WO2005039534A1 - Lipophilic drug delivery vehicle and methods of use thereof - Google Patents
Lipophilic drug delivery vehicle and methods of use thereof Download PDFInfo
- Publication number
- WO2005039534A1 WO2005039534A1 PCT/US2004/025412 US2004025412W WO2005039534A1 WO 2005039534 A1 WO2005039534 A1 WO 2005039534A1 US 2004025412 W US2004025412 W US 2004025412W WO 2005039534 A1 WO2005039534 A1 WO 2005039534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bioactive agent
- lipid
- particles
- agent delivery
- delivery particle
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 100
- 238000012377 drug delivery Methods 0.000 title description 2
- 239000002245 particle Substances 0.000 claims abstract description 397
- 239000012867 bioactive agent Substances 0.000 claims abstract description 278
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 124
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 117
- 229920001184 polypeptide Polymers 0.000 claims abstract description 114
- 230000004576 lipid-binding Effects 0.000 claims abstract description 99
- 239000000203 mixture Substances 0.000 claims abstract description 84
- 239000000232 Lipid Bilayer Substances 0.000 claims abstract description 49
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 claims description 154
- 150000002632 lipids Chemical class 0.000 claims description 81
- 102000007592 Apolipoproteins Human genes 0.000 claims description 69
- 108010071619 Apolipoproteins Proteins 0.000 claims description 69
- 230000002209 hydrophobic effect Effects 0.000 claims description 44
- 150000003904 phospholipids Chemical class 0.000 claims description 29
- 229940127093 camptothecin Drugs 0.000 claims description 27
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 claims description 26
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical group C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 claims description 26
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 claims description 26
- 230000008685 targeting Effects 0.000 claims description 26
- 239000003937 drug carrier Substances 0.000 claims description 25
- 239000008194 pharmaceutical composition Substances 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 22
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 18
- 229960003724 dimyristoylphosphatidylcholine Drugs 0.000 claims description 18
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 claims description 16
- 229960005160 dimyristoylphosphatidylglycerol Drugs 0.000 claims description 16
- BPHQZTVXXXJVHI-AJQTZOPKSA-N ditetradecanoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCCCCCCCC BPHQZTVXXXJVHI-AJQTZOPKSA-N 0.000 claims description 16
- 230000005661 hydrophobic surface Effects 0.000 claims description 13
- 239000006185 dispersion Substances 0.000 claims description 12
- 229940121375 antifungal agent Drugs 0.000 claims description 11
- 230000004071 biological effect Effects 0.000 claims description 11
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 claims description 10
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 claims description 10
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 claims description 10
- 229960003942 amphotericin b Drugs 0.000 claims description 10
- 239000002246 antineoplastic agent Substances 0.000 claims description 10
- 230000027455 binding Effects 0.000 claims description 10
- 206010017533 Fungal infection Diseases 0.000 claims description 9
- 208000031888 Mycoses Diseases 0.000 claims description 9
- 239000003429 antifungal agent Substances 0.000 claims description 9
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 claims description 9
- 206010028980 Neoplasm Diseases 0.000 claims description 8
- 241000222122 Candida albicans Species 0.000 claims description 7
- 101000733802 Homo sapiens Apolipoprotein A-I Proteins 0.000 claims description 7
- 238000013270 controlled release Methods 0.000 claims description 7
- 206010006187 Breast cancer Diseases 0.000 claims description 6
- 208000026310 Breast neoplasm Diseases 0.000 claims description 6
- 230000004048 modification Effects 0.000 claims description 6
- 238000012986 modification Methods 0.000 claims description 6
- 229940095731 candida albicans Drugs 0.000 claims description 4
- 239000000443 aerosol Substances 0.000 claims description 3
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 claims description 3
- 102000051062 human APOA1 Human genes 0.000 claims description 3
- 238000007918 intramuscular administration Methods 0.000 claims description 3
- 238000007912 intraperitoneal administration Methods 0.000 claims description 3
- 238000007913 intrathecal administration Methods 0.000 claims description 3
- 238000001990 intravenous administration Methods 0.000 claims description 3
- 238000007911 parenteral administration Methods 0.000 claims description 2
- 229940098178 ambisome Drugs 0.000 description 152
- 210000004027 cell Anatomy 0.000 description 46
- 238000009472 formulation Methods 0.000 description 36
- 241000699670 Mus sp. Species 0.000 description 34
- 108090000623 proteins and genes Proteins 0.000 description 28
- 108010059886 Apolipoprotein A-I Proteins 0.000 description 26
- 102000005666 Apolipoprotein A-I Human genes 0.000 description 26
- 102000004169 proteins and genes Human genes 0.000 description 26
- 235000018102 proteins Nutrition 0.000 description 24
- 238000011282 treatment Methods 0.000 description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- -1 e.g. Proteins 0.000 description 18
- 230000002538 fungal effect Effects 0.000 description 17
- 238000010348 incorporation Methods 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 230000000843 anti-fungal effect Effects 0.000 description 14
- 230000012010 growth Effects 0.000 description 13
- 239000012736 aqueous medium Substances 0.000 description 12
- 239000000499 gel Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 108020001507 fusion proteins Proteins 0.000 description 11
- 102000037865 fusion proteins Human genes 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 238000000527 sonication Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 10
- 150000001413 amino acids Chemical group 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 10
- 229960004884 fluconazole Drugs 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000013604 expression vector Substances 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 235000001014 amino acid Nutrition 0.000 description 8
- 229940024606 amino acid Drugs 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- 208000015181 infectious disease Diseases 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 102100034184 Macrophage scavenger receptor types I and II Human genes 0.000 description 7
- 101710134306 Macrophage scavenger receptor types I and II Proteins 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 239000013011 aqueous formulation Substances 0.000 description 7
- 239000000470 constituent Substances 0.000 description 7
- 239000003599 detergent Substances 0.000 description 7
- 238000000502 dialysis Methods 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 102000005962 receptors Human genes 0.000 description 7
- 108020003175 receptors Proteins 0.000 description 7
- 231100000419 toxicity Toxicity 0.000 description 7
- 230000001988 toxicity Effects 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 210000003734 kidney Anatomy 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- 230000004580 weight loss Effects 0.000 description 6
- 102000006991 Apolipoprotein B-100 Human genes 0.000 description 5
- 108010008150 Apolipoprotein B-100 Proteins 0.000 description 5
- 241001225321 Aspergillus fumigatus Species 0.000 description 5
- 241000221204 Cryptococcus neoformans Species 0.000 description 5
- 229920000858 Cyclodextrin Polymers 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000000975 bioactive effect Effects 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 239000000084 colloidal system Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229940097362 cyclodextrins Drugs 0.000 description 5
- 238000002298 density-gradient ultracentrifugation Methods 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 150000002190 fatty acyls Chemical group 0.000 description 5
- 238000004108 freeze drying Methods 0.000 description 5
- 239000011544 gradient gel Substances 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000008363 phosphate buffer Substances 0.000 description 5
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 231100000331 toxic Toxicity 0.000 description 5
- 230000002588 toxic effect Effects 0.000 description 5
- 231100000440 toxicity profile Toxicity 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 4
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 208000035143 Bacterial infection Diseases 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 239000000045 antileishmanial agent Substances 0.000 description 4
- 229940124573 antileishmanial agent Drugs 0.000 description 4
- 108010078299 apolipophorin III Proteins 0.000 description 4
- 208000022362 bacterial infectious disease Diseases 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 238000001493 electron microscopy Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 230000009036 growth inhibition Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 210000002540 macrophage Anatomy 0.000 description 4
- 238000001426 native polyacrylamide gel electrophoresis Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000001965 potato dextrose agar Substances 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000001488 sodium phosphate Substances 0.000 description 4
- 229910000162 sodium phosphate Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 4
- 238000003260 vortexing Methods 0.000 description 4
- BIABMEZBCHDPBV-MPQUPPDSSA-N 1,2-palmitoyl-sn-glycero-3-phospho-(1'-sn-glycerol) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCCCCCCCCCC BIABMEZBCHDPBV-MPQUPPDSSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 3
- 102000000844 Cell Surface Receptors Human genes 0.000 description 3
- 108010001857 Cell Surface Receptors Proteins 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 101000898505 Homo sapiens Histatin-3 Proteins 0.000 description 3
- 241000222722 Leishmania <genus> Species 0.000 description 3
- 108010038049 Mating Factor Proteins 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000000845 anti-microbial effect Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 3
- 229940109239 creatinine Drugs 0.000 description 3
- 229940127089 cytotoxic agent Drugs 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000002054 inoculum Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 3
- 239000000693 micelle Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 description 3
- 238000005063 solubilization Methods 0.000 description 3
- 230000007928 solubilization Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 2
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 2
- 108010082126 Alanine transaminase Proteins 0.000 description 2
- 108010087614 Apolipoprotein A-II Proteins 0.000 description 2
- 102000009081 Apolipoprotein A-II Human genes 0.000 description 2
- 102100037320 Apolipoprotein A-IV Human genes 0.000 description 2
- 102100040197 Apolipoprotein A-V Human genes 0.000 description 2
- 108010061118 Apolipoprotein A-V Proteins 0.000 description 2
- 108010076807 Apolipoprotein C-I Proteins 0.000 description 2
- 102000011772 Apolipoprotein C-I Human genes 0.000 description 2
- 108010024284 Apolipoprotein C-II Proteins 0.000 description 2
- 102100039998 Apolipoprotein C-II Human genes 0.000 description 2
- 108010056301 Apolipoprotein C-III Proteins 0.000 description 2
- 102000030169 Apolipoprotein C-III Human genes 0.000 description 2
- 102000009333 Apolipoprotein D Human genes 0.000 description 2
- 101710095339 Apolipoprotein E Proteins 0.000 description 2
- 102100029470 Apolipoprotein E Human genes 0.000 description 2
- 108010025614 Apolipoproteins D Proteins 0.000 description 2
- 102100030802 Beta-2-glycoprotein 1 Human genes 0.000 description 2
- 108090000197 Clusterin Proteins 0.000 description 2
- 102000003780 Clusterin Human genes 0.000 description 2
- 201000007336 Cryptococcosis Diseases 0.000 description 2
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 2
- 108010036949 Cyclosporine Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- KLFKZIQAIPDJCW-HTIIIDOHSA-N Dipalmitoylphosphatidylserine Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCC KLFKZIQAIPDJCW-HTIIIDOHSA-N 0.000 description 2
- 102000002322 Egg Proteins Human genes 0.000 description 2
- 108010000912 Egg Proteins Proteins 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 229930186217 Glycolipid Natural products 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 102400000777 His3-(20-43)-peptide Human genes 0.000 description 2
- 102000000853 LDL receptors Human genes 0.000 description 2
- 108010001831 LDL receptors Proteins 0.000 description 2
- 108010063045 Lactoferrin Proteins 0.000 description 2
- 102000010445 Lactoferrin Human genes 0.000 description 2
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 2
- FVJZSBGHRPJMMA-IOLBBIBUSA-N PG(18:0/18:0) Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCCCCCCCCCCCC FVJZSBGHRPJMMA-IOLBBIBUSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 208000001431 Psychomotor Agitation Diseases 0.000 description 2
- 206010038743 Restlessness Diseases 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 108010073614 apolipoprotein A-IV Proteins 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 108010023562 beta 2-Glycoprotein I Proteins 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 229940099352 cholate Drugs 0.000 description 2
- 229960001265 ciclosporin Drugs 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229930182912 cyclosporin Natural products 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 235000015872 dietary supplement Nutrition 0.000 description 2
- ZGSPNIOCEDOHGS-UHFFFAOYSA-L disodium [3-[2,3-di(octadeca-9,12-dienoyloxy)propoxy-oxidophosphoryl]oxy-2-hydroxypropyl] 2,3-di(octadeca-9,12-dienoyloxy)propyl phosphate Chemical compound [Na+].[Na+].CCCCCC=CCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COP([O-])(=O)OCC(O)COP([O-])(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COC(=O)CCCCCCCC=CCC=CCCCCC ZGSPNIOCEDOHGS-UHFFFAOYSA-L 0.000 description 2
- 235000013345 egg yolk Nutrition 0.000 description 2
- 210000002969 egg yolk Anatomy 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 244000053095 fungal pathogen Species 0.000 description 2
- 238000002695 general anesthesia Methods 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- KSXBMTJGDUPBBN-VPKNIDFUSA-N histatin 5 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(O)=O)C1=CN=CN1 KSXBMTJGDUPBBN-VPKNIDFUSA-N 0.000 description 2
- 230000005660 hydrophilic surface Effects 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 239000012678 infectious agent Substances 0.000 description 2
- 239000002917 insecticide Substances 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 2
- 229940078795 lactoferrin Drugs 0.000 description 2
- 235000021242 lactoferrin Nutrition 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 229940118019 malondialdehyde Drugs 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- PQLXHQMOHUQAKB-UHFFFAOYSA-N miltefosine Chemical compound CCCCCCCCCCCCCCCCOP([O-])(=O)OCC[N+](C)(C)C PQLXHQMOHUQAKB-UHFFFAOYSA-N 0.000 description 2
- 229960003775 miltefosine Drugs 0.000 description 2
- 230000037023 motor activity Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 231100000161 signs of toxicity Toxicity 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 231100000041 toxicology testing Toxicity 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WWUZIQQURGPMPG-UHFFFAOYSA-N (-)-D-erythro-Sphingosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)CO WWUZIQQURGPMPG-UHFFFAOYSA-N 0.000 description 1
- KZJWDPNRJALLNS-VPUBHVLGSA-N (-)-beta-Sitosterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@@H](C(C)C)CC)C)CC4)CC3)CC=2)CC1 KZJWDPNRJALLNS-VPUBHVLGSA-N 0.000 description 1
