301 returns to the tank 310. By circulating the electrolyzed water between the electrolysis tank 301 and the tank 310 in this manner, the pH of the electrolyzed water in the tank 310 can be gradually reduced. When the pH of the electrolyzed water in the tank 310 is sufficiently lowered, the flow rate of the electrolyzed water overflowing from the tank 310 is adjusted by adjusting the flow control valve 362 to supply the water into the tank 310, and the water is supplied to the blender 330 through the tank discharge pipe 352. To supply. At this time, since the pH of the strongly electrolyzed water in the tank has been sufficiently lowered, the pH of the electrolyzed water in the tank hardly changes even if a small amount of water is reduced compared to the capacity of the tank. The electrolyzed water supplied with the power of the tank 310 is diluted with water to a target pH in the blender 330 and discharged from the blender discharge pipe 353.
[0047] 電解水を循環させて、複数回にわたって電解することによって、たとえ一つの電解 槽だけを用いている場合であっても、 pH2. 0以下の強酸性電解水を大容量で且つ 高効率で生成することが可能である。さらに、循環させる電解水の流量を流量調整弁 363で適当な値に調整することよって、タンク 310内力らブレンダ 330に電解水を供 給しつつ、タンク 310内の電解水の pHを長時間一定に保つことが可能である。この
ようにしてタンク 310から供給される強電解水をブレンダ 330において水で希釈する ことによって、必要となる約 pH2. 6程度の強酸性電解水を大容量で長時間安定に 供給することができる。 [0047] By circulating the electrolyzed water and electrolyzing a plurality of times, even when only one electrolyzer is used, a strongly acidic electrolyzed water having a pH of 2.0 or less can be produced in a large capacity and at a high efficiency. Can be generated by Further, by adjusting the flow rate of the electrolyzed water to be circulated to an appropriate value with the flow rate adjustment valve 363, the pH of the electrolyzed water in the tank 310 is kept constant for a long time while the electrolyzed water is supplied from the power in the tank 310 to the blender 330. It is possible to keep. this By diluting the strongly electrolyzed water supplied from the tank 310 with water in the blender 330 as described above, the required strongly acidic electrolyzed water of about pH 2.6 can be stably supplied in a large capacity for a long time.
[0048] 図 6において、電解水排出管 351を分岐して、一方を電解水供給管 350に接続し、 他方をタンク排出管 352に接続することによって、タンク 310を介さずに電解水を循 環させることもできる。このとき、水供給管 340aを電解水排出管 351又は電解水供給 管 350に接続することによって、水の補給をすることができる。このような循環路の構 成は、タンク 310を省略することができるため、部品点数及び製造コストの低減をもた らす。 In FIG. 6, the electrolyzed water discharge pipe 351 is branched, one is connected to the electrolyzed water supply pipe 350, and the other is connected to the tank discharge pipe 352, so that the electrolyzed water is circulated without passing through the tank 310. It can be ringed. At this time, water can be supplied by connecting the water supply pipe 340a to the electrolytic water discharge pipe 351 or the electrolytic water supply pipe 350. Such a circuit configuration can reduce the number of parts and the manufacturing cost because the tank 310 can be omitted.
[0049] 本実施形態では一つの電解槽だけを使用しているが、用途に応じて複数の電解槽 を直列及び Z又は並列に接続して用いても構わな 、。 [0049] In the present embodiment, only one electrolytic cell is used, but a plurality of electrolytic cells may be connected in series and Z or in parallel depending on the application.
[0050] 上記実施形態及び実施例では、隔膜支持体の第 1側面全体を整流板 (面)とした 力 水供給口に対向する部分またはその近傍を含む領域のみを非透水性材料から 構成することで、その部分または領域だけを整流面としてもよい。水供給口に対向す る部分または領域に水流による圧力が力かり乱流が生じやすぐまた隔膜は圧力によ り橈み易いので、少なくともこの部分または領域を整流面とすることで整流作用が得 られると考えられる。 [0050] In the above embodiments and examples, only the region facing the force water supply port or a region including the vicinity thereof is formed of a non-water-permeable material, with the entire first side surface of the diaphragm support being a current plate (surface). Thus, only that portion or region may be used as the rectifying surface. Since the pressure due to the water flow is exerted on the portion or region facing the water supply port and turbulence occurs immediately, the diaphragm is easily deflected by the pressure. It is thought that it can be obtained.