- CSVWWLUMXNHWSU-UHFFFAOYSA-N (22E)-(24xi)-24-ethyl-5alpha-cholest-22-en-3beta-ol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(CC)C(C)C)C1(C)CC2 CSVWWLUMXNHWSU-UHFFFAOYSA-N 0.000 description 1
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 1
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- XJOTXKZIRSHZQV-RXHOOSIZSA-N (3S)-3-amino-4-[[(2S,3R)-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S,3S)-1-[[(1R,6R,12R,17R,20S,23S,26R,31R,34R,39R,42S,45S,48S,51S,59S)-51-(4-aminobutyl)-31-[[(2S)-6-amino-1-[[(1S,2R)-1-carboxy-2-hydroxypropyl]amino]-1-oxohexan-2-yl]carbamoyl]-20-benzyl-23-[(2S)-butan-2-yl]-45-(3-carbamimidamidopropyl)-48-(hydroxymethyl)-42-(1H-imidazol-4-ylmethyl)-59-(2-methylsulfanylethyl)-7,10,19,22,25,33,40,43,46,49,52,54,57,60,63,64-hexadecaoxo-3,4,14,15,28,29,36,37-octathia-8,11,18,21,24,32,41,44,47,50,53,55,58,61,62,65-hexadecazatetracyclo[32.19.8.26,17.212,39]pentahexacontan-26-yl]amino]-3-methyl-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-4-oxobutanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H]1CCCN1C(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](Cc1cnc[nH]1)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)[C@@H](C)O)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@@H]2CSSC[C@@H]3NC(=O)[C@@H]4CSSC[C@H](NC(=O)[C@H](Cc5ccccc5)NC(=O)[C@@H](NC1=O)[C@@H](C)CC)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](Cc1cnc[nH]1)NC3=O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N2)C(=O)NCC(=O)N4)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O XJOTXKZIRSHZQV-RXHOOSIZSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- KLEXDBGYSOIREE-UHFFFAOYSA-N 24xi-n-propylcholesterol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CCC)C(C)C)C1(C)CC2 KLEXDBGYSOIREE-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- HKJKONMZMPUGHJ-UHFFFAOYSA-N 4-amino-5-hydroxy-3-[(4-nitrophenyl)diazenyl]-6-phenyldiazenylnaphthalene-2,7-disulfonic acid Chemical compound OS(=O)(=O)C1=CC2=CC(S(O)(=O)=O)=C(N=NC=3C=CC=CC=3)C(O)=C2C(N)=C1N=NC1=CC=C([N+]([O-])=O)C=C1 HKJKONMZMPUGHJ-UHFFFAOYSA-N 0.000 description 1
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 101710120040 Antifungal peptide Proteins 0.000 description 1
- 102000008128 Apolipoprotein E3 Human genes 0.000 description 1
- 108010060215 Apolipoprotein E3 Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 101800001415 Bri23 peptide Proteins 0.000 description 1
- 102400000107 C-terminal peptide Human genes 0.000 description 1
- 101800000655 C-terminal peptide Proteins 0.000 description 1
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- LPZCCMIISIBREI-MTFRKTCUSA-N Citrostadienol Natural products CC=C(CC[C@@H](C)[C@H]1CC[C@H]2C3=CC[C@H]4[C@H](C)[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)C(C)C LPZCCMIISIBREI-MTFRKTCUSA-N 0.000 description 1
- 108010073254 Colicins Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 108010002069 Defensins Proteins 0.000 description 1
- 102000000541 Defensins Human genes 0.000 description 1
- ARVGMISWLZPBCH-UHFFFAOYSA-N Dehydro-beta-sitosterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)CCC(CC)C(C)C)CCC33)C)C3=CC=C21 ARVGMISWLZPBCH-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 108010049047 Echinocandins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 206010017577 Gait disturbance Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 101000771674 Homo sapiens Apolipoprotein E Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 241000222740 Leishmania braziliensis Species 0.000 description 1
- 241000222727 Leishmania donovani Species 0.000 description 1
- 241000222732 Leishmania major Species 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 108060003100 Magainin Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010036176 Melitten Proteins 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- 206010029155 Nephropathy toxic Diseases 0.000 description 1
- 102000003797 Neuropeptides Human genes 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 102000012088 Vasoactive Intestinal Peptide Receptors Human genes 0.000 description 1
- 108010075974 Vasoactive Intestinal Peptide Receptors Proteins 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- JLPULHDHAOZNQI-JLOPVYAASA-N [(2r)-3-hexadecanoyloxy-2-[(9e,12e)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC JLPULHDHAOZNQI-JLOPVYAASA-N 0.000 description 1
- SWPYNTWPIAZGLT-UHFFFAOYSA-N [amino(ethoxy)phosphanyl]oxyethane Chemical compound CCOP(N)OCC SWPYNTWPIAZGLT-UHFFFAOYSA-N 0.000 description 1
- 208000028752 abnormal posture Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 108700025316 aldesleukin Proteins 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- CIDNKDMVSINJCG-GKXONYSUSA-N annamycin Chemical compound I[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(=O)CO)C1 CIDNKDMVSINJCG-GKXONYSUSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000002514 anti-leishmanial effect Effects 0.000 description 1
- 230000000842 anti-protozoal effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000003904 antiprotozoal agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 1
- 229940091771 aspergillus fumigatus Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- MJVXAPPOFPTTCA-UHFFFAOYSA-N beta-Sistosterol Natural products CCC(CCC(C)C1CCC2C3CC=C4C(C)C(O)CCC4(C)C3CCC12C)C(C)C MJVXAPPOFPTTCA-UHFFFAOYSA-N 0.000 description 1
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 1
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000007707 calorimetry Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 1
- 229930183167 cerebroside Natural products 0.000 description 1
- 150000001784 cerebrosides Chemical class 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000009668 clonal growth Effects 0.000 description 1
- 238000009643 clonogenic assay Methods 0.000 description 1
- 231100000096 clonogenic assay Toxicity 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229940124447 delivery agent Drugs 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000011363 dried mixture Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000001408 fungistatic effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000007407 health benefit Effects 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 108060003558 hepcidin Proteins 0.000 description 1
- 102000018511 hepcidin Human genes 0.000 description 1
- 229940066919 hepcidin Drugs 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000053020 human ApoE Human genes 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 239000003547 immunosorbent Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000013554 lipid monolayer Substances 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VDXZNPDIRNWWCW-UHFFFAOYSA-N melitten Chemical compound NCC(=O)NC(C(C)CC)C(=O)NCC(=O)NC(C)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCCCN)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(C(C)O)C(=O)NCC(=O)NC(CC(C)C)C(=O)N1CCCC1C(=O)NC(C)C(=O)NC(CC(C)C)C(=O)NC(C(C)CC)C(=O)NC(CO)C(=O)NC(C(=O)NC(C(C)CC)C(=O)NC(CCCCN)C(=O)NC(CCCNC(N)=N)C(=O)NC(CCCCN)C(=O)NC(CCCNC(N)=N)C(=O)NC(CCC(N)=O)C(=O)NC(CCC(N)=O)C(N)=O)CC1=CNC2=CC=CC=C12 VDXZNPDIRNWWCW-UHFFFAOYSA-N 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 150000002759 monoacylglycerols Chemical class 0.000 description 1
- 238000004264 monolayer culture Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000007694 nephrotoxicity Effects 0.000 description 1
- 231100000417 nephrotoxicity Toxicity 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 231100001092 no hepatotoxicity Toxicity 0.000 description 1
- 239000002417 nutraceutical Substances 0.000 description 1
- 235000021436 nutraceutical agent Nutrition 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 238000003305 oral gavage Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 208000001297 phlebitis Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 235000002378 plant sterols Nutrition 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229940087463 proleukin Drugs 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229940043274 prophylactic drug Drugs 0.000 description 1
- 239000012658 prophylactic medication Substances 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 210000005084 renal tissue Anatomy 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000013374 right angle light scattering Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 102000035013 scavenger receptor class A Human genes 0.000 description 1
- 108091005451 scavenger receptor class A Proteins 0.000 description 1
- 102000014452 scavenger receptors Human genes 0.000 description 1
- 108010078070 scavenger receptors Proteins 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 1
- 235000015500 sitosterol Nutrition 0.000 description 1
- 229950005143 sitosterol Drugs 0.000 description 1
- NLQLSVXGSXCXFE-UHFFFAOYSA-N sitosterol Natural products CC=C(/CCC(C)C1CC2C3=CCC4C(C)C(O)CCC4(C)C3CCC2(C)C1)C(C)C NLQLSVXGSXCXFE-UHFFFAOYSA-N 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 208000026841 staggering gait Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000012134 supernatant fraction Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 102000055501 telomere Human genes 0.000 description 1
- 108091035539 telomere Proteins 0.000 description 1
- 210000003411 telomere Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000007222 ypd medium Substances 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1275—Lipoproteins or protein-free species thereof, e.g. chylomicrons; Artificial high-density lipoproteins [HDL], low-density lipoproteins [LDL] or very-low-density lipoproteins [VLDL]; Precursors thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- This application relates to compositions and methods for delivery of bioactive agents.
- the application relates to bioactive agent delivery particles that include a lipid binding polypeptide, a lipid bilayer, and a bioactive agent.
- Bioactive substances such as therapeutic agents, vaccine immunogens, and nutrients often cannot be administered in pure form, but must be incorporated into biocompatible formulations that enhance solubility of the bioactive material and package it in a suitable form to achieve optimal beneficial effects while minimizing undesirable side effects. Efficient delivery of bioactive agents is often hindered by a short clearance time of an agent in the body, inefficient targeting to a site of action, or the nature of the bioactive agent itself, for example, poor solubility in aqueous media or hydrophobicity. Thus, many formulation strategies have been developed to improve delivery, including controlled release formulations, emulsions, and liposomal preparations.
- Liposomes are completely closed, spherical lipid bilayer membranes containing an entrapped aqueous volume.
- the lipid bilayer includes two lipid monolayers composed of lipids having a hydrophobic tail region and a hydrophilic head region.
- the structure of the membrane bilayer is such that the hydrophobic, nonpolar tails of the lipid molecules orient toward the center of the bilayer while the hydrophilic heads orient toward the aqueous phases both on the exterior and the interior of the liposome.
- the aqueous, hydrophilic core region of a liposome may include a dissolved bioactive substance.
- hydrophobic substances Delivery of pharmaceutically useful hydrophobic substances is often particularly problematic because they are insoluble or poorly soluble in an aqueous environment.
- direct injection may be impossible or highly problematic, resulting in such dangerous conditions as hemolysis, phlebitis, hypersensitivity, organ failure, and/or death.
- improved formulations for hydrophobic bioactive substances that will promote stability in an aqueous environment and allow efficient delivery of such substances to a desired site of action.
- the invention provides compositions and methods for delivery of a bioactive agent to an individual.
- the invention provides a bioactive agent delivery particle that includes a lipid binding polypeptide, a lipid bilayer with an interior that includes a hydrophobic region, and a bioactive agent associated with the hydrophobic region of the lipid bilayer.
- Bioactive agent delivery particles generally do not include a hydrophilic or aqueous core.
- Bioactive agent delivery particles include one or more bioactive agents that include at least one hydrophobic region and are incorporated into, or associated with, the hydrophobic interior of the lipid bilayer.
- the hydrophobic region(s) of a bioactive agent are generally associated with hydrophobic surfaces in the interior of the lipid bilayer, e.g., fatty acyl chains.
- the bioactive agent is amphotericin B (AmB).
- the bioactive agent is camptofhecin.
- Particles are typically disc shaped, with a diameter in the range of about 7 to about 29 nm.
- Bioactive agent delivery particles include bilayer-forming lipids, for example phospholipids.
- a bioactive agent delivery particle includes both bilayer-forming and non-bilayer-forming lipids.
- the lipid bilayer of a bioactive agent delivery particle includes phospholipids.
- the phospholipids incorporated into a delivery particle include dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG).
- DMPC dimyristoylphosphatidylcholine
- DMPG dimyristoylphosphatidylglycerol
- the lipid bilayer includes DMPC and DMPG in a 7:3 molar ratio.
- the lipid binding polypeptide is an apolipoprotein.
- the predominant interaction between lipid binding polypeptides, e.g., apolipoprotein molecules, and the lipid bilayer is generally a hydrophobic interaction between residues on a hydrophobic face of an amphipathic structure, e.g., a ⁇ -helix of the lipid binding polypeptide and fatty acyl chains of lipids on an exterior surface at the perimeter of the particle.
- Particles of the invention may include exchangeable and/or non-exchangeable apolipoproteins.
- the lipid binding polypeptide is Apolipoprotein A-I (ApoA-I).
- particles are provided that include lipid binding polypeptide molecules, e.g., apolipoprotein molecules, that have been modified to increase stability of the particle.
- the modification includes introduction of cysteine residues to form intramolecular and/or intermolecular disulfide bonds.
- particles are provided that include a chimeric lipid binding polypeptide molecule, e.g., a.
- chimeric apolipoprotein molecule with one or more bound functional moieties, for example one or more targeting moieties and/or one or more moieties having a desired biological activity, e.g., antimicrobial activity, which may augment or work in synergy with the activity of a bioactive agent incorporated into the delivery particle.
- one or more bound functional moieties for example one or more targeting moieties and/or one or more moieties having a desired biological activity, e.g., antimicrobial activity, which may augment or work in synergy with the activity of a bioactive agent incorporated into the delivery particle.
- a pharmaceutical composition in another aspect, includes a bioactive agent delivery particle in a pharmaceutically acceptable carrier.
- a method for administering a bioactive agent to an individual is also provided, which includes administering a pharmaceutical composition containing bioactive agent delivery particles in a pharmaceutically acceptable carrier to the individual.
- a therapeutically effective amount of the bioactive agent is administered in a pharmaceutically acceptable carrier.
- administration is parenteral, for example intravenous, intramuscular, intraperitoneal, transmucosal, or intrathecal.
- particles are administered as an aerosol.
- the bioactive agent is formulated for controlled release.
- a method for treating a fungal infection in an individual including administering a anti- fungal agent, for example, AmB, incorporated into bioactive agent delivery particles of the invention, often in a therapeutically effective amount in a pharmaceutically acceptable carrier.
- a method for treating a tumor in an individual including administering an anti-tumor agent, for example, camptothecin, incorporated into bioactive agent delivery particles of the invention, often in a therapeutically effective amount in a pharmaceutically acceptable carrier.
- the bioactive agent delivery particles include a lipid binding polypeptide with an attached vasoactive intestinal peptide targeting moiety, and the tumor is a breast tumor.
- the formulation process includes contacting a mixture that includes bilayer-forming lipids and a bioactive agent to form a lipid vesicle-bioactive agent mixture, and contacting the lipid vesicle-bioactive agent mixture with a lipid binding polypeptide.
- the formulation process includes formation of a dispersion of pre-formed bilayer-containing lipid vesicles to which a bioactive agent, dissolved in an appropriate solvent, is added.
- solvents for solubilizing a bioactive agent for this procedure include solvents with polar or hydrophilic character that are capable of solubilizing a bioactive agent to be incorporated into a delivery particle of the invention.
- suitable solvents include, but are not limited to, dimethylsulfoxide (DMSO) and dimethylformamide.
- DMSO dimethylsulfoxide
- lipid binding polypeptides are added, followed by incubation, sonication, or both.
- the bioactive agent incorporated into a delivery particle by any of the above processes is amphotericin B.
- the amphotericin B is solubilized in DMSO.
- the bioactive agent is camptothecin.
- the camptothecin is solubilized in DMSO.
- the invention includes bioactive agent delivery particles prepared according to any of the processes described above, and pharmaceutical compositions including particles prepared according to any of the above processes and a pharmaceutically acceptable carrier.
- kits including any of the bioactive agent delivery particles or pharmaceutical compositions described above, or delivery particles prepared by any of the above methods, and/or reagents for formulating the particles and/or instructions for use in a method for administering a bioactive agent to an individual.
- Figure 1 depicts a UV/Visible absorbance spectrum, from 250-450 nm, of ApoA- I-phospholipid particles without a bioactive agent, prepared as in Example 1:
- Figure 2 depicts a UV/Visible absorbance spectrum, from 250-450 nm, of ApoA- I-phospholipid-AmB particles, prepared as in Example 1.
- Figure 3 depicts a plot of fraction number versus protein concentration for ApoA- I-phospholipid-AmB particles after density gradient ultracentrifugation. Particles were prepared as described in Example 2 and adjusted to 1.3 g/ml density by the addition of KBr. The solution was centrifuged in a discontinuous gradient for 5 hours at 275,000 x g at 10°C. Following centrifugation, the tube contents were fractionated from the top and the protein content in each fraction determined.
- Figure 4 depicts a native polyacrylamide gel elecfrophoresis (PAGE) analysis of ApoA-I-phospholipid particles, on a 4-20% acrylamide gradient slab gel.
- Particles were prepared with ApoA-I and two different lipid preparations, DMPC/DMPG or palmitoyloleylphosphatidylcholine (POPC). The gel was stained with Coomassie Blue.
- Lane 1 ApoA-I POPC particles
- Lane 2 ApoA-I-POPC-AmB particles
- Lane 3 ApoA-I- DMPC/DMPG-AmB particles. The relative migration of size standards is shown on the left.
- Figure 5 depicts a comparison of effects of different storage conditions on the size and structural integrity of Apoliprotein E N-terminal domain (ApoE3NT)- DMPC/DMPG-AmB particle stability. Particles were isolated by density ultracentrifugation and then subjected to elecfrophoresis on a native PAGE 4-20% gradient slab gel. The gel was stained with Amido Black. Lane 1 : particles stored in phosphate buffer at 4°C for 24 hours; Lane 2: particles stored in phosphate buffer at -20°C for 24 hours; Lane 3: particles lyophilized and frozen at -80°C for 24 hours, and then redissolved in H 2 O. The relative migration of size standards is shown on the left. [0024] Figure 6 schematically illustrates the shape and molecular organization of a bioactive agent delivery particle.
- Figure 7 schematically illustrates chimeric lipid binding polypeptides and their incorporation into a bioactive agent delivery particle.
- the chimeric proteins may include a targeting moiety (Figure 7A) or a moiety with a desired biological activity (Figure 7B).
- Figure 7C schematically illustrates incorporation of the chimeric polypeptides shown in Figures 7A and 7B into a bioactive agent delivery particle.
- Figure 8 graphically depicts antifungal activity of AmB-containing bioactive agent delivery particles against Saccharomyces cerevisiae (S. cerevisiae) in culture, as described in Example 2.
- Figure 9 is a freeze fracture electron micrograph of AmB-containing bioactive agent delivery particles, prepared as described in Example 10.
- Figure 10 shows a comparison between the ability of ApoA-I-DMPC/DMPG-
- Figure 11 shows, fluorescence spectral comparison between camptothecin solubilized in SDS (Figure 11 A) and camptothecin-containing bioactive agent delivery particles (Figure 11B), as described in Example 9.
- Figure 12 depicts a UV/visible spectral comparison of AmB incorporation into lipid particles prepared as described in Example 7 ( Figure 12A) and bioactive agent delivery particles prepared as described in Example 6 ( Figure 12B).
- Figure 13 is an illustration of an embodiment of a bioactive agent delivery particle preparation procedure.
- Figure 14 shows changes in body weight of mice administered the indicated dosages of AmB-containing bioactive agent delivery particles as described in Example 13.
- Figure 15 shows serum levels of urea (Figure 15 A), creatinine (Figure 15B), aspartate aminotransferase (AST) ( Figure 15C), and alanine aminotransferase ( Figure 15 A).
- Figure 16 shows the survival rate of mice administered the indicated treatment as described in Example 14.
- AMB-ND AmB-containing bioactive agent delivery particles;
- AmB AmBisome
- FLCZ Fluconazole
- ND non- AmB-containing disc particles.
- Figure 17 shows changes in body weight of mice administered the indicated treatment as described in Figure 14.
- AMB-ND AmB-containing bioactive agent delivery particles
- AmB AmBisome
- FLCZ Fluconazole
- ND non-AmB-containing disc particles.
- Figure 18 shows tissue fungal burden in mice administered the indicated treatment as described in Example 14.
- AMB-ND AmB-containing bioactive agent delivery particles
- AmB AmBisome
- FLCZ Fluconazole
- ND non-AmB-containing disc particles.
- Figure 19 shows the effect of apolipoprotein A-I on the light scattering intensity of AmB phospholipid vesicles. Two hundred micrograms of phospholipid (DMPC and DMPG (7:3 molar ratio) and 50 micrograms AmB were dispersed into 20 mM sodium phosphate, pH 7.4 by vortexing and incubated at 24 °C in the presence and absence of apolipoprotein.
- Sample right angle light scattering intensity was measured as a function of time in a Perkin-Elmer Model LS50b luminescence spectrometer. The excitation and emission monochromators were set at 600 nm with a slit width of 4 nm.
- the invention provides compositions and methods for delivery of a bioactive agent to an individual.
- Delivery vehicles are provided in the form of a bioactive agent incorporated into a particle that includes a lipid binding polypeptide and a lipid bilayer.
- the interior of the particle includes a hydrophobic region of the lipid bilayer that includes hydrophobic portions of lipid molecules, e.g., fatty acyl chains of lipids, in contrast to liposomes, which include a wholly enclosed aqueous interior surrounded by lipid hydrophilic surfaces of a bilayer.
- incorporation of hydrophobic molecules permits incorporation of hydrophobic molecules, for example, by intercalation between lipid molecules in the bilayer or sequestration into the hydrophobic region between leaflets of the bilayer.
- a bioactive agent that includes at least one hydrophobic region may be incorporated into the hydrophobic interior of the particle.
- incorpororation of a bioactive agent into the hydrophobic region of a lipid bilayer refers to solubilization into or association with a hydrophobic region or hydrophobic portions of lipid molecules of the bilayer, e.g., fatty acyl chains of lipids that form the bilayer, or intercalation with the fatty acyl chains.
- the particles are generally disc shaped, with a diameter in the range of about 7 to 29 nm, as determined by native pore limiting gradient gel elecfrophoresis, in comparison with standards of known Stokes' diameter, as described, for example, in Blanche et al. (1981) Biochim. Biophys. Acta. 665(3):408-19.
- the particles are stable in solution and may be lyophilized for long term storage, followed by reconstitution in aqueous solution.
- the lipid binding polypeptide component defines the boundary of the discoidal bilayer and provides structure and stability to the particles.
- Chimeric lipid binding polypeptide molecules e.g. , apolipoprotein molecules
- apolipoprotein molecules are also provided and may be used to incorporate various additional functional properties into the delivery particles of the invention.
- the particles may be administered to an individual to deliver a bioactive agent to the individual.
- the invention provides a "particle” (also termed “delivery particle” or “bioactive agent delivery particle” herein) that includes one or more types of lipid binding polypeptide, a lipid bilayer comprising one or more types of bilayer-forming lipid, and one or more bioactive agents.
- a delivery particle also includes one or more types of non-bilayer-forming lipid.
- Compositions including the particles are also provided.
- a pharmaceutical composition is provided that includes delivery particles and a pharmaceutically acceptable carrier.
- the interior of a particle includes a hydrophobic region (e.g. , comprised of lipid fatty acyl chains).
- Particles of the invention typically do not comprise a hydrophilic or aqueous core.
- the particles are generally disc shaped, having a flat, discoidal, roughly circular lipid bilayer circumscribed by amphipathic ⁇ -helices and/or ⁇ -sheets of the lipid binding polypeptides, which are associated with hydrophobic surfaces of the bilayer around the periphery of the disc.
- An illustrative example of a disc shaped bioactive agent delivery particle of the invention is schematically depicted in Fig. 6.
- the diameter of a disc shaped delivery particle is about 7 to about 29 nm, often about 10 to about 25 nm, often about 15 to about 20 nm. "Diameter” refers to the diameter of one of the roughly circular shaped faces of the disc.
- lipid binding polypeptide refers to any synthetic or naturally occurring peptide or protein that forms a stable interaction with lipid surfaces and can function to stabilize the lipid bilayer of a particle of the invention.
- Particles may include one or more types of lipid binding polypeptides, i.e., the lipid binding polypeptides in a single particle may be identical or may be composed of two or more different polypeptide sequences.
- the lipid binding polypeptides circumscribe the periphery of the particle.
- lipid binding polypeptides useful for producing delivery particles in accordance with the invention include proteins having an amino acid sequence of a naturally occurring protein, or a fragment, natural variant, isoform, analog, or chimeric form thereof, proteins having a non-naturally occurring sequence, and proteins or peptides of any length that possess lipid binding properties consistent with known apolipoproteins, and may be purified from natural sources, produced recombinantly, or produced synthetically. An analog of a naturally-occurring protein may be used.
- a lipid binding polypeptide may include one or more non-natural amino acids (e.g., D-amino acids), amino acid analogs, or a peptidomimetic structure, in which the peptide bond is replaced by a structure more resistant to metabolic degradation, or individual amino acids are replaced by analogous structures.
- non-natural amino acids e.g., D-amino acids
- amino acid analogs e.g., amino acid analogs
- a peptidomimetic structure in which the peptide bond is replaced by a structure more resistant to metabolic degradation, or individual amino acids are replaced by analogous structures.
- the lipid binding polypeptide is an apolipoprotein. Any apolipoprotein or fragment or analog thereof may be used that is capable of associating with a lipid bilayer to form a disc shaped particle. Particles may include exchangeable, no ⁇ -exchangeable, or a mixture of exchangeable and non-exchangeable apolipoprotein molecules.
- Apolipoproteins generally possess a class A amphipafhic ⁇ -helix structural motif (Segrest et al. (1994) Adv. Protein Chem. 45:303-369), and/or a ⁇ -sheet motif.
- Apolipoproteins generally include a high content of ⁇ -helix secondary structure with the ability to bind to hydrophobic surfaces.
- a characteristic feature of these proteins is their ability to interact with certain lipid bilayer vesicles and to transform them into disc-shaped complexes (for a review, see Narayanaswami and Ryan (2000) Biochimica et Biophysica Acta 1483:15-36).
- the protein Upon contact with lipids, the protein undergoes a conformational change, adapting its structure to accommodate lipid interaction.
- the predominant interaction between apolipoproteins and the lipid bilayer in a particle is through a hydrophobic interaction between residues on the hydrophobic faces of amphipathic ⁇ -helices of apolipoprotein molecules and hydrophobic surfaces of lipids, for example, phospholipid fatty acyl chains, at the edge of the bilayer at the periphery of the bioactive agent delivery particle.
- An amphipathic ⁇ -helix of an apolipoprotein molecule includes both a hydrophobic surface in contact with a hydrophobic surface of the lipid bilayer at the periphery of the particle, and a hydrophilic surface facing the exterior of the particle and in contact with the aqueous environment when the particle is suspended in aqueous medium.
- an apolipoprotein may include an amphipathic ⁇ -sheet structure wherein hydrophobic residues of the ⁇ -sheet interact with lipid hydrophobic surfaces at the periphery of the disc.
- a bioactive agent delivery particle often comprises about 1 to about 10 molecules of one or more types of apolipoprotein per particle.
- the amount of amphipathic ⁇ -helix contributed by the apolipoproteins in a particle is generally sufficient to cover the otherwise exposed hydrophobic surface of the lipid molecules located at the edge of the disc shaped lipid bilayer (i.e., the periphery of the particle).
- a particle comprises 2 ApoA-I molecules in a ratio of about 80 molecules of phospholipid to about 1 molecule of ApoA-I.
- apolipoproteins which may be used for formation of the delivery particles of the invention include, but are not limited to, ApoA-I, apolipoprotein E (ApoE), and apolipophorin III (ApoIII), apolipoprotein A-IV (ApoA-IV), apolipoprotein A-V (ApoA-V), apolipoprotein C-I (ApoC-I), apolipoprotein C-II (ApoC-II), apolipoprotein C- III (ApoC-III), apolipoprotein D (ApoD), apolipoprotein A-II (ApoA-II), apolipoprotein B- 100 (ApoB-100), apolipoprotein J (ApoJ), apolipoprotein H (ApoH), or fragments, natural variants, isoforms, analogs, or chimeric forms thereof.