[0051] 上記実施形態及び実施例では、外側電極と隔膜支持体との間の空間に水を供給 し、内側電極と隔膜支持体との間の空間に塩水を供給したが、内側電極と隔膜支持 体との間の空間に塩水などの電解質水を供給し、外側電極と隔膜支持体との間の空 間に水を供給してもよい。また、上記実施形態では塩水は食塩を溶解した食塩水を 利用したが、海水を適宜塩分濃度を調整して利用してもよい。また、電解質は塩水を もたらす塩ィ匕ナトリウムに限らず、塩ィ匕カリウムを使用してもよい。 In the above embodiments and examples, water was supplied to the space between the outer electrode and the diaphragm support and salt water was supplied to the space between the inner electrode and the diaphragm support. Electrolyte water, such as salt water, may be supplied to the space between the support and the space between the outer electrode and the diaphragm support. Further, in the above embodiment, the salt water used is a salt solution in which salt is dissolved, but sea water may be used by appropriately adjusting the salt concentration. In addition, the electrolyte is not limited to sodium salt which produces salt water, and potassium salt may be used.
[0052] 上記実施形態及び実施例では、隔膜支持体として、上枠 82、下枠 84その間に挟 まれた格子状のガイド枠 86、及び隔膜 88から構成された隔膜支持体を用いたが、剛 性のある隔膜、例えば、セラミック膜の場合、ガイド枠を省略して、隔膜自体を隔膜支 持体とすることちでさる。 In the above embodiments and examples, the diaphragm support constituted by the upper frame 82, the lower frame 84, the lattice-shaped guide frame 86 interposed therebetween, and the diaphragm 88 was used, In the case of a rigid diaphragm, for example, a ceramic film, the guide frame is omitted and the diaphragm itself is used as a diaphragm support.
[0053] 上記実施形態及び実施例では、第 1電解槽及び第 2電解槽にそれぞれ内側電極
を設けたが、内側電極を軸方向に延在させて第 1電解槽及び第 2電解槽の隔膜支持 体並びに支持体(7)を貫通するような一体型の内側電極にすることができる。このよう な内側電極構造は、部品点数及び製造コストの低減をもたらす。 [0053] In the above embodiments and examples, the inner electrode is provided in each of the first electrolytic cell and the second electrolytic cell. However, the inner electrode can be extended in the axial direction to form an integral inner electrode that penetrates through the diaphragm support of the first electrolytic cell and the second electrolytic cell and the support (7). Such an inner electrode structure results in a reduction in the number of parts and manufacturing costs.
産業上の利用可能性 Industrial applicability
本発明の電解水製造装置は、製造コストが低廉であり、コンパクトな構造でありなが ら、所望の pHを有する電解水を大容量で製造することができるので、病院や家庭で の消毒に極めて有用となる。また、低電圧'低電流で所望の pHを有する電解水を大 容量で製造することができるので、エネルギーを節約することができる。また、単純な 電解槽構造はメンテンナンスを容易し、さらに、塩素及び水素の発生量が少ないた めに、病院や家庭などの設置環境の安全性に貢献する。さらに、本発明の電解水製 造装置は、抑制された未分解食塩濃度の強酸性電解水または強アルカリ性電解水 を短時間で大容量で得ることができるので、内視鏡などの医療器具の洗浄に極めて 有用である。本発明の内視鏡洗浄装置は、高速洗浄が可能であるために、近年増大 する内視鏡を用いた治療 ·手術のニーズに極めて有用である。
INDUSTRIAL APPLICABILITY The electrolyzed water production apparatus of the present invention is capable of producing electrolyzed water having a desired pH in a large volume while having a low production cost and a compact structure, and is therefore suitable for disinfection in hospitals and homes. It will be extremely useful. In addition, since a large volume of electrolyzed water having a desired pH at a low voltage and a low current can be produced, energy can be saved. In addition, a simple electrolytic cell structure facilitates maintenance and contributes to the safety of the installation environment, such as hospitals and homes, because the amount of chlorine and hydrogen generated is small. Further, the electrolyzed water production apparatus of the present invention can obtain a large amount of strongly acidic electrolyzed water or strongly alkaline electrolyzed water having a suppressed undecomposed salt concentration in a short time, so that a medical instrument such as an endoscope can be obtained. Very useful for cleaning. Since the endoscope cleaning device of the present invention can perform high-speed cleaning, it is extremely useful for the needs of treatment and surgery using an endoscope that have been increasing in recent years.