- ApoA-I
- the apolipoprotein is human ApoA-I. In other embodiments, the apolipoprotein is the C- terminal or N-terminal domain of apolipoprotein E3, or isoforms thereof. In some embodiments, the apolipoprotein includes a functional moiety that has been attached either synthetically or recombinantly, such as a targeting moiety or a moiety having biological activity, that is not intrinsic to the apolipoprotein (see, e.g., Fig. 7). [0052] In some embodiments, an exchangeable apolipoprotein is used.
- exchangeable apolipoprotein may be displaced from a preformed discoidal particle of the invention by another protein or peptide with lipid binding affinity, without destroying the integrity of the particle.
- Exchangeable apolipoproteins include synthetic or natural peptides or proteins capable of forming a stable binding interaction with lipids. More than a dozen unique exchangeable apolipoproteins have been identified in both vertebrates and invertebrates (see, e.g., Narayanaswami and Ryan, supra).
- non-exchangeable apolipoprotein refers to a protein or peptide that forms a stable interaction with lipid surfaces and can function to stabilize the phospholipid bilayer of particles of the invention, but cannot be removed from the surface of the particle without destroying the intrinsic structure of the particle.
- the delivery particles include one or more bioactive agents.
- bioactive agent refers to any compound or composition having biological, including therapeutic or diagnostic, activity.
- a bioactive agent may be a pharmaceutical agent, drug, compound, or composition that is useful in medical treatment, diagnosis, or prophylaxis.
- Bioactive agents incorporated into delivery particles as described herein generally include at least one hydrophobic (e.g., lipophilic) region capable of associating with or integrating into the hydrophobic portion of a lipid bilayer. In some embodiments, at least a portion of the bioactive agent is intercalated between lipid molecules in the interior of the delivery particle.
- bioactive agents examples include, but are not limited to, antibiotic or antimicrobial (e.g., antibacterial, antifungal, and antiviral) agents, antimetabolic agents, antineoplastic agents, steroids, peptides, proteins, such as, for example, cell receptor proteins, enzymes, hormones, and neurotransmitters, radiolabels such as radioisotopes and radioisotope-labeled compounds, fluorescent compounds, anesthetics, bioactive lipids, anticancer agents, anti-inflammatory agents, nutrients, antigens, pesticides, insecticides, herbicides, or a photosensitizing agent used in photodynamic therapy.
- antibiotic or antimicrobial e.g., antibacterial, antifungal, and antiviral
- antimetabolic agents e.g., antimetabolic agents, antineoplastic agents, steroids
- peptides, proteins such as, for example, cell receptor proteins, enzymes, hormones, and neurotransmitters
- radiolabels such as radioisotopes and radio
- the bioactive agent is the anti-fungal agent AmB.
- the bioactive agent is camptothecin, all-trans retinoic acid, annamycin, nystatin, paclitaxel, docetaxel, or etiopurpurins.
- Bioactive agents that include at least one hydrophobic region are known in the art and include, but are not limited to, ibuprofen, diazepam, griseofulvin, cyclosporin, cortisone, proleukin, etoposide, taxane, ⁇ -tocopherol, Vitamin E, Vitamin A, and lipopolysaccharides. See, for example, Kagkadis et al.
- a bioactive agent incorporated into a delivery particle of the invention is a non-polypeptide.
- a bioactive agent and the delivery particle that includes the bioactive agent are substantially nonimmunogenic when administered to an individual.
- a bioactive agent incorporated into a delivery particle of the invention exhibits improved solubility when compared to the solubility of the bioactive agent in an aqueous medium.
- formulation into a delivery particle results in decreased turbidity of an aqueous composition comprising the bioactive agent. This is often reflected in an altered spectroscopic profile for the bioactive agent upon formulation into a delivery particle. A decrease in turbidity may be detected and/or quantified by measurement of optical density of a sample.
- the invention provides a bioactive agent delivery particle comprising a lipid binding polypeptide, a lipid bilayer, and a bioactive agent, wherein the interior of the lipid bilayer comprises a hydrophobic region, wherein the bioactive agent is associated with the hydrophobic region of the lipid bilayer, and wherein the bioactive agent delivery particle comprises a bioactive agent with greater solubility in aqueous medium than the bioactive agent in aqueous medium alone (i.e., without formulation into a bioactive agent delivery particle).
- AmB exhibits greater aqueous solubility in delivery particles than in aqueous medium.
- camptothecin exhibits greater aqueous solubility in delivery particles than in aqueous medium.
- the invention also provides pharmaceutical compositions comprising bioactive agents with greater solubility by virtue of their incorporation into delivery particles than in aqueous medium without incorporation into delivery particles.
- increased solubility can be observed by a decrease in precipitable material upon centrifugation, decreased light scattering, and/or decreased ability to filter solid material.
- improved solubility of a bioactive agent permits its administration at a lower dosage than would be possible and/or efficacious without formulation into a delivery particle or administration in a different formulation, e.g., an aqueous formulation, a liposomal formulation, a colloid suspension, a cochleate, or a complex with cyclodextrins.
- the improved solubility of a bioactive agent results in lower toxicity and/or improved toxicity profile when administered to an individual, such as a mammalian individual, for example a human individual, than would be the case if the bioactive agent were administered without formulation into a delivery particle or administered in a different formulation, e.g., an aqueous formulation, a liposomal formulation, an aqueous formulation, a liposomal formulation, a colloid suspension, a cochleate, or a complex with cyclodextrins.
- an individual such as a mammalian individual, for example a human individual
- a different formulation e.g., an aqueous formulation, a liposomal formulation, an aqueous formulation, a liposomal formulation, a colloid suspension, a cochleate, or a complex with cyclodextrins.
- the improved solubility of a bioactive agent results in greater efficacy when administered to an individual, such as a mammalian individual for example a human individual, than would be the case if the bioactive agent were administered without formulation into a delivery particle or administered in a different formulation, e.g., an aqueous formulation, a liposomal formulation, an aqueous formulation, a liposomal formulation, a colloid suspension, a cochleate, or a complex with cyclodextrins.
- an individual such as a mammalian individual for example a human individual
- a different formulation e.g., an aqueous formulation, a liposomal formulation, an aqueous formulation, a liposomal formulation, a colloid suspension, a cochleate, or a complex with cyclodextrins.
- Particles of the invention include a lipid bilayer, with the generally circular faces of the disc comprising polar head groups facing away from the interior of the particle, and the interior of the particle (i.e., the space between the circular faces) comprising a hydrophobic region of the lipid bilayer that contains hydrophobic portions of bilayer- forming lipid(s) and other lipid components, if present. Hydrophobic surfaces of the lipid molecules at the edge of the bilayer (the surface at the periphery of the bioactive agent delivery particle) contact the lipid binding polypeptides of the particles, as discussed above.
- Particles may include one or more types of bilayer-forming lipids, or a mixture of one or more types of bilayer-forming and one or more types of non-bilayer-forming lipids.
- lipid refers to a substance of biological or synthetic origin that is soluble or partially soluble in organic solvents or which partitions into a hydrophobic environment when present in aqueous phase.
- bilayer-forming lipid refers to a lipid that is capable of forming a lipid bilayer with a hydrophobic interior and a hydrophilic exterior.
- Bilayer-forming lipids include, but are not limited to, phospholipids, sphingolipids, glycolipids, alkylphospholipids, ether lipids, and plasmalogens.
- One type of bilayer-forming lipid may be used or a mixture of two or more types.
- the lipid bilayer includes phospholipids.
- Suitable phospholipids include, but are not limited to, DMPC, DMPG, POPC, dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylserine (DPPS), cardiolipin, dipalmitoylphosphatidylglycerol (DPPG), distearoylphosphatidylglycerol (DSPG), egg yolk phosphatidylcholine (egg PC), soy bean phosphatidylcholine, phosphatidylinositol, phosphatidic acid, sphingomyelin, and cationic phospholipids.
- suitable bilayer-forming lipids include cationic lipids and glycolipids.
- the particles include a phospholipid bilayer of DMPC and DMPG, often in a molar ratio of about 7:3.
- the particles include a phospholipid bilayer of POPC.
- mixtures of bilayer- forming lipids may be used in molar ratios of any of at least about 1 : 100, 1 : 50, 1 :20, 1:10, 1:5, 3:7, 1:2, or 1:1.
- Particles may also include lipids that are not bilayer-forming lipids.
- lipids include, but are not limited to, cholesterol, cardiolipin, phosphatidylethanolamine (this lipid may form bilayers under certain circumstances), oxysterols, plant sterols, ergosterol, sitosterol, cationic lipids, cerebrosides, sphingosine, ceramide, diacylglycerol, monoacylglycerol, triacylglycerol, gangliosides, ether lipids, alkylphospholipids, plasmalogens, prostaglandins, and lysophospholipids.
- a lipid used for preparation of a delivery particle may include one or more bound functional moieties, such as targeting moieties, bioactive agents, or tags for purification or detection.
- the invention provides chimeric lipid binding polypeptides, which may be used to prepare the delivery particles described above.
- a chimeric lipid binding polypeptide may include one or more attached "functional moieties," such as for example, one or more targeting moieties, a moiety having a desired biological activity, an affinity tag to assist with purification, and/or a reporter molecule for characterization or localization studies.
- An attached moiety with biological activity may have an activity that is capable of augmenting and/or synergizing with the biological activity of a bioactive agent incorporated into the delivery particle.
- a moiety with biological activity may have antimicrobial (for example, antifungal, antibacterial, anti-protozoal, bacteriostatic, fungistatic, or antiviral) activity.
- an attached functional moiety of a chimeric lipid binding polypeptide is not in contact with hydrophobic surfaces of the lipid bilayer when the lipid binding polypeptide is incorporated into a bioactive agent delivery particle. In another embodiment, an attached functional moiety is in contact with hydrophobic surfaces of the lipid bilayer when the lipid binding polypeptide is incorporated into a bioactive agent delivery particle. In some embodiments, a functional moiety of a chimeric lipid binding polypeptide may be intrinsic to a natural protein. In some embodiments, a chimeric lipid binding polypeptide includes a ligand or sequence recognized by or capable of interaction with a cell surface receptor or other cell surface moiety.
- a chimeric lipid binding polypeptide is a chimeric apolipoprotein.
- a chimeric apolipoprotein includes a targeting moiety that is not intrinsic to the native apolipoprotein, such as for example, S. cerevisiae ⁇ -mating factor peptide, folic acid, transferrin, or lactoferrin.
- a chimeric apolipoprotein in another embodiment, includes a moiety with a desired biological activity that augments and/or synergizes with the activity of a bioactive agent incorporated into the delivery particle, such as for example, histatin-5, magainin peptide, mellitin, defensin, colicin, N-terminal lactoferrin peptide, echinocandin, hepcidin, bactenicin, or cyclosporine.
- a chimeric lipid binding polypeptide may include a functional moiety intrinsic to an apolipoprotein.
- an apolipoprotein intrinsic functional moiety is the intrinsic targeting moiety formed approximately by amino acids 130-150 of human ApoE, which comprises the receptor binding region recognized by members of the low density lipoprotein receptor family.
- Other examples of apolipoprotein intrinsic functional moieties include the region of ApoB-100 that interacts with the low density lipoprotein receptor and the region of ApoA-I that interacts with scavenger receptor type Bl.
- a functional moiety may be added synthetically or recombinantly to produce a chimeric lipid binding polypeptide.
- chimeric refers to two or more molecules that are capable of existing separately and are joined together to form a single molecule having the desired functionality of all of its constituent molecules.
- the constituent molecules of a chimeric molecule may be joined synthetically by chemical conjugation or, where the constituent molecules are all polypeptides or analogs thereof, polynucleotides encoding the polypeptides may be fused together recombinantly such that a single continuous polypeptide is expressed.
- a chimeric molecule is termed a fusion protein.
- a "fusion protein” is a chimeric molecule in which the constituent molecules are all polypeptides and are attached (fused) to each other such that the chimeric molecule forms a continuous single chain.
- the various constituents can be directly attached to each other or can be coupled through one or more linkers.
- a "linker” or “spacer” as used herein in reference to a chimeric molecule refers to any molecule that links or joins the constituent molecules of the chimeric molecule.
- linker molecules are commercially available, for example from Pierce Chemical Company, Rockford Illinois. Suitable linkers are well known to those of skill in the art and include, but are not limited to, straight or branched-chain carbon linkers, heterocyclic carbon linkers, or peptide linkers.
- the linker may be a peptide that joins the proteins comprising a fusion protein.
- a spacer generally has no specific biological activity other than to join the proteins or to preserve some minimum distance or other spatial relationship between them, the constituent amino acids of a peptide spacer may be selected to influence some property of the molecule such as the folding, net charge, or hydrophobicity.
- a chimeric lipid binding polypeptide such as a chimeric apolipoprotein, is prepared by chemically conjugating the lipid binding polypeptide molecule and the functional moiety to be attached.
- Means of chemically conjugating molecules are well known to those of skill in the art. Such means will vary according to the structure of the moiety to be attached, but will be readily ascertainable to those of skill in the art.
- Polypeptides typically contain a variety of functional groups, e.g. , carboxylic acid (-COOH), free amino (-NH 2 ), or sulfhydryl (-SH) groups, that are available for'reaction with a suitable functional group on the functional moiety or on a linker to bind the moiety thereto.
- a functional moiety may be attached at the N-terminus, the C-terminus, or to a functional group on an interior residue (i.e., a residue at a position intermediate between the N- and C- termini) of an apolipoprotein molecule.
- the apolipoprotein and/or the moiety to be tagged can be derivatized to expose or attach additional reactive functional groups.
- lipid binding polypeptide fusion proteins that include a polypeptide functional moiety are synthesized using recombinant expression systems. Typically, this involves creating a nucleic acid (e.g., DNA) sequence that encodes the lipid binding polypeptide and the functional moiety such that the two polypeptides will be in frame when expressed, placing the DNA under the control of a promoter, expressing the protein in a host cell, and isolating the expressed protein.
- a nucleic acid e.g., DNA
- Lipid binding polypeptide sequences and sequences encoding functional moieties as described herein may be cloned, or amplified by in vitro methods, such as, for example, the polymerase chain reaction (PCR), the ligase chain reaction (LCR), the transcription- based amplification system (TAS), or the self-sustained sequence replication system (SSR).
- PCR polymerase chain reaction
- LCR ligase chain reaction
- TAS transcription- based amplification system
- SSR self-sustained sequence replication system
- a wide variety of cloning and in vitro amplification methodologies are well known to persons of skill. Examples of techniques sufficient to direct persons of skill through in vitro amplification methods are found for example, in Mullis et al, (1987) U.S. Patent No. 4,683,202; PCR Protocols A Guide to Methods and Applications (Innis et al.
- DNA encoding desired fusion protein sequences may be prepared synthetically using methods that are well known to those of skill in the art, including, for example, direct chemical synthesis by methods such as the phosphotriester method of Narang et al. (1979) Meth. Enzymol. 68: 90-99, the phosphodiester method of Brown et al( ⁇ 919) Meth. Enzymol. 68: 109-151, the diethylphosphoramidite method of Beaucage et al. (1981) Tetra. Lett, 22: 1859-1862, or the solid support method of U.S. Patent No. 4,458,066. ⁇
- a nucleic acid encoding a chimeric lipid binding polypeptide fusion polypeptide can be incorporated into a recombinant expression vector in a form suitable for expression in a host cell.
- an "expression vector” is a nucleic acid which, when introduced into an appropriate host cell, can be transcribed and translated into a polypeptide.
- the vector may also include regulatory sequences such as promoters, enhancers, or other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are known to those skilled in the art (see, e.g., Goeddel (1990) Gene Expression Technology: Meth. Enzymol.
- a recombinant expression vector for production of a chimeric lipid binding polypeptide is a plasmid or cosmid.
- the expression vector is a virus, or portion thereof, that allows for expression of a protein encoded by the nucleic acid introduced into the viral nucleic acid.
- replication defective retroviruses, adenoviruses and adeno-associated viruses can be used.
- Expression vectors may be derived from bacteriophage, including all DNA and RNA phage (e.g., cosmids), or viral vectors derived from all eukaryotic viruses, such as baculoviruses and retroviruses, adenoviruses and adeno-associated viruses, Herpes viruses, Vaccinia viruses and all single-stranded, double-stranded, and partially double-stranded DNA viruses, all positive and negative stranded RNA viruses, and replication defective retroviruses.
- YAC yeast artificial chromosome
- YAC yeast artificial chromosome
- the chimeric lipid binding polypeptide fusion proteins of this invention can be expressed in a host cell.
- the term "host cell” refers to any cell or cell line into which a recombinant expression vector for production of a chimeric apolipoprotein fusion protein, as described above, may be transfected for expression.
- Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in total genomic DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation.
- a host cell includes cells transfected or transformed in vivo with an expression vector as described above.
- Suitable host cells include, but are not limited to, bacterial cells (e.g. E. coli), fungal cells (e.g., S. cerevisiae), invertebrate cells (e.g. insect cells such as SF9 cells), and vertebrate cells including mammalian cells.
- bacterial cells e.g. E. coli
- fungal cells e.g., S. cerevisiae
- invertebrate cells e.g. insect cells such as SF9 cells
- vertebrate cells including mammalian cells.
- An expression vector encoding a chimeric lipid binding polypeptide fusion protein can be transfected into a host cell using standard techniques.
- Transfection or “transformation” refers to the insertion of an exogenous polynucleotide into a host cell.
- the exogenous polynucleotide may be maintained as a non-integrated vector, such as for example a plasmid, or alternatively may be integrated into the host cell genome.
- transfection techniques include, but are not limited to, calcium phosphate co- precipitation, DEAE-dextran-mediated transfection, lipofection, electroporation and microinjection. Suitable methods for transfecting host cells can be found in Sambrook et al.
- Nucleic acid can also be transferred into cells via a delivery mechanism suitable for introduction of nucleic acid into cells in vivo, such as via a retroviral vector (see e.g., Ferry et al. (1991) Proc. Natl. Acad. Sci, USA, 88: 8377-8381; and Kay et al. (1992) Human Gene Therapy 3: 641-647), an adenoviral vector (see, e.g., Rosenfeld (1992) Cell 68: 143-155; and Herz and Gerard (1993) Proc. Natl. Acad.
- a retroviral vector see e.g., Ferry et al. (1991) Proc. Natl. Acad. Sci, USA, 88: 8377-8381; and Kay et al. (1992) Human Gene Therapy 3: 641-647
- an adenoviral vector see, e.g., Rosenfeld (1992) Cell 68: 143-155; and Herz and Gerard (1993)
- the chimeric lipid binding polypeptides may be purified according to standard procedures of the art, including, but not limited to affinity purification, ammonium sulfate precipitation, ion exchange chromatography, or gel elecfrophoresis.
- a chimeric lipid binding polypeptide may be produced using a cell free expression system or via solid-state peptide synthesis.
- a lipid binding polypeptide is provided that has been modified such that when the polypeptide is incorporated into a bioactive agent delivery particle as described above, the modification will increase stability of the particle or confer targeting ability.
- the modification permits the lipid binding polypeptides of a particle to stabilize the particle's disc shaped structure or conformation.
- the modification includes introduction of cysteine residues into apolipoprotein molecules to permit formation of intramolecular or intermolecular disulfide bonds, e.g., by site-directed mutagenesis.
- a chemical crosslinking agent is used to form intermolecular links between apolipoprotein molecules to enhance stability of the particles. Intermolecular crosslinking prevents or reduces dissociation of apolipoprotein molecules from the particles and/or prevents displacement by apolipoprotein molecules within an individual to whom the particles are administered.
- a lipid binding polypeptide is modified either by chemical derivatization of one or more amino acid residues or by site directed mutagenesis, to confer targeting ability to or recognition by a cell surface receptor.
- Delivery system for delivery of a bioactive agent to an individual [0080] The invention provides a delivery system for delivery of a bioactive agent to an individual, comprising bioactive agent delivery particles as described above and a carrier, optionally a pharmaceutically acceptable carrier. In some embodiments, the delivery system comprises an effective amount of the bioactive agent.
- the individual refers to any prokaryote or eukaryote to which one desires to deliver a bioactive agent.
- the individual is a prokaryote such as a bacterium.
- the individual is a eukaryote, such as a fungus, a plant, an invertebrate animal, such as an insect, or a vertebrate animal.
- the individual is a vertebrate, such as a human, a nonhuman primate, an experimental animal, such as a mouse or rat, a pet animal, such as a cat or dog, or a farm animal, such as a horse, sheep, cow, or pig, a bird (i.e., avian individual), or a reptile (i.e., reptilian individual).
- a vertebrate such as a human, a nonhuman primate
- an experimental animal such as a mouse or rat
- a pet animal such as a cat or dog
- a farm animal such as a horse, sheep, cow, or pig
- a bird i.e., avian individual
- reptile i.e., reptilian individual
- delivery particles are formulated in a suitable carrier for administration to an individual.
- carrier refers to a relatively inert substance that facilitates administration of a bioactive agent.
- a carrier can give form or consistency to the composition or can act as a diluent.
- “Pharmaceutically acceptable carriers” refer to carriers that are biocompatible (i.e., not toxic to the host) and suitable for a particular route of administration for a pharmacologically effective substance. Suitable pharmaceutically acceptable carriers include but are not limited to stabilizing agents, wetting and emulsifying agents, salts for varying osmolarity, encapsulating agents, buffers, and skin penetration enhancers. Examples of pharmaceutically acceptable carriers are described in Remington 's Pharmaceutical Sciences (Alfonso R. Gennaro, ed., 18th edition, 1990).
- an effective amount refers to an amount of a bioactive agent sufficient to effect desired results.
- a “therapeutically effective amount” or “therapeutic dose” refers to an amount of a bioactive agent sufficient to effect beneficial clinical results, such as for example reduction or alleviation of a symptom of a disease, reduction or alleviation of a fungal or bacterial infection, etc.
- the delivery system is a pharmaceutical composition comprising a bioactive agent delivery particle and a pharmaceutically acceptable carrier.
- the pharmaceutical composition comprises a bioactive agent delivery particle that contains a non-polypeptide bioactive agent and a pharmaceutically acceptable carrier.
- the bioactive agent delivery particle and the bioactive agent are non-immunogenic when administered to an individual. Immunogenicity may be measured by methods that are well known in the art. For example, immunogenicity may be assessed by an ELISA method, for example by probing serum from an individual to whom bioactive agent delivery particles have been administered for antibody binding to equivalent bioactive agent delivery particles bound to an immunosorbent plate.
- the invention provides a pharmaceutical composition comprising a bioactive agent delivery particle, wherein the bioactive agent exhibits greater solubility in aqueous medium by virtue of its incorporation into the delivery particle than the bioactive agent in aqueous medium without incorporation into the delivery particle.
- the invention provides a pharmaceutical composition comprising a bioactive agent delivery particle, wherein the bioactive agent exhibits lower toxicity and/or an improved toxicity profile when administered to an individual, such as a mammalian individual, for example a human individual, than the bioactive agent without formulation into the bioactive agent delivery particle or administered in a different formulation, for example an aqueous formulation, a liposomal formulation, a colloid suspension, a cochleate, or a complex with cyclodextrins.
- an individual such as a mammalian individual, for example a human individual
- a different formulation for example an aqueous formulation, a liposomal formulation, a colloid suspension, a cochleate, or a complex with cyclodextrins.
- the invention provides a pharmaceutical composition comprising a bioactive agent delivery particle, wherein the bioactive agent exhibits improved efficacy in treating a condition, for example an infection, such as a bacterial or fungal infection, a disease condition, a tumor, etc., than the bioactive agent without formulation into the bioactive agent delivery particle or administered in a different formulation, for example an aqueous formulation, a liposomal formulation, a colloid suspension, a cochleate, or a complex with cyclodextrins.
- a bioactive agent with improved solubility, toxicity profile, and/or efficacy is AmB.
- a bioactive agent with improved solubility, toxicity profile, and/or efficacy is camptothecin.
- the invention provides methods for administering a bioactive agent to an individual.
- the methods of the invention include administering a delivery particle as described above that includes a lipid binding polypeptide, a lipid bilayer, and a bioactive agent, wherein the interior of the particle includes hydrophobic surfaces of the lipid bilayer.
- a therapeutically effective amount of the particles is administered, optionally in a pharmaceutically acceptable carrier.
- the particles are disc shaped, with a diameter of about 7 to about 29 nm, as measured by native pore limiting gradient gel elecfrophoresis.
- the bioactive agent includes at least one hydrophobic region, which may be integrated into a hydrophobic region of the lipid bilayer.
- the route of administration may vary according to the nature of the bioactive agent to be administered, the individual, or the condition to be treated. Where the individual is a mammal, generally administration is parenteral. Routes of administration include, but are not limited to, intravenous, intramuscular, intraperitoneal, subcutaneous, fransmucosal, nasal, intrathecal, topical, and transdermal.
- the particles are administered as an aerosol. Delivery particles may be formulated in a pharmaceutically acceptable form for administration to an individual, optionally in a pharmaceutically acceptable carrier or excipient.
- the invention provides pharmaceutical compositions in the form of delivery particles in a solution for parenteral administration. For preparing such compositions, methods well known in the art may be used, and any pharmaceutically acceptable carriers, diluents, excipients, or other additives normally used in the art may be used.
- the delivery particles of the present invention can be made into pharmaceutical compositions by combination with appropriate medical carriers or diluents.
- the delivery particles can be solubilized in solvents commonly used in the preparation of injectable solutions, such as for example, physiological saline, water, or aqueous dextrose.
- suitable pharmaceutical carriers and their formulations are described in Remington 's Pharmaceutical Sciences, supra.
- Such formulations may be made up in sterile vials containing delivery particles and optionally an excipient in a dry powder or lyophilized powder form.
- the physiologically acceptable diluent Prior to use, the physiologically acceptable diluent is added and the solution withdrawn via syringe for administration to an individual.
- Delivery particles may also be formulated for controlled release.
- controlled release refers to release of a bioactive agent from a formulation at a rate that the blood concentration of the agent in an individual is maintained within the therapeutic range for an extended duration, over a time period on the order of hours, days, weeks, or longer.
- Delivery particles may be formulated in a bioerodible or nonbioerodible controlled matrix, a number of which are well known in the art.
- a controlled release matrix may include a synthetic polymer or copolymer, for example in the form of a hydrogel.
- polymers examples include polyesters, polyorthoesters, polyanhydrides, polysaccharides, poly(phosphoesters), polyamides, polyurethanes, poly(imidocarbonates) and poly(phosphazenes), and poly-lactide-co-glycolide (PLGA), a copolymer of poly(lactic acid) and poly(glycolic acid). Collagen, albumin, and fibrinogen containing materials may also be used.
- Delivery particles may be administered according to the methods described herein to treat a number of conditions including, but not limited to, bacterial infections, fungal infections, disease conditions, metabolic disorders, or as a prophylactic medication, for example to prevent a bacterial or fungal infection (e.g. , pre- or post-surgically). Delivery particles may be used, for example, to deliver an anti-tumor agent (e.g., chemotherapeutic agent, radionuclide) to a tumor.
- the lipid binding polypeptide includes a moiety that targets the particle to a particular tumor. Delivery particles may also be used for administration of nutraceutical substances, i.e., a food or dietary supplement that provides health benefits.
- delivery particles are co-administered with other conventional therapies, for example, as part of a multiple drug "cocktail,” or in combination with one or more orally administered agents, for example, for treatment of a fungal infection. Delivery particles may also be administered as insecticides or herbicides.
- the invention provides a method for treating a fungal infection in an individual. The method includes administering a therapeutically effective amount of an anti-fungal agent in a pharmaceutically acceptable carrier to the individual, wherein the anti-fungal agent is incorporated into a particle that includes a lipid binding polypeptide and a lipid bilayer, wherein the interior of the lipid bilayer is hydrophobic.
- the anti-fungal agent is AmB, incorporated into the hydrophobic interior of the lipid bilayer.
- the lipid binding polypeptide is a chimeric protein that includes a targeting moiety and/or a moiety with biological activity.
- the lipid binding polypeptide includes the targeting moiety yeast ⁇ -mating factor peptide.
- the lipid binding polypeptide includes the antimicrobial peptide histatin 5.
- the invention provides a method for treating a tumor in an individual.
- the method includes administering a therapeutically effective amount of a chemotherapeutic agent in bioactive agent delivery particles as described above, in a pharmaceutically acceptable carrier.
- the chemotherapeutic agent is camptothecin.
- a lipid binding polypeptide component of the delivery particles may include a targeting moiety to target the particles to tumor cells.
- vasoactive intestinal peptide (VIP) is attached to the lipid binding polypeptide. Since breast cancer cells often overexpress the VIP receptor, in one embodiment, bioactive agent delivery particles comprising camptothecin and lipid binding polypeptide- VIP chimeras are used in a method of treatment for breast cancer.
- a delivery particle of the invention may include a targeting functionality, for example to target the particles to a particular cell or tissue type, or to the infectious agent itself.
- the particle includes a targeting moiety attached to a lipid binding polypeptide or lipid component.
- the bioactive agent that is incorporated into the particle has a targeting capability.
- the particles can be targeted to a specific cell surface receptor.
- bioactive agent delivery particles may be I targeted to a particular cell type known to harbor a particular type of infectious agent, for example by modifying the lipid binding polypeptide component of the particles to render it capable of interacting with a receptor on the surface of the cell type being targeted.
- a receptor-mediated targeting strategy may be used to deliver antileishmanial agents to macrophages, which are the primary site of infection for protozoal parasites from the genus Leishmania.
- Bioactive agent delivery particles containing an antileishmanial agent may be targeted to macrophages by altering the lipid binding polypeptide component of the particles to confer recognition by the macrophage endocytic class A scavenger receptor (SR-A).
- SR-A macrophage endocytic class A scavenger receptor
- an apolipoprotein which has been chemically or genetically modified to interact with SR-A may be incorporated into delivery particles that contain one or more bioactive agents that are effective against Leishmania species, such as, for example, AmB, a pentavalent antimonial, and/or hexadecylphosphocholine.
- Targeting of delivery particles that contain an antileishmanial I agent specifically to macrophages may be used as a means of inhibiting the growth and proliferation of Leishmania spp.
- an SR-A targeted bioactive agent delivery particle containing AmB is administered to an individual in need of treatment for a leishmanial infection.
- another antileishmanial agent such as hexadecylphosphocholine is administered prior, concurrently, or subsequent to treatment with the AmB containing- particles.
- targeting is achieved by modifying a lipid binding polypeptide, such as an apolipoprotein, to be incorporated into the bioactive agent delivery particle, thereby conferring SR-A binding ability to the particle.
- targeting is achieved by altering the charge density of the lipid binding polypeptide by chemically modifying one or more lysine residues, for example with malondialdehyde, maleic anhydride, or acetic anhydride at alkaline pH (see, e.g., Goldstein et al. (1979) Proc. Natl. Acad. Sci. 98:241-260).
- Apo B-100 or a truncated form thereof is modified by reaction with malondialdehyde.
- an apolipoprotein molecule such as any of the apolipoproteins described herein, may also be chemically modified by, for example acetylation or maleylation, and incorporated into a bioactive agent delivery particle containing an antileishmanial agent.
- SR-A binding ability is conferred to a delivery particle by modifying the lipid binding polypeptide by site directed mutagenesis to replace one or more positively charged amino acids with a neutral or negatively charged amino acid.
- SR-A recognition is conferred by preparing a chimeric lipid binding polypeptide that includes an N- or C-terminal extension having a ligand recognized by SR-A or an amino acid sequence with a high concentration of negatively charged residues. A negatively charged polypeptide extension would not be attracted to the lipid surface of the bioactive agent delivery particle, thereby rendering it more accessible to the ligand binding site of the receptor.
- the invention provides methods for formulating a bioactive agent delivery particle.
- a process is provided that includes adding lipid binding polypeptide molecules to a mixture that includes bilayer-forming lipids and bioactive agent molecules.
- the lipid-bioactive agent mixture also includes a detergent, such as for example sodium cholate, cholic acid, or octyl glucoside, and the process further includes removing the detergent after the lipid binding polypeptide has been added.
- a detergent such as for example sodium cholate, cholic acid, or octyl glucoside
- the detergent is removed by dialysis or gel filtration.
- the process includes combining bilayer-forming lipids and bioactive agent molecules in a solvent to form a-bioactive agent mixture, drying the mixture to remove the solvent (e.g., under a stream of N 2 and/or by lyophilization), contacting the dried mixture with a solution that includes a detergent to form a lipid-bioactive agent-detergent mixture, adding lipid binding polypeptide molecules to this mixture, and then removing the detergent.
- the particles are prepared using a microfluidizer processor. This procedure employs high pressure, forcing the components together in a reaction chamber.
- the particles are prepared by incubation of a suspension of lipid vesicles containing a bioactive agent in the presence of a lipid binding polypeptide, such as an apolipoprotein. In one embodiment, the suspension is sonicated.
- delivery particles are prepared from a pre-formed vesicle dispersion. Lipids, e.g., phospholipids, are hydrated with buffer and dispersed by agitation or sonication. To the dispersion of lipid bilayer vesicles, solubilized bioactive agent is added in a suitable solvent to form a lipid-bioactive agent complex.
- the solvent is volatile or dialyzable for convenient removal after addition of bioactive agent to the lipid bilayer vesicle dispersion.
- lipid binding polypeptide is added and the sample is incubated, mixed by agitation, and/or sonicated.
- the vesicles and apolipoprotein are incubated at or near the gel to liquid crystalline phase transition temperature of the particular bilayer forming lipid or mixture of bilayer-forming lipids being used.
- the phase transition temperature may be determined by calorimetry.
- a suitable bilayer-forming lipid composition is used such that, upon dispersion in aqueous media, the lipid vesicles provide a suitable environment to transition a bioactive agent from a carrier solvent into an aqueous milieu without precipitation or phase separation of the bioactive agent.
- the pre-formed lipid bilayer vesicles are also preferably capable of undergoing lipid binding polypeptide-induced transformation to form the delivery particles of the invention.
- the lipid-bioactive agent complex preferably retains properties of the lipid vesicles that permit transformation into bioactive agent delivery particles upon incubation with a lipid binding polypeptide under appropriate conditions.
- lipid substrate-bioactive agent complex organization and lipid binding polypeptide properties combine to create a system whereby, under appropriate conditions of pH, ionic strength, temperature, and lipid - bioactive agent -lipid binding polypeptide concentration, a ternary structural reorganization of these materials occurs wherein stable lipid binding polypeptide circumscribing lipid bilayers are created with a bioactive agent incorporated into the lipid milieu of the bilayer.
- the particles prepared by any of the above processes may be further purified, for example by dialysis, density gradient centrifugation and/or gel permeation chromatography.
- bioactive agent delivery particles preferably at least about 70, more preferably at least about 80, even more preferably at least about 90, even more preferably at least about 95 percent of the bioactive agent used in the procedure is incorporated into the particles.
- the invention provides bioactive agent delivery particles prepared by any of the above methods.
- the invention provides a pharmaceutical composition comprising a delivery particle prepared by any of the above methods and a >* pharmaceutically acceptable carrier.
- Particles of the invention are stable for long periods of time under a variety of conditions (see, for example, Fig. 5).
- Particles, or compositions comprising particles of the invention may be stored at room temperature, refrigerated (e.g., about 4°C), or frozen (e.g., about -20°C to about -80°C). They may be stored in solution or dried (e.g., lyophilized).
- Bioactive agent delivery particles may be stored in a lyophilized state under inert atmosphere, frozen, or in solution at 4°C.
- Particles may be stored in a liquid medium, such as a buffer (e.g., phosphate or other suitable buffer), or in a carrier, such as for example a pharmaceutically acceptable carrier, for use in methods of administration of a bioactive agent to an individual.
- a liquid medium such as a buffer (e.g., phosphate or other suitable buffer)
- a carrier such as for example a pharmaceutically acceptable carrier
- particles may be stored in a dried, lyophilized form and then reconstituted in liquid medium prior to use.
- kits of the invention include any of the following, separately or in combination: lipid binding polypeptides (e.g., apolipoproteins), phospholipids, bioactive agents, vectors, reagents, enzymes, host cells and/or growth medium for cloning and/or expression of recombinant lipid binding polypeptides (e.g., recombinant apolipoproteins) and/or lipid binding polypeptide chimeras (e.g., apolipoprotein chimeras), and reagents and/or pharmaceutically acceptable carriers for formulating delivery particles for administration to an individual.
- lipid binding polypeptides e.g., apolipoproteins
- phospholipids e.g., phospholipids
- bioactive agents e.g., phospholipid binding polypeptides
- vectors e.g., recombinant apolipoproteins
- enzymes e.g., recombinant apoli
- Each reagent or formulation is supplied in a solid form, liquid buffer, or pharmaceutically acceptable carrier that is suitable for inventory storage, or optionally for exchange or addition into a reaction, culture, or injectable medium.
- suitable packaging is provided.
- packaging refers to a solid matrix or material customarily used in a system and capable of holding within fixed limits one or more of the reagents or components (e.g., delivery particles) for use in a method for delivery of a bioactive agent or one or more reagents for preparing or formulating delivery particles (e.g., apolipoprotein molecules, phospholipids, bioactive agents).
- Such materials include, but are not limited to, glass and plastic (e.g., polyethylene, polypropylene, and polycarbonate) bottles, vials, paper, plastic, and plastic-foil laminated envelopes, and the like.
- kits may optionally provide additional components that are useful in the methods and formulation procedures of the invention, such as buffers, reacting surfaces, or means of purifying delivery particles.
- kits optionally include labeling and/or instructional or interpretive materials providing directions (i.e., protocols) for the practice of the methods of this invention, such as preparation, formulation and/or use of delivery particles.
- instructional materials typically comprise written or printed materials they are not limited to these formats. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to Internet sites that provide such instructional materials.
- ApoA-I-phospholipid-AmB particles were prepared as follows:
- a 7:3 molar ratio of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) were dissolved in chloroform:methanol (3:1, v/v).
- DMPC/DMPG mixture 0.25 ml of AmB (2 mg/ml; solubilized in acidified chloroform:mefhanol (3:1, v/v)) was added.
- the mixture was dried under a stream of N 2 gas to create a thin film on the vessel wall.
- the dried sample was then subjected to lyophilization for sixteen hours to remove traces of solvent.
- the dried lipid mixture was resuspended in 0.5 ml Tris-Saline buffer (10 mM Tris base 150 mM NaCl, pH 8), and the mixture was vortexed for 30 seconds.
- the sample was further purified by density gradient ultracentrifugation.
- the solution was adjusted to a density of 1.30 g/ml by the addition of solid KBr in 1.5 ml.
- the sample was transferred to a 3 ml centrifuge tube, overlayered with saline and centrifuged at 275,000 x g for 3 hours in a Beckman L7-55 centrifuge.
- the particles prepared according to this procedure were stable for more than 3 months in lyophilized form.
- Fig. 1 shows the scan for particles that do not include AmB. The only peak observed was a protein peak at around 280 nm.
- Fig. 2 shows the scan for AmB-containing particles prepared as described above. In addition to the peak at around 280 nm, a number of additional peaks were observed in the 300-400 nm region of the spectrum, confirming the presence of AmB. Free AmB is insoluble in aqueous media and has different spectral properties than observed in Fig. 2. Madden et al. (1990) Chemistry and Physics of Lipids, 52:189-98.
- ApoA-I-DMPC/DMPG-AmB particles were prepared as described in Example 1 and used to determine antifungal activity of the complexes. Cultures of S. cerevisiae were grown in YPD medium in the presence of varying amounts of ApoA-I-DMPC/DMPG- AmB particles (0-25 ⁇ g AmB/ml). The cultures were grown for 16 hours at 30°C, and the extent of culture growth monitored spectrophotometrically. As shown in Fig. 8, the AmB- containing particles were extremely effective in inhibiting fungal growth in a dose- dependent manner.
- ApoE3NT-terminal domain (ApoE3NT) was prepared as in Fisher et al. (1997) Biochem Cell Biol 75:45-53. ApoE3NT- AmB-containing particles were prepared via the cholate dialysis method described in Example 1, and used to assess long- term stability.
- Fig. 5 shows a native PAGE 4-20% gradient slab gel of particles stored in phosphate buffer at 4°C (lane 1), stored in phosphate buffer at -20°C (lane 2), or frozen in phosphate buffer at -80°C, lyophilized, and redissolved in H 2 O prior to analysis.
- the size and mobility of the AmB-containing particles were unaffected by freezing and thawing, or by lyophilization and resolubilization, indicating that the particles retained their integrity under these conditions. These are important parameters with regard to scale up and long- term storage of AmB delivery particles.
- ApoA-I-POPC particles were prepared using the cholate dialysis method described in Example 1.
- a native PAGE gradient gel analysis of ApoA-I-POPC particles is shown in Fig. 4.
- Particles without AmB are shown in lane 1 and particles with AmB are shown in lane 2.
- the gel indicates that incorporation of AmB into the particles does not alter their size.
- the gel indicates that the POPC containing particles are a different size than DMPC/DMPG particles, shown in lane 3.
- Example 5 Preparation of AmB-containing Particles with a Microfluidizer Processor
- a suspension of AmB-containing phospholipid vesicles was prepared by adding an aliquot of a 20-40 mg/ml solution of AmB in DMSO, corresponding to 2.5 mg AmB, to a preformed phospholipid aqueous dispersion containing a molar ratio of 7:3 DMPC:DMPG.
- the vesicles were incubated at the gel to liquid phase transition temperature of the phospholipids (about 24° C). Addition of 4 mg apolipoprotein led to a time-dependent decrease in sample turbidity, consistent with formation of AmB-containing bioactive agent delivery particles.
- the particles were frozen at -20°C or lyophilized. Freezing/thawing had no effect on the size distribution of the particles. Likewise, subjecting the particles to lyophilization and re-dissolving in H 2 O did not affect the size distribution or sample appearance.
- the sonication mixture was then centrifuged for 3 minutes to remove large particles and insoluble material and the supernatant analyzed by UV/Visible spectrophotometry to assess the amount of amphotericin B solubilized in the product particles. It was noted that the solution was slightly opaque. The sample was scanned from 250 nm to 500 nm. For comparison, AmB-containing particles prepared by the procedure described in Example 6 were examined. The results are shown in Fig. 12. The region of the spectrum arising from AmB (300-500 nm) is quite distinct between the two samples.
- AmB-containing bioactive agent delivery particles inhibited 90% of C. albicans growth at 0.03 ⁇ g/ml. A corresponding ED 0 of 0.4 ⁇ g/ml was obtained with AmBisome ® . In the case of A. fumigatus, AmB-containing bioactive agent delivery particles inhibited 90% of fungal growth at 0.1 ⁇ g/ml, whereas a concentration of 2.5 ⁇ g/ml AmBisome ® was required to achieve the same effect. In a similar manner, AmB-containing particles were effective at inhibiting C. neoformans growth at a five-fold lower AmB concentration than AmBisome ® .
- Camptofhecin-containing bioactive agent delivery particles were prepared as follows: A 7:3 molar ratio of DMPC:DMPG (5 mg total) was dispersed in buffer (20 mM sodium phosphate, pH 7.0) by vortexing for 1 minute to generate a dispersion of phospholipid bilayer vesicles. Ten microliters of a 10 mg/ml solution of camptothecin in DMSO was added to the phospholipid bilayer dispersion. Two mg of recombinant human apolipoprotein A-I (0.5 ml of a 4 mg/ml solution in 20 mM sodium phosphate, pH 7.0) was then added, and the sample was then subjected to sonication. The clarified sample was then centrifuged at 13,000 x g for 3 minutes and the supernatant recovered and stored at 4° C.
- FIG. 11 A fluorescence spectrum of the camptofhecin-containing particles, in comparison with sodium dodecyl sulfate (SDS) solubilized camptothecin, is shown in Fig. 11. Fluorescence measurements were obtained on a Perkin Elmer LS 50B luminescence spectrometer at an excitation wavelength of 360 nm with emission monitored from 400 to 600 nm. The blue shift in fluorescence emission maximum elicited by camptothecin in SDS micelles (Fig. 11 A) compared to camptothecin incorporated into bioactive agent delivery particles (Fig. 11B) suggests that the drug localizes to a more hydrophobic environment in the micelles versus the delivery particles.
- SDS sodium dodecyl sulfate
- a preparation of AmB-containing bioactive agent delivery particles was prepared for freeze fracture electron microscopy as follows: A sample of DMPC:DMPG (7:3 molar ratio) AmB bioactive agent delivery particles (3 mg/ml protein), prepared as in Example 6, was quenched using a sandwich technique, and liquid nitrogen cooled propane. The cryo- fixed sample was stored in liquid nitrogen for less than 2 hours prior to processing. The fracturing process was carried out in JOEL JED-900 freeze-etching equipment and the exposed fracture planes were shadowed with Pt for 30 seconds at an angle of 25-35 degrees, and with carbon for 35 seconds (2 kV/60-80 mA, 1 x 10 "5 Torr).
- the replicas produced in this way were cleaned with concentrated fuming HNO 3 for 24 hours followed by repeated agitation with fresh chloroform/methanol (1 : 1 by volume) at least 5 times.
- the replicas cleaned in this way were examined on a JOEL 100 CX or a Philips CM 10 electron microscope.
- FIG. 9 An electron micrograph obtained from freeze fracture of AmB-containing particles as described above is shown in Fig. 9. Electron micrographs taken from several freeze-fracture preparations indicate the presence of small protein-lipid complexes in high concentration. The apparent diameters range from about 20-60 nm with high frequency around 40 nm. The apparent diameter of particles as observed by freeze fracture electron microscopy is larger than values obtained by native pore limiting gradient gel elecfrophoresis. The difference may be due to the effect of sample handling or the staining procedure used to visualize the particles by electron microscopy.
- mice Six to eight-week-old female BALB/c mice (20-25g) are housed and maintained under standard laboratory conditions.
- mice Groups of three mice each receive a dose (e.g., 1, 2, 5, 10, or 15 mg/kg AmB) in a dose (e.g., 1, 2, 5, 10, or 15 mg/kg AmB) in a dose (e.g., 1, 2, 5, 10, or 15 mg/kg AmB) in a dose (e.g., 1, 2, 5, 10, or 15 mg/kg AmB) in a dose (e.g., 1, 2, 5, 10, or 15 mg/kg AmB) in
- mice Following injection, the mice are observed for any general reaction, for example, abnormal movement or posture, difficulty in breathing, ruffled fur, or inability to obtain food or drink. Observation for abnormality or mortality begins immediately after administration and continues twice daily for seven days. Body weight is recorded daily for the same period.
- Blood is collected from mice prior to eufhanization. The blood is assayed for liver enzymes such as lactate dehydrogenase to assess the degree of liver specific damage
- a clinical isolate of C. neoformans that is susceptible to AmB is cultured and prepared as an inoculum for infection at a concentration of 2 x 10 6 conidia/ml. Each mouse receives an inoculum of 1 x 10 5 conidia in 0.05 ml of normal saline intracranially under general anesthesia.
- Anti-fungal agents are administered intraperitoneally in 0.1 ml volumes daily for
- mice receives AmBisome ® , one treatment group receives AmB-containing bioactive agent delivery particles, and a control group receives no therapy.
- Infected mice are monitored twice daily and any signs of illness or mortality is recorded for up to 28 days. Body weight is recorded daily for the same time period.
- mice are sacrificed one day after the last day of treatment.
- the kidneys and brains are removed aseptically and weighed.
- Tissues are homogenized and serially diluted in normal saline.
- the homogenates are cultured for 48 hours on PDA (potato dextrose agar) plates to determine the colony forming units (CFU). Fungal burden of CFU/gram of tissue is determined.
- Blood, liver, kidney, lung, and cerebrospinal fluid samples are collected from infected mice at time points of 10 minutes, 2, 8, and 24 hours after intravenous injection of AmB bioactive agent delivery particles or AmBisome ® at 0.8 and 2.0 mg/kg doses. While mice are under general anesthesia, whole blood is collected from axillary vessels. A thoracotomoy is performed, and tissue samples perfused with normal saline and then removed surgically. Tissues are homogenized with methanol containing l-amino-4- nitronaphthalene. Serum and the supernatants of tissue homogenates are preserved until analysis.
- the concentration of AmB in each sample is determined by high-performance liquid chromatography (HPLC), as described in Granich et al. (1986) Antimicrob. Agents Chemother. 29:584-88. Briefly, serum samples (0.1 ml) are combined with 1.0 ml methanol containing 1.0 mg of an internal standard, l-amino-4-nitronaphthalene, per ml and mixed by vortexing. After centrifugation, the supernatant is dried under reduced pressure followed by redissolving with 0.2 ml of methanol for injection onto a HPLC column (C ⁇ 8 reverse phase).
- HPLC high-performance liquid chromatography
- wet tissue samples are homogenized in 10 volumes of methanol containing 5.0 mg internal standard per ml with a glass homogenizer and centrifuged.
- the mobile phase is a mixture of acetonitrile and 10 mM sodium acetate buffer (pH 4.0; 11:17 (vol/vol)), at a flow rate of 1.0 ml/min.
- the concentration of AmB is determined by the ratio of the peak height of AmB to that of the internal standard.
- Bioactive agent delivery agent particles are prepared with a VIP targeting moiety attached to the lipid binding polypeptide component.
- the lipid binding polypeptide component of the camptothecin-containing particles may be generated in recombinant form in Escherichia coli (E. coli) that have been transformed with a plasmid vector harboring the coding sequence of the lipid binding polypeptide.
- Escherichia coli E. coli
- a plasmid vector harboring the coding sequence of the lipid binding polypeptide for example, recombinant human ApoA-I may be employed.
- E. coli cells harboring an ApoA-I expression plasmid are cultured in media at 37 °C. When the optical density of the culture at 600 nm reaches 0.6, ApoA-I synthesis is induced by the addition of isopropylthiogalactoside (0.5 mM final concentration).
- the bacteria are pelleted by centrifugation and disrupted by sonication.
- the cell lysate is centrifuged at 20,000 x g for 30 min at 4 °C and apoA-I isolated from the supernatant fraction.
- a recombinant lipid binding polypeptide chimera is produced by engineering ApoA-I to include an N-terminal and/or C-terminal peptide extension that corresponds to the 28 amino acid neuropeptide, vasoactive intestinal peptide (VIP).
- ApoA-I-VIP chimeras may be employed to create bioactive agent delivery particles comprised of phospholipid, camptothecin and Apoo A-I-VIP chimera.
- an ApoA-I-VIP chimera may be constructed by synthesizing complementary oligonucleotide primers corresponding to the coding sequence of the VIP sequence possessing terminal Hind HI and ba I sites.
- the ohgonucleotides (-100 base pairs) are annealed to generate double stranded DNA with the desired "sticky ends" and subcloned into the ApoA-I coding sequence-containing plasmid vector that has appropriately placed Hind HI and Xba I restriction enzyme sites.
- the plasmid DNA is isolated and subject to automated dideoxy chain termination sequence analysis.
- production of recombinant ApoA-I-VIP chimera is performed in E. coli, as described above for wild type ApoA-I. Purified recombinant chimera is then evaluated by gel elecfrophoresis, mass spectrometry and for its ability to generate bioactive agent delivery particles of the invention in a manner similar to wild type ApoA-I, as described in Example 8.
- ApqA-I-VIP chimera-camptothecin-containing bioactive agent delivery particles may be used in breast cancer cell growth inhibition studies to measure the extent of lipid particle targeting.
- the human breast cancer cell line MCF-7 is obtained from' the American Type Culture Collection and maintained at 37°C in a humidified 5% CO 2 incubator as monolayer cultures in modified Eagle's media supplemented with 10% fetal bovine serum a d the antibiotics penicillin and streptomycin.
- Isolated wild type ApoA-I or ApoA-I-VIP chimera is radioiodinated and incorporated into camptothecin-containing bioactive agent delivery particles of the invention and incubated with the cells.
- Cell- associated radioactivity is determined after incubation of labeled camptothecin-containing bioactive agent delivery particles with cultured MCF-7 cells at 4 °C.
- the ability of VIP to compete for binding of ApoA-I-VIP chimera or bioactive agent delivery particle-associated ApoA-I-VIP chimera to MCF cells is determined in competition binding assays. Cell binding data is evaluated by Scatchard analysis.
- the extent of MCF-7 cell intemalization of ApoA-I-VIP chimera bioactive agent delivery particles is evaluated in incubations with radioiodinated ApoA-I-VIP chimera-containing bioactive agent delivery particles at 37 °C. After incubation and washing, trichloroacetic acid soluble radioactivity is determined, providing a measure of lipid binding polypeptide degradation.
- Example 13 In vivo Assessment of Toxicity of AmB-containing Bioactive Agent Delivery Particles [0161] A study was performed to determine safety and toxicity of AmB-containing bioactive agent delivery particles. The particles were prepared as in Example 6. [0162] Female BALB/c mice (6-8 weeks old, 20-25 grams in weight) were divided into groups of 3 mice and each group was treated with 1, 2, 5, 10, or 15 mg/kg AmB formulated in bioactive agent delivery particles and delivered as a single dose in a 0.1 ml volume in • phosphate buffered saline (PBS) intraperitoneally (IP). A control group received only PBS.
- PBS phosphate buffered saline
- IP intraperitoneally
- mice were observed immediately, 2 hours, and 6 hours post-administration and at least twice daily for 7 days thereafter for weight loss or abnormalities in appearance and behavior. Blood was drawn 24 hours after administration. Markers for liver damage (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) and kidney damage (urea and creatinine) were quantified. [0164] Table 3 below shows the in vivo safety/toxicity profile of bioactive agent delivery particles containing AmB.
- a dosage of 15 mg/kg was found to be toxic in mice. At this dosage level, there were no immediate deaths or abnormalities but 2 out of 3 mice died the day following administration. AmB-containing particles at doses of 10 mg/kg or less were found to be safe. As shown in Fig. 14, nominal weight loss was observed at dosages of 5 mg/kg and below. In mice treated with 10 mg/kg, significant weight loss was observed on day two with subsequent recovery of up to 90% of body weight by the end of the week. At this concentration of drug, modest signs of nephrotoxicity (0.16 mg/dl creatinine at 10 mg/kg versus 0.1 mg/dl at 0 mg/kg; no change in urea) and no hepatotoxicity was observed.
- mice Female BALB/c mice (6-8 weeks old) were divided into 4 groups of 10 mice each. Each mouse was inoculated with 5 x 10 5 blastospores of Candida albicans ATCC strain 90028. Two hours after inoculation, mice were treated with Fluconazole, an orally- administrable anti-fungal treatment (30 mg/kg via oral gavage), AmBisome (5 mg/kg IP), AmB-containing bioactive agent delivery particles (5 mg/kg IP) formulated as described in Example 13, or control "empty" bioactive agent delivery particles without AmB but with an equivalent protein load to the particles containing AmB.
- mice Treatment was continued once a day for 5 days. Throughout the study, mice were monitored for mortality and abnormalities in appearance and behavior. 24 hours after the last treatment, mice were sacrificed and kidney and brain tissues were excised for assessment of fungal burden. For survival evaluation, mice were observed for 29 days and examined twice daily for mortality, weight loss, and failure to ingest food or water.
- mice treated with Fluconazole survived the term of the study.
- One mouse treated with AmB-containing bioactive agent delivery particles died on day 2 of the study. Due to the timing of this mouse's death and the absence of toxicity related to the AmB-containing particles at 5 mg/kg (see Example 13, above), it is unlikely that mortality was related to efficacy of the particles. Conversely, all mice treated with "empty" disc particles died and only one of the AmBisome treated mice survived.
- mice treated with AmB-containing bioactive agent delivery particles exhibited only nominal weight loss ( ⁇ 2%) over the course of the study.
- Fluconazole and AmBisome treated mice exhibited a maximum weight loss of 14% and 23%, respectively, during the course of the experiment.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Dispersion Chemistry (AREA)
- Epidemiology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002541117A CA2541117A1 (en) | 2003-10-01 | 2004-08-06 | Lipophilic drug delivery vehicle and methods of use thereof |
EP04780277A EP1677763A1 (en) | 2003-10-01 | 2004-08-06 | Lipophilic drug delivery vehicle and methods of use thereof |
JP2006533840A JP4786538B2 (en) | 2003-10-01 | 2004-08-06 | Lipophilic drug delivery vehicle and methods of use thereof |
AU2004283078A AU2004283078A1 (en) | 2003-10-01 | 2004-08-06 | Lipophilic drug delivery vehicle and methods of use thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US50803503P | 2003-10-01 | 2003-10-01 | |
US60/508,035 | 2003-10-01 | ||
PCT/US2004/004295 WO2004073684A2 (en) | 2003-02-14 | 2004-02-13 | Lipophilic drug delivery vehicle and methods of use thereof |
USPCT/US04/004295 | 2004-02-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005039534A1 true WO2005039534A1 (en) | 2005-05-06 |
WO2005039534A8 WO2005039534A8 (en) | 2005-09-09 |
Family
ID=34910664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/025412 WO2005039534A1 (en) | 2003-10-01 | 2004-08-06 | Lipophilic drug delivery vehicle and methods of use thereof |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1677763A1 (en) |
JP (2) | JP4786538B2 (en) |
AU (1) | AU2004283078A1 (en) |
CA (1) | CA2541117A1 (en) |
WO (1) | WO2005039534A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007000584A1 (en) | 2005-06-28 | 2007-01-04 | Ai2 Limited | Treatment of fungal and/or protist infections |
JP2009505668A (en) * | 2005-08-29 | 2009-02-12 | テヒニシェ ウニヴェルズィテート ミュンヘン | Modified spider silk protein |
WO2009158678A1 (en) * | 2008-06-27 | 2009-12-30 | Children's Hospital & Research Center At Oakland | Lipophilic nucleic acid delivery vehicle and methods of use therefor |
US7824709B2 (en) | 2003-02-14 | 2010-11-02 | Children's Hospital And Research Center At Oakland | Lipophilic drug delivery vehicle and methods of use thereof |
US8017579B2 (en) | 2003-12-24 | 2011-09-13 | Ai2 Limited | Treatment of viral infections |
US8524861B2 (en) | 2004-02-27 | 2013-09-03 | Ai2 Limited | Treatment of bacterial infections |
US8734853B2 (en) | 2008-11-17 | 2014-05-27 | University Of North Texas Health Science Center At Fort Worth | HDL particles for delivery of nucleic acids |
US9763892B2 (en) | 2015-06-01 | 2017-09-19 | Autotelic Llc | Immediate release phospholipid-coated therapeutic agent nanoparticles and related methods |
US9901616B2 (en) | 2011-08-31 | 2018-02-27 | University Of Georgia Research Foundation, Inc. | Apoptosis-targeting nanoparticles |
US10159729B2 (en) | 2013-09-13 | 2018-12-25 | Sallpro Biotech AB | Antigen and method for production thereof |
US10398663B2 (en) | 2014-03-14 | 2019-09-03 | University Of Georgia Research Foundation, Inc. | Mitochondrial delivery of 3-bromopyruvate |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5781929B2 (en) * | 2008-07-15 | 2015-09-24 | ノバルティス アーゲー | Immunogenic amphiphilic peptide composition |
ES2608857T3 (en) | 2012-12-18 | 2017-04-17 | Salipro Biotech Ag | Salipro particles |
EA038653B1 (en) * | 2016-01-07 | 2021-09-29 | Вестерн Юниверсити Оф Хелт Сайенсиз | Formulations for treating bladder cancer |
US11180535B1 (en) | 2016-12-07 | 2021-11-23 | David Gordon Bermudes | Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0277849A1 (en) * | 1987-01-13 | 1988-08-10 | Ire-Celltarg S.A. | Incorporation of one or more lipophilic, active principles into lipoproteins, lipoproteins obtained and pharmaceutical compositions containing them |
WO1996025942A1 (en) * | 1995-02-22 | 1996-08-29 | Albany Medical College | Cochleate phospholipids in drug delivery |
US6514523B1 (en) * | 2000-02-14 | 2003-02-04 | Ottawa Heart Institute Research Corporation | Carrier particles for drug delivery and process for preparation |
WO2004050062A2 (en) * | 2002-12-03 | 2004-06-17 | Blanchette Rockefeller Neurosciences Institute | Artificial low-density lipoprotein carriers for transport of substances across the blood-brain barrier |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19640092A1 (en) * | 1996-09-28 | 1998-04-16 | Beiersdorf Ag | Structures with lipid double membranes, in the lipophilic area of which longer-chain molecules are immersed or which are docked to such molecules through hydrophobic interactions |
ES2376875T3 (en) * | 2003-02-14 | 2012-03-20 | Children's Hospital & Research Center At Oakland | Vehicle for administration of lipophilic drugs and methods of use thereof |
-
2004
- 2004-08-06 JP JP2006533840A patent/JP4786538B2/en not_active Expired - Fee Related
- 2004-08-06 AU AU2004283078A patent/AU2004283078A1/en not_active Abandoned
- 2004-08-06 WO PCT/US2004/025412 patent/WO2005039534A1/en not_active Application Discontinuation
- 2004-08-06 CA CA002541117A patent/CA2541117A1/en not_active Abandoned
- 2004-08-06 EP EP04780277A patent/EP1677763A1/en not_active Withdrawn
-
2010
- 2010-07-30 JP JP2010173171A patent/JP2010248255A/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0277849A1 (en) * | 1987-01-13 | 1988-08-10 | Ire-Celltarg S.A. | Incorporation of one or more lipophilic, active principles into lipoproteins, lipoproteins obtained and pharmaceutical compositions containing them |
WO1996025942A1 (en) * | 1995-02-22 | 1996-08-29 | Albany Medical College | Cochleate phospholipids in drug delivery |
US6514523B1 (en) * | 2000-02-14 | 2003-02-04 | Ottawa Heart Institute Research Corporation | Carrier particles for drug delivery and process for preparation |
WO2004050062A2 (en) * | 2002-12-03 | 2004-06-17 | Blanchette Rockefeller Neurosciences Institute | Artificial low-density lipoprotein carriers for transport of substances across the blood-brain barrier |
Non-Patent Citations (4)
Title |
---|
BURKE T G ET AL: "Lipid bilayer partitioning and stability of camptothecin drugs.", BIOCHEMISTRY. 25 MAY 1993, vol. 32, no. 20, 25 May 1993 (1993-05-25), pages 5352 - 5364, XP002288627, ISSN: 0006-2960 * |
LISTER J: "Amphotericin B Lipid Complex (Abelcet) in the treatment of invasive mycoses: the North American experience.", EUROPEAN JOURNAL OF HAEMATOLOGY. SUPPLEMENTUM. 1996, vol. 57, 1996, pages 18 - 23, XP009033865, ISSN: 0902-4506 * |
LUNDBERG B B: "BIOLOGICALLY ACTIVE CAMPTOTHECIN DERIVATIVES FOR INCORPORATION INTO LIPOSOME BILAYERS AND LIPID EMULSIONS", ANTI-CANCER DRUG DESIGN, BASINGSTOKE, GB, vol. 13, no. 5, 1998, pages 453 - 461, XP000878681, ISSN: 0266-9536 * |
VERSLUIS A J ET AL: "STABLE INCORPORATION OF A LIPOPHILIC DAUNORUBICIN PRODRUG INTO APOLIPOPROTEIN E-EXPOSING LIPOSOMES INDUCES UPTAKE OF PRODRUG VIA LOW-DENSITY LIPOPROTEIN RECEPTOR IN VIVO", JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, AMERICAN SOCIETY FOR PHARMACOLOGY AND, US, vol. 289, no. 1, April 1999 (1999-04-01), pages 1 - 7, XP001028257, ISSN: 0022-3565 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8268357B2 (en) | 2003-02-14 | 2012-09-18 | Children's Hospital And Research Center At Oakland | Processes for the preparation of lipophilic drug delivery vehicles |
US9107826B2 (en) | 2003-02-14 | 2015-08-18 | Children's Hospital And Research Center At Oakland | Lipophilic drug delivery vehicle and methods of use thereof |
US8821939B2 (en) | 2003-02-14 | 2014-09-02 | Children's Hospital And Research Center At Oakland | Bioactive agent delivery particles |
US7824709B2 (en) | 2003-02-14 | 2010-11-02 | Children's Hospital And Research Center At Oakland | Lipophilic drug delivery vehicle and methods of use thereof |
US8017579B2 (en) | 2003-12-24 | 2011-09-13 | Ai2 Limited | Treatment of viral infections |
US8524861B2 (en) | 2004-02-27 | 2013-09-03 | Ai2 Limited | Treatment of bacterial infections |
AU2006263600B2 (en) * | 2005-06-28 | 2012-09-20 | Ai2 Limited | Treatment of fungal and/or protist infections |
WO2007000584A1 (en) | 2005-06-28 | 2007-01-04 | Ai2 Limited | Treatment of fungal and/or protist infections |
US8916516B2 (en) | 2005-06-28 | 2014-12-23 | Ai2 Limited | Treatment of fungal and/or protist infections |
JP2008546831A (en) * | 2005-06-28 | 2008-12-25 | エイアイ2 リミテッド | Treatment of fungal and / or protist infections |
JP2009505668A (en) * | 2005-08-29 | 2009-02-12 | テヒニシェ ウニヴェルズィテート ミュンヘン | Modified spider silk protein |
US8268796B2 (en) | 2008-06-27 | 2012-09-18 | Children's Hospital & Research Center At Oakland | Lipophilic nucleic acid delivery vehicle and methods of use thereof |
WO2009158678A1 (en) * | 2008-06-27 | 2009-12-30 | Children's Hospital & Research Center At Oakland | Lipophilic nucleic acid delivery vehicle and methods of use therefor |
US8734853B2 (en) | 2008-11-17 | 2014-05-27 | University Of North Texas Health Science Center At Fort Worth | HDL particles for delivery of nucleic acids |
US9901616B2 (en) | 2011-08-31 | 2018-02-27 | University Of Georgia Research Foundation, Inc. | Apoptosis-targeting nanoparticles |
US10159729B2 (en) | 2013-09-13 | 2018-12-25 | Sallpro Biotech AB | Antigen and method for production thereof |
US10398663B2 (en) | 2014-03-14 | 2019-09-03 | University Of Georgia Research Foundation, Inc. | Mitochondrial delivery of 3-bromopyruvate |
US9763892B2 (en) | 2015-06-01 | 2017-09-19 | Autotelic Llc | Immediate release phospholipid-coated therapeutic agent nanoparticles and related methods |
Also Published As
Publication number | Publication date |
---|---|
CA2541117A1 (en) | 2005-05-06 |
JP2010248255A (en) | 2010-11-04 |
JP4786538B2 (en) | 2011-10-05 |
WO2005039534A8 (en) | 2005-09-09 |
AU2004283078A1 (en) | 2005-05-06 |
EP1677763A1 (en) | 2006-07-12 |
JP2007526907A (en) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9107826B2 (en) | Lipophilic drug delivery vehicle and methods of use thereof | |
JP2010248255A6 (en) | Lipophilic drug delivery vehicle and methods of use thereof | |
JP2010248255A (en) | Lipophilic drug delivery vehicle and method of using the same | |
JP2006517972A5 (en) | ||
US6153217A (en) | Nanocochleate formulations, process of preparation and method of delivery of pharmaceutical agents | |
KR20010030892A (en) | Peptide/Lipid Complex Formation by co-lyophilization | |
KR20010112301A (en) | Encapsulation of bioactive complexes in liposomes | |
Agrawal et al. | Superior chemotherapeutic efficacy of amphotericin B in tuftsin-bearing liposomes against Leishmania donovani infection in hamsters | |
WO2009062299A1 (en) | Gel-stabilized liposome compositions, methods for their preparation and uses thereof | |
AU3111401A (en) | New cochleate formulations, process of preparation and their use for the delivery of biologically relevant molecules | |
EP1722822A1 (en) | New complexes | |
AU2004200967A1 (en) | Novel hydrogel isolated ochleate formulations, process of preparation and their use for the delivery of biologically relevant molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
CFP | Corrected version of a pamphlet front page |
Free format text: UNDER (54) PUBLISHED TITLE REPLACED BY CORRECT TITLE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006533840 Country of ref document: JP Ref document number: 2541117 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 905/KOLNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004780277 Country of ref document: EP Ref document number: 2004283078 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2004283078 Country of ref document: AU Date of ref document: 20040806 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004283078 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2004780277 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2004780277 Country of ref document: EP |